WorldWideScience

Sample records for reinforcement function design

  1. Reinforcement function design and bias for efficient learning in mobile robots

    International Nuclear Information System (INIS)

    Touzet, C.; Santos, J.M.

    1998-01-01

    The main paradigm in sub-symbolic learning robot domain is the reinforcement learning method. Various techniques have been developed to deal with the memorization/generalization problem, demonstrating the superior ability of artificial neural network implementations. In this paper, the authors address the issue of designing the reinforcement so as to optimize the exploration part of the learning. They also present and summarize works relative to the use of bias intended to achieve the effective synthesis of the desired behavior. Demonstrative experiments involving a self-organizing map implementation of the Q-learning and real mobile robots (Nomad 200 and Khepera) in a task of obstacle avoidance behavior synthesis are described. 3 figs., 5 tabs

  2. Design of reinforced concrete plates and shells

    International Nuclear Information System (INIS)

    Schulz, M.

    1984-01-01

    Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt

  3. The Influence of Function, Topography, and Setting on Noncontingent Reinforcement Effect Sizes for Reduction in Problem Behavior: A Meta-Analysis of Single-Case Experimental Design Data

    Science.gov (United States)

    Ritter, William A.; Barnard-Brak, Lucy; Richman, David M.; Grubb, Laura M.

    2018-01-01

    Richman et al. ("J Appl Behav Anal" 48:131-152, 2015) completed a meta-analytic analysis of single-case experimental design data on noncontingent reinforcement (NCR) for the treatment of problem behavior exhibited by individuals with developmental disabilities. Results showed that (1) NCR produced very large effect sizes for reduction in…

  4. Facilitating tolerance of delayed reinforcement during functional communication training.

    Science.gov (United States)

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  5. Reinforced concrete design to Eurocode 2

    CERN Document Server

    Toniolo, Giandomenico

    2017-01-01

    This textbook describes the basic mechanical features of concrete and explains the main resistant mechanisms activated in the reinforced concrete structures and foundations when subjected to centred and eccentric axial force, bending moment, shear, torsion and prestressing,. It presents a complete set of limit-state design criteria of the modern theory of RC incorporating principles and rules of the final version of the official Eurocode 2. This textbook examines methodological more than notional aspects of the presented topics, focusing on the verifications of assumptions, the rigorousness of the analysis and the consequent degree of reliability of results. Each chapter develops an organic topic, which is eventually illustrated by examples in each final paragraph containing the relative numerical applications. These practical end-of-chapter appendices and intuitive flow-charts ensure a smooth learning experience. The book stands as an ideal learning resource for students of structural design and analysis cou...

  6. Influence of facing vertical stiffness on reinforced soil wall design

    OpenAIRE

    Puig Damians, Ivan; Bathurst, Richard; Josa Garcia-Tornel, Alejandro; Lloret Morancho, Antonio

    2013-01-01

    Current design practices for reinforced soil walls typically ignore the influence of facing type and foundation compressibility on the magnitude and distribution of reinforcement loads in steel reinforced soil walls under operational conditions. In this paper, the effect of the facing vertical stiffness (due to elastomeric bearing pads placed in the horizontal joints between panels) on load capacity of steel reinforced soil walls is examined in a systematic manner using a numerical modelli...

  7. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements

    Science.gov (United States)

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  8. Prestressed and reinforced concrete containments. Analysis - design - construction

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1975-01-01

    Nuclear reactors performing in the German Federal Republic to date were supplied with steel containments. The first reinforced concrete and prestressed concrete containments, respectively, are going to be used for the nuclear power plants Kalkar and Gundremmingen (KRB II) as well as for the HTR plant. Because of their function and nature of loading these structures, similarly to the prestressed concrete reactor pressure vessels, belong to the special structures of civil engineering. Yet, they are substantially different from the prestressed concrete reactor pressure vessels. The problems connected with analysis, design, and construction of these structures are new as well. (orig.) [de

  9. Design Methods for Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil.......The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil....

  10. Design of reinforced concrete members based on structural mechanics

    International Nuclear Information System (INIS)

    Diaz, B.E.; Schulz, M.

    1984-01-01

    Up to now the design of reinforced concrete linear members is performed with the help of an inconsistent design theory, which nevertherless is sufficiently safe and simple to be used in the practice. The purpose of this paper is to present a rational reinforced concrete design method which is not too dissimilar to the present design rules, but is capable of defining consistently internal stresses along a reinforced concrete section. The present status of the completed computer procedures allows the analysis of linear reinforced concrete members formed by laminar reinforced concrete plates presenting variable thickness. A practical approach is presented for which the concrete and steel section is constant along the member axis. In this case, the concept of the equivalent section is introduced, which allows a simple analysis of the stress pattern along the member section. (Author) [pt

  11. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  12. Design for whipping pipe impact on reinforced concrete panels

    International Nuclear Information System (INIS)

    Chen, C.C.; Gurbuz, O.

    1984-01-01

    This paper describes determination of local and overall effects on reinforced concrete panels due to whipping pipe impact in postulated pipe break events. Local damage includes the prediction of minimum concrete panel thickness required to prevent spalling from the back face of the target reinforced concrete panels. Evaluation of overall effect deals with the ductility ratio calculation for the target reinforced concrete panels. Design curves for determining the minimum panel thickness and the minimum reinforcement of reinforced concrete panels are presented in this paper for some cases commonly encountered in nuclear applications. The methodology and the results provided can be used to determine if an existing reinforced concrete wall is capable of resisting the whipping pipe impact, and consequently, if pipe whip restraints can be eliminated

  13. Optimising of Steel Fiber Reinforced Concrete Mix Design | Beddar ...

    African Journals Online (AJOL)

    Optimising of Steel Fiber Reinforced Concrete Mix Design. ... as a result of the loss of mixture workability that will be translated into a difficult concrete casting in site. ... An experimental study of an optimisation method of fibres in reinforced ...

  14. Application and Design of Earth Structures from the Reinforced Soils

    Directory of Open Access Journals (Sweden)

    I. Vaníček

    2000-01-01

    Full Text Available Paper describes the new problems connected with the proper design of the reinforced soil structures according to Eurocode 7 Geotechnical design. Therefore basic problems of reinforcement are briefly specified together with the influence of construction technology on the behaviour of such structures. Also up to date approach to the design method in the Czech republic are more specified. Finally the program of the new research in this field is described.

  15. Reinforcement Data for Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2004-01-01

    Idealized materials data are derived from a number of test series reported in the literature and made by the author. The data cover a variety of reinforcing steels from mild steel, deformed bars and cold worked bars to cold drawn prestressing steels. Processes are described, which are responsible...

  16. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... must be consid- ered. Optimized distribution of material is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure....

  17. Design and analysis of reinforced fiber composites

    CERN Document Server

    Yamagata, Nobuki

    2016-01-01

    The papers in this volume present a broad range of applications for reinforced fiber composites - from thin shell structures to tires. Linear and nonlinear structural behavior (from linear buckling to nonlinear yelding and fracture) are discussed as well as different materials are presented. Latest developments in computational methods for constructíons are presented which will help to save money and time. This is an edited collection of papers presented at a symposium at the WCCM, Barcelona, 2014.

  18. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  19. Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate

    Science.gov (United States)

    Mehar, Kulmani; Panda, Subrata Kumar

    2018-03-01

    In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.

  20. Research requirements for improved design of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Holley, M.J. Jr.

    1978-01-01

    Reinforced concrete is a competitive material for the construction of nuclear power plant containment structures. However, the designer is constrained by limited data on the behavior of certain construction details which require him to use what may be excessive rebar quantities and lead to difficult and costly construction. This paper discusses several design situations where research is recommended to increase the designer's options, to facilitate construction, and to extend the applicability of reinforced concrete to such changing containment requirements as may be imposed by an evolving nuclear technology. (Auth.)

  1. Design Basis for Fibre Reinforced Concrete (FRC) Pavements

    DEFF Research Database (Denmark)

    Bendixen, Søren; Stang, Henrik

    1996-01-01

    -crack opening relationship can beused to descibe the properties of fibre reinforced concrete (FRC) intension and how the stress-crack opening relationship can beapplied in a simple design scheme for pavements. The projectincludes development of design tools, experiments to determine thestress-crack opening...

  2. Democratic reinforcement: A principle for brain function

    International Nuclear Information System (INIS)

    Stassinopoulos, D.; Bak, P.

    1995-01-01

    We introduce a simple ''toy'' brain model. The model consists of a set of randomly connected, or layered integrate-and-fire neurons. Inputs to and outputs from the environment are connected randomly to subsets of neurons. The connections between firing neurons are strengthened or weakened according to whether the action was successful or not. Unlike previous reinforcement learning algorithms, the feedback from the environment is democratic: it affects all neurons in the same way, irrespective of their position in the network and independent of the output signal. Thus no unrealistic back propagation or other external computation is needed. This is accomplished by a global threshold regulation which allows the system to self-organize into a highly susceptible, possibly ''critical'' state with low activity and sparse connections between firing neurons. The low activity permits memory in quiescent areas to be conserved since only firing neurons are modified when new information is being taught

  3. Establishing books as conditioned reinforcers for preschool children as a function of an observational intervention.

    Science.gov (United States)

    Singer-Dudek, Jessica; Oblak, Mara; Greer, R Douglas

    2011-01-01

    We tested the effects of an observational intervention (Greer & Singer-Dudek, 2008) on establishing children's books as conditioned reinforcers using a delayed multiple baseline design. Three preschool students with mild language and developmental delays served as the participants. Prior to the intervention, books did not function as reinforcers for any of the participants. The observational intervention consisted of a situation in which the participant observed a confederate being presented with access to books contingent on correct responses and the participant received nothing for correct responses. After several sessions of this treatment, the previously neutral books acquired reinforcing properties for maintenance and acquisition responses for all three participants.

  4. Impact design of reinforced concrete fuel storage structures

    International Nuclear Information System (INIS)

    Nickell, R.E.; Rashid, Y.R.; Williams, R.F.

    1987-01-01

    We characterize the loading experienced by reinforced concrete slabs, as the result of a drop or a tip-over of a dry storage cask, and we provide simple design charts and formulas by which the margin of safety of such slabs can be readily demonstrated. These charts are based on the calculation of crack patterns in the concrete and yielding in the reinforcement as the pad is loaded by the dropping or tip-over of a dry storage cask to a point of collapse. This ultimate-strength design approach is appropriate for unlikely loading events provided that adequate margin against slab collapse is maintained. (orig./HP)

  5. Optimization Design and Application of Underground Reinforced Concrete Bifurcation Pipe

    Directory of Open Access Journals (Sweden)

    Chao Su

    2015-01-01

    Full Text Available Underground reinforced concrete bifurcation pipe is an important part of conveyance structure. During construction, the workload of excavation and concrete pouring can be significantly decreased according to optimized pipe structure, and the engineering quality can be improved. This paper presents an optimization mathematical model of underground reinforced concrete bifurcation pipe structure according to real working status of several common pipe structures from real cases. Then, an optimization design system was developed based on Particle Swarm Optimization algorithm. Furthermore, take the bifurcation pipe of one hydropower station as an example: optimization analysis was conducted, and accuracy and stability of the optimization design system were verified successfully.

  6. The improved design method of shear strength of reinforced concrete beams without transverse reinforcement

    Directory of Open Access Journals (Sweden)

    Vegera Pavlo

    2017-12-01

    Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.

  7. Design of reinforced areas of concrete column using quadratic polynomials

    Science.gov (United States)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  8. Performance based design of reinforced concrete beams under impact

    Directory of Open Access Journals (Sweden)

    S. Tachibana

    2010-06-01

    Full Text Available The purpose of this research is to collect fundamental data and to establish a performance-based design method for reinforced concrete beams under perpendicular impact load.

    Series of low speed impact experiments using reinforced concrete beams were performed varying span length, cross section and main reinforcement.

    The experimental results are evaluated focusing on the impact load characteristics and the impact behaviours of reinforced concrete beams. Various characteristic values and their relationships are investigated such as the collision energy, the impact force duration, the energy absorbed by the beams and the beam response values. Also the bending performance of the reinforced concrete beams against perpendicular impact is evaluated.

    An equation is proposed to estimate the maximum displacement of the beam based on the collision energy and the static ultimate bending strength. The validity of the proposed equation is confirmed by comparison with experimental results obtained by other researchers as well as numerical results obtained by FEM simulations. The proposed equation allows for a performance based design of the structure accounting for the actual deformation due to the expected impact action.

  9. column frame for design of reinforced concrete sway frames

    African Journals Online (AJOL)

    adminstrator

    design of slender reinforced concrete columns in sway frames according .... concrete,. Ac = gross cross-sectional area of the columns. Step 3: Effective Buckling Length Factors. The effective buckling length factors of columns in a sway frame shall be computed by .... shall have adequate resistance to failure in a sway mode ...

  10. Applicability Problem in Optimum Reinforced Concrete Structures Design

    Directory of Open Access Journals (Sweden)

    Ashara Assedeq

    2016-01-01

    Full Text Available Optimum reinforced concrete structures design is very complex problem, not only considering exactness of calculus but also because of questionable applicability of existing methods in practice. This paper presents the main theoretical mathematical and physical features of the problem formulation as well as the review and analysis of existing methods and solutions considering their exactness and applicability.

  11. Analysis and design of column reinforced masonry and concrete walls

    International Nuclear Information System (INIS)

    Doyle, J.M.; Roy, S.B.; Fang, S.J.

    1983-01-01

    Fundamental frequencies, maximum moments and maximum shear forces are determined as a function of the governing parameters, for several different boundary conditions. The quantities are obtained for uniform panels, for walls with openings typical of doorways and other penetrations, and for panels having a region of degraded stiffness. In addition to the internal forces and moment due to out-of-plane action, the stresses due to in-plane loading are also found. From the results curves are constructed which allow for easy computation of flexural frequency, and bending moments and shears due to dynamic loads normal to the wall. Furthermore, based on the studies of panels with geometric or material discontinuities, corrections to results for uniform panels are found which can be used if openings or weakened areas exist in the wall. Several conclusions are presented concerning effects on behavior due to varied column location, critical stiffness ratio for columns to be effective, and the effect of openings on overall behavior. A number of design recommendations are presented. While the motivation for the study came from the need to design masonry walls, the analysis results are applicable to solid concrete walls reinforced by vertical columns. (orig./HP)

  12. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  13. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    Science.gov (United States)

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-10-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as `3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  14. A Neuro-Control Design Based on Fuzzy Reinforcement Learning

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.

    This paper describes a neuro-control fuzzy critic design procedure based on reinforcement learning. An important component of the proposed intelligent control configuration is the fuzzy credit assignment unit which acts as a critic, and through fuzzy implications provides adjustment mechanisms....... The fuzzy credit assignment unit comprises a fuzzy system with the appropriate fuzzification, knowledge base and defuzzification components. When an external reinforcement signal (a failure signal) is received, sequences of control actions are evaluated and modified by the action applier unit. The desirable...... ones instruct the neuro-control unit to adjust its weights and are simultaneously stored in the memory unit during the training phase. In response to the internal reinforcement signal (set point threshold deviation), the stored information is retrieved by the action applier unit and utilized for re...

  15. Designing bioinspired composite reinforcement architectures via 3D magnetic printing.

    Science.gov (United States)

    Martin, Joshua J; Fiore, Brad E; Erb, Randall M

    2015-10-23

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as '3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  16. Steel fiber reinforced concrete behavior, modelling and design

    CERN Document Server

    Singh, Harvinder

    2017-01-01

    This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to d...

  17. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements : Technical Summary

    Science.gov (United States)

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  18. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  19. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  20. New Transition Wedge Design Composed by Prefabricated Reinforced Concrete Slabs

    OpenAIRE

    Real-Herráiz, Julia; Zamorano-Martín, Clara; Real-Herráiz, Teresa; Morales-Ivorra, Silvia

    2016-01-01

    [EN] Important track degradation occurs in structure-embankment transitions, in which an abrupt change in track vertical stiffness arises, leading to a reduction in passengers comfort and safety. Although granular wedges are suggested by different railroad administrations as a solution to avoid these problems, they present some disadvantages which may affect track long-term performance. In this paper, a new solution designed with prefabricated reinforced concrete slabs is proposed. The aim of...

  1. Finite element analysis of CFRP reinforced silo structure design method

    Science.gov (United States)

    Yuan, Long; Xu, Xinsheng

    2017-11-01

    Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.

  2. Design of reinforced concrete containment structures for thermal gradients effects

    International Nuclear Information System (INIS)

    Bhat, P.D.; Vecchio, F.

    1983-01-01

    The need for more accurate prediction of structural behaviour, particularly under extreme load conditions, has made the consideration of thermal gradient effects and increasingly important part of the design of reinforced concrete structures for nuclear applications. While the thermal effects phenomenon itself has been qualitatively well understood, the analytical complications involved in theoretical analysis have made it necessary to resort to major simplifications for practical design applications. A number of methods utilizing different variations in approach have been developed and are in use today, including one by Ontario Hydro which uses an empirical relationship for determining an effective moment of inertia for cracked members. (orig./WL)

  3. Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine

    Energy Technology Data Exchange (ETDEWEB)

    De Falco, A. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Lamanna, M. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Goyanes, S. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); D' Accorso, N.B. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Fascio, M.L., E-mail: mfascio@qo.fcen.uba.ar [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina)

    2012-08-15

    The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.

  4. Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine

    International Nuclear Information System (INIS)

    De Falco, A.; Lamanna, M.; Goyanes, S.; D'Accorso, N.B.; Fascio, M.L.

    2012-01-01

    The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.

  5. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, Eric Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-26

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations and details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.

  6. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  7. Design of components of reinforced concrete stressed by seismic loads

    International Nuclear Information System (INIS)

    Sitka, R.

    1980-01-01

    The example of the type of frame investigated shows that the ductility of the system assumed for standard dimensioning of such a frame lies between two and four. According to the system and the loading different requirements may result for the cross-section, that will have to be observed in design. Derived from these requirements rules are given for the design of frames stiffening in horizontal direction that will guarantee a minimum level of ductility. These rules concern the design of joint and node regions, utilization of the compressive force of the concrete as well as guidance and graduation of the reinforcement according to stud and bolt. By means of some examples of damaged components the effects of violating these rules are made clear. (orig./DG) [de

  8. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  9. New Transition Wedge Design Composed by Prefabricated Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Julia Real-Herráiz

    Full Text Available Abstract Important track degradation occurs in structure-embankment transitions, in which an abrupt change in track vertical stiffness arises, leading to a reduction in passengers comfort and safety. Although granular wedges are suggested by different railroad administrations as a solution to avoid these problems, they present some disadvantages which may affect track long-term performance. In this paper, a new solution designed with prefabricated reinforced concrete slabs is proposed. The aim of this solution is to guarantee a continuous and gradual track vertical stiffness transition in the vicinity of structures, overcoming granular wedges disadvantages. The aim of this study is to assess the performance of the novel wedge design by means of a 3-D FEM model and to compare it with the current solution.

  10. Reinforced soil structures. Volume I, Design and construction guidelines

    Science.gov (United States)

    1990-11-01

    This report presents comprehensive guidelines for evaluating and using soil reinforcement techniques in the construction of retaining walls, embankment slopes, and natural or cut slopes. A variety of available systems for reinforced soil including in...

  11. Automatic design of the flexural strengthening of reinforced concrete beams using fiber reinforced polymers (FRP - doi: 10.4025/actascitechnol.v34i2.8318

    Directory of Open Access Journals (Sweden)

    Rafael Alves de Souza

    2012-03-01

    Full Text Available Changing the functions of a building, the presence of some design or construction errors, the incidence of seismic actions and even the updating of design codes may demand the strengthening of certain structures. In the specific case of reinforced concrete structures it is desirable the application of a technique of strengthening which is fast, economic and efficient, in order to provide advantages when an intervention is necessary. The technique of strengthening chosen must provide less disorder as possible as well as the guaranty of safety. Taking into account this scenery, fiber reinforced polymers have been working as a very attractive alternative for rehabilitating in-service structures. In that way, the present study aims at presenting the main properties of this new material as well as the design routines for flexural strengthening of reinforced concrete beams. Finally, a package-software developed into the MATLAB platform is presented, intending to generate a simple tool for the automatic design using fiber reinforced polymers.

  12. Functional Contour-following via Haptic Perception and Reinforcement Learning.

    Science.gov (United States)

    Hellman, Randall B; Tekin, Cem; van der Schaar, Mihaela; Santos, Veronica J

    2018-01-01

    Many tasks involve the fine manipulation of objects despite limited visual feedback. In such scenarios, tactile and proprioceptive feedback can be leveraged for task completion. We present an approach for real-time haptic perception and decision-making for a haptics-driven, functional contour-following task: the closure of a ziplock bag. This task is challenging for robots because the bag is deformable, transparent, and visually occluded by artificial fingertip sensors that are also compliant. A deep neural net classifier was trained to estimate the state of a zipper within a robot's pinch grasp. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards by balancing exploration versus exploitation of the state-action space. The C-MAB learner outperformed a benchmark Q-learner by more efficiently exploring the state-action space while learning a hard-to-code task. The learned C-MAB policy was tested with novel ziplock bag scenarios and contours (wire, rope). Importantly, this work contributes to the development of reinforcement learning approaches that account for limited resources such as hardware life and researcher time. As robots are used to perform complex, physically interactive tasks in unstructured or unmodeled environments, it becomes important to develop methods that enable efficient and effective learning with physical testbeds.

  13. Minimum weight designs for reinforcement of spherical pressure vessels with flush radial nozzles

    International Nuclear Information System (INIS)

    Yeo, K.T.; Robinson, M.

    1978-01-01

    A cylinder-sphere pressure vessel, reinforced in the sphere by a section of constant thickness, has been analysed from the point of view of minimum weight. The reinforcement is allowed to be offset from the main sphere and the design has to be such that the test pressure of the vessel equals the limit pressure. It is shown that in most circumstances an economy of weight may be obtained by making the reinforcement thicker, but less extensive, than suggested in a previous proposal. Further benefit can be obtained by offsetting the reinforcement radially outwards so that the inside surfaces of main sphere and reinforcement are flush. (author)

  14. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  15. Computational design of active, self-reinforcing gels.

    Science.gov (United States)

    Yashin, Victor V; Kuksenok, Olga; Balazs, Anna C

    2010-05-20

    Many living organisms have evolved a protective mechanism that allows them to reversibly alter their stiffness in response to mechanical contact. Using theoretical modeling, we design a mechanoresponsive polymer gel that exhibits a similar self-reinforcing behavior. We focus on cross-linked gels that contain Ru(terpy)(2) units, where both terpyridine ligands are grafted to the chains. The Ru(terpy)(2) complex forms additional, chemoresponsive cross-links that break and re-form in response to a repeated oxidation and reduction of the Ru. In our model, the periodic redox variations of the anchored metal ion are generated by the Belousov-Zhabotinsky (BZ) reaction. Our computer simulations reveal that compression of the BZ gel leads to a stiffening of the sample due to an increase in the cross-link density. These findings provide guidelines for designing biomimetic, active coatings that send out a signal when the system is impacted and use this signaling process to initiate the self-protecting behavior.

  16. Design of fibre reinforced PV concepts for building integrated applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; de Wit, H.; de Boer, Andries; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a

  17. Design and analysis of coiled fiber reinforced soft pneumatic actuator.

    Science.gov (United States)

    Singh, Gaurav; Xiao, Chenzhang; Hsiao-Wecksler, Elizabeth T; Krishnan, Girish

    2018-04-18

    Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several instances in nature, such as an elephant trunk, snakes and grapevine tendrils, where a spiral configuration of muscle systems is used for gripping, thereby establishing a mechanical connection with uniform force distribution. Inspired by these examples, this paper investigates the constricting behavior of a contracting FREE actuator deployed in a spiral or coiled configuration around a cylindrical object. Force balance is used to model the blocked force of the FREE, which is then related to the constriction force using a string model. The modeling and experimental findings reveal an attenuation in the blocked force, and thus the constriction force caused by the coupling of peripheral contact forces acting in the spiral configuration. The usefulness of the coiled FREE configuration is demonstrated in a soft arm orthosis for crutch users that provides a constriction force around the forearm. This design minimizes injury risk by reducing wrist load and improving wrist posture.

  18. Off-policy reinforcement learning for H∞ control design.

    Science.gov (United States)

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen

    2015-01-01

    The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system.

  19. Design of Rock Slope Reinforcement: An Himalayan Case Study

    Science.gov (United States)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  20. Clarifying Inconclusive Functional Analysis Results: Assessment and Treatment of Automatically Reinforced Aggression

    Science.gov (United States)

    Saini, Valdeep; Greer, Brian D.; Fisher, Wayne W.

    2016-01-01

    We conducted a series of studies in which multiple strategies were used to clarify the inconclusive results of one boy’s functional analysis of aggression. Specifically, we (a) evaluated individual response topographies to determine the composition of aggregated response rates, (b) conducted a separate functional analysis of aggression after high rates of disruption masked the consequences maintaining aggression during the initial functional analysis, (c) modified the experimental design used during the functional analysis of aggression to improve discrimination and decrease interaction effects between conditions, and (d) evaluated a treatment matched to the reinforcer hypothesized to maintain aggression. An effective yet practical intervention for aggression was developed based on the results of these analyses and from data collected during the matched-treatment evaluation. PMID:25891269

  1. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    in the load-displacement slopes while the percentage of glass fiber increased. In the other hand, results showed that a detent made of only glass fiber layers was preferable than a carbon-glass fiber hybrid detent due to the high stresses shown in carbon fiber layers. Ultimately, forkbolt and detent were redesigned according to their functionality and test results. It was observed that the new design was stiffer than the original by showing a steeper load-displacement curve. Subsequently, an experimental procedure was performed in order to correlate computational model results. Fiber-reinforced composite forkbolt and detent were waterjet cut from a composite laminate manufactured by Vacuum Assisted Resin Transfer Molding (VART) process. Then, samples were tested according to the computational model. Six testing sample combinations of forkbolt and detent were tested including the top three woven iterations forkbolts from the computational model paired with woven and unidirectional glass fiber detents. Test results showed a stiffness drop of 15% when the carbon fiber percentage decreases from 100% to 75%. Also, it was observed that woven glass fiber detent was superior to the unidirectional glass fiber detent by presenting a forkbolt-detent stiffness 38% higher. Moreover, the new design of forkbolt and detent were tested showing a stiffness increment of 29%. Furthermore, it was observed that fiber-reinforced composite forkbolt and detent did not reach the desired load of 5000 N. However, the redesigned forkbolt made of 100% woven carbon fiber and the redesign detent made of 100% woven glass fiber were close to reach that load. The design review based on test results performed (DRBTR) showed that components did not fail where the computational model concluded to be the areas with the highest maximum principal stress. In contrast to the computational model, all samples failed at the contact area between forkbolt and detent.

  2. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    The development of concrete and cementitious composites with fiber reinforcement to improve the tensile load-deformation behavior has resulted in three distinct classes of materials. These include conventional Fiber Reinforced Concrete (FRC) with tension softening response, High Performance Fiber...... Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...

  3. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    Science.gov (United States)

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  4. Optimum Design of FGX-CNT-Reinforced Reddy Pipes Conveying Fluid Subjected to Moving Load

    Directory of Open Access Journals (Sweden)

    Farid Vakili Tahami

    2016-12-01

    Full Text Available The harmony search algorithm is applied to the optimum designs of functionally graded (FG-carbon nanotubes (CNTs-reinforced pipes conveying fluid which are subjected to a moving load. The structure is modeled by the Reddy cylindrical shell theory, and the motion equations are derived by Hamilton's principle. The dynamic displacement of the system is derived based on the differential quadrature method (DQM. Moreover, the length, thickness, diameter, velocity, and acceleration of the load, the temperature and velocity of the fluid, and the volume fraction of CNT are considered for the design variables. The results illustrate that the optimum diameter of the pipe is decreased by increasing the volume percentage of CNTs. In addition, by increasing the moving load velocity and acceleration, the FS is decreased.

  5. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  6. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.

    Science.gov (United States)

    Yang, Qinmin; Jagannathan, Sarangapani

    2012-04-01

    In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.

  7. Shear design and assessment of reinforced and prestressed concrete beams based on a mechanical model

    OpenAIRE

    Marí Bernat, Antonio Ricardo; Bairán García, Jesús Miguel; Cladera Bohigas, Antoni; Oller Ibars, Eva

    2016-01-01

    Safe and economical design and assessment of reinforced (RC) and prestressed concrete (PC) beams requires the availability of accurate but simple formulations which adequately capture the structural response. In this paper, a mechanical model for the prediction of the shear-flexural strength of PC and RC members with rectangular, I, or T sections, with and without shear reinforcement, is presented. The model is based on the principles of concrete mechanics and on assumptions supported by the ...

  8. Seismic Retrofit of Reinforced Concrete Frame Buildings with Hysteretic Bracing Systems: Design Procedure and Behaviour Factor

    Directory of Open Access Journals (Sweden)

    Antonio Di Cesare

    2017-01-01

    Full Text Available This paper presents a design procedure to evaluate the mechanical characteristics of hysteretic Energy Dissipation Bracing (EDB systems for seismic retrofitting of existing reinforced concrete framed buildings. The proposed procedure, aiming at controlling the maximum interstorey drifts, imposes a maximum top displacement as function of the seismic demand and, if needed, regularizes the stiffness and strength of the building along its elevation. In order to explain the application of the proposed procedure and its capacity to involve most of the devices in the energy dissipation with similar level of ductility demand, a simple benchmark structure has been studied and nonlinear dynamic analyses have been performed. A further goal of this work is to propose a simplified approach for designing dissipating systems based on linear analysis with the application of a suitable behaviour factor, in order to achieve a widespread adoption of the passive control techniques. At this goal, the increasing of the structural performances due to the addition of an EDB system designed with the above-mentioned procedure has been estimated considering one thousand case studies designed with different combinations of the main design parameters. An analytical formulation of the behaviour factor for braced buildings has been proposed.

  9. Stay-in-Place Formwork of TRC Designed as Shear Reinforcement for Concrete Beams

    Directory of Open Access Journals (Sweden)

    S. Verbruggen

    2013-01-01

    Full Text Available In order to reduce on-site building time, the construction industry shows an increasing interest in stay-in-place formwork with a reinforcement function after concrete hardening, such as CFRP formwork confinement for columns. The current combined systems however do not answer the demand of the building industry for a material system that is both lightweight and fire safe. High performance textile reinforced cement (TRC composites can address this need. They can be particularly interesting for the shear reinforcement of concrete beams. This paper describes a preliminary analysis and feasibility study on structural stay-in-place formwork made of TRC. Comparative bending experiments demonstrate that a fully steel reinforced beam and an equivalent beam with shear reinforcement in TRC formwork show similar yielding behaviour, indicating that the TRC shear reinforcement system actually works. Moreover, the cracking moment of the concrete was more or less doubled, resulting in a much lower deflection in serviceability limit state than calculated. Digital image correlation measurements show that the latter is due to the crack bridging capacity of the external TRC shear reinforcement.

  10. Serviceability design load factors and reliability assessments for reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Han Bong Koo

    1998-01-01

    A reinforced concrete nuclear power plant containment structure is subjected to various random static and stochastic loads during its lifetime. Since these loads involve inherent randomness and other uncertainties, an appropriate probabilistic model for each load must be established in order to perform reliability analysis. The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops probability-based load factors for the limit state design of reinforced concrete containment structures. The purpose of constructing reinforced concrete containment structure is to protect against radioactive release, and so the use of a serviceability limit state against crack failure that can cause the emission of radioactive materials is suggested as a critical limit state for reinforced concrete containment structures. Load factors for the design of reinforced concrete containment structures are proposed and carried out the reliability assessments. (orig.)

  11. Modelling the post-cracking behaviour of steel fibre reinforced concrete for structural design purposes

    NARCIS (Netherlands)

    Kooiman, A.G.; Walraven, C.

    2000-01-01

    With the increasing number of applications in practice, the demand for standardised test methods and design rules for Steel Fibre Reinforced Concrete (SFRC) arises. Test methods need to be practical, which means that they have to be relatively cheap and simple to carry out. Design models should be

  12. Multiple determinants of transfer of evaluative function after conditioning with free-operant schedules of reinforcement.

    Science.gov (United States)

    Dack, Charlotte; Reed, Phil; McHugh, Louise

    2010-11-01

    The aim of the four present experiments was to explore how different schedules of reinforcement influence schedule-induced behavior, their impact on evaluative ratings given to conditioned stimuli associated with each schedule through evaluative conditioning, and the transfer of these evaluations through derived stimulus networks. Experiment 1 compared two contrasting response reinforcement rules (variable ratio [VR], variable interval [VI]). Experiment 2 varied the response to reinforcement rule between two schedules but equated the outcome to response rate (differential reinforcement of high rate [DRH] vs. VR). Experiment 3 compared molar and molecular aspects of contingencies of reinforcement (tandem VIVR vs. tandem VRVI). Finally, Experiment 4 employed schedules that induced low rates of responding to determine whether, under these circumstances, responses were more sensitive to the molecular aspects of a schedule (differential reinforcement of low rate [DRL] vs. VI). The findings suggest that the transfer of evaluative functions is determined mainly by differences in response rate between the schedules and the molar aspects of the schedules. However, when neither schedule was based on a strong response reinforcement rule, the transfer of evaluative judgments came under the control of the molecular aspects of the schedule.

  13. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Amir, Oded

    2012-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its different strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures on the basis...... response must be considered. Optimized distribution of materials is achieved by introducing interpolation rules for both elastic and plastic material properties. Several numerical examples illustrate the capability and potential of the proposed procedure. Copyright © 2012 John Wiley & Sons, Ltd....

  14. Functional Domain Driven Design

    OpenAIRE

    Herrera Guzmán, Sergio

    2016-01-01

    Las tecnologías están en constante expansión y evolución, diseñando nuevas técnicas para cumplir con su fin. En el desarrollo de software, las herramientas y pautas para la elaboración de productos software constituyen una pieza en constante evolución, necesarias para la toma de decisiones sobre los proyectos a realizar. Uno de los arquetipos para el desarrollo de software es el denominado Domain Driven Design, donde es importante conocer ampliamente el negocio que se desea modelar en form...

  15. Design and fabrication hazard stakes golf course polymeric foam material empty bunch (EFB) fiber reinforced

    Science.gov (United States)

    Zulfahmi; Syam, B.; Wirjosentono, B.

    2018-02-01

    A golf course with obstacles in the forms of water obstacle and lateral water obstacle marked with the stakes which are called golf course obstacle stake in this study. This study focused on the design and fabrication of the golf course obstacle stake with a solid cylindrical geometry using EFB fiber-reinforced polimeric foam composite materials. To obtain the EFB fiber which is free from fat content and other elements, EFB is soaked in the water with 1% (of the watre total volume) NaOH. The model of the mould designed is permanent mould that can be used for the further refabrication process. The mould was designed based on resin-compound paste materials with talc powder plus E-glass fiber to make the mould strong. The composition of polimeric foam materials comprised unsaturated resin Bqtn-Ex 157 (70%), blowing agent (10%), fiber (10%), and catalyst (10%). The process of casting the polimeric foam composit materials into the mould cavity should be at vertical casting position, accurate interval time of material stirring, and periodical casting. To find out the strength value of the golf course obstacle stake product, a model was made and simulated by using the software of Ansys workbench 14.0, an impact loading was given at the height of 400 mm and 460 mm with the variation of golf ball speed (USGA standard) v = 18 m/s, v = 35 m/s, v = 66.2 m/s, v = 70 m/s, and v = 78.2 m/s. The clarification showed that the biggest dynamic explicit loading impact of Fmax = 142.5 N at the height of 460 mm with the maximum golf ball speed of 78.2 m/s did not experience the hysteresis effect and inertia effect. The largest deformation area occurred at the golf ball speed v = 66.2 mm/s, that is 18.029 mm (time: 2.5514e-004) was only concentrated around the sectional area of contact point of impact, meaning that the golf course obstacle stakes made of EFB fiber-reinforced polymeric foam materials have the geometric functional strength that are able to absorb the energy of golf ball

  16. Attitude change as a function of the observation of vicarious reinforcement and friendliness

    OpenAIRE

    Stocker-Kreichgauer, Gisela

    1982-01-01

    Attitude change as a function of the observation of vicarious reinforcement and friendliness : hostility in a debate / Lutz von Rosenstiel ; Gisela Stocker- Kreichgauer. - In: Group decision making / ed. by Gisela Stocker-Kreichgauer ... - London u.a. : Acad. Press, 1982. - S. 241-255. - (European monographs in social psychology ; 25)

  17. The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate

    Science.gov (United States)

    Davison, Michael; Elliffe, Douglas; Marr, M. Jackson

    2010-01-01

    Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from 0.1 to 0.9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of…

  18. Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device.

    Science.gov (United States)

    Proctor, Christopher S

    2014-10-01

    Rotator cuff repair is a procedure with varying outcomes, and there has been subsequent interest in devices that reinforce the repair and enhance structural and functional outcomes. The objective of this study was to determine these outcomes for arthroscopic repair of large and massive rotator cuff tears augmented with a synthetic absorbable mesh designed specifically for reinforcement of tendon repair by imaging and clinical assessments. Consecutive arthroscopic repairs were performed on 18 patients with large to massive rotator cuff tears by use of a poly-l-lactic acid synthetic patch as a reinforcement device and fixation with 4 sutures. Patients were assessed preoperatively and at 6 months, 12 months, and a mean of 42 months after surgery by the American Shoulder and Elbow Surgeons (ASES) shoulder score to evaluate clinical performance and at 12 months by ultrasound to assess structural repair. Ultrasound showed that 15 of 18 patients had intact rotator cuff repair at 12 months; at 42 months, an additional patient had a failed repair. Patients showed improvement in the ASES shoulder score from 25 preoperatively to 71 at 12 months and 70 at 42 months after surgery. Patients with intact rotator cuff (n = 14) at 42 months had an ASES shoulder score of 82. The poly-l-lactic acid bioabsorbable patch designed specifically to reinforce the surgical repair of tendons supported successful repair of large to massive rotator cuff tears in 83% of patients at 12 months after surgery and 78% of patients at 42 months after surgery, with substantial functional improvement. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Creep of thermoplastic polyurethane reinforced with ozone functionalized carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2012-09-01

    Full Text Available This work focused on the mechanical behavior, especially creep resistance, of thermoplastic polyurethane (TPU filled with ozone-treated multi-walled carbon nanotubes (MWCNTs. It was found that the ozone functionalization of MWCNTs could improve their dispersion and interfacial adhesion to the TPU matrix as proved by scanning electron microscope and Raman spectrometer. It finally contributed to the enhancement of Young’s modulus and yield strength of TPU/MWCNT composites. Moreover, the creep resistance and recovery of MWCNT/TPU composites revealed a significant improvement by incorporating ozone functionalized MWCNTs. The strong interaction between the modified MWCNTs and TPU matrix would enhance the interfacial bonding and facilitate the load transfer, resulting in low creep strain and unrecovered strain.

  20. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    Science.gov (United States)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  1. Parametric study for graphene reinforced aluminum matrix composites production using Box Behnken design

    Science.gov (United States)

    Dasari, Bhagya Lakshmi; Nouri, Jamshid M.; Brabazon, Dermot; Naher, Sumsun

    2017-10-01

    The production of graphene reinforced aluminum matrix composite through powder metallurgical route requires optimization of process parameters to obtain better performance characteristics. One of the advanced method available for statistical analysis of parameters is Response Surface Methodology (RSM). The statistical analysis was carried out with three parameters, weight percentage of graphene reinforcement Wg (0.05%, 0.1% and 0.2%), stirring time ST(1h, 2h and 3h) and compaction pressure Pc(16T, 17T and 19T) while sintering temperature T kept constant. The performance of the Box Behnken design was analyzed and optimized using Design Expert software for the effective production of composites. From the results obtained from the analysis, the best set of parameters were considered for the future production of composites.

  2. Experimental study of the structural behavior of the reinforced concrete containment vessel beyond design pressure

    International Nuclear Information System (INIS)

    Oyamada, O.; Saito, H.; Muramatsu, Y.; Hasegawa, T.; Tanaka, N.

    1990-01-01

    The first Advanced Boiling Water Reactor (ABWR) including a reinforced concrete containment vessel (RCCV) is scheduled to be constructed in the 1990s, in Japan. As the RCCV is new to Japan, we performed a trial design, several series of fundamental experiments and partial/total model experiments. This paper presents a summary of the 'TOP SLAB EXPERIMENT' carried out as one of partial model experiments, in which the structural behavior of the RCCV was examined under internal pressure. (orig.)

  3. Computer-Aided Construction at Designing Reinforced Concrete Columns as Per Ec

    Science.gov (United States)

    Zielińska, M.; Grębowski, K.

    2015-02-01

    The article presents the authors' computer program for designing and dimensioning columns in reinforced concrete structures taking into account phenomena affecting their behaviour and information referring to design as per EC. The computer program was developed with the use of C++ programming language. The program guides the user through particular dimensioning stages: from introducing basic data such as dimensions, concrete class, reinforcing steel class and forces affecting the column, through calculating the creep coefficient taking into account the impact of imperfection depending on the support scheme and also the number of mating members at load shit, buckling length, to generating the interaction curve graph. The final result of calculations provides two dependence points calculated as per methods of nominal stiffness and nominal curvature. The location of those points relative to the limit curve determines whether the column load capacity is assured or has been exceeded. The content of the study describes in detail the operation of the computer program and the methodology and phenomena which are indispensable at designing axially and eccentrically the compressed members of reinforced concrete structures as per the European standards.

  4. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    Science.gov (United States)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  5. Design of reinforcement welding machine within steel framework for marine engineering

    Science.gov (United States)

    Wang, Gang; Wu, Jin

    2017-04-01

    In this project, a design scheme that reinforcement welding machine is added within the steel framework is proposed according to the double-side welding technology for box-beam structure in marine engineering. Then the design and development of circuit and transmission mechanism for new welding equipment are completed as well with one sample machine being made. Moreover, the trial running is finished finally. Main technical parameters of the equipment are: the working stroke: ≥1500mm, the welding speed: 8˜15cm/min and the welding sheet thickness: ≥20mm.

  6. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  7. Bamboo-inspired optimal design for functionally graded hollow cylinders.

    Directory of Open Access Journals (Sweden)

    Motohiro Sato

    Full Text Available The optimal distribution of the reinforcing fibers for stiffening hollow cylindrical composites is explored using the linear elasticity theory. The spatial distribution of the vascular bundles in wild bamboo, a nature-designed functionally graded material, is the basis for the design. Our results suggest that wild bamboos maximize their flexural rigidity by optimally regulating the radial gradation of their vascular bundle distribution. This fact provides us with a plant-mimetic design principle that enables the realization of high-stiffness and lightweight cylindrical composites.

  8. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    Science.gov (United States)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  9. Covercrete with hybrid functions - A novel approach to durable reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Tang, L.; Zhang, E.Q. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Fu, Y. [KTH Royal Institute of Technology, SE-106 91 Stockholm (Sweden); Schouenborg, B.; Lindqvist, J.E. [CBI Swedish Cement and Concrete Research Institute, c/o SP, Box 857, SE-501 15 Boraas (Sweden)

    2012-12-15

    Due to the corrosion of steel in reinforced concrete structures, the concrete with low water-cement ratio (w/c), high cement content, and large cover thickness is conventionally used for prolonging the passivation period of steel. Obviously, this conventional approach to durable concrete structures is at the sacrifice of more CO{sub 2} emission and natural resources through consuming higher amount of cement and more constituent materials, which is against sustainability. By placing an economically affordable conductive mesh made of carbon fiber or conductive polymer fiber in the near surface zone of concrete acting as anode we can build up a cathodic prevention system with intermittent low current density supplied by, e.g., the solar cells. In such a way, the aggressive negative ions such as Cl{sup -}, CO{sub 3}{sup 2-}, and SO{sub 4}{sup 2-} can be stopped near the cathodic (steel) zone. Thus the reinforcement steel is prevented from corrosion even in the concrete with relatively high w/c and small cover thickness. This conductive mesh functions not only as electrode, but also as surface reinforcement to prevent concrete surface from cracking. Therefore, this new type of covercrete has hybrid functions. This paper presents the theoretical analysis of feasibility of this approach and discusses the potential durability problems and possible solutions to the potential problems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Optimal modes in designing processes for wash through and reinforcement of wells

    Energy Technology Data Exchange (ETDEWEB)

    Sukurenko, Ye I

    1979-01-01

    In order to find the optimal solutions in designing processes of wash through and reinforcement of wells, mathematical programs are written in the FORTRAN-2 algorithmic language for an M-222 computer. Used as the global criterior of optimization was the minimum expenditure for the passage of a well in assigned plan terms. Used in the acquisition of the optimal design decisions were three types of information masses: a mass of constant information, a mass of operational information and a mass of intermediate information. The techniques and the programs for producing the design solutions were sent for test operation to TatNIPIneft', and to the KIVTs of the ''Grozneft''' and ''Ukrneft''' unions and to AzNIPIneft'. The test operation of programs developed in the VNIIKRneft' made it possible to expose a number of deficiencies both in the methodological approach to the acquisition of the optimal design solutions, as well as in the formulation and solution of individual problems.

  11. Development of design data for graphite reinforced epoxy and polyimide composites

    Science.gov (United States)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  12. Improved design of special boundary elements for T-shaped reinforced concrete walls

    Science.gov (United States)

    Ji, Xiaodong; Liu, Dan; Qian, Jiaru

    2017-01-01

    This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.

  13. To the problem of reinforced concrete reactor vessel design and calculation

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Artem'ev, V.P.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Paushkin, A.G.

    1980-01-01

    Modern methods for calculating reactor vessels of prestressed reinforced concrete are analyzed. It is shown that during the stage of technical and economical substantiation of reactor vessel structure for determining its stressed-deformed state engineering methods of calculation must be used, in particular, fragmentation method, method of rings and plates, and during the stages of contract and detail designs - method of finite elements and dynamic relaxation method. It is concluded that when solving cyclic symmetrical problems as well as asymmetrical problems, calculational algorithms for axis-symmetrical distributions of stresses in the vessel with provision for elastic properties of structural material may be used

  14. Redundancy Factors for the Seismic Design of Ductile Reinforced Concrete Chevron Braced Frames

    Directory of Open Access Journals (Sweden)

    Eber Alberto Godínez-Domínguez

    Full Text Available Abstract In this paper the authors summarize the results of a study devoted to assess, using nonlinear static analyses, the impact of increasing the structural redundancy in ductile moment-resisting reinforced concrete concentric braced frames structures (RC-MRCBFs. Among the studied variables were the number of stories and the number of bays. Results obtained were compared with the currently proposed values in the Manual of Civil Structures (MOC-08, a model code of Mexico. The studied frames have 4, 8, 12 and 16-story with a story height h=3.5 m. and a fixed length L=12 m., where 1, 2, 3 or 4 bays have to be located. RC-MRCBFs were assumed to be located in soft soil conditions in Mexico City and were designed using a capacity design methodology adapted to general requirements of the seismic, reinforced concrete and steel guidelines of Mexican Codes. From the results obtained in this study it is possible to conclude that a different effect is observed in overstrength redundancy factors respect to ductility redundancy factors due to an increase of the bay number considered. Also, the structural redundancy factors obtained for this particular structural system varies respect to the currently proposed in MOC-08.

  15. In Situ Preparation of Polyether Amine Functionalized MWCNT Nanofiller as Reinforcing Agents

    Directory of Open Access Journals (Sweden)

    Ayber Yıldrım

    2014-01-01

    Full Text Available In situ preparation of polyether amine functionalized cross-linked multiwalled carbon nanotube (MWCNT nanofillers may improve the thermal and mechanical properties of the composites in which they are used as reinforcing agents. The reduction and functionalization of MWCNT using ethylenediamine in the presence of polyether amine produced stitched MWCNT's due to the presence of two amine (–NH2 functionalities on both sides of the polymer. Polyether amine was chosen to polymerize the carboxylated MWCNT due to its potential to form bonds with the amino groups and carboxyl groups of MWCNT which produces a resin used as polymeric matrix for nanocomposite materials. The attachment of the polyether amine (Jeffamine groups was verified by TGA, FT-IR, XRD, SEM, and Raman spectroscopy. The temperature at which the curing enthalpy is maximum, observed by DSC, was shifted to higher values by adding functionalized MWCNT. SEM images show the polymer formation between MWCNT sheets.

  16. 'Proactive' use of cue-context congruence for building reinforcement learning's reward function.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Tajti, Gabor; Szilasi, Magdolna Emma; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf

    2016-10-28

    Reinforcement learning is a fundamental form of learning that may be formalized using the Bellman equation. Accordingly an agent determines the state value as the sum of immediate reward and of the discounted value of future states. Thus the value of state is determined by agent related attributes (action set, policy, discount factor) and the agent's knowledge of the environment embodied by the reward function and hidden environmental factors given by the transition probability. The central objective of reinforcement learning is to solve these two functions outside the agent's control either using, or not using a model. In the present paper, using the proactive model of reinforcement learning we offer insight on how the brain creates simplified representations of the environment, and how these representations are organized to support the identification of relevant stimuli and action. Furthermore, we identify neurobiological correlates of our model by suggesting that the reward and policy functions, attributes of the Bellman equitation, are built by the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), respectively. Based on this we propose that the OFC assesses cue-context congruence to activate the most context frame. Furthermore given the bidirectional neuroanatomical link between the OFC and model-free structures, we suggest that model-based input is incorporated into the reward prediction error (RPE) signal, and conversely RPE signal may be used to update the reward-related information of context frames and the policy underlying action selection in the OFC and ACC, respectively. Furthermore clinical implications for cognitive behavioral interventions are discussed.

  17. Design principles for riboswitch function.

    Directory of Open Access Journals (Sweden)

    Chase L Beisel

    2009-04-01

    Full Text Available Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence-function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands.

  18. Design and construction of a large reinforced concrete containment model to be tested to failure

    International Nuclear Information System (INIS)

    Ucciferro, J.J.; Horschel, D.S.

    1987-01-01

    The US Nuclear Regulatory Commission is investigating the performance of LWR containments subjected to severe accidents. This work is being performed by the Containment Integrity Division at Sandia National Laboratories (Sandia). The latest research effort involves the testing of a 1/6-scale reinforced concrete containment model. The containment, which was designed and constructed by United Engineers and Constructors, is the largest and most complex model of its kind. The design and construction of the containment model are the subject of this paper. The objective of the containment model tests is to generate data that can be used to qualify methods for reliably predicting the response of LWR containment buildings to severe accident loads. The data recorded during testing include deformations and leakage past sealing surfaces, as well as strains and displacements of the containment shell

  19. Informational Reinforcement of Students’ Course Design Aimed at Promoting Engineers Training Quality in Technical Education

    Directory of Open Access Journals (Sweden)

    B. N. Guzanov

    2012-01-01

    Full Text Available Using the modern information technologies in educational process is regarded as one of the main directions in training the qualified specialists with systematic engineering thinking. The optimum combination of various educational technologies and computerized resources can improve teaching quality and promote students’ professional level. Taking as an example one of the basic technical disciplines of the engineering training curriculum at a technical higher school, the authors describe the computerized technology facilitating the course design. The technology in question - the «Reduktor» courseware - adapts the complex product of Autodesk –AutoCAD for educational purposes. The above program is the enhanced interface of AutoCAD, linked to the Microsoft Excel spreadsheet and the reference data library used for designing the reduction gear. The experimental research, based on the qualimetric approach and continuous diagnostic and prognostic monitoring of the key indices of knowledge acquisition, proves the effectiveness of informational reinforcement of students self-dependent work. 

  20. SEISMIC DESIGN OF TWO STOREY REINFORCED CONCRETE BUILDING IN MALAYSIA WITH LOW CLASS DUCTILITY

    Directory of Open Access Journals (Sweden)

    MOHD IRWAN ADIYANTO

    2014-02-01

    Full Text Available Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if seismic design has to be implemented in Malaysian construction industry. If the cost is increasing, how much the increment and is it affordable? This paper investigated the difference of steel reinforcement and concrete volume required when seismic provision is considered in reinforced concrete design of 2 storey general office building. The regular office building which designed based on BS8110 had been redesigned according to Eurocode 2 with various level of reference peak ground acceleration, agR reflecting Malaysian seismic hazard for ductility class low. Then, the all frames had been evaluated using a total of 800 nonlinear time history analyses considering single and repeated earthquakes to simulate the real earthquake event. It is observed that the level of reference peak ground acceleration, agR and behaviour factor, q strongly influence the increment of total cost. For 2 storey RC buildings built on Soil Type D with seismic consideration, the total cost of material is expected to increase around 6 to 270%, depend on seismic region. In term of seismic performance, the repeated earthquake tends to cause increasing in interstorey drift ratio around 8 to 29% higher compared to single earthquake.

  1. Confirmation of linear system theory prediction: Changes in Herrnstein's k as a function of changes in reinforcer magnitude.

    Science.gov (United States)

    McDowell, J J; Wood, H M

    1984-03-01

    Eight human subjects pressed a lever on a range of variable-interval schedules for 0.25 cent to 35.0 cent per reinforcement. Herrnstein's hyperbola described seven of the eight subjects' response-rate data well. For all subjects, the y-asymptote of the hyperbola increased with increasing reinforcer magnitude and its reciprocal was a linear function of the reciprocal of reinforcer magnitude. These results confirm predictions made by linear system theory; they contradict formal properties of Herrnstein's account and of six other mathematical accounts of single-alternative responding.

  2. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    OpenAIRE

    Patricia A. Saliba; Alexandra A. P. Mansur; Herman S. Mansur

    2016-01-01

    The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding γ-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite w...

  3. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-02-01

    Full Text Available The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  4. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  5. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  6. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  7. Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode

    Institute of Scientific and Technical Information of China (English)

    W.K.Chee; H.N.Lim; Y.Andou; Z.Zainal; A.A.B.Hamra; I.Harrison; M.Altarawneh; Z.T.Jiang; N.M.Huang

    2017-01-01

    Graphene oxide has been used widely as a starting precursor for applications that cater to the needs of tunable graphene. However, the hydrophilic characteristic limits their application, especially in a hydrophobic condition. Herein, a novel non-covalent surface modification approach towards graphene oxide was conducted via a UV-induced photo-polymerization technique that involves two major routes; a UV-sensitive initiator embedded via pi-pi interactions on the graphene planar rings, and the polymerization of hydrophobic polymeric chains along the surface. The functionalized graphene oxide successfully achieved the desired hydrophobicity as it displayed the characteristic of being readily dissolved in organic solvent. Upon its addition into a polymeric solution and subjected to an electrospinning process,non-woven random nanofibers embedded with graphene oxide sheets were obtained. The prepared polymeric nanofibers were subjected to two-step thermal treatments that eventually converted the polymeric chains into a carbon-rich conductive structure. A unique morphology was observed upon the addition of the functionalized graphene oxide, whereby the sheets were embedded and intercalated within the carbon nanofibers and formed a continuous structure. This reinforcement effectively enhanced the electrochemical performance of the carbon nanofibers by recording a specific capacitance of up to 140.10 F/g at the current density of 1 A/g, which was approximately three folds more than that of pristine nanofibers.It also retained the capacitance up to 96.2% after 1000 vigorous charge/discharge cycles. This functionalization technique opens up a new pathway in tuning the solubility nature of graphene oxide towards the synthesis of a graphene oxide-reinforced polymeric structure.

  8. Analysis and modeling of delamination factor in drilling of woven kenaf fiber reinforced epoxy using Box Behnken experimental design

    Science.gov (United States)

    Suhaily, M.; Che Hassan, C. H.; Jaharah, A. G.; Afifah, M. A.; Nor Khairusshima, M. K.

    2018-01-01

    In this research study, it presents a comprehensive mathematical model for correlating the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates using the Box Behnken experimental design. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated HSS drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs.

  9. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    Science.gov (United States)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  10. Analysis and Design of Reinforced Concrete Structures With Spring Base Isolation

    International Nuclear Information System (INIS)

    Tun Myint Aung; Tin Tin Win, Nyan Myint Kyaw

    2008-06-01

    In the study, analysis and design of four storey reinforced concrete building and it's isolations which is located in seismic zone 4. Then comparison of analysis result between fixed base condition and isolated condition of the building due to multi direction earthquake motions such as horizontal and vertical earthquake. Firstaly, static analysis is used for fixed base condition due to gravity unfactored load to design the helical spring. Secondly spectrum analysis is only utilized for horizontal earthquake and time history analysis is used for both horizontal earthquake and vertical earthquake respectively. Finally, comparison of the analysis results as forces, displacements, drifts, accelerations and shear at various levels of building are presented. The static period of fixed base is 0.4 sec. According to the base isolated concept, base isolated period is lengthened to 0.8 sec, 1 sec and 1.2sec for design earthquake level. The results which are especially compared to base isolated (1.2 sec) and fixed base building show that the displacements of base isolated is more than fixed base building but other seismic response such as acceleration of base isolated is significantly reduced compared to fixed base as well as base isloated building has capacity for reducing of member force of the structure with fixed base building

  11. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.

    Science.gov (United States)

    Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji

    2016-12-01

    Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    International Nuclear Information System (INIS)

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  13. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions

    International Nuclear Information System (INIS)

    Mitropoulou, Chara Ch.; Lagaros, Nikos D.; Papadrakakis, Manolis

    2011-01-01

    Life-cycle cost analysis (LCCA) is an assessment tool for studying the performance of systems in many fields of engineering. In earthquake engineering LCCA demands the calculation of the cost components that are related to the performance of the structure in multiple earthquake hazard levels. Incremental static and dynamic analyses are two procedures that can be used for estimating the seismic capacity of a structural system and can therefore be incorporated into the LCCA methodology. In this work the effect of the analysis procedure, the number of seismic records imposed, the performance criterion used and the structural type (regular or irregular) is investigated, on the life-cycle cost analysis of 3D reinforced concrete structures. Furthermore, the influence of uncertainties on the seismic response of structural systems and their impact on LCCA is examined. The uncertainty on the material properties, the cross-section dimensions and the record-incident angle is taking into account with the incorporation of the Latin hypercube sampling method into the incremental dynamic analysis procedure. In addition, the LCCA methodology is used as an assessment tool for the designs obtained by means of prescriptive and performance-based optimum design methodologies. The first one is obtained from a single-objective optimization problem, where the initial construction cost was the objective to be minimized, while the second one as a two-objective optimization problem where the life-cycle cost was the additional objective also to be minimized.

  14. DRIVEN POLYSTRONG REINFORCED CONCRETE PILES AND NEW DESIGN OF PILE CAPS

    Directory of Open Access Journals (Sweden)

    I. I. Bekbasarov

    2015-01-01

    Full Text Available The paper presents constructional and technological features for manufacturing driven piles with variable strength of pile shaft. Economical efficiency of their production has been shown in the paper. The paper provides a pile cap design that ensures perception of hammer impacts with the help of lateral edges of the pile cap. Driven reinforced concrete piles which are manufactured from three shaft sections having various strength have been proposed in the paper. Material strength (concrete grade and diameter of bars and length of shaft sections are given on a case by case basis in accordance with nature and rate of stresses in piles during their driving process. Manufacturing of polystrong piles provides an opportunity to select them for a particular construction site with due account of their preservation during driving process.A pile cap has been developed that as opposed to existing analogous designs makes it possible to transmit impact efforts from a hammer to the pile through lateral surface of its head part. The pile cap provides the possibility to increase an area for perception of hammer impact efforts by the pile and in doing so it is possible significantly to reduce a damage risk and destruction of pile concrete during its driving. Application of polystrong piles and their driving with the help of new pile cap are considered as a basis for defect-free and resource-saving technology for pile foundations in the construction.

  15. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    Science.gov (United States)

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  16. Oxytocin attenuates trust as a subset of more general reinforcement learning, with altered reward circuit functional connectivity in males.

    Science.gov (United States)

    Ide, Jaime S; Nedic, Sanja; Wong, Kin F; Strey, Shmuel L; Lawson, Elizabeth A; Dickerson, Bradford C; Wald, Lawrence L; La Camera, Giancarlo; Mujica-Parodi, Lilianne R

    2018-07-01

    Oxytocin (OT) is an endogenous neuropeptide that, while originally thought to promote trust, has more recently been found to be context-dependent. Here we extend experimental paradigms previously restricted to de novo decision-to-trust, to a more realistic environment in which social relationships evolve in response to iterative feedback over twenty interactions. In a randomized, double blind, placebo-controlled within-subject/crossover experiment of human adult males, we investigated the effects of a single dose of intranasal OT (40 IU) on Bayesian expectation updating and reinforcement learning within a social context, with associated brain circuit dynamics. Subjects participated in a neuroeconomic task (Iterative Trust Game) designed to probe iterative social learning while their brains were scanned using ultra-high field (7T) fMRI. We modeled each subject's behavior using Bayesian updating of belief-states ("willingness to trust") as well as canonical measures of reinforcement learning (learning rate, inverse temperature). Behavioral trajectories were then used as regressors within fMRI activation and connectivity analyses to identify corresponding brain network functionality affected by OT. Behaviorally, OT reduced feedback learning, without bias with respect to positive versus negative reward. Neurobiologically, reduced learning under OT was associated with muted communication between three key nodes within the reward circuit: the orbitofrontal cortex, amygdala, and lateral (limbic) habenula. Our data suggest that OT, rather than inspiring feelings of generosity, instead attenuates the brain's encoding of prediction error and therefore its ability to modulate pre-existing beliefs. This effect may underlie OT's putative role in promoting what has typically been reported as 'unjustified trust' in the face of information that suggests likely betrayal, while also resolving apparent contradictions with regard to OT's context-dependent behavioral effects. Copyright

  17. Nonlinear Buckling Analysis of Functionally Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational Constraints under Uniform Radial Load.

    Science.gov (United States)

    Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang

    2018-05-28

    The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.

  18. Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs

    International Nuclear Information System (INIS)

    Lanzara, G; Chang, F-K

    2009-01-01

    The silver paste electrode of piezoelectric (PZT) ceramic discs has been shown to produce a weak interface bond between a bare PZT and its paste coating under a peeling force. In this work, an investigation was conducted to reinforce the bond with a high density array of oriented carbon nanotube nano-electrodes (CNTs-NEA), between a bare PZT ceramic and a metal substrate. The ensuing design and fabrication of a carbon-nanotube-coated piezoelectric disc (CPZT) is presented along with a study of the bondline integrity of a CPZT mounted on a hosting structure. The CPZT has its electrode silver paste coating replaced with a high density array of CNTs-NEA. Mechanical tests were performed to characterize the shear strength of the bondline between CPZT discs and the substrate. The test results were compared with shear strengths of the bondlines made of pure non-conductive adhesive and adhesive with randomly mixed CNTs. The comparison showed the oriented CNT coating on PZTs could significantly enhance the interfacial shear strength. Through the microscopic examination, it was evident that the ratio between the CNT length (Lc) and the bond thickness (H) significantly influenced the bond strength of CPZT discs. Three major interface microstructure types and their corresponding failure modes for specific Lc/H values were identified. The study also showed that failure did not occur along the interface between the PZT ceramic element and the CNT coating

  19. Asset Management Business Model for Design, Realization, and Maintenance of Fibre Reinforced Polymer Bridges

    Directory of Open Access Journals (Sweden)

    Rizal Sebastian

    2013-01-01

    Full Text Available This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7 titled Trans-IND and PANTURA. FRP has emerged as a real alternative structural material based on various sustainability considerations, among others the reduced life-cycle cost due to less maintenance needs, longer lifetime, and easiness to repair, replace, or recycle the components. The Trans-IND research project aims to develop and demonstrate new industrialized processes to use FRP for civil infrastructure projects at a large scale. In order to be cost effective, a new value-chain strategy for the design, realization, and maintenance of FRP bridges is required to replace the fragmented supply chain and the one-off approach to a construction project. This paper focuses on the development of new business models based on asset management strategy, which covers the entire demand and supply chains. Research on new business models is supported by the insight into the market and regulatory frameworks in different EU countries. This is based on field surveys across the EU that have been carried out as a part of the Trans-IND and PANTURA collaborative research projects.

  20. Cognitive control and motivation in children with ADHD: How reinforcement interacts with the assessment and training of executive functioning

    NARCIS (Netherlands)

    Dovis, S.

    2014-01-01

    This dissertation focuses on the interaction between two neuropsychological processes that are proposed to play a pivotal role in explaining the problems of children with ADHD: executive functioning (EF) and motivation. We examined the effects of reinforcement on assessment and training of EF in

  1. Teacher Implementation of Trial-Based Functional Analysis and Differential Reinforcement of Alternative Behavior for Students with Challenging Behavior

    Science.gov (United States)

    Flynn, Susan D.; Lo, Ya-yu

    2016-01-01

    The purpose of this study was to examine the effects of a training package on three middle school special education teachers' accurate implementation of trial-based functional analysis (TBFA) and differential reinforcement of alternative behavior (DRA) with their students with autism spectrum disorders or emotional and behavioral disorders in the…

  2. Generic Automated Multi-function Finger Design

    Science.gov (United States)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  3. Effort-Based Reinforcement Processing and Functional Connectivity Underlying Amotivation in Medicated Patients with Depression and Schizophrenia.

    Science.gov (United States)

    Park, Il Ho; Lee, Boung Chul; Kim, Jae-Jin; Kim, Joong Il; Koo, Min-Seung

    2017-04-19

    Amotivation is a common phenotype of major depressive disorder and schizophrenia, which are clinically distinct disorders. Effective treatment targets and strategies can be discovered by examining the dopaminergic reward network function underlying amotivation between these disorders. We conducted an fMRI study in healthy human participants and medicated patients with depression and schizophrenia using an effort-based reinforcement task. We examined regional activations related to reward type (positive and negative reinforcement), effort level, and their composite value, as well as resting-state functional connectivities within the meso-striatal-prefrontal pathway. We found that integrated reward and effort values of low effort-positive reinforcement and high effort-negative reinforcement were behaviorally anticipated and represented in the putamen and medial orbitofrontal cortex activities. Patients with schizophrenia and depression did not show anticipation-related and work-related reaction time reductions, respectively. Greater amotivation severity correlated with smaller work-related putamen activity changes according to reward type in schizophrenia and effort level in depression. Patients with schizophrenia showed feedback-related putamen hyperactivity of low effort compared with healthy controls and depressed patients. The strength of medial orbitofrontal-striatal functional connectivity predicted work-related reaction time reduction of high effort negative reinforcement in healthy controls and amotivation severity in both patients with schizophrenia and those with depression. Patients with depression showed deficient medial orbitofrontal-striatal functional connectivity compared with healthy controls and patients with schizophrenia. These results indicate that amotivation in depression and schizophrenia involves different pathophysiology in the prefrontal-striatal circuitry. SIGNIFICANCE STATEMENT Amotivation is present in both depression and schizophrenia

  4. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    Science.gov (United States)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those

  5. Chemical Design of Functional Nanomaterials

    DEFF Research Database (Denmark)

    Egeblad, Kresten

    This thesis deals with a very specific class of functional nanomaterials known as mesoporous zeolites. Zeolites are a class of crystalline aluminosilicate minerals characterized by featuring pores or cavities of molecular dimensions as part of their crystal structure. Mesoporous zeolites are zeol...

  6. Mechanical Behavior of Nanostructured Hybrids Based on Poly(Vinyl Alcohol/Bioactive Glass Reinforced with Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    H. S. Mansur

    2012-01-01

    Full Text Available This study reports the synthesis and characterization of novel tridimensional porous hybrids based on PVA combined with bioactive glass and reinforced by chemically functionalized carbon nanotubes (CNT for potential use in bone tissue engineering. The functionalization of CNT was performed by introducing carboxylic groups in multiwall nanotubes. This process aimed at enhancing the affinity of CNTs with the water-soluble PVA polymer derived by the hydrogen bonds formed among alcohol (PVA and carboxylic groups (CNT–COOH. In the sequence, the CNT–COOH (0.25 wt% were used as the nanostructure modifier for the hybrid system based on PVA associated with the bioactive glass (BaG. The mechanical properties of the nanostructured hybrids reinforced with CNT–COOH were evaluated by axial compression tests, and they were compared to reference hybrid. The averaged yield stresses of macroporous hybrids were (2.3 ± 0.9 and (4.4 ± 1.0 MPa for the reference and the CNT reinforced materials, respectively. Moreover, yield strain and Young's modulus were significantly enhanced by about 30% for the CNT–COOH hybrids. Hence, as far as the mechanical properties are concerned, the results have clearly showed the feasibility of utilizing these new hybrids reinforced with functionalized CNT in repairing cancellous bone tissues.

  7. Designing pedagogy incorporating executive function.

    Science.gov (United States)

    Wasserman, Theodore

    2013-01-01

    The National Academy of Neuropsychology defines clinical neuropsychology as "a sub-field of psychology concerned with the applied science of brain-behavior relationships. Clinical neuropsychologists use this knowledge in the assessment, diagnosis, treatment, and/or rehabilitation of patients across the lifespan with neurological, medical, neurodevelopmental and psychiatric conditions, as well as other cognitive and learning disorders" (National Academy of Neuropsychology, 2011 ). Pediatric neuropsychologists have long been concerned about another area of functionality, making their recommendations educationally relevant. This article describes accommodated metacognitive instruction, a pedagogy based on cognitive neuropsychological principles of learning and used to instruct college faculty on a methodology for teaching in all-inclusive environments.

  8. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    Science.gov (United States)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  9. Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI.

    Science.gov (United States)

    Carr, Katelyn A; Lin, Henry; Fletcher, Kelly D; Sucheston, Lara; Singh, Prashant K; Salis, Robbert J; Erbe, Richard W; Faith, Myles S; Allison, David B; Stice, Eric; Epstein, Leonard H

    2013-06-01

    Food reinforcement, or the motivation to eat, has been associated with increased energy intake, greater body weight, and prospective weight gain. Much of the previous research on the reinforcing value of food has focused on the role of dopamine, but it may be worthwhile to examine genetic polymorphisms in the serotonin and opioid systems as these neurotransmitters have been shown to be related to reinforcement processes and to influence energy intake. We examined the relationship among 44 candidate genetic polymorphisms in the dopamine, serotonin, and opioid systems, as well as food reinforcement and body mass index (BMI) in a sample of 245 individuals. Polymorphisms in the monoamine oxidase A (MAOA-LPR) and serotonin receptor 2A genes (rs6314) moderated the effect of food reinforcement on BMI, accounting for an additional 5-10% variance and revealed a potential role of the single nucleotide polymorphism, rs6314, in the serotonin 2A receptor as a differential susceptibility factor for obesity. Differential susceptibility describes a factor that can confer either risk or protection depending on a second variable, such that rs6314 is predictive of both high and low BMI based on the level of food reinforcement, while the diathesis stress or dual-gain model only influences one end of the outcome measure. The interaction with MAOA-LPR better fits the diathesis stress model, with the 3.5R/4R allele conferring protection for individuals low in food reinforcement. These results provide new insight into genes theoretically involved in obesity, and support the hypothesis that genetics moderate the association between food reinforcement and BMI. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Autoshaping the pigeon's gape response: acquisition and topography as a function of reinforcer type and magnitude.

    Science.gov (United States)

    Allan, R W; Zeigler, H P

    1994-09-01

    The pigeon's key-pecking response is experimentally dissociable into transport (head movement) and gape (jaw movement) components. During conditioning of the key-pecking response, both components come under the control of the conditioned stimulus. To study the acquisition of gape conditioned responses and to clarify the contribution of unconditioned stimulus (reinforcer) variables to the form of the response, gape and key-contact responses were recorded during an autoshaping procedure and reinforcer properties were systematically varied. One group of 8 pigeons was food deprived and subgroups of 2 birds each were exposed to four different pellet sizes as reinforcers, each reinforcer signaled by a keylight conditioned stimulus. A second group was water deprived and received water reinforcers paired with the conditioned stimulus. Water- or food-deprived control groups received appropriate water or food reinforcers that were randomly delivered with respect to the keylight stimulus. Acquisition of the conditioned gape response frequently preceded key-contact responses, and gape conditioned responses were generally elicited at higher rates than were key contacts. The form of the conditioned gape was similar to, but not identical with, the form of the unconditioned gape. The gape component is a critical topographical feature of the conditioned key peck, a sensitive measure of conditioning during autoshaping, and an important source of the observed similarities in the form of conditioned and consummatory responses.

  11. Cyclic behavior of non-seismically designed interior reinforced concrete beam-column connections

    Directory of Open Access Journals (Sweden)

    Amorn Pimanmas

    2008-05-01

    Full Text Available This paper presents a test of non-seismically detailed reinforced concrete beam-column connections under reversedcyclic load. The tested specimens represented those of the actual mid-rise reinforced concrete frame buildings, designedaccording to the non-seismic provisions of the ACI building code. The evaluation of 10 existing reinforced concrete frameswas conducted to identify key structural and geometrical indices. It was found that there existed correlation VS structuraland geometrical characteristics and the column tributary area. Hence, the column tributary area was chosen as a parameterfor classifying the specimens. The test results showed that specimens representing small and medium column tributary areafailed by brittle joint shear, while specimen representing large column tributary area failed by ductile flexure, even thoughno ductile seismic details were provided.

  12. Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis

    Directory of Open Access Journals (Sweden)

    G. P. PELLIZZER

    Full Text Available AbstractThis work aims to study the mechanical effects of reinforcement's corrosion in hyperstatic reinforced concrete beams. The focus is the probabilistic determination of individual failure scenarios change as well as global failure change along time. The limit state functions assumed describe analytically bending and shear resistance of reinforced concrete rectangular cross sections as a function of steel and concrete resistance and section dimensions. It was incorporated empirical laws that penalize the steel yield stress and the reinforcement's area along time in addition to Fick's law, which models the chloride penetration into concrete pores. The reliability theory was applied based on Monte Carlo simulation method, which assesses each individual probability of failure. The probability of global structural failure was determined based in the concept of failure tree. The results of a hyperstatic reinforced concrete beam showed that reinforcements corrosion make change into the failure scenarios modes. Therefore, unimportant failure modes in design phase become important after corrosion start.

  13. Non-linear finite element analyses applicable for the design of large reinforced concrete structures

    NARCIS (Netherlands)

    Engen, M; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik

    2017-01-01

    In order to make non-linear finite element analyses applicable during assessments of the ultimate load capacity or the structural reliability of large reinforced concrete structures, there is need for an efficient solution strategy with a low modelling uncertainty. A solution strategy comprises

  14. Asset management business model for design, realization, and maintenance of fibre reinforced polymer bridges

    NARCIS (Netherlands)

    Sebastian, R.

    2013-01-01

    This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP) for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7) titled Trans-IND and PANTURA. FRP has

  15. High performance fiber reinforced concrete : Progress in knowledge and design codes

    NARCIS (Netherlands)

    Walraven, J.C.

    2009-01-01

    High performance fiber reinforced concrete is developing quickly to a modern structural material with a high potential. As for instance testified by the recent symposium on HPFRC in Kassel, Germany (April 2008) the number of structural applications increases. At this moment studies are carried out

  16. Evaluation of the corrosion of reinforced concrete designed for low and medium activity level radioactive waste containers

    International Nuclear Information System (INIS)

    Duffo, G.S.; Arva, E.A; Schulz, F.M; Vasquez, D.R

    2010-01-01

    The National Atomic Energy Commission of Argentina (CNEA) is responsible for the design and construction of a monolithic repository for the final disposal of low and medium level radioactive wastes. In order to ensure the protection of people and the environment, the useful life of the repository should be 300 years and the conceptual design selected is based on the use of multiple, independent and redundant barriers. These barriers consist mainly of reinforced concrete. This work aims to establish a methodology to determine the concrete's useful life, evaluating parameters of interest using chemical and electrochemical techniques. For this purpose, reinforced concrete test pieces were made with two formulations - blast furnace cement (BFC) and with BFC plus silica fume admixture (BFC+SF)- and in each of the test pieces segments of reinforcement were included. The development over time of the corrosion potential and speed were evaluated, together with the resistivity of the concrete in the test pieces exposed to the laboratory environment, with an average relative humidity of 50%, a condition that favors the carbonation process. The diffusion coefficients of aggressive species, such as chloride and carbon dioxide, were also determined in test pieces made with the two formulations. In the test pieces exposed to the laboratory environment the reinforcements embedded in the BFC+SF concrete showed a lower corrosion speed compared to the BFC concrete. These results agree with the lower values for the speeds of carbonation and of chloride diffusion that show that the concrete with BFC+SF is more resistant to incoming aggressive species compared with the BFC. A container prototype for mid-level radioactive wastes was built and outfitted with instruments in order to monitor the development over time of the corrosion speed of the reinforcement rods by using corrosion sensors developed by the group. The prototype, exposed to atmospheric conditions, was manufactured with BFC

  17. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han; Yang, Yong Liang; Bao, Fan; Fink, Daniel; Yan, Dongming; Wonka, Peter; Mitra, Niloy J.

    2016-01-01

    of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications

  18. A new concept for design of fibered high strength reinforced concrete elements using ultimate limit state method

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.

    2013-01-01

    Highlights: • A new concept for design of two layer reinforced concrete beams is proposed. • Concrete class and section height of bending elements are calculated. • Good correlation between experimental and numerical results is obtained. - Abstract: Existing methods for design of reinforced concrete (RC) bending elements in the ultimate limit state are based on calculating the compressed zone depth of the section. At the same time, in isotropic materials the neutral axis of the bending section crosses its center of gravity (CG). It was proved that if a neutral axis of bending RC element crosses the section’s CG, the total reinforcement section (A s +A s ′ ) is minimal. Therefore the compressed zone depth should be selected so that under the design load the neutral axis should pass through the section’s CG. In this case the compressed zone depth that is unknown in existing design methods becomes a known value. This concept enables to select other parameters as unknowns (bending element concrete class, section height, etc.). It is especially important for design of modern high strength concrete (HSC) bending elements, for which the concrete class can be calculated, but not selected. It is demonstrated that applying the proposed concept enables to assume that the neutral axis location is constant for all stages of stress - strain state in bending. As HSC is rather brittle, stresses diagram in the compressed section zone has a form close to triangular. However, adding steel fibers allows improving the elastic–plastic properties of HSC. In this case a rectangular stresses diagram can be used, as for normal strength concrete. Consequently, the proposed concept yields more economical solutions and allows more effective using the HSC properties

  19. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  20. Structural and functional properties of designed globins

    Indian Academy of Sciences (India)

    De novo design of artificial proteins is an essential approach to elucidate the principles of protein architecture and to understand specific functions of natural proteins and also to yield novel molecules for medical and industrial aims. We have designed artificial sequences of 153 amino acids to fit the main-chain framework of ...

  1. Liquid Observation Well (LOW) Functional Design

    International Nuclear Information System (INIS)

    Paul, B.

    1995-01-01

    This document presents the Functional Design Criteria for installing Liquid Observation Wells (LOWS) into single-shell tanks containing either ferrocyanide or organic waste. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment

  2. Experimental study of the leakage rate through cracked reinforced concrete wall elements for defining the functional failure criteria of containment buildings

    International Nuclear Information System (INIS)

    Choun, Young Sun; Cho, Nam So

    2004-01-01

    Containment buildings in nuclear power plants should maintain their structural safety as well as their functional integrity during an operation period. To maintain the functional integrity, the wall and dome of the containment buildings have to maintain their air tightness under extreme loading conditions such as earthquakes, missile impact, and severe accidents. For evaluating the functional failure of containments, it is important to predict the leak amount through cracked concrete walls. The leakage through concrete cracks has been studied since 1972. Buss examined the flow rate of air through a pre-existing crack in a slab under air pressure. Rizkalla el al. initiated an experimental study for the leakage of prestressed concrete building segments under uniaxial and biaxial loadings to simulate the loading condition of containment buildings under an internal pressure. Recently, Salmon el al. initiated an experimental program for determining the leak rates in typical reinforced concrete shear walls subjected to beyond design basis earthquakes. This study investigates the cracking behavior of reinforced concrete containment wall elements under a uniaxial tension and addresses the outline of the leakage test for unlined containment wall elements

  3. The design of bonded reinforcement for thermal stresses in prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Kotulla, B.; Hansson, V.

    1977-01-01

    This paper deals with examples of thermal loadings where instationary growth of tensile zones and redistribution of stresses by cracking are of importance. Temperatures produce, in addition to prestressing and internal pressure, the most important stresses in a prestressed concrete reactor pressure vessel. Characteristic of thermal stresses is that they are influenced to a large extent by creep of concrete and that they influence stress redistributions by temperature dependent creep data. Computations show that during the first instationary heating process of the vessel stresses are reduced by creep effects to about fifty percent of the values of the stationary elastic case at the hot face. With a following cooling, creep effects are generally much less, so this case may produce tensile stresses on the internal face of the wall which lead to cracking of the concrete. Tensile stresses first occur due to the instationary growth of the temperature field in a narrow zone near the liner. If outside this zone compressive stresses exist due to prestressing then crack spreading is limited and restraint by the parts of the wall under compression causes crack distribution even without reinforcement in this zone. Growth of cracks with the instationary spreading of tensile zones according to temperature development was calculated. These calculations take into account discrete cracks, reinforcement and different assumptions for tensile strength. Reinforcement of small diameter near the surface has the best influence on crack spacing. Calculations show that for the stationary state of cooling the forces in the reinforcement may be as low as twenty to thirty percent of the tensile force not taking into account cracking of the concrete

  4. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  5. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  6. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Directory of Open Access Journals (Sweden)

    Haolong Shangguan

    2018-03-01

    Full Text Available 3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  7. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Patricia A. Saliba

    2016-01-01

    Full Text Available The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding γ-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite with the development of interfacial reactions between organic-inorganic and inorganic-inorganic components was observed. These hybrid nanostructures produced better integration between nanoparticles and epoxy matrix and improved mechanical properties that are expected to enhance the overall performance of the system against underwater corrosion.

  8. How to take absorptive surfaces into account when designing outdoor sound reinforcement systems

    DEFF Research Database (Denmark)

    Rasmussen, Karsten bo

    1996-01-01

    When sound reinforcement systems are used outdoors, absorptive surfaces are usually present along the propagation path of the sound. This may lead to a very significant colouration of the spectrum received by the audience. The colouration depends on the location and directivity of the loudspeaker......, the nature of the absorptive surface (eg grass) and the location of the audience. It is discussed how this effect may be calculated and numerical examples are shown. The results show a significant colouration and attenuation of the sound due to grass-covered surfaces....

  9. Aesthetics and function in web design

    DEFF Research Database (Denmark)

    Thorlacius, Lisbeth

    2004-01-01

    Since the origin of the web site in the first part of the 90’s there has been discussions regarding the relative weighting of function and aesthetics. A renewed discussion is needed, however, to clarify what exactly is meant by aesthetics in web design. Moreover the balance between aesthetics...... and function ought to be considered more in respect to the target group and the genre of web site....

  10. Organization Design for the Newly Established Function

    OpenAIRE

    Lehtonen, Antti

    2017-01-01

    This Thesis focuses on organization design of the case organization that is needed due to the case company re-organizing its processes. The change from a matrix organization to a line management organization has been implemented but the processes, functions, roles, responsibilities and hierarchical structure still need to be defined for one particular function. The study is conducted by using Action research approach. The data was collected in three phases. The most important data collect...

  11. Application of limit state design to outdoor important civil engineering reinforced concrete structures in nuclear power plant

    International Nuclear Information System (INIS)

    1992-01-01

    As for the basic concept and the procedure of the aseismatic design of nuclear power structures, it is the present state to verify the safety by allowable stress design method, but the necessity of considering the limit state in the safety verification of these structures has been pointed out. For the purpose of clarifying the technique and procedure when limit state design method is applied to the aseismatic design of important civil engineering structures in outdoors of nuclear power stations and contributing to the rationalization of aseismatic design, aiming at completing the safety verification manual for designers, as the research on the standardization of the aseismatic design of A class civil engineering structures considering the limit state, the deliberation of the contents of research has been carried out. The outline of the manual expected to be published soon is described. The items of research, the constitution of the manual, the features of the manual, the basic concept of safety verification, the calculation of design seismic load, the method of verification for reinforced concrete structures and the verifying experiment are described. (K.I.)

  12. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes

    International Nuclear Information System (INIS)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-01-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [es

  13. Theoretical and practical aspects of improving the durability of steel reinforcement in transport designs, using passivation and plasticizing chemical additives

    Science.gov (United States)

    Velichko, Evgenij; Talipov, Linar

    2017-10-01

    The article deals with the problem of steel reinforcement corrosion in reinforced concrete structures exposed to aggressive media, in particular in reinforced concrete construction of transport infrastructure, in snowy areas, and subject to the influence of chlorides contained in applied deicing agents. Basic schemes for preventing the reinforcement corrosion in reinforced-concrete structures have been considered and analyzed. Prospects of primary protection against corrosion of reinforcement by introducing chemical additives with plasticizing/passivating action in a concrete mixture with mixing water have been considered in detail. The physical/chemical mechanism of the protective action of a superplasticizer together with a passivator has been highlighted.

  14. VDTT removal system functional design criteria

    International Nuclear Information System (INIS)

    Legare, D.E.

    1996-01-01

    Two Velocity Density Temperature Trees (H-2-815016) are to be removed from risers 14A and 1B of tank 241-SY-101. This document provides functional design criteria for the removal system. The removal system consists of a Liquid Removal Tool, Flexible Receiver (H-2-79216), Burial Container, Transport Trailers, and associated equipment

  15. Design, Form, and Function in Art Education

    Science.gov (United States)

    Vande Zande, Robin

    2007-01-01

    Human beings are influenced by design every day through continuous contact with functional form in and through visual culture. They encounter a continuous current of such new styles as clothing fashions, architecture, furniture and advertisements. The American pursuit of happiness has become related to an increasing flow of products and…

  16. Molecular designing of nanoparticles and functional materials

    Directory of Open Access Journals (Sweden)

    Ignjatović Nenad L.

    2017-01-01

    Full Text Available The interdisciplinary research team implemented the program titled “Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them” (MODENAFUNA, between 2011 and 2016, gaining new knowledge significant to the further improvement of nanomaterials and nanotechnologies. It gathered under its umbrella six main interrelated topics pertaining to the design and control of morphological and physicochemical properties of nanoparticles and functional material based on them using new methods of synthesis and processing: 1 inorganic nanoparticles, 2 cathode materials for lithium-ion batteries, 3 functional ceramics with improved electrical and optical properties, 4 full density nanostructured calcium phosphate and functionally-graded materials, 5 nano-calcium phosphate in bone tissue engineering and 6 biodegradable micro- and nano-particles for the controlled delivery of medicaments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45004: Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them

  17. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han

    2016-07-11

    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.

  18. Optimal Design for Hybrid Ratio of Carbon/Basalt Hybrid Fiber Reinforced Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    XU Hong

    2017-08-01

    Full Text Available The optimum hybrid ratio range of carbon/basalt hybrid fiber reinforced resin composites was studied. Hybrid fiber composites with nine different hybrid ratios were prepared before tensile test.According to the structural features of plain weave, the unit cell's performance parameters were calculated. Finite element model was established by using SHELL181 in ANSYS. The simulated values of the sample stiffness in the model were approximately similar to the experimental ones. The stress nephogram shows that there is a critical hybrid ratio which divides the failure mechanism of HFRP into single failure state and multiple failure state. The tensile modulus, strength and limit tensile strain of HFRP with 45% resin are simulated by finite element method. The result shows that the tensile modulus of HFRP with 60% hybrid ratio increases by 93.4% compared with basalt fiber composites (BFRP, and the limit tensile strain increases by 11.3% compared with carbon fiber composites(CFRP.

  19. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages

    Science.gov (United States)

    Kumar, G. C. Mohan

    2018-04-01

    Research progress in materials science for bio-based materials for cartilage repair or supportive to host tissue has become a fashionable, worldwide. Few efforts in biomedical engineering has attempted in the development of newer biomaterials successfully. Bio ceramics, a class of materials been used in particulate form as a reinforcement with polymers those ensure its biocompatibility. Every artificial biomedical system has to meet the minimum in Vitro requirements for successful application. Equally the biological behavior of normal and diseased tissues is also essential to understand the artificial systems to human body.

  20. Design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes. Final report

    International Nuclear Information System (INIS)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of al bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This attachment contains design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes

  1. Use of the Materials Genome Initiative (MGI approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-07-01

    Full Text Available New materials are traditionally developed using costly and time-consuming trial-and-error experimental efforts. This is followed by an even lengthier material-certification process. Consequently, it takes 10 to 20 years before a newly-discovered material is commercially employed. An alternative approach to the development of new materials is the so-called materials-by-design approach within which a material is treated as a complex hierarchical system, and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools and available material databases. In the present work, the materials-by-design approach is utilized to design a grade of fiber-reinforced (FR SiC/SiC ceramic matrix composites (CMCs, the type of materials which are currently being used in stationary components, and are considered for use in rotating components, of the hot sections of gas-turbine engines. Towards that end, a number of mathematical functions and numerical models are developed which relate CMC constituents’ (fibers, fiber coating and matrix microstructure and their properties to the properties and performance of the CMC as a whole. To validate the newly-developed materials-by-design approach, comparisons are made between experimentally measured and computationally predicted selected CMC mechanical properties. Then an optimization procedure is employed to determine the chemical makeup and processing routes for the CMC constituents so that the selected mechanical properties of the CMCs are increased to a preset target level.

  2. Strategies for designing novel functional meat products.

    Science.gov (United States)

    Arihara, Keizo

    2006-09-01

    In recent years, much attention has been paid to physiological functions of foods due to increasing concerns for health. Although there has been limited information of physiological functions of meat until recently, several attractive meat-based bioactive compounds, such as carnosine, anserine, l-carnitine, conjugated linoleic acid, have been studied. Emphasizing these activities is one possible approach for improving the health image of meat and developing functional meat products. This article provides potential benefits of representative meat-based bioactive compounds on human health and an overview of meat-based functional products. Strategies for designing novel functional meat products utilizing bioactive peptides and/or probiotic bacteria, is also discussed. This article focuses particularly on the possibility of meat protein-derived bioactive peptides, such as antihypertensive peptides. There are still some hurdles in developing and marketing novel functional meat products since such products are unconventional and consumers in many countries recognize meat and meat products to be bad for health. Along with accumulation of scientific data, there is an urgent need to inform consumers of the exact functional value of meat and meat products including novel functional foods.

  3. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  4. Miniemulsion copolymerization of (methacrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

    Directory of Open Access Journals (Sweden)

    Bertha T. Pérez-Martínez

    2017-06-01

    Full Text Available Film forming, stable hybrid latexes made of methyl metacrylate (MMA, butyl acrylate (BA and 2-hydroxyethyl methacrylate (HEMA copolymer reinforced with modified multiwalled carbon nanotubes (MWCNTs were synthesized by in situ miniemulsion polymerization. The MWCNTs were pretreated by an air sonication process and stabilized by polyvinylpyrrolidone. The presence of the MWCNTs had no significant effect on the polymerization kinetics, but strongly affected the polymer characteristics (Tg and insoluble polymer fraction. The performance of the in situ composites was compared with that of the neat polymer dispersion as well as with those of the polymer/MWCNT physical blends. The in situ composites showed the presence of an additional phase likely due to the strong interaction between the polymer and MWNCTs (including grafting that reduced the mobility of the polymer chains. As a result, a substantial increase of both the storage and the loss moduli was achieved. At 60 °C, which is above the main transition region of the polymer, the in situ composites maintained the reinforcement, whereas the blends behaved as a liquid-like material. This suggests the formation of a 3D network, in good agreement with the high content of insoluble polymer in the in situ composites.

  5. Analysis of Social Variables when an Initial Functional Analysis Indicates Automatic Reinforcement as the Maintaining Variable for Self-Injurious Behavior

    Science.gov (United States)

    Kuhn, Stephanie A. Contrucci; Triggs, Mandy

    2009-01-01

    Self-injurious behavior (SIB) that occurs at high rates across all conditions of a functional analysis can suggest automatic or multiple functions. In the current study, we conducted a functional analysis for 1 individual with SIB. Results indicated that SIB was, at least in part, maintained by automatic reinforcement. Further analyses using…

  6. The design and function of birds' nests.

    Science.gov (United States)

    Mainwaring, Mark C; Hartley, Ian R; Lambrechts, Marcel M; Deeming, D Charles

    2014-10-01

    All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct trade-off between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds' nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds' nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s.

  7. The design and function of birds' nests

    Science.gov (United States)

    Mainwaring, Mark C; Hartley, Ian R; Lambrechts, Marcel M; Deeming, D Charles

    2014-01-01

    All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct trade-off between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds' nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds' nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s. PMID:25505520

  8. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan

    2007-01-01

    Wireless sensor networks are networked embedded computer systems with stringent power, performance, cost and form-factor requirements along with numerous other constraints related to their pervasiveness and ubiquitousness. Therefore, only a systematic design methdology coupled with an efficient...... test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques...

  9. [Effect of heat-reinforcing needling combined with rehabilitation training on the motor function of ischemic stroke patients].

    Science.gov (United States)

    Zhang, Ning-xia; Liu, Gui-zhen; Huang, Tai-quan; Li, Wei-jiang; Luo, Jia-qi; Liu, Wei-wei; Huang, Yong; Wang, Ai-min

    2009-12-01

    To observe the therapeutic effect of heat-reinforcing needling combined with modem rehabilitation training on the motor function of ischemic stroke patients. Fifty case of ischemic stroke patients were randomly divided into rehabilitation (Rehab, n=40) and acupuncture (Acup) + Rehab (n=40) groups. Heat-reinforcing needling was applied to Jianyu (LI 15), Quchi (LI 11), Hegu (LI 14), Zusanli (ST 36), Yanglingquan (GB 34), Yinlingquan (SP 9) and Sanyinjiao (SP 6), once daily for 3 weeks. Rehabilitation training including healthy limb and joint movement was conducted, once daily for 3 weeks. The patient's neurological impairment degree and the motor function (Fugl-Meyer index) were evaluated before and after the treatment. After the treatment, of the each 40 cases in Rehab and Acup + Rehab groups, 10 (25.0%) and 17 (42.5%) experienced marked improvement in their symptoms, 17 (42.5%) and 18 (45.0%) had improvement, 13 (32.5%) and 5 (12.5%) failed, with the effective rates being 67.5% and 87.5% respectively. The therapeutic effect of Acup + Rehab group was markedly superior to that of Rehab group (P0.05). After the treatment, the scores of neurological impairment degree of two groups both decreased significantly (PRehab group was significantly lower than that of Rehab group (PRehab group were obviously higher than those of Rehab group (Pstroke patients.

  10. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.

    Science.gov (United States)

    Tamosiunaite, Minija; Asfour, Tamim; Wörgötter, Florentin

    2009-03-01

    Reinforcement learning methods can be used in robotics applications especially for specific target-oriented problems, for example the reward-based recalibration of goal directed actions. To this end still relatively large and continuous state-action spaces need to be efficiently handled. The goal of this paper is, thus, to develop a novel, rather simple method which uses reinforcement learning with function approximation in conjunction with different reward-strategies for solving such problems. For the testing of our method, we use a four degree-of-freedom reaching problem in 3D-space simulated by a two-joint robot arm system with two DOF each. Function approximation is based on 4D, overlapping kernels (receptive fields) and the state-action space contains about 10,000 of these. Different types of reward structures are being compared, for example, reward-on- touching-only against reward-on-approach. Furthermore, forbidden joint configurations are punished. A continuous action space is used. In spite of a rather large number of states and the continuous action space these reward/punishment strategies allow the system to find a good solution usually within about 20 trials. The efficiency of our method demonstrated in this test scenario suggests that it might be possible to use it on a real robot for problems where mixed rewards can be defined in situations where other types of learning might be difficult.

  11. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  12. Optimal design of variable-stiffness fiber-reinforced composites using cellular automata

    NARCIS (Netherlands)

    Setoodeh, S.

    2005-01-01

    Growing number of applications of composites materials in aerospace and naval structures along with advancements in manufacturing technologies demand continuous innovations in design of composite structures. In the traditional design of composite laminates, fiber orientation angles are constant for

  13. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design

    International Nuclear Information System (INIS)

    Firmo, J.P.; Arruda, M.R.T.; Correia, J.R.; Tiago, C.

    2015-01-01

    Highlights: • The mechanical behaviour of partially bonded CFRP strengthened beams was modelled. • Two dimensional non-linear finite element models were developed. • Partially bonded beams can present similar flexural strength to fully bonded ones. • Relations between the bonded length and the strength reduction were proposed. • The proposed relations were used for the design of fire protection systems. - Abstract: Recent fire resistance tests on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymers (CFRP) laminates showed that it is possible to attain considerable fire endurance provided that thermal insulation is applied at the anchorage zones of the strengthening system. With such protection, although the CFRP laminate prematurely debonds in the central part of the beam, it transforms into a cable fixed at the extremities until one of the anchorage zones loses its bond strength. The main objective of this paper is to propose a simplified methodology for the design of fire protection systems for CFRP strengthened-RC beams, which is based on applying thicker insulation at the anchorage zones (promoting the above mentioned “cable behaviour”) and a thinner one at the current zone (avoiding tensile rupture of the carbon fibres). As a first step towards the validation of this methodology, finite element (FE) models were developed to simulate the flexural behaviour at ambient temperature of full-scale RC beams strengthened with CFRP laminates according to the externally bonded reinforcement (EBR) and near surface mounted (NSM) techniques, in both cases fully or partially bonded (the latter simulating the cable). The FE models were calibrated with results of 4-point bending tests on small-scale beams and then extended for different beam geometries, with spans (L) varying from 2 m to 5 m, in which the influence of the CFRP bonded length (l b ) and the loading type (point or uniformly distributed) on the strength reduction was

  14. Foundation Design for a High Bay Warehouse with a Steel Fibre Reinforced Concrete Slab

    DEFF Research Database (Denmark)

    Kasper, T.; Sørensen, Carsten Steen; Nielsen, J. B.

    2008-01-01

    . The SFRC slab is cast in 6 panels divided by free-movement joints with shear dowels. It has to be designed for closely spaced 250 kN characteristic long-term loads for complete filling of the racks. The design has been based on a German SFRC design guideline and makes use of 3D finite element soil...

  15. Space shuttle configuration accounting functional design specification

    Science.gov (United States)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  16. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Science.gov (United States)

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  17. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  18. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    Science.gov (United States)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  19. Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2010-01-01

    Full Text Available Cross-linked polystyrene (PS particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR, nitrile-butadiene rubber (NBR, and natural rubber (NR, the cross-linked PS nano-particles exhibited excellent reinforcing capabilities in all the three matrices, and the best in the SBR matrix. In comparison with that of the carbon black filled composites, another distinguished advantage of the cross-linked PS particles filled elastomer composites was found to be light weight in density, which could help to save tremendous amount of energy when put into end products.

  20. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    Science.gov (United States)

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  1. Integrated plant information technology design support functionality

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)

  2. Integrated plant information technology design support functionality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).

  3. Conceptual design of a 15T-class pulsed conductor with fiber-reinforced Nb3Sn superconductor

    International Nuclear Information System (INIS)

    Tateishi, Hiroshi; Arai, Kazuaki; Agatsuma, Koh

    1997-01-01

    We have been developing a new type of Nb 3 Sn superconductor with high elastic modulus fibers for the application of high field pulsed superconducting magnets. We call this type of conductor FRS(Fiber-Reinforced Superconductor). This paper tries to show that FRS has great potential for the construction of a 15T-class pulsed magnet, with the size of which equals to that of the central solenoid of ITER(International Thermonuclear Experimental Reactor), because each monofilamentary FRS can support the part of hoop stress under operation of the magnet. Conceptual design of a basic strand with monofilamentary FRS, construction of the first- and second- level subcable, cooling condition of CICC(Cable in conduit conductor), stability and ac losses of the conductor are discussed. (author)

  4. Design Oriented Model for the Assessment of T-Shaped Beam-Column Joints in Reinforced Concrete Frames

    Directory of Open Access Journals (Sweden)

    Antonio Bossio

    2017-12-01

    Full Text Available Beam-column joints represent very important elements of reinforced concrete (RC structures. In fact, beams and columns, at the boundary, generate internal forces acting on concrete core and on reinforcement bars with a very high gradient. To fully understand the seismic performances and the failure modes of T-shaped beam-column joints (external corner-positioned in RC structures, a simplified analytical model of joint behaviour is proposed and theoretical simulations have been performed. The model is based on the solution of a system of equilibrium equations of cracked joint portions designed to evaluate internal stresses at different values of column shear forces. The main aim of the proposed model is to identify the strength hierarchy. Limit values of different internal stresses allow us to detect the occurrence of different failure modes (namely the failure of the cracked joint, the bond failure of passing through bars, and the flexural/shear failures of columns or beams associated with column shear forces; the smaller one represents the capacity of the joint. The present work, focusing on T-shaped joints, could represent a useful tool for designers to quantify the performance of new structures or of existing ones. In fact, such a tool allows us to push an initial undesired failure mode to a more appropriate one to be evaluated. Finally, some experimental results of tests available in literature are reported, analysed, and compared to the predictions of the proposed model (by means of a worked example and of some international codes. The outcomes confirm that failure modes and corresponding joint capacities require an analytical model, like the proposed one, to be accurately predicted.

  5. Preserving SSC Design Function Using RCM Principles

    International Nuclear Information System (INIS)

    Mohammadi, K.

    2009-01-01

    Reliability-Centered Maintenance (RCM) can be defined as an approach that employs preventive, predictive, proactive, and reactive maintenance practices and strategies in an integrated manner to increase the probability that a Structure, System, or Component (SSC) will function as designed over its life cycle with optimum maintenance. The goal of RCM is to preserve the SSC intended design function at the lowest cost by developing a maintenance strategy that is supported by sound technical and economic justification. RCM has been used extensively by the aircraft, space, defense, power generation, and manufacturing industries where functional failures of SSCs can have the potential to compromise worker or public safety, cause adverse environmental impact, cause loss of production, and/or result in excessive damage to critical SSCs. This paper provides a framework for performing an RCM analysis in support of DOE Order 430.1A (Life Cycle Asset Management) and DOE Order 420.1B (Facility Safety). The influence of RCM on the various aspects of the maintenance program including the work control process is also discussed

  6. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites

    International Nuclear Information System (INIS)

    Kumar Barick, Aruna; Kumar Tripathy, Deba

    2011-01-01

    Graphical abstract: Highlights: → Preparation and characterization of TPU nanocomposite for tailor made applications. → The structural analyses were carried out by FTIR, WAXD, FESEM and HRTEM. → The thermal and dynamic mechanical properties were evaluated by TGA, DSC and DMA. → The dynamic rheological behavior was investigated by RPA in frequency sweep. → The frequency dependence of electrical properties was studied by LCR meter. - Abstract: The multi-walled carbon nanotube (MWNT) reinforced thermoplastic polyurethane (TPU) nanocomposites were prepared through melt compounding method followed by compression molding. The spectroscopic study indicated that a strong interfacial interaction was developed between carbon nanotube (CNT) and the TPU matrix in the nanocomposites. The microscopic observation showed that the CNTs were homogeneously dispersed throughout the TPU matrix well apart from a few clusters. The results from thermal analysis indicated that the glass transition temperature (T g ) and storage modulus (E') of the nanocomposites were increased with increase in CNTs content and their thermal stability were also improved in comparison with pure TPU matrix. The rheological analysis showed the low frequency plateau of shear modulus and the shear thinning behavior of the nanocomposites. The electrical behaviors of the nanocomposites are increased with increase in weight percent (wt%) of CNT loading. The mechanical properties of nanocomposites were substantially improved by the incorporation of CNTs into the TPU matrix.

  7. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations

    International Nuclear Information System (INIS)

    Gu, Haichang; Song, Gangbing; Moslehy, Yashar; Mo, Y L; Sanders, David

    2010-01-01

    In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures

  8. Reliability assessment and probability based design of reinforced concrete containments and shear walls

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1986-03-01

    This report summarizes work completed under the program entitled, ''Probability-Based Load Combinations for Design of Category I Structures.'' Under this program, the probabilistic models for various static and dynamic loads were formulated. The randomness and uncertainties in material strengths and structural resistance were established. Several limit states of concrete containments and shear walls were identified and analytically formulated. Furthermore, the reliability analysis methods for estimating limit state probabilities were established. These reliability analysis methods can be used to evaluate the safety levels of nuclear structures under various combinations of static and dynamic loads. They can also be used to generate analytically the fragility data for PRA studies. In addition to the development of reliability analysis methods, probability-based design criteria for concrete containments and shear wall structures have also been developed. The proposed design criteria are in the load and resistance factor design (LRFD) format. The load and resistance factors are determined for several limit states and target limit state probabilities. Thus, the proposed design criteria are risk-consistent and have a well-established rationale. 73 refs., 18 figs., 16 tabs

  9. Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets

    Science.gov (United States)

    Wang, Aiwen; Chen, Hongyan; Hao, Yuxin; Zhang, Wei

    2018-06-01

    Free vibration and static bending of functionally graded (FG) graphene nanoplatelet (GPL) reinforced composite doubly-curved shallow shells with three distinguished distributions are analyzed. Material properties with gradient variation in the thickness aspect are evaluated by the modified Halpin-Tsai model. Mathematical model of the simply supported doubly-curved shallow shells rests upon Hamilton Principle and a higher order shear deformation theory (HSDT). The free vibration frequencies and bending deflections are gained by taking into account Navier technique. The agreement between the obtained results and ANSYS as well as the prior results in the open literature verifies the accuracy of the theory in this article. Further, parametric studies are accomplished to highlight the significant influence of GPL distribution patterns and weight fraction, stratification number, dimensions of GPLs and shells on the mechanical behavior of the system.

  10. Concrete cover cracking due to uniform reinforcement corrosion

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Geiker, Mette Rica

    2013-01-01

    and reinforcement de-passivation is a frequently used limit state. The present paper investigates an alternative limit state: corrosion-induced cover cracking. Results from numerical simulations of concrete cover cracking due to reinforcement corrosion are presented. The potential additional service life...... is calculated using literature data on corrosion rate and Faraday’s law. The parameters varied comprise reinforcement diameter, concrete cover thickness and concrete material properties, viz. concrete tensile strength and ductility (plain concrete and fibre reinforced concrete). Results obtained from......Service life design (SLD) is an important tool for civil engineers to ensure that the structural integrity and functionality of the structure is not compromised within a given time frame, i.e. the service life. In SLD of reinforced concrete structures, reinforcement corrosion is of major concern...

  11. Designing from minimum to optimum functionality

    Science.gov (United States)

    Bannova, Olga; Bell, Larry

    2011-04-01

    This paper discusses a multifaceted strategy to link NASA Minimal Functionality Habitable Element (MFHE) requirements to a compatible growth plan; leading forward to evolutionary, deployable habitats including outpost development stages. The discussion begins by reviewing fundamental geometric features inherent in small scale, vertical and horizontal, pressurized module configuration options to characterize applicability to meet stringent MFHE constraints. A proposed scenario to incorporate a vertical core MFHE concept into an expanded architecture to provide continuity of structural form and a logical path from "minimum" to "optimum" design of a habitable module. The paper describes how habitation and logistics accommodations could be pre-integrated into a common Hab/Log Module that serves both habitation and logistics functions. This is offered as a means to reduce unnecessary redundant development costs and to avoid EVA-intensive on-site adaptation and retrofitting requirements for augmented crew capacity. An evolutionary version of the hard shell Hab/Log design would have an expandable middle section to afford larger living and working accommodations. In conclusion, the paper illustrates that a number of cargo missions referenced for NASA's 4.0.0 Lunar Campaign Scenario could be eliminated altogether to expedite progress and reduce budgets. The plan concludes with a vertical growth geometry that provides versatile and efficient site development opportunities using a combination of hard Hab/Log modules and a hybrid expandable "CLAM" (Crew Lunar Accommodations Module) element.

  12. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  13. Modeling the Mechanical Properties of Functionalized Carbon Nanotubes and Their Composites: Design at the Atomic Level

    Directory of Open Access Journals (Sweden)

    Qing-Sheng Yang

    2014-01-01

    Full Text Available This investigation focuses on the design of functionalization configuration at the atomic level to determine the influence of atomic structure on the mechanical properties of functionalized carbon nanotubes (F-CNTs and their composites. Tension and compressive buckling behaviors of different configurations of CNTs functionalized by H atoms are studied by a molecular dynamics (MD method. It is shown that H-atom functionalization reduces Young’s modulus of CNTs, but Young’s modulus is not sensitive to the functionalization configuration. The configuration does, however, affect the tensile strength and critical buckling stress of CNTs. Further, the stress-strain relations of composites reinforced by nonfunctionalized and various functionalized CNTs are analyzed.

  14. Ultra-thin reinforced concrete pavements (UTRCP): Addressing the design issues

    CSIR Research Space (South Africa)

    Du Plessis, L

    2014-07-01

    Full Text Available . This paper deals with an analytical evaluation based on laboratory results and computer modeling to determine the stress condition under loading and to determine the design life of the UTRCP pavement system under various loading states. The paper includes a...

  15. Probabilistic design and management of environmentally sustainable repair and rehabilitation of reinforced concrete structures

    DEFF Research Database (Denmark)

    Lepech, Michael D.; Geiker, Mette Rica; Stang, Henrik

    2014-01-01

    with limit states and life cycle assessment models for measuring the impact of a repair or rehabilitation. Both types of models (service life or LCA) are formulated stochastically so that the time to repair and the accumulated sustainability impact are described by probability density functions. This leads...

  16. Interfacial characteristics of an epoxy composite reinforced with phosphoric acid-functionalized Kevlar fibers

    Science.gov (United States)

    Li, J.; Xia, Y. C.

    2010-07-01

    A Kevlar fiber was functionalized with the phosphoric acid (PA) of different concentrations. The surface characteristics of the fiber were examined by using the X-ray photoelectron spectroscopy. It was found that the PA functionalization considerably increased the bond strength between the Kevlar fiber and an epoxy matrix.

  17. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  18. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  19. SEISMIC DESIGN OF TWO STOREY REINFORCED CONCRETE BUILDING IN MALAYSIA WITH LOW CLASS DUCTILITY

    OpenAIRE

    MOHD IRWAN ADIYANTO; TAKSIAH A. MAJID

    2014-01-01

    Since Malaysia is not located in active seismic fault zones, majority of buildings in Malaysia had been designed according to BS8110, which not specify any seismic provision. After experienced several tremors originating from neighbouring countries especially from Sumatra, Indonesia, the Malaysian start to ask questions on integrity of existing structures in Malaysia to withstand the earthquake load. The question also arises regarding the economical effect in term of cost of construction if s...

  20. Simplified elastic-plastic analysis of reinforced concrete structures - design method for self-restraining stress

    International Nuclear Information System (INIS)

    Aihara, S.; Atsumi, K.; Ujiie, K.; Satoh, S.

    1981-01-01

    Self-restraining stresses generate not only moments but also axial forces. Therefore the moment and force equilibriums of cross section are considered simultaneously, in combination with other external forces. Thus, under this theory, two computer programs are prepared for. Using these programs, the design procedures which considered the reduction of self-restraining stress, become easy if the elastic design stresses, which are separated normal stresses and self-restraining stresses, are given. Numerical examples are given to illustrate the application of the simplified elastic-plastic analysis and to study its effectiveness. First this method is applied to analyze an upper shielding wall in MARK-2 type's Reactor building. The results are compared with those obtained by the elastic-plastic analysis of Finite Element Method. From this comparison it was confirmed that the method described, had adequate accuracy for re-bar design. As a second example, Mat slab of Reactor building is analyzed. The quantity of re-bars calculated by this method, comes to about two third of re-bars less than those required when self-restraining stress is considered as normal stress. Also, the self-restraining stress reduction factor is about 0.5. (orig./HP)

  1. An Active Learning Activity to Reinforce the Design Components of the Corticosteroids.

    Science.gov (United States)

    Slauson, Stephen R; Mandela, Prashant

    2018-02-05

    Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6-8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies.

  2. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis

    International Nuclear Information System (INIS)

    Satheesh Raja, R.; Manisekar, K.; Manikandan, V.

    2014-01-01

    Highlights: • FRP with and without fly ash filler were prepared. • Mechanical properties of composites were analyzed. • Mixture Design Method was used to model the system. • Experimental and mathematical model results were compared. - Abstract: This paper describes the mechanical behavior of fly ash impregnated E-glass fiber reinforced polymer composite (GFRP). Initially the proportion of fiber and resin were optimized from the analysis of the mechanical properties of the GFRP. It is observed that the 30 wt% of E-glass in the GFRP without filler material yields better results. Then, based on the optimized value of resin content, the varying percentage of E-glass and fly ash was added to fabricate the hybrid composites. Results obtained in this study were mathematically evaluated using Mixture Design Method. Predictions show that 10 wt% addition of fly ash with fiber improves the mechanical properties of the composites. The fly ash impregnated GFRP yields significant improvement in mechanical strength compared to the GFRP without filler material. The surface morphologies of the fractured specimens were characterized using Scanning Electron Microscope (SEM). The chemical composition and surface morphology of the fly ash is analyzed by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope

  3. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design

    International Nuclear Information System (INIS)

    Ile, N.

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  4. Transcatheter Mitral Valve Devices - Functional Mechanical Designs.

    Science.gov (United States)

    Kliger, Chad

    2014-03-01

    Mitral regurgitation is a complex disorder involving a multitude of components of the mitral apparatus. With the desire for less invasive treatment approaches, transcatheter mitral valve therapies (TMVT) are directed at these components and available at varying stages of development. Therapeutic advancements and the potential to combine technologies may further improve their efficacy and safety. Transcatheter mitral valve replacement, while preserving the mitral apparatus, may emerge as an alternative or even a more suitable treatment option. In addition, early data on transcatheter mitral valve-in-valve and valve-in-ring implantation are encouraging and this approach may be an alternative to reoperation in the high-risk patient. This review details the expanding functional mechanical designs of current active TMVT.

  5. Fabrication and mechanical properties of aluminum composite reinforced with functionalized carbon nanotubes

    Science.gov (United States)

    Alavijeh, Elham Zamani; Kokhaei, Saeed; Dehghani, Kamran

    2018-01-01

    Composite aluminum alloy (5000 series) and multi-walled carbon nanotubes (MWCNTs) were made using mechanical alloying, cold press and sintering. The quality of interactions between Al powders and CNTs in the metal matrix composite has a significant effect on mechanical properties. Motivated from the properties of functionalized CNTs, the current study use this material rather than the raw type, because of its reactivity. Besides, a poly-vinyl-alcohol pre-mixing is done, the aim of which is to enhance mixing process. The functionalized carbon nanotubes ware made by chemically method through refluxing with nitric acid. By this method functional groups have been created on CNTs surfaces. 1% and 3% functionalized carbon nanotubes were manufactured using the aforementioned method. To provide unbiased comparisons, 1% and 3% with raw CNTs and pure aluminum is produced with same manner. The numerical experiments affirm the superiority of the functionalized carbon nano-tubes in terms of the relative density and hardness of nanocomposites. As a final activity, the Fourier transformation infrared spectroscopy and field emission scanning electron microscopy techniques were used to characterize the carbon nanotubes and the powders.

  6. Analytical design method for a truss-bolt system for reinforcement of fractured coal mine roofs - illustrated with a case study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.; Yue, Z.Q.; Tham, L.G. [University of Hong Kong, Hong Kong (China). Dept. of Civil Engineering

    2005-02-01

    This paper presents an analytical design method for the truss-bolt system in reinforcing underground fractured rock roofs in coal mines. The analytical design method is based on the mechanical analysis of the fractured rock roof with reinforcement by inclined roof bolts and a horizontal tie-rod. The mechanical analysis for the system includes a non-linear bending model for the laterally inclined roof bolts and three upper and lower bounds. The lateral resistance of the inclined roof bolts in a truss-bolt-supported roadway is examined using classical theory of a non-linear beam in bending. The paper analyses the arching action by lateral behavior of the inclined roof bolts in reinforcing the fractured roof. Based on mechanical models, the design formula concerning the lateral bolt forces, tensions in the tie-rod in the truss system, as well as the reinforcement behavior have been derived. In order to ensure that the roof truss-bolt system reinforces the coal roof effectively, a lower bound of pre-tightening forces must be applied on the tie-rod for stabilizing the fractured roof by arching action. The pre-tightening forces exerted via the tie-rod also cannot be greater than its upper bound, since the excessive tightening force will cause localized failure in the rock near the bolt tail at the abutment of the fractured roof beam. The analytical formulas for both lower and upper bounds for truss pre-tightening forces are put forward in this paper. Furthermore, the paper also presents analytical equations for designing the axial forces and dimensions for bolts in this kind of system.

  7. Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding

    Directory of Open Access Journals (Sweden)

    Yeshwant Nayak Suhas

    2018-01-01

    Full Text Available Filament winding is a composite material fabrication technique that is used to manufacture concentric hollow components. In this study Carbon/Epoxy composite drive shafts were fabricated using filament winding process with a fiber orientation of [852/±452/252]s. Carbon in the form of multifilament fibers of Tairyfil TC-33 having 3000 filaments/strand was used as reinforcement with low viscosity epoxy resin as the matrix material. The driveshaft is designed to be used in SAE Baja All Terrain Vehicle (ATV that makes use of a fully floating axle in its rear wheel drive system. The torsional strength of the shaft was tested and compared to that of an OEM steel shaft that was previously used in the ATV. Results show that the composite shaft had 8.5% higher torsional strength in comparison to the OEM steel shaft and was also lighter by 60%. Scanning electron microscopy (SEM micrographs were studied to investigate the probable failure mechanism. Delamination, matrix agglomeration, fiber pull-out and matrix cracking were the prominent failure mechanisms identified.

  8. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    Science.gov (United States)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  9. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  10. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation

    International Nuclear Information System (INIS)

    Mikael, Paiyz E; Amini, Ami R; Laurencin, Cato T; Nukavarapu, Syam P; Basu, Joysurya; Josefina Arellano-Jimenez, M; Barry Carter, C; Sanders, Mary M

    2014-01-01

    Designing biodegradable scaffolds with bone-compatible mechanical properties has been a significant challenge in the field of bone tissue engineering and regenerative engineering. The objective of this work is to improve the polymeric scaffold's mechanical strength by compositing it with mechanically superior carbon nanotubes. Poly(lactide-co-glycolide) (PLGA) microsphere scaffolds exhibit mechanical properties in the range of human cancellous bone. On the other hand, carbon nanotubes have outstanding mechanical properties. The aim of this study is to improve further the mechanical strength of PLGA scaffolds such that they may be applicable for a wide range of load-bearing repair and regeneration applications. We have formed composite microspheres of PLGA containing pristine and modified (with hydroxyl (OH), carboxylic acid (COOH)) multi-walled carbon nanotubes (MWCNTs), and fabricated them into three-dimensional porous scaffolds. Results show that by adding only 3% MWCNTs, the compressive strength and modulus was significantly increased (35 MPa, 510.99 MPa) compared to pure PLGA scaffolds (19 MPa and 166.38 MPa). Scanning electron microscopy images showed excellent cell adhesion and proliferation. In vitro studies exhibited good cell viability, proliferation and mineralization. The in vivo study, however, indicated differences in inflammatory response throughout the 12 weeks of implantation, with OH-modified MWCNTs having the least response, followed by unmodified and COOH-modified exhibiting a more pronounced response. Overall, our results show that PLGA scaffolds containing water-dispersible MWCNTs are mechanically stronger and display good cellular and tissue compatibility, and hence are potential candidates for load-bearing bone tissue engineering. (paper)

  11. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    Science.gov (United States)

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.

  12. Reconciling Form and Function through Generative Design

    OpenAIRE

    Nordin, Axel

    2015-01-01

    The current form-giving activity in industrial design is characterized by explorations that depend on the individual capability to mentally manipulate a solution space from which to select and express the intended result. Industrial designers frequently rely on artistic experimentation, aesthetic inspiration, or design briefs. These points of departure often result in satisfactory results, but they could be augmented by algorithmic form generation, optimization, and complex morphologies. By a...

  13. Effects of Signaled Positive Reinforcement on Problem Behavior Maintained by Negative Reinforcement

    Science.gov (United States)

    Schieltz, Kelly M.; Wacker, David P.; Romani, Patrick W.

    2017-01-01

    We evaluated the effects of providing positive reinforcement for task completion, signaled via the presence of a tangible item, on escape-maintained problem behavior displayed by three typically developing children during one-time 90-min outpatient evaluations. Brief functional analyses of problem behavior, conducted within a multielement design,…

  14. Mind-sets of functional reasoning in engineering design

    DEFF Research Database (Denmark)

    Howard, Thomas J.; Andreasen, Mogens Myrup

    2013-01-01

    The concept of a function is of great importance in design. This paper describes from theory how designers should reason about functions when designing. This paper introduces the link model, showing how functions and properties link the product and its use, to the perceived value of the product...... that not only is a product's behavior or mode of action designed but also the use activity of the end user. Based on the theoretical perspective unfolded, the authors offer nine mind-sets for both design practitioners and researchers to consider when reasoning about functions....

  15. A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets

    Science.gov (United States)

    Sahmani, Saeid; Aghdam, Mohammad Mohammadi; Rabczuk, Timon

    2018-04-01

    By gradually changing of the porosity across a specific direction, functionally graded porous materials (FGPMs) are produced which can impart desirable mechanical properties. To enhance these properties, it is common to reinforce FGPMs with nanofillers. The main aim of the current study is to investigate the size-dependent nonlinear axial postbuckling characteristics of FGPM micro/nano-plates reinforced with graphene platelets. For this purpose, the theory of nonlocal strain gradient elasticity incorporating the both stiffness reduction and stiffness enhancement mechanisms of size effects is applied to the refined exponential shear deformation plate theory. Three different patterns of porosity dispersion across the plate thickness in conjunction with the uniform one are assumed for FGPM as an open-cell metal foam is utilized associated with the coefficients of the relative density and porosity. With the aid of the virtual work’s principle, the non-classical governing differential equations are constructed. Thereafter, an improved perturbation technique is employed to capture the size dependencies in the nonlinear load-deflection and load-shortening responses of the reinforced FGPM micro/nano-plates with and without initial geometric imperfection. It is indicated that by increasing the value of porosity coefficient, the size-dependent critical buckling loads of reinforced FGPM micro/nano-plates with all types of porosity dispersion pattern reduce, but the associated shortening may increase or decrease which depends on the type of dispersion pattern.

  16. SOFTWARE DESIGN MODELLING WITH FUNCTIONAL PETRI NETS

    African Journals Online (AJOL)

    Dr Obe

    the system, which can be described as a set of conditions. ... FPN Software prototype proposed for the conventional programming construct: if-then-else ... mathematical modeling tool allowing for ... methods and techniques of software design.

  17. Examining the reinforcing value of stimuli within social and non-social contexts in children with and without high-functioning autism.

    Science.gov (United States)

    Goldberg, Melissa C; Allman, Melissa J; Hagopian, Louis P; Triggs, Mandy M; Frank-Crawford, Michelle A; Mostofsky, Stewart H; Denckla, Martha B; DeLeon, Iser G

    2017-10-01

    One of the key diagnostic criteria for autism spectrum disorder includes impairments in social interactions. This study compared the extent to which boys with high-functioning autism and typically developing boys "value" engaging in activities with a parent or alone. Two different assessments that can empirically determine the relative reinforcing value of social and non-social stimuli were employed: paired-choice preference assessments and progressive-ratio schedules. There were no significant differences between boys with high-functioning autism and typically developing boys on either measure. Moreover, there was a strong correspondence in performance across these two measures for participants in each group. These results suggest that the relative reinforcing value of engaging in activities with a primary caregiver is not diminished for children with autism spectrum disorder.

  18. Punishment and psychopathy: a case-control functional MRI investigation of reinforcement learning in violent antisocial personality disordered men.

    Science.gov (United States)

    Gregory, Sarah; Blair, R James; Ffytche, Dominic; Simmons, Andrew; Kumari, Veena; Hodgins, Sheilagh; Blackwood, Nigel

    2015-02-01

    Men with antisocial personality disorder show lifelong abnormalities in adaptive decision making guided by the weighing up of reward and punishment information. Among men with antisocial personality disorder, modification of the behaviour of those with additional diagnoses of psychopathy seems particularly resistant to punishment. We did a case-control functional MRI (fMRI) study in 50 men, of whom 12 were violent offenders with antisocial personality disorder and psychopathy, 20 were violent offenders with antisocial personality disorder but not psychopathy, and 18 were healthy non-offenders. We used fMRI to measure brain activation associated with the representation of punishment or reward information during an event-related probabilistic response-reversal task, assessed with standard general linear-model-based analysis. Offenders with antisocial personality disorder and psychopathy displayed discrete regions of increased activation in the posterior cingulate cortex and anterior insula in response to punished errors during the task reversal phase, and decreased activation to all correct rewarded responses in the superior temporal cortex. This finding was in contrast to results for offenders without psychopathy and healthy non-offenders. Punishment prediction error signalling in offenders with antisocial personality disorder and psychopathy was highly atypical. This finding challenges the widely held view that such men are simply characterised by diminished neural sensitivity to punishment. Instead, this finding indicates altered organisation of the information-processing system responsible for reinforcement learning and appropriate decision making. This difference between violent offenders with antisocial personality disorder with and without psychopathy has implications for the causes of these disorders and for treatment approaches. National Forensic Mental Health Research and Development Programme, UK Ministry of Justice, Psychiatry Research Trust, NIHR

  19. A Functional Food Mixture “Protector” Reinforces the Protective Immune Parameters against Viral Flu Infection in Mice

    Directory of Open Access Journals (Sweden)

    Kenza A. Mansoor

    2018-06-01

    Full Text Available Background: Viral influenza infection causes serious health issues especially when an outbreak occurs. Although influenza virus vaccines are available and each year manufactures modify the vaccine depending on the expected mutated strain, it is still far from satisfactory, mainly in young children and older adults. Therefore, a product that can support and shape the immune system to protect against viral flu infections is highly essential. Methods: A functional food water-soluble mixture of pomegranate, red grape, dates, olive fruit, figs, and ginger extracts, termed herein “Protector”, was prepared and tested in stimulating/modulating the production of specific cytokines, and hemagglutinin inhibition (HAI antibodies following viral flu vaccination in mice. Results: A single intraperitoneal or multiple oral administration for 1–7 days of “Protector” significantly increased the production of interferon (IFN-γ and interleukin (IL-12 in blood, spleen, and lungs of mice. When “Protector” was orally administered for one week following a single vaccine injection (primary immunization or for two weeks (one week apart following double vaccine injections (secondary immunization, mice significantly produced higher titers of HAI antibodies. This increase in HAI antibodies was associated with Pillow-inducing significant and different changes in vaccine-induced IFN-γ, IL-12, IL-6 and IL-22 following primary and secondary immunizations. Conclusions: “Protector” administration reinforces the protective immune parameters against viral flu infection. Therefore, after performing preclinical toxicology studies and ensuring its safety, “Protector” should be considered a potential product to be tested in clinical trials to conclude its efficacy in reducing the devastating effects of flu infection in humans and its outbreaks.

  20. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    International Nuclear Information System (INIS)

    Panda, Satyajit; Ray, M C

    2008-01-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla–Hughes–McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed

  1. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    Science.gov (United States)

    Panda, Satyajit; Ray, M. C.

    2008-04-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.

  2. Design Guidelines for In-Plane Mechanical Properties of SiC Fiber-Reinforced Melt-Infiltrated SiC Composites

    Science.gov (United States)

    Morscher, Gregory N.; Pujar, Vijay V.

    2008-01-01

    In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.

  3. A More Realistic Lateral Load Pattern for Design of Reinforced Concrete Buildings with Moment Frames and Shear Walls

    International Nuclear Information System (INIS)

    Hosseini, Mahmood; Khosahmadi, Arash

    2008-01-01

    In this research it has been tried to find a more realistic distribution pattern for the seismic load in reinforced concrete (R/C) buildings, having moment frames with shear walls as their lateral resisting system, by using Nonlinear Time History Analyses (NLTHA). Having shear wall as lateral load bearing system decreases the effect of infill walls in the seismic behavior of the building, and therefore the case of buildings with shear walls has been considered for this study as the first stage of the studies on lateral load patterns for R/C buildings. For this purpose, by assuming three different numbers of bays in each direction and also three different numbers of stories for the buildings, several R/C buildings, have been studied. At first, the buildings have been designed by the Iranian National Code for R/C Buildings. Then they have been analyzed by a NLTHA software using the accelerograms of some well-known earthquakes. The used accelerograms have been also scaled to various levels of peak ground acceleration (PGA) such as 0.35 g, 0.50 g, and 0.70 g, to find out the effect of PGA in the seismic response. Numerical results have shown that firstly the values of natural period of the building and their shear force values, calculated by the code, are not appropriate in all cases. Secondly, it has been found out that the real lateral load pattern is quite different with the one suggested by the seismic code. Based on the NLTHA results a new lateral load pattern has been suggested for this kind of buildings, in the form of some story-dependent modification factors applied to the existing code formula. The effects of building's natural period, as well as its number of stories, are taken into account explicitly in the proposed new load pattern. The proposed load pattern has been employed to redesign the buildings and again by NLTHA the real lateral load distribution in each case has been obtained which has shown very good agreement with the proposed pattern

  4. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    Science.gov (United States)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  5. Tank SY-101 void fraction instrument functional design criteria

    International Nuclear Information System (INIS)

    McWethy, L.M.

    1994-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations

  6. Ports and Terminals : Planning and Functional Design

    NARCIS (Netherlands)

    Groenveld, R.; Velsink, H.

    1993-01-01

    1. Maritime transport, means and commodities 3. Principles of integrated port planning 4. Planning and design of a port's water areas 5. Port terminals - introduction 6. Conventional general cargo terminals 7. Container terminals 8. Oil & liquid gas terminals 9. Dry bulk cargo terminals 10. Fishery

  7. The Reinforcement Learning Competition 2014

    OpenAIRE

    Dimitrakakis, Christos; Li, Guangliang; Tziortziotis, Nikoalos

    2014-01-01

    Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.

  8. Proposal for the Award of Three Contracts without competitive tendering or Design Calculations and Drawings for the Reinforced Concrete Work in LEP Surface Buildings and Supervision of their Implementation

    CERN Document Server

    1987-01-01

    Proposal for the Award of Three Contracts without competitive tendering or Design Calculations and Drawings for the Reinforced Concrete Work in LEP Surface Buildings and Supervision of their Implementation

  9. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  10. A Switching Anti-windup Design Using Multiple Lyapunov Functions

    NARCIS (Netherlands)

    Lu, L.; Lin, Z.; Chen, J.

    2009-01-01

    This paper proposes a switching anti-windup design, which aims to enlarge the domain of attraction of the closed-loop system. Multiple anti-windup gains along with an index function that orchestrates the switching among these anti-windup gains are designed based on the min function of multiple

  11. Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports

    Science.gov (United States)

    Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian

    2018-02-01

    This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.

  12. Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement.

    Science.gov (United States)

    Hsu, Yun-Wei A; Wang, Si D; Wang, Shirong; Morton, Glenn; Zariwala, Hatim A; de la Iglesia, Horacio O; Turner, Eric E

    2014-08-20

    The habenular complex in the epithalamus consists of distinct regions with diverse neuronal populations. Past studies have suggested a role for the habenula in voluntary exercise motivation and reinforcement of intracranial self-stimulation but have not assigned these effects to specific habenula subnuclei. Here, we have developed a genetic model in which neurons of the dorsal medial habenula (dMHb) are developmentally eliminated, via tissue-specific deletion of the transcription factor Pou4f1 (Brn3a). Mice with dMHb lesions perform poorly in motivation-based locomotor behaviors, such as voluntary wheel running and the accelerating rotarod, but show only minor abnormalities in gait and balance and exhibit normal levels of basal locomotion. These mice also show deficits in sucrose preference, but not in the forced swim test, two measures of depression-related phenotypes in rodents. We have also used Cre recombinase-mediated expression of channelrhodopsin-2 and halorhodopsin to activate dMHb neurons or silence their output in freely moving mice, respectively. Optical activation of the dMHb in vivo supports intracranial self-stimulation, showing that dMHb activity is intrinsically reinforcing, whereas optical silencing of dMHb outputs is aversive. Together, our findings demonstrate that the dMHb is involved in exercise motivation and the regulation of hedonic state, and is part of an intrinsic reinforcement circuit. Copyright © 2014 the authors 0270-6474/14/3411366-19$15.00/0.

  13. Optimization of Reinforcement of RC Framed Structures

    Directory of Open Access Journals (Sweden)

    P. Štěpánek

    2000-01-01

    Full Text Available This paper presents the entire formulation of longitudinal reinforcement minimization in a concrete structure of known sections and shape under loading by the normal force and the bending moment. Constraint conditions are given by the conditions of structure reliability in accordance with the relevant codes for ultimate strength and applicability of the sections specified by a designer. Linearization of the non-linear function is described, and possibilities of applying algorithms of linear computing are discussed. The functioning of the process described is demonstrated on a plane frame structure design.

  14. Linking Design to Business Strategy Through Functional Analysis

    DEFF Research Database (Denmark)

    Simonsen, Jesper

    1997-01-01

    The paper discusses how designers, conducting design projects in specific organization's, can assure that the design of IT is appropriately linked to the organizations overall business strategy. A case study is presented in the form of a design project in a small public organization. Functional...... analysis was used as a means to clarify how a specific needed information system could support the organization's new business strategy. Using functional analysis in the design project had a powerful effect: it seriously challenged the organization's business strategy and revealed that the system...... to the relation between an organization's IT-projects and its business strategy and by suggesting that it is the responsibility of the designers, conducting design projects, to assure that this task is taken proper care of. Practical guidelines for this purpose are given....

  15. Structural design and analysis of the multi-function waste tanks

    International Nuclear Information System (INIS)

    Farnworth, S.K.; Stine, M.D.; Miller, L.K.

    1993-10-01

    This paper describes structural design and analysis procedures to be used for the Multi-function Waste Tank Facility underground waste storage tanks proposed for the Hanford Site. The Multi-function Waste Tank Facility will consist of four one-million-gallon nominal capacity, double-shell, underground waste storage tanks and will include the associated process and control systems and aboveground structures. The tanks will consist of an inner primary steel tank and an outer secondary reinforced-concrete steel-lined tank. The primary tank head will be structurally attached to the concrete dome. A supporting layer of material will be placed between the bottom of the primary steel tank and the bottom of the steel liner on the secondary tank. The tank analysis is undertaken jointly by a team of engineers and analysts representing Kaiser Engineers Hanford, the site architect/engineer, and Westinghouse Hanford Company, the site management and operating contractor. This analysis is planned in several phases. Heat transfer solutions will address the anticipated mixing pump and cyclic fill/drain environment to provide steel and concrete temperature distributions. With this information, an in situ static analysis of the reinforced-concrete secondary tank will be carried out over the structure design life and will give material states and deformations along with strength and stability checks. Seismic analysis, accounting for soil-structure interaction and liquid loads, will be conducted with the most conservative material state, and the in situ deformations will be incorporated. Finally, penetrations and other components will be analyzed

  16. Structural design and analysis of the multi-function waste tanks

    International Nuclear Information System (INIS)

    Farnworth, S.K.; Stine, M.D.; Miller, L.K.

    1993-01-01

    This paper describes structural design and analysis procedures to be used for the Multi-function Waste Tank Facility underground waste storage tanks proposed for the Hanford Site. The Multi-function Waste Tank Facility will consist of four one-million-gallon nominal capacity, double-shell, underground waste storage tanks and will include the associated process and control systems and aboveground structures. The tanks will consist of an inner primary steel tank and an outer secondary reinforced-concrete steel-linked tank. The primary tank head will be structurally attached to the concrete dome. A supporting layer of material will be placed between the bottom of the primary steel tank and the bottom of the steel linear on the secondary tank. The tank analysis is undertaken jointly by a team of engineers and analysts representing Kaiser Engineers Hanford, the site architect/engineer, and Westinghouse Hanford Company, the site management and operating contractor. This analysis is planned in several phases. Heat transfer solutions will address the anticipated mixing pump and cyclic fill/drain environment to provide steel and concrete temperature distributions. With this information, an in situ static analysis of the reinforced-concrete secondary tank will be carried out over the structure design life and will give material states and deformations along with strength and stability checks. Seismic analysis, accounting for soil-structure interaction and liquid loads, will be conducted with the most conservative material state, and the in situ deformations will be incorporated. Finally, penetrations and other components will be analyzed

  17. Software Design Modelling with Functional Petri Nets | Bakpo ...

    African Journals Online (AJOL)

    Software Design Modelling with Functional Petri Nets. ... of structured programs and a FPN Software prototype proposed for the conventional programming construct: if-then-else statement. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  18. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  19. The Importance of Superplastizer Dosage in the Mix Design of Lightweight Aggregate Concrete Reinforced With Plypropylene Fiber

    Directory of Open Access Journals (Sweden)

    Shafigh Payam

    2016-01-01

    Full Text Available This paper reports the results of a study conducted to investigate the effect of superplasticizer (SP dosage on the slump, density, compressive strength and splitting tensile strength under different curing conditions of a lightweight aggregate concrete reinforced with polypropylene (PP fiber. The lightweight aggregate used in this study was oil palm shell, which is an agricultural solid waste, originating from the palm oil industry. The results indicated that an increase in superplasticizer increased the workability, however, all the mechanical properties declined significantly. The reduction in the 28-day compressive and splitting tensile strengths was about 14. This study showed that although additional SP can improve the workability of the concrete, it may have a negative effect on the other properties of concrete. Therefore, the SP dosage in concrete mixtures containing PP fiber should be limited to a certain amount.

  20. Rational and Mechanistic Perspectives on Reinforcement Learning

    Science.gov (United States)

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  1. Is function-based control room design human-centered?

    International Nuclear Information System (INIS)

    Norros, L.; Savioja, P.

    2006-01-01

    Function-based approaches to system interface design appears an appealing possibility in helping designers and operators to cope with the vast amount of information needed to control complex processes. In this paper we provide evidence of operator performance analyses showing that outcome-centered performance measures may not be sufficiently informative for design. We need analyses indicating habitual patterns of using information, operator practices. We argue that practices that portray functional orienting to the task support mastery of the process. They also create potential to make use of function-based information presentation. We see that functional design is not an absolute value. Instead, such design should support communication of the functional significance of the process information to the operators in variable situations. Hence, it should facilitate development of practices that focus to interpreting this message. Successful function-based design facilitates putting operations into their contexts and is human-centered in an extended sense: It aids making sense in the complex, dynamic and uncertain environment. (authors)

  2. Computational design of proteins with novel structure and functions

    International Nuclear Information System (INIS)

    Yang Wei; Lai Lu-Hua

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence–structure–function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein–protein interactions. Challenges and future prospects of this field are also discussed. (topical review)

  3. Canberra Alpha Sentry Installation Functional Design Criteria (FDC)

    International Nuclear Information System (INIS)

    WHITE, W.F.

    1999-01-01

    This document provides the functional design criteria for the installation of the Canberra Alpha Sentry System at selected locations within the Plutonium Finishing Plant (PFP). The equipment being installed is identified by part number in Section 3 and the locations are given in Section 5. The design, procurement and installation are assigned to Fluor Federal Services

  4. The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method

    Directory of Open Access Journals (Sweden)

    Nien-Te Liu

    2016-11-01

    Full Text Available The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly.

  5. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah; Lubineau, Gilles; Yudhanto, Arief; Yaldiz, Recep; Schijve, Warden

    2017-01-01

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  6. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah

    2017-03-31

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  7. Matrix Transfer Function Design for Flexible Structures: An Application

    Science.gov (United States)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  8. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  9. Function combined method for design innovation of children's bike

    Science.gov (United States)

    Wu, Xiaoli; Qiu, Tingting; Chen, Huijuan

    2013-03-01

    As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children's tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children's bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.

  10. Research and exploration of product innovative design for function

    Science.gov (United States)

    Wang, Donglin; Wei, Zihui; Wang, Youjiang; Tan, Runhua

    2009-07-01

    Products innovation is under the prerequisite of realizing the new function, the realization of the new function must solve the contradiction. A new process model of new product innovative design was proposed based on Axiomatic Design (AD) Theory and Functional Structure Analysis (FSA), imbedded Principle of Solving Contradiction. In this model, employ AD Theory to guide FSA, determine the contradiction for the realization of the principle solution. To provide powerful support for innovative design tools in principle solution, Principle of Solving Contradiction in the model were imbedded, so as to boost up the innovation of principle solution. As a case study, an innovative design of button battery separator paper punching machine has been achieved with application of the proposed model.

  11. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material

    International Nuclear Information System (INIS)

    Wang, Peng; Tang, Xiaobin; Chai, Hao; Chen, Da; Qiu, Yunlong

    2015-01-01

    Highlights: • Sm_2O_3 is used for neutron absorber instead of B_4C, and Sm_2O_3 has a good photon-shielding effect. • Carbon-fiber cloth and polyimide were used to enhance shielding materials’ mechanical behavior and thermal behavior. • Both Monte Carlo method and shielding test were used to evaluate shielding performance of the novel shielding material. - Abstract: The design and fabrication of shielding materials with good heat-resistance and mechanical properties is a major problem in the radiation shielding field. In this paper, based on gamma ray and neutron shielding theory, a continuous carbon-fiber reinforced Sm_2O_3/polyimide gamma ray/neutron shielding material was fabricated by hot-pressing method. The material's application behavior was subsequently evaluated using neutron shielding, photon shielding, mechanical tensile, and thermogravimetric analysis–differential scanning calorimetry tests. The results show that the tensile strength of the novel shielding material exceeds 200 MPa, which makes it of similar strength to aluminum alloy. The material does not undergo crosslinking and decomposition reactions at 300 °C and it can be used in such environments for long periods of time. The continuous carbon-fiber reinforced Sm_2O_3/polyimide material has a good shielding performance with respect to gamma rays and neutrons. The material thus has good prospects for use in fusion reactor system and nuclear waste disposal applications.

  12. Design of a Remote Monitoring System for Evaluation of Corrosión in Reinforced Concrete Structures under Chloride Ion Attack

    Directory of Open Access Journals (Sweden)

    Roa-Rodríguez Guillermo

    2015-09-01

    Full Text Available In this paper it was designed and built a remote monitoring equipment that allows to obtain the corrosion potential in reinforcing steels embedded in reinforced concrete, which were previously subjected to chloride attack in a hostile environment. The monitoring system, based on ASTM standard C876-91, determines from 0% to 100% the probability of corrosion on the samples tested. The system provides ease of perform field installation, if there is cellular network coverage, and may be operated remotely using text messages to start and stop measurements, whose results are stored in a local data logger on microSD cards and then are sent via the general packet radio service (GPRS to a web server which allows to access to the data via a web page, where the test results can be seen graphically. The concrete samples used as reference for monitoring degradation were immersed in chloride ion (3.5% NaCl for 12 months. Data for corrosion potential were generated through the exposureconcrete interface, corresponding to a system with a 90% probability of corrosion.

  13. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Zhang, Li; Wang, Wanying; Zhang, Jing; He, Fuzhen; Yang, Jianjun

    2017-08-01

    Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59.2% higher than those of CFs/gHA composite and pure HA, respectively. The possible reinforcing mechanism of nHA-CFs in the composite is also proposed at the end. When nHA-CFs are applied for preparation of nHA-CFs/gHA composites, the internal stress on its phase boundary with gHA matrix generated during cooling of sintered is significantly reduced due to the presence of the nHA coatings. It infers that nHA coatings on CFs might act as a bridge to control the forming of interfacial gaps between the gHA matrix and the CFs effectively. Our work provides additional insights into the feasibility of nHA-CFs/gHA composites as load-bearing implant materials in clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Establishing a design procedure for buried steel-reinforced high-density polyethylene pipes : a field study, [technical summary].

    Science.gov (United States)

    2015-11-01

    Several national standards and specification have been developed for design, installation, : and materials for precast concrete pipe, corrugated metal pipe, and HDPE pipes. However, : no national accepted installation standard or design method is ava...

  15. A New Design of In Situ Ti(C,N) Reinforced Composite Coatings and Their Microstructures, Interfaces, and Wear Resistances.

    Science.gov (United States)

    Wang, Mingliang; Cui, Hongzhi; Wei, Na; Ding, Lei; Zhang, Xinjie; Zhao, Yong; Wang, Canming; Song, Qiang

    2018-01-31

    Here, a unique combination of a novel carbon-nitrogen source (g-C 3 N 4 ) with different mole ratios of Ti/g-C 3 N 4 has been utilized to fabricate iron matrix composite coatings by a synchronized powder feeding plasma transferred arc (PTA) cladding technology. The results show that submicron Ti(C,N) particles are successfully fabricated in situ on a Q235 low carbon steel substrate to reinforce the iron matrix composite coatings and exhibit dense microstructures and good metallurgical bonding between the coating and the substrate. The microstructure of the coating consists of an α-Fe matrix and Ti(C,N) particles when the mole ratio of Ti/g-C 3 N 4 is no more than 5:1. The microhardness and wear resistance of the coating gradually improve with increasing abundance of the in-situ-synthesized Ti(C,N) particles. Interestingly, for a Ti/g-C 3 N 4 mole ratio of 6:1, a fine lamellar eutectic Laves phase (Fe 2 Ti) appears, and this phase further improves the microhardness and wear resistance of the coating. The microhardness of the coating is 3.5 times greater than that of the Q235 substrate, and the wear resistance is enhanced 7.66 times over that of the substrate. The Ti(C,N)/Fe 2 Ti and Fe 2 Ti/α-Fe interfaces are very clean, and the crystallographic orientation relationships between the phases are analyzed by high-resolution transmission electron microscopy (HRTEM) and an edge-to-edge matching model. The theoretical predictions and the experimental results are in good agreement. Furthermore, based on the present study, for the solidification process near equilibrium, smaller interatomic spacing misfits and interplanar spacing d-value mismatches contribute to the formation of crystallographic orientation relationships between phases during the PTA cladding process. The existence of orientation relationships is beneficial for improving the properties of the coatings. This work not only expands the application fields of g-C 3 N 4 but also provides a new idea for the

  16. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring

    Science.gov (United States)

    Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I.

    2018-01-01

    A new approach employing carbon nanostructure (CNS) buckypapers (BP) was used to prepare glass fiber/epoxy composite materials with enhanced resistance to delamination along with damage monitoring capability. The CNS-BP was subjected to plasma treatment to improve its wettability by epoxy and to promote stronger interfacial bonding. An increase up to 20% in interlaminar fracture toughness in mode I and mode II was observed in composite laminates incorporating CNS BP. Morphological analysis of the fracture surfaces indicated that failure in the conductive CNS layer provided a more effective energy dissipation mechanism, resulting in interlaminar fracture toughness increase. Moreover, fracture of the conductive CNS layer enabled damage monitoring of the composite by electrical resistance measurements upon delamination. The proposed approach provides multifunctional ply interphases, allowing to couple damage monitoring with interlaminar reinforcement of composite laminates.

  17. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: an in vitro and finite element analysis study.

    Science.gov (United States)

    Keulemans, Filip; De Jager, Niek; Kleverlaan, Cornelis J; Feilzer, Albert J

    2008-10-01

    The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass fiber-reinforced composite (FRC) fixed dental prostheses (FDP). Four retainer designs were tested: a proximal box, a step-box, a dual wing, and a step-box-wing. Of each design on 8 human mandibular molars, FRC-FDPs of a premolar size were produced. The FRC framework was made of resin impregnated unidirectional glass fibers (Estenia C&B EG Fiber, Kuraray) and veneered with hybrid resin composite (Estenia C&B, Kuraray). Panavia F 2.0 (Kuraray) was used as resin luting cement. FRC-FDPs were loaded to failure in a universal testing machine. One-way ANOVA and Tukey's post-hoc test were used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FDPs (proximal box: 300 +/- 65 N; step-box: 309 +/- 37 N) compared to wing-retained FDPs (p optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FDPs.

  18. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  19. Conceptual design for Japan Sodium-Cooled Fast Reactor. (4) Developmental study of steel plate reinforced concrete containment vessel for JSFR

    International Nuclear Information System (INIS)

    Hosoya, Takusaburo; Negishi, Kazuo; Satoh, Kenichiro; Somaki, Takahiro; Matsuo, Ippei; Shimizu, Katsusuke

    2009-01-01

    An innovative containment vessel, namely Steel plate reinforced Concrete Containment Vessel (SCCV) is developed for Japan Sodium-Cooled Fast Reactor (JSFR). Reducing plant construction cost is one of the most important issues for commercialization of fast reactors. This study investigated construction issues including the building structure and the construction method as well as design issues in terms of the applicability of SCCV to fast reactors. An experimental study including loading and/or heating tests has been carried out to investigate the fundamental structural features, which would be provided to develop methodology to evaluate the feasibility of SCCV under the severe conditions. In this paper, the test plan is described as well as the first test results. (author)

  20. Product design - Molecules, devices, functional products, and formulated products

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Ng, Ka M.

    2015-01-01

    Chemical product design is a multidisciplinary and diverse subject. This article provides an overview of product design while focusing on product conceptualization. Four product types are considered - molecular products, formulated products, devices and functional products. For molecular products......, computer-aided design tools are used to predict the physicochemical properties of single molecules and blends. For formulated products, an integrated experiment-modeling approach is used to generate the formula with the specified product attributes. For devices and functional products, conceptual product...... design is carried out by modeling the product based on thermodynamics, kinetics and transport processes, by performing experiments, and by decision making based on rule-based methods The results are product specifications in terms of the type of ingredients, composition, and the structure, form, shape...

  1. Functional design criteria for the retained gas sampler system

    International Nuclear Information System (INIS)

    Wootan, D.W.

    1995-01-01

    A Retained Gas Sampler System (RGSS) is being developed to capture and analyze waste samples from Hanford Flammable Gas Watch List Tanks to determine both the quantity and composition of gases retained in the waste. The RGSS consists of three main components: the Sampler, Extractor, and Extruder. This report describes the functional criteria for the design of the RGSS components. The RGSS Sampler is based on the WHC Universal Sampler design with modifications to eliminate gas leakage. The primary function of the Sampler is to capture a representative waste sample from a tank and transport the sample with minimal loss of gas content from the tank to the laboratory. The function of the Extruder is to transfer the waste sample from the Sampler to the Extractor. The function of the Extractor is to separate the gases from the liquids and solids, measure the relative volume of gas to determine the void fraction, and remove and analyze the gas constituents

  2. Designing a Growing Functional Modules “Artificial Brain”

    Directory of Open Access Journals (Sweden)

    Jérôme Leboeuf-Pasquier

    2012-05-01

    Full Text Available

    The present paper illustrates the design process for the Growing Functional Modules (GFM learning based controller. GFM controllers are elaborated interconnecting four kinds of components: Global Goals, Acting Modules, Sensations and Sensing Modules. Global Goals trigger intrinsic motivations, Acting and Sensing Modules develop specific functionalities and Sensations provide the controlled system's feedback. GFM controllers learn to satisfy some predefined goals while interacting with the environment and thus should be considered as artificial brains. An example of the design process of a simple controller is provided herein to explain the inherent methodology, to exhibit the components' interconnections and to demonstrate the control process.

  3. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    OpenAIRE

    Ke Yang; Changchun Zhou; Hongsong Fan; Yujiang Fan; Qing Jiang; Ping Song; Hongyuan Fan; Yu Chen; Xingdong Zhang

    2017-01-01

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) m...

  4. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  5. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…

  6. Architectonics: Design of Molecular Architecture for Functional Applications.

    Science.gov (United States)

    Avinash, M B; Govindaraju, Thimmaiah

    2018-02-20

    The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing

  7. Tokamak reactor designs as a function of aspect ratio

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Stambaugh, R.D.

    2000-01-01

    This paper assesses the technical and economic potential of tokamak power plants which utilize superconducting coil (SC) or normal conducting coil (NC) designs as a function of aspect ratio (A). Based on the results from plasma equilibrium calculations, the key physics design parameters of β N , β p , β T , and κ were fitted to parametric equations covering A in the range of 1.2-6. By using ARIES-RS and ARIES-ST as reference design points, a fusion reactor system code was used to project the performance and cost of electricity (COE) of SC and NC reactor designs over the same range of A. The principle difference between the SC and the NC designs are the inboard standoff distance between the coil and the inboard first wall, and the maximum central column current density used for respective coil types. Results show that at an output power of 2 GWe both NC and SC designs can project COE in the respectable range of 62-65 mill/kW h at gross thermal efficiency of 46%, with neutron wall loading (Γ n ) ∼7 MW/m 2 . More importantly, we have learned that based on the present knowledge of equilibrium physics and fusion power core components and system design we can project the performance and COE of reactor designs at least for the purpose of comparative assessment. Tokamak design points can then be selected and optimized for testing or commercial devices as a function of output power, A and Γ n for both SC and NC design options

  8. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds.

    Science.gov (United States)

    Kumar, Anuj; Lee, Yujin; Kim, Doyeon; Rao, Kummara Madhusudana; Kim, Jisoo; Park, Soyoung; Haider, Adnan; Lee, Do Hyun; Han, Sung Soo

    2017-02-01

    Cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds were fabricated by using freeze casting and freeze drying method. In this study, the effect of crosslinking agents such as calcium chloride, orthophosphoric acid, and borax on morphological, structural, thermal, mechanical, and cytocompatibility (cell adhesion and proliferation) properties was investigated. The results showed that the change in type of crosslinking agent significantly changed the properties of the hybrid scaffolds. Based on this study, borax-crosslinked hybrid scaffold showed good fibrous porous structure with high porosity (95.2%), highest water uptake capacity, good thermal stability, mechanical stability (storage modulus), and in vitro cell adhesion and proliferation with fibroblast (NIH3T3) cells. This primarily research study explores the way for further use of this crosslinking agent to design and fabricate scaffolds for tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Function and Form: Shifts in Modernist Architects’ Design Thinking

    Directory of Open Access Journals (Sweden)

    Atli Magnus Seelow

    2017-01-01

    Full Text Available Since the so-called “type-debate” at the 1914 Werkbund Exhibition in Cologne—on individual versus standardized types—the discussion about turning Function into Form has been an important topic in Architectural Theory. The aim of this article is to trace the historic shifts in the relationship between Function and Form: First, how Functional Thinking was turned into an Art Form; this orginates in the Werkbund concept of artistic refinement of industrial production. Second, how Functional Analysis was applied to design and production processes, focused on certain aspects, such as economic management or floor plan design. Third, how Architectural Function was used as a social or political argument; this is of particular interest during the interwar years. A comparison of theses different aspects of the relationship between Function and Form reveals that it has undergone fundamental shifts—from Art to Science and Politics—that are tied to historic developments. It is interesting to note that this happens in a short period of time in the first half of the 20th Century. Looking at these historic shifts not only sheds new light on the creative process in Modern Architecture, this may also serve as a stepstone towards a new rethinking of Function and Form.

  10. Application of tungsten-fibre-reinforced copper matrix composites to a high-heat-flux component: A design study by dual scale finite element analysis

    International Nuclear Information System (INIS)

    Jeong-Ha You

    2006-01-01

    According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m 2 with cooling water temperature of 320 o C was considered. Effective stress-free temperature was assumed to be 500 o C. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 o C at the surface and 562 o C at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after

  11. Deep Reinforcement Learning: An Overview

    OpenAIRE

    Li, Yuxi

    2017-01-01

    We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsuperv...

  12. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    Science.gov (United States)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  13. The Translation between Functional Requirements and Design Parameters for Robust Design

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Husung, Stephan; Howard, Thomas J.

    2016-01-01

    The specification of and justification for design parameter (DP) tolerances are primarily based on the acceptable variation of the functions’ performance and the functions’ sensitivity to the design parameters. However, why certain tolerances are needed is often not transparent, especially...... computer aided functional tolerancing. Non-optimal tolerances yield potentials for cost improvements in manufacturing and more consistency of the functional performance of the product. In this contribution a framework is proposed to overcome the observed problems and increase the clarity, transparency...... and traceability of tolerances by analyzing the translation between the DPs and their influence on the final function....

  14. Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2014-01-01

    Full Text Available Functionalized silica sols were obtained by the hydrolytic condensation of (γ-methacryloxypropyltrimethoxysilane (MPMS, (γ-glycidyloxypropyltrimethoxysilane (GPMS and tetraethoxysilane (TEOS. Three different sols were obtained: MPS (derived from MPMS and TEOS, GPS-MPS (derived from GPMS, MPMS and TEOS, and GPSD (derived from GPMS, TEOS and diglycidyl ether of bisphenol A, DGEBA. These silica sols were mixed with a phenolic resin (PR. Ethylenediamine was used as a hardener for epoxy-functionalized sols and benzoyl peroxide was used as an initiator of the free-radical polymerization of methacrylate-functionalized silica sols. Glass fiber-reinforced composites were obtained from the neat PR and MPS-PR, GPS-MPS-PR and GPSD-PR. The resulting composites were evaluated as ablation resistant materials in an acetylene-oxygen flame. A large increase in the ablation resistance was observed when the PR was modified by the functionalized silica sols. The ablation resistance of the composites decreased as follows: GPSD-PR > MPS-PR > GPS-MPS-PR > PR.

  15. Habituation of reinforcer effectiveness

    OpenAIRE

    David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...

  16. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC: a review of material properties and design procedures

    Directory of Open Access Journals (Sweden)

    T. E. T. Buttignol

    Full Text Available ABSTRACT This paper does a review of the recent achievements on the knowledge of UHPFRC properties and in the development of design procedures. UHPFRC is defined as a new material, with unique properties (high ductility, low permeability, very high strength capacity in compression, higher toughness in comparison to conventional concrete. It is important to know both material and mechanical properties to fully take advantage of its outstanding properties for structural applications. However, since this is a new material, the current design codes are not well suited and should be reviewed before being applied to UHPFRC. In the first part, the following material properties are addressed: hydration process; permeability; fibers role; mix design; fiber-matrix bond properties workability; mixing procedure; and curing. In the second part, the mechanical properties of the material are discussed, together with some design recommendations. The aspects herein examined are: size effect; compressive and flexural strength; tensile stress-strain relation; shear and punching shear capacity; creep and shrinkage; fracture energy; steel bars anchorage and adherence. Besides, the tensile mechanical characterization is described using inverse analysis based on bending tests data. In the last part, material behavior at high temperature is discussed, including physical-chemical transformations of the concrete, spalling effect, and transient creep. In the latter case, a new Load Induced Thermal Strain (LITS semi-empirical model is described and compared with UHPC experimental results.

  17. Blaming the Victim: The Problem of Evaluation Design and Federal Involvement, and Reinforcing World Views in Education.

    Science.gov (United States)

    Fetterman, David M.

    1981-01-01

    Shows how evaluation design and federal involvement in Youth Employment Demonstration Projects unintentionally cause a negative appraisal. Indicates the problem stems from interaction of the contract research corporation, the educational research establishment, and the federal bureaucracy, rather than a specific methodology or bureaucratic…

  18. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  19. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    Science.gov (United States)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  20. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  1. Nutrition by design: a review of biotechnology in functional food

    Directory of Open Access Journals (Sweden)

    Thomas Reynolds

    2016-02-01

    Full Text Available Medical institutions in industrial and developing countries are increasingly turning to functional foods as intervention in chronic disease. Advances in genetic engineering have provided methods of purposefully designing functional foods and bioactive compound-producing organisms. This literature review examines the recent history of biotechnological applications in functional food, the state of bioagricultural engineering for high-value compound production, and the challenges that developers face in promulgatingfunctional foods from biotechnological sources. Based on the literature reviewed, it is predicted that adding biotechnologically-produced compounds will be more successful in producing novel functional foods. Conclusion: Current functional food application is frequently hampered by a dearth of foods suitable to the purpose. The concurrent advent of biotechnology means that producers and clinicians are not constrained by limited and precarious natural development. Biotechnology has already produced altered dietary staples that can safely induce real health benefits, but the social approval of genetically modified foodstuffs is inconsistent at best. Modifying microalgae to produce micro and macronutrients, for harvest and incorporation into functional food products, provides the ideal specificity and reliability for bioactive compound use. However, its application in biomedical science is impeded by technical difficulty. It remains to be seen if microorganism engineering willbe able to meet the needs of its many stakeholders, including the functional food community. Nonetheless,the prospect of a flourishing functional food market, and the healthier population it will bring about, certainly makes it worth a try.

  2. Formal methods in design and verification of functional specifications

    International Nuclear Information System (INIS)

    Vaelisuo, H.

    1995-01-01

    It is claimed that formal methods should be applied already when specifying the functioning of the control/monitoring system, i.e. when planning how to implement the desired operation of the plant. Formal methods are seen as a way to mechanize and thus automate part of the planning. All mathematical methods which can be applied on related problem solving should be considered as formal methods. Because formal methods can only support the designer, not replace him/her, they must be integrated into a design support tool. Such a tool must also aid the designer in getting the correct conception of the plant and its behaviour. The use of a hypothetic design support tool is illustrated to clarify the requirements such a tool should fulfill. (author). 3 refs, 5 figs

  3. Analysis of functionality free CASE-tools databases design

    Directory of Open Access Journals (Sweden)

    A. V. Gavrilov

    2016-01-01

    Full Text Available The introduction in the educational process of database design CASEtechnologies requires the institution of significant costs for the purchase of software. A possible solution could be the use of free software peers. At the same time this kind of substitution should be based on even-com representation of the functional characteristics and features of operation of these programs. The purpose of the article – a review of the free and non-profi t CASE-tools database design, as well as their classifi cation on the basis of the analysis functionality. When writing this article were used materials from the offi cial websites of the tool developers. Evaluation of the functional characteristics of CASEtools for database design made exclusively empirically with the direct work with software products. Analysis functionality of tools allow you to distinguish the two categories CASE-tools database design. The first category includes systems with a basic set of features and tools. The most important basic functions of these systems are: management connections to database servers, visual tools to create and modify database objects (tables, views, triggers, procedures, the ability to enter and edit data in table mode, user and privilege management tools, editor SQL-code, means export/import data. CASE-system related to the first category can be used to design and develop simple databases, data management, as well as a means of administration server database. A distinctive feature of the second category of CASE-tools for database design (full-featured systems is the presence of visual designer, allowing to carry out the construction of the database model and automatic creation of the database on the server based on this model. CASE-system related to this categories can be used for the design and development of databases of any structural complexity, as well as a database server administration tool. The article concluded that the

  4. Robust design principles for reducing variation in functional performance

    DEFF Research Database (Denmark)

    Christensen, Martin Ebro; Howard, Thomas J.

    2016-01-01

    This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability and percei......This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability...... and perceived quality of a product and efforts should be made to minimise it. The design principles are identified by a systematic decomposition of the Taguchi Transfer Function in combination with the use of existing literature and the authors’ experience. The paper presents 15 principles and describes...... their advantages and disadvantages along with example cases. Subsequently, the principles are classified based on their applicability in the various development and production stages. The VRP are to be added to existing robust design methodologies, helping the designer to think beyond robust design tool and method...

  5. Methodology of shell structure reinforcement layout optimization

    Science.gov (United States)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  6. Automated reasoning applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1984-01-01

    Argonne National Laboratory (ANL) is actively involved in the LMFBR Man-Machine Integration (MMI) Safety Program. The objective of this program is to enhance the operational safety and reliability of fast-breeder reactors by optimum integration of men and machines through the application of human factors principles and control engineering to the design, operation, and the control environment. ANL is developing methods to apply automated reasoning and computerization in the validation and sneak function analysis process. This project provides the element definitions and relations necessary for an automated reasoner (AR) to reason about design validation and sneak function analysis. This project also provides a demonstration of this AR application on an Experimental Breeder Reactor-II (EBR-II) system, the Argonne Cooling System

  7. Design and Development of Mobile Phone Using Quality Function Deployment

    Directory of Open Access Journals (Sweden)

    Hamid Ullah

    2017-03-01

    Full Text Available The paper presents design and development of mobile phone using Quality Function Deployment. Quality Function Deployment is one of the total quality management tools used to convert customers’ needs into design specifications. A market survey is conducted to find out the voice of customer. The Voice of the Customer is converted into customers’ needs. Relative importance is assigned to customers’ needs. A list of technical requirements that could fulfill the customers’ needs is produced. A relationship matrix is developed between the customers’ needs and the technical requirements. The relationship matrix is converted into the House of Quality. Output from the House of Quality is used in concept generation of mobile phone. Concept generation is followed by concept selection. Final improved model of the mobile phone is presented.

  8. Standard practice for determining damage-Based design Stress for fiberglass reinforced plastic (FRP) materials using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice details procedures for establishing the direct stress and shear stress damage-based design values for use in the damage-based design criterion for materials to be used in FRP vessels and other composite structures. The practice uses data derived from acoustic emission examination of four-point beam bending tests and in-plane shear tests (see ASME Section X, Article RT-8). 1.2 The onset of lamina damage is indicated by the presence of significant acoustic emission during the reload portion of load/reload cycles. "Significant emission" is defined with historic index. 1.3 Units - The values stated in inch-pound units are to be regarded as standard. The values given in brackets are mathematical conversions to SI units which are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health pr...

  9. HAL/SM system functional design specification. [systems analysis and design analysis of central processing units

    Science.gov (United States)

    Ross, C.; Williams, G. P. W., Jr.

    1975-01-01

    The functional design of a preprocessor, and subsystems is described. A structure chart and a data flow diagram are included for each subsystem. Also a group of intermodule interface definitions (one definition per module) is included immediately following the structure chart and data flow for a particular subsystem. Each of these intermodule interface definitions consists of the identification of the module, the function the module is to perform, the identification and definition of parameter interfaces to the module, and any design notes associated with the module. Also described are compilers and computer libraries.

  10. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  11. Functional design criteria 241-AP-102 Flexible Receiver System

    International Nuclear Information System (INIS)

    Roblyer, S.P.

    1995-01-01

    A mixer pump was installed in the 1.07 m (42-in.) riser of the central pump pit of tank 241-AP-102 to mitigate potential fluid separation particle sedimentation by mixing the tank's contents. The mixer pump performed this function until failure. Its removal is now necessary to meet possible tank content removal commitments or other corrective actions. The proposed removal procedure requires a flexible receiver that will provide a barrier to contamination during removal and transfer of the pump to the mixer pump storage container. This document describes the functional design criteria of the flexible receiver. These criteria include the functional and performance requirements of the flexible receiver as a barrier to contamination during normal conditions and contingencies and the instrumentation requirements

  12. Discriminating Among Probability Weighting Functions Using Adaptive Design Optimization

    Science.gov (United States)

    Cavagnaro, Daniel R.; Pitt, Mark A.; Gonzalez, Richard; Myung, Jay I.

    2014-01-01

    Probability weighting functions relate objective probabilities and their subjective weights, and play a central role in modeling choices under risk within cumulative prospect theory. While several different parametric forms have been proposed, their qualitative similarities make it challenging to discriminate among them empirically. In this paper, we use both simulation and choice experiments to investigate the extent to which different parametric forms of the probability weighting function can be discriminated using adaptive design optimization, a computer-based methodology that identifies and exploits model differences for the purpose of model discrimination. The simulation experiments show that the correct (data-generating) form can be conclusively discriminated from its competitors. The results of an empirical experiment reveal heterogeneity between participants in terms of the functional form, with two models (Prelec-2, Linear in Log Odds) emerging as the most common best-fitting models. The findings shed light on assumptions underlying these models. PMID:24453406

  13. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  14. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  15. Evaluating the integrity of the reinforced concrete structure repaired by epoxy injection using simulated transfer function of impact-echo response

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chia-Chi; Yu, Chih-peng; Wu, Jiunn-Hong; Hsu, Keng-Tsan; Ke, Ying-Tsu [Chaoyang University of Technology, Department of Construction Engineering, Taichung, Taiwan (China)

    2014-02-18

    Cracks and honeycombs are often found inside reinforced concrete (RC) structure caused by excessive external force, or improper casting of concrete. The repairing method usually involves epoxy injection. The impact-echo method, which is a sensitive for detecting of the interior voids, may not be applicable to assess the integrity of the repaired member as both air and epoxy are less in acoustic impedances. In this study, the repaired RC structure was evaluated by the simulated transfer function of the IE displacement waveform where the R-wave displacement waveform is used as a base of a simulated force-time function. The effect of different thickness of the epoxy layer to the amplitude corresponding to the interface is studied by testing on specimen containing repaired naturally delaminated cracks with crack widths about 1 mm, 3 mm and 5 mm. The impact-echo responses were compared with the drilling cores at the test positions. The results showed the cracks were not fully filled with epoxy when the peak amplitude corresponding to the interface dropped less than 20%. The peak corresponding to the thicker epoxy layer tends to be larger in amplitude. A field study was also performed on a column damaged by earthquake before and after repairing.

  16. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  17. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  18. Origins of food reinforcement in infants12345

    Science.gov (United States)

    Kong, Kai Ling; Feda, Denise M; Eiden, Rina D; Epstein, Leonard H

    2015-01-01

    Background: Rapid weight gain in infancy is associated with a higher risk of obesity in children and adults. A high relative reinforcing value of food is cross-sectionally related to obesity; lean children find nonfood alternatives more reinforcing than do overweight/obese children. However, to our knowledge, there is no research on how and when food reinforcement develops. Objective: This study was designed to assess whether the reinforcing value of food and nonfood alternatives could be tested in 9- to 18-mo-old infants and whether the reinforcing value of food and nonfood alternatives is differentially related to infant weight status. Design: Reinforcing values were assessed by using absolute progressive ratio schedules of reinforcement, with presentation of food and nonfood alternatives counterbalanced in 2 separate studies. Two nonfood reinforcers [Baby Einstein–Baby MacDonald shows (study 1, n = 27) or bubbles (study 2, n = 30)] were tested against the baby’s favorite food. Food reinforcing ratio (FRR) was quantified by measuring the reinforcing value of food (Food Pmax) in proportion to the total reinforcing value of food and a nonfood alternative (DVD Pmax or BUB Pmax). Results: Greater weight-for-length z score was associated with a greater FRR of a favorite food in study 1 (FRR-DVD) (r = 0.60, P positively associated with FRR-DVD (r = 0.57, P = 0.009) and FRR-BUB (r = 0.37, P = 0.047). Conclusions: Our newly developed paradigm, which tested 2 different nonfood alternatives, demonstrated that lean infants find nonfood alternatives more reinforcing than do overweight/obese infants. This observation suggests that strengthening the alternative reinforcers may have a protective effect against childhood obesity. This research was registered at clinicaltrials.gov as NCT02229552. PMID:25733636

  19. Functional and environmental design of detached, low crest level breakwaters

    International Nuclear Information System (INIS)

    Bricio Garberi, L.; Negro Valdecantos, V.; Diez Gonzalez, J. J.; Lopez Gutierrez, J. S.

    2010-01-01

    The research work as presented in this article covers the design of detached breakwaters since they constitute a type of coastal defense work with which to combat many of the erosion problems found on beaches in a stable, sustainable fashion. The main aim of this work is to formulate a functional and environmental (non structural) method of design enabling the fundamental characteristics of a detached breakwater to be defined as a function of the effect it is wished to induce on the coast whilst meeting social demands and preserving or improving the quality of the littoral environment. The general applicability of the method is also sought by means of considering relations between variables od different natures (climatic, geomorphologic and geometric) influencing the changes experienced on the coast after the detached breakwater has been built. The study of the relations between the different variables is carried out on the data from a abase of nineteen actual, existing detached breakwaters on the Spanish Mediterranean coastline and follows a methodology based on the implementation of non-dimensional monomials and on a search for relations of dependency between them. Finally, a discussion on the results obtained lead to a proposal for a design method that uses some of the graphic relations found between the variables studied with which the aforesaid main objective is achieved. (Author) 9 refs.

  20. Interactive design of probability density functions for shape grammars

    KAUST Repository

    Dang, Minh

    2015-11-02

    A shape grammar defines a procedural shape space containing a variety of models of the same class, e.g. buildings, trees, furniture, airplanes, bikes, etc. We present a framework that enables a user to interactively design a probability density function (pdf) over such a shape space and to sample models according to the designed pdf. First, we propose a user interface that enables a user to quickly provide preference scores for selected shapes and suggest sampling strategies to decide which models to present to the user to evaluate. Second, we propose a novel kernel function to encode the similarity between two procedural models. Third, we propose a framework to interpolate user preference scores by combining multiple techniques: function factorization, Gaussian process regression, autorelevance detection, and l1 regularization. Fourth, we modify the original grammars to generate models with a pdf proportional to the user preference scores. Finally, we provide evaluations of our user interface and framework parameters and a comparison to other exploratory modeling techniques using modeling tasks in five example shape spaces: furniture, low-rise buildings, skyscrapers, airplanes, and vegetation.

  1. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  2. Reinforcing copper matrix composites through molecular-level mixing of functionalized nanodiamond by co-deposition route

    International Nuclear Information System (INIS)

    He Jie; Zhao Naiqin; Shi Chunsheng; Du Xiwen; Li Jiajun; Nash, Philip

    2008-01-01

    This work reports a chemical method called 'co-deposition route' for fabricating ND (nanodiamond)/Cu composite at a molecular-level mixing. The main procedure of 'co-deposition route' includes four steps. ND particles have been functionalized by HF acid before co-deposition. SEM, HRTEM (high-resolution transmission electron spectroscopy), XRD (X-ray diffraction), EDS (energy-dispersive spectrum analysis) and optical microscope were carried out to characterize the as-prepared composite powders and bulk composites. Results indicated that copper matrix composite with a homogeneous dispersion of functionalized ND particles can be prepared. The modification of ND particles was performed by HF (30 vol%) acid at 70 deg. C, and C-F bond was successfully detected by XPS (X-ray photoelectron spectrum) and IR (Infrared spectroscopy). The properties of relative density, microhardness and electric conductivity of ND/Cu composites have been measured. With the comparison of conventional methods, it showed that the as-prepared ND/Cu composites with good combined performances have a promising future for industry application

  3. Reinforcing copper matrix composites through molecular-level mixing of functionalized nanodiamond by co-deposition route

    Energy Technology Data Exchange (ETDEWEB)

    He Jie [School of Materials Science and Engineering, Tianjin University, Tianjin 30072 (China); Zhao Naiqin [School of Materials Science and Engineering, Tianjin University, Tianjin 30072 (China); Tianjin Key Laboratory of Composite and Functional Materials (China)], E-mail: nqzhao@tju.edu.cn; Shi Chunsheng; Du Xiwen; Li Jiajun [School of Materials Science and Engineering, Tianjin University, Tianjin 30072 (China); Nash, Philip [Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2008-08-25

    This work reports a chemical method called 'co-deposition route' for fabricating ND (nanodiamond)/Cu composite at a molecular-level mixing. The main procedure of 'co-deposition route' includes four steps. ND particles have been functionalized by HF acid before co-deposition. SEM, HRTEM (high-resolution transmission electron spectroscopy), XRD (X-ray diffraction), EDS (energy-dispersive spectrum analysis) and optical microscope were carried out to characterize the as-prepared composite powders and bulk composites. Results indicated that copper matrix composite with a homogeneous dispersion of functionalized ND particles can be prepared. The modification of ND particles was performed by HF (30 vol%) acid at 70 deg. C, and C-F bond was successfully detected by XPS (X-ray photoelectron spectrum) and IR (Infrared spectroscopy). The properties of relative density, microhardness and electric conductivity of ND/Cu composites have been measured. With the comparison of conventional methods, it showed that the as-prepared ND/Cu composites with good combined performances have a promising future for industry application.

  4. simulation models for presiction of structrual fibre-reinforced come

    African Journals Online (AJOL)

    user

    showed increasing flexural strength up to the optimum fibre volume fraction while the ... the analysis and design of palmnut fibre-reinforced cement composites. ..... Nilson, L. “Reinforcement of Concrete with Sisal and other Vegetable Fibres”.

  5. Evaluation of size effect on shear strength of reinforced concrete ...

    Indian Academy of Sciences (India)

    of the longitudinal and the web reinforcement, shear span-to-depth ratio and the ... A simple equation for predicting the shear strength of reinforced concrete deep ..... AASHTO 2007 LRFD Bridge Design Specifications, American Association of ...

  6. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  7. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    Directory of Open Access Journals (Sweden)

    Ke Yang

    2017-12-01

    Full Text Available Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1 mechanical properties that mimic the host tissues; (2 sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3 a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  8. Bio-Functional Design, Application and Trends in Metallic Biomaterials.

    Science.gov (United States)

    Yang, Ke; Zhou, Changchun; Fan, Hongsong; Fan, Yujiang; Jiang, Qing; Song, Ping; Fan, Hongyuan; Chen, Yu; Zhang, Xingdong

    2017-12-22

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  9. Motion sickness: a negative reinforcement model.

    Science.gov (United States)

    Bowins, Brad

    2010-01-15

    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  10. Artificial intelligence applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1985-01-01

    An objective of the US space reactor program is to design systems with high reliability and safety of control over long operating lifetimes. Argonne National Laboratory (ANL) is a participant in the National Man-Machine Integration (MMI) program for Liquid Metal Fast Breeder Reactors (LMFBR). A purpose of this program is to promote the development of concepts and technologies that enhance the operational safety and reliability of fast-breeder reactors. Much of the work is directly applicable to the space reactor program. This paper reports on one of the MMI projects being developed by ANL. The project reported pertains to an automated system that demonstrates the use of artificial intelligence (AI) for design validation (DA) and sneak function analysis (SFA). The AI system models the design specification and the physical design of the cooling process assigned to the Argon Cooling System (ACS) at Experimental Breeder Reactor II (EBR-II). The models are developed using heuristic knowledge and natural laws. 13 refs

  11. Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials

    International Nuclear Information System (INIS)

    Lama, G. C.; Nasti, G.; Cerruti, P.; Gentile, G.; Carfagna, C.; Ambrogi, V.

    2014-01-01

    In this work, the incorporation of multiwalled carbon nanotubes (MWCNT) into epoxy-based elastomers was carried out in order to obtain nanocomposite systems with shape memory effect. For the preparation of elastomeric matrices, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was cured with sebacic acid. DOMS was synthesized in our laboratory and it is characterized by a rigid-rod, potentially liquid crystalline structure. A lightly cross-linked liquid crystalline elastomer was obtained. As for nanocomposites, variable amounts (0.75, 1.50, 3.0, 6.0, 12.0 wt.%) of COOH-MWCNTs were employed. In order to improve the nanotubes dispersibility and the interfacial adhesion with the epoxy matrix, an optimized two-step procedure was developed, which consisted in grafting the epoxy monomer onto the nanotube surface and then curing it in presence of crosslinking agent. DOMS-functionalized MWCNT were characterized through solvent dispersion experiments, FTIR spectroscopy and TGA analysis, which demonstrated the occurred covalent functionalization of the nanotubes with the epoxy monomers. The morphological analysis through electron microscopy demonstrated that this was an efficient strategy to improve the dispersion of nanotubes within the matrix. The second part of the work was devoted to the structural, thermal, mechanical and electric characterization of elastomeric nanocomposites. The results indicated a general improvement of properties of nanocomposites. Also, independently of the nanotube content, a smectic phase formed. Shape memory features of LC systems were also evaluated. It was demonstrated the shape could be recovered through heating, solvent immersion, as well as upon the application of an electrical field

  12. Rational design of functional and tunable oscillating enzymatic networks

    Science.gov (United States)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  13. Design of Connectivity Preserving Flocking Using Control Lyapunov Function

    Directory of Open Access Journals (Sweden)

    Bayu Erfianto

    2016-01-01

    Full Text Available This paper investigates cooperative flocking control design with connectivity preserving mechanism. During flocking, interagent distance is measured to determine communication topology of the flocks. Then, cooperative flocking motion is built based on cooperative artificial potential field with connectivity preserving mechanism to achieve the common flocking objective. The flocking control input is then obtained by deriving cooperative artificial potential field using control Lyapunov function. As a result, we prove that our flocking protocol establishes group stabilization and the communication topology of multiagent flocking is always connected.

  14. Functionalized Multi walled Carbon Nano tubes-Reinforced Viny lester/Epoxy Blend Based Nano composites: Enhanced Mechanical, Thermal, and Electrical Properties

    International Nuclear Information System (INIS)

    Praharaj, A. P.; Behera, D.; Bastia, T. K.; Rout, A. K.

    2015-01-01

    This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nano composites consisting of Vinyl ester resin/epoxy (VER/EP) blend (40:60 w/w) reinforced with amine functionalized multi walled carbon nano tubes (f-MWCNTs). Five different sets of VER/EP nano composites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nano composites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nano composites with nano filler (f-MWCNTs) addition compared to the virgin blend (0 wt. nano filler loading). The properties are best observed in case of 5 wt.% nano filler loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nano filler particles. Thus the above nano composites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  15. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  16. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging.

    Science.gov (United States)

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-06-25

    Biodegradable nanocomposites were prepared by adding ZnO nanoparticles to bacterial polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via solution casting technique. The morphology, thermal, mechanical, antibacterial, barrier, and migration properties of the nanocomposites were analyzed. The nanoparticles were uniformly dispersed within PHBV without the aid of coupling agents, and acted effectively as nucleating agents, raising the crystallization temperature and the level of crystallinity of the matrix while decreasing its crystallite size. A gradual rise in thermal stability was found with increasing ZnO loading, since the nanofillers hinder the diffusion of volatiles generated during the decomposition process. The nanocomposites displayed superior stiffness, strength, toughness, and glass transition temperature, whereas they displayed reduced water uptake and oxygen and water vapor permeability compared to the neat biopolymer, related to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions. At an optimal concentration of 4.0 wt % ZnO, the tensile strength and Young's and storage moduli showed a maximum that coincided with the highest crystallinity and the best barrier properties. PHBV/ZnO films showed antibacterial activity against human pathogen bacteria, and the effect on Escherichia coli was stronger than on Staphylococcus aureus. The overall migration levels of the nanocomposites in both nonpolar and polar simulants dropped upon increasing nanoparticle content, and were well below the limits required by the current normative for food packaging materials. These sustainable nanomaterials with antimicrobial function are very promising to be used as containers for beverage and food products as well as for disposable applications like cutlery or overwrap films.

  17. Fiber-reinforced concretes with a high fiber volume fraction — a look in future. Can a design determine the fiber amount in concrete in real time in every part of a structure in production?

    Science.gov (United States)

    Tepfers, R.

    2010-09-01

    In near future, when the control of the load-bearing capacity of fiber-only-reinforced concrete members will be safely guaranteed, the deletion of the ordinary continuous steel reinforcing bars might be possible. For the time being, it is difficult to change the fiber amount during the casting with today's techniques. Therefore, the fiber concentration has to be determined by the maximum tensile stress in concrete structural members, resulting in an unnecessary fiber addition in compressed zones. However, if the right amount of fibers could be regulated and added to concrete in real time at the pump outlet, a future vision could be to design and produce a structure by using FEM-controlled equipment. The signals from calculation results could be transmitted to a concrete casting system for addition of a necessary amount of fibers to take care of the actual tensile stresses in the right position in the structure. The casting location could be determined by using a GPS for positioning the pump outlet for targeting the casting location horizontally and a laser vertically. The addition of fibers to concrete at the outlet of a concrete pump and proportioning them there according to the actual needs of the stress situation in a structure, given by a FEM analysis in real time, is a future challenge. The FEM analysis has to be based on material properties of fiber-only-reinforced concrete. This means that the resistance and stiffness of different-strength concrete members with a varying fiber content has to be determined in tests and conveyed to the FEM analysis. The FEM analysis has to be completed before the casting and controlled. Then it can be used as the base for adding a correct amount of fibers to concrete in every part of the structure. Thus, a system for introducing a correct amount of fibers into concrete has to be developed. The fibers have to be added at the outlet of concrete pump. Maybe a system to shotcrete concrete with electronically controlled fiber

  18. Harvesting bioenergy with rationally designed complex functional materials

    Science.gov (United States)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  19. Design and functional tests of the Euclid grism mount

    Science.gov (United States)

    Rossin, Ch.; Grange, R.; Caillat, A.; Costille, A.; Sanchez, P.; Ceria, W.

    2017-11-01

    The Euclid mission selected by ESA in the Cosmic Vision program is dedicated to understand dark energy and dark matter. One of the probes based on detection of Baryonic Acoustic Oscillations required the redshift of millions of galaxies. This massive spectroscopic survey relies on the Near Infrared SpectroPhotometer (NISP) using grism in slitless mode. In this Euclid NISP context, we designed a cryogenic mount for the four grisms of the spectroscopic channel. This mount has to maintain optical performances and alignment at the cryogenic temperature of 120K and to survive launch vibrations. Due to a very small mass and volume budget allowed in the Grism Wheel Assembly our design relies on a weight relief Invar ring glued to the grism by tangential flexures. Tangential flexures have the advantage of small height but the drawback of less decoupling capabilities than bipods. We will present the design of the mount and the integration and functional tests to stay within the 60 nm RMS transmitted wavefront error budget allowed to the grism.

  20. Adaptive representations for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.

    2010-01-01

    This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own

  1. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity

    Directory of Open Access Journals (Sweden)

    Anna M. Klawonn

    2018-04-01

    Full Text Available The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs in dopamine D1 receptor (D1R expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT, during various reward-enforced behaviors and in a “waiting”-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs in the 5-choice-serial-reaction-time-task (5CSRTT than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG expression (cFos and FosB induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  2. Funciones de vulnerabilidad calculadas para edificaciones en muros de hormigón reforzado Calculated seismic vulnerability functions for building in walls of reinforced concrete

    Directory of Open Access Journals (Sweden)

    Esperanza Maldonado Rondón

    2010-04-01

    Full Text Available En este documento se presenta una metodología que valora el nivel de daño que pueden alcanzar las edificaciones correspondientes al sistema estructural de muros de hormigón reforzado. El modelo estima un índice de vulnerabilidad calculado en función de las características de la estructura que más influyen en su comportamiento sísmico, y lo relaciona con un índice de daño, que a su vez depende de la acción del movimiento sísmico. El modelo estima diferentes grados de vulnerabilidad, y por consiguiente, define distintos niveles de daño ante una misma acción. La relación de la vulnerabilidad con el daño se materializa mediante una forma continua con las funciones de vulnerabilidad. El modelo se construyó sobre una muestra de edificaciones reales e hipotéticas las cuales representan las características más relevantes de las edificaciones de este tipo en el medio colombiano.This document contains a methodology to assess the level of damage that buildings with reinforced concrete wall structural system may reach. The model estimates a vulnerability rate calculated in function of structure characteristics that most influent a seismic behaviour, and relates this value to a damage rate, which, in turn, depends on the action of seismic movements. The model estimates different levels of vulnerability and, consequently, defines different damages produced the same action. The vulnerability / damage ratio is materialized to vulnerability function in a continuous manner. The model was constructed on a sample of real and hypothetical buildings representing the most relevant characteristics of this type of buildings in Colombia.

  3. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity.

    Science.gov (United States)

    Klawonn, Anna M; Wilhelms, Daniel B; Lindström, Sarah H; Singh, Anand Kumar; Jaarola, Maarit; Wess, Jürgen; Fritz, Michael; Engblom, David

    2018-01-01

    The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression ( cFos and FosB ) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  4. Bioinspiration from fish for smart material design and function

    International Nuclear Information System (INIS)

    Lauder, G V; Madden, P G A; Tangorra, J L; Anderson, E; Baker, T V

    2011-01-01

    Fish are a potentially rich source of inspiration for the design of smart materials. Fish exemplify the use of flexible materials to generate forces during locomotion, and a hallmark of fish functional design is the use of body and fin deformation to power propulsion and maneuvering. As a result of nearly 500 million years of evolutionary experimentation, fish design has a number of interesting features of note to materials engineers. In this paper we first provide a brief general overview of some key features of the mechanical design of fish, and then focus on two key properties of fish: the bilaminar mechanical design of bony fish fin rays that allows active muscular control of curvature, and the role of body flexibility in propulsion. After describing the anatomy of bony fish fin rays, we provide new data on their mechanical properties. Three-point bending tests and measurement of force inputs to and outputs from the fin rays show that these fin rays are effective displacement transducers. Fin rays in different regions of the fin differ considerably in their material properties, and in the curvature produced by displacement of one of the two fin ray halves. The mean modulus for the proximal (basal) region of the fin rays was 1.34 GPa, but this varied from 0.24 to 3.7 GPa for different fin rays. The distal fin region was less stiff, and moduli for the different fin rays measured varied from 0.11 to 0.67 GPa. These data are similar to those for human tendons (modulus around 0.5 GPa). Analysis of propulsion using flexible foils controlled using a robotic flapping device allows investigation of the effect of altering flexural stiffness on swimming speed. Flexible foils with the leading edge moved in a heave show a distinct peak in propulsive performance, while the addition of pitch input produces a broad plateau where the swimming speed is relatively unaffected by the flexural stiffness. Our understanding of the material design of fish and the control of tissue

  5. The Effect of Contingent Reinforcement on Target Variables in Outpatient Psychotherapy for Depression: A Successful and Unsuccessful Case Using Functional Analytic Psychotherapy

    Science.gov (United States)

    Kanter, Jonathan W.; Landes, Sara J.; Busch, Andrew M.; Rusch, Laura C.; Brown, Keri R.; Baruch, David E.; Holman, Gareth I.

    2006-01-01

    The current study investigated a behavior-analytic treatment, functional analytic psychotherapy (FAP), for outpatient depression utilizing two single-subject A/A+B designs. The baseline condition was cognitive behavioral therapy. Results demonstrated treatment success in 1 client after the addition of FAP and treatment failure in the 2nd. This…

  6. Design, Manufacturing and Characterization of Functionally Graded Flextensional Piezoelectric Actuators

    International Nuclear Information System (INIS)

    Amigo, R C R; Vatanabe, S L; Silva, E C N

    2013-01-01

    Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.

  7. Designing advanced functional periodic mesoporous organosilicas for biomedical applications

    Directory of Open Access Journals (Sweden)

    Dolores Esquivel

    2014-03-01

    Full Text Available Periodic mesoporous organosilicas (PMOs, reported for the first time in 1999, constitute a new branch of organic-inorganic hybrid materials with high-ordered structures, uniform pore size and homogenous distribution of organic bridges into a silica framework. Unlike conventional mesoporous silicas, these materials offer the possibility to adjust the surface (hydrophilicity/hydrophobicity and physical properties (morphology, porosity as well as their mechanical stability through the incorporation of different functional organic moieties in their pore walls. A broad variety of PMOs has been designed for their subsequent application in many fields. More recently, PMOs have attracted growing interest in emerging areas as biology and biomedicine. This review provides a comprehensive overview of the most recent breakthroughs achieved for PMOs in biological and biomedical applications.

  8. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  9. Point spread function engineering for iris recognition system design.

    Science.gov (United States)

    Ashok, Amit; Neifeld, Mark A

    2010-04-01

    Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple subpixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.

  10. Design of smart functional apparel products for moxa moxibustion

    Science.gov (United States)

    Li, Li; Au, Wai-man; Ding, Feng; Wong, Kwok-shing

    2013-08-01

    Moxa Moxibustion is a common traditional Chinese therapy in which burning Moxa is applied to affected body areas. This method has been employed for thousands of years to achieve certain medical objectives, such as pain relief or antibacterial and anti-inflammatory effects. Its therapeutic effectiveness has been demonstrated successfully both in research and clinical studies. However, this traditional approach may cause undesirable side effects, for example: 1) burning of Moxa produces by-products such as smoke and ash; 2) patients are at risk of being burnt; 3) the active ingredients of the Moxa leaf oil are volatile, odorous, unstable in air and easy to dissipate, and difficult to store and transport; 4) it is inconvenient to operate. These side effects limit its further high-potential and high-value applications. This study is aimed at developing a multi-functional smart textile system that will adopt smart fabrics containing encapsulated Moxa oil integrated with thermally conductive materials to replace the conventional Moxa products. This will efficiently deliver the active ingredients of Moxa to a human body at optimum conditions, i.e., in a precise and controllable way, with maximum convenience and a high level of comfort. Doing so would solve the existing problems mentioned above. Both garment design skill and textile technology will be applied to Moxa Moxibustion textile to enhance the aesthetics and functionality. The smart garment performance will be assessed subjectively in a clinical trial and objectively by a number of instrumental methods.

  11. Design of Biotin-Functionalized Luminescent Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kimihiro Susumu

    2007-01-01

    Full Text Available We report the design and synthesis of a tetraethylene glycol- (TEG- based bidentate ligand functionalized with dihydrolipoic acid (DHLA and biotin (DHLA—TEG—biotin to promote biocompatibility of luminescent quantum dots (QD's. This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG- (molecular weight average ∼600 modified DHLA (DHLA—PEG600 and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.

  12. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  13. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    Science.gov (United States)

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  14. Relationships between the generalized functional method and other methods of nonimaging optical design.

    Science.gov (United States)

    Bortz, John; Shatz, Narkis

    2011-04-01

    The recently developed generalized functional method provides a means of designing nonimaging concentrators and luminaires for use with extended sources and receivers. We explore the mathematical relationships between optical designs produced using the generalized functional method and edge-ray, aplanatic, and simultaneous multiple surface (SMS) designs. Edge-ray and dual-surface aplanatic designs are shown to be special cases of generalized functional designs. In addition, it is shown that dual-surface SMS designs are closely related to generalized functional designs and that certain computational advantages accrue when the two design methods are combined. A number of examples are provided. © 2011 Optical Society of America

  15. Combining noncontingent reinforcement and differential reinforcement schedules as treatment for aberrant behavior.

    OpenAIRE

    Marcus, B A; Vollmer, T R

    1996-01-01

    Research has shown that noncontingent reinforcement (NCR) can be an effective behavior-reduction procedure when based on a functional analysis. The effects of NCR may be a result of elimination of the contingency between aberrant behavior and reinforcing consequences (extinction) or frequent and free access to reinforcers that may reduce the participant's motivation to engage in aberrant behaviors or mands. If motivation is momentarily reduced, behavior such as mands may not be sensitive to p...

  16. Adapting without reinforcement.

    Science.gov (United States)

    Kheifets, Aaron; Gallistel, C Randy

    2012-11-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.

  17. Concept study for a combined reinforced concrete containment

    International Nuclear Information System (INIS)

    Liersch, G.; Peter, U.; Danisch, R.; Freiman, M.; Hummer, M.; Roettinger, H.; Hansen, H.

    1994-01-01

    A variety of different steel and concrete containment types had been designed and constructed in the past. Most of the concrete containments had been prestressed offering the advantage of small displacements and certain leak tightness of the concrete itself. However, considerable stresses in concrete as well as in the tendons have to be maintained during the whole lifetime of the plant in order to guarantee the required prestressing. The long-time behaviour and the ductility in case of beyond design load cases must be verified. In contrary to a prestressed containment a reinforced containment will only significantly be loaded during test conditions or when needed in case of accidents. It offers additional margins which can be used especially for dynamic loads like impacts or for beyond design considerations. The aim of this paper is to show the feasibility of a so-called combined containment which means capable to resist both - severe internal accidents and external hazards mainly the aircraft crash impact as considered in the design of nuclear power plants in Germany. The concept is a lined reinforced containment without prestressing. The mechanical resistance function is provided by the reinforced concrete and the leak tightness function will be taken by a so called composite liner made of non-metallic materials. Some results of tests performed at SIEMENS laboratories and at the University of Karlsruhe which show the capability of a composite liner to bridge over cracks at the concrete surface will be presented in the paper. The study shows that the combined reinforced concrete containment with a composite liner offers a robust concept with high flexibility with respect to load requirements, beyond design considerations and geometrical shaping (arrangement of openings, integration with adjacent structures). The concept may be further optimized by partial prestressing at areas of high concentration of stresses such as at transition zones or at disturbances around

  18. Accelerated testing for studying pavement design and performance (FY 2000) : effectiveness of fiber reinforced and plain, ultra-thin concrete overlays on Portland Cement Concrete Pavement (PCCP).

    Science.gov (United States)

    2003-11-01

    The objective of the research was to compare the performance of fiber reinforced and plain PCC concrete overlay when used as a thin non-dowelled overlay on top of a rubblized, distressed concrete pavement. The experiment was conducted at the Accelera...

  19. Genomic Signatures of Reinforcement

    Directory of Open Access Journals (Sweden)

    Austin G. Garner

    2018-04-01

    Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

  20. Genomic Signatures of Reinforcement

    Science.gov (United States)

    Goulet, Benjamin E.

    2018-01-01

    Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048

  1. Critical Zone Experimental Design to Assess Soil Processes and Function

    Science.gov (United States)

    Banwart, Steve

    2010-05-01

    experimental design studies soil processes across the temporal evolution of the soil profile, from its formation on bare bedrock, through managed use as productive land to its degradation under longstanding pressures from intensive land use. To understand this conceptual life cycle of soil, we have selected 4 European field sites as Critical Zone Observatories. These are to provide data sets of soil parameters, processes and functions which will be incorporated into the mathematical models. The field sites are 1) the BigLink field station which is located in the chronosequence of the Damma Glacier forefield in alpine Switzerland and is established to study the initial stages of soil development on bedrock; 2) the Lysina Catchment in the Czech Republic which is representative of productive soils managed for intensive forestry, 3) the Fuchsenbigl Field Station in Austria which is an agricultural research site that is representative of productive soils managed as arable land and 4) the Koiliaris Catchment in Crete, Greece which represents degraded Mediterranean region soils, heavily impacted by centuries of intensive grazing and farming, under severe risk of desertification.

  2. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  3. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    Science.gov (United States)

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species. © 2014. Published by The Company of Biologists Ltd.

  4. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  5. Design Function and Structure of a Monomeric CLC Transporter

    Energy Technology Data Exchange (ETDEWEB)

    L Robertson; L Kolmakova-Partensky; C Miller

    2011-12-31

    Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual - the generation of the kilowatt pulses with which electric fish stun their prey - to the quotidian - the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl{sup -} channel and later confirmed by crystal structures of bacterial Cl{sup -}/H{sup +} antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins - the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl{sup -} and H{sup +} antiport in the transporters - are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl{sup -}/H{sup +} exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not

  6. EDITORIAL: Design and function of molecular and bioelectronics devices

    Science.gov (United States)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  7. Habituation of reinforcer effectiveness.

    Science.gov (United States)

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  8. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    than the analytic function. The second variation of the AFEN method we developed is the AFEN/PEN hybrid method. This method is designed especially for the multigroup reactor analysis. This hybrid method solves the diffusion equations for the fast energy groups by the PEN method, and those for the thermal energy groups by the AFEN method. This method is based on the observation that the fast group neutron flux distributions are generally so smooth that they can be approximated by a high-order polynomial and that, on the other hand, the thermal fluxes require the analytic function expansion for the representation of their strong gradients near the interface between assemblies having different neutronic properties. The results of benchmark problems on which this method was tested indicate that performance of the hybrid method is much better than that of the PEN method and is nearly the same to that of the AFEN method. In order for the AFEN method and its variations to be used in analyzing the neutron behavior in an actual reactor core, we also developed a new burnup correction model to reduce the errors in nodal flux distributions induced by the intranodal burnup gradients. It is essential for the nodal methods to maintain their accuracy in fuel depletion analysis. The burnup correction model developed in this study homogenizes equivalently the node with the burnup-induced cross section variations into the homogeneous node with the equivalent parameters such as the flux-volume-weighted constant cross sections and the discontinuity factors. The results of a benchmark problem show that this model eliminates almost all the errors in the nodal unknowns which are induced by the intranodal burnup gradients

  9. Glass FRP reinforcement in rehabilitation of concrete marine infrastructure

    International Nuclear Information System (INIS)

    Newhook, John P.

    2006-01-01

    Fiber reinforced polymer (FRP) reinforcements for concrete structures are gaining wide acceptance as a suitable alternative to steel reinforcements. The primary advantage is that they do not suffer corrosion and hence they promise to be more durable in environments where steel reinforced concrete has a limited life span. Concrete wharves and jetties are examples of structures subjected to such harsh environments and represent the general class of marine infrastructure in which glass FRP (GFRP) reinforcement should be used for improved durability and service life. General design considerations which make glass FRP suitable for use in marine concrete rehabilitation projects are discussed. A case study of recent wharf rehabilitation project in Canada is used to reinforce these considerations. The structure consisted of a GFRP reinforced concrete deck panel and steel - GFRP hybrid reinforced concrete pile cap. A design methodology is developed for the hybrid reinforcement design and verified through testing. The results of a field monitoring program are used to establish the satisfactory field performance of the GFRP reinforcement. The design concepts presented in the paper are applicable to many concrete marine components and other structures where steel reinforcement corrosion is a problem. (author)

  10. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  11. Applying Quality Function Deployment in Industrial Design Curriculum Planning

    Science.gov (United States)

    Liu, Shuo-Fang; Lee, Yann-Long; Lin, Yi-Zhi; Tseng, Chien-Feng

    2013-01-01

    Industrial design is a discipline that combines multiple professional fields. Enterprise demands for industrial design competencies also change over time; thus, the curriculum of industrial design education should be compatible with the current demands of the industry. However, scientific approaches have not been previously employed to plan…

  12. Form Follows Feeling : The Acquisition of Design Expertise and the function of Aesthesis in the Design Process

    NARCIS (Netherlands)

    Curry, T.M.

    2017-01-01

    While the consideration of functional and technical criteria, as well as a sense of coherence are basic requirements for solving a design problem; it is the ability to induce an intended quality of aesthetic experience that is the hallmark of design expertise. Expert designers possess a highly

  13. FRP reinforcement of timber structures

    OpenAIRE

    Schober, Kay-Uwe; Harte, Annette M.; Kliger, Robert; Jockwer, Robert; Xu, Qingfeng; Chen, Jian-Fei

    2015-01-01

    Timber engineering has advanced over recent decades to offer an alternative to traditional materials and methods. The bonding of fibre reinforced plastics (FRP) with adhesives to timber structures for repair and strengthening has many advantages. However, the lack of established design rules has strongly restrained the use of FRP strengthening in many situations, where these could be a preferable option to most traditional techniques. A significant body of research has been carried out in rec...

  14. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.

    Science.gov (United States)

    Uchibe, Eiji; Doya, Kenji

    2008-12-01

    Understanding the design principle of reward functions is a substantial challenge both in artificial intelligence and neuroscience. Successful acquisition of a task usually requires not only rewards for goals, but also for intermediate states to promote effective exploration. This paper proposes a method for designing 'intrinsic' rewards of autonomous agents by combining constrained policy gradient reinforcement learning and embodied evolution. To validate the method, we use Cyber Rodent robots, in which collision avoidance, recharging from battery packs, and 'mating' by software reproduction are three major 'extrinsic' rewards. We show in hardware experiments that the robots can find appropriate 'intrinsic' rewards for the vision of battery packs and other robots to promote approach behaviors.

  15. Mechanical analyses of pipeline repair and reinforcement with use of composite functionally graded materials; Analise mecanica de reforco de dutos submarinos com materiais compositos com gradacao funcional

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcos S.M. [Sondotecnica Engenharia de Solos S.A., Rio de Janeiro, RJ (Brazil); Roehl, Deane de Mesquita [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2008-07-01

    This work presents a methodology for design of stiffener sleeve constituted by functionally graded composite materials in offshore pipelines located in extreme-deep waters, where high mechanical resistance allied to an efficient system of thermal isolation is necessary, in view of the excellent thermomechanical behavior of composites. For the case of FGMs, due to continuous variation in its featuring, is necessary to employ an adapted model, based on a model typically adopted for conventional composites (Rule of Mixture), as the model idealized by Tamura, Tomato e Ozawa, the TTO model. In this report, the influence of geometric and materials parameters in mechanical behavior of pipelines under propagating collapse is analyzed. (author)

  16. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  17. A New Vision for Public Art and Functional Landscape Design

    Science.gov (United States)

    Song, Young Imm Kang

    2014-01-01

    This article explores how Johanson's ecological public art and landscape design addresses current social issues and community necessities. It also examines how her designs may serve as a communication tool for the surrounding society, and how her public art may provide new perspectives for community members, scientists, artists, engineers,…

  18. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  19. Reinforcement Toolbox, a Parametric Reinforcement Modelling Tool for Curved Surface Structures

    NARCIS (Netherlands)

    Lauppe, J.; Rolvink, A.; Coenders, J.L.

    2013-01-01

    This paper presents a computational strategy and parametric modelling toolbox which aim at enhancing the design- and production process of reinforcement in freeform curved surface structures. The computational strategy encompasses the necessary steps of raising an architectural curved surface model

  20. Vigas de concreto reforçadas com bambu Dendrocalamus giganteus. II: modelagem e critérios de dimensionamento Concrete beams reinforced with Dendrocalamus giganteus bamboo. II: modeling and design criterions

    Directory of Open Access Journals (Sweden)

    Humberto C. Lima Júnior

    2005-12-01

    Full Text Available Este trabalho corresponde à segunda parte de uma publicação sobre o comportamento estrutural de vigas de concreto reforçadas com bambu, na qual se apresenta e discute a modelagem dessas estruturas para, em seguida, serem apresentadas sugestões e hipóteses para o dimensionamento desses elementos estruturais. Para tanto, utilizou-se um modelo computacional baseado no Método dos Elementos Finitos, ao qual foram incorporadas sub-rotinas com as leis constitutivas do bambu e do concreto. Para calibração do modelo lançou-se mão dos dados experimentais de oito vigas de concreto reforçadas com bambu. Os resultados obtidos com o modelo computacional foram comparados com os experimentais, observando-se grande concordância. Finalmente, sugerem-se critérios de dimensionamento, os quais foram aplicados em um exemplo prático.This paper corresponds to the second part of a publication concerning the structural behaviour of concrete beams reinforced with bamboo. Modelling of concrete beams reinforced with bamboo-splint are presented and discussed. In addition, some design suggestions and hypotheses are presented. To perform the study, a Finite Element Program was used and some procedures were programmed and linked to it. The program was calibrated with the experimental data of eight concrete beams reinforced with bamboo-splint, whose results presented great accuracy. Finally, some design procedures were suggested and a practical example is given.

  1. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    Science.gov (United States)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  2. Interactive design of probability density functions for shape grammars

    KAUST Repository

    Dang, Minh; Lienhard, Stefan; Ceylan, Duygu; Neubert, Boris; Wonka, Peter; Pauly, Mark

    2015-01-01

    A shape grammar defines a procedural shape space containing a variety of models of the same class, e.g. buildings, trees, furniture, airplanes, bikes, etc. We present a framework that enables a user to interactively design a probability density

  3. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2014-10-01

    The aim of this project is to design a biocompatible package that will deliver the artificial platelets and other hemostatic accelerants (i.e...Encapsulation of magnetic particles within poly(N-isopropylacrylamide) (PNIPAM) via a process known as emulsion polymerization [34,35,38] has...deliver the package ” to the targeted wound site as discussed in the next section. Design of the platelet delivery system This project focusses on

  4. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    Science.gov (United States)

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-04

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Spaceborne computer executive routine functional design specification. Volume 1: Functional design of a flight computer executive program for the reusable shuttle

    Science.gov (United States)

    Curran, R. T.

    1971-01-01

    A flight computer functional executive design for the reusable shuttle is presented. The design is given in the form of functional flowcharts and prose description. Techniques utilized in the regulation of process flow to accomplish activation, resource allocation, suspension, termination, and error masking based on process primitives are considered. Preliminary estimates of main storage utilization by the Executive are furnished. Conclusions and recommendations for timely, effective software-hardware integration in the reusable shuttle avionics system are proposed.

  6. Woodflour as Reinforcement of Polypropylene

    Directory of Open Access Journals (Sweden)

    José Cláudio Caraschi

    2002-10-01

    Full Text Available The effect of the filler content and size, as well as accelerated aging on the mechanical properties of polypropylene composites reinforced with woodflour (WF/PP were evaluated. The composites were prepared by the extrusion of polypropylene with woodflour (Pinus elliotti based on following ratios: 15, 25 and 40 wt% with two different granulometries. The specimens were injection molded according to ASTM standards. The composite properties did not show significant differences as a function of the filler granulometry. We also observed that by increasing the filler content, both the mechanical properties and the melt flow index (MFI decreased, and the elasticity modulus, hardness and density increased. Concerning the accelerated aging, the composite presented a reduction in tensile properties. The results showed that the composite properties are extremely favorable when compared to other commercial systems reinforced by inorganic fillers.

  7. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF_2 or MgO for implants functionalization

    International Nuclear Information System (INIS)

    Mihailescu, Natalia; Stan, G.E.; Duta, L.; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M.; Luculescu, C.; Oktar, F.N.; Mihailescu, I.N.

    2016-01-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF_2 (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ_F_W_H_M ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF_2 and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  8. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF{sub 2} or MgO for implants functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Natalia [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Stan, G.E. [National Institute of Materials Physics, Magurele RO-077125 (Romania); Duta, L. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Chifiriuc, Mariana Carmen [Department of Microbiology, Faculty of Biology, Bucharest RO-060101 (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, 85 Mihai Bravu Avenue, Bucharest RO-030304 (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Advance Nanomaterials Research Laboratory, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania)

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF{sub 2} (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ{sub FWHM} ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF{sub 2} and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  9. Manning and Automation of Naval Surface Combatants: A Functional Allocation Approach Using Axiomatic Design Theory

    National Research Council Canada - National Science Library

    Szatkowski, John

    2000-01-01

    ... undesirable effect on other functionally unrelated parameters. A methodology based on axiomatic design principles that strives to eliminate the currently accepted iterative nature of concept level ship design is proposed...

  10. Design of Connectivity Preserving Flocking Using Control Lyapunov Function

    OpenAIRE

    Erfianto, Bayu; Bambang, Riyanto T.; Hindersah, Hilwadi; Muchtadi-Alamsyah, Intan

    2016-01-01

    This paper investigates cooperative flocking control design with connectivity preserving mechanism. During flocking, interagent distance is measured to determine communication topology of the flocks. Then, cooperative flocking motion is built based on cooperative artificial potential field with connectivity preserving mechanism to achieve the common flocking objective. The flocking control input is then obtained by deriving cooperative artificial potential field using control Lyapunov functio...

  11. Method Usage in Design : How methods function as mental tools for designers

    NARCIS (Netherlands)

    Daalhuizen, J.J.

    2014-01-01

    Methods are means to help designers achieve desired change as efficiently and effectively as possible. Methods can be used to do so in the context of learning - to help teach students how to design on a professional level. Methods can also be used in the context of performance - to help designers

  12. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  13. Design of indoor furniture with acoustic insulation and noise reduction function

    Science.gov (United States)

    Chen, Ziqiang; Lyu, Jianhua; Chen, Ming

    2018-05-01

    In this article, the current status of noise pollution research is analyzed and indoor noise pollution hazard on human body is discussed taking noise pollution as entry point to better understand people's needs in this concern, and it comes to the conclusion that indoor furniture with noise insulation function is required; In addition, the design status and necessity of indoor furniture with noise insulation function are expounded and the material property, structure design essentials and form design are analyzed according to sound transmission principles. In the end, design case study is presented to provide an effective way for design of indoor furniture with acoustic insulation function that meets people's needs.

  14. Design of a Function-Based Internet Accounting Dictionary

    DEFF Research Database (Denmark)

    Nielsen, Sandro; Mourier, Lise

    2007-01-01

    The traditional definition of a dictionary needs to be replaced by one that defines the dictionary in terms of lexicographic functions, data and structures. These must be linked to the intended user groups, the users’ linguistic and factual competences and their needs in the relevant situations o...... to the user in communication-oriented situations within a register-specific context such as accounting....

  15. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2015-12-01

    activities is expected to lead to new devices/ systems /composite materials useful for the USAMRMC. 15. SUBJECT TERMS Functional materials, integrated...fabrication, nanobiotechnology, multifunctional, dimensional integration, nanocomposites, sensor technology, thermoelectrics, solar cells, photovoltaics ...loop measured in the presence of an AC field, and can be increased by tuning several parameters, such as the nanoparticles’ size , saturation

  16. Finger functionality and joystick design for complex hand control

    NARCIS (Netherlands)

    Grinten, M.P. van der; Krause, F.

    2006-01-01

    Joysticks and similar multi-directional controls are increasingly applied in machines, instruments and consumer goods. Operational complexity rises through miniaturization and additional control functions on the joystick. With this the effort for the finger, hand and arm, and for the perceptive and

  17. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.

    Science.gov (United States)

    Jiang, Pei; Ran, Jiabing; Yan, Pan; Zheng, Lingyue; Shen, Xinyu; Tong, Hua

    2018-02-01

    Bacterial cellulose/hydroxyapatite (BC/HAp) composite had favourable bioaffinity but its poor mechanical strength limited its widespread applications in bone tissue engineering (BTE). Silk fibroin, which possesses special crystalline structure, has been widely used as organic reinforcing material, and different SFs have different amino acid sequences, which exhibit different bioaffinity and mechanical properties. In this regard, bacterial cellulose-Antheraea yamamai silk fibroin/hydroxyapatite (BC-AYSF/HAp), bacterial cellulose-Bombyx mori silk fibroin/hydroxyapatite (BC-BMSF/HAp), and BC/HAp nano-composites were synthesized via a novel in situ hybridization method. Compared with BC/HAp and BC-BMSF/HAp, the BC-AYSF/HAp exhibited better interpenetration, which may benefit for the transportation of nutrients and wastes, the adhesion of cells as well. Additionally, the BC-AYSF/HAp also presented superior thermal stability than the other two composites revealed by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Compression testing indicated that the mechanical strength of BC-BMSF/HAp was greatly reinforced compared with BC/HAp and was even a little higher than that of BC-AYSF/HAp. Tensile testing showed that BC-AYSF/HAp possesses extraordinary mechanical properties with a higher elastic modulus at low strain and higher fracture strength simultaneously than the other two composites. In vitro cell culture exhibited that MC3T3-E1 cells on the BC-AYSF/HAp membrane took on higher proliferative potential than those on the BC-BMSF/HAp membrane. These results suggested that compared with BC-BMSF/HAp, the BC-AYSF/HAp composite was more appropriate as an ideal bone scaffold platform or biomedical membrane to be used in BTE.

  18. Computertomographic investigation of steel fibre reinforced sprayed concrete using multi-dimensional transfer functions [Computertomografische Untersuchung von Stahlfaserspritzbeton mit mehrdimensionalen Transferfunktionen

    KAUST Repository

    Pittino, Gerhard

    2011-06-01

    The composite material steel fibre reinforced concrete or steel fibre reinforced sprayed concrete (SFRS) is widely used in geotechnics. For the modelling of the mechanical behaviour the knowledge of the distribution and orientation of the fibres in the concrete is of particular importance. For a bachelor thesis the steel fibres in drill cores were investigated by computed tomography (CT) at the Austrian Foundry Research Institute (ÖGI). The orientation of each fibre was calculated using a STL-interface and further software tools. The results were statistically evaluated and graphically represented using Schmidt\\'s net. This time consuming (expensive) method was automated by a post-processing of VRVis. With that tool the steel fibres in the sample can be explored, classified and visually examined in real-time regarding their orientation in two angles. Different possibilities of statistical evaluation can be implemented. A real-time direction sphere histogram (DSH), comparable to Schmidt\\'s net in 3D allows the user to recognise the distribution of orientations of the selected fibres at a glance. The colour-coding of the different orientations is also used for the 3D-volume-view of the fibres, to easily identify the spatial distribution of orientations in the SFRS sample. © 2011 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin.

  19. State-of-Practice on the Dynamic Response of Structures Strengthened with Fiber Reinforced Polymers (FRPs)

    Science.gov (United States)

    2015-07-01

    entitled “Design guidelines for blast strengthening of concrete and masonry structures using Fiber - Reinforced Polymer (FRP).” Seismic provision...2 Reinforced Concrete Fiber Reinforced Polymers are frequently used to retrofit and repair reinforced concrete structures. Most of the work...tested 72 laboratory-size beams (3-in. by 3-in. cross-section and 30–in. long) of unreinforced and nylon fiber reinforced light-weight concrete that

  20. Learning to trade via direct reinforcement.

    Science.gov (United States)

    Moody, J; Saffell, M

    2001-01-01

    We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting models is eliminated, and better trading performance is obtained. The direct reinforcement approach differs from dynamic programming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to estimate a value function for the control problem. We find that the RRL direct reinforcement framework enables a simpler problem representation, avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. We demonstrate how direct reinforcement can be used to optimize risk-adjusted investment returns (including the differential Sharpe ratio), while accounting for the effects of transaction costs. In extensive simulation work using real financial data, we find that our approach based on RRL produces better trading strategies than systems utilizing Q-learning (a value function method). Real-world applications include an intra-daily currency trader and a monthly asset allocation system for the S&P 500 Stock Index and T-Bills.

  1. Functional Design of Breakwaters for Shore Protection: Empirical Methods

    Science.gov (United States)

    1990-09-01

    prepred by the Principal Investigator of the work unit, Ms. Julie Dean Rosati, Hy1. aulic Engineer, EAU, CSEB. COL Larry B. Fulton, EN, was Commander and...transmissibility, wave climate , etc.), morphologica. beach response may be either a salient or tombolo. Reef breakwaters are a type of detached breakwaters... climate chosen for design (USAED, Buffalo 1975; Pope and Dean 1986), as waves from the northwest were inappropriately weighted. Pope and Dean (1986) 26

  2. Predictive Design of Interfacial Functionality in Polymer Matrix Composites

    Science.gov (United States)

    2017-05-24

    conventional practice the materials design cycle involves the iterative synthesis of materials components in the laboratory, fabrication of a prototype...sible by using the Brillouin light scattering (BLS) technique and by sandwiching the samples between trans- parent fluoride-doped tin oxide (FTO...the role of bonding vs. non-bonding interactions. During 2015-16 PI Kieffer was on sabbatical leave, freed of teaching and service requirements. The

  3. Shape and Reinforcement Optimization of Underground Tunnels

    Science.gov (United States)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  4. A G-function-based reliability-based design methodology applied to a cam roller system

    International Nuclear Information System (INIS)

    Wang, W.; Sui, P.; Wu, Y.T.

    1996-01-01

    Conventional reliability-based design optimization methods treats the reliability function as an ordinary function and applies existing mathematical programming techniques to solve the design problem. As a result, the conventional approach requires nested loops with respect to g-function, and is very time consuming. A new reliability-based design method is proposed in this paper that deals with the g-function directly instead of the reliability function. This approach has the potential of significantly reducing the number of calls for g-function calculations since it requires only one full reliability analysis in a design iteration. A cam roller system in a typical high pressure fuel injection diesel engine is designed using both the proposed and the conventional approach. The proposed method is much more efficient for this application

  5. Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload

    Science.gov (United States)

    Zhang, X.

    2018-04-01

    To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.

  6. Design of an artificial intelligence system for safety function maintenance

    International Nuclear Information System (INIS)

    Sharma, D.D.; Miller, D.W.; Chandrasekaran, B.

    1985-01-01

    The safety function (SF) maintenance concept provides a systematic approach to mitigate the consequences of an unforeseen event. Safety functions are a set of actions for mitigating or limiting consequences of a safety threatening event. The current approach to SF maintenance of selecting a success path (SP) from a library of predefined SPs is inadequate because it includes only anticipated modes of challenging an SF. To cover all possible modes of challenging an SF, the library of success paths would be extremely large and difficult to implement on any existing computer. In this paper the authors describe a method based on artificial intelligence (AI) theory of planning to synthesize an SP using available resources to satisfy a hierarchy of safety goals. The method has been applied to SF maintenance of a boiling water reactor (BWR) using data from the Perry nuclear power plant

  7. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  8. Slipforming of reinforced concrete shield building

    International Nuclear Information System (INIS)

    Hsieh, M.C.; King, J.R.

    1982-01-01

    The unique design and construction features of slipforming the heavily reinforced concrete cylindrical shield walls at the Satsop nuclear plant in Washington, D.C. site are presented. The shield walls were designed in compliance with seismic requirements which resulted in the need for reinforcing steel averaging 326 kg/m/sup 3/. A 7.6 m high, three-deck moving platform was designed to permit easy installation of the reinforcing steel, embedments, and blockouts, and to facilitate concrete placement and finishing. Two circular box trusses, one on each side of the shield wall, were used in combination with a spider truss to meet both the tolerance and strength requirements for the slipform assembly

  9. Design of a secondary lens using gaussian function

    Science.gov (United States)

    Anh, Nguyen Doan Quoc; Long, Nguyen Ngoc; Van Phuoc, Nguyen; Voznak, Miroslav; Zdralek, Jaroslav

    2018-04-01

    In the article, it is recognized that the high-intensity discharge (HID) fishing lamp becomes obsolete, so we designed a free secondary lens for an LED fishing/working lamp (LFWL) to serve the lighting needs of fishing and the on-board activities on fishing boats through gaussian decomposition for taking the place it. The results proved that it is really useful to the board, sea-surface, and underwater. Moreover, the lighting efficiency of 91 % with the power consumption reducing more than 3 times could be achieved when the proposed LED fishing/working lamps are used instead of the HID fishing lamps.

  10. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    Science.gov (United States)

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with

  11. Nuclear power plant functions: overview, maintenance, design practices, training

    International Nuclear Information System (INIS)

    Gray, J.

    1984-01-01

    The author gives a history of the nuclear industry in the US beginning with the Atoms for Peace Proposal in 1954 and summarizes the nuclear industry's importance in the realm of electric power production today. The primary problems facing the domestic nuclear industry are identified as the lengthening schedules for plant licensing and construction, and the associated uncertainty in plant costs and difficulty in financing, and the erosion of public confidence. Views on technological approaches to the future of nuclear power and the role regulation will play in the future as a fundamental force are discusses in the paper. Also discussed are the importance of standardization of advanced reactor designs and quality assurance

  12. Structure-function-property-design interplay in biopolymers: spider silk.

    Science.gov (United States)

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L

    2014-04-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Key issues in theoretical and functional pneumatic design

    Science.gov (United States)

    Xu, Z. G.; Yang, D. Y.; Liu, W. M.; Liu, T. T.

    2017-10-01

    This paper studies the energy release of the pneumatic engine in different thermodynamic processes, the isothermal process is the highest power output process, while adiabatic process is the lowest energy output process, and the energy release of the pneumatic engine is a multi-state thermodynamic process between them. Therefore heat exchanging should be increased between the pneumatic engine and the outer space, the gas expansion process in the cylinder should be as close as possible to the isothermal process. Heat exchange should be increased between the cylinder and the external spaces. Secondly, the fin structure is studied to increase the heat exchanging between the cylinder body and the outside space. The upper part has fin structures and the lower cylinder has no fin structure, this structure improved the working efficiency of pneumatic engine. Finally the cam and the hydraulic bottle of pneumatic engines are designed. Simulation and theoretical calculation are used to the analysis of the whole structure, which lay the foundation for the manufacturing and design of the pneumatic engines.

  14. Preliminary Design of Critical Function Monitoring System of PGSFR

    International Nuclear Information System (INIS)

    2015-01-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation control and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system

  15. Preliminary Design of Critical Function Monitoring System of PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation control and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system

  16. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  17. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    Science.gov (United States)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  18. Materials design and development of functional materials for industry

    International Nuclear Information System (INIS)

    Asahi, Ryoji; Morikawa, Takeshi; Hazama, Hirofumi; Matsubara, Masato

    2008-01-01

    It is now well recognized that we are witnessing a golden age of innovation with novel materials, with discoveries that are important for both basic science and industry. With the development of theory along with computing power, quantum materials design-the synthesis of materials with the desired properties in a controlled way via materials engineering on the atomic scale-is becoming a major component of materials research. Computational prediction based on first-principles calculations has helped to find an efficient way to develop materials that are much needed for industry, as we have seen in the successful development of visible-light sensitized photocatalysts and thermoelectric materials. Close collaboration between theory and experiment is emphasized as an essential for success

  19. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    Science.gov (United States)

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  20. Improved fuzzy PID controller design using predictive functional control structure.

    Science.gov (United States)

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A study on the fatigue strength behavior of reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.; Chae, W.K.; Kwak, K.H.

    1989-01-01

    Design methods for shear have been developed in these days.However, these are mainly based on the test results under static loading, and there are few information concerning the shear behavior of reinforced concrete beams under repeated dynamic loading. From this point of view, this study was performed to investigate the shear behavior of four reinforced concrete beams with web reinforcement under repeated dynamic loading. From these test results, the changes in strain of stirrups and the crack propagation procedures are found as functions of the number of repeated loading cycles. These results are compared with the existing experimental formula for predicting strain of stirrups under repeated loading and also used to find the coefficients in the empirical formula using the regression technique

  2. The study of system function analysis method for success path alarm design

    International Nuclear Information System (INIS)

    Kang, S. K.; Shin, Y. C.

    1999-01-01

    The key benefit to the common use of the critical function approach for safety and mission functions is that monitoring methods expected to be used by operaotrs during emergency condition are used continuously during normal operation. For each critical safety function there exists two or more success paths. Information Processing System monitors the availability, operation state and performance of the critical function success paths. In this paper, We have studied System Function Analysis(SFA) for the design of Success Path Alarm(SPA) for applying in KNGR. In here, we thought that SFA will help the design of SPA. The SFA can be applicable to the design of SPA according to NUREG-0711, also can induce the algorithm for alarm of system, train and flow path. We present a method of system function analysis for designing Success Path Alarm

  3. Spaceborne computer executive routine functional design specification. Volume 2: Computer executive design for space station/base

    Science.gov (United States)

    Kennedy, J. R.; Fitzpatrick, W. S.

    1971-01-01

    The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.

  4. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings

    Directory of Open Access Journals (Sweden)

    Ronja A. Schierjott

    2016-01-01

    Full Text Available Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens (n=3, whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  5. Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings.

    Science.gov (United States)

    Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M

    2016-01-01

    Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.

  6. Alpha radioactivity monitor using ionized air transport technology for large size uranium waste (2). Simulation model reinforcement for practical apparatus design

    International Nuclear Information System (INIS)

    Asada, Takatoshi; Hirata, Yosuke; Naito, Susumu; Izumi, Mikio; Yoshimura, Yukio

    2011-01-01

    In alpha radioactivity measurement using ionized air transportation (AMAT), conversion from ion currents to radioactivity accurate is required. An ion transport simulation provides ways of complementarily determining conversion factors. We have developed an ion transport simulation model. Simulation results were compared with experiments with air speeds, faster than 1 m/s, achieving good agreement. In a practical AMAT apparatus, the air-flow at the alpha source may be slower than 1 m/s, and ion loss is likely to be large. Reinforcement of the ion transport model to cover the lower air speed region is effective. Ions are generated by an alpha particle in a very thin column. Since the ion density at this temporal stage is high, the recombination loss, proportional to the square of ion density, is dominant within a few milli-seconds. The spatial and temporal scales of this columnar recombination are too small for CFD simulation. We solve an ion transport equation during the period of columnar recombination with diffusion and recombination terms and incorporated the relation between ion loss and turbulent parameters into CFD. Using this model, simulations have been done for various air speeds and targets. Those for simulation results agree with experiments, showing improvement of simulation accuracy. (author)

  7. Functional Design Criteria - plutonium stabilization and handling (PUSH) project W-460

    International Nuclear Information System (INIS)

    NELSON, D.W.

    1999-01-01

    This Functional Design Criteria (FDC) contains information to guide the design of the Stabilization and Packaging Equipment necessary to oxidize and package the remaining plutonium-bearing Special Nuclear Materials (SNM) currently in the Plutonium Finishing Plant (PFP) inventory. The FDC also guides the design of vault modifications to allow storage of 3013 packages of stabilized SNM for up to 50 years

  8. Functional Design Criteria plutonium stabilization and handling (PUSH) project W-460

    Energy Technology Data Exchange (ETDEWEB)

    NELSON, D.W.

    1999-09-02

    This Functional Design Criteria (FDC) contains information to guide the design of the Stabilization and Packaging Equipment necessary to oxidize and package the remaining plutonium-bearing Special Nuclear Materials (SNM) currently in the Plutonium Finishing Plant (PFP) inventory. The FDC also guides the design of vault modifications to allow storage of 3013 packages of stabilized SNM for up to 50 years.

  9. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CFD analysis of PAR performance as function of inlet design

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kweonha, E-mail: khpark@kmou.ac.kr [Division of Mechanical and Energy systems Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of); Khor, Chong Lee, E-mail: itachi_829@hotmail.com [Department of Mechanical Engineering, Korea Maritime University (Korea, Republic of)

    2016-01-15

    Highlights: • The new concept of PAR (passive autocatalytic recombiner) was proposed and analyzed. • Guidance wall was added at the bottom of PAR to enhance the flow rate through the catalyst. • The new concept of PAR was proved to have a better hydrogen removal performance. - Abstract: Passive autocatalytic recombiner (PAR) is very useful hydrogen mitigation measurement. It is widely implemented in the current and advanced light water reactors (ALWRs). The design of the PARs should be optimized for the specific use under severe accident scenarios. Several techniques and innovations have been fused into the PAR, as an effort to increase its efficiency of hydrogen mitigation. This study proposes different concepts of PAR, which applied some changes to the honeycomb catalyst PAR made by the Korea Nuclear Technology (KNT) Inc. Two slices of plate are added to the bottom of PAR model, which intended to act as a reflection wall and promote the gas flow into PAR. Hydrogen volume fraction was given 4 vol. % which tested by KNT to investigate the performance of PAR in different direction gas flow conditions to see maximum hydrogen recombination rate. The new concept of PAR was proved to have a better hydrogen removal performance compared to the original honeycomb catalyst PAR.

  11. CFD analysis of PAR performance as function of inlet design

    International Nuclear Information System (INIS)

    Park, Kweonha; Khor, Chong Lee

    2016-01-01

    Highlights: • The new concept of PAR (passive autocatalytic recombiner) was proposed and analyzed. • Guidance wall was added at the bottom of PAR to enhance the flow rate through the catalyst. • The new concept of PAR was proved to have a better hydrogen removal performance. - Abstract: Passive autocatalytic recombiner (PAR) is very useful hydrogen mitigation measurement. It is widely implemented in the current and advanced light water reactors (ALWRs). The design of the PARs should be optimized for the specific use under severe accident scenarios. Several techniques and innovations have been fused into the PAR, as an effort to increase its efficiency of hydrogen mitigation. This study proposes different concepts of PAR, which applied some changes to the honeycomb catalyst PAR made by the Korea Nuclear Technology (KNT) Inc. Two slices of plate are added to the bottom of PAR model, which intended to act as a reflection wall and promote the gas flow into PAR. Hydrogen volume fraction was given 4 vol. % which tested by KNT to investigate the performance of PAR in different direction gas flow conditions to see maximum hydrogen recombination rate. The new concept of PAR was proved to have a better hydrogen removal performance compared to the original honeycomb catalyst PAR.

  12. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Solgaard, Anders Ole Stubbe; Pease, Bradley Justin

    2013-01-01

    Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width....... Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement...... embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition....

  13. Form Follows Feeling – The Acquisition of Design Expertise and the Function of Aesthesis in the Design Process

    Directory of Open Access Journals (Sweden)

    Terrence Michael Curry

    2017-07-01

    The research provides evidence that more than technical rationality, expert designers rely heavily on a highly developed embodied way of knowing (tacit knowledge througout the design process that allows them to know more than they can say. Indeed, this is the hallmark of expert performers in many fields. However, this ability is not to be understood as natural talent, but as a result of an intense developmental process that includes years of deliberate practice necessary to restructure the brain and adapt the body in a manner that facilitates exceptional performance. For expert designers it is aesthesis (a kind of body knowledge, functioning as a meta-heuristic, that allows them to solve a complex problem situation in a manner that appears effortless. Aesthesis is an ability that everyone possesses, but that expert designers have highly developed and adapted to allow them to produce buildings and built environments that induce an intended quality of aesthetic experience in the user. It is a cognitive ability that functions to both (restructure the design problem and evaluate the solution; and allows the designer to inhabit the design world feelingly while seeking aesthetic resonance that anticipates the quality of atmosphere another is likely to experience. This ability is critical to the acquisition of design expertise.

  14. Structure and function design for nuclear facilities decommissioning information database

    International Nuclear Information System (INIS)

    Liu Yongkuo; Song Yi; Wu Xiaotian; Liu Zhen

    2014-01-01

    The decommissioning of nuclear facilities is a radioactive and high-risk project which has to consider the effect of radiation and nuclear waste disposal, so the information system of nuclear facilities decommissioning project must be established to ensure the safety of the project. In this study, by collecting the decommissioning activity data, the decommissioning database was established, and based on the database, the decommissioning information database (DID) was developed. The DID can perform some basic operations, such as input, delete, modification and query of the decommissioning information data, and in accordance with processing characteristics of various types of information data, it can also perform information management with different function models. On this basis, analysis of the different information data will be done. The system is helpful for enhancing the management capability of the decommissioning process and optimizing the arrangements of the project, it also can reduce radiation dose of the workers, so the system is quite necessary for safe decommissioning of nuclear facilities. (authors)

  15. Linking Brief Functional Analysis to Intervention Design in General Education Settings

    Science.gov (United States)

    Ishuin, Tifanie

    2009-01-01

    This study focused on the utility and applicability of brief functional analysis in general education settings. The purpose of the study was to first identify the environmental variables maintaining noncompliance through a brief functional analysis, and then to design and implement a functionally equivalent intervention. The participant exhibited…

  16. Do current sports brassiere designs impede respiratory function?

    Science.gov (United States)

    Bowles, Kelly-Ann; Steele, Julie R; Chaunchaiyakul, Rungchai

    2005-09-01

    Although sports brassieres are more effective in limiting breast motion and related breast pain when compared with standard fashion brassieres, some females do not wear sports brassieres during physical activity, as they perceive them to be too tight around the torso, possibly impeding their performance during physical activity. The purpose of this study was to determine whether breast hypertrophy, breast momentum, and/or wearing a sports brassiere impeded respiratory function at rest and during physical activity. Twenty-two active women completed standard resting spirometry maneuvers while not wearing a brassiere. All subjects then completed maximal cycle ergometer testing in two breast support conditions (sports brassiere and no brassiere (NB)), followed by submaximal treadmill exercise tests under three breast support conditions (sports brassiere, no brassiere and fashion brassiere) while standard spirometry, brassiere pressure and comfort were measured. The sports brassiere imparted significantly more pressure on smaller breasted females' torsos when compared with the fashion brassiere (0.861 +/- 0.247 and 0.672 +/- 0.254 N.cm(-2), respectively), although this increased pressure did not appear to significantly affect measured lung volumes or brassiere comfort scores. Brassiere size affected maximal exercise ability (relative VO(2peak): smaller breasted NB: 49.84 +/- 6.15 mL.kg(-1).min(-1); larger breasted NB: 40.76 +/- 4.47 mL.kg(-1).min(-1)) as well as some temporal measures of resting and submaximal respiration. However, no significant difference was found between the no brassiere and brassiere conditions in regards to measured lung volumes. As no significant restriction to exercise performance or respiratory mechanics was found when subjects wore sports brassieres, it was concluded that active females should wear a sports brassiere during physical activity to reduce breast motion and related breast pain.

  17. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  18. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  19. Mechanical testing of newly developed biomaterial designed for intra-articular reinforcement of partially ruptured cranial cruciate ligament: ex vivo pig model

    Directory of Open Access Journals (Sweden)

    Petra Fedorová

    2014-01-01

    Full Text Available The study deals with mechanical testing of newly developed material polyethylene terephtalate coated with polycaprolactone nanofibers in combination with biodagradable Hexalon ACL/PCL screws as a new possibility of intra-articular reinforcement of partially ruptured cranial cruciate ligament. Four groups of ex vivo models of pig stifle joints were prepared and tested: a model with intact CCL (group 1, a model with partial CCL rupture (group 2, a model with CCL rupture stabilized with 7 mm Mersilene® strip (group 3, and a model with CCL rupture stabilized with 5 mm PET/PCL biomaterial strip (group 4. The models were loaded in the standing angle of 100° and the maximum load (N and the shift (mm were monitored. The mean maximum peak power and the shift were 1266.0 ± 146.9 N and 13.7 ± 2.5 mm for group 1, and 1164.7 ± 228.2 N and 1 6.8 ± 3.3 mm for group 2, respectively. In all cases after reaching the maximum load, a tibial fracture occurred but never a CCL rupture. In groups 3 and 4, the initial fixation failure occurred in the mean values of 375.7 ± 81.5 and 360.4 ± 52.0 N, respectively, and with a bigger shift of 52.3 ± 11.9 mm and 39.4 ± 14.6 mm, respectively, compared to group 1. A critical point of failure was the anchoring in the bone. It can be concluded that the PET/PCL substitute in the ex vivo model has mechanically comparable properties with the clinically used Mersilene®, and based on its proven ability to carry stem cells it could be appropriate for partially ruptured CCL protection.

  20. Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep hybrid composite

    Directory of Open Access Journals (Sweden)

    J.S. Pang

    2014-08-01

    Full Text Available This paper introduces the application of Taguchi optimization methodology in optimizing the cutting parameters of end-milling process for machining the halloysite nanotubes (HNTs with aluminium reinforced epoxy hybrid composite material under dry condition. The machining parameters which are chosen to be evaluated in this study are the depth of cut (d, cutting speed (S and feed rate (f. While, the response factors to be measured are the surface roughness of the machined composite surface and the cutting force. An orthogonal array of the Taguchi method was set-up and used to analyse the effect of the milling parameters on the surface roughness and cutting force. The result from this study shows that the application of the Taguchi method can determine the best combination of machining parameters that can provide the optimal machining response conditions which are the lowest surface roughness and lowest cutting force value. For the best surface finish, A1–B3–C3 (d = 0.4 mm, S = 1500 rpm, f = 60 mmpm is found to be the optimized combination of levels for all the three control factors from the analysis. Meanwhile, the optimized combination of levels for all the three control factors from the analysis which provides the lowest cutting force was found to be A2–B2–C2 (d = 0.6 mm, S = 1000 rpm, f = 40 mmpm.

  1. Research on knowledge support technology for product innovation design based on quality function knowledge deployment

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2016-06-01

    Full Text Available Based on the analysis of the relationship between the process of product innovation design and knowledge, this article proposes a theoretical model of quality function knowledge deployment. In order to link up the product innovation design and the knowledge required by the designer, the iterative method of quality function knowledge deployment is refined, as well as the knowledge retrieval model and knowledge support model based on quality function knowledge deployment are established. In the whole life cycle of product design, in view of the different requirements for knowledge in conceptual design stage, components’ configuration stage, process planning stage, and production planning stage, the quality function knowledge deployment model could link up the required knowledge with the engineering characteristics, component characteristics, process characteristics, and production characteristics in the four stages using the mapping relationship between the function characteristics and the knowledge and help the designer to track the required knowledge for realizing product innovation design. In this article, an instance about rewinding machine is given to demonstrate the practicability and validity of product innovation design knowledge support technology based on quality function knowledge deployment.

  2. Theoretical and numerical analysis of reinforced concrete beams with confinement reinforcement

    Directory of Open Access Journals (Sweden)

    R. G. Delalibera

    Full Text Available This paper discusses the use of confinement in over-reinforced concrete beams. This reinforcement consists of square stirrups, placed in the compression zone of the beam cross-section, in order to improve its ductility. A parametric numerical study is initially performed, using a finite element computational program that considers the material nonlinearities and the confinement effect. To investigate the influence of the transverse reinforcing ratio on the beam ductility, an experimental program was also conducted. Four over-reinforced beams were tested; three beam specimens with additional transverse reinforcement to confine the beams, and one without it. All specimens were fabricated with a concrete designed for a compressive strength of 25 MPa. The experimental results show that the post-peak ductility factor is proportional to the confining reinforcement ratio, however the same is not observed for the pre-peak ductility factor, which varied randomly with changes in the confining reinforcement ratio. It was also observed from the experiments that the confinement effect tends to be smaller close to the beam neutral axis.

  3. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    Science.gov (United States)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  4. The role of function analysis in the ACR control centre design

    International Nuclear Information System (INIS)

    Leger, R.P.; Davey, E.C.

    2006-01-01

    An essential aspect of control centre design is the need to characterize: plant functions and their inter-relationships to support the achievement of operational goals, and roles for humans and automation in sharing and exchanging the execution of functions across all operational phases. Function analysis is a design activity that has been internationally accepted as an approach to satisfy this need. It is recognized as a fundamental and necessary component in the systematic approach to control centre design and is carried out early in the design process. A function analysis can provide a clear basis for: the control centre design for the purposes of design team communication, and customer or regulatory review, the control centre display and control systems, the staffing and layout requirements of the control centre, assessing the completeness of control centre displays and controls prior and supplementary to mock-up walkthroughs or simulator evaluations, and the design of operating procedures and training programs. This paper will explore the role for function analysis in supporting the design of the control centre. The development of the ACR control room will be used as an illustrative context for the discussion. The paper will also discuss the merits of using function analysis in a goal-or function-based approach resulting in a more robust, operationally compatible, and cost-effective design over the life of the plant. Two former papers have previously outlined, the evolution in AECL's application approach and lessons learned in applying function analysis in support of control room design. This paper provides the most recent update to this progression in application refinement. (author)

  5. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  6. Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads

    Directory of Open Access Journals (Sweden)

    Berlinov Mikhail

    2018-01-01

    Full Text Available A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.

  7. Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads

    Science.gov (United States)

    Berlinov, Mikhail

    2018-03-01

    A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.

  8. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  9. Analysis of FRP bars used as reinforcement in concrete structures

    Directory of Open Access Journals (Sweden)

    Kinga Brózda

    2016-09-01

    Full Text Available In the design and construction of building and engineering structures, it is of utmost importance to provide their reliability and safety. The use of FRP (Fiber Reinforced Polymers bars as reinforcement of structural concrete elements could help reducing the typical defects of reinforced concrete and increase its strength parameters. In the paper the selected FRP bar characteristic properties are presented and advantages derived therefrom are specified. Furthermore, the most commonly used in construction types of FRP bars, depending on the raw material used during the production process are listed. In addition, the possibility of recycling of elements reinforced with FRP bars is presented and compared with traditional reinforced concrete (reinforced with steel bars. The production method of FRP bars (pultrusion is shown. Moreover, the advantages and disadvantages of using this method are discussed.

  10. Origins of altered reinforcement effects in ADHD

    Directory of Open Access Journals (Sweden)

    Tripp Gail

    2009-02-01

    Full Text Available Abstract Attention-deficit/hyperactivity disorder (ADHD, characterized by hyperactivity, impulsiveness and deficient sustained attention, is one of the most common and persistent behavioral disorders of childhood. ADHD is associated with catecholamine dysfunction. The catecholamines are important for response selection and memory formation, and dopamine in particular is important for reinforcement of successful behavior. The convergence of dopaminergic mesolimbic and glutamatergic corticostriatal synapses upon individual neostriatal neurons provides a favorable substrate for a three-factor synaptic modification rule underlying acquisition of associations between stimuli in a particular context, responses, and reinforcers. The change in associative strength as a function of delay between key stimuli or responses, and reinforcement, is known as the delay of reinforcement gradient. The gradient is altered by vicissitudes of attention, intrusions of irrelevant events, lapses of memory, and fluctuations in dopamine function. Theoretical and experimental analyses of these moderating factors will help to determine just how reinforcement processes are altered in ADHD. Such analyses can only help to improve treatment strategies for ADHD.

  11. Soil reinforcement with geosynthetics

    Directory of Open Access Journals (Sweden)

    Bessaim Mohammed Mustapha

    2018-01-01

    Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.

  12. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Hong Kai Yap

    2017-10-01

    Full Text Available Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In

  13. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.

    Science.gov (United States)

    Yap, Hong Kai; Lim, Jeong Hoon; Nasrallah, Fatima; Yeow, Chen-Hua

    2017-01-01

    Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient's grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper

  14. Human choice among five alternatives when reinforcers decay.

    Science.gov (United States)

    Rothstein, Jacob B; Jensen, Greg; Neuringer, Allen

    2008-06-01

    Human participants played a computer game in which choices among five alternatives were concurrently reinforced according to dependent random-ratio schedules. "Dependent" indicates that choices to any of the wedges activated the random-number generators governing reinforcers on all five alternatives. Two conditions were compared. In the hold condition, once scheduled, a reinforcer - worth a constant five points - remained available until it was collected. In the decay condition, point values decreased with intervening responses, i.e., rapid collection was differentially reinforced. Slopes of matching functions were higher in the decay than hold condition. However inter-subject variability was high in both conditions.

  15. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  16. optimisation of thickness of fibre reinforced polymer sheets for ...

    African Journals Online (AJOL)

    The use of Fiber Reinforced Polymer (FRP) is becoming a widely accepted solution for repairing and strengthening of deteriorated reinforced concrete members, to restore their load carrying capacities. One of the major concerns in the use of FRP is its cost. This therefore calls for the use of efficient and cost effective design ...

  17. Reinforcement learning in continuous state and action spaces

    NARCIS (Netherlands)

    H. P. van Hasselt (Hado); M.A. Wiering; M. van Otterlo

    2012-01-01

    textabstractMany traditional reinforcement-learning algorithms have been designed for problems with small finite state and action spaces. Learning in such discrete problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action

  18. Visual reinforcement audiometry: an Adobe Flash based approach.

    Science.gov (United States)

    Atherton, Steve

    2010-09-01

    Visual Reinforcement Audiometry (VRA) is a key behavioural test for young children. It is central to the diagnosis of hearing-impaired infants (1) . Habituation to the visual reinforcement can give misleading results. Medical Illustration ABM University Health Board has designed a collection of Flash animations to overcome this.

  19. Exploring the impact of wheelchair design on user function in a rural South African setting.

    Science.gov (United States)

    Visagie, Surona; Duffield, Svenje; Unger, Mariaan

    2015-01-01

    Wheelchairs provide mobility that can enhance function and community integration. Function in a wheelchair is influenced by wheelchair design. To explore the impact of wheelchair design on user function and the variables that guided wheelchair prescription in the study setting. A mixed-method, descriptive design using convenience sampling was implemented. Quantitative data were collected from 30 wheelchair users using the functioning every day with a Wheelchair Scale and a Wheelchair Specification Checklist. Qualitative data were collected from ten therapists who prescribed wheelchairs to these users, through interviews. The Kruskal-Wallis test was used to identify relationships, and content analysis was undertaken to identify emerging themes in qualitative data. Wheelchairs with urban designs were issued to 25 (83%) participants. Wheelchair size, fit, support and functional features created challenges concerning transport, operating the wheelchair, performing personal tasks, and indoor and outdoor mobility. Users using wheelchairs designed for use in semi-rural environments achieved significantly better scores regarding the appropriateness of the prescribed wheelchair than those using wheelchairs designed for urban use ( p = <0.01). Therapists prescribed the basic, four-wheel folding frame design most often because of a lack of funding, lack of assessment, lack of skills and user choice. Issuing urban type wheelchairs to users living in rural settings might have a negative effect on users' functional outcomes. Comprehensive assessments, further training and research, on long term cost and quality of life implications, regarding provision of a suitable wheelchair versus a cheaper less suitable option is recommended.

  20. Aggression as Positive Reinforcement in People with Intellectual Disabilities

    Science.gov (United States)

    May, Michael E.

    2011-01-01

    From an applied behavior-analytic perspective, aggression in people with intellectual disabilities is mostly maintained by social reinforcement consequences. However, nonsocial consequences have also been identified in functional assessments on aggression. Behaviors producing their own reinforcement have been labeled "automatic" or "nonsocial" in…

  1. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  2. Membrane reinforcement in concrete shells: A review

    International Nuclear Information System (INIS)

    Gupta, A.K.

    1984-01-01

    A historical evolution of the membrane reinforcement design in concrete shells is presented. Theoretical developments, experimental verifications and the history of US codes and standards have been traced. For two decades now, the evidence is converging towards application of the principle of minimum resistance. This principle is rational, and it can reasonably explain the experimental results. (orig.)

  3. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    OpenAIRE

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimenta...

  4. A Quality Function Deployment (QFD approach to designing a prosthetic myoelectric hand

    Directory of Open Access Journals (Sweden)

    Erika Sofía Olaya Escobar

    2005-05-01

    Full Text Available This paper presents a Quality Function Deployment (QFD model based on computing with words. It is specifically used in the House of Quality (HOQ construction phase. It illustrates the methodology employed in designing a prosthetic myoelectric hand.

  5. A Quality Function Deployment (QFD) approach to designing a prosthetic myoelectric hand

    OpenAIRE

    Erika Sofía Olaya Escobar; Carlos Julio Cortés Rodríguez; Óscar Germán Duarte Velasco

    2005-01-01

    This paper presents a Quality Function Deployment (QFD) model based on computing with words. It is specifically used in the House of Quality (HOQ) construction phase. It illustrates the methodology employed in designing a prosthetic myoelectric hand.

  6. Optimum Design of Multi-Function Robot Arm Gripper for Varying Shape Green Product

    Directory of Open Access Journals (Sweden)

    Razali Zol Bahri

    2016-01-01

    Full Text Available The project focuses on thorough experimentally studies of the optimum design of Multi-function Robot Arm Gripper for varying shape green product. The purpose of this project is to design a few of robot arm gripper for multi-functionally grip a green product with varying shape. The main character of the gripper is that it can automated adjust its finger to suit with the shape of the product. An optimum design of multi-function robot arm gripper is verified through experimental study. The expected result is a series of analytical results on the proposal of gripper design and material that will be selected for the gripper. The analysis of the gripper design proposal by using ANSYS and CATIA software is described in detail in this paper.

  7. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  8. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  9. Designing the coordinate transformation function for non-magnetic invisibility cloaking

    International Nuclear Information System (INIS)

    Xu Xiaofei; Feng Yijun; Zhao Lin; Jiang Tian; Lu Chunhua; Xu Zhongzi

    2008-01-01

    An optical invisibility cloak based on a transformation approach has recently been proposed by a reduced set of material properties due to their easier implementation in reality and little need for an inhomogeneous permeability distribution, but the drawback of undesired scattering caused by the impedance mismatching at the outer boundary is unavoidable in such a cloak. By properly designing the coordinate transformation function to ensure impedance matching at the outer surface, we show that the performance of a nonmagnetic cylindrical cloak could be improved with minimized scattering fields. Using either a single high order power function or an optimized piecewise continuous power function, a cylindrical non-magnetic cloak has been designed with nearly perfect cloaking performance, which is better than those generated with a linear or a quadratic function. Due to the monotonicity of the designed power functions, the resulting cloak has no restriction on the size of the cloaking shell, therefore is suitable for both thick and thin cloaking structures.

  10. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.

    Science.gov (United States)

    Kelly, Cambre N; Miller, Andrew T; Hollister, Scott J; Guldberg, Robert E; Gall, Ken

    2018-04-01

    3D printing is now adopted for use in a variety of industries and functions. In biomedical engineering, 3D printing has prevailed over more traditional manufacturing methods in tissue engineering due to its high degree of control over both macro- and microarchitecture of porous tissue scaffolds. However, with the improved flexibility in design come new challenges in characterizing the structure-function relationships between various architectures and both mechanical and biological properties in an assortment of clinical applications. Presently, the field of tissue engineering lacks a comprehensive body of literature that is capable of drawing meaningful relationships between the designed structure and resulting function of 3D printed porous biomaterial scaffolds. This work first discusses the role of design on 3D printed porous scaffold function and then reviews characterization of these structure-function relationships for 3D printed synthetic metallic, polymeric, and ceramic biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    Science.gov (United States)

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  12. Embedded Incremental Feature Selection for Reinforcement Learning

    Science.gov (United States)

    2012-05-01

    Prior to this work, feature selection for reinforce- ment learning has focused on linear value function ap- proximation ( Kolter and Ng, 2009; Parr et al...InProceed- ings of the the 23rd International Conference on Ma- chine Learning, pages 449–456. Kolter , J. Z. and Ng, A. Y. (2009). Regularization and feature

  13. Functional design criteria for an exploratory shaft facility in salt: Technical report

    International Nuclear Information System (INIS)

    1986-11-01

    The purpose of the Functional Criteria for Design is to provide technical direction for the development of detailed design criteria for the exploratory shaft facility. This will assure that the exploratory shaft facility will be designed in accordance with the current Mission Plan as well as the Nuclear Waste Policy Act and 10 CFR Part 60, which will facilitate the licensing process. The functional criteria for design are not intended to limit or constrain the designer's flexibility. The following philosophies will be incorporated in the designs: (1) The exploratory shaft will be designed to fulfill its intended purpose which is to characterize the salt site by subsurface testing; (2) the design will minimize any adverse impact which the facility may cause to the environment and any damage to the site if it should be found suitable for a repository; (3) the health and safety of the public and of the workers will be an essential factor in the design; (4) sound engineering principles and practices will be consistently employed in the design process; (5) the exploratory shaft and related surface and subsurface facilities will be designed to be economical and reliable in construction, operation, and maintenance; and (6) the exploratory shaft facility will be designed in accordance with applicable federal, state, and local regulations, as well as all applicable national consensus codes and standards

  14. Seismic response of reinforced soil slopes

    DEFF Research Database (Denmark)

    Tzavara, Ioanna; Zania, Varvara; Tsompanakis, Yiannis

    2010-01-01

    The main aim of the current study is to assess the dynamic response of reinforced soil structures taking into account the most important aspects of the problem and to compare the available design methods. For this purpose, initially the most commonly used pseudostatic approach is implemented via...... a parametric investigation to illustrate the impact of the crucial parameters of this approach. Subsequently, Newmark’s sliding block model is modified to account for the reinforcement forces in the calculation of seismic displacements. Finally, finite element analyses were performed and the numerical results...

  15. A Bayesian sequential design using alpha spending function to control type I error.

    Science.gov (United States)

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  16. Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Directory of Open Access Journals (Sweden)

    R. Kopru

    2013-09-01

    Full Text Available In this work, we propose a novel approach called as “Normalized Gain Function (NGF method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique based design example supported by simulations in MWO (MicroWave Office from AWR Corporation is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor.

  17. Functional design criteria for the self-installing liquid observation well. Revision 2

    International Nuclear Information System (INIS)

    Parra, S.A.

    1995-01-01

    This document presents the functional design criteria for installing liquid observation wells (LOWs) into single-shell tanks containing ferrocyanide or organic wastes. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment

  18. Affordances and use plans : an analysis of two alternatives to function-based design

    NARCIS (Netherlands)

    Pols, A.J.K.

    2015-01-01

    Function-based design approaches have been criticized for being too narrow to properly guide design. Specifically, they are said to be unable to cope with nonfunctional considerations, such as cost or maintenance issues without invoking other concepts, such as constraints. This paper investigates

  19. Curriculum and Course Design: A New Approach Using Quality Function Deployment

    Science.gov (United States)

    Denton, James W.; Kleist, Virginia Franke; Surendra, Nanda

    2005-01-01

    In this article, the authors describe a method for assuring the quality of curriculum design based on techniques that have been used in industrial settings for over 30 years. Quality Function Deployment assures that the needs of the customer are considered at all levels of product design and a graphical matrix called the House of Quality serves as…

  20. Functional design criteria for the self-installing liquid observation well

    International Nuclear Information System (INIS)

    Parra, S.A.

    1996-01-01

    This document presents the functional Design Criteria for installing liquid observation wells (LOWs) into single-shell tanks containing ferrocyanide and organic wastes. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment

  1. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes

    Science.gov (United States)

    Bryant, Donald A.; Canniffe, Daniel P.

    2018-02-01

    Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light

  2. Topology optimization of reinforced concrete structures considering control of shrinkage and strength failure

    DEFF Research Database (Denmark)

    Luo, Yangjun; Wang, Michael Yu; Zhou, Mingdong

    2015-01-01

    To take into account the shrinkage effect in the early stage of Reinforced Concrete (RC) design, an effective continuum topology optimization method is presented in this paper. Based on the power-law interpolation, shrinkage of concrete is numerically simulated by introducing an additional design......-dependent force. Under multi-axial stress conditions, the concrete failure surface is well fitted by two Drucker-Prager yield functions. The optimization problem aims at minimizing the cost function under yield strength constraints on concrete elements and a structural shrinkage volume constraint. In conjunction...... to ensure the structural safety under the combined action of external loads and shrinkage....

  3. Electron work function-a promising guiding parameter for material design.

    Science.gov (United States)

    Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry

    2016-04-14

    Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more "free" electrons to the steel, leading to increased overall work function, accompanied with enhanced e(-)-nuclei interactions or higher atomic bond strength. Young's modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base.

  4. Designing Material Materialising Design

    DEFF Research Database (Denmark)

    Nicholas, Paul

    2013-01-01

    Designing Material Materialising Design documents five projects developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts, School of Architecture. These projects explore the idea that new designed materials might require new design methods....... Focusing on fibre reinforced composites, this book sustains an exploration into the design and making of elastically tailored architectural structures that rely on the use of computational design to predict sensitive interdependencies between geometry and behaviour. Developing novel concepts...

  5. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Directory of Open Access Journals (Sweden)

    Gravelat Fabrice

    2010-09-01

    Full Text Available Abstract Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments

  6. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  7. Potential applications of steel fibre reinforced concrete to improve seismic response of frame structures

    International Nuclear Information System (INIS)

    Adhikari, S.; Patnaik, A.

    2012-01-01

    Fibre reinforced concrete has gained acceptance in several civil engineering applications. The proclivity of new generation of engineers to use steel fibre reinforced concrete can be attributed to some distinct functional and structural benefits that it can provide compared to conventional reinforced concrete. Fibre reinforced concrete has been found to increase the post-cracking tensile strength of concrete thus facilitating pseudo-plastic response, improved energy absorption, and better energy dissipation capabilities that lead to better structural response under cyclic loading. These factors suggest benefits in considering the use of steel fibre reinforced concrete to enhance the structural response of reinforced concrete structures under earthquake loading. This paper summarizes useful background on steel fibre reinforced concrete, the benefits over conventional reinforced concrete, and its response to cyclic excitation. The authors believe that steel fibre reinforced concrete is a suitable ductile high performance material that is gaining acceptance for applications in frame structures and is particularly suitable for enhancing seismic response. (author)

  8. Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-Ԑ-caprolactone nanofibers and growth factors for prevention of incisional hernia formation

    Directory of Open Access Journals (Sweden)

    Plencner M

    2014-07-01

    architecture mimics the natural extracellular matrix. We tested a biodegradable polyester poly-Ԑ-caprolactone in the form of nanofibers as a scaffold for fascia healing in an abdominal closure-reinforcement model for prevention of incisional hernia formation. Both in vitro tests and an experiment on a rabbit model showed promising results. Keywords: nanofibers, growth factors, surgical mesh, hernia regeneration, in vivo

  9. Hypocretin / orexin involvement in reward and reinforcement

    Science.gov (United States)

    España, Rodrigo A.

    2015-01-01

    Since the discovery of the hypocretins/orexins, a series of observations have indicated that these peptides influence a variety of physiological processes including feeding, sleep/wake function, memory, and stress. More recently, the hypocretins have been implicated in reinforcement and reward-related processes via actions on the mesolimbic dopamine system. Although investigation into the relationship between the hypocretins and reinforcement/reward remains in relatively early stages, accumulating evidence suggests that continued research into this area may offer new insights into the addiction process and provide the foundation to generate novel pharmacotherapies for drug abuse. The current chapter will focus on contemporary perspectives of hypocretin regulation of cocaine reward and reinforcement via actions on the mesolimbic dopamine system. PMID:22640614

  10. Reinforcement Learning in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Manuela Schuetze

    2017-11-01

    Full Text Available Early behavioral interventions are recognized as integral to standard care in autism spectrum disorder (ASD, and often focus on reinforcing desired behaviors (e.g., eye contact and reducing the presence of atypical behaviors (e.g., echoing others' phrases. However, efficacy of these programs is mixed. Reinforcement learning relies on neurocircuitry that has been reported to be atypical in ASD: prefrontal-sub-cortical circuits, amygdala, brainstem, and cerebellum. Thus, early behavioral interventions rely on neurocircuitry that may function atypically in at least a subset of individuals with ASD. Recent work has investigated physiological, behavioral, and neural responses to reinforcers to uncover differences in motivation and learning in ASD. We will synthesize this work to identify promising avenues for future research that ultimately can be used to enhance the efficacy of early intervention.

  11. The Reinforcing Event (RE) Menu

    Science.gov (United States)

    Addison, Roger M.; Homme, Lloyd E.

    1973-01-01

    A motivational system, the Contingency Management System, uses contracts in which some amount of defined task behavior is demanded for some interval of reinforcing event. The Reinforcing Event Menu, a list of high probability reinforcing behaviors, is used in the system as a prompting device for the learner and as an aid for the administrator in…

  12. Design of New Test Function Model Based on Multi-objective Optimization Method

    Directory of Open Access Journals (Sweden)

    Zhaoxia Shang

    2017-01-01

    Full Text Available Space partitioning method, as a new algorism, has been applied to planning and decision-making of investment portfolio more and more often. But currently there are so few testing function for this algorism, which has greatly restrained its further development and application. An innovative test function model is designed in this paper and is used to test the algorism. It is proved that for evaluation of space partitioning method in certain applications, this test function has fairly obvious advantage.

  13. Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.

    Science.gov (United States)

    Salvat, Regina S; Parker, Andrew S; Choi, Yoonjoo; Bailey-Kellogg, Chris; Griswold, Karl E

    2015-01-01

    The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts.

  14. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    Science.gov (United States)

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  15. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  16. Degradation of Waterfront Reinforced Concrete Structures

    African Journals Online (AJOL)

    Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the ... especially corrosion of the reinforcement. ... Corrosion of steel reinforcement contributes .... cracks along the line of reinforcement bars and most of the ...

  17. Pupil filter design by using a Bessel functions basis at the image plane.

    Science.gov (United States)

    Canales, Vidal F; Cagigal, Manuel P

    2006-10-30

    Many applications can benefit from the use of pupil filters for controlling the light intensity distribution near the focus of an optical system. Most of the design methods for such filters are based on a second-order expansion of the Point Spread Function (PSF). Here, we present a new procedure for designing radially-symmetric pupil filters. It is more precise than previous procedures as it considers the exact expression of the PSF, expanded as a function of first-order Bessel functions. Furthermore, this new method presents other advantages: the height of the side lobes can be easily controlled, it allows the design of amplitude-only, phase-only or hybrid filters, and the coefficients of the PSF expansion can be directly related to filter parameters. Finally, our procedure allows the design of filters with very different behaviours and optimal performance.

  18. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    Science.gov (United States)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  19. Grouping Notes Through NodesThe Functions of Post-It™ Notes in Design Team Cognition

    DEFF Research Database (Denmark)

    Dove, Graham; Abildgaard, Sille Julie; Biskjaer, Michael Mose

    The Post-It™ note is a frequently used, and yet seldom studied, design material. We investigate the functions Post-It™ notes serve when providing cognitive support for creative design team practice. Our investigation considers the ways in which Post-It™ notes function as design externalisations......, both individually and when grouped, and their role in categorisation in semantic long-term memory. To do this, we adopt a multimodal analytical approach focusing on interaction between humans, and between humans and artefacts, alongside language. We discuss in detail examples of four different...... externalisation functions served by Post-It™ notes, and show how these functions are present in complex overlapping combinations rather than being discrete. We then show how the temporal development of Post-It™ note interactions supports categorisation qualities of semantic long-term memory....

  20. Reinforcement of tire tread and radiator hose rubbers with short aramid fibers

    NARCIS (Netherlands)

    Shirazi, Morteza; Noordermeer, Jacobus W.M.

    2010-01-01

    Short fiber reinforced rubber composites have gained great importance due to their advantages in processing and low cost, coupled with high strength. Reinforcement with short fibers offers attractive features such as design flexibility, high modulus, tear strength, etc. The degree of reinforcement

  1. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  2. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    International Nuclear Information System (INIS)

    Renfro, G.G.

    1994-01-01

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices

  3. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  4. A Bayesian Network Based Adaptability Design of Product Structures for Function Evolution

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural or functional features along with customer satisfaction, manufacturing cost, sale price, market sales, and indirect factors are modeled as random variables denoted as nodes in the Bayesian networks. The structure of the Bayesian model is then determined based on the historical data, which captures the dynamic sophisticated relationship of customer demands of a product, structural design, and market performance. Application of our approach to an electric toothbrush product family evolution design problem shows that our model allows for designers to interrogate with the model and obtain theoretical and decision support for dynamic product feature design process.

  5. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  6. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  7. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design; Contribution a la comprehension du fonctionnement des voiles en beton arme sous sollicitation sismique: apport de l'experimentation et de la modelisation a la conception

    Energy Technology Data Exchange (ETDEWEB)

    Ile, N

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  8. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design; Contribution a la comprehension du fonctionnement des voiles en beton arme sous sollicitation sismique: apport de l'experimentation et de la modelisation a la conception

    Energy Technology Data Exchange (ETDEWEB)

    Ile, N

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  9. Investigation of reinforced concrete beams in serviceability limit state

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Hagsten, Lars German

    2016-01-01

    This paper investigates how cracking influence the stiffness of flexural members. Stress levels and crack development under service loads are highly dependent on the reinforcement arrangement, which is often based on the ultimate limit state design. Furthermore, practical design of the serviceabi......This paper investigates how cracking influence the stiffness of flexural members. Stress levels and crack development under service loads are highly dependent on the reinforcement arrangement, which is often based on the ultimate limit state design. Furthermore, practical design...... of the serviceability limit state is often based on empirical and conservative estimates where the influence of certain dominating mechanisms is ignored, such as tension-stiffening. The reinforcement arrangement is, therefore, frequently modified, involving an increase in the amount of reinforcement, to meet...

  10. Expanded explorations into the optimization of an energy function for protein design

    Science.gov (United States)

    Huang, Yao-ming; Bystroff, Christopher

    2014-01-01

    Nature possesses a secret formula for the energy as a function of the structure of a protein. In protein design, approximations are made to both the structural representation of the molecule and to the form of the energy equation, such that the existence of a general energy function for proteins is by no means guaranteed. Here we present new insights towards the application of machine learning to the problem of finding a general energy function for protein design. Machine learning requires the definition of an objective function, which carries with it the implied definition of success in protein design. We explored four functions, consisting of two functional forms, each with two criteria for success. Optimization was carried out by a Monte Carlo search through the space of all variable parameters. Cross-validation of the optimized energy function against a test set gave significantly different results depending on the choice of objective function, pointing to relative correctness of the built-in assumptions. Novel energy cross-terms correct for the observed non-additivity of energy terms and an imbalance in the distribution of predicted amino acids. This paper expands on the work presented at ACM-BCB, Orlando FL , October 2012. PMID:24384706

  11. Deep Reinforcement Fuzzing

    OpenAIRE

    Böttinger, Konstantin; Godefroid, Patrice; Singh, Rishabh

    2018-01-01

    Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we define from runtime properties of the program under test. By observing the rewards caused by mutating with a specific set of actions...

  12. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    Science.gov (United States)

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  13. A multiphase constitutive model of reinforced soils accounting for soil-inclusion interaction behaviour

    OpenAIRE

    BENNIS, M; DE BUHAN, P

    2003-01-01

    A two-phase continuum description of reinforced soil structures is proposed in which the soil mass and the reinforcement network are treated as mutually interacting superposed media. The equations governing such a model are developed in the context of elastoplasticity, with special emphasis put on the soil/reinforcement interaction constitutive law. As shown in an illustrative example, such a model paves the way for numerically efficient design methods of reinforced soil structures.

  14. Examining the Reinforcing Value of Stimuli within Social and Non-Social Contexts in Children with and without High-Functioning Autism

    Science.gov (United States)

    Goldberg, Melissa C.; Allman, Melissa J.; Hagopian, Louis P.; Triggs, Mandy M.; Frank-Crawford, Michelle A.; Mostofsky, Stewart H.; Denckla, Martha B.; DeLeon, Iser G.

    2017-01-01

    One of the key diagnostic criteria for autism spectrum disorder includes impairments in social interactions. This study compared the extent to which boys with high-functioning autism and typically developing boys "value" engaging in activities with a parent or alone. Two different assessments that can empirically determine the relative…

  15. Design procedures for the use of composites in strengthening of reinforced concrete structures state-of-the-art report of the RILEM Technical Committee 234-DUC

    CERN Document Server

    Sena-Cruz, José

    2016-01-01

    This book analyses the current knowledge on structural behaviour of RC elements and structures strengthened with composite materials (experimental, analytical and numerical approaches for EBR and NSM), particularly in relation to the above topics, and the comparison of the predictions of the current available codes/recommendations/guidelines with selected experimental results. The book shows possible critical issues (discrepancies, lacunae, relevant parameters, test procedures, etc.) related to current code predictions or to evaluate their reliability, in order to develop more uniform methods and basic rules for design and control of FRP strengthened RC structures. General problems/critical issues are clarified on the basis of the actual experiences, detect discrepancies in existing codes, lacunae in knowledge and, concerning these identified subjects, provide proposals for improvements. The book will help to contribute to promote and consolidate a more qualified and conscious approach towards rehabilitation...

  16. Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient

    Science.gov (United States)

    Jiang, Fan; Ding, Wei

    2010-10-01

    A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.

  17. A technique of building a value function at the stage of conceptual design of microprocessor systems

    Directory of Open Access Journals (Sweden)

    B. N. Chugaev

    2017-01-01

    Full Text Available The aim of this study is to formalize the selection of optimal technical solutions early in the design of microprocessor-based systems, which allows developers to analyze the recommended solutions, and has, in comparison with the traditional «intuitive» approach, at least two undeniable merits. First, the accepted assumptions and limitations are clearly formed. Secondly, it is defined precisely, in what sense the decision is optimal. When designing microprocessor systems (systems hereafter, several characteristics have to be taken into account at the same time. In general, when n properties are taken into account for each of the compared systems, then the solution of the task of choosing “the best” system depends on choosing a function-criterion. Such function is called a value function in the article. A simple quadratic function is suggested as the value function, it can be interpreted as the distance in Euclidean space of systems technical data. The system, which corresponds to the point nearest to the point characterizing the master system with “limiting” characteristics, is considered the best one. This function approximates the designer’s system of preferences signifi cantly better than a “classical” linear value function. In conclusion, note that the developed recommendations allow the designer of complex technical systems to analyze the proposed solutions in the early stages of design and, in case of disagreement with them, to indicate the reasons why he considers them inadequate. The designed machine optimization of technical solutions in conjunction with the traditional engineering approach should allow more reasonable choosing the structure of systems at the stage of systems conceptual design.

  18. [Reinforcement for overdentures on abutment teeth].

    Science.gov (United States)

    Osada, Tomoko

    2006-04-01

    This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01). There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (poverdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.

  19. Computer-aided Nonlinear Control System Design Using Describing Function Models

    CERN Document Server

    Nassirharand, Amir

    2012-01-01

    A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mecha...

  20. Reinforcement Corrosion: Numerical Simulation and Service Life Prediction

    DEFF Research Database (Denmark)

    Michel, Alexander

    defects and b) define the end of service life once reinforcement corrosion is initiated neglecting corrosion processes during the propagation stage. The goal of this work was to develop a framework for the service life prediction of reinforced concrete covering initiation and propagation of chloride......Modelling of deterioration processes in concrete structures plays an increasing role in the design of reinforced concrete structures. Large sums are spent every year to ensure the durability of concrete structures, especially towards reinforcement corrosion. Improved durability provides increased...... structural reliability, economical improvements in form of less need for maintenance and repair as well as increased sustainability due to an increased energy and resource efficiency. Several service life prediction models dealing with reinforcement corrosion in concrete structurescan be found...