Thin-walled reinforcement lattice structure for hollow CMC buckets
de Diego, Peter
2017-06-27
A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.
Nature of interstitially induced lattice strains
International Nuclear Information System (INIS)
Emin, D.
1978-01-01
The addition of interstitial atoms to a metal lattice has been likened to the addition of extra billiard balls to an array of tangentially touching billiard balls. In such a picture the increased clustering of interstitials can lead to the buildup of larger and larger strain fields which ultimately are associated with the production of broken bonds. Simple models of the strain fields associated with the addition of particles to a lattice in which the force exerted between the added atoms and host atoms is finite have been studied. From these studies one can define situations in which the billiard-ball approach has qualitative validity and those in which it is inappropriate. Basically, those situations in which the displacements of the host atoms can be represented as involving acoustic phonons yield long-range strain fields analogous to those of the billiard-ball model with the radius of the extra billiard ball being determined by the stiffness of the host lattice and the forces between the added atom and the surrounding host atoms. If the displacements produced by the added atoms are represented as involving primarily optical phonons the displacement pattern is short-ranged and not described by the usual elasticity theory. For example, Vegard's law does not apply in these instances. Such concerns arise in considering the strains induced by interstitial helium in tritides
Introducing lattice strain to graphene encapsulated in hBN
Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu
Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.
Strain Capacity of Reinforced Concrete Members Subjected to Uniaxial Tension
DEFF Research Database (Denmark)
Hagsten, Lars German; Rasmussen, Annette Beedholm; Fisker, Jakob
2017-01-01
The aim of this paper is to set up a method to determine the strain capacity of tension bars of reinforced concrete (RC) subjected to pure tension. Due to the interaction between reinforcement and concrete and due to the presence of cracks, the stresses in both reinforcement and concrete...... are varying along the length of the tension bar. The strain capacity of the tension bar is seen as the average strain in the reinforcement at the load level corresponding to the ultimate stress capacity of the reinforcement at the cracks. The result of the approach is in overall good agreement when comparing...
Influence of reinforcement on strains within maxillary implant overdentures.
Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu
2015-01-01
The purpose of this study was to examine the influence of reinforcement of an embedded cast on the strains within maxillary implant overdentures. A maxillary edentulous model with implants placed bilaterally in the canine positions, dome-shaped copings, and experimental overdentures was fabricated. Rosette-type strain gauges were attached in the canine positions and at three points along the midline of the polished surface of the denture and connected to the sensor interface controlled by a personal computer. Experimental dentures with five different reinforcements were tested: without reinforcement; with a cast cobalt-chrome reinforcement over the residual ridge and the tops of the copings; with the same reinforcement from first molar to first molar, over the residual ridge and the tops of the copings; with the same reinforcement over the residual ridge and the sides of the copings; and with the same reinforcement from first molar to first molar, over the residual ridge and the sides of the copings. A vertical occlusal load of 49 N was applied to the first premolar and then to the first molar, and the strains were measured and compared by analysis of variance. In both loading situations, significantly less strain was recorded in dentures with reinforcement than in those without reinforcement. When the first premolar was loaded on dentures with and without palatal reinforcement at the first premolars, the strains on the denture with reinforcement over the tops of the copings were significantly lower than on the denture with reinforcement over the sides of the copings at the canine position. Cast reinforcement over the residual ridge and the top of copings embedded in an acrylic base reduced the strain from occlusal stress on maxillary implant overdentures.
Strain rate effects on reinforcing steels in tension
Cadoni, Ezio; Forni, Daniele
2015-09-01
It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.
Strain gradient plasticity effects in whisker-reinforced metals
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...
Lattice strain evolution in IMI 834 under applied stress
International Nuclear Information System (INIS)
Daymond, Mark R.; Bonner, Neil W.
2003-01-01
The effect of elastic and plastic anisotropy on the evolution of lattice strains in the titanium alloy IMI834 has been examined during a uniaxial tensile test, by in situ monitoring on the Engin instrument at the ISIS pulsed neutron source. Measurements were made at load during an incremental loading test. The data is analysed in the light of the requirements for engineering residual stress scanning measurements performed at polychromatic neutron and synchrotron diffraction sources. Comparisons between the measured strains from different lattice families and the predictions from an elasto-plastic self-consistent model are made. Agreement is good in the elastic regime and for most diffraction planes in the plastic regime
Kimizuka, Hajime; Ogata, Shigenobu; Shiga, Motoyuki
2018-01-01
Understanding the underlying mechanism of the nanostructure-mediated high diffusivity of H in Pd is of recent scientific interest and also crucial for industrial applications. Here, we present a decisive scenario explaining the emergence of the fast lattice-diffusion mode of interstitial H in face-centered cubic Pd, based on the quantum mechanical natures of both electrons and nuclei under finite strains. Ab initio path-integral molecular dynamics was applied to predict the temperature- and strain-dependent free energy profiles for H migration in Pd over a temperature range of 150-600 K and under hydrostatic tensile strains of 0.0%-2.4%; such strain conditions are likely to occur in real systems, especially around the elastic fields induced by nanostructured defects. The simulated results revealed that, for preferential H location at octahedral sites, as in unstrained Pd, the activation barrier for H migration (Q ) was drastically increased with decreasing temperature owing to nuclear quantum effects. In contrast, as tetrahedral sites increased in stability with lattice expansion, nuclear quantum effects became less prominent and ceased impeding H migration. This implies that the nature of the diffusion mechanism gradually changes from quantum- to classical-like as the strain is increased. For H atoms in Pd at the hydrostatic strain of ˜2.4 % , we determined that the mechanism promoted fast lattice diffusion (Q =0.11 eV) of approximately 20 times the rate of conventional H diffusion (Q =0.23 eV) in unstrained Pd at a room temperature of 300 K.
Strain gradient plasticity effects in whisker-reinforced metals
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2003-01-01
A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter...
Total Strain FE Model for Reinforced Concrete Floors on Piles
Hofmeyer, H.; Bos, van den A.A.
2008-01-01
A finite element (FE) model using a total strain material model has been developed to predict the behavior of warehouse reinforced concrete floors on piles. The material model (not the FE model itself) was calibrated to material tests. The FE model for the floor structure was checked with full-scale
Stress-Strain Relationship of Synthetic Fiber Reinforced Concrete Columns
Directory of Open Access Journals (Sweden)
Rosidawani
2017-01-01
Full Text Available Many empirical confinement models for normal and high strength concrete have been developed. Nevertheless, reported studies in the term of confinement of fiber reinforced concrete are limited. Whereas, the use of fiber reinforced concrete in structural elements has become the subject of the research and has indicated positive experiences. Since the stress-strain relationship of concrete in compression is required for analysis of structural members, the study of the stress-strain relationship for synthetic fiber reinforced concrete is substantial. The aim of the study is to examine the capabilities of the various models available in the literature to predict the actual experimental behavior of synthetic fiber reinforced high-strength concrete columns. The experimental data used are the results of the circular column specimens with the spiral spacing and the volume fraction of synthetic fiber as the test variables. The axial stress-strain curves from the tests are then compared with the various models of confinement from the literature. The performance index of each model is measured by using the coefficient of variation (COV concept of stress and strain behavior parameter. Among the confinement models, Cusson model shows the closest valid value of the coefficient of variation.
Lattice strain induced multiferroicity in PZT-CFO particulate composite
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Rajnish; Kar, Manoranjan
2018-02-01
Lead Zirconate Titanate [Pb(Zr0.52Ti0.48)O3/PZT] and Cobalt Ferrite [CoFe2O4/CFO] based multiferroic composites [(1-x)PZT-(x)CFO] with (x = 0.10-0.40) have been prepared to study its magnetoelectric (ME) and multiferroic properties. X-ray diffraction method along with the Rietveld refinement technique reveals that the crystal symmetries corresponding to PZT and CFO exist independently in the composites. The effect of interfacial strain on lattice distortion in PZT has been observed. It is well correlated with the magnetoelectric coupling of the composites. Dispersion behavior of dielectric constant with frequency can be explained by the modified Debye model. Different relaxation phenomena have been observed in PZT-CFO particulate composites. The ferroelectric properties of composites decrease with the increase in percentage of CFO in the composite. Both saturation (Ms) and remanent (Mr) magnetization increase with the increase in CFO content in the composite. The maximum ME coupling was found to be 1.339 pC/cm2 Oe for the composition (0.80) PZT-(0.20) CFO at the application of maximum magnetic field of 50 Oe. The multiferroic properties in CFO-PZT can be explained by the lattice strain at the CFO-PZT interfaces.
Capturing strain localization behind a geosynthetic-reinforced soil wall
Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.
2003-04-01
This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.
Behavior of fiber reinforced metal laminates at high strain rate
Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo
2018-05-01
Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.
Effect of loading mode on lattice strain measurements via neutron diffraction
International Nuclear Information System (INIS)
Skippon, T.; Clausen, B.; Daymond, M.R.
2013-01-01
The study of lattice strain evolution during uniaxial deformation via in situ neutron diffraction is a well established technique for characterizing the deformation behavior of metals. However, the relatively low flux of neutron facilities results in count times on the order of several minutes, requiring experimenters to choose between either applying a very slow strain rate, or loading the sample incrementally rather than continuously. Here we investigate the effects on lattice strain data obtained by using stress, strain, and position controlled incremental loading, as well as continuous loading, on samples of Zircaloy-2 under uniaxial compression. It was found that both qualitative and quantitative differences arise in the lattice strain behavior of certain grain families, particularly {101 ¯ 0} and {112 ¯ 0}, while other grain families show no discernible effect. The differences in lattice strain evolution brought on by the variation in loading modes are believed to be the result of thermally activated dislocation motion
Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik
2011-01-01
Self compacting concrete (SCC) is a promising material in the civil engineering industry. One of the benefits of the SCC is a fast and simplified casting followed by decreased labor costs. The SCC as any other type of concrete has a significantly lower tensile and shear strength in comparison to ....... A relatively new group of models - Lattice Boltzmann Modeling (LBM) - is presented in this paper. The conventional LBM is modified to include fiber and particle suspensions and non-Newtonian rheology and is used to model the fiber reinforced self compacting concrete flow....
International Nuclear Information System (INIS)
Steinle-Neumann, Gerd; Stixrude, Lars; Cohen, Ronald E.
2001-01-01
High-pressure structural distortions of the hexagonal close-packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane-wave method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments
Study of the stress-strain state of compressed concrete elements with composite reinforcement
Directory of Open Access Journals (Sweden)
Bondarenko Yurii
2017-01-01
Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.
International Nuclear Information System (INIS)
Poccia, N.; Ricci, A.; Bianconi, N.
2010-01-01
High-temperature superconductivity (HTS) emerges in quite different electronic materials: cuprates, diborides, and iron-pnictide superconductors. Looking for unity in the diversity we find in all these materials a common lattice architecture: they are practical realizations of heterostructures at atomic limit made of superlattices of metallic active layers intercalated by spacers as predicted in 1993 by one of us. The multilayer architecture is the key feature for the presence of electronic topological transitions where the Fermi surface of one of the subbands changes dimensionality. The superlattice misfit strain η between the active and spacer layers is shown to be a key variable to drive the system to the highest critical temperature Tc that occurs at a particular point of the 3D phase diagram Tc(θ, η) where d is the charge transfer or doping. The plots of Tc as a function of misfit strain at constant charge transfer in cuprates show a first-order quantum critical phase transition where an itinerant striped magnetic phase competes with superconductivity in the proximity of a structural phase transition, that is, associated with an electronic topological transition. The shape resonances in these multi gap superconductors is associated with the maximum Tc.
X-ray determination of crystallite size and effect of lattice strain on ...
Indian Academy of Sciences (India)
X-ray diffraction; lattice strain; crystallite size; Debye–Waller factor; vacancy formation energy. 1. Introduction ... In the present investigation, results of a system- atic study of .... that while milling is enough to create strains, it affects the particle ...
Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study
Demiral, Murat
2014-07-01
In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..
Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study
Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.
2014-01-01
In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..
Lattice and strain analysis of atomic resolution Z-contrast images based on template matching
Energy Technology Data Exchange (ETDEWEB)
Zuo, Jian-Min, E-mail: jianzuo@uiuc.edu [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Shah, Amish B. [Center for Microanalysis of Materials, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kim, Honggyu; Meng, Yifei; Gao, Wenpei [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Rouviére, Jean-Luc [CEA-INAC/UJF-Grenoble UMR-E, SP2M, LEMMA, Minatec, Grenoble 38054 (France)
2014-01-15
A real space approach is developed based on template matching for quantitative lattice analysis using atomic resolution Z-contrast images. The method, called TeMA, uses the template of an atomic column, or a group of atomic columns, to transform the image into a lattice of correlation peaks. This is helped by using a local intensity adjusted correlation and by the design of templates. Lattice analysis is performed on the correlation peaks. A reference lattice is used to correct for scan noise and scan distortions in the recorded images. Using these methods, we demonstrate that a precision of few picometers is achievable in lattice measurement using aberration corrected Z-contrast images. For application, we apply the methods to strain analysis of a molecular beam epitaxy (MBE) grown LaMnO{sub 3} and SrMnO{sub 3} superlattice. The results show alternating epitaxial strain inside the superlattice and its variations across interfaces at the spatial resolution of a single perovskite unit cell. Our methods are general, model free and provide high spatial resolution for lattice analysis. - Highlights: • A real space approach is developed for strain analysis using atomic resolution Z-contrast images and template matching. • A precision of few picometers is achievable in the measurement of lattice displacements. • The spatial resolution of a single perovskite unit cell is demonstrated for a LaMnO{sub 3} and SrMnO{sub 3} superlattice grown by MBE.
Lattice strain measurements on sandstones under load using neutron diffraction
Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.
2000-11-01
Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.
International Nuclear Information System (INIS)
Sim, J.; Soroushian, P.
1989-01-01
An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was used to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections are suggested
The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.
Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao
2018-03-30
3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.
The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings
Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao
2018-01-01
3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543
The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings
Directory of Open Access Journals (Sweden)
Haolong Shangguan
2018-03-01
Full Text Available 3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.
Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure
Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter
2016-01-01
A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.
Transport properties through graphene grain boundaries: strain effects versus lattice symmetry
Hung Nguyen, V.; Hoang, Trinh X.; Dollfus, P.; Charlier, J.-C.
2016-06-01
As most materials available at the macroscopic scale, graphene samples usually appear in a polycrystalline form and thus contain grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of transport properties with respect to the strain and lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown that strain engineering can be used to open a finite transport gap in all graphene systems where the two domains are arranged in different orientations. This gap value is found to depend on the strain magnitude, on the strain direction and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents. For a specific class of graphene grain boundary systems, strain engineering can also be used to reduce the scattering on defects and thus to significantly enhance the conductance. With a large strain-induced gap, these graphene heterostructures are proposed to be promising candidates for highly sensitive strain sensors, flexible electronic devices and p-n junctions with non-linear I-V characteristics.
International Nuclear Information System (INIS)
Arai, Kazuaki; Umeda, Masaichi; Agatsuma, Koh; Tateishi, Hiroshi
1998-01-01
We have been developing fiber-reinforced superconductors (FRS) for high-field and large-scale magnets. Tungsten fibers have been selected as the reinforcement fiber for FRS so far because tungsten has the highest elastic modulus of approximately 400 GPa which can minimize the strain from electromagnetic force. The preparation process of FRS consists of sputtering deposition and heat treatment because it may be difficult to apply drawing methods to materials of high-elastic modulus such as tungsten. Tantalum has high elastic modulus of 178 GPa and its thermal expansion coefficient that is closer to that of Nb 3 Sn than tungsten's, which means prestrain in Nb 3 Sn in FRS is reduced by adopting tantalum fibers. Tantalum has been used as barriers between bronze and copper in conventional Nb 3 Sn superconductors which are usually prepared with drawing process despite of the tantalum's high elastic modulus. That implies drawing process may be applied to prepare FRS with tantalum reinforcement fibers. In this paper, FRS using tantalum fibers prepared with sputtering process are described with making comparison with FRS of tungsten to clarify the basic properties of FRS using tantalum fibers. Depth profiles in Nb 3 Sn layer in FRS were measured to examine reaction between superconducting layers and reinforcement fibers. Superconducting properties including strain and stress characteristics were shown. Those data will contribute to design of FRS using tantalum reinforcement fibers with adopts the drawing processes. (author)
Numerical Evaluation of Size Effect on the Stress-Strain Behaviour of Geotextile-Reinforced Sand
DEFF Research Database (Denmark)
Hosseinpour, I.; Mirmoradi, S.H.; Barari, Amin
2010-01-01
This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the con......This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers...... on the mechanical behavior of reinforced sand decreases with an increase in the sample size....
Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation
Directory of Open Access Journals (Sweden)
Hongjia Zhang
2018-03-01
Full Text Available High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short. As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation.
Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation
Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon
2018-01-01
High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728
DEFF Research Database (Denmark)
Gorfman, S.; Simons, Hugh; Iamsasri, T.
2016-01-01
and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice...
International Nuclear Information System (INIS)
Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio
2001-01-01
It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)
Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando
2017-02-21
This work presents a lattice-particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice-particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.
Wang, Fengwen
2018-05-01
This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.
Geometric treatment of conduction electron scattering by crystal lattice strains and dislocations
Energy Technology Data Exchange (ETDEWEB)
Viswanathan, Koushik, E-mail: kviswana@purdue.edu [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47907 (United States); Chandrasekar, Srinivasan [Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47907 (United States)
2014-12-28
The problem of conduction electron scattering by inhomogeneous crystal lattice strains is addressed using a tight-binding formalism and the differential geometric treatment of deformations in solids. In this approach, the relative positions of neighboring atoms in a strained lattice are naturally taken into account, even in the presence of crystal dislocations, resulting in a fully covariant Schrödinger equation in the continuum limit. Unlike previous work, the developed formalism is applicable to cases involving purely elastic strains as well as discrete and continuous distributions of dislocations—in the latter two cases, it clearly demarcates the effects of the dislocation strain field and core. It also differentiates between elastic and plastic strain contributions, respectively. The electrical resistivity due to the strain field of edge dislocations is then evaluated and the resulting numerical estimate for Cu shows good agreement with reported experimental values. This indicates that the electrical resistivity of edge dislocations in metals is not entirely due to the core, contrary to current models. Application to the study of strain effects in constrained quantum systems is also discussed.
Cracking and Strain Analysis of Beams Reinforced with Composite Bars
Directory of Open Access Journals (Sweden)
Edgaras Timinskas
2012-11-01
Full Text Available The paper discusses the results of experimental and numerical modelling using two beams reinforced with GFRP bars. One beam was made of plain concrete while the other contained short steel fibres. The influence of steel fibres on deflection and cracking behaviour was studied. A comparative analysis of experimental results has shown that steel fibres significantly reduce deflections and average crack width of the beam. Moreover, an addition of steel fibres to the concrete mix led to a more ductile failure mode of the beam. Numerical analysis employing nonlinear finite element software ATENA has revealed that a good agreement between calculated and experimental results regarding an ordinary concrete GFRP reinforced beam can be obtained.
Particle size dependent confinement and lattice strain effects in LiFePO4.
Shahid, Raza; Murugavel, Sevi
2013-11-21
We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.
Estimation of lattice strain in nanocrystalline RuO2 by Williamson-Hall and size-strain plot methods
Sivakami, R.; Dhanuskodi, S.; Karvembu, R.
2016-01-01
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55 eV. BET measurements show a high specific surface area (SSA) of 118-133 m2/g and pore diameter (10-25 nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM.
Sivakami, R; Dhanuskodi, S; Karvembu, R
2016-01-05
RuO2 nanoparticles (RuO2 NPs) have been successfully synthesized by the hydrothermal method. Structure and the particle size have been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). UV-Vis spectra reveal that the optical band gap of RuO2 nanoparticles is red shifted from 3.95 to 3.55eV. BET measurements show a high specific surface area (SSA) of 118-133m(2)/g and pore diameter (10-25nm) has been estimated by Barret-Joyner-Halenda (BJH) method. The crystallite size and lattice strain in the samples have been investigated by Williamson-Hall (W-H) analysis assuming uniform deformation, deformation stress and deformation energy density, and the size-strain plot method. All other relevant physical parameters including stress, strain and energy density have been calculated. The average crystallite size and the lattice strain evaluated from XRD measurements are in good agreement with the results of TEM. Copyright © 2015 Elsevier B.V. All rights reserved.
Stress-strain relationship of high-strength steel (HSS) reinforcing bars
Anggraini, Retno; Tavio, Raka, I. Gede Putu; Agustiar
2018-05-01
The introduction of High-Strength Steel (HSS) reinforcing bars in reinforced concrete members has gained much attention in recent years and led to many advantages such as construction timesaving. It is also more economical since it can reduce the amount of reinforcing steel bars used in concrete members which in turn alleviates the congestion of reinforcement. Up to present, the building codes, e.g. American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013, still restrict the use of higher-strength steel reinforcing bars for concrete design up to Grade 420 MPa due to the possible suspected brittle behavior of concrete members. This paper evaluates the characteristics of stress-strain relationships of HSS bars if they are comparable to the characteristics of those of Grade 420 MPa. To achieve the objective of the study, a series of steel bars from various grades (420, 550, 650, and 700 MPa) was selected. Tensile tests of these steel samples were conducted under displacement-controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. The results indicate that all the steel bars tested had the actual yield strengths greater than the corresponding specified values. The stress-strain curves of HSS reinforcing bars (Grade 550, 650, and 700 MPa) performed slightly different characteristics with those of Grade 420 MPa.
Energy absorption at high strain rate of glass fiber reinforced mortars
Directory of Open Access Journals (Sweden)
Fenu Luigi
2015-01-01
Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.
Lattice strain accompanying the colossal magnetoresistance effect in EuB6.
Manna, Rudra Sekhar; Das, Pintu; de Souza, Mariano; Schnelle, Frank; Lang, Michael; Müller, Jens; von Molnár, Stephan; Fisk, Zachary
2014-08-08
The coupling of magnetic and electronic degrees of freedom to the crystal lattice in the ferromagnetic semimetal EuB(6), which exhibits a complex ferromagnetic order and a colossal magnetoresistance effect, is studied by high-resolution thermal expansion and magnetostriction experiments. EuB(6) may be viewed as a model system, where pure magnetism-tuned transport and the response of the crystal lattice can be studied in a comparatively simple environment, i.e., not influenced by strong crystal-electric field effects and Jahn-Teller distortions. We find a very large lattice response, quantified by (i) the magnetic Grüneisen parameter, (ii) the spontaneous strain when entering the ferromagnetic region, and (iii) the magnetostriction in the paramagnetic temperature regime. Our analysis reveals that a significant part of the lattice effects originates in the magnetically driven delocalization of charge carriers, consistent with the scenario of percolating magnetic polarons. A strong effect of the formation and dynamics of local magnetic clusters on the lattice parameters is suggested to be a general feature of colossal magnetoresistance materials.
International Nuclear Information System (INIS)
Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.
2014-01-01
The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution
On the evolution and modelling of lattice strains during the cyclic loading of TWIP steel
International Nuclear Information System (INIS)
Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.
2013-01-01
The evolution of lattice strains in fully annealed Fe–24Mn–3Al–2Si–1Ni–0.06C twinning-induced plasticity (TWIP) steel is investigated via in situ neutron diffraction during cyclic (tension–compression) loading between strain limits of ±1%. The pronounced Bauschinger effect observed upon load reversal is accounted for by a combination of the intergranular residual stresses and the intragranular sources of back stress, such as dislocation pile-ups at the intersection of stacking faults. The recently modified elasto-plastic self-consistent (EPSC) model which empirically accounts for both intergranular and intragranular back stresses has been successfully used to simulate the macroscopic stress–strain response and the evolution of the lattice strains. The EPSC model captures the experimentally observed tension–compression asymmetry as it accounts for the directionality of twinning as well as Schmid factor considerations. For the strain limits used in this study, the EPSC model also predicts that the lower flow stress on reverse shear loading reported in earlier Bauschinger-type experiments on TWIP steel is a geometrical or loading path effect
Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism
Debelle, Aurélien; Crocombette, Jean-Paul; Boulle, Alexandre; Chartier, Alain; Jourdan, Thomas; Pellegrino, Stéphanie; Bachiller-Perea, Diana; Carpentier, Denise; Channagiri, Jayanth; Nguyen, Tien-Hien; Garrido, Frédérico; Thomé, Lionel
2018-01-01
Modification of materials using ion beams has become a widespread route to improve or design materials for advanced applications, from ion doping for microelectronic devices to emulation of nuclear reactor environments. Yet, despite decades of studies, major issues regarding ion/solid interactions are not solved, one of them being the lattice-strain development process in irradiated crystals. In this work, we address this question using a consistent approach that combines x-ray diffraction (XRD) measurements with both molecular dynamics (MD) and rate equation cluster dynamics (RECD) simulations. We investigate four distinct materials that differ notably in terms of crystalline structure and nature of the atomic bonding. We demonstrate that these materials exhibit a common behavior with respect to the strain development process. In fact, a strain build-up followed by a strain relaxation is observed in the four investigated cases. The strain variation is unambiguously ascribed to a change in the defect configuration, as revealed by MD simulations. Strain development is due to the clustering of interstitial defects into dislocation loops, while the strain release is associated with the disappearance of these loops through their integration into a network of dislocation lines. RECD calculations of strain depth profiles, which are in agreement with experimental data, indicate that the driving force for the change in the defect nature is the defect clustering process. This study paves the way for quantitative predictions of the microstructure changes in irradiated materials.
Comment on 'Magic strains in face-centered and body-centered cubic lattices'
Energy Technology Data Exchange (ETDEWEB)
Waal, B.W. van de (Technische Hogeschool Twente, Enschede (Netherlands). Dept. of Physics)
1990-03-01
The six symmetry-related so-called magic strain tensors that transform a f.c.c. lattice (or a b.c.c. lattice) into itself, which have been reported recently by Boyer are not unique: An infinite number of displacement tensors can be constructed that transform one lattice into another, or into itself. There is no connection with fivefold symmetry, other than that in any f.c.c. crystal. (orig.).
Directory of Open Access Journals (Sweden)
V. M. Sounthararajan
2013-01-01
Full Text Available Corrosion of steel bars in concrete is a serious problem leading to phenomenal volume expansion and thereby leading to cover concrete spalling. It is well known that the reinforced concrete structures subjected to chloride attack during its service life cause these detrimental effects. The early detection of this damage potential can extend the service life of concrete. This study reports the comprehensive experimental studies conducted on the identification of corrosion mechanism in different types of reinforced concrete containing class-F fly ash and hooked steel fibres. Fly ash replaced concrete mixes were prepared with 25% and 50% fly ash containing steel fibres at 0.5%, 1.0%, and 1.5% by volume fraction. Corrosion process was investigated in an embedded steel bar (8 mm diameter reinforced in concrete by passing an impressed current in sodium chloride solution. Strain gauge attached to the rebars was monitored for electrical measurements using strain conditioner. Strain gauge readings observed during the corrosion process exhibited the volume changes of the reinforcement embedded inside the concrete. The corrosion potential of different steel fibre reinforced concrete mixes with fly ash addition showed higher resistance towards the corrosion initiation.
Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio
2016-09-22
Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.
New position of Dirac points in the strained graphene reciprocal lattice
Directory of Open Access Journals (Sweden)
Cui-Lian Li
2014-08-01
Full Text Available In the strained graphene, Fermi velocity shows space-dependent and it changes as the position of Dirac point shifts. In this paper, we apply the tight-binding approach within linear elasticity theory to investigate the shifting of Dirac points in the strained graphene reciprocal lattice space. Based on this, we derive the analytical expression on the new positions of the Dirac points as the strain parameter varies. Comparing the data from our analytical expression, ones from Eq. (20 in Phys. Rev. B 80, 045401 (2009, and those from numerical calculation, we find that our analytical expression raises the effective prediction range of the strain parameter from 3% to 15%. i.e., our analytical expression is practicable until the strain parameter is larger than 15%. This almost includes the whole range where the Dirac points present and the energy gap is zero. Moreover, we further calculate the energy gap by numerical method when the shear strain parameter varies from 0 to 20%, and find that the energy gap can not open until the strain parameter is larger than 16%. After this, the energy gap open and the Dirac points disappear.
Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites
International Nuclear Information System (INIS)
Li, V.C.; Wu, H.W.
1992-01-01
Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain hardening can be practically designed for both gills of composites by proper tailoring of material structures. 18 refs., 8 figs., 2 tabs
Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu
Maxillary implant overdentures are often designed without palatal coverage to maximize wearer comfort. Although palateless dentures have been reported to be less rigid than conventional dentures, and require reinforcement to prevent complications, there is little documentation about the effects of such reinforcement. The purpose of this study was to examine the effects of reinforcement on the strain on maxillary implant overdentures supported by implants in a variety of configurations. A maxillary edentulous model with implants inserted in the anterior, premolar, and molar area was fabricated. Five types of experimental overdentures, with and without reinforcement, were fabricated, and two strain gauges were attached at the anterior midline of the labial and palatal sides. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the shear strain on the denture was measured. The measurements were compared using the Kruskal-Wallis test (P = .05). On both the labial and palatal sides, the strain on the palateless dentures with reinforcement was significantly lower than the strain on palateless dentures without reinforcement in all implant configurations (P overdenture with residual ridge reinforcement and a palatal bar could reduce the strain in the anterior midline to almost the same level as a denture with palatal coverage. This type of reinforcement may prevent prosthetic and implant complications.
STRESS-STRAIN STATE IN EMBEDMENT OF REINFORCEMENT IN CASE OF REPEATED LOADINGS
Directory of Open Access Journals (Sweden)
Mirsayapov Ilshat Talgatovich
2016-05-01
Full Text Available The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.
Prediction of strain values in reinforcements and concrete of a RC frame using neural networks
Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul
2018-03-01
The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.
Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite
Energy Technology Data Exchange (ETDEWEB)
Kumar, Rajnish [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India); Singh, Rakesh Kr. [Aryabhatta Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna 800001 (India); Zope, Mukesh Kumar [Indira Gandhi Institute of Medical Sciences, Sheikhpura, Patna 800014 (India); Kar, Manoranjan, E-mail: mano@iitp.ac.in [Department of Physics, Indian Institute of Technology Patna, Bihta, Patna 801103 (India)
2017-06-15
Highlights: • Increase of lattice parameter due to Pb substitution in CFO. • Magnetism due to lattice strain in nonmagnetic (Pb) substituted CFO. • Saturation magnetization increases up to 2% Pb concentration. • Magnetocrystalline anisotropy constant increases up to 2% Pb concentration. • Existence of non-collinear spin structure which can be explained by three sublattice model of Yafet and Kittel. - Abstract: Co{sub 1−x}Pb{sub x}Fe{sub 2}O{sub 4} (x = 00–0.15) have been synthesized using citric acid modified sol-gel method. Samples for x ≤ 0.02 have been ball milled to reduce the particle size. Hence, all the materials under the study are in almost equal crystallite size (∼15 nm). The phase purity and structural study have been carried out using X-ray powder diffraction (XRD) technique. The Rietveld refinement of XRD patterns reveals the increasing lattice parameter with the lead (Pb) concentration. Detailed analysis of the Raman spectroscopy data supports the XRD pattern analysis results. Magnetic hysteresis loop measurements have been performed using Vibrating Sample Magnetometer (VSM) at room temperature over field range of ±20 kOe. Magnetocrystalline anisotropy constant was calculated using Law of Approach (LA) to saturation, which shows increasing behavior till 2% Pb concentration. The large difference in experimental and theoretical saturation magnetic moment per formula unit shows existence of three sublattice model suggested by Yafet-Kittel.
Fully coupled Lattice Boltzmann simulation of ﬁber reinforced self compacting concrete ﬂow
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik
accurately the most important phenomena is introduced. A conventional Lattice Boltzmann method has been chosen as a ﬂuid dynamics solver of the non-Newtonian ﬂuid. A Mass Tracking Algorithm has been implemented to correctly represent a free surface and a modiﬁed Immersed Boundary Method (IBM) with direct...
Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino
2018-04-17
This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.
Directory of Open Access Journals (Sweden)
Francisco J. Rescalvo
2018-04-01
Full Text Available This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes, reinforced using carbon composite materials (CFRP. Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE sensors. Results demonstrate that: (1 the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness; (2 Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.
Markov chain modeling of evolution of strains in reinforced concrete flexural beams
Directory of Open Access Journals (Sweden)
Anoop, M. B.
2012-09-01
Full Text Available From the analysis of experimentally observed variations in surface strains with loading in reinforced concrete beams, it is noted that there is a need to consider the evolution of strains (with loading as a stochastic process. Use of Markov Chains for modeling stochastic evolution of strains with loading in reinforced concrete flexural beams is studied in this paper. A simple, yet practically useful, bi-level homogeneous Gaussian Markov Chain (BLHGMC model is proposed for determining the state of strain in reinforced concrete beams. The BLHGMC model will be useful for predicting behavior/response of reinforced concrete beams leading to more rational design.A través del análisis de la evolución de la deformación superficial observada experimentalmente en vigas de hormigón armado al entrar en carga, se constata que dicho proceso debe considerarse estocástico. En este trabajo se estudia la utilización de cadenas de Markov para modelizar la evolución estocástica de la deformación de vigas flexotraccionadas. Se propone, para establecer el estado de deformación de estas, un modelo con distribución gaussiana tipo cadena de Markov homogénea de dos niveles (BLHGMC por sus siglas en inglés, cuyo empleo resulta sencillo y práctico. Se comprueba la utilidad del modelo BLHGMC para prever el comportamiento de estos elementos, lo que determina a su vez una mayor racionalidad a la hora de su cálculo y diseño
Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus
2013-05-01
Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.
Directory of Open Access Journals (Sweden)
S.M. Ibrahim
Full Text Available Abstract This paper investigates the stress-strain characteristics of Hybrid fiber reinforced concrete (HFRC composites under dynamic compression using Split Hopkinson Pressure Bar (SHPB for strain rates in the range of 25 to 125 s-1. Three types of fibers - hooked ended steel fibers, monofilament crimped polypropylene fibers and staple Kevlar fibers were used in the production of HFRC composites. The influence of different fibers in HFRC composites on the failure mode, dynamic increase factor (DIF of strength, toughness and strain are also studied. Degree of fragmentation of HFRC composite specimens increases with increase in the strain rate. Although the use of high percentage of steel fibers leads to the best performance but among the hybrid fiber combinations studied, HFRC composites with relatively higher percentage of steel fibers and smaller percentage of polypropylene and Kevlar fibers seem to reflect the equally good synergistic effects of fibers under dynamic compression. A rate dependent analytical model is proposed for predicting complete stress-strain curves of HFRC composites. The model is based on a comprehensive fiber reinforcing index and complements well with the experimental results.
Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets
Owerre, S. A.
2018-06-01
A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the index. This quantity distinguishes a nontrivial topological system from a trivial one. A topological phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin–orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii–Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain , where D and J denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for and for . The associated anomalous thermal Hall conductivity develops an abrupt change at , due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.
SDOF models for reinforced concrete beams under impulsive loads accounting for strain rate effects
Energy Technology Data Exchange (ETDEWEB)
Stochino, F., E-mail: fstochino@unica.it [Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari (Italy); Carta, G., E-mail: giorgio_carta@unica.it [Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari (Italy)
2014-09-15
Highlights: • Flexural failure of reinforced concrete beams under blast and impact loads is studied. • Two single degree of freedom models are formulated to predict the beam response. • Strain rate effects are taken into account for both models. • The theoretical response obtained from each model is compared with experimental data. • The two models give a good estimation of the maximum deflection at collapse. - Abstract: In this paper, reinforced concrete beams subjected to blast and impact loads are examined. Two single degree of freedom models are proposed to predict the response of the beam. The first model (denoted as “energy model”) is developed from the law of energy balance and assumes that the deformed shape of the beam is represented by its first vibration mode. In the second model (named “dynamic model”), the dynamic behavior of the beam is simulated by a spring-mass oscillator. In both formulations, the strain rate dependencies of the constitutive properties of the beams are considered by varying the parameters of the models at each time step of the computation according to the values of the strain rates of the materials (i.e. concrete and reinforcing steels). The efficiency of each model is evaluated by comparing the theoretical results with experimental data found in literature. The comparison shows that the energy model gives a good estimation of the maximum deflection of the beam at collapse, defined as the attainment of the ultimate strain in concrete. On the other hand, the dynamic model generally provides a smaller value of the maximum displacement. However, both approaches yield reliable results, even though they are based on some approximations. Being also very simple to implement, they may serve as an useful tool in practical applications.
International Nuclear Information System (INIS)
Usami, Takashi; Yoshida, Yutaka; Ichino, Yusuke; Sugano, Michinaka; Machiya, Shutaro; Ibi, Akira; Izumi, Teruo
2016-01-01
The strain effect of REBa_2Cu_3O_y (REBCO: RE = Y, Gd, Sm)-coated conductors (CCs) on critical current (I_c) is one of the most fundamental factors for superconducting coil applications. In this study, we aim to clarify the effect of artificial pinning center shapes on the strain effect in BHO-doped GdBCO CCs. To achieve this, we fabricated a Pure-GdBCO CC, a BHO nanorod-doped GdBCO CC and a multilayered-GdBCO (ML-GdBCO) CC, and carried out bending tests. As the result, the strain dependence of I_c for each CC showed an upward convex and the peak strain of the BHO-doped GdBCO CC shifts towards the compressive strain independent of the BHO shapes. In addition, the strain sensitivity of I_c in the GdBCO CCs including BHO becomes smaller. To clarify the difference between the strain sensitivity of I_c and the peak strain among the CCs, we evaluated the residual strain and the slopes of the internal lattice strains against the applied tensile strain (β). From this measurement, the residual strains for the Pure-GdBCO CC and the ML-GdBCO CC were almost the same. In addition, there was no change in the β value between the Pure-GdBCO and ML-GdBCO CCs. These results suggest that the changes in peak strain and strain sensitivity were not related to the internal lattice strain. (author)
Directory of Open Access Journals (Sweden)
Brahmananda Pramanik
2014-01-01
Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.
Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.
2018-06-01
The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.
Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh
2007-03-01
Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.
An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy
International Nuclear Information System (INIS)
Owen, L.R.; Pickering, E.J.; Playford, H.Y.; Stone, H.J.; Tucker, M.G.; Jones, N.G.
2017-01-01
The formation of single phase solid solutions from combinations of multiple principal elements, with differing atomic radii, has led to the suggestion that the lattices of high-entropy alloys (HEAs) must be severely distorted. To assess this hypothesis, total scattering measurements using neutron radiation have been performed on the CrMnFeCoNi alloy and compared with similar data from five compositionally simpler materials within the same system. The Bragg diffraction patterns from all of the studied materials were similar, consistent with a face-centered cubic structure, and none showed the pronounced dampening that would be expected from a highly distorted lattice. A more detailed evaluation of the local lattice strain was made by considering the first six coordination shells in the pair distribution functions (PDF), obtained from the total scattering data. Across this range, the HEA exhibited the broadest PDF peaks but these widths were not disproportionately larger than those of the simpler alloys. In addition, of all the materials considered, the HEA was at the highest homologous temperature, and hence the thermal vibrations of the atoms would be greatest. Consequently, the level of local lattice strain required to rationalise a given PDF peak width would be reduced. As a result, the data presented in this study do not indicate that the local lattice strain in the equiatomic CrMnFeCoNi HEA is anomalously large.
Defect luminescence and lattice strain in Mn{sup 2+} doped ZnGa{sub 2}O{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Somasundaram, K.; Abhilash, K.P. [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Christopher Selvin, P., E-mail: pcsphyngmc@rediffmail.com [Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi, 642001 Coimbatore (India); Kadam, R.M. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2016-06-15
Undoped and Mn{sup 2+} doped ZnGa{sub 2}O{sub 4} phosphors were prepared by solution combustion method and characterized by XRD, SEM, luminescence and electron paramagnetic resonance (EPR) techniques. Based on XRD results, it is inferred that, strain in ZnGa{sub 2}O{sub 4} host lattice increases with incorporation of Mn{sup 2+} ions in the lattice. Mn{sup 2+} doping at concentration levels investigated, lead to significant reduction in the defect emission and this has been attributed to the formation of higher oxidation states of Mn ions in the lattice. Electron Paramagnetic Resonance studies confirmed that majority of Mn ions exist as Mn{sup 2+} species and they occupy tetrahedral Zn{sup 2+} site in ZnGa{sub 2}O{sub 4} lattice with an average hyperfine coupling constant, A{sub iso}∼82 G.
Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.
2017-08-01
Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.
Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Energy Technology Data Exchange (ETDEWEB)
Sun Yinan [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)]. E-mail: ysun1@utk.edu; Choo, Hahn [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Lu Yulin [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Yang Bing [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2005-10-15
Elastic lattice-strain profiles ahead of a fatigue-crack-tip were measured during tensile loading and unloading cycles using neutron diffraction. The crack-closure phenomenon after an overload was observed. Furthermore, the plastic-zone size in front of the crack-tip was estimated from the diffraction-peak broadening, which showed good agreement with the calculated result.
Energy Technology Data Exchange (ETDEWEB)
Frentrup, Martin, E-mail: frentrup@physik.tu-berlin.de; Wernicke, Tim; Stellmach, Joachim; Kneissl, Michael [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Hatui, Nirupam; Bhattacharya, Arnab [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)
2013-12-07
In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances d{sub hkl} is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112{sup ¯}2) Al{sub κ}Ga{sub 1−κ}N epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.
DEFF Research Database (Denmark)
Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Høgh, Jacob Herold
2013-01-01
A holistic approach to strain monitoring in fibre-reinforced polymer composites is presented using embedded fibre Bragg grating sensors. Internal strains are monitored in unidirectional E-glass/epoxy laminate beams during vacuum infusion, curing, post-curing and subsequent loading in flexure until...... of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical...
Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa
International Nuclear Information System (INIS)
Duffy, Thomas S.; Shen, Guoyin; Heinz, Dion L.; Shu, Jinfu; Ma, Yanzhang; Mao, Ho-Kwang; Hemley, Russell J.; Singh, Anil K.
1999-01-01
Using energy-dispersive x-ray diffraction techniques together with the theory describing lattice strains under nonhydrostatic compression, the behavior of a layered sample of gold and rhenium has been studied at pressures of 14-37 GPa. For gold, the uniaxial stress component t is consistent with earlier studies and can be described by t=0.06+0.015P where P is the pressure in GPa. The estimated single-crystal elastic moduli are in reasonable agreement with trends based on extrapolated low-pressure data. The degree of elastic anisotropy increases as α, the parameter which characterizes stress-strain continuity across grain boundaries, is reduced from 1.0 to 0.5. For rhenium, the apparent equation of state has been shown to be strongly influenced by nonhydrostatic compression, as evidenced by its dependence on the angle ψ between the diffracting plane normal and the stress axis. The bulk modulus obtained by inversion of nonhydrostatic compression data can differ by nearly a factor of 2 at angles of 0 degree sign and 90 degree sign . On the other hand, by a proper choice of ψ, d spacings corresponding to quasihydrostatic compression can be obtained from data obtained under highly nonhydrostatic conditions. The uniaxial stress in rhenium over the pressure range from 14-37 GPa can be described by t=2.5+0.09P. The large discrepancy between x-ray elastic moduli and ultrasonic data and theoretical calculations indicates that additional factors such as texturing or orientation dependence of t need to be incorporated to more fully describe the strain distribution in hexagonal-close-packed metals. (c) 1999 The American Physical Society
International Nuclear Information System (INIS)
Liu, X; Cao, D F; Mei, H; Liu, L S; Lei, Z T
2013-01-01
The stress increments depend not only on the plastic strain but also on the gradient of plastic strain, when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. In the present research, the Taylor-based nonlocal theory of plasticity (TNT plasticity), with considering both geometrically necessary dislocations and statistically stored dislocations, is applied to investigated the effect of particle shapes on the strain gradient and mechanical properties of SiC particle reinforced aluminum composites (SiC/Al composites). Based on this theory, a two-dimensional axial symmetry cell model is built in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface. Some comparisons with the classical plastic theory demonstrate that the effective stress predicted by TNT plasticity is obviously higher than that predicted by classical plastic theory. The results also demonstrate that the irregular particles cause higher effective gradient strain which is attributed to the fact that angular shape particles give more geometrically.
Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V
2002-08-20
The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.
Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building
Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.
2017-11-01
The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.
Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.
2018-05-01
This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.
International Nuclear Information System (INIS)
Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D.
2013-01-01
Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests
Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn
2009-01-01
Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...
Analysis of strain in reinforced concrete components by laser speckle photography
International Nuclear Information System (INIS)
Gross, K.P.
1982-01-01
Laser speckle photography is an optical process for non-contact measurement of strain in a plane at right angles to the axis of the optical system. The material composition and relief of the surface of a test sample have a great effect on the applicability of the process. Bodies with too smooth or too rough surfaces, and bodies of a transparent structure (salt bearing rocks) cannot be examined by speckle photography without previous surface treatment. The principle of the process and its application to the examination of reinforced concrete components is described. The capability of speckle photography, the accuracy of measurement which can be achieved and possible sources of error are discussed. (orig./RW) [de
Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process
International Nuclear Information System (INIS)
Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.
1997-01-01
In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)
Zhang, Hongjia; Salvati, Enrico; Daisenberger, Dominik; Lunt, Alexander J G; Fong, Kai Soon; Song, Xu; Korsunsky, Alexander M
2018-01-01
High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated...
Directory of Open Access Journals (Sweden)
Liao Wen-Cheng
2018-01-01
Full Text Available The purpose of New RC project was aimed to reduce the member sections and increase the available space of high rise buildings by using high strength concrete (f’c > 70 MPa and high strength rebars (fy > 685 MPa. Material consumptions and member section sizes can be further reduced owing to the upgrade of strength. However, the nature of brittleness of high strength may also cause early cover spalling and other ductility issues. Addition of steel fibers is an alternative as transverse reinforcement. Highly flowable strain hardening fiber reinforced concrete (HF-SHFRC has excellent workability in the fresh state and exhibits the strain-hardening and multiple cracking characteristics of high performance fiber reinforced cementitious composites (HPFRCC in their hardened state. The objective of this study is to investigate the feasibility of implementing HF-SHFRC in New RC building systems, particularly for beam-column joints as an alternative of transverse reinforcements. Four full-scale exterior beam-column joints, including two specimens with intensive transverse reinforcements and two specimens made of HF-SHFRC without any stirrup, are tested. Test results show that the HF-SHFRC specimens perform as well as specimens with intensive transverse reinforcements regarding failure mode, ductility, energy dissipation and crack width control. Integration of New RC building systems and HF-SHFRC can assuring construction qualities and further diminish labor work and give infrastructure longer service life, and eventually lower the life-cycle cost.
Directory of Open Access Journals (Sweden)
Zenoviy Blikharskyy
2017-04-01
Full Text Available The article is devoted to the overall view of experimental research of reinforced concrete beams with the simultaneous influence of the corrosion environment and loading. The tests have been carried out upon the reinforced concrete specimens considering the corrosion in the acid environment, namely 10 % H2SO4 that have been taken as a model of the aggressive environment. The beams are with span equalling to 1,9m with different series of tensile armature, concrete compressive strength and different length of impact of corrosion (continuous and local. The influence of simultaneous action of the aggressive environment and loading on strength of reinforced-concrete beams has been described. For a detailed study of the effect of individual components there was suggested additional experimental modelling of the only tensile armature damage without concrete damage. It will investigate the influence of this factor irrespective of the concrete.
Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites
Directory of Open Access Journals (Sweden)
B. Soltannia
2016-01-01
Full Text Available Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM model of Goldberg and his coworkers and Halpin-Tsai’s micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin.
Page, Christian David
together during twisting. For CNT yarns, this level is referred to as packs since the title "bundle" has already been widely used as the grouping of individual CNTs. The utilization of conventional textile mechanics is supported by the congruent stress strain curves of cotton/wool yarns and CNT yarns. With this new perspective, sources of strength losses can be identified and, in most cases, quantified. Deterministic and statistical textile models are used to enumerate three top-level parameters which affect the yarn's strength. This approach offers guidance for future work to be done in the field of CNT yarns, including the growth of raw CNT forests, the spinning procedures involved, and any post-processing steps that may arise that can mitigate these losses that are extremely degrading to the CNT yarn mechanical strength. The strength of the yarn is a direct reflection of the quality of the yarn's structure. These morphological properties across the nano, meso, and macro scales have an effect on other physical properties such as electromechanical sensitivity. Improving the strength will also improve the yarn's ability to serve as a strain gage. Coupled with its appealing size, these yarns will be an effective in-situ embedded strain sensor. In conclusion, high quality CNT yarns with minimized strength losses show promise for structural health monitoring of advanced materials and structures since they can be both strongly reinforcing and electromechanically sensitive.
International Nuclear Information System (INIS)
Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.
2016-01-01
A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.
Energy Technology Data Exchange (ETDEWEB)
Hertz, Joshua L. [Univ. of Delaware, Newark, DE (United States); Prasad, Ajay K. [Univ. of Delaware, Newark, DE (United States)
2015-09-06
The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before this work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.
Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Wang, Baomin; Tang, Jin; Li, Run-Wei
2017-05-01
We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO) and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO) displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.
Directory of Open Access Journals (Sweden)
Yali Xie
2017-05-01
Full Text Available We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.
Directory of Open Access Journals (Sweden)
Treutenaere S.
2015-01-01
Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.
PREDICTION OF MAXIMUM CREEP STRAIN OF HIGH PERFORMANCE STEEL FIBER REINFORCED CONCRETE
Directory of Open Access Journals (Sweden)
Mishina Alexandra Vasil'evna
2012-12-01
Full Text Available The strongest research potential is demonstrated by the areas of application of high performance steel fiber reinforced concrete (HPSFRC. The research of its rheological characteristics is very important for the purposes of understanding its behaviour. This article is an overview of an experimental study of UHSSFRC. The study was carried out in the form of lasting creep tests of HPSFRC prism specimen, loaded by stresses of varied intensity. The loading was performed at different ages: 7, 14, 28 and 90 days after concreting. The stress intensity was 0.3 and 0.6 Rb; it was identified on the basis of short-term crush tests of similar prism-shaped specimen, performed on the same day. As a result, values of ultimate creep strains and ultimate specific creep of HPSFRC were identified. The data was used to construct an experimental diagramme of the ultimate specific creep on the basis of the HPSFRC loading age if exposed to various stresses. The research has resulted in the identification of a theoretical relationship that may serve as the basis for the high-precision projection of the pattern of changes in the ultimate specific creep of HPSFRC, depending on the age of loading and the stress intensity.
Ag{sub 2}CdI{sub 4}: Synthesis, characterization and investigation the strain lattice and grain size
Energy Technology Data Exchange (ETDEWEB)
Ghanbari, Mojgan [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I.R. (Iran, Islamic Republic of); Gholamrezaei, Sousan [Young Researchers Club, Arak Branch, Islamic Azad University, Arak (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, I.R. (Iran, Islamic Republic of)
2016-05-15
In this work the Ag{sub 2}CdI{sub 4} nanostructures have been synthesized via a solid state reaction from reaction of AgI and CdI{sub 2} as precursors. The effect of the mole ratio of precursors, time and temperature of reaction has been optimized to achieve the best product on morphology and purity. Nanostructures have been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman (FT-IR) techniques, X-ray energy dispersive spectroscopy (EDS) and Ultraviolet spectroscopy (UVvis). The XRD patterns of nanostructures have been used to estimate the grain sizes and strain lattice. Grain size of nanostructures is in range of 5–17 nm and the strain of lattice is changed in range of 0.0024–0.014. The band gap of these nanostructures has been estimated by DRS spectrum about 5.4 eV. Raman spectroscopy has been confirmed the XRD results and show that the Ag{sub 2}CdI{sub 4} nanostructures have been synthesized. SEM and TEM images have been used for investigation of morphology of product. Results show that the best morphology and purity have been achieved in 12 h and 200 °C in 1:1 mol ratio of precursors. - Highlights: • Ag{sub 2}CdI{sub 4} nanostructures have been synthesized by low temperature solid state method. • The reaction has been optimized for purity, morphology, and grain size and strain lattice. • Effective parameters have been optimized such as time, temperature and mole ratio.
International Nuclear Information System (INIS)
Shadlou, Shahin; Ahmadi-Moghadam, Babak; Taheri, Farid
2014-01-01
Highlights: • The epoxy/graphene nanocomposites were studied at various strain rates. • The variations in constitutive stress–strain response were scrutinized. • Positive reinforcing attributes of graphene diminished at higher strain rates. • Graphene particles have higher efficiency under compression loading than tension. • A new modification factor for Halpin–Tsai model was proposed. - Abstract: The effect of strain rate on the mechanical behavior of epoxy reinforced with graphene nanoplatelets (GNPs) is investigated. Nanocomposites containing various amounts of GNP are prepared and tested at four different strain rates (0.01, 0.1, 1 and 10/s) under compressive and tensile loading regimes. The results show that incorporation of GNP highly affects the behavior of epoxy. The fracture surfaces of tensile specimens are also investigated using scanning electron microscopy (SEM) to discern the surface features and dispersion state of GNP. Finally, the predictive capability of some of the available models for evaluating the strength of nanocomposites are assessed and compared against the experimental results. Moreover, a modification factor to the widely used Halpin–Tsai model is proposed to improve the accuracy of the model when evaluating the Young’s modulus of nanocomposites at various strain rates
Lattice strain estimation for CoAl{sub 2}O{sub 4} nano particles using Williamson-Hall analysis
Energy Technology Data Exchange (ETDEWEB)
Aly, Kamal A., E-mail: kamalaly2001@gmail.com [Physics Department, Faculty of Science & Arts, Khulais, University of Jeddah, Jiddah (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt); Khalil, N.M. [Chemistry Department, Faculty of Science & Arts, Khulais, University of Jeddah, Jiddah (Saudi Arabia); Refractories, Ceramics and Building Materials Department, National Research Centre, 12311 Cairo (Egypt); Algamal, Yousif [Chemistry Department, Faculty of Science & Arts, Khulais, University of Jeddah, Jiddah (Saudi Arabia); Saleem, Qaid M.A. [Chemistry Department, Faculty of Science & Arts, Khulais, University of Jeddah, Jiddah (Saudi Arabia); Chemistry Department, Faculty of Education, Aden University, Sabwa (Yemen)
2016-08-15
CoAl{sub 2}O{sub 4} nanoparticles were prepared via coprecipitation technique through mixing 1:1 M ratio of cobalt nitrate and aluminium nitrate solutions at pH 10. CoAl{sub 2}O{sub 4} crystalline phase was confirmed by X-ray diffraction. Scanning electron microscopy (SEM) result reveals that the particles of CoAl{sub 2}O{sub 4} fired at 900 °C were relatively small (21 nm) and uniform. Increased temperature to 1200 °C gives rise to blocky particles and changes in the powders shape, that because of agglomeration came from the calcination of CoAl{sub 2}O{sub 4}. Furthermore, the particle size increase with increasing the calcinated temperature. The crystalline sizes were evaluated by using X-ray peak broadening analysis suggested by Williamson-Hall (W-H) analysis. It was successfully applied for lattice strain and to calculate mechanical stress and energy density values using different three models namely uniform deformation model (UDM), uniform deformation stress model (UDSM) and uniform deformation energy density model (UDEDM). Also, the root mean square strain was determined. These models gave a different strain values which suggested an isotropic nature of the nanoparticles. Besides, the obtained results W-H analysis are in good agreement with that deduced from SEM analysis and Scherrer's formula. - Highlights: • CoAl{sub 2}O{sub 4} nanoparticles were prepared via coprecipitation technique. • CoAl{sub 2}O{sub 4} nanoparticles were characterized by SEM and XRD. • the lattice size and strain were investigated according to W-H analysis. • The latic size were investigated by W-H analysis, SEM and Sherrar's method. • The root mean square strain was determined.
Effect of fluence on the lattice site of implanted Er and implantation induced strain in GaN
Wahl, U; Decoster, S; Vantomme, A; Correi, J G
2009-01-01
A GaN thin film was implanted with 5 × 1014 cm−2 of 60 keV stable 166Er, followed by the implantation of 2 × 1013 cm−2 radioactive 167Tm (t1/2 = 9.3 d) and an annealing sequence up to 900 °C. The emission channeling (EC) technique was applied to assess the lattice location of Er following the Tm decay from the conversion electrons emitted by 167mEr, which showed that more than 50% of 167mEr occupies substitutional Ga sites. The results are briefly compared to a 167mEr lattice location experiment in a GaN sample not pre-implanted with 166Er. In addition, high-resolution X-ray diffraction (HRXRD) was used to characterize the perpendicular strain in the high-fluence implanted film. The HRXRD experiments showed that the Er implantation resulted in an increase of the c-axis lattice constant of the GaN film around 0.5–0.7%. The presence of significant disorder within the implanted region was corroborated by the fact that the EC patterns for off-normal directions exhibit a pronounced angular broadening of t...
International Nuclear Information System (INIS)
Blanter, M.S.; Khachaturyan, A.G.
1980-01-01
A computer simulation is made of strain-induced ordering of interstitial atoms within octahedral interstices in the Ta host lattice. The calculation technique allows to take into account infinite-range strain-induced interaction. Computer simulation of ordering process enables to model the sequence of structure changes which occur during the ordering process and to find the equilibrium structure of the stable interstitial superstructures. The structures of high-temperature ordering phases obtained by the method of static concentration waves coincide with those obtained by means of computer simulation. However computer simulation enables to predict the structures of low-temperature ordered phases which cannot be obtained by the method of concentration waves. Comparison of computer simulation results and structures of observed ordered phases demonstrates good agreement. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Kun Woo [Kyungpook National University, Daegu (Korea, Republic of); Rhim, Hong Chul; Seo, Tae Seok [Yonsei University, Seoul (Korea, Republic of)
2011-08-15
Application of FBG (Fiber Bragg Grating) sensors to measure strain of steel roof trusses has been performed. This is to check and confirm the structural integrity of an unusually shaped, reverse shell structure made of reinforced concrete. The issue was to place sensors at proper location and compare the measured values to the results from structural analysis. It has been learned that a deliberate measurement scheme is needed in order to monitor a complex structure during construction. In this study, the measured values were within allowable range of strain, thus confirming the safety of the structure during measurement and construction.
White, Bradley William
The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize
DEFF Research Database (Denmark)
Villa, M.; Niessen, F.; Somers, M. A. J.
2018-01-01
Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were...... measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro......-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain...
Zhao, Jiangtao; Liu, Mei; Fang, Li; Jiang, Shenlong; Zhou, Jingtian; Ding, Huaiyi; Huang, Hongwen; Wen, Wen; Luo, Zhenlin; Zhang, Qun; Wang, Xiaoping; Gao, Chen
2017-07-06
Understanding the big discrepancy in the photoluminesence quantum yields (PLQYs) of nanoscale colloidal materials with varied morphologies is of great significance to its property optimization and functional application. Using different shaped CsPbBr 3 nanocrystals with the same fabrication processes as model, quantitative synchrotron radiation X-ray diffraction analysis reveals the increasing trend in lattice strain values of the nanocrystals: nanocube, nanoplate, nanowire. Furthermore, transient spectroscopic measurements reveal the same trend in the defect quantities of these nanocrystals. These experimental results unambiguously point out that large lattice strain existing in CsPbBr 3 nanoparticles induces more crystal defects and thus decreases the PLQY, implying that lattice strain is a key factor other than the surface defect to dominate the PLQY of colloidal photoluminesence materials.
Montero-Chacón, F.; Schlangen, H.E.J.G.; Medina, F.
2013-01-01
The use of fiber-reinforced high-performance concrete (FRHPC) is becoming more extended; therefore it is necessary to develop tools to simulate and better understand its behavior. In this work, a discrete model for the analysis of fracture mechanics in FRHPC is presented. The plain concrete matrix,
Energy Technology Data Exchange (ETDEWEB)
Amaya, Masaki, E-mail: amaya.masaki@jaea.go.j [Fuel Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Nakamura, Jinichi; Fuketa, Toyoshi [Fuel Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kosaka, Yuji [Nuclear Development Corporation, 622-12, Funaishikawa, Tokai-mura, Naka-gun, Ibaraki 319-1111 (Japan)
2010-01-01
Two kinds of disk-shaped UO{sub 2} samples (4 mm in diameter and 1 mm in thickness) were irradiated in a test reactor up to about 60 and 130 GWd/t, respectively. The microstructures of the samples were investigated by means of optical microscopy, scanning electron microscopy/ electron probe micro-analysis (SEM/EPMA) and micro-X-ray diffractometry. The measured lattice parameters tended to be considerably smaller than the reported values, and the typical cauliflower structure which is often observed in high burnup fuel pellet is hardly seen in these samples. Thermal diffusivities of the samples were also measured by using a laser flash method, and their thermal conductivities were evaluated by multiplying the heat capacity of unirradiated UO{sub 2} and sample densities. While the thermal conductivities of sample 2 showed recovery after being annealed at 1500 K, those of sample 4 were not clearly observed even after being annealed at 1500 K. These trends suggest that the amount of accumulated irradiation-induced defects depends on the irradiation condition of each sample. From the comparison of the changes in the lattice parameter and strain energy density before and after the thermal diffusivity measurements, it is likely that the thermal conductivity recovery in the temperature region from 1200 to 1500 K is related to the migration of dislocation.
Directory of Open Access Journals (Sweden)
Song Wei-Dong
2013-01-01
Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.
Effect of lattice mismatch-induced strains on coupled diffusive and displacive phase transformations
Bouville, Mathieu; Ahluwalia, Rajeev
2006-01-01
Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some materials systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize m...
Estimation of lattice strain for zirconia nanoparticles based on Williamson- Hall analysis
Energy Technology Data Exchange (ETDEWEB)
Aly, Kamal A., E-mail: kamalaly2001@gmail.com [Physics Department, Faculty of Science & Arts, Khullais, University of Jeddah, Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt); Khalil, N.M. [Chemistry Department, Faculty of Science & Arts, Khullais, University of Jeddah, Jeddah (Saudi Arabia); Refractories, Ceramics and Building Materials Department, National Research Centre, 12311, Cairo (Egypt); Algamal, Yousif [Chemistry Department, Faculty of Science & Arts, Khullais, University of Jeddah, Jeddah (Saudi Arabia); Saleem, Qaid M.A. [Chemistry Department, Faculty of Science & Arts, Khullais, University of Jeddah, Jeddah (Saudi Arabia); Aden University, Shabwa (Yemen)
2017-06-01
Nanoparticles of Zirconia were prepared (ZrO{sub 2}) by the neutralization of zirconium oxychloride octahydrate (ZrOCl{sub 2}-8H{sub 2}O) (2M) and ammonia solution (2M) at pH 8. The ZrO{sub 2} crystalline state was revealed by X-ray diffraction (XRD). The analysis of Scanning electron microscopy (SEM) and Transmission Electron microscope (TEM) images reveals that the as-synthesized ZrO{sub 2} particles at firing temperature of 800 °C are uniform and of range of 30 nm. Increasing of the temperature up to 1100 °C leads to the increase in particle size and alters the powders shape due to agglomeration arose from zirconia calcination as well as the increase in particle size. The X-ray peak broadening analysis (XRDBA) was used in the estimation of the crystalline size. Williamson-Hall (W-H) analysis was applied successfully to determine the energy density, stress, and the strain values via uniform deformation model (UDM), uniform deformation stress model (UDSM) and uniform deformation energy density model (UDEDM). The mean of the strain root square was calculated. The different strain values obtained from these models predicting the zirconia isotropic behavior. In addition to that, the W-H analysis results were discussed in terms of that obtained by Scherrer’s relationship, SEM and TEM images. - Graphical abstract: XRD patterns for zirconia nano-particles at different calcined temperature. - Highlights: • Nanoparticles of Zirconia (ZrO{sub 2}) were synthesized. • The ZrO{sub 2} crystalline state was revealed by XRD, SEM and TEM. • SEM and TEM images reveals that the ZrO{sub 2} particles are uniform and relatively small. • Both blocky particles and the powders shape are affected by the firing temperature. • The crystalline sizes were estimated using X-ray peak broadening analysis (XRDBA).
Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.
2018-03-01
The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.
Yudhanto, Arief
2016-03-08
Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.
International Nuclear Information System (INIS)
Brandes, K.; Limberger, E.; Herter, J.
1983-01-01
The safety analysis of nuclear power plants includes the impact of an aircraft on the reinforced concrete containment structure. The load characteristics of this event are more or less standardized. In order to reduce the construction costs and to come to a realistic design of anti-impact structures, it is of interest to take advantage of the potential plastic behaviour of reinforced concrete structural members under impact and impulsive loading. But up to now gaps in the knowledge in this field restrain a realistic design. To close these gaps a R and D-programme supported by the governments has been initiated in the Federal Republic of Germany. Some work in this respect carried out since 1977 in BAM is part of this programme. (orig./WL)
International Nuclear Information System (INIS)
Doshida, Tomoki; Takai, Kenichi
2014-01-01
The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters
Song Chunsheng; Zhang Jiaxiang; Yang Mo; Shang Erwei; Zhang Jinguang
2017-01-01
The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhes...
Directory of Open Access Journals (Sweden)
Sainov Mikhail Petrovich
2017-05-01
Full Text Available There was studied the stress-strain state of 215 m high rockfill dam where the seepage-control element is presented by a reinforced concrete face of soil-cement concrete placed on the under-face zone. Calculations were carried out for two possible variants of deformability of rock outline taking into account the non-linearity of its deformative properties. It was obtained that the reinforced concrete face and the soil-cement concrete under-face zone work jointly as a single construction - a double-layer face. As the face assembly resting on rock is made with a sliding joint the scheme of its static operation is similar to the that of the beam operation on the elastic foundation. At that, the upstream surface of the double-layer face is in the compressed zone and lower one is in the tensile zone. This protects the face against cracking on the upstream surface but threatens with structural failure of soil-cement concrete. In order to avoid appearance of cracks in soil-cement concrete part due to tension it is necessary to achieve proper compaction of rockfill and arrange transverse joints in the double-layer face.
Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.
2009-01-01
The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.
DEFF Research Database (Denmark)
Jacobsen, Torben Krogsdal; Brøndsted, Povl
1997-01-01
Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...
Directory of Open Access Journals (Sweden)
K. Jeganathan
2014-09-01
Full Text Available We investigate the role of growth temperature on the optimization of lattice-matched In0.17Al0.83N/GaN heterostructure and its structural evolutions along with electrical transport studies. The indium content gradually reduces with the increase of growth temperature and approaches lattice-matched with GaN having very smooth and high structural quality at 450ºC. The InAlN layers grown at high growth temperature (480ºC retain very low Indium content of ∼ 4 % in which cracks are mushroomed due to tensile strain while above lattice matched (>17% layers maintain crack-free compressive strain nature. The near lattice-matched heterostructure demonstrate a strong carrier confinement with very high two-dimensional sheet carrier density of ∼2.9 × 1013 cm−2 with the sheet resistance of ∼450 Ω/□ at room temperature as due to the manifestation of spontaneous polarization charge differences between InAlN and GaN layers.
Villa, M.; Niessen, F.; Somers, M. A. J.
2018-01-01
Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.
Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.
2013-08-01
A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.
Energy Technology Data Exchange (ETDEWEB)
Hu, Y.; Stender, D. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Medarde, M. [Paul Scherrer Institute, Laboratory for Developments and Methods, 5232 Villigen-PSI (Switzerland); Lippert, T., E-mail: thomas.lippert@psi.ch [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Wokaun, A.; Schneider, C.W. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland)
2013-08-01
A detailed structural XRD analysis of (1 1 0)-oriented TbMnO{sub 3} thin films grown on (1 1 0)-YAlO{sub 3} substrates shows the co-existence of a strained and relaxed “sublayer” within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 −1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 −1 0] and [0 0 1] directions.
Directory of Open Access Journals (Sweden)
Antonella D’Alessandro
2017-01-01
Full Text Available The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i the repeatability and accuracy of sensors’ behavior over a meaningful number of sensors, (ii testing configurations and calibration methods, and (iii the sensors’ ability to provide static and dynamic strain measurements when actually embedded in RC elements. To address these research needs, this paper presents a preliminary characterization of the self-sensing capabilities and the dynamic properties of a meaningful number of cement-based sensors and studies their application as embedded sensors in a full-scale RC beam. Results from electrical and electromechanical tests conducted on small and full-scale specimens using different electrical measurement methods confirm that smart cement-based sensors show promise for both static and vibration-based structural health monitoring applications of concrete elements but that calibration of each sensor seems to be necessary.
International Nuclear Information System (INIS)
Luo, Xin; Peng, Jianchao; Zandén, Carl; Yang, Yanping; Mu, Wei; Edwards, Michael; Ye, Lilei; Liu, Johan
2016-01-01
Indium-based thermal interface materials are superior in thermal management applications of electronic packaging compared to their polymer-based counterparts. However, pure indium has rather low tensile strength resulting in poor reliability. To enhance the mechanical properties of such a material, a new composite consisting of electrospun randomly oriented continuous polyimide fibres and indium was fabricated. The composite has been characterised by tensile tests and in-situ transmission electron microscopy straining observations. It is shown that the composite's ultimate tensile strength at 20 °C is five times higher than that of pure indium, and the strength of the composite exceeds the summation of strengths of the individual components. Furthermore, contrary to most metallic matrix materials, the ultimate tensile strength of the composite decreases with the increased strain rate in a certain range. The chemical composition and tensile fracture of the novel composite have been analysed comprehensively by means of scanning transmission electron microscopy and scanning electron microscopy. A strengthening mechanism based on mutually reinforcing structures formed by the indium and surrounding fibres is also presented, underlining the effect of compressing at the fibre/indium interfaces by dislocation pileups and slip pinning.
Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete
Directory of Open Access Journals (Sweden)
Vikram Jothi Jayakumar
2014-01-01
Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.
Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E
2002-01-01
The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-01
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-15
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200 pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Directory of Open Access Journals (Sweden)
Song Chunsheng
2017-01-01
Full Text Available The adhesive-bonded joint of carbon fiber–reinforced plastic is one of the core components in aircraft structure design. It is an effective guarantee for the safety and reliability of the aerospace aircraft structure to use effective methods for monitoring and early warning of internal failure. In this article, the mapping relation model between the strain profiles of the adherend of the carbon fiber–reinforced plastic single-lap adhesive joint and the stiffness degradation evolution of adhesive layer was achieved by finite element software ABAQUS. The fiber Bragg grating was embedded in the adherend between the first and second layers at the end of the adhesive layer to calculate the reflection spectrum of fiber Bragg grating sensor region with improved T-matrix method for reconstruction of the adherend strain profile of fiber Bragg grating sensing area with the help of genetic algorithm. According to the reconstruction results, the maximum error between the ideal and reconstructed strain profile under different tension loads did not exceed 7.43%, showing a good coincidence degree. The monitoring method of the stiffness degradation evolution of adhesive layer of the carbon fiber–reinforced plastic single-lap joint based on the reconstruction of the adherend strain profile of fiber Bragg grating sensing area thus was figured out.
Energy Technology Data Exchange (ETDEWEB)
Fujii, Ichiro, E-mail: ifujii@rins.ryukoku.ac.jp [Department of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194 (Japan); Iizuka, Ryo; Ueno, Shintaro; Nakashima, Kouichi; Wada, Satoshi [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan); Nakahira, Yuki; Sunada, Yuya; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)
2016-04-25
Contributions to the piezoelectric response in pseudocubic 0.3BaTiO{sub 3}-0.1Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-0.6BiFeO{sub 3} ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.
DEFF Research Database (Denmark)
Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong
2009-01-01
Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...
Sahmani, Saeid; Aghdam, Mohammad Mohammadi; Rabczuk, Timon
2018-04-01
By gradually changing of the porosity across a specific direction, functionally graded porous materials (FGPMs) are produced which can impart desirable mechanical properties. To enhance these properties, it is common to reinforce FGPMs with nanofillers. The main aim of the current study is to investigate the size-dependent nonlinear axial postbuckling characteristics of FGPM micro/nano-plates reinforced with graphene platelets. For this purpose, the theory of nonlocal strain gradient elasticity incorporating the both stiffness reduction and stiffness enhancement mechanisms of size effects is applied to the refined exponential shear deformation plate theory. Three different patterns of porosity dispersion across the plate thickness in conjunction with the uniform one are assumed for FGPM as an open-cell metal foam is utilized associated with the coefficients of the relative density and porosity. With the aid of the virtual work’s principle, the non-classical governing differential equations are constructed. Thereafter, an improved perturbation technique is employed to capture the size dependencies in the nonlinear load-deflection and load-shortening responses of the reinforced FGPM micro/nano-plates with and without initial geometric imperfection. It is indicated that by increasing the value of porosity coefficient, the size-dependent critical buckling loads of reinforced FGPM micro/nano-plates with all types of porosity dispersion pattern reduce, but the associated shortening may increase or decrease which depends on the type of dispersion pattern.
Yudhanto, Arief; Lubineau, Gilles; Wafai, Husam; Mulle, Matthieu; Pulungan, Ditho Ardiansyah; Yaldiz, R.; Verghese, N.
2016-01-01
Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact
Wilson, A W; Neill, J C; Costall, B
1997-02-01
An animal's volitional consumption of ethanol may be influenced by both genetic and environmental factors. In addition, genetic control of ethanol intake may depend on the test paradigm used. In the present study, performance for, and intake of ethanol in a limited access oral operant paradigm, and preference for ethanol in a two-bottle free choice test in the home-cage were compared in female rats of the heterogeneous Sprague Dawley (SD) and inbred Lewis strains. A smaller proportion of SD rats reached criterion on the self-administration task (four of 10 SD vs eight of 10 Lewis), but those SD rats that did achieve criterion maintained higher levels of responding and greater ethanol intake, relative to the Lewis strain, in the operant self-administration paradigm. Additionally, SD but not Lewis rats exhibited increased locomotor activity and an increase in performance for ethanol compared with water. In marked contrast, Lewis rats exhibited a greater preference for 10% ethanol over water in the two-bottle choice test compared with the SD strain, which preferred water to ethanol. These results suggest that both genotype and test paradigm are involved in the extent to which ethanol serves as a positive reinforcer and that unlike two-bottle choice preference tests, self-administration studies are more highly predictive of the reinforcing properties of ethanol.
Institute of Scientific and Technical Information of China (English)
You-wen LIU; Chao XIE; Chun-zhi JIANG; Qi-hong FANG
2010-01-01
In this paper,the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode Ⅲ uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation.The effects of material combinations,bond of interface and geometric configurations on interfacial stresses generated by eigenstrain,remote load and concentrated load are studied.The results show that the stress concentration and interfacial stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.
Effect of lattice disorder and strain on T/sub c/ in sputtered Nb3Ge thin films
International Nuclear Information System (INIS)
Roy, R.; Rogoski, D.A.
1976-01-01
Disorder and strain introduced into sputtered ''Nb 3 Ge'' films by mechanical polishing slightly lowers the onset temperature and/or very markedly broadens the width of the superconducting transition. The structural damage is reversible and annealing restores the superconducting behavior of the film very nearly to its initial state
Bhusal, Lekhnath
Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Directory of Open Access Journals (Sweden)
Abhijit Banerjee
2012-12-01
Full Text Available Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol% mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.
Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory
2017-10-01
The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.
2011-12-01
particles using positron annihilation lifetime spectroscopy (PALS). They found that the free volume of the matrix was dependent on the volume fraction...mechanical analysis and positron annihilation lifetime spectroscopy ,” Polymer International, vol. 51, pp. 1277–1284, 2002. [35] G. W. Brassell and K. B...use as structural materials in applications at high rates of strain. These types of com- posites are very complex due to their heterogeneous
Lin, J. Q.; Liu, X.; Blackburn, E.; Wakimoto, S.; Ding, H.; Islam, Z.; Sinha, S. K.
2018-05-01
The nanometer scale lattice deformation brought about by the dopants in the high temperature superconducting cuprate La2 -xSrx CuO4 (x =0.08 ) was investigated by measuring the associated x-ray diffuse scattering around multiple Bragg peaks. A characteristic diffuse scattering pattern was observed, which can be well described by continuum elastic theory. With the fitted dipole force parameters, the acoustic-type lattice deformation pattern was reconstructed and found to be of similar size to lattice thermal vibration at 7 K. Our results address the long-term concern of dopant introduced local lattice inhomogeneity, and show that the associated nanometer scale lattice deformation is marginal and cannot, alone, be responsible for the patched variation in the spectral gaps observed with scanning tunneling microscopy in the cuprates.
Scheuerlein, C.; Grether, A; Rikel, M O; Hudspeth, J; Sugano, M; Ballarino, A; Bottura, L
2016-01-01
The electromechanical properties of different cuprate high-temperature superconductors, notably two ReBCO tapes, a reinforced and a nonreinforced Bi-2223 tape, and a Bi-2212 wire, have been studied. The axial tensile stress and strain, as well as the transverse compressive stress limits at which an irreversible critical current degradation occurs, are compared. The experimental setup has been integrated in a high-energy synchrotron beamline, and the self-field critical current and lattice parameter changes as a function of tensile stress and strain of a reinforced Bi-2223 tape have been measured simultaneously. Initially, the Bi-2223 filaments exhibit nearly linear elastic behavior up to the strain at which an irreversible degradation is observed. At 77 K, an axial Bi-2223 filament precompression of 0.09% in the composite tape and a Bi-2223 Poisson ratio ν = 0.21 have been determined.
Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.
2017-10-01
There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
International Nuclear Information System (INIS)
Smith, L.
1975-01-01
An analysis is given of a number of variants of the basic lattice of the planned ISABELLE storage rings. The variants were formed by removing cells from the normal part of the lattice and juggling the lengths of magnets, cells, and insertions in order to maintain a rational relation of circumference to that of the AGS and approximately the same dispersion. Special insertions, correction windings, and the working line with nonlinear resonances are discussed
Energy Technology Data Exchange (ETDEWEB)
Bagheri, GH.A., E-mail: Gh.a.bagheri65@gmail.com
2016-08-15
In this research, copper matrix composites reinforced with different amounts of titanium carbide particles were produced by mechanical milling and in-situ formation of reinforcements. Morphology and size of milled powders were inspected by scanning electron microscopy (SEM) several times during milling process. Changes in lattice parameter, crystallite size, lattice strain, dislocation density and Gibbs free energy changes (due to increasing in dislocation densities and grain boundaries) in different samples (with different TiC particles contents) were studied by X-Ray Diffraction technique with Cu-kα radiation and using Nelson–Riley method and Williamson–Hall equation. Microstructure of samples after sintering was investigated by FESEM. Finally, densitometry, hardness, determination of electrical resistance and pin on disk wear test were performed and effect of reinforcement percentages on the physical and mechanical properties of composites was studied. Results show incredible improvement in mechanical properties with increasing in TiC value, even though, electrical conductivity dropped off considerably. - Highlights: • Microstructures, mechanical and physical properties of composites have been studied. • Stored Gibbs free energy of dislocations and grain boundaries has been calculated. • Gibbs free energy increased with increasing in titanium percent. • Higher TiC percentage led to better mechanical and unfavorable physical properties.
Transmission Electron Microscope Measures Lattice Parameters
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Quenched Reinforcement Exposed to Fire
DEFF Research Database (Denmark)
Hertz, Kristian Dahl
2006-01-01
.0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire...
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Energy Technology Data Exchange (ETDEWEB)
Wagner, Jan-Martin
2004-10-14
In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references
Useinov, Arthur
2013-08-19
The objective of this work is to describe the tunnel electron current in single-barrier magnetic tunnel junctions within an approach that goes beyond the single-band transport model. We propose a ballistic multichannel electron transport model that can explain the influence of in-plane lattice strain on the tunnel magnetoresistance as well as the asymmetric voltage behavior. We consider as an example single-crystal magnetic Fe(110) electrodes for Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 tunnel junctions, where the electronic band structures of Fe and La0.67Sr0.33MnO3 are derived by ab initio calculations.
Useinov, Arthur; Saeed, Yasir; Schwingenschlö gl, Udo; Singh, Nirpendra; Useinov, N.
2013-01-01
The objective of this work is to describe the tunnel electron current in single-barrier magnetic tunnel junctions within an approach that goes beyond the single-band transport model. We propose a ballistic multichannel electron transport model that can explain the influence of in-plane lattice strain on the tunnel magnetoresistance as well as the asymmetric voltage behavior. We consider as an example single-crystal magnetic Fe(110) electrodes for Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 tunnel junctions, where the electronic band structures of Fe and La0.67Sr0.33MnO3 are derived by ab initio calculations.
Kaku, Sai Mahesh Yadav; Khanra, Asit Kumar; Davidson, M. J.
2018-04-01
Strain hardening behaviour has significant effect on altering the properties of materials. In the present study, Al-ZrB2 metal matrix composites are made through powder metallurgy route. Incremental weight percentage (wt%) of ZrB2 (0, 2, 4 and 6 wt%) are added to Aluminium matrix to produce different composites. The homogenous powder mixture is compacted and pressurelessly sintered. Sintering of composites is performed over a range of 450-575 °C. The optimized sintered condition is observed at 550 °C for 1 h in controlled atmosphere (argon gas flow). The sintered compacts are strained in incremental steps in different levels up to failure. A visible crack on the bulge of the powder preform is considered as the failure. Composites are strain hardened up to failure. To evaluate the effect of temperature on strain hardening, strain hardening is carried out at different temperatures. Composites are densified with the extent of straining and hardness increases with the increase of strain. Hardness increase with the increase in temperature is maintained during strain hardening. To evaluate the corrosion behaviour of Al-ZrB2 composite, potentiodynamic polarization study are performed on the strained composites. Corrosion rate decrease with the extent of straining.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Wrinkles in reinforced membranes
Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.
2012-02-01
We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.
Hussein, M.
2018-06-01
The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
Tao, Ran
2015-01-01
is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Simulating distributed reinforcement effects in concrete analysis
International Nuclear Information System (INIS)
Marchertas, A.H.
1985-01-01
The effect of the bond slip is brought into the TEMP-STRESS finite element code by relaxing the equal strain condition between concrete and reinforcement. This is done for the elements adjacent to the element which is cracked. A parabolic differential strain variation is assumed along the reinforcement from the crack, which is taken to be at the centroid of the cracked element, to the point where perfect bonding exists. This strain relationship is used to increase the strain of the reinforcement in the as yet uncracked elements located adjacent to a crack. By the same token the corresponding concrete strain is decreased. This estimate is made assuming preservation of strain energy in the element. The effectiveness of the model is shown by examples. Comparison of analytical results is made with structural test data. The influence of the bonding model on cracking is portrayed pictorially. 5 refs., 6 figs
International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
Behavior of reinforced concrete at elevated temperatures
International Nuclear Information System (INIS)
Freskakis, G.N.
1984-09-01
A study is presented concerning the behavior of reinforced concrete sections at elevated temperatures. Material properties of concrete and reinforcing steel are discussed. Behavior studies are made by means of moment-curvature-axial force relationships. Particular attention is given to the load carrying capacity, thermal forces and moments, and deformation capacity. The effects on these properties of variations in the strength properties, the temperature level and distribution, the amount of reinforcing steel, and limiting values of strains are considered
Tao, Ran
2015-05-01
Laminated composites are materials with complex architecture made of continuous fibers embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. This thesis is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in-situ secondary electron tensile images obtained by scanning electron microscopy (SEM) are post-processed by both DIC techniques. Finally, it is shown that when global DIC is applied with a conformal mesh, it can capture more accurately sharp local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset-based local DIC, finite-element based global DIC is better suited for capturing gradients across the fiber-matrix interfaces.
Lattices with unique complements
Saliĭ, V N
1988-01-01
The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.
International Nuclear Information System (INIS)
1987-01-01
The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de
New integrable lattice hierarchies
International Nuclear Information System (INIS)
Pickering, Andrew; Zhu Zuonong
2006-01-01
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula
DEFF Research Database (Denmark)
2003-01-01
A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....
Generalized isothermic lattices
International Nuclear Information System (INIS)
Doliwa, Adam
2007-01-01
We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem
Habituation of reinforcer effectiveness
David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards
2014-01-01
In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...
Flexural reinforced concrete member with FRP reinforcement
Putzolu, Mariana
2017-01-01
One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...
Lattice theory for nonspecialists
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-01-01
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
International Nuclear Information System (INIS)
Creutz, M.
1983-04-01
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Development of a relationship between external measurements and reinforcement stress
Brault, Andre; Hoult, Neil A.; Lees, Janet M.
2015-03-01
As many countries around the world face an aging infrastructure crisis, there is an increasing need to develop more accurate monitoring and assessment techniques for reinforced concrete structures. One of the challenges associated with assessing existing infrastructure is correlating externally measured parameters such as crack widths and surface strains with reinforcement stresses as this is dependent on a number of variables. The current research investigates how the use of distributed fiber optic sensors to measure reinforcement strain can be correlated with digital image correlation measurements of crack widths to relate external crack width measurements to reinforcement stresses. An initial set of experiments was undertaken involving a series of small-scale beam specimens tested in three-point bending with variable reinforcement properties. Relationships between crack widths and internal reinforcement strains were observed including that both the diameter and number of bars affected the measured maximum strain and crack width. A model that uses measured crack width to estimate reinforcement strain was presented and compared to the experimental results. The model was found to provide accurate estimates of load carrying capacity for a given crack width, however, the model was potentially less accurate when crack widths were used to estimate the experimental reinforcement strains. The need for more experimental data to validate the conclusions of this research was also highlighted.
Lattice degeneracies of fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-10-01
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Seismic Stability of Reinforced Soil Slopes
DEFF Research Database (Denmark)
Tzavara, I.; Zania, Varvara; Tsompanakis, Y.
2012-01-01
Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...
2014-01-01
Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
International Nuclear Information System (INIS)
Jersak, J.
1986-01-01
This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
Strain quantification in epitaxial thin films
International Nuclear Information System (INIS)
Cushley, M
2008-01-01
Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.
Investigation on reinforced concrete slabs subjeted to impact loading
International Nuclear Information System (INIS)
Freiman, M.; Krutzik, N.J.; Tropp, R.; Zorn, N.F.
1984-01-01
A comparison of experimental and computational results for tests of reinforced concrete slabs subjected to soft missile impact is presented. Numerical simulation techniques were employed to predict the target response. The objective of the calculations was to validate the material model for reinforced concrete implemented in a finite difference code. The computational results regarding displacements or strains in the reinforcement conform satisfactorily with the experimental values. (Author) [pt
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
DEFF Research Database (Denmark)
Risager, Morten S.; Södergren, Carl Anders
2017-01-01
It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...
International Nuclear Information System (INIS)
Kulikowska, T.
1999-01-01
The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, Paul
1989-03-15
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.
International Nuclear Information System (INIS)
Christ, Norman H
2000-01-01
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
International Nuclear Information System (INIS)
Kulikowska, T.
2001-01-01
The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)
Piezoelectric ceramic-reinforced metal matrix composites
2004-01-01
Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...
International Nuclear Information System (INIS)
Petronzio, R.
1992-01-01
Lattice gauge theories are about fifteen years old and I will report on the present status of the field without making the elementary introduction that can be found in the proceedings of the last two conferences. The talk covers briefly the following subjects: the determination of α s , the status of spectroscopy, heavy quark physics and in particular the calculation of their hadronic weak matrix elements, high temperature QCD, non perturbative Higgs bounds, chiral theories on the lattice and induced theories
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
Vortex lattices in layered superconductors
International Nuclear Information System (INIS)
Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.
1995-01-01
We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear
Management of Reinforcement Corrosion
DEFF Research Database (Denmark)
Küter, André; Geiker, Mette Rica; Møller, Per
Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....
Adapting without reinforcement.
Kheifets, Aaron; Gallistel, C Randy
2012-11-01
Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.
Genomic Signatures of Reinforcement
Directory of Open Access Journals (Sweden)
Austin G. Garner
2018-04-01
Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.
Genomic Signatures of Reinforcement
Goulet, Benjamin E.
2018-01-01
Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048
Debonding failure and size effects in micro reinforced composites
DEFF Research Database (Denmark)
Legarth, Brian Nyvang; Niordson, Christian Frithiof
2010-01-01
-plastic formulation. Bi-axially loaded unit cells are used and failure is modeled using a cohesive zone at the reinforcement interface. During debonding a sudden stress drop in the overall average stress–strain response is observed. Adaptive higher-order boundary conditions are imposed at the reinforcement interface...... for realistically modeling the restrictions on moving dislocations as debonding occurs. It is found that the influence of the imposed higher-order boundary conditions at the interface is minor. If strain-gradient effects are accounted for a void with a smooth shape develops at the reinforcement interface while...... a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one...
Habituation of reinforcer effectiveness
Directory of Open Access Journals (Sweden)
David R Lloyd
2014-01-01
Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.
International Nuclear Information System (INIS)
Chodos, A.
1978-01-01
A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory
Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Investigation of stress–strain models for confined high strength ...
Indian Academy of Sciences (India)
High strength concrete; confined concrete; stress–strain models; ... One of its advantages is the lessening column cross-sectional areas. It was ..... Ahmad S H, Shah S P 1982 Stress–strain curves of concrete confined by spiral reinforcement.
Effects of radiation damage on the silicon lattice
Dumas, Katherine A.; Lowry, Lynn; Russo, O. Louis
1987-01-01
Silicon was irradiated with both proton and electron particle beams in order to investigate changes in the structural and optical properties of the lattice as a result of the radiation damage. Lattice expansions occurred when large strain fields (+0.34 percent) developed after 1- and 3-MeV proton bombardment. The strain was a factor of three less after 1-MeV electron irradiation. Average increases of approximately 22 meV in the 3.46-eV interband energy gap and 14 meV in the Lorentz broadening parameter were measured after the electron irradiation.
Habituation of reinforcer effectiveness.
Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B
2014-01-09
In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.
High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6
Reinhardt, Hans; Naaman, A
2012-01-01
High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...
Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.
Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie
2017-03-15
By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.
International Nuclear Information System (INIS)
Krojts, M.
1987-01-01
The book by the known american physicist-theoretist M.Kreuts represents the first monography in world literature, where a new perspective direction in elementary particle physics and quantum field theory - lattice formulation of gauge theories is stated systematically. Practically all main ideas of this direction are given. Material is stated in systematic and understandable form
Phenomenology Using Lattice QCD
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
International Nuclear Information System (INIS)
Bali, G.S.
2005-01-01
I comment on progress of lattice QCD techniques and calculations. Recent results on pentaquark masses as well as of the spectrum of excited baryons are summarized and interpreted. The present state of calculations of quantities related to the nucleon structure and of electromagnetic transition form factors is surveyed
Finite lattice extrapolation algorithms
International Nuclear Information System (INIS)
Henkel, M.; Schuetz, G.
1987-08-01
Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
de Raedt, Hans; von der Linden, W.; Binder, K
1995-01-01
In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
International Nuclear Information System (INIS)
Autin, B.
1984-01-01
After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)
Unquenched lattice upsilon spectroscopy
International Nuclear Information System (INIS)
Marcantonio, L.M.
2001-03-01
A non-relativistic effective theory of QCD (NRQCD) is used in calculations of the upsilon spectrum. Simultaneous multi-correlation fitting routines are used to yield lattice channel energies and amplitudes. The lattice configurations used were both dynamical, with two flavours of sea quarks included in the action; and quenched, with no sea quarks. These configurations were generated by the UKQCD collaboration. The dynamical configurations used were ''matched'', having the same lattice spacing, but differing in the sea quark mass. Thus, it was possible to analyse trends of observables with sea quark mass, in the certainty that the trend isn't partially due to varying lattice spacing. The lattice spacing used for spectroscopy was derived from the lattice 1 1 P 1 - 1 3 S 1 splitting. On each set of configurations two lattice bare b quark masses were used, giving kinetic masses bracketing the physical Υ mass. The only quantity showing a strong dependence on these masses was the hyperfine splitting, so it was interpolated to the real Υ mass. The radial and orbital splittings gave good agreement with experiment. The hyperfine splitting results showed a clear signal for unquenching and the dynamical hyperfine splitting results were extrapolated to a physical sea quark mass. This result, combined with the quenched result yielded a value for the hyperfine splitting at n f = 3, predicting an η b mass of 9.517(4) GeV. The NRQCD technique for obtaining a value of the strong coupling constant in the M-barS-bar scheme was followed. Using quenched and dynamical results a value was extrapolated to n f = 3. Employing a three loop beta function to run the coupling, with suitable matching conditions at heavy quark thresholds, the final result was obtained for n f = 5 at a scale equal to the Z boson mass. This result was α(5)/MS(Mz)=0.110(4). Two methods for finding the mass of the b quark in the MS scheme were employed. The results of both methods agree within error but the
DEFF Research Database (Denmark)
Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro
2008-01-01
The development of concrete and cementitious composites with fiber reinforcement to improve the tensile load-deformation behavior has resulted in three distinct classes of materials. These include conventional Fiber Reinforced Concrete (FRC) with tension softening response, High Performance Fiber...... Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...
Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.
Directory of Open Access Journals (Sweden)
Ramaswamy Krishnan
Full Text Available Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.
Superspace approach to lattice supersymmetry
International Nuclear Information System (INIS)
Kostelecky, V.A.; Rabin, J.M.
1984-01-01
We construct a cubic lattice of discrete points in superspace, as well as a discrete subgroup of the supersymmetry group which maps this ''superlattice'' into itself. We discuss the connection between this structure and previous versions of lattice supersymmetry. Our approach clarifies the mathematical problems of formulating supersymmetric lattice field theories and suggests new methods for attacking them
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be
International Nuclear Information System (INIS)
Woloshyn, R.M.
1988-03-01
The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)
Basis reduction for layered lattices
E.L. Torreão Dassen (Erwin)
2011-01-01
htmlabstractWe develop the theory of layered Euclidean spaces and layered lattices. With this new theory certain problems that usually are solved by using classical lattices with a "weighting" gain a new, more natural form. Using the layered lattice basis reduction algorithms introduced here these
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
International Nuclear Information System (INIS)
Lutz, H.D.; Willich, P.
1977-01-01
The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)
Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2018-01-01
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
International Nuclear Information System (INIS)
Hasenfratz, A.; Hasenfratz, P.
1985-01-01
This paper deals almost exclusively with applications in QCD. Presumably QCD will remain in the center of lattice calculations in the near future. The existing techniques and the available computer resources should be able to produce trustworthy results in pure SU(3) gauge theory and in quenched hadron spectroscopy. Going beyond the quenched approximation might require some technical breakthrough or exceptional computer resources, or both. Computational physics has entered high-energy physics. From this point of view, lattice QCD is only one (although the most important, at present) of the research fields. Increasing attention is devoted to the study of other QFTs. It is certain that the investigation of nonasymptotically free theories, the Higgs phenomenon, or field theories that are not perturbatively renormalizable will be important research areas in the future
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
International Nuclear Information System (INIS)
1962-01-01
The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs
Diffusion in heterogeneous lattices
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2010-01-01
Roč. 256, č. 17 (2010), s. 5137-5144 ISSN 0169-4332 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice- gas systems * diffusion * Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010
Automated lattice data generation
Directory of Open Access Journals (Sweden)
Ayyar Venkitesh
2018-01-01
Full Text Available The process of generating ensembles of gauge configurations (and measuring various observables over them can be tedious and error-prone when done “by hand”. In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Automated lattice data generation
Ayyar, Venkitesh; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.
2018-03-01
The process of generating ensembles of gauge configurations (and measuring various observables over them) can be tedious and error-prone when done "by hand". In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Energy Technology Data Exchange (ETDEWEB)
Kumar, J [Agra Coll. (India). Dept. of Physics
1977-03-01
In the present work, a local model pseudopotential has been proposed to study the lattice dynamics of thorium. The model potential depends on the core and ionic radii, and accounts for the s-d-f hybridization effects in a phenomenological way. When this form of potential is applied to derive the photon dispersion curves of Th, sufficiently good agreement is found between the computed and experimental results.
International Nuclear Information System (INIS)
Bowler, Ken
1990-01-01
One of the major recent developments in particle theory has been the use of very high performance computers to obtain approximate numerical solutions of quantum field theories by formulating them on a finite space-time lattice. The great virtue of this new technique is that it avoids the straitjacket of perturbation theory and can thus attack new, but very fundamental problems, such as the calculation of hadron masses in quark-gluon field theory (quantum chromodynamics - QCD)
Continuous Reinforced Concrete Beams
DEFF Research Database (Denmark)
Hoang, Cao Linh; Nielsen, Mogens Peter
1996-01-01
This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
The lattice correspondence and diffusional-displacive phase transformations
International Nuclear Information System (INIS)
Nie, J.F.; Muddle, B.C.
1999-01-01
When a coherent interface is maintained between parent and product phases in a solid state phase transformation, then it is always possible to define a lattice correspondence across this interface and describe the structural change by a homogeneous lattice deformation, S T . For certain transformations, this strain is an invariant plane strain, with the invariant plane defining the planar, coherent interface between parent and product. This group includes the familiar martensitic face-centred cubic to close-packed hexagonal transformation in, for example, cobalt-based alloys, but it is demonstrated here that it also contains transformations giving rise to a broad range of plate-shaped, diffusional precipitation products. For many such transformation products, the transformation strain has a significant shear component and the accommodation of shear strain energy is potentially an important, and often overlooked, factor in both the nucleation and growth of such products. More commonly S T is not an invariant plane strain and, if a planar interface is to be preserved between parent and product, it is necessary to combine S T with a lattice invariant strain to allow a partially-coherent interface that is macroscopically invariant. It is demonstrated that there are diffusional transformation products which also have the geometric and crystallographic features of both of the common forms of partially-coherent martensitic products
Modelling root reinforcement in shallow forest soils
Skaugset, Arne E.
1997-01-01
A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Repair of reinforced concrete beams using carbon fiber reinforced polymer
Directory of Open Access Journals (Sweden)
Karzad Abdul Saboor
2017-01-01
Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
International Nuclear Information System (INIS)
Beloy, K.
2010-01-01
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10 -18 and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.
2018-03-01
Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.
Investigation of digital light processing using fibre-reinforced polymers
DEFF Research Database (Denmark)
Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov
2016-01-01
Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre-reinforced polym......Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre...... of miniaturized objects with relatively high surface quality compared to other additive manufacturing technologies. This paper aim to move fibre reinforced resin parts one step closer towards mechanically strong production-quality components....
Algorithms for Reinforcement Learning
Szepesvari, Csaba
2010-01-01
Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'
International Nuclear Information System (INIS)
Kilcup, G.
1986-01-01
A progress report on a lattice project at Los Alamos is presented. The projects are basically of two sorts: approaching the continuum (determination of MCRG flows under the blocking transformation, and beta-function along Wilson and improved action lines); and arriving at the continuum (hadron spectrum, coupling constants, and matrix elements). Since the ultimate goal is to determine matrix elements for which chiral symmetry is very relevant, the authors choose the formalism whose chiral properties are easier to understand, i.e., staggered fermions
Lattice of quantum predictions
Drieschner, Michael
1993-10-01
What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...
Diamond lattice Heisenberg antiferromagnet
Oitmaa, J.
2018-04-01
We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S = 1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.
Lattice cell burnup calculation
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1977-01-01
Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics
Crisafulli, M.; Martinelli, G.; Sachrajda, Christopher T.; Crisafulli, M; Gimenez, V; Martinelli, G; Sachrajda, C T
1994-01-01
We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy \\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. In order to cancel the ambiguities due to the ultraviolet renormalons present in the operator matrix elements, this calculation has required the non-perturbative subtraction of the power divergences present in the Lagrangian operator \\energy and in the kinetic energy operator \\kkinetic. The non-perturbative renormalization of the relevant operators has been implemented by imposing suitable renormalization conditions on quark matrix elements in the Landau gauge.
International Nuclear Information System (INIS)
Vidovsky, I.; Kereszturi, A.
1991-11-01
The results of experiments and calculations on Gd lattices are presented, and a comparison of experimental and calculational data is given. This latter can be divided into four groups. The first belongs to the comparison of criticality parameters, the second group is related with the comparison of 2D distributions, the third one relates the comparison of intra-macrocell distributions, whereas the fourth group is devoted for the comparison of spectral parameters. For comparison, the computer code RFIT based on strict statistical criteria has been used. The calculated and measured results agree, in most cases, sufficiently. (R.P.) 11 refs.; 13 figs.; 9 tabs
Engineering strain measurements using the NPD at LANSCE
International Nuclear Information System (INIS)
Bourke, M.A.M.; Goldstone, J.A.; Lovell, K.J.
1991-01-01
The presence of residual stress in engineering components can affect their mechanical properties and structural integrity. Neutron diffraction is the only measuring technique which can provide spatially resolved non-destructive strain measurements in the interior of a component. By recording the change in the interplanar spacings elastic strains can be measured for individual lattice reflections. Also on a pulsed source, where all lattice reflections are recorded, profile refinement is an option which allows the strain to be obtained from changes in the lattice parameter. Measurements made at LANSCE demonstrate the potential for stress measurements on a pulsed source and indicate the advantages and disadvantages over measurements made on a reactor. (author)
Modeling reinforced concrete durability.
2014-06-01
This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...
Lattice Transparency of Graphene.
Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O
2017-03-08
Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
Lattice formulations of reggeon interactions
International Nuclear Information System (INIS)
Brower, R.C.; Ellis, J.; Savit, R.; Zinn-Justin, J.
1976-01-01
A class of lattice analogues to reggeon field theory is examined. First the transition from a continuum to a lattice field theory is discussed, emphasizing the necessity of a Wick rotation and the consideration of symmetry properties. Next the theory is transformed to a discrete system with two spins at each lattice site, and the problems of the triple-reggeon interaction and the reggeon energy gap are discussed. It is pointed out that transferring the theory from the continuum to a lattice necesarily introduces new relevant operators not normally present in reggeon field theory. (Auth.)
International Nuclear Information System (INIS)
Akbarzadeh, H.; Maghsoudi, A.A.
2010-01-01
Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.
Convection-diffusion lattice Boltzmann scheme for irregular lattices
Sman, van der R.G.M.; Ernst, M.H.
2000-01-01
In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Intertwined Lattice Deformation and Magnetism in Monovacancy Graphene
Padmanabhan, Haricharan; Nanda, B. R. K.
2016-01-01
Using density functional calculations we have investigated the local spin moment formation and lattice deformation in graphene when an isolated vacancy is created. We predict two competing equilibrium structures: a ground state planar configuration with a saturated local moment of 1.5 $\\mu_B$, and a metastable non-planar configuration with a vanishing magnetic moment, at a modest energy expense of ~50 meV. Though non-planarity relieves the lattice of vacancy-induced strain, the planar state i...
Towards a physical interpretation of the entropic lattice Boltzmann method
Malaspinas, Orestis; Deville, Michel; Chopard, Bastien
2008-12-01
The entropic lattice Boltzmann method (ELBM) is one among several different versions of the lattice Boltzmann method for the simulation of hydrodynamics. The collision term of the ELBM is characterized by a nonincreasing H function, guaranteed by a variable relaxation time. We propose here an analysis of the ELBM using the Chapman-Enskog expansion. We show that it can be interpreted as some kind of subgrid model, where viscosity correction scales like the strain rate tensor. We confirm our analytical results by the numerical computations of the relaxation time modifications on the two-dimensional dipole-wall interaction benchmark.
Directory of Open Access Journals (Sweden)
R. K. Misra
2014-03-01
Full Text Available Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping properties of the composites. Therefore, 2.468% banana fiber reinforced composite plate stabilizes early as compared to 7.7135 % banana fiber reinforced composite plate but less stiff as compared to 7.7135 % banana fiber reinforced composite plate
Effects of strain on the Schwinger pair creation in graphene
International Nuclear Information System (INIS)
Fanbanrai, P.; Hutem, A.; Boonchui, S.
2015-01-01
The effects of strain on mechanically deformed graphene are determined by looking at how the strain affects the amplitude of the Schwinger two particle pair state. The influences of the lattice distortions, such as isotropic tensile strain ϵ is , shear strain ϵ ss , uniaxial armchair strain ϵ as , and zigzag strain ϵ zs , on the photon emission spectrum have been analyzed. We find that the intensities of the emission increases or decreases when compared to those of the unstrained graphene, depending on the type of strain applied. Thus the structure of energy band, the frequencies of the photons and the emission spectrum can be controlled by use of the different strains
A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems
Directory of Open Access Journals (Sweden)
Mladena Luković
2016-07-01
Full Text Available Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC, for controlling the damage development due to drying shrinkage in concrete repairs was also examined.
Elastomer Reinforced with Carbon Nanotubes
Hudson, Jared L.; Krishnamoorti, Ramanan
2009-01-01
Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.
Lattice quantum chromodynamics
International Nuclear Information System (INIS)
Hassenfratz, P.
1983-01-01
It is generally accepted that relativistic field theory is relevant in high energy physics. It is also recognized that even in QCD, which is asymptotically free, the scope of perturbation theory is very limited. Despite the tremendous theoretical and experimental effort to study scaling, scaling violations, e + e - , lepton pair creation, jets, etc., the answer to the question whether and to what extent is QCD the theory of strong interactions is vague. At present-day energies it is difficult to disentangle perturbative and non-perturbative effects. The author states that QCD must be understood and that quantitative non-perturbative methods are needed. He states that the lattice formulation of field theories is a promising approach to meeting this need and discusses the formulation in detail in this paper
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Homogenization theory in reactor lattices
International Nuclear Information System (INIS)
Benoist, P.
1986-02-01
The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)
Lattices, supersymmetry and Kaehler fermions
International Nuclear Information System (INIS)
Scott, D.M.
1984-01-01
It is shown that a graded extension of the space group of a (generalised) simple cubic lattice exists in any space dimension, D. The fermionic variables which arise admit a Kaehlerian interpretation. Each graded space group is a subgroup of a graded extension of the appropriate Euclidean group, E(D). The relevance of this to the construction of lattice theories is discussed. (author)
Lattice polytopes in coding theory
Directory of Open Access Journals (Sweden)
Ivan Soprunov
2015-05-01
Full Text Available In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also include a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.
Behavior of reinforced concrete beams reinforced with GFRP bars
Directory of Open Access Journals (Sweden)
D. H. Tavares
Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.
Flow modelling of steel fibre reinforced self-compacting concrete
DEFF Research Database (Denmark)
Svec, Oldrich
was done by means of the Immersed boundary method with direct forcing. Evolution of the immersed particles was described by Newton's differential equations of motion. The Newton's equations were solved by means of Runge-Kutta-Fehlberg iterative scheme. Several challenges had to be overcome during...... in concrete can efficiently substitute or supplement conventional steel reinforcement, such as reinforcement bars. Ordinary concrete composition further makes the material stiff and non-flowable. Self-compacting concrete is an alternative material of low yield stress and plastic viscosity that does flow...... of the fluid near formwork surface. A method to incorporate the apparent slip into the Lattice Boltzmann fluid dynamics solver was suggested. The proposed numerical framework was observed to correctly predict flow of fibre reinforced self-compacting concrete. The proposed numerical framework can therefore...
Computing the writhe on lattices
International Nuclear Information System (INIS)
Laing, C; Sumners, D W
2006-01-01
Given a polygonal closed curve on a lattice or space group, we describe a method for computing the writhe of the curve as the average of weighted projected writhing numbers of the polygon in a few directions. These directions are determined by the lattice geometry, the weights are determined by areas of regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix to the polygonal curve. We give a new formula for the writhe of polygons on the face centred cubic lattice and prove that the writhe of polygons on the body centred cubic lattice, the hexagonal simple lattice, and the diamond space group is always a rational number, and discuss applications to ring polymers
Steel fiber reinforced concrete
International Nuclear Information System (INIS)
Baloch, S.U.
2005-01-01
Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)
Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting
Directory of Open Access Journals (Sweden)
Luciano Lamberti
2013-08-01
Full Text Available The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456–0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.
Reinforced concrete tomography
International Nuclear Information System (INIS)
Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.
1997-01-01
In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es
Lattice gas cellular automata and lattice Boltzmann models an introduction
Wolf-Gladrow, Dieter A
2000-01-01
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices
Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)
1998-01-01
Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.
Braided reinforced composite rods for the internal reinforcement of concrete
Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.
2008-05-01
This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.
Soil reinforcement with geosynthetics
Directory of Open Access Journals (Sweden)
Bessaim Mohammed Mustapha
2018-01-01
Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.
Irreversible stochastic processes on lattices
International Nuclear Information System (INIS)
Nord, R.S.
1986-01-01
Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst
Sa, Baisheng; Li, Yan-Ling; Qi, Jingshan; Ahuja, Rajeev; Sun, Zhimei
2014-01-01
Phosphorene has been attracted intense interest due to its unexpected high carrier mobility and distinguished anisotropic optoelectronic and electronic properties. In this work, we unraveled strain engineered phosphorene as a photocatalyst in the application of water splitting hydrogen production based on density functional theory calculations. Lattice dynamic calculations demonstrated the stability for such kind of artificial materials under different strains. The phosphorene lattice is unst...
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Ultimate load capacity assessment of reinforced concrete shell structures
International Nuclear Information System (INIS)
Gupta, Amita; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.
1993-01-01
The objective of this study is to develop capability for prediction of ultimate load capacity of reinforced concrete shell structures. The present finite element code ULCA (Ultimate Load Capacity Assessment) adopts a degenerate concept of formulating general isoparametric shell element with a layered approach in the thickness direction. Different failure modes such as crushing, tensile cracking and reinforcement yielding are recognised for various problems. The structure fails by crushing of concrete when the concrete strain/stress reaches the ultimate stress or strain of concrete. Material nonlinearities as a result of tension cracking, tension stiffening between reinforcement and concrete in cracked region and yielding of reinforcement are considered along with geometric nonlinearity. Thus with this code it is possible to predict the pressure at which the first cracking, first through thickness cracking, first yielding of reinforcement occurs. After validating the code with few bench mark problems for different failure modes a reinforced concrete nuclear containment is analysed for its ultimate capacity and the results are matched with the published results. Further the ultimate load capacity of outer containment wall of Narora Atomic Power Station is predicted. It is observed that containment fails in membrane region and has a sufficient margin against design pressure. (author). 9 refs., 56 figs., 3 tabs., 1 appendix with 4 tabs
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Lattice QCD: Status and Prospect
International Nuclear Information System (INIS)
Ukawa, Akira
2006-01-01
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy
Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany
2008-01-01
Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimenta...
Effects of Martensite Development on Lattice Strain Evolution during ...
African Journals Online (AJOL)
mclieia2
earth body. In chemical processes, turbo machinery, water treatment power generation and aerospace technology, unsteady oscillatory free convective flow is of very high importance. ... rotating. it was shown that the effects of magnetic field and rotating ... magnetic field. In the absence of rotation, the magnetic field.
Lattice strain measurements on sandstones under load using neutron diffraction
Czech Academy of Sciences Publication Activity Database
Frischbutter, A.; Neov, Dimitar; Scheffzük, Ch.; Vrána, Miroslav; Walther, K.
2000-01-01
Roč. 22, - (2000), s. 11-12 ISSN 0191-8141 R&D Projects: GA ČR GV202/97/K038; GA AV ČR KSK1048601 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.354, year: 2000
Effects of Martensite Development on Lattice Strain Evolution during ...
African Journals Online (AJOL)
mclieia2
discussed for various effects of material parameters on the velocity, temperature and concentration profiles. ... unsteady oscillatory free convective flow is of very high ... boundary layer or unsteady temperature conditions. ... porous media.
Turbomachine blade reinforcement
Garcia Crespo, Andres Jose
2016-09-06
Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.
Reinforcing Saccadic Amplitude Variability
Paeye, Celine; Madelain, Laurent
2011-01-01
Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…
Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders
National Research Council Canada - National Science Library
Chung, Kohn C
2006-01-01
.... In previous work, it was proposed that reinforcement of solder by NiTi shape memory alloy particles to form smart composite solder reduces the inelastic strain of the solder and hence, may enhance...
Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy
Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany
2008-01-01
Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…
Constitutive equations for cracked reinforced concrete based on a refined model
International Nuclear Information System (INIS)
Geistefeldt, H.
1977-01-01
In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include the effects, depending on the given state of stress. The model is composed of three model-elements: component u-uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r-reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c-crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). The stress tensor of all components is equal to the global stress tensor. The strains are different from component to component corresponding to the local strain distribution in cracked reinforced concrete. For example the uniaxial behavior of reinforced concrete is modelled out of three springs k(u), k(r) and k(c) in series each having variable length l(u), l(r) or l(c). The uncracked structure is represented by k(u) only, l(r) and l(c) are zero. After cracking l(r) and l(c) are growing with the tensile load. When concrete tension stiffness between cracks has diminished, l(u) has reached the zero-value. The stress-dependent weights of the components in the model are derived from uniaxial theory and uniaxial test results
Femtosecond visualization of lattice dynamics in shock-compressed matter.
Milathianaki, D; Boutet, S; Williams, G J; Higginbotham, A; Ratner, D; Gleason, A E; Messerschmidt, M; Seibert, M M; Swift, D C; Hering, P; Robinson, J; White, W E; Wark, J S
2013-10-11
The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ~73 gigapascals (GPa) and strain rates of 10(9) per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.
International Nuclear Information System (INIS)
Matsuo, Toyofumi; Matsumura, Takuro; Miyagawa, Yoshinori
2009-01-01
This paper discusses applicability of material degradation model due to reinforcing steel corrosion for RC box-culverts with corroded reinforcement and an estimation method for threshold value in performance verification reflecting reinforcing steel corrosion. First, in FEM analyses, loss of reinforcement section area and initial tension strain arising from reinforcing steel corrosion, and deteriorated bond characteristics between reinforcement and concrete were considered. The full-scale loading tests using corroded RC box-culverts were numerically analyzed. As a result, the analyzed crack patterns and load-strain relationships were in close agreement with the experimental results within the maximum corrosion ratio 15% of primary reinforcement. Then, we showed that this modeling could estimate the load carrying capacity of corroded RC box-culverts. Second, a parametric study was carried out for corroded RC box culverts with various sizes, reinforcement ratios and levels of steel corrosion, etc. Furthermore, as an application of analytical results and various experimental investigations, we suggested allowable degradation ratios for a modification of the threshold value, which corresponds to the chloride induced deterioration progress that is widely accepted in maintenance practice for civil engineering reinforced concrete structures. Finally, based on these findings, we developed two estimation methods for threshold value in performance verification: 1) a structural analysis method using nonlinear FEM included modeling of material degradation, 2) a practical method using a threshold value, which is determined by structural analyses of RC box-culverts in sound condition, is multiplied by the allowable degradation ratio. (author)
Effect of Fiber Reinforcement on the Response of Structural Members
DEFF Research Database (Denmark)
Fischer, Gregor; Li, Victor
2007-01-01
This paper describes a series of investigations on the effect of fiber reinforcement on the response of structural members in direct tension and flexure under reversed cyclic loading conditions. The design approach of the fiber reinforced cementitious composite is based on fracture mechanics...... principles, which will be described in the first part of the paper along with an introduction of the relevant material properties of the resulting engineered cementitious composite (ECC). This class of composites is characterized by strain hardening and multiple cracking properties in uniaxial tension...... and an ultimate tensile strain capacity on the order of several percent. Subsequently, the synergistic effects of composite deformation mechanisms in the ECC and structural members subjected to large shear reversals are identified. Beneficial effects observed in the reinforced ECC structural members as compared...
Tallarita, Gianni; Peterson, Adam
2018-04-01
We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.
A Study of Array Direction HDPE Fiber Reinforced Mortar
Kamsuwan, Trithos
2018-02-01
This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.
Compressive behavior of wire reinforced bulk metallic glass matrix composites
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2005-06-15
Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.
Lattice Studies of Hyperon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Harmonic oscillator on a lattice
International Nuclear Information System (INIS)
Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.
1983-01-01
The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Takami, A.; Hashimoto, T.; Horibe, M.; Hayashi, A.
2000-01-01
The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum mechanical expectation values in terms of Wigner functions are also ...
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
The Reinforcing Event (RE) Menu
Addison, Roger M.; Homme, Lloyd E.
1973-01-01
A motivational system, the Contingency Management System, uses contracts in which some amount of defined task behavior is demanded for some interval of reinforcing event. The Reinforcing Event Menu, a list of high probability reinforcing behaviors, is used in the system as a prompting device for the learner and as an aid for the administrator in…
Mathematically Simulated Elastic Characteristics of the Composite Reinforced by Spherical Inclusions
Directory of Open Access Journals (Sweden)
E. S. Sergeeva
2017-01-01
Full Text Available Composite materials are widely used in engineering, especially in constructions working under simultaneous intensive mechanical and thermal loads. In the industry the main requirements for materials are restrictions on the elastic characteristics, such as bulk modulus and shear modulus.Composite materials consist of a base material, a so-called binder (matrix, and reinforcing inclusions. The composite matrix defines a method for the composite manufacturing and must meet a set of operational and technological requirements. The most commonly used types are a metal matrix and a polymer one, because of the relative ease of manufacture, good wettability, and chemical resistance.Reinforcing inclusions can be of different nature (boron, crystalline, etc. and shape (spherical, lamellar, fiber. Lately, active researches have been conducted with the nanostructural elements (fullerenes, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs plates, nanoclusters used as the filler.There are various ways of modeling the elastic properties of the composites. The most common are numerical methods using a finite element method and analytical methods.In simulation of composite characteristics, in addition to the properties of its components, a reinforcing structure plays an important role.The paper considers an obtained isotropic composite with a metal matrix reinforced by the spherical nanoclusters of randomly oriented SWNTs with a reinforcement scheme similar to the cubic crystal lattice. Numerical modeling and analytical methods were used.For the numerical solution two types of periodic structure of the material were obtained: a cube with eight parts of the ball in the corners of a cube and a sphere in the center. For each of the periodic cells a representative volume is selected in which, using the kinematic and force boundary conditions, have been implemented two types of stress-strain state, namely stretching along one axis and shear. For
Constitutive equations for cracked reinforced concrete based on a refined model
International Nuclear Information System (INIS)
Geistefeldt, H.
1977-01-01
Nonlinear numerical methods to calculate structures of reinforced concrete or of prestressed concrete are mostly based on two idealizing assumptions: tension stiffness perpendicular to cracks is equal to the stiffness of reinforcement alone and shear modulus is taken as constant. In real reinforced concrete structures concrete contributes to the tension-stiffness perpendicular to cracks and thus to the global stiffness matrix because of bond action between concrete and reinforcement and shear transfer in cracks is depending on stresses acting in cracks. Only few authors are taking these aspects into account and only with rough semiempirical assumptions. In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include these effects, hitherto neglected, depending on the given state of stress. The model is composed of three model-elements: component u - uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r - reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c - crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). (Auth.)
Mechanical Properties of Welded Deformed Reinforcing Steel Bars
Directory of Open Access Journals (Sweden)
Ghafur H. Ahmed
2015-05-01
Full Text Available Reinforcement strength, ductility and bendability properties are important components in design of reinforced concrete members, as the strength of any member comes mainly from reinforcement. Strain compatibility and plastic behaviors are mainly depending on reinforcement ductility. In construction practice, often welding of the bars is required. Welding of reinforcement is an instant solution in many cases, whereas welding is not a routine connection process. Welding will cause deficiencies in reinforcement bars, metallurgical changes and re-crystallization of microstructure of particles. Weld metal toughness is extremely sensitive to the welding heat input that decreases both of its strength and ductility. For determining the effects of welding in reinforcement properties, 48 specimens were tested with 5 different bar diameters, divided into six groups. Investigated parameters were: properties of un-welded bars; strength, ductility and density of weld metal; strength and ductility reduction due to heat input for bundled bars and transverse bars; welding effect on bars’ bending properties; behavior of different joint types; properties of three weld groove shapes also the locations and types of failures sections. Results show that, strength and elongation of the welded bars decreased by (10-40% and (30-60% respectively. Cold bending of welded bars and groove welds shall be prevented.
Wasserman, Edward A.; And Others
1975-01-01
The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)
Study on reinforced concrete beams with helical transverse reinforcement
Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.
2018-02-01
In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.
Degradation of Waterfront Reinforced Concrete Structures
African Journals Online (AJOL)
Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the ... especially corrosion of the reinforcement. ... Corrosion of steel reinforcement contributes .... cracks along the line of reinforcement bars and most of the ...
Racetrack lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Wienands, U.; Craddock, M.K.; Rees, G.H.
1989-03-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. In addition the new lattices have fewer depolarizing resonances than the old circular lattices
Evaluation of carbon incorporation and strain of doped MgB2 superconductor by Raman spectroscopy
International Nuclear Information System (INIS)
Yeoh, W.K.; Zheng, R.K.; Ringer, S.P.; Li, W.X.; Xu, X.; Dou, S.X.; Chen, S.K.; MacManus-Driscoll, J.L.
2011-01-01
Raman spectroscopy is employed to study both the strain and the carbon substitution level in SiC-doped MgB 2 bulk samples. Raman spectroscopy was demonstrated to be a better method to distinguish the individual influences of strain and carbon than standard X-ray diffraction. It is found that the lattice parameter correlation method for C content determination is invalid for highly strained samples. Our result also provides an alternative explanation for lattice variation in non-carbon-doped MgB 2 , which is basically due to lattice strain.
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.
2018-04-01
Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
South Oregon Coast Reinforcement.
Energy Technology Data Exchange (ETDEWEB)
United States. Bonneville Power Administration.
1998-05-01
The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.
Nanostructured composite reinforced material
Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN
2012-07-31
A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.
Böttinger, Konstantin; Godefroid, Patrice; Singh, Rishabh
2018-01-01
Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we define from runtime properties of the program under test. By observing the rewards caused by mutating with a specific set of actions...
International Nuclear Information System (INIS)
Zhang, X.Q.; Wang, L.; Xue, Y.F.; Cheng, X.W.; Wang, Y.D.; Nie, Z.H.; Zhang, H.F.; Fu, H.M.; Ma, L.L.; Ren, Y.
2013-01-01
The mechanical properties of both as-cast and as-extruded Zr-based metallic glass reinforced with tungsten composites with 33, 28, and 21 vol. % of metallic glass were investigated under quasi-static compression at strain rates from 10 −4 s −1 to 10 −1 s −1 . These two types of composites exhibited a strain rate sensitivity exponent that increased with the increase of the tungsten volume fraction. Compared to the composites with 33 and 21 vol. % of the metallic glass, the two types of composites with 28 vol. % of the metallic glass phase exhibited superior fracture energies. The in-situ compression test on the as-cast composites using high-energy synchrotron X-ray diffraction (HEXRD) revealed that the yield stress of the tungsten phase increased with a decrease in the metallic glass volume fraction. The as-cast composite with 28 vol. % of the metallic glass exhibited relatively great mechanical properties compared to the composites that contained 33 and 21 vol. % of the metallic glass. This result was attributed to the great coupling of the load distribution between the two phases and the high lattice strain in the tungsten phase.
Embedded Lattice and Properties of Gram Matrix
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-03-01
Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].
Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Energy Technology Data Exchange (ETDEWEB)
Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.
2018-04-05
Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.
Internal strain evolution during heating of Ti-6Al-4V/SCS-6 composite
International Nuclear Information System (INIS)
Choo, H.; Rangaswamy, P.; Bourke, M.A.M.
1999-01-01
The characteristics of the residual stresses and their effects on the properties in continuous SiC fiber reinforced Ti-6Al-4V matrix composites (TMCs) have been extensively studied. However, to date, few experimental studies (e.g. Ti-14Al-21Nb/SCS-6) have characterized the thermal residual strain in TMCs at elevated temperatures. Therefore, the authors investigated the evolution of the thermal residual strain during heating of Ti-6Al-4V/35vol% SiC composite. In this study the authors used in situ high temperature neutron diffraction to measure strains: (1) in the matrix (α and β phases) and in the fiber, (2) for several lattice reflections in each phase and (3) from both axial and the transverse directions. One distinguishing feature is the wide temperature range (from room temperature up to 1,170K) over which the study was performed. Although the proposed application temperature is typically less than 800K, TMCs are subject to higher temperatures during fabrication and may experience high temperature excursions while in service. Therefore, the authors extended the study to the high temperature regime where the matrix starts to undergo a phase transformation between αminus and βminusTi. Measurements from this regime (800approximately1,170K) provide insights on; (1) the inelastic relaxation of the residual strains through matrix yielding and creep, (2) the effect of the phase transformation on the residual strains and (3) the effect of the presence of SiC on the matrix phase evolution
Hole doped Dirac states in silicene by biaxial tensile strain
Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo
2013-01-01
The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.
Hole doped Dirac states in silicene by biaxial tensile strain
Kaloni, Thaneshwor P.
2013-03-11
The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.
Finite-lattice-spacing corrections to masses and g factors on a lattice
International Nuclear Information System (INIS)
Roskies, R.; Wu, J.C.
1986-01-01
We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice
Quantum lattice model solver HΦ
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Frustrated lattices of Ising chains
International Nuclear Information System (INIS)
Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A
2012-01-01
The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
International Nuclear Information System (INIS)
Kanazu, Tsutomu
1998-01-01
When a reinforced concrete member is exposed to high temperature conditions over 100degC, tensile strain occurs in the concrete and compressive strain occurs in reinforcements due to a difference of thermal expansion coefficients between concrete and reinforcement. Its mechanism is the same as that of restrained stress caused by drying shrinkage of concrete; tensile stress occurs in the concrete because drying shrinkage strain is restrained by reinforcements, but there is a different point that the phenomenon at a high temperature condition includes the change of mechanical properties of concrete and reinforcement. In the study, the phenomenon is measured in the experiments and is clarified quantitatively. Moreover, the estimation method, which is derived from expanding the equation of average strain of reinforcement in the CEB Design Manual, is suggested and is verified by the comparison with the experimental results. (author)
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Supersymmetry on the noncommutative lattice
International Nuclear Information System (INIS)
Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko
2003-01-01
Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Graphene on graphene antidot lattices
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
[Lattice degeneration of the retina].
Boĭko, E V; Suetov, A A; Mal'tsev, D S
2014-01-01
Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.
Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M
2008-01-25
An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field.
Reinforced concrete behavior due to missile impact
International Nuclear Information System (INIS)
Alderson, M.A.H.G.; Bartley, R.; O'Brien, T.P.
1977-01-01
The assessment of the safety of nuclear reactors has necessitated the study of the effect of missiles on reinforced concrete containment structures. Two simple theoretical calculational methods have been developed to provide basic information. The first is based on a crude energy balance approach in which that part of the kinetic energy of the missile which is transferred into the containment structure, is absorbed only as bending strain energy. To determine the energy transferred into the structure it is assumed that during the loading the target does not respond. The energy input to the structure is thus equal to the kinetic energy it will possess immediately the impulse has been removed. The boundary of the responding zone is defined by the distance travelled by the shear stress wave during the time in which the impact force increases to the load at which the shear capacity reaches the ultimate shear resistance. The second method is based on the equation of motion for an equivalent one-degree-of-freedom system assuming that only the peak value of deflection is important and that damping can be ignored. The spring stiffness of the equivalent system has been based upon the stiffness of the actual disc configuration responding in the flexural mode only. The boundaries of the disc have been defined by using the elastic plate formulae and equating those positive and negative moments which will produce a specified yield line pattern which may be inferred from plastic plate formulae. The equation of motion is solved to indicate how the quantity of reinforcement included in the structure may modify the peak deflection. By limiting the ductility ratio of the reinforcement to some prescribed level it is possible to indicate the quantity of reinforcement w
International Nuclear Information System (INIS)
Jeanson, G.M.; Odent, R.P.
1980-01-01
The invention concerns a seal component of the kind comprising a soft sheath and a flexible reinforcement housed throughout the entire length of the sheath. The invention enables O ring seals to be made capable of providing a radial seal, that is to say between two sides or flat collars of two cylindrical mechanical parts, or an axial seal, that is to say between two co-axial axisymmetrical areas. The seal so ensured is relative, but it remains adequately sufficient for many uses, for instance, to ensure the separation of two successive fixed blading compartments of axial compressors used in gas diffusion isotope concentration facilities [fr
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams
DEFF Research Database (Denmark)
Paegle, Ieva; Fischer, Gregor
2010-01-01
This paper describes an experimental investigation of the shear behavior of beams consisting of steel reinforced Engineered Cementitious Composites (ECC). Based on the strain hardening and multiple cracking behavior of ECC, this study investigates the extent to which ECC can improve the shear...... capacity of beams loaded primarily in shear and if ECC can partially or fully replace the conventional transverse steel reinforcement in beams. However, there is a lack of understanding of how the fibers affect the shear carrying capacity and deformation behavior of structural members if used either...
Homogenization of long fiber reinforced composites including fiber bending effects
DEFF Research Database (Denmark)
Poulios, Konstantinos; Niordson, Christian Frithiof
2016-01-01
This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...
Shear crack formation and propagation in reinforced Engineered Cementitious Composites
DEFF Research Database (Denmark)
Paegle, Ieva; Fischer, Gregor
2011-01-01
capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC......This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...
Representation theory of lattice current algebras
International Nuclear Information System (INIS)
Alekseev, A.Yu.; Eidgenoessische Technische Hochschule, Zurich; Faddeev, L.D.; Froehlich, L.D.; Schomerus, V.; Kyoto Univ.
1996-04-01
Lattice current algebras were introduced as a regularization of the left-and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U q (G). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts. (orig.)
Modelling reinforcement corrosion in concrete
DEFF Research Database (Denmark)
Michel, Alexander; Geiker, Mette Rica; Stang, Henrik
2012-01-01
A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....
The Reinforcement Learning Competition 2014
Dimitrakakis, Christos; Li, Guangliang; Tziortziotis, Nikoalos
2014-01-01
Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.
Analytical Model for Fictitious Crack Propagation in Reinforced Concrete Beams without Debonding
DEFF Research Database (Denmark)
Ulfkjær, J. P.; Brincker, Rune
1994-01-01
, the crack growth is further simplified by introducing a continuous layer of springs at the midsection mainly representing a simplified material response around the fracture zone. In the reinforcement the strain condition is assumed to be equal to the strain condition in the concrete. the important question...
Lattice Boltzmann model capable of mesoscopic vorticity computation
Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping
2017-11-01
It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.
Recycling of Reinforced Plastics
Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri
2014-02-01
This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.
Self-organized lattice of ordered quantum dot molecules
International Nuclear Information System (INIS)
Lippen, T. von; Noetzel, R.; Hamhuis, G.J.; Wolter, J.H.
2004-01-01
Ordered groups of InAs quantum dots (QDs), lateral QD molecules, are created by self-organized anisotropic strain engineering of a (In,Ga)As/GaAs superlattice (SL) template on GaAs (311)B in molecular-beam epitaxy. During stacking, the SL template self-organizes into a two-dimensionally ordered strain modulated network on a mesoscopic length scale. InAs QDs preferentially grow on top of the nodes of the network due to local strain recognition. The QDs form a lattice of separated groups of closely spaced ordered QDs whose number can be controlled by the GaAs separation layer thickness on top of the SL template. The QD groups exhibit excellent optical properties up to room temperature
Investigation of nanoscale reinforcement into textile polymers
Khan, Mujibur Rahman
A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron
Stability of germanene under tensile strain
Kaloni, Thaneshwor P.
2013-09-01
The stability of germanene under biaxial tensile strain and the accompanying modifications of the electronic properties are studied by density functional theory. The phonon spectrum shows that up to 16% strain the germanene lattice is stable, where the Dirac cone shifts towards higher energy and hole-doped Dirac states are achieved. The latter is due to weakening of the Ge-Ge bonds and reduction of the s-p hybridization. Our calculated Grüneisen parameter shows a similar dependence on the strain as reported for silicene (which is different from that of graphene). © 2013 Elsevier B.V. All rights reserved.
Stability of germanene under tensile strain
Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo
2013-01-01
The stability of germanene under biaxial tensile strain and the accompanying modifications of the electronic properties are studied by density functional theory. The phonon spectrum shows that up to 16% strain the germanene lattice is stable, where the Dirac cone shifts towards higher energy and hole-doped Dirac states are achieved. The latter is due to weakening of the Ge-Ge bonds and reduction of the s-p hybridization. Our calculated Grüneisen parameter shows a similar dependence on the strain as reported for silicene (which is different from that of graphene). © 2013 Elsevier B.V. All rights reserved.
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Synthesis of spatially variant lattices.
Rumpf, Raymond C; Pazos, Javier
2012-07-02
It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.
From lattice gases to polymers
Frenkel, D.
1990-01-01
The modification of a technique that was developed to study time correlations in lattice-gas cellular automata to facilitate the numerical simulation of chain molecules is described. As an example, the calculation of the excess chemical potential of an ideal polymer in a dense colloidal
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
Nuclear physics on the lattice?
International Nuclear Information System (INIS)
Koonin, S.E.
1985-01-01
The goal of the paper is to try to adapt lattice gauge theory to build in some biases in order for being applicable to nuclear physics. In so doing the calculations are made more precise, and the author can address questions like the size of the nucleon, the nucleon-nucleon potential, the modifications of the nucleon in the nuclear medium, etc. (Auth.)
Differential geometry of group lattices
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2003-01-01
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Abstract. Li2O finds several important technological applications, as it is used in solid- state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures ...
Lattice fields and strong interactions
International Nuclear Information System (INIS)
Creutz, M.
1989-06-01
I review the lattice formulation of gauge theories and the use of numerical methods to investigate nonperturbative phenomena. These methods are directly applicable to studying hadronic matter at high temperatures. Considerable recent progress has been made in numerical algorithms for including dynamical fermions in such calculations. Dealing with a nonvanishing baryon density adds new unsolved challenges. 33 refs
Borgs, C.; Chayes, J.T.; Hofstad, van der R.W.; Slade, G.
1999-01-01
We introduce a mean-field model of lattice trees based on embeddings into d of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade [9], and provides an
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
I will begin with a lightning quick overview of the basic lattice gauge theory and then go on to .... The Monte Carlo technique to evaluate C(t), or the expectation value of any other observable ... x }occurs with a probability proportional to. 890.
Lattice continuum and diffusional creep.
Mesarovic, Sinisa Dj
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
International Nuclear Information System (INIS)
Itzykson, C.
1983-10-01
We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case
International Nuclear Information System (INIS)
Aoyagi, Y.; Yamada, K.; Takahashi, T.
1981-01-01
With a view to investigating the earthquake resistance characteristics of reinforced concrete containments two cylindrical models with three-way system of bars were made and loaded laterally up to failure combined with or without internal pressures, simulating the conditions in which containments were subjected to earthquake forces at a simultaneous LOCA or at normal operation. The main conclusions obtained withing the limit of the experiments are as follows. (1) Stresses in reinforcements in three-way reinforced concrete plate elements can reasonably be estimated by the equations proposed by Baumann. It is, however, necessary to take into consideration the contributions of concrete between cracks to the deformation in order to accurately estimate the average strains in the plate elements, applying such a formula as CEB as reformed by the authors. (2) The strength capacity of three-way reinforced concrete containments against lateral forces combined with internal pressure is somewhat inferior to that of orthogonally reinforced one if compared on the condition that the volumetric reinforcement ratios are the same for the two cases of reinforcement arrangements. However, three-way reinforcement improves initial shear rigidity as well as ultimate horizontal deformability for lateral forces. (3) The ability for three-way reinforced concrete containment to absorb strain energy in the range of large deformations is superior to that of orthogonally reinforced one. The equivalent viscous damping coefficient for the former is markedly larger than that for the latter, especially at the increased deformational stages. These experimental evidences suggent that three-way system of reinforcement may constitute one of the prospective measures to improve the earthquake resistance of reinforced concrete containments. (orig./HP)
Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted
Krause, David L.; Whittenberger, J. Daniel
2002-01-01
The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction
Disconnected Diagrams in Lattice QCD
Gambhir, Arjun Singh
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
International Nuclear Information System (INIS)
Bang, Hyejin; Cho, Chongdu
2017-01-01
Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.
Energy Technology Data Exchange (ETDEWEB)
Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)
2017-08-15
Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.
Statistical hydrodynamics of lattice-gas automata
Grosfils, Patrick; Boon, Jean-Pierre; Brito López, Ricardo; Ernst, M. H.
1993-01-01
We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the density correlation function. A comparative analysis of the theoretical predictions with our lattice gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctuation...
Dynamic scattering theory for dark-field electron holography of 3D strain fields.
Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin
2014-01-01
Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Lattice QCD. A critical status report
International Nuclear Information System (INIS)
Jansen, Karl
2008-10-01
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Gauge theories on a small lattice
International Nuclear Information System (INIS)
Robson, D.; Webber, D.M.
1980-01-01
We present exact solutions to U(1), SU(2), and SU(3) lattice gauge theories on a Kogut-Susskind lattice consisting of a single plaquette. We demonstrate precise equivalence between the U(1) theory and the harmonic oscillator on an infinite one-dimensional lattice, and between the SU(N) theory and an N-fermion Schroedinger equation. (orig.)
Spatiotemporal complexity in coupled map lattices
International Nuclear Information System (INIS)
Kaneko, Kunihiko
1986-01-01
Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)
Clar sextets in square graphene antidot lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Spatial classification with fuzzy lattice reasoning
Mavridis, Constantinos; Athanasiadis, I.N.
2017-01-01
This work extends the Fuzzy Lattice Reasoning (FLR) Classifier to manage spatial attributes, and spatial relationships. Specifically, we concentrate on spatial entities, as countries, cities, or states. Lattice Theory requires the elements of a Lattice to be partially ordered. To match such
Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar
Directory of Open Access Journals (Sweden)
Selvachandran P.
2017-09-01
Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .
Constitutive model for reinforced concrete
Feenstra, P.H.; Borst, de R.
1995-01-01
A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension
Tangible Reinforcers: Bonuses or Bribes?
O'Leary, K. Daniel; And Others
1972-01-01
Objections to the use of tangible reinforcers, such as prizes, candy, cigarettes, and money, are discussed. Treatment programs using tangible reinforcers are recommended as powerful modifers of behavior to be implemented only after less powerful means of modification have been tried. (Author)
Inexpensive chirality on the lattice
International Nuclear Information System (INIS)
Kamleh, W.; Williams, A.G.; Adams, D.
2000-01-01
Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic
Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions
Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo
2014-01-01
While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical...
Zhang, Jinwu; Liu, Jianhong; Wang, Xin; Zou, Anquan
2017-08-01
General Strain Theory delineates different types of strain and intervening processes from strain to deviance and crime. In addition to explaining individual strain-crime relationship, a contextualized version of general strain theory, which is called the Macro General Strain Theory, has been used to analyze how aggregate variables influence aggregate and individual deviance and crime. Using a sample of 1,852 students (Level 1) nested in 52 schools (Level 2), the current study tests the Macro General Strain Theory using Chinese data. The results revealed that aggregate life stress and strain have influences on aggregate and individual deviance, and reinforce the individual stress-deviance association. The current study contributes by providing the first Macro General Strain Theory test based on Chinese data and offering empirical evidence for the multilevel intervening processes from strain to deviance. Limitations and future research directions are discussed.
High Strain Rate Characterisation of Composite Materials
DEFF Research Database (Denmark)
Eriksen, Rasmus Normann Wilken
-reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...... for testing fibre-reinforced polymers due to their elastic behaviour and low strain to failure. This is problematic as the High-speed servo-hydraulic test machine closes the gap between quasi-static tests rates and lower strain rates, which are achievable with the Split Hopkinson Pressure Bar. The Split...
International Nuclear Information System (INIS)
Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian
2015-01-01
First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
Entropy favours open colloidal lattices
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Electroweak interactions on the lattice
International Nuclear Information System (INIS)
Kieu, T.D.
1994-07-01
It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig
Entanglement scaling in lattice systems
Energy Technology Data Exchange (ETDEWEB)
Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)
2007-05-15
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
Transitionless lattices for LAMPF II
International Nuclear Information System (INIS)
Franczak, B.J.
1984-10-01
Some techniques are described for the design of synchrotron lattices that have zero dispersion in the straight sections and/or imaginary transition energy (negative momentum-compaction factor) but no excessive amplitudes of the dispersion function. Included as an application is a single-stage synchrotron, with variable optics, that has different ion-optical properties at injection and extraction but requires a complex way of programming the quadrupoles. In addition, a two-stage facility consisting of a 45-GeV synchrotron of 1100-m circumference and a 9-GeV booster of half that size is presented. As alternates to these separated-function lattices, some combined-function modules are given that can be used to construct a synchrotron with similar properties
Graphene antidot lattice transport measurements
DEFF Research Database (Denmark)
Mackenzie, David; Cagliani, Alberto; Gammelgaard, Lene
2017-01-01
We investigate graphene devices patterned with a narrow band of holes perpendicular to the current flow, a few-row graphene antidot lattice (FR-GAL). Theoretical reports suggest that a FR-GAL can have a bandgap with a relatively small reduction of the transmission compared to what is typical...... for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices...... in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (
Cellular automata in cytoskeletal lattices
Energy Technology Data Exchange (ETDEWEB)
Smith, S A; Watt, R C; Hameroff, S R
1984-01-01
Cellular automata (CA) activities could mediate biological regulation and information processing via nonlinear electrodynamic effects in cytoskeletal lattice arrays. Frohlich coherent oscillations and other nonlinear mechanisms may effect discrete 10/sup -10/ to 10/sup -11/ s interval events which result in dynamic patterns in biolattices such as cylindrical protein polymers: microtubules (MT). Structural geometry and electrostatic forces of MT subunit dipole oscillations suggest neighbor rules among the hexagonally packed protein subunits. Computer simulations using these suggested rules and MT structural geometry demonstrate CA activities including dynamical and stable self-organizing patterns, oscillators, and traveling gliders. CA activities in MT and other cytoskeletal lattices may have important biological regulatory functions. 23 references, 6 figures, 1 table.
Innovations in lattice QCD algorithms
International Nuclear Information System (INIS)
Orginos, Konstantinos
2006-01-01
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today
Baryon structure from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.
2009-01-01
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)
Multigrid for Staggered Lattice Fermions
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.
2018-01-23
Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.
Basalt fiber reinforced porous aggregates-geopolymer based cellular material
Luo, Xin; Xu, Jin-Yu; Li, Weimin
2015-09-01
Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.
Computing nucleon EDM on a lattice
Abramczyk, Michael; Aoki, Sinya; Blum, Tom; Izubuchi, Taku; Ohki, Hiroshi; Syritsyn, Sergey
2018-03-01
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Heavy water critical experiments on plutonium lattice
International Nuclear Information System (INIS)
Miyawaki, Yoshio; Shiba, Kiminori
1975-06-01
This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)
Computing nucleon EDM on a lattice
Energy Technology Data Exchange (ETDEWEB)
Abramczyk, Michael; Izubuchi, Taku
2017-06-18
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Aliasing modes in the lattice Schwinger model
International Nuclear Information System (INIS)
Campos, Rafael G.; Tututi, Eduardo S.
2007-01-01
We study the Schwinger model on a lattice consisting of zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the exact value of the mass in the asymptotic limit if the boundaries are not taken into account. On the contrary, if the lattice is considered with boundaries new modes appear due to aliasing effects. In the continuum limit, however, this lattice yields also a Klein-Gordon equation with a reduced mass
International Nuclear Information System (INIS)
Sommer, Rainer
2014-02-01
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Apiary B Factory lattice design
International Nuclear Information System (INIS)
Donald, M.H.R.; Garren, A.A.
1991-04-01
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab
BROOKHAVEN: Lattice gauge theory symposium
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-12-15
Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.
Harmonic Lattice Dynamics of Germanium
Energy Technology Data Exchange (ETDEWEB)
Nelin, G
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Screening in graphene antidot lattices
DEFF Research Database (Denmark)
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Symplectic maps for accelerator lattices
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
Harmonic Lattice Dynamics of Germanium
International Nuclear Information System (INIS)
Nelin, G.
1974-01-01
The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Pseudomagnetic fields and triaxial strain in graphene
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Jauho, Antti-Pekka
2016-01-01
Pseudomagnetic fields, which can result from nonuniform strain distributions, have received much attention in graphene systems due to the possibility of mimicking real magnetic fields with magnitudes of greater than 100 T. We examine systems with such strains confined to finite regions ("pseudoma......Pseudomagnetic fields, which can result from nonuniform strain distributions, have received much attention in graphene systems due to the possibility of mimicking real magnetic fields with magnitudes of greater than 100 T. We examine systems with such strains confined to finite regions......-binding calculations of single pseudomagnetic dots in extended graphene sheets confirm these predictions, and are also used to study the effect of rotating the strain direction with respect to the underlying graphene lattice, and varying the size of the pseudomagnetic dot....
Wave transmission in nonlinear lattices
International Nuclear Information System (INIS)
Hennig, D.; Tsironis, G.P.
1999-01-01
The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Spin lattices of walking droplets
Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John
2017-11-01
We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.
Calculational methods for lattice cells
International Nuclear Information System (INIS)
Askew, J.R.
1980-01-01
At the current stage of development, direct simulation of all the processes involved in the reactor to the degree of accuracy required is not an economic proposition, and this is achieved by progressive synthesis of models for parts of the full space/angle/energy neutron behaviour. The split between reactor and lattice calculations is one such simplification. Most reactors are constructed of repetitions of similar geometric units, the fuel elements, having broadly similar properties. Thus the provision of detailed predictions of their behaviour is an important step towards overall modelling. We shall be dealing with these lattice methods in this series of lectures, but will refer back from time to time to their relationship with overall reactor calculation The lattice cell is itself composed of somewhat similar sub-units, the fuel pins, and will itself often rely upon a further break down of modelling. Construction of a good model depends upon the identification, on physical and mathematical grounds, of the most helpful division of the calculation at this level
Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine
Energy Technology Data Exchange (ETDEWEB)
De Falco, A. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Lamanna, M. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Goyanes, S. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); D' Accorso, N.B. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Fascio, M.L., E-mail: mfascio@qo.fcen.uba.ar [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina)
2012-08-15
The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.
Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams
Khoa Tan Nguyen; Tuan Anh Le; Kihak Lee
2016-01-01
This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occ...
Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine
International Nuclear Information System (INIS)
De Falco, A.; Lamanna, M.; Goyanes, S.; D'Accorso, N.B.; Fascio, M.L.
2012-01-01
The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.
Performance evaluation of HSC beams with low flexural reinforcement
Directory of Open Access Journals (Sweden)
T.M. Elrakib
2013-04-01
Full Text Available The main objective of the current research is to establish experimental data for minimum flexural reinforcement, ρmin, of high strength concrete (HSC rectangular beams. Nine full-scale singly reinforced beams with flexural reinforcement ratios varying from 50% to 100% of the minimum limit specified by the ACI 363R-35were tested in flexure. Concrete compressive strengths of 52, 73 and 96.5 MPa were used. The test results including crack patterns, deflections and strains in the tensile flexural steel bars show that a 25% reduction of the ACI 363R-35 limit for the ρmin would result in a satisfactory flexural beam behavior with a reserve flexural parameter (Py,/Pcr ⩾ 1.29 and a displacement ductility index λΔ > 5 for all concrete grades which may lead to good savings in the amount of the flexural reinforcement. Also, it was noted that the displacement ductility index λΔ increased as the concrete compressive strength increased for the same ratio (ρ/ρmin up to 75 MPa and then decreases as fcu increases. For the same concrete compressive strength with low values of flexural reinforcement ratio, ρ, the displacement ductility index λΔ increased as ρ increased. The experimental results of this study were compared with the limits specified by available codes and researches.
Internal strain measurement using pulsed neutron diffraction at LANSCE
International Nuclear Information System (INIS)
Goldstone, J.A.; Bourke, M.A.M.; Shi, N.
1994-01-01
The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction in the only technique that can make nondestructive measurements in the interior of components. By recording the change in crystalline lattice spacings, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all lattice reflections are recorded in each measurement, which allows for easy examination of heterogeneous materials such as metal matrix composites. Measurements made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) demonstrate the potential at pulsed sources for in-situ stress measurements at ambient and elevated temperatures
Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications
International Nuclear Information System (INIS)
Ahlborn, K.
1989-01-01
The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de
Lattice effects on ferromagnetism in perovskite ruthenates
Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.
2013-01-01
Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477
High-temperature elastic properties of in situ-reinforced Si3N4
International Nuclear Information System (INIS)
Swift, Geoffrey A.; Uestuendag, Ersan; Clausen, Bjoern; Bourke, Mark A.M.; Lin, H.-T.
2003-01-01
A high-temperature tensile stress study of a monolithic silicon nitride (Si 3 N 4 ) was performed with time-of-flight neutron diffraction. A dedicated engineering diffractometer was employed at temperatures reaching 1375 deg. C. Rietveld refinements of diffraction spectra allowed the determination of (1) the coefficient of thermal expansion tensor during heating and (2) lattice strains during loading. The stress-strain response of individual lattice reflections was used to calculate the single-crystal elastic stiffness tensor of Si 3 N 4 at 1375 deg. C via a self-consistent model
Engineering strain measurements using the NPD at LANSCE
International Nuclear Information System (INIS)
Bourke, M.A.M.; Goldstone, J.A.; Lovell, K.J.
1990-01-01
The presence of residual stress in engineering components can affect their mechanical properties and structural integrity. Neutron diffraction is the only measuring technique which can provide spatially resolved non-destructive strain measurements in the interior of a component. By recording the change in the interplanar spacings elastic strains can be measured for individual lattice reflections. Also on a pulsed source, where all lattice reflections are recorded, profile refinement is an option which alloys the strain to be obtained from changes in the lattice parameter. Measurements made at LANSCE demonstrate the potential for stress measurements on a pulsed source and indicate the advantages and disadvantages over measurements made on a reactor. 5 refs., 5 figs
Ceramic fiber reinforced filter
Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.
1991-01-01
A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.
Composites reinforcement by rods a SAS study
Urban, V; Pyckhout-Hintzen, W; Richter, D; Straube, E
2002-01-01
The mechanical properties of composites are governed by size, shape and dispersion degree of so-called reinforcing particles. Polymeric fillers based on thermodynamically driven microphase separation of block copolymers offer the opportunity to study a model system of controlled rod-like filler particles. We chose a triblock copolymer (PBPSPB) and carried out SAS measurements with both X-rays and neutrons, in order to characterize separately the hard phase and the cross-linked PB matrix. The properties of the material depend strongly on the way that stress is carried and transferred between the soft matrix and the hard fibers. The failure of the strain-amplification concept and the change of topological contributions to the free energy and scattering factor have to be addressed. In this respect the composite shows a similarity to a two-network system, i.e. interpenetrating rubber and rod-like filler networks. (orig.)
Durable fiber reinforced self-compacting concrete
International Nuclear Information System (INIS)
Corinaldesi, V.; Moriconi, G.
2004-01-01
In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture
Reinforced concrete treatment as composite material
International Nuclear Information System (INIS)
Oller, S.; Onate, E.; Miguel, J.
1995-01-01
This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs
International Nuclear Information System (INIS)
Meor Yusoff Sulaiman; Khangoankar, P.R.; Kamarudin Husin
1999-01-01
Malaysian zircon is classified as a radioactive mineral due to its high uranium and thorium content. Recoil α, which is produce from the decay process of these radioactive elements, could results to the damage of the crystal. Metamictization or crystal lattice damage level of this mineral can be determined from their crystallise size and lattice strain values. Results for two local zircon samples with different uranium and thorium content seem to suggest that there is some relationship between the concentration of these elements and its metamictization level. Comparison of the lattice strain value with previous results conducted on zircon from different country shows that the value is still within the range obtained. Microstructure analysis was also done on the samples. Fractures and pores formed on the mineral surface support the lattice expansion phenomena obtained from the crystallographic analysis. Production of a clean, white non-radioactive zircon pigment is among the commercial potential that could be derived from this study. (Author)
Fibre-reinforced hydrogels for tissue engineering
Waters, Sarah; Byrne, Helen; Chen, Mike; Dias Castilho, Miguel; Kimpton, Laura; Please, Colin; Whiteley, Jonathan
2017-11-01
Tissue engineers aim to grow replacement tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. One approach is to seed cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres, cast in a hydrogel, and subject the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how this applied load is distributed throughout the construct to the mechanosensitive cells. To address this, we exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions). The fibres are treated as a linear elastic material and the hydrogel as a poroelastic material. We employ homogenisation theory to derive equations governing the material properties of a periodic, elastic-poroelastic composite. To validate the mobel, model solutions are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings, and the local mechanical environment experienced by cells embedded within the construct is determined. Funded by the European Union Seventh Framework Programme (FP7/2007-2013).
Experimental data of the static behavior of reinforced concrete beams at room and low temperature.
Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F
2016-06-01
This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.
Topological magnon bands in ferromagnetic star lattice
International Nuclear Information System (INIS)
Owerre, S A
2017-01-01
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
Some Aspects of Formation of Cracks in FRC with Main Reinforcement
DEFF Research Database (Denmark)
Brincker, Rune; Simonsen, J.; Hansen, W.
1997-01-01
In this paper the response of fibre reinforced concrete (FRC) with main reinforcement in pure tension is considered. Test results are presented showing three distinct regimes: a regime og linear elasticity, a regime of yielding at approximately constant stress, and finally, a regime of strain...... hardening. a simple model is presented which takes into account the debonding between the reinforcement and the fiber reinforced matrix as well as the crack opening relation of the fiber reinforced matrix. The fracture process is described from the un-cracked state and formation of the first crack till......, and a more ductile contribution from the fiber bridging, a plastic regime will be present in the tensile response. The case of a parabolic crack opening relation defines a brittleness number that describes the transition from formation of unstable discrete cracks to smaller cracks controlled by the softening...
Modeling reinforced concrete durability : [summary].
2014-06-01
Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...
Evolutionary computation for reinforcement learning
Whiteson, S.; Wiering, M.; van Otterlo, M.
2012-01-01
Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,
Deep Reinforcement Learning: An Overview
Li, Yuxi
2017-01-01
We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsuperv...
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
Energy Technology Data Exchange (ETDEWEB)
Liao, Zongmeng [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Qiu, Wujie [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ke, Xuezhi, E-mail: xzke@phy.ecnu.edu.cn [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Zhang, Wenqing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Zhiyuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2014-11-15
The elastic and thermodynamic properties of ThC{sub 2} with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C{sub 2} dimer in ThC{sub 2} is similar to that of a free standing C{sub 2} dimer. This indicates that the C{sub 2} dimer in ThC{sub 2} is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC{sub 2} was calculated by means of the Debye–Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC{sub 2} contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
DEFF Research Database (Denmark)
Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe
2011-01-01
as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...... investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known...
Nucleon deformation from lattice QCD
International Nuclear Information System (INIS)
Tsapalis, A.
2008-01-01
The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)
Nucleon Structure from Lattice QCD
International Nuclear Information System (INIS)
Zanotti, J. M.
2011-01-01
Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes.By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of parton distribution functions, show some indication of approaching their phenomenological values.
GLAD: a generic lattice debugger
International Nuclear Information System (INIS)
Lee, M.J.
1992-01-01
Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings. (author)
Lattice dynamics of ionic crystals
International Nuclear Information System (INIS)
Mahan, G.D.
1990-01-01
The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces
Rojas Bocanegra, Alberto
2004-01-01
Objetivo: Determinar la prevalencia de degeneración periférica de retina Lattice y su relación con estados refractivos y rupturas retinales. Metodología: Estudio de corte transversal con exploración de asociación, mediante análisis de casos y controles. Se examinaron 680 ojos en el Instituto de Investigaciones Optométricas e Instituto de Córnea. El estado refractivo se determinó mediante técnica estática y el estado retinal mediante oftalmoscopia indirecta con indentación escleral. Resultados...
Lattice degeneration of the retina.
Byer, N E
1979-01-01
Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.
The lattice dynamics of imidazole
International Nuclear Information System (INIS)
Link, K.H.
1983-05-01
The lattice dynamics of imidazole have been investigated. To this end dispersion curves have been determined at 10 K by inelastic coherent neutron scattering. RAMAN measurements have been done to investigate identical gamma - point modes. The combination of extinction rules for RAMAN - and neutron scattering leads to the symmetry assignment of identical gamma - point modes. The experiment yields a force constant of the streching vibration of the hydrogen bond of 0.33 mdyn/A. A force model has been developed to describe the intermolecular atom - atom Interactions in imidazole. (orig./BHO)
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets
Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.
2005-06-01
The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.
Methods for producing reinforced carbon nanotubes
Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA
2008-10-28
Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.
International Nuclear Information System (INIS)
Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus
2007-01-01
In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation
International Nuclear Information System (INIS)
Richter, W.
1976-01-01
α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)
Experimental generation of optical coherence lattices
Energy Technology Data Exchange (ETDEWEB)
Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)
2016-08-08
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
Introduction to Vortex Lattice Theory
Directory of Open Access Journals (Sweden)
Santiago Pinzón
2015-10-01
Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization. Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.
Coherent lattice vibrations in superconductors
International Nuclear Information System (INIS)
Kadin, Alan M.
2008-01-01
A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed
Lattice dynamics in solid oxygen
International Nuclear Information System (INIS)
Kobashi, K.; Klein, M.L.; Chandrasekharan, V.
1979-01-01
Lattice dynamical calculations for the bulk α, β, and γ phases of solid O 2 and for the monolayer α and β phases have been made in the harmonic approximation. In the α and β phases, atom-atom 6-12 potentials are employed. In the γ phase, effective potentials are used between molecular centers and only the translational lattice vibrations are calculated. It is found that Laufer and Leroi's potential parameters give two k=O frequencies at 42.7 and 43.6 cm -1 in the bulk α-O 2 , and at 40.7 cm -1 for the degenerate k=0 modes in the β phase. The observed Raman lines for α-O 2 at 43 and 79 cm -1 , which are both known to exhibit isotope shifts, are thus tentatively assigned to an accidentally degenerate line and a two-phonon band, respectively, In view of the possible contribution from anharmonic effects, the agreement of the calculation with experiment (48-51 cm -1 ) in β-O 2 may be better than it seems. For the bulk γ-O 2 , a discrepancy is observed between the calculated elastic constants and those derived from Brillouin scattering experiments. This discrepancy may be due to the neglect of translation-rotation coupling. In the monolayer O 2 , Raman active modes at 28.3 and 40.6 cm -1 for the α phase, and 31.9 cm -1 for the β phase are predicted
Mechanically Strain-Induced Modification of Selenium Powders in the Amorphization Process
International Nuclear Information System (INIS)
Fuse, Makoto; Shirakawa, Yoshiyuki; Shimosaka, Atsuko; Hidaka, Jusuke
2003-01-01
For the fabrication of particles designed in the nanoscale structure, or the nanostructural modification of particles using mechanical grinding process, selenium powders ground by a planetary ball mill at various rotational speeds have been investigated. Structural analyses, such as particle size distributions, crystallite sizes, lattice strains and nearest neighbour distances were performed using X-ray diffraction, scanning electron microscopy and dynamical light scattering.By grinding powder particles became spherical composites consisting of nanocrystalline and amorphous phase, and had a distribution with the average size of 2.7 μm. Integral intensities of diffraction peaks of annealed crystal selenium decreased with increasing grinding time, and these peaks broadened due to lattice strains and reducing crystallite size during the grinding. The ground powder at 200 rpm did not have the lattice strain and showed amorphization for the present grinding periods. It indicates that the amorphization of Se by grinding accompanies the lattice strain, and the lattice strain arises from a larger energy concerning intermolecular interaction. In this process, the impact energy is spent on thermal and structural changes according to energy accumulation in macroscopic (the particle size distribution) and microscopic (the crystallite size and the lattice strain) range
Polarization response of RHIC electron lens lattices
International Nuclear Information System (INIS)
Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.
2016-01-01
Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Advancements in simulations of lattice quantum chromodynamics
International Nuclear Information System (INIS)
Lippert, T.
2008-01-01
An introduction to lattice QCD with emphasis on advanced fermion formulations and their simulation is given. In particular, overlap fermions will be presented, a quite novel fermionic discretization scheme that is able to exactly preserve chiral symmetry on the lattice. I will discuss efficiencies of state-of-the-art algorithms on highly scalable supercomputers and I will show that, due to many algorithmic improvements, overlap simulations will soon become feasible for realistic physical lattice sizes. Finally I am going to sketch the status of some current large scale lattice QCD simulations. (author)
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
Elastic lattice in an incommensurate background
International Nuclear Information System (INIS)
Dickman, R.; Chudnovsky, E.M.
1995-01-01
We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices
Anomalous diffusion in a dynamical optical lattice
Zheng, Wei; Cooper, Nigel R.
2018-02-01
Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.
Polarization response of RHIC electron lens lattices
Directory of Open Access Journals (Sweden)
V. H. Ranjbar
2016-10-01
Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
Testing the holographic principle using lattice simulations
Directory of Open Access Journals (Sweden)
Jha Raghav G.
2018-01-01
Full Text Available The lattice studies of maximally supersymmetric Yang-Mills (MSYM theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme between them.
Corrosion of reinforcement bars in steel ibre reinforced concrete structures
DEFF Research Database (Denmark)
Solgaard, Anders Ole Stubbe
and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...
Charge-lattice interplay in layered cobaltates RBaCo2O5+x
Lavrov, A. N.; Kameneva, M. Yu.; Kozeeva, L. P.; Zhdanov, K. R.
2017-10-01
X-ray diffraction, electrical resistivity and thermal expansion measurements are used to study the interrelation between the structural, magnetic and electron-transport peculiarities in RBaCo2O5+x (R=Y, Gd) over a wide range of oxygen contents. We find that the anisotropic lattice strain caused by the oxygen chain ordering in these compounds favors the metallic state and is a necessary condition for the coupled insulator-to-metal and spin-state phase transitions to occur. The obtained data point to the key role of the crystal lattice in selecting the preferred spin and orbital states of cobalt ions.
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Lattices for laymen: a non-specialist's introduction to lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.
1985-01-01
The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)
Observation of electron polarization above 80% in photoemission from strained III-V compounds
International Nuclear Information System (INIS)
Garwin, E.L.; Maruyama, T.; Prepost, R.; Zapalac, G.H.
1992-02-01
Spin-polarized electron photoemission has been investigated for strained III--V compounds; (1) strained In x Ga 1-x As epitaxially grown on a GaAs substrate, and (2) strained GaAs grown on a GaAs 1-x P x buffer layer. The lattice mismatched heterostructure results in a highly strained epitaxial layer, and electron spin polarization as high as 90% has been observed
The use of pulsed neutron diffraction to measure strain in composites
International Nuclear Information System (INIS)
Bourke, M.A.M.; Goldstone, J.A.; Shi, N.; Gray, G.T. III; James, M.R.
1994-01-01
Neutron diffraction is a technique for measuring strain in crystalline materials. It is non destructive, phase discriminatory and more penetrating than X rays. Pulsed neutron sources (in contrast with steady state reactor sources) are particularly appropriate for examining heterogeneous materials or for recording the polycrystalline response of all lattice reflections. Several different aspects of composite behavior can be characterized and examples are given of residual strain measurements, strain relaxation during heating, applied loading, and determination of the strain distribution function
Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography
Holt, Martin V.; Hruszkewycz, Stephan O.; Murray, Conal E.; Holt, Judson R.; Paskiewicz, Deborah M.; Fuoss, Paul H.
2014-04-01
We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.