WorldWideScience

Sample records for reinforced thermoplastics polyester

  1. Properties and performance of flax yarn/thermoplastic polyester composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Mehmood, Shahid

    2012-01-01

    Aiming at demonstrating the potential of unidirectional natural fiber-reinforced thermoplastic composites in structural applications, textile flax yarn/thermoplastic polyester composites with variable fiber volume fractions have been manufactured by a filament-winding process followed by a vacuum......-assisted compression molding process. The microstructure of the composites shows that the flax fiber yarns are well impregnated by the polyester matrix, and this supports the measured low porosity content of the composites. The experimental tensile modulus and ultimate tensile stress of the composites in the axial...

  2. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    Science.gov (United States)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  3. Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes

    NARCIS (Netherlands)

    Kruijer, M.P.; Warnet, Laurent; Akkerman, Remko

    2006-01-01

    This paper describes the analysis of the time dependent behaviour of a steel reinforced thermoplastic pipe. This new class of composite pipes is constructed of a HDPE (high-density polyethylene) liner pipe, which is over wrapped with two layers of thermoplastic tape. The thermoplastic tapes are

  4. Thermoforming of Continuous Fibre Reinforced Thermoplastic Composites

    International Nuclear Information System (INIS)

    McCool, Rauri; Murphy, Adrian; Wilson, Ryan; Jiang Zhenyu; Price, Mark

    2011-01-01

    The introduction of new materials, particularly for aerospace products, is not a simple, quick or cheap task. New materials require extensive and expensive qualification and must meet challenging strength, stiffness, durability, manufacturing, inspection and maintenance requirements. Growth in industry acceptance for fibre reinforced thermoplastic composite systems requires the determination of whole life attributes including both part processing and processed part performance data. For thermoplastic composite materials the interactions between the processing parameters, in-service structural performance and end of life recyclability are potentially interrelated. Given the large number and range of parameters and the complexity of the potential relationships, understanding for whole life design must be developed in a systematic building block approach. To assess and demonstrate such an approach this article documents initial coupon level thermoforming trials for a commercially available fibre reinforced thermoplastic laminate, identifying the key interactions between processing and whole life performance characteristics. To examine the role of the thermoforming process parameters on the whole life performance characteristics of the formed part requires a series of manufacturing trials combined with a series of characterisation tests on the manufacturing trial output. Using a full factorial test programme and considering all possible process parameters over a range of potential magnitudes would result in a very large number of manufacturing trials and accompanying characterisation tests. Such an approach would clearly be expensive and require significant time to complete, therefore failing to address the key requirement for a future design methodology capable of rapidly generating design knowledge for new materials and processes. In this work the role of mould tool temperature and blank forming temperature on the thermoforming of a commercially available

  5. Thermoplastic poly(urethane urea)s from novel, bio-based amorphous polyester diols

    NARCIS (Netherlands)

    Tang, D.; Noordover, B.A.J.; Sablong, R.J.; Koning, C.E.

    2012-01-01

    In this study, two novel, bio-based, amorphous polyester diols, namely poly(1,2-dimethylethylene adipate) (PDMEA) and poly(1,2-dimethylethylene succinate) (PDMES) are used to prepare thermoplastic poly(urethane urea)s (TPUUs). Interestingly, the TPUUs based on PDMEA show similar thermal and

  6. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  7. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    OpenAIRE

    A.E. Ismail; M.A. Che Abdul Aziz

    2015-01-01

    This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that...

  8. Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications

    International Nuclear Information System (INIS)

    Ahlborn, K.

    1989-01-01

    The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de

  9. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  10. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  11. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  12. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  13. Production and properties of micro-cellulose reinforced thermoplastic starch

    Science.gov (United States)

    Kmetty, Á.; Karger-Kocsis, J.; Czigány, T.

    2015-02-01

    Thermoplastic starch (TPS)/micro-fibrillated cellulose (MFC) composites were prepared from maize starch with different amount of distilled water, glycerol and cellulose reinforcement. The components were homogenized by kneader and twin roll technique. The produced TPS and TPS-based polymer composites were qualified by static and dynamic mechanical tests and their morphology was analysed by microscopic techniques. The results showed that the amount of water and the order of the production steps control the properties of both the TPS and its MFC reinforced version. With increasing content of MFC the stiffness and strength of the TPS matrix increased, as expected. Microscopic inspection revealed that the TPS has a homogenous structure and the MFC is well dispersed therein when suitable preparation conditions were selected.

  14. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    Directory of Open Access Journals (Sweden)

    N. Gopichander

    2015-10-01

    Conclusion: Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials.

  15. Novel alpha-zirconium phosphonates for the reinforcement of ductile thermoplastics

    Science.gov (United States)

    Furman, Benjamin R.

    2007-12-01

    Ductile thermoplastics are useful additives for providing fracture toughness to brittle thermosetting polymers; however, this toughening is usually accompanied by a significant decrease in elastic modulus. Therefore, alpha-zirconium phosphonates (ZrP) were developed and investigated as reinforcing nano-scale fillers that increase the yield strength and elastic modulus of a polyester thermoplastic without causing a reduction in its ductility. ZrP materials are synthetic layered compounds that are imbued with targeted organic surface functionalities and whose structural development can be carefully controlled in the laboratory. Ether-terminal alkyl ZrP materials were designed and synthesized, using a conventional ZrF62--mediated preparation, with the intent of developing strong dipole-dipole interactions between the layer surfaces and polyester macromolecules. Additionally, a general method for using lamellar lyotropic liquid crystals (LLC's) as supramolecular templates for alkyl ZrP was evaluated, whose products showed promising similarity to the conventionally prepared materials. The LLC-forming characteristics of several organophosphonate preparations were determined, showing improved mesophase stability with mixed amphiphiles and preparation with R4N + counterions. A mixed-surface octyl/methoxyundecyl ZrP was produced and combined with polycaprolactone (PCL) and polymethylmethacrylate (PMMA) in concentrations up to 50% (w/w). The mechanical properties of the ZrP/PCL nanocomposite were evaluated by tensile, flexural, and dynamic mechanical testing methods. Nanocomposites containing 5% (w/w) ZrP showed significant increases in tensile yield stress and elastic modulus without suffering any loss of ductility versus the unfilled polymer. Layer delamination from the ZrP tactoids was minimal and did not occur through an intercalative mechanism. Higher ZrP loadings resulted in the agglomeration of tactoids, leading to defect structures and loss of strength and ductility

  16. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    Science.gov (United States)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  17. Experimental Investigation on Mechanical Properties of Hemp/E-Glass Fabric Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    M R SANJAY

    2016-09-01

    Full Text Available This research work has been focusing on Hemp fibers has an alternative reinforcement for fiber reinforced polymer composites due to its eco-friendly and biodegradable characteristics. This work has been carried out to evaluate the mechanical properties of hemp/E-glass fabrics reinforced polyester hybrid composites. Vacuum bagging method was used for the preparation of six different kinds of hemp/glass fabrics reinforced polyester composite laminates as per layering sequences. The tensile, flexural, impact and water absorption tests of these hybrid composites were carried out experimentally according to ASTM standards. It reveals that an addition of E-glass fabrics with hemp fabrics can increase the mechanical properties of composites and decrease the water absorption of the hybrid composites.

  18. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite

    Science.gov (United States)

    Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.

    2018-04-01

    The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.

  19. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  20. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  1. 50-Hz plasma treatment of glass fibre reinforced polyester at atmospheric pressure enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2011-01-01

    Glass fibre reinforced polyester (GFRP) plates are treated using a 50-Hz dielectric barrier discharge at peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of around...

  2. Plasma Surface Modification of Glass-Fibre-Reinforced Polyester Enhanced by Ultrasonic Irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation of the treating surface, because the delivered acoustic energy can reduce the thickness of the boundary gas layer. Here surfaces of glass-fibre-reinforced polyester (GFRP) plates were treated using an atmospheric pressure...

  3. Gliding arc discharge — Application for adhesion improvement of fibre reinforced polyester composites

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Leipold, Frank

    2008-01-01

    production, and surface treatment. However, the application for adhesion improvement of structural materials has been rarely reported. In the present work, glass fibre reinforced polyester plates were treated using atmospheric pressure gliding arcs with high speed air flow for adhesion improvement...

  4. Adhesion improvement of glass-fibre-reinforced polyester composites by gliding arc discharge treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A gliding arc is a plasma that can be operated at atmospheric pressure and applied for plasma surface treatment for adhesion improvement. In the present work, glass-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding arc discharge with an air flow to improve...

  5. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  6. Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    Directory of Open Access Journals (Sweden)

    Manwar Hussain

    2016-01-01

    Full Text Available Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE with poly(butylene terephthalate (PBT thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE. We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.% of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS, flexural modulus (FM, tensile strength (TS, and tensile elongation (TE were all investigated. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were used to analyze the thermal properties, including the heat distortion temperature (HDT, of the composites. Scanning electron microscopy (SEM was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.

  7. Long-fibre reinforced thermoplastics. Applications and limitations of a new type of material

    Energy Technology Data Exchange (ETDEWEB)

    Neise, E.

    1986-06-01

    New processing possibilities are offered by long-fibre reinforced thermoplastics, because - contrary to thermoset processing - no chemical reaction occurs and thermoforming and welding of prepregs is possible. Processing techniques like filament winding, tape laying or pultrusion are in development at different institutes.

  8. Experimental characterisation of recycled (glass/tpu woven fabric) flake reinforced thermoplastic composites

    NARCIS (Netherlands)

    Abdul Rasheed, Mohammed Iqbal; Rietman, Bert; Visser, Roy; Akkerman, Remko; Hoa, S.V.; Hubert, P.

    2013-01-01

    Recycling of continuously reinforced thermoplastic composites (TPC) has a substantial prospect at present and in future due to its increasing availability and rapidly growing application regime. This study focusses on the first steps in using TPC process scrap on a scale in which its maximum

  9. Fabrication and mechanical testing of fibre reinforced thermoplastic composite tubes

    International Nuclear Information System (INIS)

    Tufail, M.

    2005-01-01

    Polymer based composites are produced using less expensive moulds and quick fabrication techniques. The overall processing cost for such materials is much lesser than metallic materials. Usually monolithic parts are produced out of composite materials which further decreases the processing time needed for joining sub- , assemblies as in the case of metallic parts. Any defects encountered due to sub-assemblies are also eliminated. Thermoset based composites have been used for long time to produce parts for automotive, aerospace, marine, and sports industries. The properties thus obtained by using thermoset as matrix are very well in comparison with metals but certain draw backs a.e there with this kind of matrix. Thermoset based composites are processed in untidy environment and once the object is produced can not be reshaped. In contrary to that thermoplastic materials are processed in a clean environment and the material can be recycled. The component once produced can easily be reshaped if required as no chemical reaction does take place during the process. Although the high melt viscosity of thermoplastic has limited its application as due to its high viscosity, its processing would be very difficult. Various methods have been developed to resolve this issue. In this study, a commingled material has been used to produce thermoplastic based composite tubes. The method developed for making such tubes is defined along with the method adopted to measure some of the mechanical properties of these tubes. (author)

  10. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites

    Science.gov (United States)

    Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.

    2018-04-01

    This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.

  11. Continuous welding of unidirectional fiber reinforced thermoplastic tape material

    Science.gov (United States)

    Schledjewski, Ralf

    2017-10-01

    Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.

  12. Creep of thermoplastic polyurethane reinforced with ozone functionalized carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2012-09-01

    Full Text Available This work focused on the mechanical behavior, especially creep resistance, of thermoplastic polyurethane (TPU filled with ozone-treated multi-walled carbon nanotubes (MWCNTs. It was found that the ozone functionalization of MWCNTs could improve their dispersion and interfacial adhesion to the TPU matrix as proved by scanning electron microscope and Raman spectrometer. It finally contributed to the enhancement of Young’s modulus and yield strength of TPU/MWCNT composites. Moreover, the creep resistance and recovery of MWCNT/TPU composites revealed a significant improvement by incorporating ozone functionalized MWCNTs. The strong interaction between the modified MWCNTs and TPU matrix would enhance the interfacial bonding and facilitate the load transfer, resulting in low creep strain and unrecovered strain.

  13. SAXS determination of the structural periodicity of thermoplastic polyurethane reinforced with cellulose nanocrystals

    International Nuclear Information System (INIS)

    Prataviera, Rogerio; Bretas, Rosario E.S.; Lucas, Alessandra de A.; Poullet, Eric; Averous, Luc

    2015-01-01

    In this work, casting films were obtained from TPU reinforced with cellulose nanocrystals. The structural nano periodicity of these system was evaluated by Small Angle X-Ray Scattering, SAXS. The results indicated that the used TPU has a atypical phase separated morphology of rigid and soft segments, being observed 3 different distances them, probably due to the large polyol polyester molecule derived from colza oil used in the TPU synthesis. (author)

  14. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility

    Directory of Open Access Journals (Sweden)

    L. J. del Valle

    2012-04-01

    Full Text Available Mechanical properties and drug release behavior were studied for three biodegradable polyester matrices (polycaprolactone, poly(nonamethylene azelate and the copolymer derived from 1,9-nonanediol and an equimolar mixture of azelaic and pimelic acids reinforced with polylactide (PLA fibers. Electrospinning was used to produce suitable mats constituted by fibers of different diameters (i.e. from micro- to nanoscale and a homogeneous dispersion of a representative hydrophobic drug (i.e. triclosan. Fabrics were prepared by a molding process, which allowed cold crystallization of PLA micro/nanofibers and hot crystallization of the polyester matrices. The orientation of PLA molecules during electrospinning favored the crystallization process, which was slightly enhanced when the diameter decreased. Incorporation of PLA micro/nanofibers led to a significant increase in the elastic modulus and tensile strength, and in general to a decrease in the strain at break. The brittle fracture was clearer when high molecular weight samples with high plastic deformation were employed. Large differences in the release behavior were detected depending on the loading process, fiber diameter size and hydrophobicity of the polyester matrix. The release of samples with the drug only loaded into the reinforcing fibers was initially fast and then became slow and sustained, resulting in longer lasting antimicrobial activity. Biocompatibility of all samples studied was demonstrated by adhesion and proliferation assays using HEp-2 cell cultures.

  15. Thermal Aging of Unsaturated Polyester Composite Reinforced with E-Glass Nonwoven Mat

    Directory of Open Access Journals (Sweden)

    Hossain Milon

    2017-12-01

    Full Text Available An experiment was carried out using glass fiber (GF as reinforcing materials with unsaturated polyester matrix to fabricate composite by hand layup technique. Four layers of GF were impregnated by polyester resin and pressed under a load of 5 kg for 20 hours. The prepared composite samples were treated by prolonged exposure to heat for 1 hour at 60-150°C and compared with untreated GF-polyester composite. Different mechanical test of the fabricated composite were investigated. The experiment depicted significant improvement in the mechanical properties of the fabricated composite resulted from the heat treatment. The maximum tensile strength of 200.6 MPa is found for 90°C heat-treated sample. The mechanical properties of the composite do seem to be very affected negatively above 100°C. Water uptake of the composite was carried out and thermal stability of the composite was investigated by thermogravimetric analysis, and it was found that the composite is stable up to 600°C. Fourier transform infrared spectroscopy shows the characteristic bond in the composite. Finally, the excellent elevated heat resistant capacity of glass-fiber-reinforced polymeric composite shows the suitability of its application to heat exposure areas such as kitchen furniture materials, marine, and electric board.

  16. Mechanical behaviour of textile-reinforced thermoplastics with integrated sensor network components

    International Nuclear Information System (INIS)

    Hufenbach, W.; Adam, F.; Fischer, W.-J.; Kunadt, A.; Weck, D.

    2011-01-01

    Highlights: → Consideration of two types of integrated bus systems for textile-reinforced thermoplastics with embedded sensor networks. → Specimens with bus systems made of flexible printed circuit boards show good mechanical performance compared to the reference. → Inhomogeneous interface and reduced stiffnesses and strengths for specimens with bus systems basing on single copper wires. -- Abstract: The embedding of sensor networks into textile-reinforced thermoplastics enables the design of function-integrative lightweight components suitable for high volume production. In order to investigate the mechanical behaviour of such functionalised composites, two types of bus systems are selected as exemplary components of sensor networks. These elements are embedded into glass fibre-reinforced polypropylene (GF/PP) during the layup process of unconsolidated weft-knitted GF/PP-preforms. Two fibre orientations are considered and orthotropic composite plates are manufactured by hot pressing technology. Micrograph investigations and computer tomography analyses show different interface qualities between the thermoplastic composite and the two types of bus systems. Mechanical tests under tensile and flexural loading indicate a significant influence of the embedded bus system elements on the structural stiffness and strength.

  17. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  18. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    Science.gov (United States)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  19. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  20. Flammability and thermal properties studies of nonwoven flax reinforced acrylic based polyester composites

    Science.gov (United States)

    Rasyid, M. F. Ahmad; Salim, M. S.; Akil, H. M.; Ishak, Z. A. Mohd.

    2017-12-01

    In the pursuit of green and more sustainable product, natural fibre reinforced composites originating from renewable resources has gained interest in recent years. These natural fibres exhibit good mechanical properties, low production costs, and good environmental properties. However, one of the disadvantages of natural fibre reinforced composites is their high flammability that limits their application in many fields. Within this research, the effect of sodium silicate on the flammability and thermal properties of flax reinforced acrylic based polyester composites has been investigated. Sodium silicate is applied as binder and flame retardant system in impregnation process of the natural flax fiber mats. The addition of sodium silicate significantly improved the flame retardant efficiency but reduced the degree of crosslinking of the composites.

  1. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Pua, Fei-ling; El-Shekeil, Y.A.; AL-Oqla, Faris M.

    2013-01-01

    Highlights: • We developed composites from kenaf and thermoplastic polyurethane. • Soil burial of composites after 80 days shows increase in flexural strength. • Soil burial of composites after 80 days shows increase in flexural modulus. • Tensile properties of composites degrade after soil burial tests. • We investigate the morphological fracture through scanning electron microscopy. - Abstract: A study on mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane (TPU) composites is presented in this paper. Kenaf bast fibre reinforced TPU composites were prepared via melt-mixing method using Haake Polydrive R600 internal mixer. The composites with 30% fibre loading were prepared based on some important parameters; i.e. 190 °C for reaction temperature, 11 min for reaction time and 400 rpm for rotating speed. The composites were subjected to soil burial tests where the purpose of these tests was to study the effect of moisture absorption on the mechanical properties of the composites. Tensile and flexural properties of the composites were determined before and after the soil burial tests for 20, 40, 60 and 80 days. The percentages of both moisture uptake and weight gain after soil burial tests were recorded. Tensile strength of kenaf fibre reinforced TPU composite dropped to ∼16.14 MPa after 80 days of soil burial test. It was also observed that there was no significant change in flexural properties of soil buried kenaf fibre reinforced TPU composite specimens

  2. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  3. Mechanical Properties of Mahogany (Swietenia Macrophylla and Araba (Ceiba Pentandra Dusts Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2013-11-01

    Full Text Available Comparative study of the reinforcement efficiency of hardwood and softwood dusts on the mechanical properties of polyester composites was investigated. Chemical treatment of the wood saw dusts were also carried out in order to further consider the possibility of surface modification of the saw dusts. Mahogany (Swietenia Macrophylla, a species of hard wood and Araba (Ceiba Pentandra, a species of soft wood saw dusts were selected and treated with a mixture of 1.0 M of NaOH and HCl at elevated temperature of 70°C for 3 hours followed by washing with distilled water and sieving before sun drying. The dried wood saw dusts was further oven dried at 60°C for 1 hour and pulverized with laboratory ball mill before being sieved with a mesh of grain size of 150 µm. The composites were produced by mixing the particulate fibres and the polyester matrix in predetermined proportions. Mechanical tests were carried out on the cured samples in order to determine properties such as: tensile, hardness and flexural. Scanning Electron Microscope (SEM was used to observe the miscibility or otherwise between the fibre and matrix at the fractured surfaces. From the analysis, treated hardwood saw dust samples gave possess better tensile properties while soft wood saw dusts in the treated and untreated reinforced composites produced the best results in flexural. The hardness result revealed a marginal improvement in the untreated hardwood dust sample.

  4. Investigation of production of continuous off axis fibre reinforced thermoplastic material

    Science.gov (United States)

    McDonald, Philip C.

    Fibre reinforced composites have been used in the engineering industry for many years since the discovery of glass fibre in 1930 and its first use to reinforce phenolic resin to form Bakelite. Since then thermoplastic and thermosetting composites have spread into almost every industry from marine to aerospace, automotive to motorsport, luggage to the hobby industry and even fashion. This vast range of applications for composite materials is due to their high strength to weight ratio, excellent impact absorption properties, lack of corrosion, and reformability. In recent years a government directive has forced automotive manufacturers to look at lighter and more efficient vehicles to reduce carbon emissions. This can be achieved by using fibre reinforced thermoplastics to replace steel panels throughout the vehicle.Steel panels from a Nissan Qashqai were tested to determine the failure loads of each panel which the replacement thermoplastic material had to match or better. After extensive testing in a laboratory a tailored laminate lay-up with 5 laminate layers has been developed to replace structural steel components in vehicles. This tailored laminate stack up has a higher failure load than the steel components tested from the Nissan Qashqai while reducing the mass by at least 50%. The key drivers within the automotive industry are fuel savings and reduced vehicle mass, the use of this material and the potential it has in the mass production automotive industry can have a high impact on the overall mass of the vehicle which would invariably have a positive effect to the fuel consumption, thereby improving fuel economy in petrol and diesel vehicles, and increasing the range of electric vehicles.Throughout this project a prototype machine was developed and built to achieve mass production of this 5 ply laminate at a rate of more than 345,000 laminates per year with a processing cost of 3 1p making it available to the mass production market. The estimated production

  5. Thermo-hydroforming of a fiber-reinforced thermoplastic composites considering fiber orientations

    Science.gov (United States)

    Ahn, Hyunchul; Kuuttila, Nicholas Eric; Pourboghrat, Farhang

    2018-05-01

    The Thermoplastic woven composites were formed using a composite thermal hydroforming process, utilizing heated and pressurized fluid, similar to sheet metal forming. This study focuses on the modification of 300-ton pressure formation and predicts its behavior. Spectra Shield SR-3136 is used in this study and material properties are measured by experiments. The behavior of fiber-reinforced thermoplastic polymer composites (FRTP) was modeled using the Preferred Fiber Orientation (PFO) model and validated by comparing numerical analysis with experimental results. The thermo-hydroforming process has shown good results in the ability to form deep drawn parts with reduced wrinkles. Numerical analysis was performed using the PFO model and implemented as commercial finite element software ABAQUS / Explicit. The user subroutine (VUMAT) was used for the material properties of the thermoplastic composite layer. This model is suitable for working with multiple layers of composite laminates. Model parameters have been updated to work with cohesive zone model to calculate the interfacial properties between each composite layer. The results of the numerical modeling showed a good correlation with the molding experiment on the forming shape. Numerical results were also compared with experimental results on punch force-displacement curves for deformed geometry and forming processes of the composite layer. Overall, the shape of the deformed FRTP, including the distribution of wrinkles, was accurately predicted as shown in this study.

  6. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    Science.gov (United States)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  7. Effect of Different Fillers on Adhesive Wear Properties of Glass Fiber Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    E. Feyzullahoğlu

    2017-12-01

    Full Text Available Polymeric composites are used for different aims as substitute of traditional materials such as metals; due to their improved strength at small specific weight. The fiber reinforced polymer (FRP composite material consists of polymeric matrix and reinforcing material. Polymeric materials are commonly reinforced with synthetic fibers such as glass and carbon. The glass fiber reinforced polyester (GFRP composites are used with different filler materials. The aim of this study is to investigate the effects of different filler materials on adhesive wear behavior of GFRP. In this experimental study; polymetilmetacrilat (PMMA, Glass beads (GB and Glass sand (GS were used as filling material in GFRP composite samples. The adhesive wear behaviors of samples were carried out using ball on disc type tribometer. The friction force and coefficient of friction were measured during the test. The volume loss and wear rate values of samples were calculated according to test results. Barcol hardness values of samples were measured. The densities of samples were measured. Results show that the wear resistance of GB filled GFRP composite samples was much more than non-filled and PMMA filled GFRP composite samples.

  8. Fibre-reinforced composite structures based on thermoplastic matrices with embedded piezoceramic modules

    International Nuclear Information System (INIS)

    Hufenbach, Werner A; Modler, Niels; Winkler, Anja; Ilg, Juergen; Rupitsch, Stefan J

    2014-01-01

    The paper presents recent developments for the integration of piezoceramic modules into fibre-reinforced composite structures based on thermoplastic matrices. An adapted hot pressing technology is conceptualized that allows for material homogeneous integration of the active modules. The main focus of this contribution is on the development of a robust and continuous manufacturing process of such novel active composites as well as on the operational testing of the produced samples. Therefore, selected specimens are manufactured as bending beams and investigated by means of electrical impedance measurements, modal analysis and structural excitation tests. In particular, the functionality of representative specimens is characterized based on frequency as well as spatially resolved deflection measurements. Moreover, the mentioned samples are compared to non-integrated piezoceramic modules and to equivalent passive reinforced composite structures. (paper)

  9. Cost efficient carbon fibre reinforced thermoplastics with in-situ polymerization of polyamide

    Science.gov (United States)

    Köhler, T.; Akdere, M.; Röding, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight design has gained more and more relevance over the last decades. Especially in automotive industry it is of paramount importance to reduce weight and save fuel. At the same time the demand for safety and performance increases the components’ weight. To reach a trade-off between driving comfort and efficiency new lightweight materials have to be developed. One possible solution is the usage of carbon fibre reinforced thermoplastics (CFRTP) as a lightweight substitute material. In contrast to conventional carbon fibre reinforced plastics (CFRP), CFRTPs are cheaper and have a higher impact resistance. Furthermore they are characterized by hot forming ability, weldability and recyclability. However, the impregnation of the textile requires high pressure, because of the melted polymer’s high viscosity. A new innovative approach for CFRTP is the usage of in-situ polymerization with ɛ-caprolactam as matrix, which has a much lower viscosity and thus requires much lower pressure for impregnation and consolidation.

  10. The development of thermoplastic fibre based reinforcements for the rotational moulding process

    Science.gov (United States)

    Alemán, D. N. Castellanos; McCourt, M.; Kearns, M. P.; Martin, P. J.; Butterfield, J.

    2018-05-01

    Rotational moulding is a method used to produce hollow plastic parts through the heating, melting and cooling of polymer powder within a metal mould. A wide range of products are made using this process, such as fluid containment tanks, boats, light weight vehicle bodies and marine buoys. Rotomoulded composites using thermoplastic fibres are of increasing interest to the industry, as they have the potential to significantly improve impact strength, whilst reducing part weight, resulting in a structure that is 100% recyclable compared to a traditional composite. A series of self-reinforced thermoplastic weaves can be used to produce a number of composite structures using the rotational moulding process. This work outlines the improvements obtained from the range of rotomoulded composites structures, as well as preforms that could be used in future rotational moulding work. Characteristics of self-reinforced materials were exploited with the aim of increasing the mechanical properties, preserving the weaves and increasing the nature of the material adhesion. Addition of the fabrics in the cooling stage was shown to be of great interest as this avoided exposure of the material to the peak temperature, which may affect the integrity of the fabric. Placing the weave during cooling was useful as the material could receive the maximum amount of tensile force during the impact test. A total of nine diverse types of compounds were manufactured and tested, with seven of the impact tests showing an increase in strength greater than 50%.

  11. Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics

    International Nuclear Information System (INIS)

    Abdullah, M.R.; Prawoto, Y.; Cantwell, W.J.

    2015-01-01

    As the adhesion quality plays an important role in determining the mechanical performance and environmental stability of most types of fibre-metal laminates (FMLs), investigating the interfacial fracture properties becomes one of the key factors for the improvement. Adhesion of a self-reinforced polypropylene (SRPP) and glass fibre reinforced polypropylene (GFPP) based FML is evaluated experimentally. Single Cantilever Beam (SCB) tests were performed to access interfacial fracture energy (G c ) of the bi-material laminates and their associated interlayer materials. Simulations mimicking the experiments were also performed. The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. The test results show that good adhesion between the aluminium and fibre reinforced thermoplastics can be achieved using a sulphuric acid anodising surface pre-treatment. Further examination has shown that the edges of the test samples highlighted the presence of significant fibre bridging in the SRPP and plastics deformation in the GFPP. - Highlights: • Adhesion of a self-reinforced polypropylene and glass fibre reinforced polypropylene is evaluated. • Single Cantilever Beam tests were performed to access interfacial fracture energy. • The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. • The test results show that best adhesion is achieved using a sulphuric acid anodizing surface pre-treatment

  12. On the suitability of fiberglass reinforced polyester as building material for mesocosms.

    Science.gov (United States)

    Berghahn, R; Brandsch, J; Piringer, O; Pluta, H J; Winkler, T

    1999-07-01

    Gel- and topcoat surface layers on fiberglass [glass-reinforced plastic (GRP)] made of unsaturated resin based on isophthalic acid polyester and neopentyl glycol (ISO-NPG) were tested for leaching, ecotoxicity of water eluates, and abrasion by river sediments at a current speed of 0.5 m * s-1. Leaching from topcoat tempered at low temperature was significant, whereas it was negligible from highly tempered gelcoat. Water eluates from both gel-and topcoat were nontoxic in routinely employed biotests (bacteria, algae, daphnids). No abrasion by river sediments was detectable. Based on these results, GRP with gelcoat made of ISO-NPG is considered a suitable building material for mesocosms. Copyright 1999 Academic Press.

  13. Development of a slim window frame made of glass fibre reinforced polyester

    DEFF Research Database (Denmark)

    Appelfeld, David; Hansen, Christian Skodborg; Svendsen, Svend

    2010-01-01

    This paper presents the development of an energy efficient window frame made of a glass fibre reinforced polyester (GFRP) material. Three frame proposals were considered. The energy and structural performances of the frames were calculated and compared with wooden and aluminium reference frames....... In order to estimate performances, detailed thermal calculations were performed in four successive steps including solar energy and light transmittance in addition to heat loss and supplemented with a simplified structural calculation of frame load capacity and deflection. Based on these calculations, we...... carried out an analysis of the potential energy savings of the frame. The calculations for a reference office building showed that the heating demand was considerably lower with a window made of GFRP than with the reference frames. It was found that GFRP is suitable for window frames, and windows made...

  14. Glass fiber reinforced polyester in the works of Tous and Fargas

    Directory of Open Access Journals (Sweden)

    D. Hernández Falagán

    2017-06-01

    Full Text Available The architects Enric Tous (1925; t 1952 and Josep Maria Fargas (1926-2011, t 1952 achieved remarkable success during the 1960s and 1970s thanks to their commitment to technical experimentation and exploration of new construction systems. Among their most significant contributions is the incorporation of polyester reinforced with glass fiber as a material applied to solutions of light facades. This article tracks the origin, context, and results they obtained with this material. We propose an approach to the GRC material through the experience developed by the architects, analyzing the characteristics and specific implications of the systems proposed in their projects. Through this reading, the industrial initiative implemented by Tous and Fargas is put into value, and the key aspects that limited the progression of the construction system are detected.

  15. Drop Weight Impact Studies of Woven Fibers Reinforced Modified Polyester Composites

    Directory of Open Access Journals (Sweden)

    Muhammed Tijani ISA

    2014-02-01

    Full Text Available Low velocity impact tests were conducted on modified unsaturated polyester reinforced with four different woven fabrics using hand-layup method to investigate the effect of fiber type and fiber combinations. The time-load curves were analysed and scanning electron microscopy was used to observe the surface of the impacted composite laminates. The results indicated that all the composites had ductility index (DI of above two for the test conducted at impact energy of 27J with the monolithic composite of Kevlar having the highest DI. The damage modes observed were mainly matrix cracks and fiber breakages. Hybridization of the fibers in the matrix was observed to minimize these damages.

  16. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, M R; Leman, Z; Sapuan, S M [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Edeerozey, A M M; Othman, I S, E-mail: zleman@eng.upm.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia)

    2010-05-15

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  17. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    International Nuclear Information System (INIS)

    Ishak, M R; Leman, Z; Sapuan, S M; Edeerozey, A M M; Othman, I S

    2010-01-01

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  18. Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2011-01-01

    A glass-fibre-reinforced polyester (GFRP) plate was treated with dielectric barrier discharge (DBD) at atmospheric pressure in air for adhesion improvement. The effects of ultrasonic irradiation using a high-power gas-jet generator during the treatment were investigated. The optical emission...... damage of the GFRP plates. The polar component of the surface energy of the polyester plate was 21 mJ/m2 before the treatment, increased markedly to 52 mJ/m2 after 2-s plasma treatment without ultrasonic irradiation, and further increased slightly after longer treatments. In addition, the polar component...

  19. Thermoplastic Composites Reinforced with Textile Grids: Development of a Manufacturing Chain and Experimental Characterisation

    Science.gov (United States)

    Böhm, R.; Hufnagl, E.; Kupfer, R.; Engler, T.; Hausding, J.; Cherif, C.; Hufenbach, W.

    2013-12-01

    A significant improvement in the properties of plastic components can be achieved by introducing flexible multiaxial textile grids as reinforcement. This reinforcing concept is based on the layerwise bonding of biaxially or multiaxially oriented, completely stretched filaments of high-performance fibers, e.g. glass or carbon, and thermoplastic components, using modified warp knitting techniques. Such pre-consolidated grid-like textiles are particularly suitable for use in injection moulding, since the grid geometry is very robust with respect to flow pressure and temperature on the one hand and possesses an adjustable spacing to enable a complete filling of the mould cavity on the other hand. The development of pre-consolidated textile grids and their further processing into composites form the basis for providing tailored parts with a large number of additional integrated functions like fibrous sensors or electroconductive fibres. Composites reinforced in that way allow new product groups for promising lightweight structures to be opened up in future. The article describes the manufacturing process of this new composite class and their variability regarding reinforcement and function integration. An experimentally based study of the mechanical properties is performed. For this purpose, quasi-static and highly dynamic tensile tests have been carried out as well as impact penetration experiments. The reinforcing potential of the multiaxial grids is demonstrated by means of evaluating drop tower experiments on automotive components. It has been shown that the load-adapted reinforcement enables a significant local or global improvement of the properties of plastic components depending on industrial requirements.

  20. Metal-free synthesis of novel biobased dihydroxyl-terminated aliphatic polyesters as building blocks for thermoplastic polyurethanes

    NARCIS (Netherlands)

    Tang, D.; Noordover, B.A.J.; Sablong, R.J.; Koning, C.E.

    2011-01-01

    Using the organic compound 1,5,7-triazabicyclo[ 4.4.0]dec-5-ene (TBD) as a catalyst for step-growth polymerization, a series of well-defined hydroxyl-telechelic renewable aliphatic polyesters (including poly(1,3-propylene adipate); poly(1,4-butylene adipate); poly(1,12-dodecylene sebacate); and

  1. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  2. Fire-retardant Polyester Composites from Recycled Polyethylene Terephthalate (PET) Wastes Reinforced with Coconut Fibre

    International Nuclear Information System (INIS)

    Nurul Munirah Abdullah; Ishak Ahmad

    2013-01-01

    Coconut fibre reinforced composite was prepared by blending unsaturated polyester resin (UPR) from waste PET with 0.3 v % of coconut fibre. The coconut fibres were pre-treated with sodium hydroxide followed by silane prior to inclusion into the UPR. The untreated coconut fibres reinforced composite were used as a control. DriconR as a phosphate type of flame retardant was then added to the composite to reduce the flammability of the composite. The amount of DriconR was varied from 0 to 10 wt % of the overall mass of resin. The burning properties and limiting oxygen index (LOI) of the treated and untreated composites increased with the addition of Dricon. The tensile strength and modulus of both composites were also increased with the addition of DriconR. The treated fibre composite with 5 wt % DriconR showed the highest burning time and LOI with the values of 101.5 s and 34 s, respectively. The optimum tensile strength and modulus for treated fibre composite was at 5 wt % DriconR whereas the untreated fibre composite was at 2.5 wt % loading of DriconR. Thermogravimetry (TGA) analysis indicated that the degradation temperature increased with the addition of DriconR up to 5 wt % into UPR/ coconut fibre composites. Morphological observations indicated better distribution of DriconR for treated fibre composite resulted in enhancement of the tensile properties of the treated fibre composite. (author)

  3. Effect OF NaOH Treatment on Bending Strength Of The Polyester Composite Reinforce By Sugar Palm Fibers

    Science.gov (United States)

    Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko

    2018-04-01

    The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.

  4. Thermo-Mechanical Properties of Unsaturated Polyester Reinforced with SiliconCarbide Powder And with Chopped Glass Fiber

    Directory of Open Access Journals (Sweden)

    Bushra Hosnie Musa

    2018-02-01

    Full Text Available The work studied the effectoffine silicon carbide (SiC powder with (0,3,5,7wt % on the thermal conductivity and mechanical properties of unsaturated polyester composite in the presence of a fixed amount of chopped glass fiber. The hand lay-up technique was employed to preparethe required samples. Results showed that tensile, impact strength and thermal conductivity increased with increasing the weight fraction of reinforced materials.

  5. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    International Nuclear Information System (INIS)

    Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.

    2011-01-01

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  6. Sound Absorption Properties Of Single-Hole Hollow Polyester Fiber Reinforced Hydrogenated Carboxyl Nitrile Rubber Composites

    Directory of Open Access Journals (Sweden)

    Jie Hong

    2017-09-01

    Full Text Available A series of single-hole hollow polyester fiber (SHHPF reinforced hydrogenated carboxyl nitrile rubber (HXNBR composites were fabricated. In this study, the sound absorption property of the HXNBR/SHHPF composite was tested in an impedance tube, the composite morphology was characterized by scanning electron microscope (SEM, and the tensile mechanical property was measured by strength tester. The results demonstrated that a remarkable change in sound absorption can be observed by increasing the SHHPF content from 0% to 40%. In the composite with 40% SHHPF in 1 mm thickness, the sound absorption coefficient reached 0.671 at 2,500 Hz; the effective bandwidth was 1,800-2,500 Hz for sound absorption coefficient larger than 0.2. But the sound absorption property of the composite deteriorated when the SHHPF content increased to 50% in 1 mm thickness. While with 20% SHHPF proportion, the sound absorption property was improved by increasing the thickness of composites from 1 to 5 mm. Compared with the pure HXNBR of the same thickness, the tensile mechanical property of the composite improved significantly by increasing the SHHPF proportion. As a lightweight composite with excellent sound absorption property, the HXNBR/SHHPF composite has potential practical application value in the fields of engineering.

  7. Mechanical properties evaluation of single and hybrid composites polyester reinforced bamboo, PALF and coir fiber

    Science.gov (United States)

    Rihayat, T.; Suryani, S.; Fauzi, T.; Agusnar, H.; Wirjosentono, B.; Syafruddin; Helmi; Zulkifli; Alam, P. N.; Sami, M.

    2018-03-01

    This study aims to determine the composition fiber natural of bamboo, pineapple leaf and coir in single and hybrid composite to see the best characteristics of tensile strength and flexural test by using a Universal Testing Machine (UTM) and observe the effect on the microstructure of the composite through optical and scanning electron microscopy. Bamboo, Palf and coir have synthesis from natural fiber was used as reinforcement in polyester composite using hand lay up or a hot-compression moulding while filler:matrix was used (45%:55wt.%, 70%:30wt.% and 15%:85wt.%). From the variation of the volume fraction between filler and matrix show that mechanical properties of composites increased with increasing amount of filler in the matrix. This is evidenced by the high mechanical properties A:B:C/Ps in compositions 45%: 55wt.% 136 Mpa while flexural strength 93 N and good structure surface morphology. This research has produced a hybrid composite materials that have high mechanical properties and bending compared with conventional synthetic fibers and other materials.

  8. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    National Research Council Canada - National Science Library

    Mulkern, Thomas

    1999-01-01

    .... In this work, the incorporation of HBPs in thermoplastic blends was investigated. Several volume fractions of hydroxyl functionalized hyperbranched polyesters were melt blended with nonreactive polystyrene (PS...

  9. Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites

    International Nuclear Information System (INIS)

    Kumar Barick, Aruna; Kumar Tripathy, Deba

    2011-01-01

    Graphical abstract: Highlights: → Preparation and characterization of TPU nanocomposite for tailor made applications. → The structural analyses were carried out by FTIR, WAXD, FESEM and HRTEM. → The thermal and dynamic mechanical properties were evaluated by TGA, DSC and DMA. → The dynamic rheological behavior was investigated by RPA in frequency sweep. → The frequency dependence of electrical properties was studied by LCR meter. - Abstract: The multi-walled carbon nanotube (MWNT) reinforced thermoplastic polyurethane (TPU) nanocomposites were prepared through melt compounding method followed by compression molding. The spectroscopic study indicated that a strong interfacial interaction was developed between carbon nanotube (CNT) and the TPU matrix in the nanocomposites. The microscopic observation showed that the CNTs were homogeneously dispersed throughout the TPU matrix well apart from a few clusters. The results from thermal analysis indicated that the glass transition temperature (T g ) and storage modulus (E') of the nanocomposites were increased with increase in CNTs content and their thermal stability were also improved in comparison with pure TPU matrix. The rheological analysis showed the low frequency plateau of shear modulus and the shear thinning behavior of the nanocomposites. The electrical behaviors of the nanocomposites are increased with increase in weight percent (wt%) of CNT loading. The mechanical properties of nanocomposites were substantially improved by the incorporation of CNTs into the TPU matrix.

  10. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Ümit Tayfun

    2017-09-01

    Full Text Available Short carbon fibers (CF with different surface sized (epoxy (EP and polyurethane (PU were used as reinforcing agent in thermoplastic polyurethane (TPU based composites. Composites containing 5, 10, 15, and 20 weight % sized and desized CFs were prepared by using melt-mixing method. The surface characteristics of CFs were examined by energy dispersive X-ray spectroscopy (EDX and Fourier transform infrared spectroscopy (FTIR. Tensile testing, shore hardness test, dynamic mechanical analysis (DMA and melt flow index (MFI test were performed for determining final composite properties. The dispersion of CFs in TPU matrix was examined by scanning electron microscopy (SEM. Tensile strength, Youngs’ modulus and Shore hardness of TPU were enhanced by the addition of sized CFs. About two-fold improvement for tensile strength and ten-fold improvement for Youngs’ modulus were observed with the incorporation of 20 wt% EP-CF and PU-CF in TPU. The storage modulus of PU-CF containing composites was higher than those of TPU and other composites. No remarkable change was observed in MFI value of TPU after CF loadings. Processing conditions in this work was suitable for composite production. Sized CFs exhibited better dispersion with regard to desized CF due to the stronger adhesion of TPU matrix to fiber surface.

  11. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  12. Relationship between fiber degradation and residence time distribution in the processing of long fiber reinforced thermoplastics

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Long fiber reinforced thermoplastics (LFT were processed by in-line compounding equipment with a modified single screw extruder. A pulse stimulus response technique using PET spheres as the tracer was adopted to obtain residence time distribution (RTD of extrusion compounding. RTD curves were fitted by the model based on the supposition that extrusion compounding was the combination of plug flow and mixed flow. Characteristic parameters of RTD model including P the fraction of plug flow reactor (PFR and d the fraction of dead volume of continuous stirred tank reactor (CSTR were used to associate with fiber degradation presented by fiber length and dispersion. The effects of screw speed, mixing length and channel depth on RTD curves, and characteristic parameters of RTD models as well as their effects on the fiber degradation were investigated. The influence of shear force with different screw speeds and variable channel depth on fiber degradation was studied and the main impetus of fiber degradation was also presented. The optimal process for obtaining the balance of fiber length and dispersion was presented.

  13. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack

    2014-01-01

    Atmospheric pressure plasma treatment is useful for adhesion improvement, because cleaning, roughening and addition of polar functional groups can be expected at the surfaces. Its possible applications in the wind energy industry include plasma treatment of fibres and fibre-reinforced polymer...... composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test....... The plasma treatment improved fracture toughness, indicating that adhesion between the fibres and the epoxy was enhanced by the treatment. In addition, glass-fibre-reinforced polyester plates are treated using a gliding arc and an ultrasound enhanced dielectric barrier discharge, improving the wettability...

  14. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites.

    CSIR Research Space (South Africa)

    Pothan, LA

    2009-01-01

    Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...

  15. Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Sørensen, Bent F.; Løgstrup Andersen, Tom

    2013-01-01

    A non-equilibrium quenched plasma is prepared using a gliding-arc discharge generated between diverging electrodes and extended by a gas flow. It can be operated at atmospheric pressure and applied to plasma surface treatment to improve adhesion properties of material surfaces. In this work, glass......-fibre-reinforced polyester plates were treated using an atmospheric pressure gliding-arc discharge with air flow to improve adhesion with a vinylester adhesive. The electrodes were water-cooled so as to operate the gliding arc continually. The treatment improved wettability and increased the density of oxygen...

  16. Numerical and Experimental Characterization of Fiber-Reinforced Thermoplastic Composite Structures with Embedded Piezoelectric Sensor-Actuator Arrays for Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Klaudiusz Holeczek

    2016-02-01

    Full Text Available The paper presents preliminary numerical and experimental studies of active textile-reinforced thermoplastic composites with embedded sensor-actuator arrays. The goal of the investigations was the assessment of directional sound wave generation capability using embedded sensor-actuator arrays and developed a wave excitation procedure for ultrasound measurement tasks. The feasibility of the proposed approach was initially confirmed in numerical investigations assuming idealized mechanical and geometrical conditions. The findings were validated in real-life conditions on specimens of elementary geometry. Herein, the technological aspects of unique automated assembly of thermoplastic films containing adapted thermoplastic-compatible piezoceramic modules and conducting paths were described.

  17. Influence of carbon nanotubes on the properties of epoxy based composites reinforced with a semicrystalline thermoplastic

    Science.gov (United States)

    Díez-Pascual, A.; Shuttleworth, P.; Gónzalez-Castillo, E.; Marco, C.; Gómez-Fatou, M.; Ellis, G.

    2014-08-01

    Novel ternary nanocomposites based on a thermoset (TS) system composed of triglycidyl p-aminophenol (TGAP) epoxy resin and 4,4'-diaminodiphenylsulfone (DDS) curing agent incorporating 5 wt% of a semicrystalline thermoplastic (TP), an ethylene/1-octene copolymer, and 0.5 or 1.0 wt% multi-walled carbon nanotubes (MWCNTs) have been prepared via physical blending and curing. The influence of the TP and the MWCNTs on the curing process, morphology, thermal and mechanical properties of the hybrid nanocomposites has been analyzed. Different morphologies evolved depending on the CNT content: the material with 0.5 wt% MWCNTs showed a matrix-dispersed droplet-like morphology with well-dispersed nanofiller that selectively located at the TS/TP interphase, while that with 1.0 wt% MWCNTs exhibited coarse dendritic TP areas containing agglomerated MWCNTs. Although the cure reaction was accelerated in its early stage by the nanofillers, curing occurred at a lower rate since these obstructed chain crosslinking. The nanocomposite with lower nanotube content displayed two crystallization peaks at lower temperature than that of pure TP, while a single peak appearing at similar temperature to that of TP was observed for the blend with higher nanotube loading. The highest thermal stability was found for TS/TP (5.0 wt%)/MWCNTs (0.5 wt%), due to a synergistic barrier effect of both TP and the nanofiller. Moreover, this nanocomposite displayed the best mechanical properties, with an optimal combination of stiffness, strength and toughness. However, poorer performance was found for TS/TP (5.0 wt%)/MWCNTs (1.0 wt%) due to the less effective reinforcement of the agglomerated nanotubes and the coalescence of the TP particles into large areas. Therefore, finely tuned morphologies and properties can be obtained by adjusting the nanotube content in the TS/TP blends, leading to high-performance hybrid nanocomposites suitable for structural and high-temperature applications.

  18. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    Science.gov (United States)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  19. Variation of mechanical and thermal properties of the thermoplastics reinforced with natural fibers by electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sok Won [Department of Physics, University of Ulsan, Ulsan 680 749 (Korea, Republic of)], E-mail: sokkim@ulsan.ac.kr; Oh, Seungmin; Lee, Kyuse [Ilkwang Co. Ltd. 1178-6 Goyon-ri, Ungchon-mueon, Ulju-gun 689 871 (Korea, Republic of)

    2007-11-15

    With restrictions for environmental protection being strengthened, the thermoplastics reinforced with natural fibers (NFs) such as jute, kenaf, flax, etc., appeared as an automobile interior material instead of the chemical plastics. Regardless of many advantages, one shortcoming is the deformation after being formed in high temperature of about 200 deg. C, caused by the poor adhesion between the natural fibers and thermoplastics. Also, the energy saving in connection with car air-conditioning becomes very important. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composing of 50% polypropylene (PP) and 50% natural fiber irradiated by the electron beam (energy: 0.5 MeV, dose: 0-20 kGy) were measured. The length and thickness of PP and NF are 80{+-}10 mm and 40-120 {mu}m, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum when the dose of electron beam is 10 kGy, and the deformation after the thermal cycle were reduced by the electron beam.

  20. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Science.gov (United States)

    Hopmann, Ch.; Weber, M.; van Haag, J.; Schöngart, M.

    2015-05-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material's properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  1. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M.

    2015-01-01

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA

  2. A validation of the fibre orientation and fibre length attrition prediction for long fibre-reinforced thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Haag, J. van; Schöngart, M. [Institute of Plastics Processing (IKV) at RWTH Aachen University, Pontstr. 49, 52062 Aachen (Germany)

    2015-05-22

    To improve the mechanical performance of polymeric parts, fibre reinforcement has established in industrial applications during the last decades. Next to the widely used Short Fibre-reinforced Thermoplastics (SFT) the use of Long Fibre-reinforced Thermoplastics (LFT) is increasingly growing. Especially for non-polar polymeric matrices like polypropylene (PP), longer fibres can significantly improve the mechanical performance. As with every kind of discontinuous fibre reinforcement the fibre orientations (FO) show a high impact on the mechanical properties. On the contrary to SFT where the local fibre length distribution (FLD) can be often neglected, for LFT the FLD show a high impact on the material’s properties and has to be taken into account in equal measure to the FOD. Recently numerical models are available in commercial filling simulation software and allow predicting both the local FOD and FLD in LFT parts. The aim of this paper is to compare i.) the FOD results and ii) the FLD results from available orientation- and fibre length attrition-models to those obtained from experimental data. The investigations are conducted by the use of different injection moulded specimens made from long glass fibre reinforced PP. In order to determine the FOD, selected part sections are examined by means of Computed Tomographic (CT) analyses. The fully three dimensional measurement of the FOD is then performed by digital image processing using grey scale correlation. The FLD results are also obtained by using digital image processing after a thermal pyrolytic separation of the polymeric matrix from the fibres. Further the FOD and the FLD are predicted by using a reduced strain closure (RSC) as well as an anisotropic rotary diffusion - reduced strain closure model (ARD-RSC) and Phelps-Tucker fibre length attrition model implemented in the commercial filling software Moldflow, Autodesk Inc., San Rafael, CA, USA.

  3. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    Science.gov (United States)

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  4. Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers

    International Nuclear Information System (INIS)

    Tan, Chiachun; Ahmad, Ishak; Heng, Muichin

    2011-01-01

    Highlights: → Unsaturated polyester resin (UPR) was synthesized from recycled PET. → Effect of surface treatment on EFB/UPR was studied. → Treatment on EFB improved the mechanical and thermal properties. → Treatment on EFB also improved fiber-matrix interaction. -- Abstract: Unsaturated polyester resin (UPR) was synthesized from recycled polyethylene terephthalate (PET) which acted as a matrix for the preparation of UPR/empty fruit bunch fibers (EFB) composite. Chemical recycling on fine pieces of PET bottles were conducted through glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. FTIR analysis of glycolyzed product and prepared UPR showed that cross-links between unsaturated polyester chain and styrene monomer occurred at the unsaturated sites which resulted in the forming of cross-linking network. The preparation of UPR/EFB composite was carried out by adding EFB into prepared UPR matrix. The effects of surface treatment on EFB with sodium hydroxide solution (NaOH), silane coupling agent and maleic anhydride (MA) were then studied. The experimental results showed that treated EFB have higher values of tensile and impact strength compared with untreated EFB. The best results were obtained for silane treatment followed by MA and NaOH treatments where the tensile strength was increased by about 21%, 18% and 13% respectively. SEM micrographs of the tensile fracture surfaces of UPR/EFB composite also proved that treatment on EFB has increased the interfacial adhesion between the fiber and UPR matrix compared to the untreated UPR/EFB composite.

  5. Critical assessment of the mandrel peel test for fiber reinforced thermoplastic laminates

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Akkerman, Remko

    2013-01-01

    The applicability of the mandrel peel test for thermoplastic composites was investigated experimentally by comparing the fracture toughness to the values obtained by the double cantilever beam (DCB) and end loaded split (ELS) beam test. Two laminates were considered: a unidirectionally carbon-PPS

  6. Effects of Alkali Treatment and Polyisocyanate Crosslinking on the Mechanical Properties of Kraft Fiber-Reinforced Unsaturated Polyester Composites

    Directory of Open Access Journals (Sweden)

    Zhenhua Gao

    2014-08-01

    Full Text Available The effects of alkali treatment and polyisocyanate crosslinking on the mechanical properties of kraft fiber-reinforced UPE composites were investigated by means of tensile evaluation, SEM analysis, and XRD analysis. The results indicated that the alkali treatment decreased the tensile strength of the prepared composite before aging from 121 MPa to 97 MPa due to the decreased degree of crystallinity of the alkali-treated kraft fiber. Polyisocyanate crosslinking could apparently improve the mechanical properties and stability in terms of a 43% increase of non-aged tensile strength and 52% increase of hydrothermal-aged tensile strength compared with the controlled composite without crosslinking modification, which was attributable to the formation of strong chemical bonding between the interfaces of kraft fiber and polyester.

  7. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  8. Behavioral variation by ionizing irradiation of recycled thermoplastic elastomer reinforced with natural fibers or inorganic fillers

    International Nuclear Information System (INIS)

    Mohamed, H.A.A.

    2015-01-01

    Plastics are organic polymeric materials consisting of giant organic molecules. Plastic materials can be formed into shapes by one of a variety of processes, such as extrusion, molding, casting or spinning. Modern plastics possess a number of extremely desirable characteristics; high strength to weight ratio, excellent thermal properties, electrical insulation, resistance to acids, alkalis and solvents. These polymers are made of a series of repeating units known as monomers. The structure and degree of polymerisation of a given polymer determine its characteristics. Linear polymers, a single linear chain of monomers, and branched polymers, linear with side chains, are thermoplastic that is they soften when heated. Thermoplastics make up 80% of the plastics produced today. Examples of thermoplastics include: • High density polyethylene (HDPE) used in piping, automotive fuel tanks, bottles, toys, • Low density polyethylene (LDPE) used in plastic bags, cling film, flexible containers; • Polyethylene terephthalate (PET) used in bottles, carpets and food packaging; • Polypropylene (PP) used in food containers, battery cases, bottle crates, automotive parts and fibers; • Polystyrene (PS) used in dairy product containers, tape cassettes, cups and plates; • Polyvinyl chloride (PVC) used in window frames, flooring, bottles, packaging film, cable insulation, credit cards and medical products.

  9. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  10. New recycling approaches for thermoset polymeric composite wastes – an experimental study on polyester based concrete materials filled with fibre reinforced plastic recyclates

    OpenAIRE

    Ribeiro, M. C. S.; Fiúza, António; Meira Castro, A C; Dinis, M. L.; Silva, Francisco J. G.; Meixedo, João Paulo

    2011-01-01

    In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in we...

  11. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.

    Science.gov (United States)

    Yu, Juan; Wang, Chunpeng; Wang, Jifu; Chu, Fuxiang

    2016-05-05

    Recently, the utilization of cellulose nanocrystals (CNCs) as a reinforcing material has received a great attention due to its high elastic modulus. In this article, a novel strategy for the synthesis of self-reinforced CNCs based thermoplastic elastomers (CTPEs) is presented. CNCs were first surface functionalized with an initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Subsequently, SI-ATRP of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in the presence of sacrificial initiator to form CTPEs in situ. The CTPEs together with the simple blends of CNCs and linear poly(MMA-co-BA) copolymer (P(MMA-co-BA)) were characterized for comparative study. The results indicated that P(MMA-co-BA) was successfully grafted onto the surface of CNCs and the compatibility between CNCs and the polymer matrix in CTPEs was greatly enhanced. Specially, the CTPEs containing 2.15wt% CNCs increased Tg by 19.2°C and tensile strength by 100% as compared to the linear P(MMA-co-BA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mechanical and electrical properties of a polyester resin reinforced with clay-based fillers

    Energy Technology Data Exchange (ETDEWEB)

    Buncianu, Dorel; Jadaneant, Mihai [UPT Timisoara, Timisoara (Romania); Tessier-Doyen, Nicolas; Absi, Joseph [Centre Européen de la Céramique, Limoges Cedex (France); Courreges, Fabien [Laboratoire XLIM, 123, Limoges Cedex (France)

    2017-03-15

    In this study, composite polymer-based materials were fabricated, in which a significant proportion of polyester resin was substituted by low-cost and environmentally-friendly clay-based raw materials. The main objective is to improve mechanical properties while maintaining a reasonable electrical insulating behavior. A homogenized distribution of fillers within the matrix compatible with the processing parameters was obtained up to a maximum added fraction of 20 vol%. Mechanical characterization using uniaxial traction tests and Charpy impact pendulum machine showed that stress-to-rupture can be enhanced of approximately 25 %. In addition, fracture energy was doubled for the best formulation. Dielectric constant was decreased and loss factor was slightly increased when electrical resistivity remained almost constant. In general, the composite materials with metakaolin fillers exhibited higher mechanical properties and greater electrical insulating behavior. Microstructural observation showed the presence of decohesive agglomerates of particles at the interface with the matrix. The mechanical properties were found to be more sensitive than electrical properties to the homogeneity of filler dispersion in the matrix.

  13. Research and achievements on carbon fiber reinforced thermoplastic composites for high pressure storage

    International Nuclear Information System (INIS)

    Nony, Fabien; Thomas, Cedric; Villalonga, Stephane; Magnier, Christophe

    2012-01-01

    Hydrogen storage is a key enabling technology for the extensive use of hydrogen as an energy carrier. However, none of the current technologies satisfies all of the hydrogen storage attributes sought by manufacturers, legislators and end-users. At present, compressed gaseous hydrogen storage (CGH2) is recognized as the most mature technology. This paper reviews recent developments and achievements regarding materials and technologies investigated by CEA to promote the development of a of type IV 70 MPa hydrogen vessel. Particularly, results concerning innovative thermoplastic matrix composite vessel will be presented and discussed. On going developments on dedicated manufacturing process and material characterization will be shared in a first part of the presentation and a second part will be devoted to durability assessment and damage tolerance of such composite structures with respect to their potential applications. (authors)

  14. MICROWAVE INDUCED DEGRADATION OF GLASS FIBER REINFORCED POLYESTER FOR FIBER AND RESIN RECOVERY

    DEFF Research Database (Denmark)

    Ucar, Hülya; Nielsen, Rudi Pankratz; Søgaard, Erik Gydesen

    A solvolysis process to depolymerize the resin in glass fiber reinforced composites and recover the glass fibers has been investigated using microwave induced irradiation. The depolymerization was carried out in HNO3 with concentrations in the range of 1M-7M and in KOH with concentrations ranging...

  15. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation

    International Nuclear Information System (INIS)

    Alavudeen, A.; Rajini, N.; Karthikeyan, S.; Thiruchitrambalam, M.; Venkateshwaren, N.

    2015-01-01

    Highlights: • This paper is presents the fabrications of kenaf/banana fiber hybrid composites. • Effect of weaving pattern and random orientation on mechanical properties was studied. • Role of interfacial adhesion due to chemical modifications were analyzed with the aid of SEM. • Hybridization of kenaf and banana fibers in plain woven composites exhibits maximum mechanical strength. - Abstract: The present work deals with the effect of weaving patterns and random orientatation on the mechanical properties of banana, kenaf and banana/kenaf fiber-reinforced hybrid polyester composites. Composites were prepared using the hand lay-up method with two different weaving patterns, namely, plain and twill type. Of the two weaving patterns, the plain type showed improved tensile properties compared to the twill type in all the fabricated composites. Furthermore, the maximum increase in mechanical strength was observed in the plain woven hybrid composites rather than in randomly oriented composites. This indicates minimum stress development at the interface of composites due to the distribution of load transfer along the fiber direction. Moreover, alkali (NaOH) and sodium lauryl sulfate (SLS) treatments appear to provide an additional improvement in mechanical strength through enhanced interfacial bonding. Morphological studies of fractured mechanical testing samples were performed by scanning electron microscopy (SEM) to understand the de-bonding of fiber/matrix adhesion

  16. SAXS determination of the structural periodicity of thermoplastic polyurethane reinforced with cellulose nanocrystals; Determinacao da perodicidade estrutural de poliuretano termoplastico reforcado com nanocristais de celulose por SAXS

    Energy Technology Data Exchange (ETDEWEB)

    Prataviera, Rogerio; Bretas, Rosario E.S.; Lucas, Alessandra de A., E-mail: lucas@ufscar.br [Universidade Federal de Sao Carlos, (UFSCar), Sao Carlos, SP (Brazil); Poullet, Eric; Averous, Luc [Universidade de Strasbourg, Strasbourg (France)

    2015-07-01

    In this work, casting films were obtained from TPU reinforced with cellulose nanocrystals. The structural nano periodicity of these system was evaluated by Small Angle X-Ray Scattering, SAXS. The results indicated that the used TPU has a atypical phase separated morphology of rigid and soft segments, being observed 3 different distances them, probably due to the large polyol polyester molecule derived from colza oil used in the TPU synthesis. (author)

  17. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    International Nuclear Information System (INIS)

    Misri, S; Leman, Z; Sapuan, S M; Ishak, M R

    2010-01-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  18. Non-isothermal curing kinetics and physical properties of MMT-reinforced unsaturated polyester (UP) resins

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, María A., E-mail: angelesvh@yahoo.com [Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, 55210 Ecatepec de Morelos (Mexico); Vázquez, H. [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Física, Av. San Rafael Atlixco 186, col. Vicentina, Mexico, D.F. 09340 (Mexico); Guthausen, G. [KIT, Pro2NMR at MVM and IBG, Karlsruhe (Germany)

    2015-07-10

    Highlights: • Non-isothermal DSC analysis results have shown that the addition of MMT to a UP resin produces a delay in the cure reaction. • The shape of experimental heat-flow DSC curves showed two exothermic peaks for all the samples at different heating rates. • The overall kinetic analysis was performed by isoconversional methods. • It was found that the dependence of the activation energy (E{sub a}) on degree of reaction (α) is complex. - Abstract: Cure behavior of unsaturated polyester (UP)/montmorillonite (MMT)/methyl ethyl ketone peroxide (MEKP)/cobalt octoate intercalated nanocomposites with various MMT loadings was investigated by dynamic differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). UP/MMT nanocomposites were prepared by sequential mixing. Non-isothermal DSC curves were obtained by applying heating rates ranging from 5 to 20 °C/min. They presented two exothermic peaks, which should correspond to two independent cure reactions. The effective activation energy E{sub a}, was determined by applying both the Kissinger’s and Starink’s methods. The results showed slightly higher activation energy for nanocomposites, except for UP/10-MMT. It was found that the dependence of E{sub a} on α is complex. All the systems in this study fitted Sesták–Berggren (SB) model in overall reaction controlled kinetics and the corresponding model parameters, n, m, A were obtained, but it was insufficient in depicting the complex reaction kinetics. Transmission electron microscopy data support the formation of a partially delaminated nanocomposite material. UP and nanocomposites showed similar behavior on thermal stability.

  19. Effect of overlap length on the mechanical properties of flake reinforced thermoplastic composites

    NARCIS (Netherlands)

    Abdul Rasheed, M. I.; van Hattum, F.W.J.; Rietman, B.; Visser, H. A.; Akkerman, R.

    2015-01-01

    The in-plane mechanical properties of laminates with two dimensional planar reinforcing elements (flakes in this case) are investigated. A woven structure for the flakes is considered in this study, comprising of fiber bundles in both warp and weft direction. Failure of the flake or the interface

  20. Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Algrafi, M.W.

    2014-01-01

    Highlights: • Increase in fiber loading increased tensile strength and modulus of the composites. • Tensile strain was decreasing with increase in fiber loading. • Flexural strength and modulus increased with increase in fiber content. • Impact strength was deteriorated with increasing fiber loading. • Morphology observations shown a good adhesion between fibers and matrix. - Abstract: In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced thermoplastic polyurethane (TPU) was prepared by melt compounding method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Effect of fiber loading on mechanical (i.e. tensile, flexural properties and impact strength) and morphological properties was studied. TPU/CPH composites showed increase in tensile strength and modulus with increase in fiber loading, while tensile strain was decreasing with increase in fiber loading. The composite also showed increase in flexural strength and modulus with increase in fiber content. Impact strength was deteriorated with increase in fiber loading. Morphology observations using Scanning Electron Microscope (SEM) showed fiber/matrix good adhesion

  1. A Novel CAE Method for Compression Molding Simulation of Carbon Fiber-Reinforced Thermoplastic Composite Sheet Materials

    Directory of Open Access Journals (Sweden)

    Yuyang Song

    2018-06-01

    Full Text Available Its high-specific strength and stiffness with lower cost make discontinuous fiber-reinforced thermoplastic (FRT materials an ideal choice for lightweight applications in the automotive industry. Compression molding is one of the preferred manufacturing processes for such materials as it offers the opportunity to maintain a longer fiber length and higher volume production. In the past, we have demonstrated that compression molding of FRT in bulk form can be simulated by treating melt flow as a continuum using the conservation of mass and momentum equations. However, the compression molding of such materials in sheet form using a similar approach does not work well. The assumption of melt flow as a continuum does not hold for such deformation processes. To address this challenge, we have developed a novel simulation approach. First, the draping of the sheet was simulated as a structural deformation using the explicit finite element approach. Next, the draped shape was compressed using fluid mechanics equations. The proposed method was verified by building a physical part and comparing the predicted fiber orientation and warpage measurements performed on the physical parts. The developed method and tools are expected to help in expediting the development of FRT parts, which will help achieve lightweight targets in the automotive industry.

  2. Optimization of Blending Parameters and Fiber Size of Kenaf-Bast-Fiber-Reinforced the Thermoplastic Polyurethane Composites by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2013-01-01

    Full Text Available “Kenaf-fibers- (KF-” reinforcedthermoplastic polyurethane (TPU” composites were prepared by the melt-blending method followed by compression molding. Composite specimens were cut from the sheets that were prepared by compression molding. The criteria of optimization were testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters (e.g., processing temperature, time, and speed and fiber size using the Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that has been selected. Furthermore, analysis of variance (ANOVA was used to determine the significance of different parameters. The results showed that the optimum values were 180°C, 50 rpm, 13 min, and 125–300 micron for processing temperature, processing speed, processing time, and fiber size, respectively. Using ANOVA, processing temperature showed the highest significance value followed by fiber size. Processing time and speed did not show any significance on the optimization of TPU/KF.

  3. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2017-12-01

    Full Text Available Thermoplastic vulcanizate (TPV combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide (PLA and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid (PBBSI were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.

  4. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Study on the Mechanical and Interfacial Property of Injection Molded Fiber Reinforced Thermoplastics

    OpenAIRE

    王, 存涛

    2014-01-01

    Fiber reinforced polymer (FRP) composites have been used widely in the land transportation, aerospace, marine structures and characteristically conservative infrastructure construction industries and generally, the interface plays very important role in the properties of FRP materials. Therefore, this research studied the mechanical and interfacial property involved in the non-weld samples, weld samples and adhesive samples of insert moldings. Green composites as one of environment-friendly m...

  6. Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites

    DEFF Research Database (Denmark)

    Doagou-Rad, Saeed; Islam, Aminul; Jensen, Jakob Søndergaard

    2018-01-01

    The influence of the processing variables and nanotube content on the mechanical and electrical properties of polyamide 6,6-based nanocomposites reinforced with multi-walled carbon nanotubes is investigated. Results show that variation in the processing variables such as compounding method....... Different processing parameters required for achieving optimal mechanical and electrical performances are also found. Correlation between processing parameters and microstructure within the nanocomposites is studied. Results show that variation of the processing parameters defines the existence or absence...... discussed using scanning and transmission electron microscopy, rheological and crystallization investigations. The research provides a recipe to manufacture the tailored nanocomposite with the specified properties for various industrial applications....

  7. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  8. Properties of CF/PA6 friction spun hybrid yarns for textile reinforced thermoplastic composites

    Science.gov (United States)

    Hasan, MMB; Nitsche, S.; Abdkader, A.; Cherif, Ch

    2017-10-01

    Due to their excellent strength, rigidity and damping properties as well as low weight, carbon fibre reinforced composites (CFRC) are widely being used for load bearing structures. On the other hand, with an increased demand und usage of CFRCs, effective methods to re-use waste carbon fibre (CF) materials, which are recoverable either from the process scraps or from the end-of-life components are attracting increased attention. In this paper, hybrid yarns consisting of staple CF and polyamide 6 (PA 6) are manufactured on a DREF-3000 friction spinning machine with various machine parameters such as spinning drum speed and suction air pressure. The relationship between different textile physical properties of the hybrid yarns, such as tensile strength and elongation with different spinning parameters and CF content of hybrid yarn is investigated. Furthermore, the tensile properties of uni-directional (UD) composites manufactured from the developed hybrid yarn shows 80% of the UD composite strength made from CF filament yarn.

  9. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology.

    Science.gov (United States)

    Sun, Guohui; Zhang, Xin; Bao, Zixian; Lang, Xuqian; Zhou, Zhongzheng; Li, Yang; Feng, Chao; Chen, Xiguang

    2018-06-01

    To strengthen the mechanical strength of thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel, chitin whiskers were used as sticker to fabricate reinforced HBC (HBCW) hydrogel by using response surface methodology. Unlike the intrinsic network of HBC hydrogel, HBCW hydrogel showed a laminar shape with firm structure. The preparation condition was optimized by three-factor-three-level Box-Behnken design. The maximum mechanical strength (1011.11 Pa) was achieved at 50 °C, when the concentrations of HBC and chitin whiskers were 5.1 wt% and 2.0 wt%, respectively. The effects of temperature, pH value and NaCl concentration on mechanical strength of HBCW hydrogels were investigated via the oscillatory stress sweeps. The results showed that HBCW hydrogel could reach the maximum stiffness (∼1126 Pa) at 37 °C pH 12.0. Low pH and high salty ions could decrease the stability of hydrogel, while chitin whiskers could increase the stress tolerance and related ruptured strain of HBCW hydrogels. Copyright © 2018. Published by Elsevier Ltd.

  10. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    OpenAIRE

    Wada, Takahiro; Churei, Hiroshi; Takayanagi, Haruka; Iwasaki, Naohiko; Ueno, Toshiaki; Takahashi, Hidekazu; Uo, Motohiro

    2018-01-01

    This study aimed to evaluate the shock absorption ability of trial face guards (FGs) incorporating a glass-fiber-reinforced thermoplastic (GF) and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP) and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental mate...

  11. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  12. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    Science.gov (United States)

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  13. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate Polymer Complex

    Directory of Open Access Journals (Sweden)

    Ivona Jerkovic

    2017-10-01

    Full Text Available Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  14. Influence of Sawdust Bio-filler on the Tensile, Flexural, and Impact Properties of Mangifera Indica Leaf Stalk Fibre Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    Heckadka Srinivas Shenoy

    2018-01-01

    Full Text Available The need to have biodegradable composites is aloft in today’s market as they are environment friendly and are also easy to fabricate. In this study, mangifera indica leaf stalk fibres were used as reinforcement along with saw dust as bio-filler material. Unsaturated isophthalic polyester resin was used as the matrix. The fibres were treated with 6 % vol. NaOH and neutralized with 3 % vol. of dilute HCl. Treatment of sawdust fillers was done by using 2% vol. NaOH solution. Hand layup method and compression moulding technique was used to fabricate the composite laminates. Specimens for evaluating the mechanical properties were prepared by using water jet machining. The results indicated an increase in tensile, flexural and impact strength of composites with addition of sawdust upto 3%. Further addition of the bio-filler resulted in decrease of mechanical properties.

  15. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah; Lubineau, Gilles; Yudhanto, Arief; Yaldiz, Recep; Schijve, Warden

    2017-01-01

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  16. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah

    2017-03-31

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  17. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  18. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief; Wafai, Husam; Lubineau, Gilles; Yaldiz, R.; Verghese, N.

    2017-01-01

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology

  19. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  20. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  1. Effect of Short-Term Water Exposure on the Mechanical Properties of Halloysite Nanotube-Multi Layer Graphene Reinforced Polyester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2017-01-01

    Full Text Available The influence of short-term water absorption on the mechanical properties of halloysite nanotubes-multi layer graphene reinforced polyester hybrid nanocomposites has been investigated. The addition of nano-fillers significantly increased the flexural strength, tensile strength, and impact strength in dry and wet conditions. After short-term water exposure, the maximum microhardness, tensile, flexural and impact toughness values were observed at 0.1 wt % multi-layer graphene (MLG. The microhardness increased up to 50.3%, tensile strength increased up to 40% and flexural strength increased up to 44%. Compared to dry samples, the fracture toughness and surface roughness of all types of produced nanocomposites were increased that may be attributed to the plasticization effect. Scanning electron microscopy revealed that the main failure mechanism is caused by the weakening of the nano-filler-matrix interface induced by water absorption. It was further observed that synergistic effects were not effective at a concentration of 0.1 wt % to produce considerable improvement in the mechanical properties of the produced hybrid nanocomposites.

  2. Effect of disaccharide, gamma radiation and temperature on the physico-mechanical properties of jute fabrics reinforced unsaturated polyester resin-based composite

    Science.gov (United States)

    Sahadat Hossain, Md.; Chowdhury, A. M. Sarwaruddin; Khan, Ruhul A.

    2017-06-01

    The jute fabrics reinforced unsaturated polyester resin (jute/UPR)-based composites were prepared successfully by the hand-lay-up technique. The percentage of jute fabrics was kept constant at 40% fiber (by weight). The disaccharide percentage was also kept constant at 2% (by weight), but at this percentage the mechanical properties were lower than the untreated composites. Gamma radiation dose was varied at 0, 2.5, 5 and 7.5 kGy for jute/UPR-based composites. At 5.0 kGy gamma dose highest TS, TM and Eb were obtained. The jute/UPR-based composites were treated under 30°C, 50°C and -18°C for the measurement of mechanical properties. At low temperature (-18°C), the highest mechanical properties were observed. The water uptake properties were measured for disaccharide-treated and disaccharide-untreated composites up to 10 days, but no water was absorbed by the composites. The soil degradation test was carried out under 12 inch soil containing at least 25% water, but no significant decrease was observed for untreated and sucrose-treated composites. For the functional group analysis, FT-IR was carried out. For the fiber matrix adhesion analysis, the scanning electron microscopic image was taken.

  3. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-04-01

    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics

    Directory of Open Access Journals (Sweden)

    Anna Katharina Sambale

    2017-06-01

    Full Text Available The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite.

  5. Field survey and laboratory tests on composite materials case of GRP (Glass Fiber Reinforced Polyester tubes for water suply

    Directory of Open Access Journals (Sweden)

    Radu Hariga

    2013-09-01

    Full Text Available In the Moldova land, were made two lines of water adduction, having 6000 m length and 40 m slope, or 1/150 slope. The water supply component tubes were disposed under the plant: The tubes are made of glass – reinforced thermosetting plastics (GRP. After about 180 days of operation, one of the lines showed severe deterioration of the quality pipe components. This paper deals with some laboratory tests in order to detect the failure cases of the pipelines components.

  6. Promising Poly(ε-caprolactone Composite Reinforced with Weft-Knitted Polyester for Small-Diameter Vascular Graft Application

    Directory of Open Access Journals (Sweden)

    Fu-Jun Wang

    2014-01-01

    Full Text Available The present study was designed to improve the mechanical performance of a small-diameter vascular prosthesis made from a flexible membrane of poly(ε-caprolactone (PCL. PCL reinforcement was achieved by embedding a tubular fabric knitted from polyethylene terephthalate (PET yarns within the freeze-dried composite structure. The knitting density of PET fabric influenced the mechanical properties of the new vascular graft. Results showed that the composite prototype has good mechanical properties, water permeability, elastic recovery, and suture retention strength. Increases in loop density increased compressive strength and suture retention strength and decreased elastic recovery. The new composite prototype vascular graft has promising potential applications in clinics because of its excellent mechanical properties.

  7. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  8. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites

    International Nuclear Information System (INIS)

    Shanmugam, D.; Thiruchitrambalam, M.

    2013-01-01

    Highlights: • New type of hybrid composite with Palmyra Palm Leaf Stalk Fibers (PPLSF) and jute. • Composites fabricated with continuous, unidirectional fibers. • Alkali treatment and hybridizing jute imparted good static and dynamic properties. • Properties are comparable with well know natural/glass fiber composites. • New hybrid composite can be an alternative in place of synthetic fiber composites. - Abstract: Alkali treated continuous Palmyra Palm Leaf Stalk Fiber (PPLSF) and jute fibers were used as reinforcement in unsaturated polyester matrix and their static and dynamic mechanical properties were evaluated. Continuous PPLSF and jute fibers were aligned unidirectionally in bi-layer arrangement and the hybrid composites were fabricated by compression molding process. Positive hybrid effect was observed for the composites due to hybridization. Increasing jute fiber loading showed a considerable increase in tensile and flexural properties of the hybrid composites as compared to treated PPLSF composites. Scanning Electron microscopy (SEM) of the fractured surfaces showed the nature of fiber/matrix interface. The impact strength of the hybrid composites were observed to be less compared to pure PPLSF composites. Addition of jute fibers to PPLSF and alkali treatment of the fibers has enhanced the storage and loss modulus of the hybrid composites. A positive shift of Tan δ peaks to higher temperature and reduction in the peak height of the composites was also observed. The composites with higher jute loading showed maximum damping behavior. Overall the hybridization was found to be efficient showing increased static and dynamic mechanical properties. A comparative study of properties of this hybrid composite with other hybrids made out of using natural/glass fibers is elaborated. Hybridization of alkali treated jute and PPLSF has resulted in enhanced properties which are comparable with other natural/glass fiber composites thus increasing the scope of

  9. Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2016-11-01

    Full Text Available Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs (uHNTs, sulfuric acid treated (aHNTs and a combined treatment of polyvinyl alcohol (PVA-sodium dodecyl sulfate (SDS-malonic acid (MA (treatment (mHNTs. It was found that mHNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature, 8 bar (injection pressure, 30 °C (mold temperature, 8 min (injection time, 2 wt % (HNTs loading and mHNT (HNTs type. Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young’s modulus and highest density was found to be 150 °C (injection temperature, 8 bar (injection pressure, 32 °C (mold temperature, 8 min (injection time, 3 wt % (HNTs loading and mHNT (HNTs type. For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature, 8 bar (injection pressure, 32 °C (mold temperature, 8 min (injection time, 2 wt % (HNTs loading and mHNT (HNTs type. For the highest hardness, the best parameters are 140 °C (injection temperature, 6 bar (injection pressure, 30 °C (mold temperature, 8 min (injection time, 2 wt % (HNTs loading and mHNT (HNTs type. The analyses are carried out by coordinating

  10. Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase

    Directory of Open Access Journals (Sweden)

    Michael Thomas Müller

    2018-06-01

    Full Text Available An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT, graphene nanoplatelets (GNP, or conductive carbon black (CB. The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.

  11. Optimization of Process Parameters During Drilling of Glass-Fiber Polyester Reinforced Composites Using DOE and ANOVA

    Directory of Open Access Journals (Sweden)

    N.S. Mohan

    2010-09-01

    Full Text Available Polymer-based composite material possesses superior properties such as high strength-to-weight ratio, stiffness-to-weight ratio and good corrosive resistance and therefore, is attractive for high performance applications such as in aerospace, defense and sport goods industries. Drilling is one of the indispensable methods for building products with composite panels. Surface quality and dimensional accuracy play an important role in the performance of a machined component. In machining processes, however, the quality of the component is greatly influenced by the cutting conditions, tool geometry, tool material, machining process, chip formation, work piece material, tool wear and vibration during cutting. Drilling tests were conducted on glass fiber reinforced plastic composite [GFRP] laminates using an instrumented CNC milling center. A series of experiments are conducted using TRIAC VMC CNC machining center to correlate the cutting parameters and material parameters on the cutting thrust, torque and surface roughness. The measured results were collected and analyzed with the help of the commercial software packages MINITAB14 and Taly Profile. The surface roughness of the drilled holes was measured using Rank Taylor Hobson Surtronic 3+ instrument. The method could be useful in predicting thrust, torque and surface roughness parameters as a function of process variables. The main objective is to optimize the process parameters to achieve low cutting thrust, torque and good surface roughness. From the analysis it is evident that among all the significant parameters, speed and drill size have significant influence cutting thrust and drill size and specimen thickness on the torque and surface roughness. It was also found that feed rate does not have significant influence on the characteristic output of the drilling process.

  12. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through

  13. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites

    International Nuclear Information System (INIS)

    El-Shekeil, Y.A.; Sapuan, S.M.; Jawaid, M.; Al-Shuja’a, O.M.

    2014-01-01

    Highlights: • Increasing fiber content decreased tensile strength and strain. • Tensile modulus was increasing with increase in fiber content. • SEM showed fiber/matrix poor adhesion. • Impact strength was decreasing with increase in fiber content. • Lower thermal stability with increase in fiber content was observed. - Abstract: Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m 2 ). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m 2 ; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix

  14. Fast prediction of the fatigue behavior of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases

    Science.gov (United States)

    Serrano, Leonell; Marco, Yann; Le Saux, Vincent; Robert, Gilles; Charrier, Pierre

    2017-09-01

    Short-fiber-reinforced thermoplastics components for structural applications are usually very complex parts as stiffeners, ribs and thickness variations are used to compensate the quite low material intrinsic stiffness. These complex geometries induce complex local mechanical fields but also complex microstructures due to the injection process. Accounting for these two aspects is crucial for the design in regard to fatigue of these parts, especially for automotive industry. The aim of this paper is to challenge an energetic approach, defined to evaluate quickly the fatigue lifetime, on three different heterogeneous cases: a classic dog-bone sample with a skin-core microstructure and two structural samples representative of the thickness variations observed for industrial components. First, a method to evaluate dissipated energy fields from thermal measurements is described and is applied to the three samples in order to relate the cyclic loading amplitude to the fields of cyclic dissipated energy. Then, a local analysis is detailed in order to link the energy dissipated at the failure location to the fatigue lifetime and to predict the fatigue curve from the thermomechanical response of one single sample. The predictions obtained for the three cases are compared successfully to the Wöhler curves obtained with classic fatigue tests. Finally, a discussion is proposed to compare results for the three samples in terms of dissipation fields and fatigue lifetime. This comparison illustrates that, if the approach is leading to a very relevant diagnosis on each case, the dissipated energy field is not giving a straightforward access to the lifetime cartography as the relation between fatigue failure and dissipated energy seems to be dependent on the local mechanical and microstructural state.

  15. Glass fiber-reinforced thermoplastics for use in metal-free removable partial dentures: combined effects of fiber loading and pigmentation on color differences and flexural properties.

    Science.gov (United States)

    Tanimoto, Yasuhiro; Nagakura, Manamu; Nishiyama, Norihiro

    2018-02-21

    The purpose of this study was to investigate the combined effects of fiber loading and pigmentation on the color differences and flexural properties of glass fiber-reinforced thermoplastics (GFRTPs), for use in non-metal clasp dentures (NMCDs). The GFRTPs consisted mainly of E-glass fibers, a polypropylene matrix, and a coloring pigment: the GFRTPs with various fiber loadings (0, 10, and 20mass%) and pigmentations (0, 1, 2, and 4mass%) were fabricated by using an injection molding. The color differences of GFRTPs were measured based on the Commission Internationale de l'Eclairage (CIE) Lab color system, by comparing with a commercially available NMCD. The flexural properties of GFRTPs were evaluated by using a three-point bending test, according to International Standards Organization (ISO) specification number 20795-1. The visible colors of GFRTPs with pigment contents of 2mass% were acceptable for gingival color, and the glass fibers harmonized well with the resins. The ΔE* values of the GFRTPs with pigment contents of 2mass% obtained by using the CIE Lab system were lowest at all fiber loadings. For GFRTPs with fiber contents of 10 and 20mass% at 2mass% pigment content, these GFRTPs surpassed the ISO 20795-1 specification regarding flexural strength (> 60MPa) and modulus (> 1.5GPa). A combination of the results of color difference evaluation and mechanical examination indicates that the GFRTPs with fiber contents of 10 or 20mass%, and with pigment contents of 2mass% have acceptable esthetic appearance and sufficient rigidity for NMCDs. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Effects of KMnO4 Treatment on the Flexural, Impact, and Thermal Properties of Sugar Palm Fiber-Reinforced Thermoplastic Polyurethane Composites

    Science.gov (United States)

    Mohammed, A. A.; Bachtiar, D.; Rejab, M. R. M.; Jiang, X. X.; Abas, Falak O.; Abass, Raghad U.; Hasany, S. F.; Siregar, Januar P.

    2018-05-01

    Global warming has had a great impact on environmental changes since the last decade. Eco-friendly industrial products are of great importance to sustain life on earth, including using natural composites. Natural fibers used as fillers are also environmentally valuable because of their biodegradable nature. However, compatibility issues between the fiber and its respective matrix is a major concern. The present work focused on the study of the flexural, impact, and thermal behaviors of environmentally friendly sugar palm fibers (SPF) incorporated into a composite with thermoplastic polyurethane (TPU). Two techniques (extrusion and compression molding) were used to prepare these composites. The fiber size and dosage were kept constant at 250 µm and 30 wt.% SPF, respectively. The effects of potassium permanganate (KMnO4) treatment on the flexural, impact, and thermal behaviors of the treated SPF with 6% NaOH-reinforced TPU composites were investigated. Three different concentrations of KMnO4 (0.033%, 0.066%, and 0.125%) were studied for this purpose. The characterization of the flexural and impact properties of the new TPU/SPF composites was studied as per American Society for Testing Materials ASTM standards. Thermogravimetric analysis was employed for thermal behavior analysis of the TPU/SPF composites. The best flexural strength, impact strength, and modulus properties (8.118 MPa, 55.185 kJ/m2, and 262.102 MPa, respectively) were obtained with a 0.033% KMnO4-treated sample. However, all flexural strength, impact strength, and modulus properties for the KMnO4-treated samples were lower than the sample treated only with 6% NaOH. The highest thermal stability was also shown by the sample treated with 0.033% KMnO4. Therefore, this method enhanced the thermal properties of the TPU/SPF composites with clear deterioration of the flexural and impact properties.

  17. Improvement of the Shock Absorption Ability of a Face Guard by Incorporating a Glass-Fiber-Reinforced Thermoplastic and Buffering Space

    Directory of Open Access Journals (Sweden)

    Takahiro Wada

    2018-01-01

    Full Text Available This study aimed to evaluate the shock absorption ability of trial face guards (FGs incorporating a glass-fiber-reinforced thermoplastic (GF and buffering space. The mechanical properties of 3.2 mm and 1.6 mm thick commercial medical splint materials (Aquaplast, AP and experimental GF prepared from 1.6 mm thick AP and fiberglass cloth were determined by a three-point bending test. Shock absorption tests were conducted on APs with two different thicknesses and two types of experimental materials, both with a bottom material of 1.6 mm thick AP and a buffering space of 30 mm in diameter (APS and with either (i 1.6 mm thick AP (AP-APS or (ii  1.6 mm thick GF (GF-APS covering the APS. The GF exhibited significantly higher flexural strength (64.4 MPa and flexural modulus (7.53 GPa than the commercial specimens. The maximum load of GF-APS was 75% that of 3.2 mm AP, which is widely used clinically. The maximum stress of the GF-APS only could not be determined as its maximum stress is below the limits of the analysis materials used (<0.5 MPa. Incorporating a GF and buffering space would enhance the shock absorption ability; thus, the shock absorption ability increased while the total thickness and weight decreased.

  18. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  19. Polyester matrix composite reinforced by fiberglass: how far can have contact with oil; Composito de matriz poliester e reforco de fibra de vidro: ate onde pode ter contato com petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, C.M.; Masieiro, F.R.S.; Felipe, R.C.T.S.; Felipe, R.N.B.; Medeiros, G.G. [Centro Federal de Educacao Tecnologica (CEFET), Natal, RN (Brazil)], e-mail: k1000_rn@hotmail.com

    2008-07-01

    The use of reinforced plastics (PR) in the petroleum industry is very incipient when compared to conventional materials such as steel, for example. PR are already being used in floorings and handrails, but still there is not studies about the behavior of these materials when they come into contact with oil. In this context, this work aims to obtain a composite using a matrix of polyester resin, and the fiberglass (E Glass) as material of reinforcement. After the obtention of the composite, proof bodies will be made for the determination of the mechanical properties related to the traction and bending. Some of these proof bodies will be immersed in oil for a period of 120 days. At the end of this period, they will be tested. Thus, the traction and bending of the proof bodies which was immersed will be compared to the other ones, seeking to verify the influence of this immersion on the mechanical properties of the material. (author)

  20. Synthesis of Improved Polyester Resins.

    Science.gov (United States)

    1979-07-05

    of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 83 For sale by the National Technical Information Service, Springfield. Virginia...low sensitivity .... ........... 68 B2B C-scan of carbon fiber reinforced polyester Laminate #2 at high sensitivity ..... .......... 68 B3A C-scan of...right corner, but it is obscured by the delamination. Figure B2B shows the same composite at a 12 decibel increase in sensitivity. The image now shows

  1. Biodegradation of polyester. Polyester no bunkai sei

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwa, Y. (Agency of Industrial Science and Technology, Tokyo (Japan). Fermentation Research Inst.)

    1991-09-10

    Penicillium sp. 14-3 and penicillium sp. 26-1 can degrade various kinds of polyester. The results of studies made on hydrolysis of polyester by enzyme, hydrolysis of polyester by various kinds of lipase, and degradation of ester type polyurethane by microbes and lipase are introduced. For the improvement of physical properties of aliphatic polyester, aromatic-aliphatic polyester copolymers (CPE) have been synthesized to study the biodegradability. Copolymer in which a number of polyamide (nylon) are alternately introduced (CPAE) to aliphatic polyester has been developed. The result of studies made on the degradability of a blended body of PCL and natural high polymer, and on the collapsibility by lipase of high polymer materials including aliphatic polyamide are introduced. 26 refs., 5 figs., 1 tab.

  2. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson, Robert W. Emerick, Alfred B. England, James P. Flanders, Frank J. Loge, Katherine A. Wiedeman, Michael P. Wolcott

    2010-04-08

    The forestry, wood and paper industries in the United States provide thousands of productive well-paying jobs; however, in the face of the recent economic downturn it faces significant challenges in remaining economically viable and competitive. To compete successfully on a global market that is increasingly driven by the need for sustainable products and practices, the industry must improve margins and diversify product lines while continuing to produce the staple products. One approach that can help to accomplish this goal sustainably is the forest biorefinery. In the forest biorefinery, traditional waste streams are utilized singly or in combination to manufacture additional products in a profitable and environmentally sustainable manner. In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. Renewable microbial polyesters are not currently used in WFRTCs primarily because their production costs are several times higher than those of conventional petrochemical-derived plastics, limiting their use to small specialty markets. The strategy for this project was to economically produce WFRTCs using microbial polyesters by reducing or eliminating the most costly steps in the bio-plastic production. This would be achieved by producing them in and from waste effluents from the municipal and forest products sectors, and by eliminating the costly purification steps. After production the plasticladen biosolids would be dried and used directly to replace petroleum

  3. Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

    OpenAIRE

    D. Korsacilar; C. Atas

    2014-01-01

    In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber c...

  4. Textile impregnation with thermoplastic resin - models and application

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Lamers, E.A.D.; Wijskamp, Sebastiaan; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.

    2012-01-01

    One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The

  5. Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells.

    Science.gov (United States)

    Harini, K; Chandra Mohan, C; Ramya, K; Karthikeyan, S; Sukumar, M

    2018-03-15

    The main aim of the present study is to extract and characterize cashew nut shell (CNS) starch and walnut shell cellulose (WNC) for development of cellulose reinforced starch films. Moreover, the extraction and characterization of pomegranate peel extract, for incorporation with CNS-WNC films, was investigated. CNS starch was examined to be a moderate amylose starch with 26.32 ± 0.43% amylose content. Thermal degradation temperature of CNS starch was found to be 310 °C. Walnut shell cellulose was found to have high crystallinity index of 72%, with two thermal degradation temperatures of 319 °C and 461 °C. 2% WN cellulose reinforced CNS starch films were examined to have good oxygen transfer rate, mechanical and physical properties. Thermal degradation temperature of CNS-WNC starch films were found to be at the range of 298-302 °C. Surface roughness of CNS-WNC starch films were found to be increasing with increase in concentration of cellulose in films. Hydroxymethylfurfurole, Benzene, 2-methoxy-1,3,4-trimethyl and 1,2,3-Propanetriol, 1-acetate were found to be major active compounds present in hydrophilic extracts of Punica granatum peels. 2% WN cellulose reinforced starch films infused with hydrophilic active compounds of pomegranate peel was examined to be having good active package properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  7. Wettability and Impact Performance of Wood Veneer/Polyester Composites

    Directory of Open Access Journals (Sweden)

    Shayesteh Haghdan

    2015-07-01

    Full Text Available Fiber-reinforced thermosetting composites have been of interest since the 1940s due to their ease of use in processing, fast curing times, and high specific stiffness and strength. While the use of plant fibers in a polyester matrix has been thoroughly studied, only limited information is available regarding using wood as reinforcement. In this study, composites of thin wood veneer and a polyester matrix were made and the difficulties in the lamination and curing processes were investigated. Sheets of Douglas fir, maple, and oak veneers using a catalyzed polyester resin were assembled as unidirectional, balanced, and unbalanced cross-ply laminates. These were compared to control specimens using glass fiber as reinforcement. The impact properties of the samples, with respect to the laminate thicknesses, were characterized using a drop-weight impact tester. The wettability and surface roughness of unsanded and sanded wood veneers were also investigated. Results showed that Douglas fir cross-ply laminates had an impact energy equivalent to glass fiber laminates, making them an interesting alternative to synthetic fiber composites. Wood/polyester laminates absorbed a considerable amount of energy through a higher number of fracture modes. The balanced lay-up limited twisting of the wood/polyester composites. The lowest contact angle and highest wettability were observed in unsanded Douglas fir veneers.

  8. Investigation of Mechanical Properties of Unidirectional Steel Fiber/Polyester Composites: Experiments and Micromechanical Predictions

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Løgstrup Andersen, Tom; Bech, Jakob Ilsted

    2016-01-01

    the role of material and process parameters on material properties. Two types of SFRP were studied: polyester resin reinforced by both steel fabric containing unidirectional fibers and steel fibers wound on a metal frame with 0° orientations. The effects of the fiber volume fraction and the role of polymer......The article introduces steel fiber reinforced polymer composites, which is considered new for composite product developments. These composites consist of steel fibers or filaments of 0.21 mm diameter embedded in a polyester resin. The goal of this investigation is to characterize the mechanical...... performance of steel fiber reinforced polyester composites at room temperature. The mechanical properties of unidirectional steel fiber reinforced polyester composites (SFRP) are evaluated experimentally and compared with the predicted values by micro-mechanical models. These predictions help to understand...

  9. Characterisation of metal–thermoplastic composite hybrid joints by means of a mandrel peel test

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthias B.; Grouve, Wouter Johannes Bernardus; Warnet, Laurent

    2016-01-01

    Fastener free metal–carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the metal–thermoplastic composite interface is crucial for the performance of the entire hybrid joint. Optimisation of the interface requires an

  10. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko

    2017-01-01

    Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a

  11. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available Natural fibers are used as reinforcement material for number of thermoplastic/thermoset polymers. The interest in using polylactic acid (PLA) as thermoplastic matrix to produce composites completely from 100% renewable resources has increased...

  12. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    Science.gov (United States)

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  13. Crosslinking of thermoplastic composites using electron beam radiation

    International Nuclear Information System (INIS)

    Strong, A.B.; Black, S.R.; Bryce, G.R.; Olcott, D.D.

    1991-01-01

    The crosslinking of thermoset materials has been clearly demonstrated to improve many desirable physical and chemical properties for composite applications. While thermoplastic resins also offer many advantages for composite applications, they are not crosslinked and, therefore, may not meet the same property criteria as crosslinked thermosets. Electron beams have been used successfully for crosslinking non-reinforced thermoplastic materials. Electron beams have also been used for curing composite thermoset materials. This research utilizes electron beams to crosslink high performance thermoplastic composite materials (PEEK and PPS with glass and carbon fibers). The tensile strength and tensile modulus are compared under various crosslinking conditions. The method is found to have some advantages in potentially improving physical properties of thermoplastic composite materials

  14. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  15. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  16. Compression molding of chopped woven thermoplastic composite flakes

    NARCIS (Netherlands)

    Abdul Rasheed, Mohammed Iqbal

    2016-01-01

    Continuous fiber reinforced composites with high-performance thermoplastic polymer matrices have an enormous potential in terms of performance, production rate, cost efficiency and recyclability. The use of this relatively new class of materials by the aerospace and automotive industry has been

  17. Engineering Design Handbook. Discontinuous Fiberglass Reinforced Thermoplastics

    Science.gov (United States)

    1981-04-01

    excellent results. Small shots in large equipment result in excessive residence times, causing molding difficulties. Chrome-plated 4140 material is...of cases, it is possi- ble to work with three basic types of mold steel, namely, AISI P20, AISI H13, and AISI 01. As with unreinforced

  18. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  19. Wood thermoplastic composites

    Science.gov (United States)

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  20. Clinical outcomes after parastomal hernia repair with a polyester monofilament composite mesh

    DEFF Research Database (Denmark)

    Oma, E; Pilsgaard, B; Jorgensen, L N

    2018-01-01

    with intraperitoneal placement of a polyester monofilament macroporous composite mesh. METHODS: Data on all patients undergoing parastomal hernia repair with Parietex™ Composite Parastomal Mesh at our institution during a 4-year period were examined. Patients with urostomy were excluded. A team of three experienced...... chronic pain. CONCLUSION: In this study, we found low rates of recurrence and chronic pain following parastomal hernia repair using intraperitoneal reinforcement with a polyester monofilament composite mesh....

  1. Effect of Moisture on Natural Fibre Reinforced Plastics.

    African Journals Online (AJOL)

    2016-12-01

    Dec 1, 2016 ... thermoplastic and thermoset matrix composites provide positive environmental benefits with respect to ultimate disposability and raw material utilization [6]. 2.0 Materials And Methods. The materials used in this work include: i. Ukam plant fibres (chochlostermum placoni) ii. Polyester resin. iii. Catalyst ...

  2. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites – Part II

    NARCIS (Netherlands)

    Ropers, Steffen; Sachs, Ulrich; Kardos, Marton; Osswald, Tim A.

    2017-01-01

    A proper description of the bending behavior is crucial to obtain accurate forming simulations, especially for continuous fiber-reinforced thermoplastic composites. These materials exhibit a highly temperature and bending-curvature dependent bending stiffness. These dependencies make the property

  3. Bending behavior of thermoplastic composite sheets viscoelasticity and temperature dependency in the draping process

    CERN Document Server

    Ropers, Steffen

    2017-01-01

    Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...

  4. A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite

    Science.gov (United States)

    Kumari, Sanju; Rai, Bhuvneshwar; Kumar, Gulshan

    2018-02-01

    Fiber reinforced polymer composites are used for building and structural applications due to their high strength. In conventional composites both the binder and the reinforcing fibers are synthetic or either one of the material is natural. In the present study coagulum of Euphorbia royleana has been used for replacing polyester resinas binder in polyester banana composite. Euphorbia coagulum (driedlatex) is rich in resinous mass (60-80%), which are terpenes and polyisoprene (10-20%). Effect of varying percentage of coagulum content on various physico-mechanical properties of polyester-banana composites has been studied. Since banana fiber is sensitive to water due to presence of polar group, banana composite undergoes delamination and deterioration under humid condition. Alkali treated banana fiber along with coagulum content has improved overall mechanical properties and reduction in water absorption. The best physico-mechanical properties have been achieved on replacing 40% of polyester resin by coagulum. An increase of 50% in bending strength, 30% bending modulus and 45% impact strength as well as 68% decrease in water absorption was observed. Incorporation of 20% ATH as flame retardant in coagulum modified banana polyester composite enhanced limiting oxygen index from 20.6 to 26.8% and smoke density reduced up to 40%. This study presents the possibility of utilization of renewable materials for environmental friendly composite development as well as to find out alternative feedstock for petroleum products. Developed Euphorbia latex modified banana polyester composites can have potential utility in hardboard, partition panel, plywood and automotive etc.

  5. Mechanical properties of green composites based on thermoplastic starch

    Science.gov (United States)

    Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.

    2010-06-01

    The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.

  6. Biodegradation of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Short Term Seawater Immersion

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2017-07-01

    Full Text Available Halloysite nanotubes (HNTs-polyester nanocomposites with four different concentrations were produced using solution casting technique and the biodegradation effect of short-term seawater exposure (120 h was studied. Monolithic polyester was observed to have the highest seawater absorption with 1.37%. At 0.3 wt % HNTs reinforcement, the seawater absorption dropped significantly to the lowest value of 0.77% due to increase of liquid diffusion path. For samples tested in dry conditions, the Tg, storage modulus, tensile properties and flexural properties were improved. The highest improvement of Tg was from 79.3 to 82.4 °C (increase 3.1 °C in the case of 0.3 wt % HNTs. This can be associated with the exfoliated HNTs particles, which restrict the mobility of polymer chains and thus raised the Tg. After seawater exposure, the Tg, storage modulus, tensile properties and flexural properties of polyester and its nanocomposites were decreased. The Young’s modulus of 0.3 wt % HNTs-polyester dropped 20% while monolithic polyester dropped up to 24% compared to their values in dry condition. Apart from that, 29% flexural modulus reduction was observed, which was 18% higher than monolithic polyester. In contrast, fracture toughness and surface roughness increased due to plasticization effect. The presence of various microbial communities caused gradual biodegradation on the microstructure of the polyester matrix as also evidently shown by SEM images.

  7. Development of step for light duty truck by using injection molding of long-fiber reinforced thermoplastics; Chosen`i kyoka jushi no shashutsu keisei ni yoru truck yo step no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Togo, A; Yamamura, H; Yamaguchi, M [Mitsubishi Motor Corp., Tokyo (Japan); Yoshino, K [Kawasaki Steel Corp. Tokyo (Japan)

    1997-10-01

    The new step for light duty truck was developed by injection molding of glass long-fiber reinforced polypropylene. Feature of the step is good surface appearance and no post processings, compared with the conventional one press molded with a glass fiber reinforced polypropylene sheet (Stampable sheet). 3 refs., 14 figs., 6 tabs.

  8. Polyester projects for India, Pakistan

    International Nuclear Information System (INIS)

    Siddiqi, R.

    1993-01-01

    India's Indo Rama Synthetics (Bombay) is planning a $186-million integrated polyester fiber and filament complex at Nagpur, Maharashtra. The complex will have annual capacities for 38,000 m.t. of polyester chips by polycondensation, 25,000 m.t. of polyester staple fiber, and 12,000 m.t. of polyester blended yarn. The company is negotiating with the main world suppliers of polycondensation technology. The first stage of the project is slated to begin production by the end of this year and be fully completed by 1994. In Pakistan, National Fibers Ltd. (PNF; Karachi) has signed a deal with Zimmer (Frankfurt) for technology, procurement, construction, and support work to expand polyester staple fiber capacity from 14,000 m.t./year to 52,000 m.t./year. The technology involves a continuous polymerization process. The project also calls for improvements to PNF's existing batch plant. It is scheduled for completion by the end of 1994. Total cost of the project is estimated at Rs1.745 billion ($70 million), out of which the foreign exchange component is Rs1.05 billion. The Islamic Development Bank (Jeddah; Saudi Arabia) has already approved a $27-million slice of the financing, while the balance of the foreign exchange loan is being arranged through suppliers credit. Local currency loans will be provided by other financial institutions in Pakistan

  9. Application of Fiber Reinforcement Concrete Technique in Civil ...

    African Journals Online (AJOL)

    modulus of elasticity, high tensile strength, improved fatigue and impact resistance. Reinforcing the concrete structures with fibers such as polyester is one of the possible ways to provide all the criteria of the durable repair material. This type of reinforcement is called Fiber Reinforcement of Concrete Structures. There is an ...

  10. Numerical modeling and experimental validation of thermoplastic composites induction welding

    Science.gov (United States)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  11. On the weld strength of in situ tape placed reinforcements on weave reinforced structures

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Rietman, Bert; Akkerman, Remko

    2012-01-01

    Unidirectionally reinforced thermoplastic tapes were welded onto woven fabric reinforced laminates using a laser assisted tape placement process. A mandrel peel setup was used to quantify the interfacial fracture toughness between the tape and the laminate as a measure for weld strength. The tape

  12. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  13. Recycling C/PPS laminates into long fibre thermoplastic composites by low shear mixing

    NARCIS (Netherlands)

    de Bruijn, Thomas A.; Vincent, Guillaume Almire; van Hattum, Ferrie

    2017-01-01

    The increasing interest in continuous fibre reinforced thermoplastic composites has resulted in a rise of industrial waste. The recycling of the waste is topic of this study, aiming at high mechanical properties by retaining both a long fibre length and the matrix material. Consolidated continuous

  14. Karakterstik Serapan Suara Komposit Polyester Berpenguat Serat Tapis Kelapa

    OpenAIRE

    Astika, I Made; Dwijana, I Gusti Komang

    2016-01-01

    The purpose of this study is to investigate of sound absorption of coconut filter fiber composites. The research material made with coconut filter fiber as reinforcement and matrix resin unsaturated polyester (UPRs) type Yukalac BQTN 157 with 1% hardener types MEKPO (Methyl Ethyl Ketone Peroxide) and fiber treatment by  0,5% KMnO4. Production methods is poltrusion and the variations of fiber volume fraction are 20, 25 and 30% and fiber length are 5, 10 and 15 mm. Testing of sound absorpt...

  15. Atmospheric pressure H20 plasma treatment of polyester cord threads

    International Nuclear Information System (INIS)

    Simor, M.; Krump, H.; Hudec, I.; Rahel, J.; Brablec, A.; Cernak, M.

    2004-01-01

    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H 2 0 plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H 2 0 plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength (Authors)

  16. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  17. Effect of nanomodified polyester resin on hybrid sandwich laminates

    International Nuclear Information System (INIS)

    Anbusagar, NRR.; Giridharan, P.K.; Palanikumar, K.

    2014-01-01

    Highlights: • Effect of nanomodified polyester resin on hybrid sandwich laminates is evaluated. • The hybrid sandwich laminates are fabricated with varying wt% of nanoclay. • Flexural, impact and moisture absorbtion properties are evaluated for hybrid composites. • Scanning electron microscopy is utilized to analyze the dispersion of clay and fractured surfaces of the nanocomposites. - Abstract: Effect of nanoclay modified polyester resin on flexural, impact, hardness and water absorption properties of untreated woven jute and glass fabric hybrid sandwich laminates have been investigated experimentally. The hybrid sandwich laminates are prepared by hand lay-up manufacturing technique (HL) for investigation. All hybrid sandwich laminates are fabricated with a total of 10 layers, by varying the extreme layers and wt% of nanoclay in polyester resin so as to obtain four different combinations of hybrid sandwich laminates. For comparison of the composite with hybrid composite, jute fiber reinforced composite laminate also fabricated. X-ray diffraction (XRD) results obtained from samples with nanoclay indicated that intergallery spacing of the layered clay increases with matrix. Scanning electron microscopy (SEM) gave a morphological picture of the cross-sections and energy dispersive X-ray spectroscopy (EDS) allowed investigating the elemental composition of matrix in composites. The testing results indicated that the flexural properties are greatly increased at 4% of nanoclay loading while impact, hardness and water absorption properties are increased at 6% of nanoclay loading. A plausible explanation for high increase of properties has also been discussed

  18. Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation

    OpenAIRE

    Osorio, Marlon A.; Restrepo, David; Velásquez-Cock, Jorge A.; Zuluaga, Robin O.; Montoya, Ursula; Rojas, Orlando; Gañán, Piedad F.; Marin, Diana; Castro, Cristina I.

    2014-01-01

    In this paper, a nanocomposite based on thermoplastic starch (TPS) reinforced with bacterial cellulose (BC) nanoribbons was synthesized by in situ fermentation and chemical crosslinking. BC nanoribbons were produced by a Colombian native strain of Gluconacetobacter medellinensis; the nanocomposite was plasticized with glycerol and crosslinked with citric acid. The reinforcement percentage in the nanocomposites remained constant throughout the fermentation time because of the TPS absorption ca...

  19. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  20. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  1. Polyester Apparel Cutting Waste as Insulation Material

    OpenAIRE

    Trajković, Dušan; Jordeva, Sonja; Tomovska, Elena; Zafirova, Koleta

    2017-01-01

    Polyester waste is the dominant component of the clothing industry waste stream, yet its recycling in this industry is rarely addressed. This paper proposes using polyester cutting waste as an insulation blanket for roofing and buildings’ internal walls in order to reduce environmental pollution. The designed textile structures used waste cuttings from different polyester fabrics without opening the fabric to fibre. Thermal insulation, acoustic insulation, fire resistance and biodegradation o...

  2. COMPOSITE FRIEND SISAL / POLYESTER TREATED IN SURFACE

    Directory of Open Access Journals (Sweden)

    Jayna K. Dionisio Santos

    2011-09-01

    Full Text Available The use of composites in manufacturing equipment and products is taking a very important space in the industry in general. Moreover these materials have unique characteristics when analyzed separately from constituents who are part of them. However it is know that cares must be taken in their manufacture, as the use of appropriate process and the composition of each element, in addition to adherence fiber / matrix, which is a major factor in obtaining of the final mechanical strength of the product. One should also take into account whether the composites are environmentally friendly. For this reason, in this work, a composite partially ecological was made, using as reinforcement, a sisal woven and, as matrix, the polyester resin. Seeking to improve the adherence fiber / matrix, a treatment in sisal woven was performed with aqueous solution of sodium hydroxide (NaOH at a concentration of 3%. The composite subjected to this treatment presented, in bending test, a better mechanical performance, with an increase of 27% in the flexion strength and of 54% in maximum strain, but there was a reduction of about 15% in its flexural modulus.

  3. An Undergraduate Experiment in Polyester (PET) Synthesis

    Science.gov (United States)

    Cammidge, Andrew N.

    1999-02-01

    The most important polyester manufactured industrially is PET (polyethyleneterephthalate). We describe an experiment that conveniently mimics the industrial synthesis in the undergraduate laboratory. The first step of the reaction is a base-catalyzed transesterification between ethane diol and dimethylterephthalate. Methanol is distilled off to drive the reaction to completion. Excess ethane diol is employed to suppress formation of higher oligomers. The intermediate (bis-(2-hydroxyethyl)terephthalate) is isolated by crystallization and filtration and characterized by 1H NMR spectroscopy. In the second step the monomer is heated (with and without acid catalyst) to form polymer. Samples are removed at intervals and their physical properties are recorded as they cool. These properties are used to qualitatively monitor polymerization. This experiment reinforces some fundamental chemical concepts and introduces the students to new laboratory procedures. The students perform a distillation and apply their knowledge of the reaction equilibrium to calculate the volume of distillate (methanol) expected. The reversible nature of esterification reactions is emphasized during the polymerization step (acid-catalyzed), where the process is driven towards polymer formation by the removal (evaporation) of ethane diol.

  4. Liquid crystal polyester-carbon fiber composites

    Science.gov (United States)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  5. The axial crushes behaviour on foam-filled round Jute/Polyester composite tubes

    Science.gov (United States)

    Othman, A.; Ismail, A. E.

    2018-04-01

    The present paper investigates the effect of axial loading compression on jute fibre reinforced polyester composite round tubes. The specimen of composite tube was fabricated by hand lay-up method of 120 mm length with fix 50.8 mm inner diameter to determine the behaviour of energy absorption on number of layers of 450 angle fibre and internally reinforced with and without foam filler material. The foam filler material used in this studies were polyurethane (PU) and polystyrene (PE) with average of 40 and 45 kg/m3 densities on the axial crushing load against displacement relations and on the failure modes. The number of layers of on this study were two; three and four were selected to calculate the crush force efficiency (CFE) and the specific energy absorption (SEA) of the composite tubes. Result indicated that the four layers’ jute/polyester show significant value in term of crushing load compared to 2 and 3 layers higher 60% for 2 layer and 3% compared to 3 layers. It has been found that the specific energy absorption of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 10% to 12% than empty and polyurethane (PU) foam tubes. The increase in the number of layers from two to four increases the mean axial load from 1.01 KN to 3.60 KN for empty jute/polyester and from 2.11 KN to 4.26 KN for the polyurethane (PU) foam-filled jute/polyester tubes as well as for 3.60 KN to 5.58 KN for the polystyrene (PE) foam-filled jute/polyester. The author’s found that the failure of mechanism influence the characteristic of curve load against displacement obtained and conclude that an increasing number of layers and introduce filler material enhance the capability of specific absorbed energy.

  6. The Degradation of Mechanical Properties in Halloysite Nanoclay-Polyester Nanocomposites Exposed in Seawater Environment

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2016-01-01

    Full Text Available Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nanocomposites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nanoclay-polyester nanocomposites. Results confirmed that the addition of halloysite nanoclay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nanoclay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease. Young’s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease. The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease. The impact toughness dropped from 0.71 kJ/m2 to 0.48 kJ/m2 (32% decrease. Interestingly, the fracture toughness KIC increased with the addition of halloysite nanoclay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nanoclay-matrix interface influenced by seawater absorption and agglomeration of halloysite nanoclay.

  7. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    Directory of Open Access Journals (Sweden)

    Francesca eLionetto

    2015-04-01

    Full Text Available Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation.The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  8. Radiation-induced changes affecting polyester based polyurethane binder

    Science.gov (United States)

    Pierpoint, Sujita Basi

    The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion

  9. Cryomilling of Thermoplastic Powder for Prepreg Applications

    Science.gov (United States)

    2013-09-01

    Cryomilling of Thermoplastic Powder for Prepreg Applications by Brian Parquette, Anit Giri, Daniel J. O’Brien, Sarah Brennan, Kyu Cho, and...MD 21005-5066 ARL-TR-6591 September 2013 Cryomilling of Thermoplastic Powder for Prepreg Applications Brian Parquette and Sarah Brennan...COVERED (From - To) 1 March 2012–30 May 2013 4. TITLE AND SUBTITLE Cryomilling of Thermoplastic Powder for Prepreg Applications 5a. CONTRACT

  10. Portable Device Slices Thermoplastic Prepregs

    Science.gov (United States)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  11. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  12. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Serena Coiai

    2015-06-01

    Full Text Available Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix, but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  13. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Science.gov (United States)

    Coiai, Serena; Passaglia, Elisa; Pucci, Andrea; Ruggeri, Giacomo

    2015-01-01

    Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix), but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  14. Intensification of polyester synthesis by continuous reactive distillation

    NARCIS (Netherlands)

    Shah, M.R.

    2011-01-01

    The thesis starts with a brief overview of unsaturated polyesters. In particular, the usage of raw materials, the application of unsaturated polyester resins, and, the worldwide supply and demand of the unsaturated polyester resins are discussed. Unsaturated polyester is traditionally produced in a

  15. Effect of particle size and concentration on the mechanical properties of polyester/date palm seed particulate composites

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of cellulosic materials as reinforcement in composites can greatly enhance their properties. The thrust of this study was to investigate the effect of date palm seed particle on the properties of reinforced polyester. Unsaturated polyester resin was reinforced with date palm seed particles of 0.5, 2.0 and 2.8mm particle sizes using variable particle loadings of 5, 10, 15, 20 and 25wt%. The composites obtained were subjected to various types of mechanical and physical tests in order to assess their performance. The optimum tensile strength of 16.7619N/mm2 and elastic modulus of 343.8N/mm2 were attained at 15wt% and 10wt% loading (using 0.5mm particles respectively and percent water absorption was found to be least for 0.5mm particle size. The hardness was enhanced to the maximum of 74 HRF (Rockwell Hardness Factor by 2mm particle size at 25wt% loading. Pure unsaturated polyester resin recorded tensile strength of 17.5959N/mm2, elastic modulus of 316.7N/mm2 and hardness of 33.5 HRF. The results indicated that the use of date palm seed particles as reinforcement can enhance the properties of polyester composites.

  16. Joep van Lieshout's Mobile Home for Kröller-Müller: outdoor polyester sculpture in transit

    NARCIS (Netherlands)

    Stigter, S.; Beerkens, L.; Schellen, H.L.; Kuperholc, S.; Bridgland, J.

    2008-01-01

    The nature and condition of the large scale glass fibre reinforced polyester resin outdoor sculpture by Dutch artist Joep van Lieshout: Mobile Home for Kröller-Müller (1995) is challenging traditional conservation ethics. Chemists, physicists, art historians, conservators specialised in different

  17. Outdoor polyester sculpture in transit: Joep van Lieshout’s Mobile Home for Kröller-Müller

    NARCIS (Netherlands)

    Stigter, S.; Beerkens, L.; Schellen, H.L.; Kuperholc, S.

    2008-01-01

    The nature and condition of the largescale glass fibre reinforced polyester resin outdoor sculpture by Dutch artist Joep van Lieshout: Mobile Home for Kröller-Müller (1995) is challenging traditional conservation ethics. Chemists, physicists, art historians, conservators specialised in different

  18. Recent Advances in 3D Printing of Aliphatic Polyesters.

    Science.gov (United States)

    Chiulan, Ioana; Frone, Adriana Nicoleta; Brandabur, Călin; Panaitescu, Denis Mihaela

    2017-12-24

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed.

  19. Recent Advances in 3D Printing of Aliphatic Polyesters

    Science.gov (United States)

    Frone, Adriana Nicoleta; Brandabur, Călin

    2017-01-01

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed. PMID:29295559

  20. Recent Advances in 3D Printing of Aliphatic Polyesters

    Directory of Open Access Journals (Sweden)

    Ioana Chiulan

    2017-12-01

    Full Text Available 3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid (PLA and polyhydroxyalkanoates (PHA, two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed.

  1. Obtenção de um revestimento compósito de poliéster-uretana reforçado com alumina pela técnica de deposição por imersão sobre fibras de poliamida 6 Preparation of a composite coating of alumina reinforced polyester urethane by dip coating on polyamide 6 fibers

    Directory of Open Access Journals (Sweden)

    F. A. L. Sánchez

    2009-12-01

    Full Text Available O uso de revestimentos compósitos de matriz polimérica e reforço cerâmico capazes de manter a flexibilidade e a elasticidade das fibras poliméricas, agregando propriedades típicas dos materiais cerâmicos (como ação bactericida ou fotocatalítica, resistência à chama, ao desgaste e à abrasão, tem atraído interesse da indústria têxtil. Baseado na técnica dip coating e usando fibras sintéticas de poliamida como substrato, foram produzidas suspensões de poliéster-uretana com partículas de alumina (tamanho médio de partícula 2,2 μm para obtenção de revestimentos uniformes e espessos sobre o material base, poliamida 6. A viscosidade das suspensões foi controlada pela adição de carboximetilcelulose e avaliada por reometria rotacional. A distribuição granulométrica das suspensões também foi determinada. Os parâmetros operacionais do dip coating, i.e., velocidade de bobinamento e temperatura dos fornos, foram mantidos constantes em todas as amostras. O processo mostrou viabilidade para deposição uniforme do recobrimento avaliado, com espessura adequada, indicando ser promissor para revestir fibras, agregando propriedades de interesse tecnológico.Ceramic reinforced polymer composite coatings that can retain the flexibility and elasticity of the polymeric fibers, being also able to incorporate the functionality of ceramic materials (e.g. fire, wear, or abrasion resistance, antibacterial performance, photocatalytic effect are interesting to the processing of textile materials. In this work, polyester-urethane slurries with alumina particles (mean particle size: 2.2 μm were developed based on the dip coating technique and using polyamide-6 synthetic fibers as the substrate, seeking to obtain an uniform and thick coating. The viscosity of the slurries was varied using carboxymethylcellulose as a rheological agent and evaluated by rotational rheometry. Particle size distribution of the slurries was also analyzed. The

  2. Impact behaviour of Napier/polyester composites under different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Fahmi, I., E-mail: fahmi-unimap@yahoo.com; Majid, M. S. Abdul, E-mail: shukry@unimap.edu.my; Afendi, M., E-mail: afendirojan@unimap.edu.my; Haameem, J. M.A., E-mail: mhaameem@gmail.com [School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau (Malaysia); Haslan, M., E-mail: haslan@sirim.my; Helmi, E. A., E-mail: hilmi@sirim.my [Advanced Material Research Centre (AMREC), SIRIM Berhad, Kulim (Malaysia)

    2016-07-19

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  3. Building Block Approach' for Structural Analysis of Thermoplastic Composite Components for Automotive Applications

    Science.gov (United States)

    Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.

    2017-12-01

    Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.

  4. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  5. Drilling analysis of coir–fibre-reinforced polyester composites

    Indian Academy of Sciences (India)

    Administrator

    ... in a large variety of products, ranging from clothes to roofing of houses. Today, these fibre composites are appraised as eco- friendly materials owing to their biodegradability and ... method and the artificial neural network techniques. The.

  6. some tensile properties of unsaturated polyester resin reinforced wi

    African Journals Online (AJOL)

    Dr Obe

    large improvement in physical and mechanical properties. Literature survey shows that these improvements are achieved with less than 10% volume additions of nanoscale particles (typically on the order of. 1% to 5% for layered silicates and carbon nanotubes), which is in sharp contrast to conventional polymer fillers [2].

  7. Karakteristik Mekanik Panel Dinding dari Komposit Sabut Kelapa (Coco Fiber)-Sampah Plastik (Thermoplastics)

    OpenAIRE

    Fajriyanto, Fajriyanto

    2009-01-01

    The research about utilization of coco fiber and thermoplastic waste to produce partition wall based on fiber reinforced plastic (FRP) composites has been conducted. The research methodology used was experimental research method. There were three steps conducted in the research; the first, preparation of instruments and sampling of raw materials, the second, blending process for producing fiberboard composites, the third, mechanical-waterproof testing and analyzing of products. The obje...

  8. Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2017-01-01

    Roč. 130, č. 2 (2017), s. 1043-1052 ISSN 1388-6150 R&D Projects: GA ČR(CZ) GA16-03194S Institutional support: RVO:61389013 Keywords : poly(lactic acid) * cold crystallization * thermoplastic polyurethane Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.953, year: 2016

  9. Polymer-filler interactions in polyether based thermoplastic polyureathane/silica nanocomposites

    OpenAIRE

    Heinz, Özge; Heinz, Ozge

    2013-01-01

    Thermoplastic polyurethaneureas (TPU) are a unique class of materials that are used in a broad range of applications due to their tailorable chemistry and morphology that allow engineering materials with targeted properties. The central theme of this dissertation is to develop an understanding on polymer-filler interfacial interactions and related reinforcing mechanism of silica nanoparticles in polyether based TPU/silica nanocomposites. Prior to our investigation on nanocomposite materials, ...

  10. Thermoplastic starch composites with TiO2 particles: preparation, morphology, rheology and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Ostafinska, Aleksandra; Mikešová, Jana; Krejčíková, Sabina; Nevoralová, Martina; Šturcová, Adriana; Zhigunov, Alexander; Michálková, Danuše; Šlouf, Miroslav

    2017-01-01

    Roč. 101, August (2017), s. 273-282 ISSN 0141-8130 R&D Projects: GA ČR(CZ) GA14-17921S Institutional support: RVO:61389013 Keywords : thermoplastic starch * titanium dioxide particles * morphology Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 3.671, year: 2016

  11. Joining of thermoplastic substrates by microwaves

    Science.gov (United States)

    Paulauskas, Felix L.; Meek, Thomas T.

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  12. Fatigue life prediction in woven carbon fabric polyester composites

    International Nuclear Information System (INIS)

    Khan, Z.; Al-Sulaiman, F.S.; Farooqi, J.K.

    1999-01-01

    An analytical model, based on stiffness degradation during fatigue loading, which has been used for fatigue life predictions in the Fiber Reinforced Plastics (FRP), is employed to examine its validity to the fatigue life predictions in the Woven Fabric Reinforced Plastics. The rate of stiffness degradation (dE/dN) has been obtained from the constant amplitude fatigue testing of 8-ply coupons made from prepreg plain-weave woven carbon-carbon fabric having a polyester resin as the matrix material. The test coupons had three different ply stacking sequences, namely, the unidirectional (0)8,and two off axis plied (0,0,+45,-45)s, and (+45,-45,0,0)s orientations. The estimated fatigue lives obtained from the damage rate function dD/dN, which in turn was a function of the stiffness degradation rate dE/dN, were compared with the experimentally observed fatigue life data. It is shown that the stiffness degradation model provides reasonably good correlation between the analytically determined fatigue lives and the experimentally observed fatigue for the plain-weave woven Carbon-Carbon Fabric Reinforced Plastic Composites. (author)

  13. Consolidation modelling for thermoplastic composites forming simulation

    Science.gov (United States)

    Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.

    2016-10-01

    Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.

  14. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  15. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  16. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  17. Synthesis and characterization of polyesters from renewable cardol ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia ... The preparation and thermal characteristics of new polyesters from cardol, a renewable monomer ... All prepared polyesters were insoluble in common laboratory solvents at room temperature.

  18. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  19. Propagation of polarized light through azobenzene polyester films

    DEFF Research Database (Denmark)

    Nedelchev, L; Matharu, A; Nikolova, Ludmila

    2002-01-01

    When elliptically polarized light of appropriate wavelength Corresponding to trans-cis-trans isomerisation process is incident on thin films of azobenzene polyesters, a helical structure is induced. We investigate the propagation of the exciting light beam (self-induced) as well as a probe light...... beam outside the absorption band through the polyester films. Investigations are carried out in one amorphous and one liquid crystalline polyester. We show that amorphous polyester after irradiation behaves like classical helical material....

  20. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  1. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Science.gov (United States)

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  2. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Directory of Open Access Journals (Sweden)

    Claudia Prosperi

    2010-01-01

    Full Text Available A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a stronginterpenetration of adjacent layers was observed.

  3. Study of Time-Dependent Properties of Thermoplastics

    Directory of Open Access Journals (Sweden)

    Bolchoun A.

    2010-06-01

    Full Text Available Simple tests carried out with a common tension/compression testing machine are used to obtain timedependent properties of non-reinforced thermoplastics. These tests include ramp loadings as well as relaxation and creep tests. Two materials (PBT Celanex 2002-2 and POM Hostaform C9021, Ticona GmbH, Kelsterbach were taken for the experiments. The experiments show that an adequate description of the long-term material properties can be obtained from the short-time tests, namely from tests with constant traverse speed $L^.$. Below a model for the time-dependent mechanical behavior is presented and fitted to the obtained measured data. For the evaluation of the fitting quality long-term tests are used. Especially creep and relaxation tests with ”jumps”, i.e. rapid change of loading, are important for this purpose.

  4. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  5. Fibre reinforced composites '84; Proceedings of the International Conference, University of Liverpool, England, April 3-5, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Among the topics discussed are phenolic resin matrix composites for high temperature and fire-exposure applications, novel resins for fiber-reinforced composite productivity improvement, the use of engineering textiles for mechanical property improvement in composites, the significance of aramid fiber reinforcement in composites, the energy absorption properties of Sheet Metal Compounds (SMCs) under crash conditions, and SMC impact behavior variations with temperature. Also covered are CFRP applications in high performance structures, composite helicopter main rotor blade technology, composite vehicular leaf springs, carbon fiber-reinforced thermoplastics, filament winding development status, the injection processing of fiber-reinforced thermoplastics, civil aircraft composite structure certification, composite radomes, design procedures for short fiber-reinforced thermoplastics, the strength limitations of mechanically fastened lap joints, environmental fatigue and creep in glass-reinforced materials, the effects of moisture on high performance laminates, the environmental behavior of SMC, and corrugated composites.

  6. (Citric acid–co–polycaprolactone triol) polyester

    Science.gov (United States)

    Thomas, Lynda V.; Nair, Prabha D.

    2011-01-01

    Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties. PMID:23507730

  7. Holographic recording in thiophene-based polyester

    DEFF Research Database (Denmark)

    Matharu, Avtar Singh; Chambers-Asman, David; Jeeva, Shehzad

    2008-01-01

    The synthesis and optical data storage properties of a side-chain thiophene-phenyl azopolyester ThPhAzoP.ol is reported. The polyester is derived from diphenyl tetradecanedioate and a thiophenebased liquid crystalline diol which exhibits a short-lived enantiotropic SmA phase (Cryst 177.7 SmA 180.......4 I). The polyester ThPhAzoPol exhibits amorphous (Tg, 78.6 DC), crystalline and liquid crystalline character as evidenced by differential scanning calorimetry and thermal polarising microscopy. A grainy texture, which is thermally reversible, with increasing birefringence on cooling from...... the isotropic melt is observed. The polyester is amenable to optical data storage, showing efficient induced anisotropy, which is stable at room temperature. Polarisation gratings can be inscribed using orthogonally.linear and circularly polarised light to good effect (>10/0) and surface relief gratings...

  8. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    Science.gov (United States)

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  10. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites.

    Science.gov (United States)

    Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi

    2018-03-01

    Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  11. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites

    Directory of Open Access Journals (Sweden)

    Sean Bowman

    2018-03-01

    Full Text Available Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa, flexural modulus (>63 GPa, and interlaminar shear strength (>27 MPa, indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  12. Kekuatan Lentur Komposit Polyester Berpenguat Serat Tapis Kelapa

    Directory of Open Access Journals (Sweden)

    I Made Astika

    2015-07-01

    Full Text Available Penelitian ini bertujuan untuk menyelidiki sifat mekanis yaitu kekuatan lentur dari kompositpolyester yang diperkuat dengan serat tapis kelapa. Di masa depan komposit ini dapatdigunakan untuk menggantikan kayu, bambu dan gipsun yang harganya mahal dan tidaktahan air. Komposit dibuat dengan memanfaatkan serat sabut kelapa dan matriks resinUnsaturated-Polyester (UPRs jenis Yucalac 157 BQTN, campuran 1% hardener jenis MEKPO(Methyl Ethyl Ketone Peroxide dan perendaman serat dalam larutan alkali KMnO4 0,5%.Metode produksi yang digunakan adalah press hand lay up dengan orientasi serat acak.Desain komposit dengan variasi fraksi volume serat 20, 25 dan 30% dan variasi panjang serat5, 10 dan 15 mm. Hasil penelitian menunjukkan bahwa semakin besar fraksi volume danpanjang serat dalam komposit maka kekuatan lentur semakin tinggi. Mode patahan yangteramati adalah patah getas, debonding, pullout dan crack deflection.Kata kunci: komposit, serat tapis kelapa, kekuatan lentur, mode patahan The purpose of this study is to investigate the mechanical properties i.e. flexural strength ofcomposites coconut filter fiber. In the future this material can be used to replace the wood,bamboo and gipsun which are high price and lower water resistance.The research material made with coconut filter fiber as reinforcement and matrix resinunsaturated polyester (UPRs type Yukalac BQTN 157, with 1% hardener types MEKPO(Methyl Ethyl Ketone Peroxide and fiber treatment by 0.5% KMnO4. Production methods arepress hand lay-up and the variations of fiber volume fraction are 20, 25 and 30% and fiberlength are 5, 10 and 15 mm. Testing of mechanical properties is flexural test (ASTM - D790The results of research show that the longer of fiber and the bigger of fiber volume fraction,the higher of flexural strength are obtained. The fracture mode are overload, debonding ,pullout and crack deflectionKeywords : composites, coconut filter fiber, flexural strength, fracture mode

  13. Influence of the molecular structure on hydrolysability of unsaturated polyesters

    International Nuclear Information System (INIS)

    Pays, M.F.; Denis, V.

    1993-09-01

    EDF has decided to replace conventional materials by glass reinforced plastics for certain PWR water distribution systems (raw water system, essential service water system, firefighting water distribution system, etc...). Since steel corrodes rapidly in these pipings, introducing composite materials will be economically beneficial if the long-term resistance of these materials can be guaranteed. However, due to hydrolysis of the resin or of the fiber-matrix interface, composite materials deteriorations may occur during service life. This paper reports on the hydrolysis resistance of polyester and vinylester resins. - Model monomers were studied to relate the molecular structure to the hydrolysis resistance. Two ester categories were determined, the diacids and the diols. For the diacids, we obtained the following classification in increasing order of resistance: < maleates < ethoxysuccinates < succinates < fumerates < terephtalates < orthophtalates < isophtalates and for the diols: trioxyethylene glycol << butane diol ∼ ethylene glycol < neopentyl glycol < bisphenol A. The positions obtained for neopentyl glycol and isophtalic acid on this scale justify their inclusion in the formulation of hydrolysis-resistant resins. Since aliphatic unsaturated esters are highly sensitive to hydrolysis, the cross linking procedures for these materials, notably the post-cure stages, must be the subject of particular care. - The hydrolytic degradation of cross linked materials was studied. It was shown that hydrolysis could be monitored by a simple gravimetric method. Used in association with accelerated aging tests, it predicts the time lapse to initiation of the phenomenon. The better hydrolysis resistance of vinylester resins as compared with unsaturated polyesters has been demonstrated. However, forecasting over a 30-year life span is difficult to guarantee in that this involves indicating in the resin specifications the in-service stress which it will be required to

  14. Micro-thermal analysis of polyester coatings

    NARCIS (Netherlands)

    Fischer, H.R.

    2010-01-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure

  15. Photoinduced Deformation of Azobenzene Polyester Films

    DEFF Research Database (Denmark)

    Bublitz, D.; Helgert, M.; Fleck, B.

    2000-01-01

    We investigate two types of azobenzene side-chain polyesters which have shown opposite behaviour in light-induced surface grating formation experiments. Thin films of these polymers prepared on a water surface undergo opposite changes of shape under the influence of polarized light. We propose...

  16. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    but which can actually be used for processes, which pro- duce interesting ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the .... The solid product obtained from the glycolysis of PET was bis(hydroxy ethyl ...

  17. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  18. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  19. Effect of Chemical Treatment on Mechanical and Water-Sorption Properties Coconut Fiber-Unsaturated Polyester from Recycled PET

    OpenAIRE

    Munirah Abdullah, Nurul; Ahmad, Ishak

    2012-01-01

    Coconut fibers were used as reinforcement for unsaturated polyester resin from recycled PET that has been prepared using glycolysis and polyesterification reaction. Various concentrations of alkali, silane, and silane on alkalized fiber were applied and the optimum concentration of treatments was determined. Morphological and mechanical properties of the composite have also been investigated to study the effect of fiber surface treatment. The influence of water uptake on the sorption characte...

  20. Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound

    Science.gov (United States)

    Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.

    2017-02-01

    Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape

  1. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  2. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  3. Karakteristik Sifat Tarik Dan Mode Patahan Komposit Polyester Berpenguat Serat Tapis Kelapa

    OpenAIRE

    Astika, I Made; Dwijana, I Gusti Komang

    2014-01-01

    The purpose of this study is to investigate the mechanical properties i.e. tensile strength of composites coconut filter fiber. In the future this material can be used to replace the wood, bamboo and gipsun which are high price and lower water resistance. The research material made with coconut filter fiber as reinforcement and matrix resin unsaturated polyester (UPRs) type Yukalac BQTN 157, with 1% hardener types MEKPO (Methyl Ethyl Ketone Peroxide) and fiber treatment by  0.5% KMnO4...

  4. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  5. Thermoplastic film camera for holographic recording

    International Nuclear Information System (INIS)

    Liegeois, C.; Meyrueis, P.

    1982-01-01

    The design thermoplastic-film recording camera and its performance for holography of extended objects are reported. Special corona geometry and accurate control of development heat by constant current heating and high resolution measurement of the develop temperature make easy recording of reproducible, large aperture holograms possible. The experimental results give the transfer characteristics, the diffraction efficiency characteristics and the spatial frequency response. (orig.)

  6. Thermoplastic elastomers via controlled radical graft polymerization

    NARCIS (Netherlands)

    Tuzcu, G.

    2012-01-01

    Rubbery behavior with a consistent modulus over a wide temperature range is a challenge in the search for ultimate structure-property relations of thermoplastic elastomers (TPEs). This feature is closely related to the phase separation behavior of the constitutional segments and the Tg of the

  7. Processing of thermoplastic polymers using reactive solvents

    NARCIS (Netherlands)

    Meijer, H.E.H.; Venderbosch, R.W.; Goossens, J.G.P.; Lemstra, P.J.

    1996-01-01

    The use of reactive solvents offers an interesting and flexible route to extent the processing characteristics of thermoplastic polymers beyond their existing limits. This holds for both intractable and tractable polymers. The first mainly applies for amorphous high-Tg polymers where processing may

  8. Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Boxin; Schneiderman, Deborah K.; Bidoky, Fazel Zare; Frisbie, C.Daniel; Lodge, Timothy P. (UMM)

    2017-09-15

    We have designed printable, biocompatible, and degradable ion gels by combining a novel ABA triblock aliphatic polyester, poly(ε-decalactone)-b-poly(dl-lactide)-b-poly(ε-decalactone), and a low toxicity ionic liquid, 1-butyl-1-methylpyrrolidinium bistrifluoromethanesulfonylimide ([P14][TFSI]). Due to the favorable compatibility between amorphous poly(dl-lactide) and [P14][TFSI] and the insolubility of the poly(ε-decalactone), the triblock polymer forms self-assembled micellar cross-links similar to thermoplastic elastomers, which ensures similar processing conditions and mechanical robustness during the fabrication of printed electrolyte-gated organic transistor devices. Additionally, the ester backbone in the polymer structure enables efficient hydrolytic degradation of these ion gels compared to those made previously using carbon-backbone polymers.

  9. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  10. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  11. Improvement of the fracture toughness matrix cured by electron beam radiation, by incorporation of thermoplastic

    International Nuclear Information System (INIS)

    Chauray, E.

    2003-07-01

    The aim of the present study is to improve the fracture toughness of a vinyl-ester matrix cured by electron beam radiation, by incorporation of a thermoplastic polymer. The ultimate plan is to improve the fracture toughness of the composite material made of this reinforced matrix and carbon fibres. The first step deals with the study of an epoxy matrix reinforced by a polyether-sulfone. This well-known material, as it is used in industrial formulation, allowed us to characterize all the parameters needed to obtain a good reinforcement as for instance the morphology, and also to compare two kinds of processes: thermal and electron beam curing. In fact, we are really interested in increasing fracture toughness of a vinyl-ester matrix that is not miscible with polyether-sulfone. So a copolymer which has a similar structure as polyether-sulfone is synthesized in order to obtain a miscible blend. The corresponding material has good fracture toughness, with an increase of 80 % for 15 % addition of thermoplastic. (author)

  12. Komposit Hibrid Polyester Berpenguat Serbuk Batang Dan Serat Sabut Kelapa

    OpenAIRE

    Lumintang, Romels C. A; Soenoko, Rudy; Wahyudi, Slamet

    2011-01-01

    Sawdust coconut trunks of palm trees and fiber coconut coir are two waste materials from the processing of coconuts and coconut tree trunks sawmill waste are plentiful materials can be utilized for producing composites using polyester resins. Both each properties materials as follow polyester resin: liquid in the open air conditions, sawdust coconut and coconut coir fiber properties is lightweight and fragile nature of the polyester adhesive used as a binder (binder) between fiber coconut coi...

  13. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik

    2006-01-01

    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation...... of the incident light have been fabricated with polarisation holography. Computer-generated optical elements and patterns have also been written with a single polarised laser beam. Recording of polarisation defects enabling easy visualisation is also shown to be feasible in azobenzene polyesters....

  14. Side-chain liquid crystalline polyesters for optical information storage

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, Christian; Hvilsted, Søren

    1996-01-01

    and holographic storage in one particular polyester are described in detail and polarized Fourier transform infrared spectroscopic data complementing the optical data are presented. Optical and atomic force microscope investigations point to a laser-induced aggregation as responsible for permanent optical storage.......Azobenzene side-chain liquid crystalline polyester structures suitable for permanent optical storage are described. The synthesis and characterization of the polyesters together with differential scanning calorimetry and X-ray investigations are discussed. Optical anisotropic investigations...

  15. The radiation chemistry of symmetric aliphatic polyesters

    International Nuclear Information System (INIS)

    Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers

  16. Novel organometallic aromatic polyester based on ferrocene

    Institute of Scientific and Technical Information of China (English)

    Wei

    2010-01-01

    A novel polyester containing ferrocenyl was prepared by low-temperature interface polycondensation of 1,1'-ferrocenedi-carboxylic acid chloride with 4-(4-hydroxyphenyl)-2,3-phthalazin-l-one(DHPZ), which is a twisted non-coplanar heterocyclic bisphenol-like monomer. The newly generated polymer was evaluated based on characterization of its solubility, viscosity measurements, elemental analysis, FTIR spectroscopy, differential scanning calorimetric and thermogravimetric studies.

  17. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    Science.gov (United States)

    Zhu, Jianhui

    and physico-mechanical properties for two series of linear polyurethane elastomers built from polyol polyesters which contain bio-based o-hydroxytetradecanoic acid (o-HOC14) repeat units. Varied quantities of o-HOC14 was converted by a condensation polymerization catalyzed by titanium tetraisopropoxide (Ti[OiPr]4) to polyester polyol with Mn around 2K. By end-cap the polyols with excess amount of 1,4-butanediol, low number of carbonyl end group can be achieved so that the polyols can be further used as soft segment of thermoplastic polyurethanes (TPU). We have studied the thermo-mechanical properties of two-series polyurethanes with different polyester polyols or polyester polyols mixtures. With increasing amount of o-HOC14 content in the soft segment polyols of polyurethanes, tensile strength of the polyurethanes kept increasing from 30MPa to 470MPa while at the same time their elongation ratio decreased from 900% to 300%. Their mechanical behavior shifted from elastomer to semi-crystalline plastic. In the second section about polyether polyurethanes, PC14-OH and poly(tetrahydrofuran) mixtures were used as soft segment in linear polyurethane elastomer synthesis. Similar thermal and mechanical property changing trends were observed with increasing amount of PC14-OH up to 30 wt% of total soft segments. In this study, the functions of PC14-OH in thermoplastic polyurethane elastomers were identified, and there are several benefits of incorporating this long chain fatty acid. In the third study, seven amphiphilic alternating oligopeptides were synthesized via chemo-enzymatic routes. Four proteases (papain, bromelain, alpha-chymotrypsin, and trypsin) were evaluated to determine their efficiency in synthesizing alternating peptides. The first series is hydrophobic-anionic alternating oligopeptides targeting for self assembly smart material design. So far, beta-sheet secondary structure of the anionic alternating oligopeptides was not observed very clearly at low p

  18. Methods for an investigation of the effect of material components on the mechanical characteristics of glass-fiber-reinforced plastics

    Science.gov (United States)

    Willax, H. O.

    1980-01-01

    The materials used in the production of glass reinforced plastics are discussed. Specific emphasis is given to matrix polyester materials, the reinforcing glass materials, and aspects of specimen preparation. Various methods of investigation are described, giving attention to optical impregnation and wetting measurements and the gravimetric determination of the angle of contact. Deformation measurements and approaches utilizing a piezoelectric device are also considered.

  19. The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses

    Science.gov (United States)

    Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.

    2017-06-01

    Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.

  20. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.

    Science.gov (United States)

    Kohda, Naohisa; Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Ahluwalia, Karamdeep S; Mizoguchi, Itaru

    2013-05-01

    To measure the forces delivered by thermoplastic appliances made from three materials and investigate effects of mechanical properties, material thickness, and amount of activation on orthodontic forces. Three thermoplastic materials, Duran (Scheu Dental), Erkodur (Erkodent Erich Kopp GmbH), and Hardcast (Scheu Dental), with two different thicknesses were selected. Values of elastic modulus and hardness were obtained from nanoindentation measurements at 28°C. A custom-fabricated system with a force sensor was employed to obtain measurements of in vitro force delivered by the thermoplastic appliances for 0.5-mm and 1.0-mm activation for bodily tooth movement. Experimental results were subjected to several statistical analyses. Hardcast had significantly lower elastic modulus and hardness than Duran and Erkodur, whose properties were not significantly different. Appliances fabricated from thicker material (0.75 mm or 0.8 mm) always produced significantly greater force than those fabricated from thinner material (0.4 mm or 0.5 mm). Appliances with 1.0-mm activation produced significantly lower force than those with 0.5-mm activation, except for 0.4-mm thick Hardcast appliances. A strong correlation was found between mechanical properties of the thermoplastic materials and force produced by the appliances. Orthodontic forces delivered by thermoplastic appliances depend on the material, thickness, and amount of activation. Mechanical properties of the polymers obtained by nanoindentation testing are predictive of force delivery by these appliances.

  1. Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media

    Directory of Open Access Journals (Sweden)

    Ivan Stojanović

    2018-03-01

    Full Text Available Protective coatings are the most widely used corrosion protection method for construction materials in different environmental conditions. They isolate metals from aggressive media, making the structure more durable. Today, alongside good anti-corrosive properties, coatings need to be safe for the environment and harmless to those who apply them. The high volatile organic compound (VOC content in conventional solvent-borne coatings presents a huge ecological problem. A solution for indispensable solvent emission reduction is the application of powder coatings. This study evaluates the corrosion performance and surface morphology of polyester and epoxy–polyester powder coatings. Electrochemical impedance spectroscopy (EIS, open circuit potential (OCP measurement, salt spray chamber and humidity chamber testing followed by adhesion testing were used to investigate the protective properties of powder coatings. Scanning electron microscope (SEM with energy-dispersive X-ray spectroscopy (EDX was used to analyse the surface morphology and chemical composition, whereas the microstructure and coating uniformity were determined by optical microscope examination. The research revealed a negative influence of coating surface texture on coating thickness and consequently a lack of barrier and adhesion properties. The epoxy–polyester powder coating showed a better performance than the polyester coating. All tested coatings showed uniform structure.

  2. Air-drying paint compositions comprising carbohydrate-based polyesters and polyester preparation

    NARCIS (Netherlands)

    Oostveen, E.A.; Weijnen, J.; Haveren, van J.; Gillard, M.

    2003-01-01

    The invention relates to a polyester obtainable by transesterification or interesterification of:(i) a carbohydrate or an acyl ester thereof, (ii) an alkyl ester of a drying fatty acid, semi-drying fatty acid or mixture thereof; and (iii) an alkyl ester of a non aromatic polycarboxylic acid. The

  3. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  4. Process for the production of a dianhydrohexitol based polyester

    NARCIS (Netherlands)

    2008-01-01

    Process for the production of a polyester by the polycondensation of a mixture comprising isoidide, and a dicarboxylic acid or dicarboxylic acid anhydride, wherein the reaction is performed in the melt of the monomers and wherein these monomers are not activated. The polyesters based on one or more

  5. Biobased functional polyesters for coating applications: Synthesis, characterization and application

    NARCIS (Netherlands)

    Noordover, B.A.J.; Duchateau, R.; Koning, C.E.; Benthem, van R.A.T.M.; Ming, W.; Haveren, van J.; Es, van D.S.

    2007-01-01

    Thermosetting coating systems contain polyesters as binders. A crucial property of these polymers is their functionality. During coating application, the polyesters are cross-linked in situ, which means that each polymer chain needs a sufficient no. of reactive end-groups. Renewable monomers are

  6. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes.

    Science.gov (United States)

    Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Onuma, F; Nakahara, T

    1999-02-01

    Polyurethane (PUR) is a polymer derived from the condensation of polyisocyanate and polyol and it is widely used as a base material in various industries. PUR, in particular, polyester PUR, is known to be vulnerable to microbial attack. Recently, environmental pollution by plastic wastes has become a serious issue and polyester PUR had attracted attention because of its biodegradability. There are many reports on the degradation of polyester PUR by microorganisms, especially by fungi. Microbial degradation of polyester PUR is thought to be mainly due to the hydrolysis of ester bonds by esterases. Recently, polyester-PUR-degrading enzymes have been purified and their characteristics reported. Among them, a solid-polyester-PUR-degrading enzyme (PUR esterase) derived from Comamonas acidovorans TB-35 had unique characteristics. This enzyme has a hydrophobic PUR-surface-binding domain and a catalytic domain, and the surface-binding domain was considered as being essential for PUR degradation. This hydrophobic surface-binding domain is also observed in other solid-polyester-degrading enzymes such as poly(hydroxyalkanoate) (PHA) depolymerases. There was no significant homology between the amino acid sequence of PUR esterase and that of PHA depolymerases, except in the hydrophobic surface-binding region. Thus, PUR esterase and PHA depolymerase are probably different in terms of their evolutionary origin and it is possible that PUR esterases come to be classified as a new solid-polyester-degrading enzyme family.

  7. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  8. Pyrolysis characteristics of typical biomass thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Hongzhen Cai

    Full Text Available The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite. Keywords: Biomass thermoplastic composite, Calcium carbonate, Pyrolysis characteristic

  9. Functional bio-based polyesters by enzymatic polymerization

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Andersen, Christian

    During recent years enzymatic polymerization has become increasingly popular as an alternative to classical polyesterification processes. The high regioselectivity observed for lipases permits preparation of novel polyesters with a high number of functional groups.1 This is particularly interesting...... polymerization was applied to prepare functional water soluble polyesters based on dimethyl itaconate and poly(ethyleneglycol).2 The monomer permits postfunctionalization using thiol-ene chemistry or aza-michael additions, which was used to illustrate the possibilites of preparing functional hydrogels. Hydrogels...... based on the polyesters were shown to be degradable and could be prepared either from the pure polyester or from prefunctionalized polyesters, though the thiol-ene reactions were found to be less effective. Since then a new monomer, trans-2,5-dihydroxy-3-pentenoic acid methyl ester (DPM) has been...

  10. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  11. Thermoplastic liners for carbon steel pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mauyed S.; AlDossary, Abdullah K. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Materials selection for pipe and fittings used to convey corrosive fluids has often been a challenge. Traditionally, exotic Corrosion Resistant Alloys (CRA) have been used in corrosive environments despite their high cost. Plastic lined carbon steel piping offers a cost effective alternative to the use of CRAs by eliminating corrosion, significantly reducing the use of toxic chemicals and the heavy metal usually present in CRAs. Thermoplastic Liners offer the combination of corrosion resistance and mechanical strength, which are unachievable with singular materials. Under pressure conditions, the liner is fully supported by the metalwork, while under vacuum conditions, the liner must be thick enough along with venting system to withstand the collapsing forces created by the negative pressure. Plastic liners have been used successfully to line and protect metallic pipelines for many years and have become an indispensable requirement of the oil and gas industry particularly with water injection and hydrocarbon services. In the case of internally corroded pipes, the use of thermoplastic liners for rehabilitation is an option to extend the lifetime of companies' assets, reduce maintenance cost and increase intervals between T and Is. For new construction, plastic liners in carbon steel pipes can compete technically and economically with pipelines of CRA materials and other corrosion inhibition systems. This paper describes various design features, installations of thermoplastic liners in comparison to other corrosion inhibition methods. (author)

  12. Feasibility of tailoring of press formed thermoplastic composite parts

    Science.gov (United States)

    Sinke, J.

    2018-05-01

    The Tailor Made Blank concept is widely accepted in the production of sheet metal parts. By joining, adding and subtracting materials, and sometimes even applying different alloys, parts can be produced more efficiently by cost and/or weight, and new design options have been discovered. This paper is about the manufacture of press formed parts of Fibre Reinforced Thermoplastics and the evaluation whether the Tailoring concept, though adapted to the material behavior of FRTP, can be applied to these composites as well. From research, the first results and ideas are presented. One of the ideas is the multistep forming process, creating parts with thickness variations and combinations of fibre orientations that are usually not feasible using common press forming strategies. Another idea is the blending of different prepreg materials in one component. This might be useful in case of specific details, like for areas of mechanical fastening or to avoid carbon/metal contact, otherwise resulting in severe corrosion. In a brief overview, future perspectives of the potential of the Tailoring concept are presented.

  13. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-06

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Minh-Tai Le

    2015-08-01

    Full Text Available In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA and thermogravimetric analysis (TGA are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg, as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  15. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Science.gov (United States)

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-01-01

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521

  16. Micro-thermal analysis of polyester coatings

    Science.gov (United States)

    Fischer, Hartmut R.

    2010-04-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure like chain scission and cross-linking are manifested by a shift of the LTA detectable Tg and by a change of the slope of the part of the LTA graph responsible for the penetration of the hot sensor into the material after passing the glass transition temperature. As such LTA is a valuable tool to have a quick look into coating surfaces and especially their ageing. The photo-degradation of polyester in air leads to the formation of a cross-linked network at a surface layer of about 3-4 μm coupled with an increase in hardness and of the glass transition temperature by ˜90 K, the effect is less drastic for a photo-degradation in a nitrogen environment. Moreover, the presence of a non-equilibrium dense surface layer with a higher Tg formed during the drying of the coating formulation and the film solidification can be shown.

  17. Protoenzymes: the case of hyperbranched polyesters

    Science.gov (United States)

    Mamajanov, Irena; Cody, George D.

    2017-11-01

    Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  18. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    Science.gov (United States)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with

  19. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    International Nuclear Information System (INIS)

    Mahdieh, Zahra; Bagheri, Reza; Eslami, Masoud; Amiri, Mohammad; Shokrgozar, Mohammad Ali; Mehrjoo, Morteza

    2016-01-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering. - Highlights: • A biodegradable nanocomposite is proposed for orthopedic applications. • Vitamin E is used as an antioxidant to prevent the thermomechanical degradations. • Nanoforsterite reduced the composite degradation rate in the simulated body fluid. • Nanoforsterite modified pH in MTT assay and stimulated cell proliferation.

  20. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Zahra [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Bagheri, Reza, E-mail: rezabagh@sharif.edu [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Eslami, Masoud; Amiri, Mohammad [Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9466 (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali; Mehrjoo, Morteza [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering. - Highlights: • A biodegradable nanocomposite is proposed for orthopedic applications. • Vitamin E is used as an antioxidant to prevent the thermomechanical degradations. • Nanoforsterite reduced the composite degradation rate in the simulated body fluid. • Nanoforsterite modified pH in MTT assay and stimulated cell proliferation.

  1. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  2. Phase transitions in blends functionalized thermoplastics

    International Nuclear Information System (INIS)

    Grigoryeva, O.; Sergeeva, L.; Starostenko, O.; Pissis, P.

    2001-01-01

    Phase transitions, morphology and structure-property relationships in polymer blends based on functionalized thermoplastics, i.e. widely used polyurethanes and styrene-acrylic acid copolymers, were investigated by means of inter-expletive non-destructive methods. Wide and small angle X-ray scattering (WAXS and SAXS), dynamic mechanical thermal analysis, thermally stimulated depolarization currents techniques, dielectric relaxation spectroscopy and several physico-mechanical characterization techniques were used. The results obtained by the various techniques were critically compared to each other. (author)

  3. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  4. Mechanical properties, microstructure and magnetic properties of composite magnet base on SrO.6Fe_2O_3 (SRM)-thermoplastic and thermoset polymer

    International Nuclear Information System (INIS)

    Grace Tj Sulungbudi; Aloma Karo Karo; Mujamilah; Sudirman

    2010-01-01

    The use of magnets in industrial applications do not always require high magnetic properties. Therefore, the use of polymer as a matrix that serves as a binder can be applied to obtain lightweight, flexible and cheap composite magnet. This report discuss composite magnet base on SrO.6Fe_2O_3(SRM)-thermoplastic and thermoset polymer. Thermoplastic polymer consist of polypropylene (PP) type of PP2 and PP10 and polyethylene (PE) type of LDPE were used. For thermoset polymer, epoxy and polyester were used. Synthesis of composite magnet based on thermoplastic polymer (PP2, PP10, LDPE) were carried using the blending method, while the thermoset composites magnet using casting method. Thermoplastic composite magnets were prepared with compositions of 50, 41, 38, 33 and 29 % weight of SRM with the blending temperature of 160 °C for LDPE and 180 °C for PP2 and PP10. For thermoset composite magnets, the compositions were 30, 40, 50 and 60 % by weight of SRM. The mechanical test conducted include tensile strength and elongation at break. Microstructure on the surface of the composite materials were observed using SEM (Scanning Electron Microscope) and the magnetic properties were measured using VSM (Vibrating Sample Magnetometer). The SEM results showed the formation of flat shape powder particle with size of 1.6 µm. In general, the mechanical properties of polypropylene polymer composite magnet are better than that using polyethylene (LDPE) binder. For polypropylene binder PP10 is better than PP2. Magnetic properties are not significantly affected by the change of polymer or binder types. (author)

  5. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    Science.gov (United States)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  6. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    International Nuclear Information System (INIS)

    Martínez-Cruz, E; Martínez-López, M; Martínez-Barrera, G

    2013-01-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  7. Electrospinning of microbial polyester for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Hyeong [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Lee, Ik Sang [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Ko, Young-Gwang [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Meng, Wan [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Jung, Kyung-Hye [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Kang, Inn-Kyu [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Ito, Yoshihiro [Kanagawa Academy of Science and Technology, KSP East 309, Sakado 3-2-1, Takatsu-ku, Kawasaki 213-0012 (Japan)

    2007-03-01

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture.

  8. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2002-12-01

    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  9. Compressive fatigue tests on a unidirectional glass/polyester composite at cryogenic temperatures

    International Nuclear Information System (INIS)

    Stone, E.L.; El-Marazki, L.O.; Young, W.C.

    1979-01-01

    The fatigue testing of a unidirectional glass-reinforced polyester composite at cryogenic temperatures to simulate the cyclic compressive loads of the magnet support struts in a superconductive magnetic energy storage unit is reported. Right circular cylindrical specimens were tested at 77, 4.2 K and room temperature at different stress levels using a 1-Hz haversine waveform imposed upon a constant baseload in a load-controlled closed-loop electrohydraulic test machine. Two failure modes, uniform mushrooming near one end and a 45 deg fracture line through the middle of the specimen, are observed, with no systematic difference in fatigue life between the modes. Fatigue lives obtained at 77 and 4.2 K are found to be similar, with fatigue failure at 100,000 cycles occurring at stress levels of 70 and 75% of the ultimate compressive strengths of specimens at room temperature and 77 K, respectively. The room temperature fatigue lives of the glass/polyester specimens are found to be intermediate between those reported for glass/epoxy composites with different glass contents costing over twice as much

  10. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2014-05-01

    Full Text Available This article gives an overview of the recent developments in the preparation, characterisation, properties, crystallisation behaviour, and melt rheology of clay-containing composites of biodegradable synthetic aliphatic polyesters such as poly...

  11. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values....

  12. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  13. Preparation and applications of wood-polyester composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1982-01-01

    Optimum processing parameters were searched for the pilot-scale production of wood-polyester composites by irradiation of resin-impregnated wood material. The radiation initiation of the following systems were examined in wood and without wood matrix: methyl methacrylate, mixture of styrene and acrylonitryle, and their combination with unsaturated polyester. In the most cases the over-all rate of the complete polymerization process in wood matrix is proportional to the square root of the initiation rate. The parameters of the radiation technology of wood-polyester composites have been determined, using 260 TBq (7 kCi) 60 Co radiation source. A pilot plant has been constructed using an underwater irradiation system of 1.85 PBq (50 kCi) 60 Co. The successful production rate of 200 kg wood-polyester composite per day, as well as the application tests have demonstrated the technical feasibility of this new structural material. (author)

  14. Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Marinković Aleksandar D.

    2013-01-01

    Full Text Available Composites based on unsaturated polyester (UPe resins and fumed silica AEROSIL® RY 50, NY 50, RX 50 and NAX 50, as well as graphite, TiO2 or organically modified clay CLOISITE 30B were prepared in order to investigate the influence of reinforcing agents on the mechanical properties of composites. Unsaturated polyester resins were synthesized from maleic anhydride and products of glycolysis, obtained by depolymerization of poly(ethylene terephthalate with dipropylene glycol (UPe1 resin and triethylene glycol (UPe2 resin in the presence of tetrabutyl titanate catalyst. The obtained unsaturated polyesters were characterized by FTIR spectroscopy, acid and hydroxyl values, and their mechanical properties were also examined. Significant increase of the tensile modulus, tensile strength and decrease of the elongation at break was observed for composites prepared after addition of 10 wt.% of graphite or 10 wt.% of TiO2 to the UPe resins, indicating strong interaction between matrix and filler particles. On the other hand, nanocomposites prepared using UPe2 and hydrophobically modified silica nanoparticles showed lower tensile strength and tensile modulus than polymer matrix. The presence of CLOISITE 30B had no significant influence on the mechanical properties of UPe1, while tensile strength and tensile modulus of UPe2 increased after adding 10 wt.% of clay. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  15. Effect of fiber content on tensile retention properties of Cellulose Microfiber Reinforced Polymer Composites for Automobile Application

    Science.gov (United States)

    Aseer, J. R.; Sankaranarayanasamy, K.

    2017-12-01

    Today, the utilization of biodegradable materials has been hogging much attention throughout the world. Due to the disposal issues of petroleum based products, there is a focus towards developing biocomposites with superior mechanical properties and degradation rate. In this research work, Hibiscus Sabdariffa (HS) fibers were used as the reinforcement for making biocomposites. The HS fibers were reinforced in the polyester resin by compression moulding method. Water absorption studies of the composite at room temperature are carried out as per ASTM D 570. Also, degradation behavior of HS/Polyester was done by soil burial method. The HS/polyester biocomposites containing 7.5 wt% of HS fiber has shown higher value of tensile strength. The tensile strength retention of the HS/Polyester composites are higher than the neat polyester composites. This value increases with increase of HS fiber loading in the composites. The results indicated that HS/polyester biocomposites can be used for making automobile components such as bumper guards etc.

  16. Method and apparatus for extruding thermoplastic material

    International Nuclear Information System (INIS)

    McKelvey, J.M.

    1985-01-01

    A gear pump assisted screw conveyor extrusion system utilizing a cartridge heating device disposed axially within the screw and having the drives for the gear pump and the screw correlated in speed to create relatively little pressure in the thermoplastic material being extruded such that relatively little mechanical working thereof occurs. The thermoplastic material is melted in the screw conveyor primarily by heat transfer from the cartridge heater and the gear pump is utilized for conveying the melted material under pressure to a subsequent work station. A relatively deep material-conveying spiral channel is provided in the screw for maximized extrusion output per revolution of the screw and minimized mechanical energy generation by the screw. A motionless mixer may be employed intermediate the screw and the work station to homogenize the melted material for reducing temperature gradients therein. The system advantageously is capable of extruding material at a substantially greater rate and a lower material temperature and with substantially increased power economy than conventional systems utilizing a high pressure, externally heated screw conveyor portion

  17. Low Cost Processing of Commingled Thermoplastic Composites

    Science.gov (United States)

    Chiasson, Matthew Lee

    A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.

  18. Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams

    OpenAIRE

    Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard

    2003-01-01

    This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...

  19. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  20. Effect of cassava peel and cassava bagasse natural fillers on mechanical properties of thermoplastic cassava starch: Comparative study

    Science.gov (United States)

    Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.

    2017-12-01

    Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.

  1. Influence of Carbon Nano Tubes on the Thermo-Mechanical Properties of Unsaturated Polyester Nanocomposite

    International Nuclear Information System (INIS)

    Alam, A K M Moshiul; Beg, M D H; Yunus, Rosli Mohd

    2015-01-01

    To date nano fillers are renowned reinforcing agent for polymer materials. In this work, unsaturated polyester (UPR) nanocomposites were fabricated by 0.1, 0.3 and 0.5 wt% multi walled carbon nanotubes (MWCNTs) through solution dispersion and casting method. The influence of MWCNT content was investigated by thermo-mechanical properties. Dispersion of nanotubes was observed by fracture morphology. The strength of nanocomposites rose with raising the CNT content. Moreover, DSC thermograms of nanocomposites represent noticeable improvement of glass transition temperature (T g ), melting temperature (T m ) and enthalpy (ΔH m ). Micro-crystallinity of nanocomposites increased with increasing the CNT content. Moreover, the stiffness increased with increasing the CNT content. (paper)

  2. Mathematical Model For Autoclave Curing Of Unsaturated Polyester Based Composite Materials

    Directory of Open Access Journals (Sweden)

    Adnan A. Abdul Razak

    2013-05-01

    Full Text Available Heat transfer process involved in the autoclave curing of fiber-reinforced thermosetting composites is investigated numerically. A model for the prediction of the temperature and the extent of the reaction across the laminate thickness during curing process in the autoclave of unsaturated polyester based composite has been developed. The governing equation for one dimensional heat transfer, and accounting for the heat generation due to the exothermic cure reaction in the composites had been used.  It was found that the temperature at the central of the laminate increases up to the external imposed temperature, because of the thermal conductivity of the resin and fiber. The heat generated by the exothermic reaction of the resin is not adequately removed; the increase in the temperature at the center increases the resins rate reaction, which in turn generates more heat.

  3. Application of eco-friendly antimicrobial finish butea monosperma leaves on fabric properties of polyester and cotton/polyester

    International Nuclear Information System (INIS)

    Sadaf, S.; Saeed, M.; Kalsoom, S.; Saeed, M.

    2017-01-01

    The study was aimed to check the effect of eco-friendly antimicrobial finish on 100% polyester and 50/50 cotton/polyester woven fabrics. The leaves' extract of Butea monosperma was used as an eco-friendly antimicrobial finish. The fabric was first desized, scoured, bleached and washed then antimicrobial finish was applied by using pad dry cure method. The aesthetic, comfort and mechanical fabrics properties were checked before and after applying antimicrobial finish. Under aesthetic property stiffness and smoothness appearance was checked, under comfort related property absorbency and air permeability was checked and under mechanical property tear and tensile strength was checked. The antimicrobial finish was checked by using ASTEM E2149 Shake Flask method. The AATCC and ISO standard testing methods were used for checking fabric properties. One way ANOVA statistical test was applied for analysis of results. Antimicrobial finish has increased aesthetic (stiffness, smoothness appearance), comfort (absorbency, air permeability) and mechanical (tensile and tear strengths) properties of polyester and cotton/polyester fabrics. The antimicrobial finish was effective on both 100% polyester and 50/50 cotton/polyester fabrics up to 25 washes. This study is beneficial to medical industry, paramedical staff, sports wears, home furnishing as well as common people. (author)

  4. Determination of tensile forces to enhance the supply stability of reinforced fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Woo; Lee, Jae Wook; Jang, Jin Seok; Jeong, Myeong Sik; Oh, Joo Young; Kang, Hoon; Kang, Ji Heon [Daegyeong Regional Division, Korea Institute of Industrial Technology, Daegu (Korea, Republic of); Kim, Hyung Ryul [Agency for Defense Development, Changwon (Korea, Republic of); Yoo, Wan Suk [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    The manufacturing process of long fiber thermoplastic is initiated by supplying reinforced fiber wound in a spool dispenser. If problems such as tangling or kinking occur in the apparatus used for supplying the reinforced fiber in the long-fiber thermoplastic direct process, the productivity of the long-fiber thermoplastic decreases. Therefore, it is important to enhance the supply stability of reinforced fiber. In general, the increase in supply stability can be achieved by maintaining a steady balloon shape that is controlled by the unwinding velocity or tensile force of the reinforced fiber. In this research, the range of suitable tensile force was determined under the assumption that the unwinding velocity remained constant. The reinforced fiber was assumed to be inextensible, homogeneous, and isotropic and to have uniform density. The transient-state unwinding equation of motion to analyze the unwinding motion of reinforced fiber can be derived by using Hamilton’s principle for an open system in which mass can change within a control volume. In the process of solving the transient-state unwinding equation of motion, the exact two-point boundary conditions are adopted for each time step.

  5. Thermoplastic-thermosetting merged polyimides via furan-maleimide Diels–Alder polymerization

    Directory of Open Access Journals (Sweden)

    Yogesh S. Patel

    2017-02-01

    Full Text Available Novel thermoplastic-thermosetting merged polyimide system has been developed via Diels–Alder intermolecular polymerization of bisfuran namely, 2,5-bis(furan-2-ylmethylcarbamoyl terephthalic acid A with a series of bismaleimides B1–4. Thus obtained intermediate Diels–Alder adducts C1–4 were aromatized and imidized (i.e. cyclized through carboxylic and amide groups to afford thermoplastic-thermosetting merged polyimides D1–4. Bisfuran A was prepared by the condensation of pyromellitic dianhydride with furan-2-ylmethanamine and characterized by elemental, spectral, thermal and LCMS analyses. Synthesized Diels–Alder adducts C1–4 and polyimides D1–4 were characterized by elemental analysis, spectral features, number average molecular weight (Mn‾, degree of polymerization (DP and thermal analysis. To facilitate the correct structural assessment and to be able to verify the occurrence of the DA adducts and PIs, a model compound 4 was prepared from phthalic anhydride and furan-2-ylmethanamine in a similar way. FTIR spectral features of polyimides D1–4 were compared with model compound 4 and they were found to be quite identical. The ‘in situ' void-free glass fiber reinforced composites GFRC1–4 were prepared from the produced system and characterized by chemical, mechanical and electrical analyses. All the composites showed good mechanical, electrical and thermal properties and good resistance to organic solvents and mineral acids.

  6. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    International Nuclear Information System (INIS)

    Davoodi, M M; Sapuan, S M; Ali, Aidy; Ahmad, D; Khalina, A

    2010-01-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  7. Chimeric Plastics : a new class of thermoplastic

    Science.gov (United States)

    Sonnenschein, Mark

    A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.

  8. Sustainability of thermoplastic vinyl roofing membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Graveline, S. P. [Sika Sanarfil, Canton, (United States)

    2010-07-01

    The International Council for Research and Innovation in Building and Construction (CIB-RILEM) has developed a framework for sustainable roofing based on a series of tenets divided into three key areas: preservation of the environment, conservation of energy, and extended roof life. This paper investigated the sustainability of thermoplastic vinyl roof membranes using these guidelines and the relevant tenets for roof system selection. Several tenets provided alternatives for minimizing the burden on the environment using non-renewable raw materials, conserving energy with thermal insulation, and extending the lifespan of all roof components by using long lasting membranes. A life cycle assessment was carried out to provide a quantitative framework for assessing the sustainability of roofing materials. It was found that the PVC membrane systems had a lesser impact on the environment than other competing systems.

  9. Pyrolysis characteristics of typical biomass thermoplastic composites

    Science.gov (United States)

    Cai, Hongzhen; Ba, Ziyu; Yang, Keyan; Zhang, Qingfa; Zhao, Kunpeng; Gu, Shiyan

    The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA) has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite.

  10. Characterization of thermoplastic composites for hot stamp forming

    NARCIS (Netherlands)

    Rietman, Bert; Grouve, Wouter; Akkerman, Remko

    2014-01-01

    This paper describes state-of-the-art characterization methods for thermoplastic composites at high processing temperature and provides a few examples of application in simulations of the hot stamp forming process.

  11. Friction and bending in thermoplastic composites forming processes

    NARCIS (Netherlands)

    Sachs, Ulrich

    2014-01-01

    With the demand for better fuel economy in the aerospace and automotive industries, lightweight polymer matrix composites became an attractive alternative for metal structures. Despite the inherently higher toughness and impact damage resistance of thermoplastics, thermoset matrix composites are

  12. Attribute based selection of thermoplastic resin for vacuum infusion process

    DEFF Research Database (Denmark)

    Prabhakaran, R.T. Durai; Lystrup, Aage; Løgstrup Andersen, Tom

    2011-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...

  13. Characteristics and utilization of thermoplastic elastomers (TPE)-an overview

    Energy Technology Data Exchange (ETDEWEB)

    Roestamsjah, [R and D Center for Applied Chemistry, Indonesian Inst. of Sciences (Indonesia)

    1998-10-01

    The unique feature of thermoplastic elastomer, the combining of processing characteristics of thermoplastics with the physical properties of vulcanized rubber is reviewed. Highlights of TPE and its characteristics is aimed to generate interest in TPE, where SANS technique will be utilized for its characterization. The topics discussed include rubber elasticity, state of aggregation of polymers, microseparation in block copolymer system, application of TPE, and finally some notes in developing interest in TPE and SANS in Indonesia. (author)

  14. Biodegradation of Polyester Polyurethane by Endophytic Fungi▿

    Science.gov (United States)

    Russell, Jonathan R.; Huang, Jeffrey; Anand, Pria; Kucera, Kaury; Sandoval, Amanda G.; Dantzler, Kathleen W.; Hickman, DaShawn; Jee, Justin; Kimovec, Farrah M.; Koppstein, David; Marks, Daniel H.; Mittermiller, Paul A.; Núñez, Salvador Joel; Santiago, Marina; Townes, Maria A.; Vishnevetsky, Michael; Williams, Neely E.; Vargas, Mario Percy Núñez; Boulanger, Lori-Ann; Bascom-Slack, Carol; Strobel, Scott A.

    2011-01-01

    Bioremediation is an important approach to waste reduction that relies on biological processes to break down a variety of pollutants. This is made possible by the vast metabolic diversity of the microbial world. To explore this diversity for the breakdown of plastic, we screened several dozen endophytic fungi for their ability to degrade the synthetic polymer polyester polyurethane (PUR). Several organisms demonstrated the ability to efficiently degrade PUR in both solid and liquid suspensions. Particularly robust activity was observed among several isolates in the genus Pestalotiopsis, although it was not a universal feature of this genus. Two Pestalotiopsis microspora isolates were uniquely able to grow on PUR as the sole carbon source under both aerobic and anaerobic conditions. Molecular characterization of this activity suggests that a serine hydrolase is responsible for degradation of PUR. The broad distribution of activity observed and the unprecedented case of anaerobic growth using PUR as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation. PMID:21764951

  15. Preparation and Characterization of UPR/ LNR/ Glass Fiber Composite by using Unsaturated Polyester Resin (PET) from PET Wastes

    International Nuclear Information System (INIS)

    Siti Farhana Hisham; Ishak Ahmad; Rusli Daik

    2011-01-01

    UPR/ LNR/ glass fibre composite had been prepared by using unsaturated polyester resin (UPR) based from recycled PET product. PET waste was recycled by glycolysis process and the glycides product was then reacted with maleic anhydride to produce unsaturated polyester resin. The preparation of UPR/ LNR blends were conducted by varying the amount of LNR addition to the resin ranging from 0-7.5 % (wt). The composition of UPR/LNR blend with good mechanical properties had been selected as a matrix of the glass fiber reinforced composite. Glass fibre was also treated by (3-Amino propil)triethoxysilane as a coupling agent. From the result, the addition of 2.5 % LNR in UPR had showed the optimum mechanical and morphological properties where the elastomer particle's were well dispersed in the matrix with smaller size. The silane treatment on the glass fiber increased the tensile and impact strength values of the UPR/ LNR/ GF composite compared to untreated fiber reinforcement. (author)

  16. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

    International Nuclear Information System (INIS)

    Weiss, K-P; Bagrets, N; Lange, C; Goldacker, W; Wohlgemuth, J

    2015-01-01

    Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime. (paper)

  17. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    International Nuclear Information System (INIS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-01-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  18. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Banowati, Lies, E-mail: liesbano@gmail.com; Hadi, Bambang K., E-mail: bkhadi@ae.itb.ac.id; Suratman, Rochim, E-mail: rochim@material.itb.ac.id; Faza, Aulia [Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Indonesia Jl. Ganesha 10, Bandung (Indonesia)

    2016-03-29

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  19. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  20. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  1. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  2. Aliphatic polyesters for medical imaging and theranostic applications.

    Science.gov (United States)

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Study of the internal confinement of concrete reinforced (in civil engineering) with woven reinforcement

    Science.gov (United States)

    Dalal, M.; Goumairi, O.; El Malik, A.

    2017-10-01

    Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement

  4. Obtaining polyester from glycerin for synthesis of polyurethanes

    International Nuclear Information System (INIS)

    Breves, Rodolfo A.; Ghesti, Grace F.; Sales, Maria J.A.

    2014-01-01

    The use of renewable resources has been increasing, due to the development of materials that have viable applications that are environmentally friendly. In this paper, a polyester was synthesized from glycerin, with the addition of adipic acid in a molar ratio of 1: 1.5, with dilauryl tin catalyst, which was added in proportions of 1 to 3% obtained PUs from castor oil (Ricinus communis) and MDI (diphenyl methane diisocyanate). The materials were characterized by infrared spectroscopy (FTIR), nuclear magnetic resonance "1H NMR, thermogravimetry (TG) and derivative thermogravimetry (DTG). The reaction for obtaining the polyester was confirmed by FTIR, the absorption band between 1708-1730 cm"-"1 and "1H NMR, in the region 1.4 to 1.8 ppm and 2.2 to 2.6 ppm. The thermal decomposition of polyester occurred with temperature above 300 ° C. PUs showed similar thermal stability. (author)

  5. Radiation flame proofing of polyester/cotton blends

    International Nuclear Information System (INIS)

    Liepins, R.; Surles, J.R.; Morosoff, N.; Stannett, V.T.; Barker, R.H.

    1977-01-01

    Methodology has been developed for the grafting of vinyl functional organobromide and organophosphorus compounds on polyester fibers and 50/50 PET/cotton fabric. Procedures were developed for localized grafting of vinyl bromide (VBr) and diethylvinylphosphonate (DEVP) upon PET fibers. Oxygen index was used to evaluate the effect of the location of VBr and DEVP within the filament upon their flame retardance efficiencies. For the various bromine homopolymer grafts the apparent thermal stability of the graft and its flame retardance efficiency may be related to the alpha aliphatic hydrogen to bromine ratio. Using results from the polyester studies, techniques were devised for the treatment of 50/50 polyester/ cotton fabrics. Both homopolymer and copolymer grafts were evaluated but the greatest degree of success was attained using mixtures of phosphorus and bromine containing monomers. The results of these studies will be reviewed and their implications for development as commercial textile treatments discussed. (author)

  6. Novel polymer blends with thermoplastic starch

    Science.gov (United States)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  7. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    Science.gov (United States)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  8. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  9. Radiation cured polyester compositions containing metal-properties

    Science.gov (United States)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  10. Radiation cured polyester compositions containing metal-properties

    International Nuclear Information System (INIS)

    Szalinska, H.; Pietrzak, M.; Gonerski, A.

    1987-01-01

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60 Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them. (author)

  11. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... gratings was studied in case of films with and without a hard protective layer. We showed that the dominant contribution to the diffraction efficiency comes from the anisotropy in case of expositions below 1 sec even for high incident intensity. The usage of the same wavelength for writing, reading...

  12. Fique Fabric: A Promising Reinforcement for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA. The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS. The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.

  13. Corrosion Protection Performance of Polyester-Melamine Coating with Natural Wood Fiber Using EIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, PyongHwa; Shon, MinYoung [Pukyong National University, Busan (Korea, Republic of); Jo, DuHwan [POSCO, Gwangyang (Korea, Republic of)

    2016-04-15

    In the present study, polyester-melamine coating systems with natural wood fiber (NWF) were prepared and the effects of NWF on the corrosion protectiveness of the polyester-melamine coating were examined using EIS analysis. From the results, higher average surface roughness was observed with increase of NWF content. Water diffusivity and water uptake into the polyester-melamine coatings with NWF were much higher than that into the pure polyester-melamine coating. The decrease in the impedance modulus |Z| was associated with the localized corrosion on carbon steel, confirming that corrosion protection of the polyester-melamine coatings with NWF well agrees with its water transport behavior.

  14. Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M. D. H., E-mail: dhbeg@yahoo.com; Moshiul Alam, A. K. M., E-mail: akmmalam@gmail.com; Yunus, R. M. [Universiti Malaysia Pahang, Faculty of Chemical and Natural Resources Engineering (Malaysia); Mina, M. F. [Bangladesh University of Engineering and Technology, Department of Physics (Bangladesh)

    2015-01-15

    Efforts are being given to the development of well-dispersed nanoparticle-reinforced polymer nanocomposites in order to tailor the material properties. In this perspective, well dispersion of multi-walled carbon nanotubes (MWCNTs) in unsaturated polyester resin (UPR) was prepared using pre-dispersed MWCNTs in tetrahydrofuran solvent with ultrasonication method. Then the well-dispersed MWCNTs reinforced UPR nanocomposites were fabricated through solvent evaporation. Fourier-transform infrared spectroscopy indicates a good interaction between matrix and MWCNTs. This along with homogeneous dispersion of nanotubes in matrix has been confirmed by the field emission scanning electron microscopy. At low shear rate, the value of viscosity of UPR is 8,593 mPa s and that of pre-dispersed MWCNT–UPR suspension is 43,491 mPa s, showing implicitly a good dispersion of nanotubes. A notable improvement in the crystallinity of UPR from 14 to 21 % after MWCNTs inclusion was observed by X-ray diffractometry. The mechanical properties, such as tensile strength, tensile modulus, impact strength, and elongation-at-break, of nanocomposite were found to be increased to 22, 20, 28, and 87 %, respectively. The estimated melting enthalpy per gram for composites as analyzed by differential scanning calorimetry is higher than that of UPR. The onset temperature of thermal decomposition in the nanocomposites as monitored by thermogravimetric analysis is found higher than that of UPR. Correlations among MWCNTs dispersion, nucleation, fracture morphology, and various properties were measured and reported.

  15. Development of thermoplastic composite aircraft structures

    Science.gov (United States)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  16. Accelerated Strength Testing of Thermoplastic Composites

    Science.gov (United States)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  17. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    OpenAIRE

    Okikiola Ganiu AGBABIAKA; Isiaka Oluwole OLADELE; Paul Toluwalagbara OLORUNLEYE

    2014-01-01

    Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment) on the mechanical and water absorption properties o...

  18. Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Bernardo Zandomenico Dias

    Full Text Available Abstract Plastic lumber and thermoplastic composites are sold as alternatives to wood products. However, many technical standards and scientific studies state that the two materials cannot be considered to have the same structural behaviour and strength. Moreover, there are many compositions of thermoplastic-based products and plenty of wood species. How different are their mechanical properties? This study compares the modulus of elasticity and the flexural, compressive, tensile and shear strengths of such materials, as well as the materials' specific mechanical properties. It analyses the properties of wood from the coniferae and dicotyledon species and those of commercialized and experimental thermoplastic-based product formulations. The data were collected from books, scientific papers and manufacturers' websites and technical data sheets, and subsequently compiled and presented in Ashby plots and bar graphs. The high values of the compressive strength and specific compressive and tensile strengths perpendicular to the grain (width direction shown by the experimental thermoplastic composites compared to wood reveal their great potential for use in compressed elements and in functions where components are compressed or tensioned perpendicularly to the grain. However, the low specific flexural modulus and high density of thermoplastic materials limit their usage in certain civil engineering and building applications.

  19. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    test method 39 (1971). ... pilot production line [7]. It is found that prior .... experiment was set up for testing the absorbancy of modified polyester fabric as in case of .... New Delhi for providing the research grant under TAPTEC scheme. We are ...

  20. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  1. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  2. Design of Functional Polyesters for Electronic and Biological Applications

    OpenAIRE

    Nelson, Ashley Marie

    2015-01-01

    Melt polymerization and novel monomers enabled the synthesis of polyesters for electronic and biological applications. Inspiration from nature and a passion for environmental preservation instigated an emphasis on the incorporation of renewable resources into polymeric materials. Critical analysis of current research surrounding bisphenol-A replacements and ioncontaining segmented polyurethanes aided in identifying benchmark polymers, including limitations, challenges, and future needs. Struc...

  3. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Hiep Dinh Nguyen

    2016-10-01

    Full Text Available A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA were polymerized using an immobilized Candida antarctica lipase B (CALB and the potential for an enzymatic synthesis of alkyds was investigated. The developed method enables the use of both glycerol and also pentaerythritol (for the first time as the alcohol source and was found to be very robust. This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition.

  4. Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester ...

    African Journals Online (AJOL)

    Akorede

    cobalt amine (accelerator), methyl ethyl ketone peroxide (catalyst) to develop two sets of ... shell liquid (CNSL) resin were comparable to those developed with polyester resin. ... permit diffusion of water, this function is often not adequately ... When designed ... blades in gas turbine engines, wing leading edges and flaps.

  5. Fabrication and mechanical properties of self-reinforced poly(ethylene terephthalate composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Self-reinforced poly(ethylene terephthalate (PET composites prepared by using a modified film-stacking technique were examined in this study. The starting materials included a high tenacity PET yarn (reinforcement and a low melting temperature biodegradable polyester resin (matrix, both of which differ in their melting temperatures with a value of 56°C. This experiment produced composite sheets at three consolidation temperatures (Tc: 215, 225, and 235°C at a constant holding time (th: 6.5 min, and three holding times (3, 6.5 and 10 min at a constant consolidation temperature of 225°C. This study observed a significant improvement in the mechanical properties obtained in self-reinforced PET composites compared to the pure polyester resin. The results of tensile, flexural, and Izod impact tests proved that optimal conditions are low consolidation temperature and short holding time. The absorbed impact energy of the best self-reinforced PET composite material was 854.0 J/m, which is 63 times that of pure polyester resin.

  6. Dosimetric effects of thermoplastic immobilizing devices on skin dose

    International Nuclear Information System (INIS)

    Adu-Poku Olivia

    2017-07-01

    This work shows the increase in surface dose caused by thermoplastic immobilizing masks used for positioning and immobilization of patients. Thermoplastics are organic materials which soften when they are heated. They can be formed after softening and retain their final shape when cooled. The use of these thermoplastic masks are relevant during patient treatment. However, it can lead to an increased skin dose. Measurements were done at source-to-surface distance of 80 cm for external radiation beams produced by cobalt 60 using the Farmer type ionization chamber and the Unidos electrometer. Measurements were carried out using various mask thicknesses and no mask material on a solid water phantom. The thermoplastic percentage depth dose (PDD), equivalent thickness of water of the various thicknesses of the mask and surface doses were determined. The increase in the surface dose caused by the thermoplastic mask was compared by looking at the PDD at depth 0 with and without the mask present and was found to increase between 0.76 and 0.79% with no mask for a field size of 5 x 5 cm 2 . It was found that, the presence of the mask shifted the percentage depth dose curve to lower values. The physical thermoplastic thickness was measured to be between 2.30 and 1.80 mm, and the equivalent thicknesses of water, d e , were determined to be 1.2, 1.15, 1.10 and 1.09 and 1.00 mm for the unstretched, 5 cm stretched, 10 cm stretched, 15 cm stretched and 20 cm stretched masks, respectively. This meant that, as the mask thickness decreased, its water equivalent thickness also decreased. The presence of the mask material did not increase the skin dose significantly ( less than 1%). (au)

  7. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  8. Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization

    NARCIS (Netherlands)

    Glampedaki, P.; Calvimontes, A.; Dutschk, Victoria; Warmoeskerken, Marinus

    2012-01-01

    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate

  9. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  10. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  11. Radiation Curing of Rubber/Thermoplastic Composites Containing Different Inorganic Fillers

    International Nuclear Information System (INIS)

    EL-Zayat, M.M.M.

    2012-01-01

    Blending of polymeric materials has proved to be a successful method for preparing new polymeric materials having not only the main properties of the blends components but also new modification as well as specific ones. High density polyethylene (HDPE) and acrylonitrile butadiene rubber (NBR) are both soild and constitute the blend components to be investigated in present study and hence the method of mechanical blending is the most suitable one for its preparation . HDPE thermoplastic is a semi – crystalline polymer ; on the other hand , NBR elastomer is totally amorphous polymer. Both polymers are categorized as crosslinking polymers with respect to ionizing gamma rays with different extents. In order to increase the efficiency of irradiation curing of such NBR/HDPE blend , it may be required to add suitable additives such as reinforcing fillers that may increase the extent of crosslinking at the same irradiation dose . Thus synthetic fillers are used commercially in industrial processing of rubber formulation due to its specific characteristics and hence its high reinforcing capacity and suitable price . To follow property changes occurred to the blend as well as its composites , measurements have been done to monitor the changes that happened to mechanical, physical and thermal properties as a function of irradiation dose and composition of blends and composites.

  12. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Chaiwatyothin, Sudarat; Mueangta, Suwat; Hanchana, Areeya

    2013-01-01

    Highlights: ► TPCS matrix was reinforced by the low (jute) and high (kapok) absorbency cellulosic fibers. ► Water absorption of the TPCS/jute and TPCS/kapok fiber composites decreases. ► Stress and Young’s modulus of the TPCS/jute and TPCS/kapok fiber composites increase. ► Thermal degradation temperature of the TPCS/kapok fiber composite decreases. - Abstract: Since mechanical properties and water uptake of biodegradable thermoplastic cassava starch (TPCS) was still the main disadvantages for many applications. The TPCS matrix was, therefore, reinforced by two types of cellulosic fibers, i.e. jute or kapok fibers; classified as the low and high oil absorbency characteristics, respectively. The TPCS, plasticized by glycerol, was compounded by internal mixer and shaped by compression molding machine. It was found that water absorption of the TPCS/jute fiber and TPCS/kapok fiber composites was clearly reduced by the addition of the cellulosic fibers. Moreover, stress at maximum load and Young’s modulus of the composites increased significantly by the incorporation of both jute and kapok fibers. Thermal degradation temperature, determined from thermogravimetric analysis (TGA), of the TPCS matrix increased by the addition of jute fibers; however, thermal degradation temperature decreased by the addition of kapok fibers. Functional group analysis and morphology of the TPCS/jute fiber and TPCS/kapok fiber composites were also examined using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques

  13. Effects of short fiber reinforcement and mean stress on tensile fatigue strength characteristics of polyethersulfone; Tansen`i kyoka porieterusaruhon no hippari hiro tokusei ni oyobosu heikin oryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Furue, H.; Nonaka, K. [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan)

    1996-01-15

    Thermoplastics are often reinforced with short fibers with aims of improvement of their strengths, rigidities and hardness or maintenance of their dimensional stabilities. Such short fiber reinforced plastic materials have more expectation for high performance plastics. Authors already examined of some effects of reinforced fiber and of orientation in injection molding on flexural fatigue characteristics of the injection-molded high performance thermoplastic materials. However, the examination of short fiber reinforced effects on fatigue strength characteristics was not always sufficient. In this study, in order to obtain a guiding principle for fatigue resistant design of the short fiber reinforced injection molding materials, polyethersulfones (PES) was examined on its tensile fatigue strength and an effect of short fiber reinforcement for improvement of its fundamental dynamic properties on its fatigue characteristics. Especially, its fatigue life characteristics was elucidated mainly on relationship of mean stress, stress amplitude and number of repeating fracture in tensile fatigue behavior. 10 refs., 15 figs., 2 tabs.

  14. CFRP materials reinforced with LCP fibres for applications in vehicle and aircraft engineering. Final report; Faserverbundkunststoffe mit einer LCP-Faserverstaerkung fuer Anwendungen im Fahrzeug- und Flugzeugbau. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-11

    CFRP materials reinforced with liquid crystalline polyester (LCP) fibres were produced and characterized with regard to their physical and mechanical characteristics. Compared with non-reinforced plastics, polypropylene/LCP fibre-UD laminates produced by filmstacking, epoxy resin/LCP fibre-UD laminates produced by spooling and epoxy resin composites with internal LCP fibre fleece had significantly higher strength and stiffness as well as high thermoforming resistance and waterproofness. [Deutsch] In diesem Forschungsvorhaben wurden Faserverbundkunststoffe mit einer Verstaerkungsfaser auf Basis eines thermotropen fluessigkristallinen Polyester [Liquid Crystalline Polyester, abgekuerzt LCP] hergestellt und bezueglich der physikalisch-mechanischen Eigenschaften charakterisiert. Die im `filmstacking`-Verfahren hergestellte Polypropylen/LCP-Faser-UD-Laminate und mittels Bewicklung gewonnene Epoxidharz/LCP-Faser-UD-Laminate sowie Epoxidharzverbunde mit eingearbeiteten LCP-Faservlies zeigen gegenueber den unverstaerkten Kunststoffmaterialien einen betraechtlichen Anstieg von Festigkeit und Steifigkeit. Die Faserverbunde weisen ausserdem eine hohe Waermeformbestaendigkeit und Wassersperrwirkung auf. (orig.)

  15. Assessment of the radiation resistance of some aromatic polyesters

    International Nuclear Information System (INIS)

    Choi, E.J.; Hill, D.J.T.; Kim, K.Y.

    1998-01-01

    Full text: For many applications, polyesters have more useful properties than vinyl polymers, and they can be degraded to their monomer components and recycled. In addition, aromatic polyesters are known to display a resistance to high temperatures and high-energy ionizing radiation. Recently, we have reported the γ-radiolysis for some aromatic polyesters at low radiation dose; The G-values of radical formation at 77 K were determined to be in the range 0.38∼0.46 for the polyesters of bisphenol A with fluorine substitution at isopropylidene units and in the range 0.71∼1.18 for the polyesters of halogenated bisphenol A with decamethylene segments. While the radiation sensitivities of the latter polymers were dependent on the position and content of halogen substitution, those of the former polymers were slightly dependent on these factors as assessed by the G-values at 77 K. We also have studied the radiolysis of the commercial aromatic polyesters (UP) and polycarbonate (PC). UP has been found to be more radiation stable than PC with respect to the total yield of radicals formed. The G-values for radical formation at 77K was determined to be 0.31 and 0.5 for UP and PC, respectively. In this work, we have prepared poly(ethylene-, butylene- or decalene-terephthalate)s (PET, PBT or PDT) and poly(ethylene-, buthylene- or decalene-2,6-naphthalenedicarboxylate)s (PEN, PBN or PDN) by standard melt polymerization methods, and have examined their γ-radiolysis at 77 K or room temperature, and in vacuum or air, through the applications of ESR spectroscopy and thermal analysis. Inherent viscosities of the polyesters used for the radiation studies were in the range of 0.16∼0.69 dL/g. The values of G(R) indicates that PEN-related polymers have more radiation stable than PET-related polymers and the E, B and D order is one of decreasing stability as one might expect. The significant decrease in the G(R)-values of the polyester being in the range of 0.1∼0.41 at 77 K by

  16. Damage detection in laminar thermoplastic composite materials by means of embedded optical fibers

    Directory of Open Access Journals (Sweden)

    Kojović Aleksandar M.

    2006-01-01

    Full Text Available This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers. Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before

  17. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers

    Directory of Open Access Journals (Sweden)

    S. M. Mousavi

    2015-01-01

    Full Text Available Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.

  18. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  19. Effect of Structure Change on Radiation Crosslinking of Unsaturated Polyesters

    International Nuclear Information System (INIS)

    Ranogajec, F.

    2006-01-01

    During the course of crosslinking of unsaturated polyesters reacting system, that was liquid prior to reaction, gels, and becomes solid. Crosslinking reaction begins to be controlled by the change of the physical state of the system at an early stage of reaction. The kinetics can not be studied by the usual kinetical methods. In-source 60 C o gamma rays induced crosslinking of unsaturated polyester with styrene was followed directly and continuously by measuring electrical conductivity change. The results of extraction analysis proved good correlation between the change of electrical conductivity and the extent of curing. The gel content was inversely proportional to conductivity and free styrene content directly proportional to conductivity. DC-electrical conductivity has shown high sensitivity toward structural changes and enabled us to detect liquid-liquid transitions in unsaturated polyester. The upper liquid-liquid transition (T l ρ) is less known transition caused by a stepwise decrease of intramolecular short-range local order that remains above the glass and lower liquid-liquid transitions. The local order is based on secondary valent interactions and is enhanced by hydrogen bonding. The linear temperature dependence of the viscosity and dc electrical conductivity of unsaturated polyesters showed a change of slope caused by the (T l ρ). Those changes were the result of the diminishing of the local order (which includes several bond lengths) caused by breaking of the intramolecular interactions. The intramolecular nature of the (T l ρ) in the polyesters under consideration was proved by its insensitivity to crosslinking and dilution with solvents. In the corresponding temperature range, DSC thermograms shoved expected endothermic changes. The structure changes related to the (T l ρ) in the investigated polyesters were determined by 1 H NMR and NIR spectroscopy. The proton NMR indicated that the stepwise change in hydrogen bonding occurred in the

  20. Development and evaluation of thermoplastic street maintenance material

    Science.gov (United States)

    Siemens, W. D.

    1973-01-01

    An all-weather permanent street patching material was investigated for flexible and rigid pavements. The economic, operational, and material requirements are discussed along with the results of field tests with various mixtures of EVA resins and asphalt. Cost analyses for thermoplastic patching methods are included.

  1. Resistance Welding of Thermoplastic Composites : Process and Performance

    NARCIS (Netherlands)

    Shi, H.

    2014-01-01

    Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as

  2. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  3. Influence of gamma irradiation in the thermoplastic elastomer (TPE)

    International Nuclear Information System (INIS)

    Oliveira, Camila B.; Parra, Duclerc F.; Marchini, Leonardo G.

    2017-01-01

    The TPE is the nomenclature used for the thermoplastic elastomer, which is also known as thermoplastic rubber. It belongs to an under-researched class of engineering plastics, however, in recent years there has been steady growth due to its important and unusual combination of properties. During its use, it behaves like an elastomer, but, unlike traditional elastomers (vulcanized rubbers), it can be processed using conventional technologies and equipment used for thermoplastics, such as extrusion and injection. The processing of polymers, such as TPE by means of radiation, constitutes a technological area dedicated to the study of the physical and chemical effects caused by high energy radiation, such as gamma radiation. Thus the objective of this work is to evaluate the mechanical and thermal properties of TPE irradiated by 60 Co source of gamma radiation in different doses. The thermoplastic elastomer being modified by means of ionizing radiation at doses of 5, 10, 20, 30, 50 and 100 kGy the effects of the radiation on the mechanical and thermal properties of this material are evaluated through the tests of tensile tests, TGA, FTIR and Fluency Index

  4. [Fusion implants of carbon fiber reinforced plastic].

    Science.gov (United States)

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  5. Development of natural fiber reinforced polylactide-based biocomposites

    Science.gov (United States)

    Arias Herrera, Andrea Marcela

    Polylactide or PLA is a biodegradable polymer that can be produced from renewable resources. This aliphatic polyester exhibits good mechanical properties similar to those of polyethylene terephthalate (PET). Since 2003, bio-based high molecular weight PLA is produced on an industrial scale and commercialized under amorphous and semicrystalline grades for various applications. Enhancement of PLA crystallization kinetics is crucial for the competitiveness of this biopolymer as a commodity material able to replace petroleum-based plastics. On the other hand, the combination of natural fibers with polymer matrices made from renewable resources, to produce fully biobased and biodegradable polymer composite materials, has been a strong trend in research activities during the last decade. Nevertheless, the differences related to the chemical structure, clearly observed in the marked hydrophilic/hydrophobic character of the fibers and the thermoplastic matrix, respectively, represent a major drawback for promoting strong fiber/matrix interactions. The aim of the present study was to investigate the intrinsic fiber/matrix interactions of PLAbased natural fiber composites prepared by melt-compounding. Short flax fibers presenting a nominal length of ˜1 mm were selected as reinforcement and biocomposites containing low to moderate fiber loading were processed by melt-mixing. Fiber bundle breakage during processing led to important reductions in length and diameter. The mean aspect ratio was decreased by about 50%. Quiescent crystallization kinetics of PLA and biocomposite systems was examined under isothermal and non-isothermal conditions. The nucleating nature of the flax fibers was demonstrated and PLA crystallization was effectively accelerated as the natural reinforcement content increased. Such improvement was controlled by the temperature at which crystallization took place, the liquid-to-solid transition being thermodynamically promoted by the degree of supercooling

  6. Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced Tg.

    Science.gov (United States)

    Gustini, Liliana; Lavilla, Cristina; de Ilarduya, Antxon Martínez; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-10-10

    Sugar-based polyesters derived from sorbitol and isohexides were obtained via solvent-free enzymatic catalysis. Pendant hydroxyl groups, coming from the sorbitol units, were present along the polyester backbone, whereas the two isohexides, namely, isomannide and isoidide dimethyl ester monomers, were selected to introduce rigidity into the polyester chains. The feasibility of incorporating isomannide as a diol compared to the isoidide dimethyl ester as acyl-donor via lipase-catalyzed polycondensation was investigated. The presence of bicyclic units resulted in enhanced T g with respect to the parent sorbitol-containing polyester lacking isohexides. The different capability of the two isohexides to boost the thermal properties confirmed the more flexible character provided by the isoidide diester derivative. Solvent-borne coatings were prepared by cross-linking the sugar-based polyester polyols with polyisocyanates. The increased rigidity of the obtained sugar-based polyester polyols led to an enhancement in hardness of the resulting coatings.

  7. PEEK with Reinforced Materials and Modifications for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2017-12-01

    Full Text Available Polyetheretherketone (PEEK is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary.

  8. Nuclear magnetic resonance structure investigations on crosslinked polyesters

    International Nuclear Information System (INIS)

    Grobelny, J.

    1999-01-01

    Styrene-crosslinked mixed polyesters derived from maleic anhydride, 2,2-di(4-hydroxypropoxyphenyl)propane, oligo(propylene oxide) and 1,2-propylene glycol were investigated by high-resolution solid-state 13 C NMR spectroscopy. The structural modifications accompanying crosslinking were characterized in terms of spin-lattice relaxation times as a function of unsaturated polyester composition. Copolymerization and crosslinking effects were individually evaluated and the latter effect was related to variations in crosslinking density associated with the chemical structure of the unsaturated prepolymer. As the crosslinking effect is suppressed, the mechanical properties undergo expected changes, e.g., impact strength is increased and modulus of elasticity in tension is decreased. (author)

  9. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Hernandez-Davila, V.M.; Gallego, E.; Lorente, A.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  10. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Gallegoc, E.; Lorentec, A.; Hernandez-Davila, V.M.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (M.C.N.P. code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  11. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  12. Procedure for the fabrication of a cross-linked polyester material

    International Nuclear Information System (INIS)

    D'Alelio, G.F.

    1972-01-01

    The procedures are described for the production of a cross-linked polyester material by means of the irradiation of a radiosensitive polyester with a dose of over 0.5 megarad and under 8 megarads high energy, ionising radiation, corresponding to at least 100,000 ev. The polyester is of the telomerised diacrylpolyester type, and may be in a mixture containing about 1% of a coplymerisable aliphatic monomer, or about 30-90% of an unsaturated aliphatic alkyd resin. (JIW)

  13. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh; Löf, David; Hvilsted, Søren

    2016-01-01

    A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA)...... stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition....

  14. A study on influence of borax to polyester insulators

    OpenAIRE

    ERSOY, Aysel; KUNTMAN, Ayten

    2014-01-01

    In this study the effect of borax on polyester insulators is investigated by evaluating the tracking and erosion resistance using the inclined plane test. The test procedure follows the ASTM D2303 standard. During the test, 50 Hz current was acquired from the ground electrode allowing a sampling rate of 48000 samples per second. The effect of borax concentration on the glass transition and the degradation temperature is studied by employing differential scanning calorimetry (DSC) an...

  15. Mechanical and durability characteristics of externally GFRP reinforced unsaturated polyester polymer concrete

    Science.gov (United States)

    Bouguessir, H.; Harkati, E.; Rokbi, M.; Priniotakis, G.; Vassiliadis, S.

    2017-10-01

    The last decades of the XXe century cognized a huge extent of composite materials uses to almost all everyday life’s applications, replacing the conventional materials, due to their outstanding properties especially highest strength-to-weight ratio and the ability to be designed to satisfy specific performance requirements. To get the most out of these wonder materials, a new concept, combining polymer concrete and composite laminates, is currently used in Algeria. This research work has the aim to investigate applicability of this concept in civil engineering through tensile and bending tests. On the other hand, the influence of various chemicals (Sodium hydroxide, Potassium Hydroxide and Calcium Carbonates) on our material and its tensile properties retention over long-time exposure was examined. The mechanical properties obtained indicate the convenience of this material for use in civil engineering thanks to its very good tensile and flexural performances in addition to its sufficient residual strength after theoretically 56 years.

  16. Acetalised Galactarate Polyesters: Interplay between Chemical Structure and Polymerisation Kinetics

    Directory of Open Access Journals (Sweden)

    Ionela Gavrila

    2018-02-01

    Full Text Available In spite of the progress that has made so far in the recent years regarding the synthesis of bio-based polymers and in particular polyesters, only few references address the optimisation of these new reactions with respect to conversion and reaction time. Related to this aspect, we here describe the transesterification reaction of two different acetalised galactarate esters with a model aliphatic diol, 1,6-hexanediol. The kinetics of these two apparently similar reactions is compared, with a focus on the conversion while varying the concentration of a di-butyltin oxide catalyst (DBTO, respectively, the used N2 flow-rate. During the first stage of polymerisation, the molecular weight of the end-products is more than doubled when using a 250 mL/min flow as opposed to an almost static N2 pressure. Additionally, the resulted pre-polymers are subjected to further polycondensation and the comparison between the obtained polyesters is extended to their thermal, mechanical and dielectrical characterisation. The influence of the acetal groups on the stability of the polyesters in acidic conditions concludes the study.

  17. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Bautista

    2017-12-01

    Full Text Available A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR analysis of the volatiles.

  18. Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization

    Science.gov (United States)

    Boykin, Timothy Lamar

    The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i

  19. Effects of matrix properties on microscale damage in thermoplastic laminates under quasi-static and impact loading

    KAUST Repository

    Wafai, B. Husam

    2018-03-01

    Thermoplastics reinforced with continuous fibers are very promising building materials for the auto industry and consumer electronics to reduce the weight of vehicles and portable devices, and to deliver a high impact tolerance at the same time. Polypropylene is an abundant thermoplastic, and its glass fibers composites make a valuable solution that is suitable for mass production. But the adoption of such composites requires a deep understanding of their mechanical behavior under the relevant loading conditions. In this Ph.D. work, we aim to understand the damage process in continuous glass fiberreinforced polypropylene in detail. We will focus in particular on developing an approach for microscale observation of damage during the out-of-plane loading process and will use these observations for both qualitative and quantitative evaluation of the composite. We will apply our approach to two kinds of polypropylene composites, one of them is specially designed to withstand impact. The comparison between the two types of composites at slow and fast loading cases will shed some light on the effect of the polymer properties on the behavior of composites under out-of-plane loading.

  20. Kenaf-and hemp-reinforced natural fibre composites

    International Nuclear Information System (INIS)

    Sharifah Hanisah Aziz

    2003-01-01

    The main aim of this research is to combine hemp and kenaf fibres with thermosetting resin matrices to produce sustainable composites and to investigate their mechanical properties. The matirces used in this work are based on either unsaturated polyester resins or cashew nut shell liquid (CNSL). The latter can be polymerised to form a phenolic-based natural resin. Four types of differently formulated polyester resins provided by Scott Bader Ltd, a UK-based resin company, were used to assess the effect of resin formulation on the properties of natural fibre composites. CSNL resins were used because CNSL is a sustainable resource and these resins are compatible with natural fibres. Kenaf, which is extensively grown in the Far East including Malaysia, has been identified as a bast (stem) fibre with significant market potential. Hemp is a United Kingdom-grown bast fibre with strong potential as a natural fibre reinforcement. In order to improve matrix to fibre adhesion, the fibres were treated with 6 % NaOH solution before being made into composites. The composites were fabricated using unidirectional and randomly oriented fibres to assess the effect of fibre alignment on the properties of the composites. The effect of moulding pressure on the fibre volume fraction and mechanical properties was also investigated. Kenaf and hemp fibre composites were successfully hot-pressed with polyester and CNSL resin matrices. Kenaf-CNSL (treated long fibre) composites possess the highest flexural modulus (MOE) at 16.7 GPa and flexural strength (MOR) at 165.4 MPa indicating good matrix to fibre adhesion. Generally, the treated fibre composites gave higher MOE and MOR values compared to the untreated composites. However, the work of fracture values were generally higher for the untreated fibre composites. among the four types of polyester used, the molecular structure of polyester B, modified to make it more polar in nature, resulted in the best performance with treated long kenaf

  1. Habituation of reinforcer effectiveness

    OpenAIRE

    David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...

  2. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    Science.gov (United States)

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    Directory of Open Access Journals (Sweden)

    Xiaoling Liu

    2013-01-01

    Full Text Available Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM. The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM and X-ray diffraction (XRD analysis, respectively. The roughness of the coatings was seen to increase from 40±1 nm to 80±1 nm. The mechanical properties (tensile strength and modulus of fibre with coatings decreased with increased magnesium coating thickness.

  4. Merger of waste of lead in polyester resin for application of protection barriers

    International Nuclear Information System (INIS)

    Barros, Frieda Saicla; Paredes, Ramon Siguifredo Cortes

    2010-01-01

    This paper's main objective is the use of powdered lead waste obtained from the recycling of batteries embedded in polyester resin to be used as a protective barrier in environments subject to radiation. The aim is to enable a more economical procedure which is faster and more practical for use in walls where it is necessary to use protective barrier. This justification is reinforced having in sight the use of byproducts generated by industries, recycling them and using them as components in the development of barriers against ionizing radiation. In this study, we observed the morphological and physical-chemical properties of isolated and associated materials and performance analysis of the composite with respect to the attenuation properties for gamma rays, by means of experimental tests. For mixtures with 40% of waste lead, value referenced in mass, we obtained satisfactory results on the screen. Thus, we were able to combine the good performance of the composite with the reduction of environmental liabilities, in view of the recycling process of lead. (author)

  5. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  6. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  7. Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Patel

    2016-06-01

    Full Text Available The development of natural fibre reinforced polymer composites has gained popularity in many applications due to their environment friendly characteristics over the synthetic fibre based polymer composites. This paper describes the fabrication and physical, mechanical, three-body abrasive wear and water absorption behaviour of Luffa fibre reinforced polyester composites with and without addition of micro-fillers of Al2O3, CaCO3 and TiO2. The ranking of the composite materials has been made by using Technique for order preference by similarity to ideal solution (TOPSIS method with output parameters of their physical, mechanical and abrasive wear and water absorption attributes. The addition of microfillers has enhanced greatly the physical and mechanical properties of Luffa-fibre based composites. The addition of microfillers has influenced the physico-mechanical properties of Luffa-fibre based polyester composites in descending order of CaCO3, Al2O3, and TiO2.

  8. Influence of Processing Conditions on the Mechanical Behavior of MWCNT Reinforced Thermoplastic Nanocomposites

    DEFF Research Database (Denmark)

    Doagou Rad, Saeed; Islam, Aminul; Jensen, Jakob Søndergaard

    2017-01-01

    The influence of the processing conditions and MWCNT content on the mechanical properties of PA6,6-based nanocomposites areinvestigated. In addition to the composition of the composites, the impact of manufacturing conditions such as dilution mechanism, twin-screwextruder mixing specifications......, and injection molding parameters on the behavior of the nanocomposites are evaluated. Results show that whilethe increase in the content of MWCNTs can lead to 40.0 % enhancement in the mechanical properties, changing the processing parametersvaries the values by 30.0 % in the same content. The mechanisms...... involved in the modulation of the nanocomposites properties are alsodiscussed...

  9. An Estimation of the Potential of Carbon Fiber Reinforced Thermoplastics for Car Weight Reduction

    Science.gov (United States)

    2011-11-01

    Murayama1, Kazuro Kageyama1, Keiichi Nagata1, Tsuyoshi Matsuo1 and Jun Takahashi1 1The University of Tokyo * 7-3-1 Hongo , Bunkyo City, Tokyo 113-8656...ORGANIZATION NAME(S) AND ADDRESS(ES) The University of Tokyo 7-3-1 Hongo , Bunkyo City, Tokyo 113-8656, Japan 8. PERFORMING ORGANIZATION REPORT NUMBER

  10. Device and method for the preparation of a mixture comprising fibre-reinforced thermoplastic pellets

    NARCIS (Netherlands)

    Beukers, A.; Wiltink, F.J.; Van Breugel, J.H.

    2000-01-01

    This material must be plasticised and in order to be able to process such a mixture by injection moulding or flow moulding it is necessary for, on the one hand, a rise in pressure and, on the other hand, mixing of the material to take place by means of the device. In order as far as possible to

  11. Formability of fiber-reinforced thermoplastics in hot press forming process based on friction properties

    NARCIS (Netherlands)

    Sachs, Ulrich; Haanappel, Sebastiaan; Rietman, Bert; ten Thije, R.H.W.; Akkerman, Remko

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  12. Polycyanurates and Polycarbonates Based on Eugenol: Alternatives to Thermosetting and Thermoplastic Polymers Based on Bisphenol A

    Science.gov (United States)

    2014-08-14

    to 5a. CONTRACT NUMBER In-House Thermosetting and Thermoplastic Polymers based on Bisphenol A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Francisco, CA, 14 August 2014. PA#14389 14. ABSTRACT Polycyanurate thermosetting networks, polycarbonate thermoplastics, and homogenous polycarbonate...ON EUGENOL: ALTERNATIVES TO THERMOSETTING AND THERMOPLASTIC POLYMES BASED ON BISPHENOL A 14 August 2014 Andrew J. Guenthner1, Benjamin G. Harvey2

  13. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  14. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    International Nuclear Information System (INIS)

    Suriano, Raffaella; Biella, Serena; Cesura, Federico; Levi, Marinella; Turri, Stefano

    2013-01-01

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  15. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  16. The Place for Thermoplastic Composites in Structural Components

    Science.gov (United States)

    1987-12-01

    hydroforming of thermoplastics is so attractive is that it takes advantage of sheet-metal forming technology that has been in development for many years. High ...interfacial bond strength and fracture energies (Table D-1). Note the high bond strength of treated type I fibers and a correspondingly low fracture energy ...value, indicating little energy dissipated in the pull-out of fractured fibers. The untreated type I fibers have a low bond strength and a high pull-out

  17. Physico-Chemical studies on irradiated polymer-reinforcement cement mortar composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    2001-01-01

    The reinforced concrete suffers from corrosion by several salts, acids or alkalies and physico-mechanical properties are greatly affected. This leads to reduce the life of reinforced concrete structure. The present investigation deals with a comparison of corrosion presentation efficiency and passivity retention of reinforcement steel coated with methylethyl and propyl inhibitors which are prepared by using γ radiation and non-coated steel embedded in γ -induced polyester cement mortar composites. From the results of these studies several conclusions could be derived and these are summarized as follows: 1- The time required to reach passivation for coated steel embedded in the mortar after soaking in tap water for 28 days lies within the range 5-15 minutes; whereas, the time required to reach passivation for steel embedded in the polyester cement mortar composites is very short (1 minute). This result is related to the presence of copolymerized polyester in the pore system of the specimens. 2- The time required to reach passivation for steel coated by inhibitors in the mortar specimens after curing in tap water for 6 months is lower than that of non -coated steel embedded in the mortar specimens cured at the same conditions. 3- A relatively high degree of corrosion inhibition was obtained for the steel embedded in polyester-cement mortar composites after curing in sea water for 28 days, the time required to reach passivation is considered as moderate in the case of methyl and ethyl inhibitors the time to passivation (T.T.P.) = 9 minutes and the degree of inhibition of steel coated with the propyl inhibitor is comparatively low (T.T.P.=21 minutes)

  18. Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite

    International Nuclear Information System (INIS)

    Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni

    2000-01-01

    Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite

  19. Reactive distillation: an attractive alternative for the synthesis of unsaturated polyester

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.

    2011-01-01

    Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be

  20. Prevention of primary vascular graft infection with silver-coated polyester graft in a porcine model

    DEFF Research Database (Denmark)

    Gao, H; Sandermann, J; Prag, J

    2010-01-01

    To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model.......To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model....

  1. Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Ramanujam, P.S.

    1999-01-01

    We report the inducement of large circular birefringence (optical activity) in films of a cyanoazobenzene side-chain liquid-crystalline polyester on illumination with circularly polarized light. The polyester has no chiral groups and is initially isotropic. The induced optical rotation is up to 5...

  2. Sustainable coatings from bio-based, enzymatically synthesized polyesters with enhanced functionalities

    NARCIS (Netherlands)

    Gustini, L.; Lavilla, C.; Finzel, L.; Noordover, B.A.J.; Hendrix, M.M.R.M.; Koning, C.E.

    2016-01-01

    Bio-based sorbitol-containing polyester polyols were synthesized via enzymatic polycondensation. The selectivity of the biocatalyst for primary vs. secondary hydroxyl groups allowed for the preparation of close to linear renewable polyester polyols with enhanced hydroxyl functionalities, both as

  3. Life-cycle assessment of textiles manufacture of polyester shirt (VB)

    DEFF Research Database (Denmark)

    Othman, Samer; Peter, Oduro Justice; Hassan, Osama

    1998-01-01

    According to the EDIP (Environmental Design of Industrial Products), It is made possible to perform resource and environmental profile analysis of the 100% polyester shirt. In order to understand the true life-cycle consequences, life-cycle analysis of a typical 100% polyester shirt was carried out...

  4. 76 FR 58040 - Certain Polyester Staple Fiber From Korea and Taiwan

    Science.gov (United States)

    2011-09-19

    ... Polyester Staple Fiber From Korea and Taiwan Determination On the basis of the record \\1\\ developed in the... antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably...

  5. 76 FR 11268 - Certain Polyester Staple Fiber From Korea and Taiwan

    Science.gov (United States)

    2011-03-01

    ... Polyester Staple Fiber From Korea and Taiwan AGENCY: United States International Trade Commission. ACTION... Korea and Taiwan. SUMMARY: The Commission hereby gives notice that it has instituted reviews pursuant to... the antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to...

  6. Processing technology for advanced fibre composites with thermoplastic matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lystrup, Aa. [Risoe National Lab., Materials Research Dept., Roskilde (Denmark)

    1997-12-31

    Technologies and semi-raw materials for the manufacture of thermoplastic composites with continuous fibres are discussed. Autoclave consolidation, vacuum consolidation and press consolidation are all processes which are suitable for the manufacture of components with a three dimensional geometry. Autoclave consolidation is primarily for high quality components with high fibre content and complex geometry; using vacuum consolidation, very large components can be produced without the need of an autoclave, and the press consolidation technique is a very fast process suitable for mass production of smaller parts. Filament winding is used primarily for the manufacture of rotationally symmetrical components, and some of the technologies in use are winding with a continuously in-situ consolidation, winding inside an oven and room temperature winding followed by an autoclave consolidation. Semi-raw materials for thermoplastic composites exist as both prepregs and postpregs in many different forms, of which many are still under development. Some of the basic processing properties for the different types of semi-raw materials and most commonly used thermoplastic polymers are given. (au) 37 refs.

  7. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  8. Novel side-chain liquid crystalline polyester architecture for reversible optical storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Andruzzi, Fulvio; Kulinna, Chrisian

    1995-01-01

    New side-chain liquid crystalline polyesters have been prepared by melt transesterification of diphenyl tetradecanedioate and a series of mesogenic 2-[omega-[4-[(4-cyanophenyl)azo]phenoxyl] alkyl]-1,3-propanediols, where the alkyl spacer is hexa-, octa-, and decamethylene in turn. The polyesters...... have molecular masses in the range 5000-89 000. Solution C-13 NMR spectroscopy has been employed to identify carbons of polyester repeat units and of both types of end groups. Polyester phases and phase transitions have been investigated in detail by polarizing optical microscopy and differential...... scanning calorimetry for the hexamethylene spacer architecture with different molecular masses. Using FTIR polarization spectroscopy, the segmental orientation in unoriented polyester films induced by argon ion laser irradiation has been followed and an irradiation-dependent order parameter...

  9. Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur Kandola

    2015-02-01

    Full Text Available Novel blends of two furan resins with an unsaturated polyester have been prepared and cured by parallel free radical (for the unsaturated polyester and acid-catalysed crosslinking (for the furan resin to give co-cured composite materials. Although these materials have inferior physical properties, such as low Tg and low storage modulus compared with those of unsaturated polyester and furan resins alone, they show markedly improved flame retardance compared with that of the normally highly flammable unsaturated polyester. This increased flame retardance arises from a condensed phase mechanism in which the furanic component forms a semi-protective char, reducing rates of thermal degradation and total heat release and heat of combustion. The blends also burn with reduced smoke output compared with that from unsaturated polyester alone.

  10. Oleic Acid Based Polyesters of Trimethylolpropane and Pentaerythritol for Bio lubricant Application

    International Nuclear Information System (INIS)

    Hamizah Ammarah Mahmud; Nadia Salih; Jumat Salimon

    2015-01-01

    The production of polyesters based on oleic acid and trimethylolpropane (TMP) or pentaerythritol (PE) as potential bio lubricant were carried out. The esterification processes between oleic acid with TMP or PE were carried out using sulfuric acid as a catalyst. The esterification process produced high yield between 92 %-94 % w/w respectively. The formation of polyesters was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The polyesters were analyzed for basic lubrication physicochemical properties. The results showed that polyesters of both TMP and PE having high viscosity index between 200-309, good pour points ranging from -42 to -59 degree Celsius and high flash points of 280 - 300 degree Celsius respectively. The polyesters also showed good thermal oxidative stability with TGA onset temperatures above 180 degree Celsius. In general both products are plausible to be used as bio lubricant for industrial application. (author)

  11. UV-irradiation effects on polyester nuclear track detector

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Kalsi, P.C.

    2010-01-01

    The effects of UV irradiation (λ=254 nm) on polyester nuclear track detector have been investigated employing bulk-etch technique, UV-visible spectrophotometry and infra-red spectrometry (FTIR). The activation energy values for bulk-etching were found to decrease with the UV-irradiation time indicating the scission of the polymer. Not much shift in the absorption edge due to UV irradiation was seen in the UV-visible spectra. FTIR studies also indicate the scission of the chemical bonds, thereby further validating the bulk-etch rate results.

  12. The influence of solvent processing on polyester bioabsorbable polymers.

    Science.gov (United States)

    Manson, Joanne; Dixon, Dorian

    2012-01-01

    Solvent-based methods are commonly employed for the production of polyester-based samples and coatings in both medical device production and research. The influence of solvent casting and subsequent drying time was studied using thermal analysis, spectroscopy and weight measurement for four grades of 50 : 50 poly(lactic-co-glycolic acid) (PLGA) produced by using chloroform, dichloromethane, and acetone. The results demonstrate that solvent choice and PLGA molecular weight are critical factors in terms of solvent removal rate and maintaining sample integrity, respectively. The protocols widely employed result in high levels of residual solvent and a new protocol is presented together with solutions to commonly encountered problems.

  13. Morphological and mechanical properties of thermoplastic starch (TPS) and its blend with poly(lactic acid)(PLA) using cassava bagasse and starch

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Correa, Ana C.; Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.; Curvelo, Antonio A.S.

    2011-01-01

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it was prepared a thermoplastic starch with BG (TPSBG) and evaluated the incorporation of 20wt% of it into the biodegradable polymer poly (lactic acid) (PLA), resulting in a blend PLA/TPSBG20. The materials were investigated through morphology (scanning electron microscopy with field emission gun (FEG), x-ray diffraction (XRD), and mechanical behavior (tensile test). Their properties were compared to the blend PLA/TPSI20 in which TPSI is obtained from commercial cassava starch. The results showed that the use of bagasse generates homogenous materials with higher mechanical strength if compared to TPS obtained from commercial cassava starch. The fiber in this residue acted as reinforcement for TPS and PLA/TPS systems. (author)

  14. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-01-01

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  15. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-15

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  16. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  17. Complications of transvaginal silicone-coated polyester synthetic mesh sling.

    Science.gov (United States)

    Govier, F E; Kobashi, K C; Kuznetsov, D D; Comiter, C; Jones, P; Dakil, S E; James, R

    2005-10-01

    To report a premarket multicenter trial to test the feasibility of a transvaginal silicone-coated polyester synthetic mesh sling in women with anatomic incontinence. Fifty-one patients in four centers underwent transvaginal placement of a silicone-coated polyester synthetic mesh sling (American Medical Systems) during an 8-month period. Of the 51 patients, 31 were part of a prospective institutional review board-approved feasibility trial in three centers funded by American Medical Systems (group 1) and 20 underwent implantation by a single surgeon and their data were retrospectively reviewed (group 2). The studies were done concomitantly, and all slings were fixed transvaginally with bone anchors. All patients in group 1 were followed up at 4 weeks, 6 months, and 1 year (as applicable) with repeat questionnaires, physical examinations, and pad tests. In group 1, 20 patients completed 6 months of follow-up. Ten patients (32%) required a second surgical procedure at an average of 183 days (range 68 to 343) postoperatively. Eight patients (26%) had vaginal extrusion of the mesh, one (3%) required sling lysis, and one (3%) required sling removal because of infection. In group 2, 8 patients (40%) underwent sling removal for vaginal extrusion at a mean of 160 days (range 83 to 214). Transvaginally placed silicone-coated mesh slings used for the treatment of urinary incontinence demonstrated an unacceptably high vaginal extrusion rate in this study. Once identified, this study was immediately terminated, and this product was not marketed for this application in the United States.

  18. Influence of Fiber Volume Fraction on the Tensile Properties and Dynamic Characteristics of Coconut Fiber Reinforced Composite

    OpenAIRE

    Izzuddin Zaman; Al Emran Ismail; Muhamad Khairudin Awang

    2011-01-01

    The utilization of coconut fibers as reinforcement in polymer composites has been increased significantly due to their low cost and high specific mechanical properties. In this paper, the mechanical properties and dynamic characteristics of a proposed combined polymer composite which consist of a polyester matrix and coconut fibers are determined. The influence of fibers volume fraction (%) is also evaluated and composites with volumetric amounts of coconut fiber up to 15% are fabricated. In ...

  19. Tool-ply friction in thermoplastic composite forming (CD-rom)

    NARCIS (Netherlands)

    ten Thije, R.H.W.; Akkerman, Remko; van der Meer, L.; Ubbink, M.P.; Boisse, P.

    2008-01-01

    Friction is an important phenomenon that can dominate the resulting product geometry of thermoplastic composites upon forming. A model was developed that predicts the friction between a thermoplastic laminate and a rigid tool. The mesoscopic model, based on the Reynolds’ equation for thin film

  20. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    Science.gov (United States)

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...

  1. Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers

    NARCIS (Netherlands)

    Botterhuis, N.E.; Karthikeyan, S.; Spiering, A.J.H.; Sijbesma, R.P.

    2010-01-01

    Self-sorting in thermoplastic elastomers was studied using bisurea-based thermoplastic elastomers (TPEs) which are known to form hard blocks via hierarchical aggregation of bisurea segments into ribbons and of ribbons into fibers. Self-sorting of different bisurea hard blocks in mixtures of polymers

  2. Method for bonding a thermoplastic polymer to a thermosetting polymer component

    NARCIS (Netherlands)

    Van Tooren, M.J.L.

    2012-01-01

    The invention relates to a method for bonding a thermoplastic polymer to a thermosetting polymer component, the thermoplastic polymer having a melting temperature that exceeds the curing temperature of the thermosetting polymer. The method comprises the steps of providing a cured thermosetting

  3. Synthesis and Properties of Some polyurethane/ Partially Aromatic Polyester Casting Samples

    International Nuclear Information System (INIS)

    Sadek, E.M.; Mazroua, A.M.; Emam, A.S.; Motawie, A.M.

    2005-01-01

    A series of partially aromatic terephthalate polyesters were synthesized by melt transesterification of dimethyl terephthalate with various types of aliphatic diol compounds in 1:1.1 molar ratio. Ethylene-, di-, tri-, tetra ethylene glycol and polyethylene glycol with different molecular weights 1000, 4000, 6000 as well as the prepared dihydroxy natural rubber were used. Another series of partially aromatic adipate and sebacate polyesters based on the prepared bisphenol A and its tetrabromo derivative were also synthesized by direct polycondensation esterification with adipic and sebacic acid. Polyurethane with NCO/OH ratio equal 4 was prepared from the reaction of 2,4 toluene diisocyanate with polyethylene glycol 1000. The prepared polyurethane was mixed with different weight percentages (2, 4, 6, 8, 10 or 12 % w/w) of the prepared partially aromatic polyesters to give polyurethane/polyester compositions. Mechanical and electrical properties as well as water and chemical resistance of the prepared film samples with thickness 3-4 mm were determined and compared with those of polyurethane film sample without polyester. The data indicate that 10 % w/w of the added partially aromatic polyester increases polyurethane tensile strength, improves its insulation properties and hydrolytic stability as well as its chemical resistance. Film samples based on bisphenol A impart excellent properties as compared with those based on aliphatic glycol species and dihydroxy natural rubber. Keywords: Partially aromatic polyesters, Dimethyl terephthalate, Glycols, Bisphenol A, Tetrabromo bisphenol A, Natural rubber, Adipic acid, Sebacic acid, Polyurethane, Casting

  4. The biomechanical evaluation of polyester as a tension band for the internal fixation of patellar fractures.

    LENUS (Irish Health Repository)

    McGreal, G

    2012-02-03

    We use a braided polyester suture in place of cerclage wire in tension band fixations. The objective of this study was to test the biomechanical properties of this technique. Sixteen cadaveric patellae were fractured and repaired by modified tension band fixation. Eight were fixed using eighteen gauge stainless steel wire as a tension band and eight using braided polyester. All specimens were subjected to tensile testing. Polyester was 75.0% as strong as wire. For dynamic testing, the patellae of seven cadaveric knees were fractured and then fixed with polyester tension bands. These were mounted in a device capable of extending the knees from 90 degrees to neutral against an applied force. None of the fixations failed. Three of the specimens fixed using 18 gauge stainless steel wire were compared with three fixed using polyester over 2000 cycles of knee flexion and extension. Polyester performed as well as wire. We conclude that polyester is an acceptable alternative to wire in tension band fixation.

  5. Development of silica nanoparticles obtaintion process from renewable source waste and its incorporation in thermoplastic polymer for manufacturing a nanocomposite

    International Nuclear Information System (INIS)

    Ortiz, Angel Visentim

    2016-01-01

    The nanocomposite technology is applicable to a wide range of thermoplastic and thermoset polymers. The use of sugar cane byproducts has been extensively studied as a source of reinforcement for nanocomposites. The bagasse is widely used in cogeneration and as a result of the burning of this material, millions of tons of ash are produced. For this work, silica contained in the ashes of bagasse from sugarcane was extracted by chemical method and thermal method. The thermal method is more efficient leading to a purity of more than 93% of silica, while the chemical method generated silica contaminated with chlorine and sodium from the extraction reagents. The silica particles obtained were evaluated by dynamic light scattering (DSL) and presented an average size of 12 micrometers. These particles were submitted to grinding in a ball mill and then to a sonochemical treatment. Silica particles treated by the sonochemical process ( 20 kHz, 500 W and 90 minutes) had its dimensions reduced to nanometric scale of tenths of nanometers. The nanossílica obtained was then used as reinforcement in high density polyethylene (HDPE). Mechanical and thermo-mechanical properties were assessed and gains were shown for mechanical properties , except for the impact resistance. The distortion temperature (HDT) showed that the incorporation of the reinforcement in HDPE led to a small increase in this property compared to pure HDPE. The crystallinity of the nanocomposites generated was evaluated by differential scanning calorimetry (DSC) and it was observed a decrease of crystallinity in the material when the reinforcing incorporation was 3%. The material irradiated to 250 kGy with electron beam showed important property gains, mainly due to the high level of crosslinking of irradiated HDPE. (author)

  6. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  7. Recent Advances in the Design of Water Based-Flame Retardant Coatings for Polyester and Polyester-Cotton Blends

    Directory of Open Access Journals (Sweden)

    Jenny Alongi

    2016-10-01

    Full Text Available Over the last ten years a new trend of research activities regarding the flame retardancy of polymeric materials has arisen. Indeed, the continuous search for new flame retardant systems able to replace the traditional approaches has encouraged alternative solutions, mainly centred on nanotechnology. In this context, the deposition of nanostructured coatings on fabrics appears to be the most appealing and performance suitable approach. To this aim, different strategies can be exploited: from the deposition of a single monolayer consisting of inorganic nanoparticles (single-step adsorption to the building-up of more complex architectures derived from layer by layer assembly (multi-step adsorption. The present paper aims to review the application of such systems in the field of polyester and polyester-cotton blend fabrics. The results collated by the authors are discussed and compared with those published in the literature on the basis of the different deposition methods adopted. A critical analysis of the advantages and disadvantages exhibited by these approaches is also presented.

  8. Prediction of wrinklings and porosities of thermoplastic composits after thermostamping

    Science.gov (United States)

    Hamila, Nahiene; Guzman-Maldonado, Eduardo; Xiong, Hu; Wang, Peng; Boisse, Philippe; Bikard, Jerome

    2018-05-01

    During thermoforming process, the consolidation deformation mode of thermoplastic prepregs is one of the key deformation modes especially in the consolidation step, where the two resin flow phenomena: resin percolation and transverse squeeze flow, play an important role. This occurs a viscosity behavior for consolidation mode. Based on a visco-hyper-elastic model for the characterization of thermoplastic prepregs proposed by Guzman, which involves different independent modes of deformation: elongation mode, bending mode with thermo-dependent, and viscoelastic in-plan shearing mode with thermo-dependent, a viscoelastic model completed with consolidation behavior will be presented in this paper. A completed three-dimensional mechanical behavior with compaction effect for thermoplastic pre-impregnated composites is constituted, and the associated parameters are identified by compaction test. Moreover, a seven-node prismatic solid-shell finite element approach is used for the forming simulation. To subdue transverse shear locking, an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. Indeed, the enhanced assumed strain method and a reduced integration scheme are combined offering a linear varying strain field along the thickness direction to circumvent thickness locking, and an hourglass stabilization procedure is employed in order to correct the element's rank deficiency for pinching. An additional node is added at the center providing a quadratic interpolation of the displacement in the thickness direction. The predominance of this element is the ability of three dimensional analysis, especially for the transverse stress existence through the thickness of material, which is essential for the consolidation modelling. Finally, an intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg

  9. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends.

    Science.gov (United States)

    Ferri, J M; Garcia-Garcia, D; Sánchez-Nacher, L; Fenollar, O; Balart, R

    2016-08-20

    In this work, poly(lactic acid), PLA and thermoplastic starch, TPS blends (with a fixed content of 30wt.% TPS) were prepared by melt extrusion process to increase the low ductile properties of PLA. The TPS used contains an aliphatic/aromatic biodegradable polyester (AAPE) that provides good resistance to aging and moisture. This blend provides slightly improved ductile properties with an increase in elongation at break of 21.5% but phase separation is observed due to the lack of strong interactions between the two polymers. Small amounts of maleinized linseed oil (MLO) can positively contribute to improve the ductile properties of these blends by a combined plasticizing-compatibilizing effect. The elongation at break increases over 160% with the only addition of 6phr MLO. One of the evidence of the plasticizing-compatibilizing effect provided by MLO is the change in the glass transition temperature (Tg) with a decrease of about 10°C. Field emission scanning electron microscopy (FESEM) of PLA-TPS blends with varying amounts of maleinized linseed oil also suggests an increase in compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  11. Study of the properties and biodegradability of polyester/starch blends submitted to microbial attack

    International Nuclear Information System (INIS)

    Vinhas, Gloria M.; Almeida, Yeda M.B. de; Lima, Maria Alice Gomes de Andrade; Santos, Livia Almeida

    2007-01-01

    This work deals with the biodegradation of blends of poly(beta-hydroxybutyrate)/starch and poly(beta-hydroxybutyrate-cohydroxyvalerate)/ starch. The blends were obtained by evaporation of the solvent in the mixture of the polymers in chloroform. Tests were carried out in presence of micro-organisms which acted as biodegradation agents. The blends were consumed as carbon substrate and the production of CO 2 was evaluated in the process. In addition, the polyesters' mechanical properties were reduced by the incorporation of starch in its structure. ( 1 H) NMR and infrared spectroscopy detected some characteristic polyester degradation groups in the polyesters' chemical structure, thus confirming the alteration suffered by it. (author)

  12. Nanoimprint technology nanotransfer for thermoplastic and photocurable polymers

    CERN Document Server

    Taniguchi, Jun; Mizuno, Jun; Saito, Takushi

    2013-01-01

    Nanoscale pattern transfer technology using molds is a rapidly advancing area and one that has seen much recent attention due to its potential for use in nanotechnology industries and applications. However, because of these rapid advances, it can be difficult to keep up with the technological trends and the latest cutting-edge methods. In order to fully understand these pioneering technologies, a comprehensive understanding of the basic science and an overview of the techniques are required. Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers covers

  13. Computational modelling of a thermoforming process for thermoplastic starch

    Science.gov (United States)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its

  14. Flammability and Thermophysical Characterization of Thermoplastic Elastomer Nanocomposites

    Science.gov (United States)

    2004-08-01

    State University – M. Namani • Southern Clay Products – D. Hunter • Applied Sciences Inc. – J. Glasglow • Omega Point Laboratories – S . Romo Financial...Characterization of Thermoplastic Elastomer Nanocomposites 5a. CONTRACT NUMBER F04611-99-C-0025 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ... S ) AND ADDRESS(ES) ERC, Inc,AFRL/PRS,10 E. Saturn Blvd.,Edwards AFB,CA,93524 8. PERFORMING ORGANIZATION REPORT NUMBER E04-082 9. SPONSORING

  15. Theoretical and experimental investigations of a thermoplastic constitutive law

    Science.gov (United States)

    Zdebel, U.

    1984-12-01

    A thermoplastic constitutive law allowing combinations of isotropic and kinematic hardening as well as deviations from the normality rule was examined. Since the energy balance for thermomechanical processes is taken into account, the consistent connection to thermodynamic laws is guaranteed. The experimental verification of material parameters is described; it is performed by isothermal tension-torsion tests on thin-walled tubes at different temperatures. The materials functions allow the extension to nonisothermal (adiabatic) processes. The comparison between theoretical and exprimental results is not entirely satisfactory and demonstrates the remaining inconsistencies. Suggestions which could lead to a better description of the behavior of elastoplastic materials are made.

  16. The relationship between hardness to the tensile properties of kenaf/ unsaturated polyester composite

    Science.gov (United States)

    Ghaztar, Muhammad Mustakim Mohd; Romli, Ahmad Zafir; Ibrahim, Nik Noor Idayu Nik

    2017-12-01

    The level of fibre-matrix interaction and consolidation are essential aspects to determine the composite deformation but, less attention is given to the effect of small fibre weight increment (5 wt%), chemical treatment coalition (NaOH/ silane), fibre's length and aspect ratio to the physical and mechanical properties of the composite. Hence, this paper studies the correlation between these parameters towards hardness and tensile properties of Kenaf fibre and unsaturated polyester (UP) matrix. The study was carried out by fabricating the sample into two (2) types of fibre categories and fibre loadings and tested to determine its properties. The results showed that the hardness and tensile stress were significantly influenced by the fibre loading and dispersion of the fabricated samples. At low filler loading, the treated samples for both fibre sizes showed lower hardness property compared to the untreated samples. The chemical treatment coalition might diffuse out the pectin and hemicellulose which affect the ability of the fibre to absorb the force applied by the hardness indenter. Good fibre dispersion observed for the treated samples also resulted in the fibre-dominating composite system where the fibres were efficiently absorbed and distributed the indentation force. However, chemical treatments and good fibre dispersion contributed to the higher tensile stress of the treated fibre samples especially for smaller fibre length and aspect ratio compared to the untreated samples. At high fibre loading, treated fibre samples showed higher hardness property compared to the untreated samples since the treatment resulted in better fibre wetting by the matrix and the formation of pack structure. However, high fibre loading caused the mutual abrasion among the fibre which led to the lower tensile stress compared to the low fibre loading samples. In conclusion, by understanding the factors that influenced the reinforcing mechanism of the composite, the inconsistency of

  17. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    Science.gov (United States)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  18. Thermoplastic starch materials prepared from rice starch; Preparacao e caracterizacao de materiais termoplasticos preparados a partir de amido de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S., E-mail: barbarapont@gmail.co [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2009-07-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  19. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  20. SYNTHESIS AND CHARACTERIZATION OF BIO-BASED POLYESTER POLYOL

    Directory of Open Access Journals (Sweden)

    MİTHAT ÇELEBİ

    2016-11-01

    Full Text Available Polyurethanes are versatile polymeric materials and are usually synthesised by isocyanate reactions with polyols. Due to the variety of isocyanates and polyols, particularly polyols, polyurethanes can be easily tailored for wide applications, such as rigid and flexible foams, coatings, adhesives, and elastomers. Considerable efforts have been recently devoted to developing bio-based substitutes for petroleum-based polyuretahanes due to increasing concerns over the depletion of petroleum resources, environment, and sustainability. Polyester polyols based on aliphatic and aromatic dicarboxylic acids are one of the most important materials in polymer technologies. Large volume of plants oils are used as renewable resources to produce various chemicals which are industrially important to make soaps, cosmetic products, surfactants, lubricants, diluents, plasticizers, inks, agrochemicals, composite materials, food industry. This study introduces synthesis and properties of bio-based polyols from different renewable feedstocks including vegetable oils and derivatives. A comparison of bio-based polyol properties with their petroleum-based analogues were investigated.

  1. Polyester Sulphonic Acid Interstitial Nanocomposite Platform for Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Emmanuel I. Iwuoha

    2009-12-01

    Full Text Available A novel enzyme immobilization platform was prepared on a platinum disk working electrode by polymerizing aniline inside the interstitial pores of polyester sulphonic acid sodium salt (PESA. Scanning electron microscopy study showed the formation of homogeneous sulphonated polyaniline (PANI nanotubes (~90 nm and thermogravimetric analysis (TGA confirmed that the nanotubes were stable up to 230 °C. The PANI:PESA nanocomposite showed a quasi-reversible redox behaviour in phosphate buffer saline. Horseradish peroxidase (HRP was immobilized on to this modified electrode for hydrogen peroxide detection. The biosensor gave a sensitivity of 1.33 μA (μM-1 and a detection limit of 0.185 μM for H2O2. Stability experiments showed that the biosensor retained more than 64% of its initial sensitivity over four days of storage at 4 °C.

  2. Preparation of polyester /Calcium sulfate/ composites using radiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2004-01-01

    Different composites have been prepared using various doses of gamma radiation. Two polyesters, Super Mastics and General, and calcium sulfate or natural gypsum have been used for preparing the composites. Some physical properties of the composites and the influence of Gamma rays on it has been studied as: compression, hardness, thermal decomposition temperature in nitrogen or oxygen, and change in weight in aqua solutions with different pH. Our results show that the glass transition temperature increases by increasing the absorbed dose up to a plateau. Further, the composites show a good thermal stability, and the absorbed dose does not affect the thermal decomposition temperature or the oxidation induction time for the prepared composites. Compression strength of the prepared composites decreases by increasing the filler ratios, and the absorbed does not seem to influence this property significantly. (author)

  3. Preparation of polyester /Calcium sulfate/ composites using radiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2003-04-01

    Different composites have been prepared using various doses of gamma radiation. Two polyesters, Super Mastics and General, and calcium sulfate or natural gypsum have been used for preparing the composites. Some physical properties of the composites and the influence of Gamma rays on it has been studied as: compression, hardness, thermal decomposition temperature in nitrogen or oxygen, and change in weight in aqua solutions with different pH. Our results show that the glass transition temperature increases by increasing the absorbed dose up to a plateau. Further, the composites show a good thermal stability, and the absorbed dose does not affect the thermal decomposition temperature or the oxidation induction time for the prepared composites. Compression strength of the prepared composites decreases by increasing the filler ratios, and the absorbed does not seem to influence this property significantly. (author)

  4. Application of polyester derived from biomass in petroleum asphalt cement

    Directory of Open Access Journals (Sweden)

    Fernando de Araújo

    Full Text Available Abstract This study evaluated the effects of the incorporation of a new additive to asphalt cement oil (CAP. A polyol product was obtained through the oxypropylation reaction of sugarcane bagasse. This polyol was polymerised with pyromellitic anhydride in order to obtain a polyester (BCP to test its suitability in terms of the material properties to be applied as additives. FTIR spectra of the polymerised material (BCP confirmed the occurrence of chemical modification due to the appearance of a new band at 1750 cm-1, characteristic of ester groups. The TGA data showed that the BCP product had higher thermal stability than the polyol. According to the softening point and elastic recovery tests, the incorporation of 11% and 16% w/w BCP in conventional CAP met the specifications of regulatory standards.

  5. Radiation curable coatings from palm oil acrylated polyester prepolymer

    International Nuclear Information System (INIS)

    Azam Ali, M.; Ooi, T.L.; Salmiah, A.; Ishiaku, U.S.; Mohd Ishak, Z.A.

    2002-01-01

    Radiation (ultra-violet, UV) curable coatings were prepared by using palm oil acrylated polyester prepolymer (PEPP-1) in combination with different reactive diluents in the presence of photoinitiator Irgacure 184 (Irg184). The effects of viscosity of coating materials, radiation dose and curing behavior were investigated. The UV cured polymeric films properties such as pendulum hardness, wettability (contact angle), gel ,content, swelling character, tensile strength, elongation at break, and deformation stability were then determined. The optimum formulations were also coated on wood substrates after which the gloss and hardness of the cured film on the wood substrate were measured. Some formulations showed promising coatings properties and has a good potential application for the wood coating industry. (Author)

  6. Degradation Mechanisms of Poly(ester urethane) Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, Alexander S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    This report describes literature regarding the degradation mechanisms associated with a poly(ester urethane) block copolymer, Estane® 5703 (Estane), used in conjunction with Nitroplasticizer (NP), and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, also known as high molecular weight explosive (HMX) to produce polymer bonded explosive PBX 9501. Two principal degradation mechanisms are reported: NO2 oxidative reaction with the urethane linkage resulting in crosslinking and chain scission events, and acid catalyzed hydrolysis of the ester linkage. This report details future work regarding this PBX support system, to be conducted in late 2017 and 2018 at Engineered Materials Group (MST-7), Materials Science and Technology Division, Los Alamos National Laboratory. This is the first of a series of three reports on the degradation processes and trends of the support materials of PBX 9501.

  7. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  8. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    Energy Technology Data Exchange (ETDEWEB)

    Varela, Juan Carlos; Velo, Marcos [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad Santiago de Compostela, Santiago de Compostela (Spain); Espinar, Eduardo; Llamas, Jose Maria [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad de Sevilla (Spain); Rúperez, Elisa; Manero, Jose Maria [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Javier Gil, F., E-mail: francesc.xavier.gil@upc.edu [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2014-09-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires.

  9. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  10. Impact of thermoplastic mask on dosimetry of different radiotherapeutic beams

    International Nuclear Information System (INIS)

    Chen Lixin; Zhang Li; Qian Jianyang; Huang Xiaoyan; Lu Jie; Huang Shaomin

    2003-01-01

    Objective: To determine the influence of auxiliary thermoplastic mask on dose distribution of photon or electron beams. Methods: Using the PTW Marcus 23343 type fixed-separation parallel-plate ionization chamber in a special phantom(PMMA), the change of photon dose buildup region was measured with rectification of Bruce empirical formula. Using 3-D water phantom, the central axis percentage depth doses (PDD) of electron beams were measured with verification of the parallel-plate ionization chamber at several given depths. Results: When 8 MV X-ray was delivered through the added facial mask, the buildup region doses were increased obviously with a 25% relative increment beneath near the surface. When 8, 12, 15 MeV electron beams and mask were used, all PDD curves moved to the surface. Conclusions: The impact of thermoplastic mask on the dose increase in the X-ray buildup region, and on the PDD decrease in the electron beam target region should be paid much more attention. And the dose distribution, with an added mask, will have to be re-evaluated in 3-D conformal radiotherapy

  11. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  12. Thermoplastic processing of proteins for film formation--a review.

    Science.gov (United States)

    Hernandez-Izquierdo, V M; Krochta, J M

    2008-03-01

    Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.

  13. Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers

    Science.gov (United States)

    Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan

    Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.

  14. Development of thermo-plastic heating and compaction facility

    International Nuclear Information System (INIS)

    Ko, Dae Hak; Lim, Suk Nam

    1998-01-01

    Low- and intermediate-level radioactive wastes consist of spent resin, spent filter, concentrated waste and dry active waste(DAW) and they are solidified or packaged into drums or high integrated containers(HICs). DAWs occupy 50 percent of all low- and intermediate-level radioactive wastes generated from nuclear power plants in Korea. Incinerable wastes in the DAWs are about 60 percent. Therefore, it is very important for us to reduce the volume of incinerable wastes in DAWs. Experience of supercompaction turned out that thermo-plastic wastes have a swelling effect after supercompaction process due to their repulsive power. And the thermo-plastic heating and compaction facility has been developed by KEPCO. In conclusion, heating and compaction facility can reduce the volume of DAWs as well as upgrade the quality of treated wastes, because the swelling effect by repulsive power after compaction is removed, final wastes form the shape of block and they have no free-standing water in the wastes. Plan for practical use is that this facility will be installed in other nuclear power plants in Korea in 1999. (Cho, G. S.). 1 tab., 2 figs

  15. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    International Nuclear Information System (INIS)

    Varela, Juan Carlos; Velo, Marcos; Espinar, Eduardo; Llamas, Jose Maria; Rúperez, Elisa; Manero, Jose Maria; Javier Gil, F.

    2014-01-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires

  16. Adapting without reinforcement.

    Science.gov (United States)

    Kheifets, Aaron; Gallistel, C Randy

    2012-11-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.

  17. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.; Perez Manriquez, Liliana; Puspasari, Tiara; Scholes, Colin A.; Kentish, Sandra E.; Peinemann, Klaus-Viktor

    2018-01-01

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane

  18. Filler Fraction Effect on Creep Response of Crosslinked Polyester Matrix with Mineral Filler

    Czech Academy of Sciences Publication Activity Database

    Hristova, J.; Minster, Jiří

    Vol. 89, - (2003), s. 3329-3335 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z2071913 Keywords : polyester composites * creep * ageing Subject RIV: JI - Composite Materials Impact factor: 1.017, year: 2003

  19. 78 FR 17637 - Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Science.gov (United States)

    2013-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... Administration, International Trade Administration, Department of Commerce. SUMMARY: The Department of Commerce.../CVD Operations, Office 1, Import Administration, International Trade Administration, U.S. Department...

  20. Effect of structural parameters on burning behavior of polyester fabrics having flame retardancy property

    Science.gov (United States)

    Çeven, E. K.; Günaydın, G. K.

    2017-10-01

    The aim of this study is filling the gap in the literature about investigating the effect of yarn and fabric structural parameters on burning behavior of polyester fabrics. According to the experimental design three different fabric types, three different weft densities and two different weave types were selected and a total of eighteen different polyester drapery fabrics were produced. All statistical procedures were conducted using the SPSS Statistical software package. The results of the Analysis of Variance (ANOVA) tests indicated that; there were statistically significant (5% significance level) differences between the mass loss ratios (%) in weft and mass loss ratios (%) in warp direction of different fabrics calculated after the flammability test. The Student-Newman-Keuls (SNK) results for mass loss ratios (%) both in weft and warp directions revealed that the mass loss ratios (%) of fabrics containing Trevira CS type polyester were lower than the mass loss ratios of polyester fabrics subjected to washing treatment and flame retardancy treatment.

  1. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    Science.gov (United States)

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  2. High Efficiency Particulate Air (HEPA) filters from polyester and polypropylene fibre nonwovens

    CSIR Research Space (South Africa)

    Boguslavsky, L

    2010-10-01

    Full Text Available filtration efficiency. Glass fibres are more harmful to human, compared to polypropylene and polyester fibre which are chemically inert. Hydroentanglement and chemical bonding techniques were utilised in manufacturing nonwovens for dry filtration. Acrylic...

  3. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    Science.gov (United States)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  4. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources : Enzymatic Synthesis, Characterization, and Properties

    NARCIS (Netherlands)

    Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja

    2014-01-01

    Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic

  5. Genomic Signatures of Reinforcement

    Directory of Open Access Journals (Sweden)

    Austin G. Garner

    2018-04-01

    Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

  6. Genomic Signatures of Reinforcement

    Science.gov (United States)

    Goulet, Benjamin E.

    2018-01-01

    Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048

  7. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  8. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  9. Influence of the substituent on azobenzene side-chain polyester optical storage materials

    DEFF Research Database (Denmark)

    Pedersen, M; Hvilsted, Søren; Holme, NCR

    1999-01-01

    , chloro, and bromo. C-13 NMR spectroscopic and molecular mass investigations substantiate good film forming characteristics. The optical storage performance of thin polyester films are investigated through polarization holography. The resulting diffraction efficiency is mapped and discussed as a function...... of irradiation power and exposure time. Polytetradecanedioates with cyano-, nitro-, methyl-, fluoro-, or trinuoromethyl-azobenzene reach more than 50% diffraction efficiency. Investigations of anisotropy induced at different temperatures reveal that the polyesters are only photosensitive in a narrow temperature...

  10. New UV-curable acrylated polyester prepolymers from palm oil based products

    International Nuclear Information System (INIS)

    Mohd Azam Ali; Ooi, T.L.; Salmiah Ahmad; Umaru, S.I.; Mohd Ishak, Z.A.

    1999-01-01

    Acrylated polyester prepolymers (PEPP-1 and PEPP-2) were synthesized from palm oil and its products. UV-curing and characteristic properties of UV-cured films of synthesized polyester resins were studied. The characteristic properties studied include pendulum hardness, gel content, FT-IR analysis, tensile strength and elongation at break. The materials have good potential for the production of radiation curable coating applications

  11. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  12. A study on the crushing behavior of basalt fiber reinforced composite structures

    Science.gov (United States)

    Pandian, A.; Veerasimman, A. P.; Vairavan, M.; Francisco, C.; Sultan, M. T. H.

    2016-10-01

    The crushing behavior and energy absorption capacity of basalt fiber reinforced hollow square structure composites are studied under axial compression. Using the hand layup technique, basalt fiber reinforced composites were fabricated using general purpose (GP) polyester resin with the help of wooden square shaped mould of varying height (100 mm, 150 mm and 200 mm). For comparison, similar specimens of glass fiber reinforced polymer composites were also fabricated and tested. Axial compression load is applied over the top end of the specimen with cross head speed as 2 mm/min using Universal Testing Machine (UTM). From the experimental results, the load-deformation characteristics of both glass fiber and basalt fiber composites were investigated. Crashworthiness and mode of collapse for the composites were determined from load-deformation curve, and they were then compared to each other in terms of their crushing behaviors.

  13. Phase diagrams in blends of poly(3-hydroxybutyric acid with various aliphatic polyesters

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Phase behavior with immiscibility, miscibility, crystalline morphology, and kinetic analysis in blends of poly(3-hydroxybutyric acid (PHB with aliphatic polyesters such as poly(butylene adipate (PBA, poly(ethylene adipate (PEA, poly(trimethylene adipate (PTA, or poly(ethylene succinate (PESu, respectively, were explored mainly using differential scanning calorimeter (DSC and polarized-light optical microscopy (POM. Immiscibility phase behavior with reversible upper-critical-solution-temperature (UCST is common in the PHB/polyester blends. The polyester/polyester blend of PHB/PTA is partially miscible with no UCST in melt and amorphous glassy states within a composition range of PTA less than 50 wt%. The miscible crystalline/crystalline blend exhibits ring-banded spherulites at Tc = 50~100°C, with inter-ring spacing dependent on Tc. All immiscible or partially miscible PHB/polyester blends, by contrast, exhibit disrupted ringbanded spherulites or discrete spherical phase domains upon cooling from UCST to crystallization. The blends of PHB with all other aliphatic polyesters, such as PESu, PEA, PBA, etc. are only partially miscible or immiscible with an upper critical solution temperature (UCST at 180~221°C depending on blend composition. UCST with reversibility was verified.

  14. Synthesis, characterization and ESR study of polyesters containing isomeric naphthylene units by gamma irradiation

    International Nuclear Information System (INIS)

    Choi, B.K.; Hill, D.J.T.; Choi, E.J.; Ahn, H.K.

    1998-01-01

    Full text: Aromatic polyesters containing naphthalene groups have interesting properties because the geometry of the naphthalene group can provide many of the structural features for the polymer chain. In this study we synthesized six polyesters from 4,4 ' - (hexafluoroisopropyl-idene)bis(benzoic acid) and isomeric naphthylene-diols. An ESR study of the radicals formed on gamma radiolysis of the polyesters has been undertaken to investigate their relative radiation sensitivities. The structures of the polyesters were characterized by means of IR spectroscopy. Inherent viscosities were measured in the range of 0.11 - 0.46 dL/g. Thermal properties of polyesters were determined by DSC and TGA thermograms, respectively. All polyesters were irradiated in an AECL Gamma cell with a dose rate of approximately 6.7kGy h -1 to doses in the range of 0 - 15kGy at 77K and 300K, respectively. In order to identify other radicals present at 77K, annealing studies were utilized by taking advantage of the different reactivities of these radicals

  15. Attribute Based Selection of Thermoplastic Resin for Vacuum Infusion Process: A Decision Making Methodology

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Lystrup, Aage; Løgstrup Andersen, Tom

    2012-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...... for vacuum infused of a wind turbine blade—is shown to demonstrate the intricacies involved in the proposed methodology for resin selection....

  16. High performance thermoplastics: A review of neat resin and composite properties

    Science.gov (United States)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness. Attractive features and problems involved in the use of thermo-plastics as matrices for high performance composites are discussed.

  17. Development of a readily recyclable sound insulation material made of polyester fibers. Application of the PET fibers from plastic bottles; Recycle kanona jidoshayo polyester sei kyuon zairyo no kaihatsu. Shiyozumi pet bottle zai no insulator zai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, K; Watanabe, K; Sugawara, H; Minemura, Y [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have developed new polyester sound-absorbing materials made of fine and modified-cross-section polyester fabric. They provide noticeably higher sound-absorbing performance than traditional materials. Another feature of the new materials is their excellent recyclability since they are made of polyester. Application of the new materials to the dash silencer and the floor carpeting produced a great improvement in sound-insulation performance with less weight. 2 refs., 7 figs.

  18. Habituation of reinforcer effectiveness.

    Science.gov (United States)

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  19. A Study of Nanoclay Reinforcement of Biocomposites Made by Liquid Composite Molding

    Directory of Open Access Journals (Sweden)

    Farida Bensadoun

    2011-01-01

    Full Text Available Liquid composite molding (LCM processes are widely used to manufacture composite parts for the automotive industry. An appropriate selection of the materials and proper optimization of the manufacturing parameters are keys to produce parts with improved mechanical properties. This paper reports on a study of biobased composites reinforced with nanoclay particles. A soy-based unsaturated polyester resin was used as synthetic matrix, and glass and flax fiber fabrics were used as reinforcement. This paper aims to improve mechanical and flammability properties of reinforced composites by introducing nanoclay particles in the unsaturated polyester resin. Four different mixing techniques were investigated to improve the dispersion of nanoclay particles in the bioresin in order to obtain intercalated or exfoliated structures. An experimental study was carried out to define the adequate parameter combinations between vacuum pressure, filling time, and resin viscosity. Two manufacturing methods were investigated and compared: RTM and SCRIMP. Mechanical properties, such as flexural modulus and ultimate strength, were evaluated and compared for conventional glass fiber composites (GFC and flax fiber biocomposites (GFBiores-C. Finally, smoke density analysis was performed to demonstrate the effects and advantages of using an environment-friendly resin combined with nanoclay particles.

  20. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    Science.gov (United States)

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  1. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  2. Biodegradation of thermoplastic starch/eggshell powder composites.

    Science.gov (United States)

    Bootklad, Munlika; Kaewtatip, Kaewta

    2013-09-12

    Thermoplastic starch (TPS) was prepared using compression molding and chicken eggshell was used as a filler. The effect of the eggshell powder (EP) on the properties of TPS was compared with the effect of commercial calcium carbonate (CC). The organic compound on the surface of the eggshell powder acted as a coupling agent that resulted in a strong adhesion between the eggshell powder and the TPS matrix, as confirmed by SEM micrographs. The biodegradation was determined by the soil burial test. The TPS/EP composites were more rapidly degraded than the TPS/CC composites. In addition, the eggshell powder improved the water resistance and thermal stability of the TPS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. High-pressure needle interface for thermoplastic microfluidics.

    Science.gov (United States)

    Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L

    2009-01-07

    A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.

  4. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    International Nuclear Information System (INIS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Liu, Yanju; Leng, Jinsong; Xu, Ben; Fu, Yongqing

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ϵ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin–based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix. (paper)

  5. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  6. Helium High Pressure Tanks at EADS Space Transportation New Technology with Thermoplastic Liner

    National Research Council Canada - National Science Library

    Benedic, Fabien; Leard, Jean-Philippe; Lefloch, Christian

    2005-01-01

    .... In order to achieve the new target prices, a new disruptive technology has been performing for several years in using a thermoplastic liner instead the usual expensive concept of metallic forged liner...

  7. Coaxial Thermoplastic Elastomer-Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors

    KAUST Repository

    Zhou, Jian; Xu, Xuezhu; Xin, Yangyang; Lubineau, Gilles

    2018-01-01

    performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer-wrapped carbon nanotube fibers, is proposed. The sensors attain

  8. Radiation modification of glass fiber - reinforced plastics

    International Nuclear Information System (INIS)

    Allayarov, S.R.; Smirnov, Yu.N.; Lesnichaya, V.A.; Ol'khov, Yu.A.; Belov, G.P.; Dixon, D.A.; Kispert, L.D.

    2007-01-01

    Modification of glass fiber - reinforced plastics (GFRPs) by gamma-irradiation has been researched to receipt of polymeric composite materials. They were produced by the film - technology method and the cheapest thermoplastics (polythene, polyamide were used as polymeric matrixes for their manufacture. GFRPs were irradiated with Co 60 gamma-rays from a Gammatok-100 source in air and in vacuum. The strength properties of GFRPs and initial polymeric matrixes were investigated before and after radiolysis. Molecular - topological structure of the polymeric matrixes were tested by the method of thermomechanical spectroscopy. The strength properties of GFRPs depend on a parity of speeds of structural (physical) and chemical modification of the polymeric matrixes. These two processes proceed simultaneously. The structural modification includes physical transformation of polymers at preservation of their chemical structure. Covalent bonds between various macromolecules or between macromolecules and surface of fiberglasses are formed at the chemical modification of polymeric matrixes induced by radiation. Action of ionizing radiation on the used polymeric matrix results to its structurization (polythene) or to destruction (polyamide). Increasing of durability of GFRPs containing polythene is caused by formation of the optimum molecular topological structure of the polymeric matrix. (authors)

  9. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  10. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  11. Carbon nanotubes in blends of polycaprolactone/thermoplastic starch.

    Science.gov (United States)

    Taghizadeh, Ata; Favis, Basil D

    2013-10-15

    Despite the importance of polymer-polymer multiphase systems, very little work has been carried out on the preferred localization of solid inclusions in such multiphase systems. In this work, carbon nanotubes (CNT) are dispersed with polycaprolactone (PCL) and thermoplastic starch (TPS) at several CNT contents via a combined solution/twin-screw extrusion melt mixing method. A PCL/CNT masterbatch was first prepared and then blended with 20 wt% TPS. Transmission and scanning electron microscopy images reveal a CNT localization principally in the TPS phase and partly at the PCL/TPS interface, with no further change by annealing. This indicates a strong driving force for the CNTs toward TPS. Young's model predicts that the nanotubes should be located at the interface. X-ray photoelectron spectroscopy (XPS) of extracted CNTs quantitatively confirms an encapsulation by TPS and reveals a covalent bonding of CNTs with thermoplastic starch. It appears likely that the nanotubes migrate to the interface, react with TPS and then are subsequently drawn into the low viscosity TPS phase. In a low shear rate/low shear stress internal mixer the nanotubes are found both in the PCL phase and at the PCL/TPS interface and have not completed the transit to the TPS phase. This latter result indicates the importance of choosing appropriate processing conditions in order to minimize kinetic effects. The addition of CNTs to PCL results in an increase in the crystallization temperature and a decrease in the percent crystallinity confirming the heterogeneous nucleating effect of the nanotubes. Finally, DMA analysis reveals a dramatic decrease in the starch rich phase transition temperature (~26 °C), for the system with nanotubes located in the TPS phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Determination of mechanical properties of some glass fiber reinforced plastics suitable to Wind Turbine Blade construction

    Science.gov (United States)

    Steigmann, R.; Savin, A.; Goanta, V.; Barsanescu, P. D.; Leitoiu, B.; Iftimie, N.; Stanciu, M. D.; Curtu, I.

    2016-08-01

    The control of wind turbine's components is very rigorous, while the tower and gearbox have more possibility for revision and repairing, the rotor blades, once they are deteriorated, the defects can rapidly propagate, producing failure, and the damages can affect large regions around the wind turbine. This paper presents the test results, performed on glass fiber reinforced plastics (GFRP) suitable to construction of wind turbine blades (WTB). The Young modulus, shear modulus, Poisson's ratio, ultimate stress have been determined using tensile and shear tests. Using Dynamical Mechanical Analysis (DMA), the activation energy for transitions that appear in polyester matrix as well as the complex elastic modulus can be determined, function of temperature.

  13. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  14. High performance thermoplastics - A review of neat resin and composite properties

    Science.gov (United States)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness.

  15. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  16. Synthesis and degradation kinetics of a novel polyester containing bithiazole rings

    Energy Technology Data Exchange (ETDEWEB)

    He, W., E-mail: hwdut2003@yahoo.com [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China); Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Jiang, Y.Y. [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China); Luyt, A.S. [Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Ocaya, R.O. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Ge, T.J. [Research Center of Plastic Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); State Key Laboratory of Robotics (China)

    2011-10-20

    Highlights: {yields} A novel Schiff base type polyester was synthesized and characterized by FTIR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. {yields} Thermal degradation of the polyester in nitrogen has been studied at several heating rates by thermogravimetric analysis. {yields} The activation energies were calculated by different methods. And the possible conversation function was estimated. {yields} The life time estimates for the polyester can be determined and the results demonstrate that the polymer possesses good thermal resistance. - Abstract: A novel Schiff base type polyester containing 2,2'-diamino-4,4'-bithiazole (DABT) was prepared by low-temperature interface polycondensation of 1,4-benzenedicarbonyl dichloride with 4,4'-(4,4'-bithiazole-2,2'-diylbis(imine-2,1-diyl) diphenol (BDDP), which is derived from a 2,2'-diamino-4,4'-bithiazole (DABT) Schiff base reacted with a 4-hydroxybenzaldehyde monomer. The newly generated polyester was characterized by FTIR spectroscopy, elemental analysis, and X-ray diffraction spectroscopy. The thermal decomposition was investigated in nitrogen atmosphere using thermogravimetric analysis. The activation energies of the decomposition step of the polyester were calculated through the isoconversional methods of Kissinger-Akahira-Sunose (K-A-S) and the iterative equation. In order to estimate the reaction model that best describes the experimental data, the use of an empirical kinetic equation based on that proposed by Sestak-Berggren was investigated here. On the basis of the kinetic data, the life time estimates for the polyester generated from the weight loss of 5%, 10%, and 15% were also constructed.

  17. Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates

    International Nuclear Information System (INIS)

    Rassmann, S.; Paskaramoorthy, R.; Reid, R.G.

    2011-01-01

    The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.

  18. Effect of functionalized metal oxides addition on the mechanical, thermal and swelling behaviour of polyester/jute composites

    Directory of Open Access Journals (Sweden)

    Jaideep Adhikari

    2017-04-01

    Full Text Available The unsaturated polyester composites were fabricated in hand lay-up method by reinforcing with jute fibre along with alumina or zirconia particles in different filler loading viz. 5, 10, 15 and 20 wt%. It was observed that with incorporation of fillers, the microhardness value of the resulting composites increases and reaches its maximum at 20 wt% filler content. Characterizations were performed on the composites fabricated with overall 20 wt% filler content (18 wt% fibre and 2 wt% metal oxide particles. Various characterizations like Vicker’s microhardness testing, scanning electron microscopy (SEM, Energy-dispersive X-ray spectroscopy (EDS, X-ray Diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, thermogravimetric (TG analysis, differential scanning calorimetry (DSC, limiting oxygen index (LOI testing and water absorption test were performed. Tensile, Flexural testing were also performed on the normal and water absorbed samples. SEM analysis ensured good dispersion of filler within the polymer matrix. EDS and XRD were performed to identify the filler in the composites. FITR spectroscopy revealed the bonding of fillers with the matrix. TG analysis showed that thermal stability, degradation temperature of jute-ZrO2 composites were best over the others. LOI testing also shows similar trend, showing better fire resistant property of jute-ZrO2 composites than the Al2O3 dispersed. Water absorption test indicates the stability of different composite in various atmospheres (normal, boiling, simulated marine, alkali and acid water.

  19. Electron beam irradiation in natural fibres reinforced polymers (NFRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kechaou, B. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Salvia, M. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Fakhfakh, Z. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Juve, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Boufi, S. [LSME-Faculte des Sciences de Sfax, 3018 Sfax (Tunisia); Kallel, A. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Treheux, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France)], E-mail: daniel.treheux@ec-lyon.fr

    2008-11-15

    This study focuses on the electric charge motion in unsatured polyester and epoxy composites reinforced by natural fibres of Alfa type, treated by different coupling agents. The electric charging phenomenon is studied by scanning electron microscopy mirror effect (SEMME) coupled with the induced current method (ICM). Previously, using the same approach, glass fibre reinforced epoxy (GFRE) was studied to correlate mechanical [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Composites Science and Technology 64 (2004) 1467], or tribological [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Dielectric and friction behaviour of unidirectionalglass fibre reinforced epoxy (GFRE), Wear, 265 (2008) 763.] properties and dielectric properties. It was shown that the dielectric properties of the fibre-matrix interfaces play a significant role in the optimization of the composite. This result seems to be the same for natural fibre composites: the fibre-matrix interfaces allow a diffusion of the electric charges which can delocalize the polarization energy and consequently delay the damage of the composite. However, a non-suited sizing can lead to a new trapping of electric charges along these same interfaces with, as a consequence, a localization of the polarisation energy. The optimum composite is obtained for one sizing which helps, at the same time, to have a strong fibre-matrix adhesion and an easy flow of the electric charges along the interface.

  20. Optimum Drafting Conditions Of Polyester And Viscose Blend Yarns

    Directory of Open Access Journals (Sweden)

    Hatamvand Mohammad

    2017-09-01

    Full Text Available In this study, we used an experimental design to investigate the influence of the total draft, break draft, distance between the aprons (Clips and production roller pressure on yarn quality in order to obtain optimum drafting conditions for polyester and viscose (PES/CV blend yarns in ring spinning frame. We used PES fibers (1.4 dtex × 38 mm long and CV fibers (1.6 dtex × 38 mm long to spin a 20 Tex blend yarn of PES (70%/CV (30% blend ratio. When the break draft, adjustment of distance between of aprons and roller pressure is not reasonable, controlling and leading of the fibers is not sufficient for proper orientation of the fibers in the yarn structure to produce a high quality yarn. Experimental results and statistical analysis show that the best yarn quality will be obtained under drafting conditions total draft of 38, 1.2 break draft, 2.8 mm distance between of aprons and maximum pressure of the production top roller (18daN.