WorldWideScience

Sample records for reinforced polymer strengthening

  1. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  2. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  3. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  4. Performance of Sprayed Fiber Reinforced Polymer Strengthened Timber Beams

    Directory of Open Access Journals (Sweden)

    S. Talukdar

    2010-01-01

    Full Text Available A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.

  5. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  6. State-of-Practice on the Dynamic Response of Structures Strengthened with Fiber Reinforced Polymers (FRPs)

    Science.gov (United States)

    2015-07-01

    entitled “Design guidelines for blast strengthening of concrete and masonry structures using Fiber - Reinforced Polymer (FRP).” Seismic provision...2 Reinforced Concrete Fiber Reinforced Polymers are frequently used to retrofit and repair reinforced concrete structures. Most of the work...tested 72 laboratory-size beams (3-in. by 3-in. cross-section and 30–in. long) of unreinforced and nylon fiber reinforced light-weight concrete that

  7. Full Scale Reinforced Concrete Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Directory of Open Access Journals (Sweden)

    Alessandro De Vita

    2017-07-01

    Full Text Available This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy in order to investigate the seismic performance of reinforced concrete (RC beam-column joints strengthened with steel reinforced polymer (SRP systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP, and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by carbon fiber-reinforced polymer (CFRP systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems, the performances and the failure modes experienced in the several cases studied are provided.

  8. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer

    International Nuclear Information System (INIS)

    Akbarzadeh, H.; Maghsoudi, A.A.

    2010-01-01

    Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.

  9. Shear Strengthening of Corbels with Carbon Fibre Reinforced Polymers (CFRP

    Directory of Open Access Journals (Sweden)

    Nawaz, A.

    2010-09-01

    Full Text Available Corbels constitute what are known as “disturbed” regions in concrete structures, where typical shear failure may be anticipated on the grounds of small shear span-to-depth ratios. The concentration of stress induced by the weight of girders on the very small loadbearing areas in corbels often causes cracking in bridges and other structures. Little experimental research can be found in the literature on the shear strengthening of corbels. In the present study, nine such members were tested. Two had no carbon fibre reinforced polymers attached, while CFRP laminates were externally bonded to the other seven, in a number of different spatial arrangements. Ultimate shear strength was found and compared for all specimens. The results showed that CFRP configuration and geometry directly affected corbel shear strength, which was higher in all the CFRPstrengthened corbels than in the controls. The highest strength values were recorded for specimens whose shear-critical area was wrapped in CFRP.

    Las ménsulas constituyen lo que conocemos como regiones de “distorsión” en las estructuras de hormigón, zonas en que pueden preverse roturas por cortante debido a las bajas relaciones luz de cortante-canto presentes en ellas. La concentración de solicitaciones producida por el peso de las vigas sobre superficies de carga muy reducidas en las ménsulas a menudo provoca el agrietamiento de puentes y otras estructuras de obra civil. En la literatura especializada sobre el refuerzo a cortante de las ménsulas existen escasos ejemplos de estudios experimentales. Para la presente investigación se han realizado ensayos con nueve elementos de este tipo. Dos de ellos no incluían polímeros reforzados con fibra de carbono (CFRP, mientras que los siete restantes llevaban láminas externas de CFRP, dispuestas siguiendo distintas configuraciones espaciales. Los resultados indican que la configuración y la disposición geométrica de los CFRP repercuten

  10. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  11. Assessment of adhesive setting time in reinforced concrete beams strengthened with carbon fibre reinforced polymer laminates

    International Nuclear Information System (INIS)

    Fayyadh, Moatasem M.; Abdul Razak, H.

    2012-01-01

    Highlights: ► This study investigated the effect of adhesive setting time on the modal parameters. ► Modal parameters recommend the 18th day as the maturity age of the adhesive. ► Static data recommend 7th day as the maturity age of the adhesive. ► Setting time affects the modal parameters as tool for assessment repaired structures. ► Carrying the modal parameters after 1st day results in 55% loss of the actual improvement. -- Abstract: The strengthened effectiveness and the performance capacity of repaired Reinforced Concrete (RC) structures with Carbon Fibre Reinforced Polymer (CFRP) sheets is dependent on the properties of the adhesive interface layer. Adhesive material requires a specific setting time to achieve the maximum design capacity. Adhesive producer provides technical data which demonstrates the increase with time of the capacity, up to the maximum. The aim of this study is to investigate the effect of the adhesive setting time on the modal parameters as an indication of the effectiveness of CFRP on repaired RC beams. Firstly, datum modal parameters were determined on the undamaged beam and subsequently the parameters were obtained when damaged was induced on the RC beam by application of load until the appearance of the first crack. Finally, the RC beam is repaired with externally bonded CFRP sheets, and modal parameters are once again applied after 0.5, 1, 2, 3, 5, 8, 11, 15 and 18 days. The comparison is made with the data based on half day results in order to monitor the change in the modal parameters corresponding to the adhesive setting time. The modal parameters where used as indicators for the effectiveness of CFRP are affected by the adhesive time as shown in this study. Results are compared with the adhesive technical data provided by the adhesive producer.

  12. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    Science.gov (United States)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  13. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    Science.gov (United States)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  14. Full Scale RC Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Science.gov (United States)

    De Vita, Alessandro; Napoli, Annalisa; Realfonzo, Roberto

    2017-07-01

    This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy) in order to investigate the seismic performance of RC beam-column joints strengthened with Steel Reinforced Polymer (SRP) systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by Carbon Fiber Reinforced Polymer (CFRP) systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems), the performances and the failure modes experienced in the several cases studied are provided.

  15. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    Science.gov (United States)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  16. Bond Behavior of Historical Clay Bricks Strengthened with Steel Reinforced Polymers (SRP)

    Science.gov (United States)

    Grande, Ernesto; Imbimbo, Maura; Sacco, Elio

    2011-01-01

    In the strengthening interventions of past and historical masonry constructions, the non-standardized manufacture processes, the ageing and the damage of masonry units, could significantly affect the properties of the surfaces where strengthening materials are applied. This aspect requires particular care in evaluating the performance of externally bonded strengthening layers, especially with reference to the detachment mechanism. The bond response of old masonries could be very different from that occurring in new masonry units which are the ones generally considered in most of the bond tests available in technical literature. The aim of the present paper is the study of the bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP) materials. In particular, the results of an experimental study concerning new manufactured clay bricks and old bricks extracted from different historical masonry buildings are presented. The obtained results, particularly in terms of bond resistance, detachment mechanism and strain distributions, are discussed for the purpose of analyzing the peculiarities of the historical bricks in comparison with new manufactured ones. Some considerations on the efficacy of the theoretical formulations of the recent Italian code are also carried out. PMID:28880008

  17. Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Sayed Mohamad Soleimani

    2012-01-01

    Full Text Available The effectiveness of externally bonded sprayed glass fiber reinforced polymer (Sprayed GFRP in shear strengthening of RC beams under quasi-static loading is investigated. Different techniques were utilized to enhance the bond between concrete and Sprayed GFRP, involving the use of through bolts and nuts paired with concrete surface preparation through sandblasting and through the use of a pneumatic chisel prior to Sprayed GFRP application. It was found that roughening the concrete surface using a pneumatic chisel and using through bolts and nuts were the most effective techniques. Also, Sprayed GFRP applied on 3 sides (U-shaped was found to be more effective than 2-sided Sprayed GFRP in shear strengthening. Sprayed GFRP increased the shear load-carrying capacity and energy absorption capacities of RC beams. It was found that the load-carrying capacity of strengthened RC beams was related to an effective strain of applied Sprayed GFRP. This strain was related to Sprayed GFRP configuration and the technique used to enhance the concrete-FRP bond. Finally, an equation was proposed to calculate the contribution of Sprayed GFRP in the shear strength of an RC beam.

  18. Fiber-Reinforced Polymer Nets for Strengthening Lava Stone Masonries in Historical Buildings

    Directory of Open Access Journals (Sweden)

    Santi Maria Cascone

    2016-04-01

    Full Text Available The strengthening of masonries is a crucial step in building restoration works because of its relevance, mostly with regard to the improvement of building seismic behavior. Current building technologies are based on the use of steel nets which are incorporated into cement plasters. The use of steel has a number of contraindications that can be solved by using composite materials such as glass fiber nets, which have high mechanical characteristics and lightness, elasticity, corrosion resistance, and compatibility with lime plaster. Building interventions, that take into account the application of glass fiber nets, are very sustainable from several points of view, e.g., material production, in situ works, economic cost and durability. In Italy, several experiments have been carried out in situ with the aim of testing the mechanical characteristics of masonries which have been treated with fiber-reinforced polymer (FRP nets. This paper deals with a series of in situ tests carried out during the restoration works of an important historical building located in Catania (Sicily, Italy. The results achieved are largely positive.

  19. Analytical Study on the Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates

    International Nuclear Information System (INIS)

    Woo, S. K.; Song, Y. C.; Lee, H. P.; Byun, K. J.

    2007-01-01

    This study aims to predict the behavior of concrete structures strengthened with prestressed CFRP plates with more reliability, and then develop a nonlinear structural analysis model that can be applied more effectively in reinforcement designs, after examining the behavior characteristics of CFRP plates and epoxy, and the behavior of the boundary layer between CFRP plates and concrete

  20. Flexure Behavior of Hybrid Continuous Deep Beam Strengthened by Carbon Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Hayder M.K.Al-Mutairee

    2017-08-01

    Full Text Available This study present an experimental investigation for overall flexure behavior of reinforced concrete continuous deep beams (RCCDB made of hybrid concrete, normal strength concrete (NSC and high strength concrete (HSC at different location and percentage. The experimental work includes testing of sixteen specimens of RCCDB under two points loads. The effects of HSC layer thickness and CFRP on strength of RCCDB had been studied. The experimental results showed that the strengthening of RCCDB by HSC layer from top is better than from bottom, where the increment in the ultimate flexural strength increased by (14,21,27% for top strengthening and (12,15,13% for bottom strengthening for (25,50,75% thickness of total depth of beam respectively. The optimal strengthening of RCCDB by HSC layer at top was of 25%. The results also proved that the strengthening of hybrid RCCDB by (10,15cm CFRP strip at the bottom for flexure gave increment in the ultimate strength by (32, 29% respectively, and the strengthening by CFRP strip for flexure at the bottom is better than at top for hybrid RCCDB. The shear strengthening of hybrid RCCDB increases the ultimate strength by 23.4% and 13.8% if the strengthening has O and U shape respectively

  1. Automatic design of the flexural strengthening of reinforced concrete beams using fiber reinforced polymers (FRP - doi: 10.4025/actascitechnol.v34i2.8318

    Directory of Open Access Journals (Sweden)

    Rafael Alves de Souza

    2012-03-01

    Full Text Available Changing the functions of a building, the presence of some design or construction errors, the incidence of seismic actions and even the updating of design codes may demand the strengthening of certain structures. In the specific case of reinforced concrete structures it is desirable the application of a technique of strengthening which is fast, economic and efficient, in order to provide advantages when an intervention is necessary. The technique of strengthening chosen must provide less disorder as possible as well as the guaranty of safety. Taking into account this scenery, fiber reinforced polymers have been working as a very attractive alternative for rehabilitating in-service structures. In that way, the present study aims at presenting the main properties of this new material as well as the design routines for flexural strengthening of reinforced concrete beams. Finally, a package-software developed into the MATLAB platform is presented, intending to generate a simple tool for the automatic design using fiber reinforced polymers.

  2. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  3. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design

    International Nuclear Information System (INIS)

    Firmo, J.P.; Arruda, M.R.T.; Correia, J.R.; Tiago, C.

    2015-01-01

    Highlights: • The mechanical behaviour of partially bonded CFRP strengthened beams was modelled. • Two dimensional non-linear finite element models were developed. • Partially bonded beams can present similar flexural strength to fully bonded ones. • Relations between the bonded length and the strength reduction were proposed. • The proposed relations were used for the design of fire protection systems. - Abstract: Recent fire resistance tests on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymers (CFRP) laminates showed that it is possible to attain considerable fire endurance provided that thermal insulation is applied at the anchorage zones of the strengthening system. With such protection, although the CFRP laminate prematurely debonds in the central part of the beam, it transforms into a cable fixed at the extremities until one of the anchorage zones loses its bond strength. The main objective of this paper is to propose a simplified methodology for the design of fire protection systems for CFRP strengthened-RC beams, which is based on applying thicker insulation at the anchorage zones (promoting the above mentioned “cable behaviour”) and a thinner one at the current zone (avoiding tensile rupture of the carbon fibres). As a first step towards the validation of this methodology, finite element (FE) models were developed to simulate the flexural behaviour at ambient temperature of full-scale RC beams strengthened with CFRP laminates according to the externally bonded reinforcement (EBR) and near surface mounted (NSM) techniques, in both cases fully or partially bonded (the latter simulating the cable). The FE models were calibrated with results of 4-point bending tests on small-scale beams and then extended for different beam geometries, with spans (L) varying from 2 m to 5 m, in which the influence of the CFRP bonded length (l b ) and the loading type (point or uniformly distributed) on the strength reduction was

  4. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    Science.gov (United States)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  5. Carbon fiber-reinforced polymer strengthening and monitoring of the grondals bridge in Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Hejll, Arvid; James, Gerard

    2007-01-01

    to be strengthened. The strengthening methods used were CFRP plates at the serviceability limit state and prestressed dywidag stays at the ultimate limit state. The strengthening was carried out during 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fiber sensors....

  6. Carbon Fibre-reinforced Polymer Strengthening and monitoring of the Gröndals Bridge in Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Hejll, A.; James, G.

    2007-01-01

    to be strengthened. The strengthening methods used were CFRP plates at the serviceability limit state and prestressed dywidag stays at the ultimate limit state. The strengthening was carried out during 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fiber sensors....

  7. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  8. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  9. Short and long term behaviour of externally bonded fibre reinforced polymer laminates with bio-based resins for flexural strengthening of concrete beams

    Science.gov (United States)

    McSwiggan, Ciaran

    The use of bio-based resins in composites for construction is emerging as a way to reduce of embodied energy produced by a structural system. In this study, two types of bio-based resins were explored: an epoxidized pine oil resin blend (EP) and a furfuryl alcohol resin (FA) derived from corn cobs and sugar cane. Nine large-scale reinforced concrete beams strengthened using externally bonded carbon and glass fibre reinforced bio-based polymer (CFRP and GFRP) sheets were tested. The EP resin resulted in a comparable bond strength to conventional epoxy (E) when used in wet layup, with a 7% higher strength for CFRP. The FA resin, on the other hand, resulted in a very weak bond, likely due to concrete alkalinity affecting curing. However, when FA resin was used to produce prefabricated cured CFRP plates which were then bonded to concrete using conventional epoxy paste, it showed an excellent bond strength. The beams achieved an increase in peak load ranging from 18-54% and a 9-46% increase in yielding load, depending on the number of FRP layers and type of fibres and resin. Additionally, 137 concrete prisms with a mid-span half-depth saw cut were used to test CFRP bond durability, and 195 CFRP coupons were used to examine tensile strength durability. Specimens were conditioned in a 3.5% saline solution at 23, 40 or 50°C, for up to 240 days. Reductions in bond strength did not exceed 15%. Bond failure of EP was adhesive with traces of cement paste on CFRP, whereas that of FA was cohesive with a thicker layer of concrete on CFRP, suggesting that the bond between FA and epoxy paste is excellent. EP tension coupons had similar strength and modulus to E resin, whereas FA coupons had a 9% lower strength and 14% higher modulus. After 240 days of exposure, maximum reductions in tensile strength were 8, 19 and 10% for EP, FA and E resins, respectively. Analysis of Variance (ANOVA) was also performed to assess the significance of the reductions observed. High degrees of

  10. optimisation of thickness of fibre reinforced polymer sheets for ...

    African Journals Online (AJOL)

    The use of Fiber Reinforced Polymer (FRP) is becoming a widely accepted solution for repairing and strengthening of deteriorated reinforced concrete members, to restore their load carrying capacities. One of the major concerns in the use of FRP is its cost. This therefore calls for the use of efficient and cost effective design ...

  11. Strengthening Reinforced Concrete Beams with CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Mehmet Mustafa Önal

    2014-01-01

    Full Text Available Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP or glass fiber reinforced polymer (GFRP. The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150 × 250 × 2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

  12. Repair of reinforced concrete beams using carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Karzad Abdul Saboor

    2017-01-01

    Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.

  13. Rapid Strengthening of Full-Sized Concrete Beams with Powder-Actuated fastening Systems and Fiber-Reinforced Polymer (FRP) Composite Materials

    National Research Council Canada - National Science Library

    Bank, Lawrence

    2002-01-01

    A research study was conducted to determine if the method of retrofitting reinforced concrete beams with powder-actuated fasteners and composite materials was applicable to full-scale flexural members...

  14. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented...

  15. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    Directory of Open Access Journals (Sweden)

    Martin Herbrand

    2017-09-01

    Full Text Available Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  16. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    Science.gov (United States)

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  17. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  18. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    Directory of Open Access Journals (Sweden)

    Al Saadi Hamza Salim Mohammed

    2017-01-01

    Full Text Available One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP. For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  19. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  20. Finite Element Simulation of GFRP Reinforced Concrete Beam Externally Strengthened With CFRP Plates

    Directory of Open Access Journals (Sweden)

    Salleh Norhafizah

    2017-01-01

    Full Text Available The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress–strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.

  1. Flexural strengthening of reinforced lightweight polystyrene aggregate concrete beams with near-surface mounted GFRP bars

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.C.; Balendran, R.V.; Nadeem, A.; Leung, H.Y. [City University of Hong Kong (China). Department of Building and Construction

    2006-10-15

    Application of near-surface mounted (NSM) fibre reinforced polymer (FRP) bars is emerging as a promising technology for increasing flexural and shear strength of deficient reinforced concrete (RC) members. In order for this technique to perform effectively, the structural behaviour of RC elements strengthened with NSM FRP bars needs to be fully characterized. This paper focuses on the characterization of flexural behaviour of RC members strengthened with NSM glass-FRP bars. Totally, 10 beams were tested using symmetrical two-point loads test. The parameters examined under the beam tests were type of concretes (lightweight polystyrene aggregate concrete and normal concrete), type of reinforcing bars (GFRP and steel), and type of adhesives. Flexural performance of the tested beams including modes of failure, moment-deflection response and ultimate moment capacity are presented and discussed in this paper. Results of this investigation showed that beams with NSM GFRP bars showed a reduction in ultimate deflection and an improvement in flexural stiffness and bending capacity, depending on the PA content of the beams. In general, beams strengthened with NSM GFRP bars overall showed a significant increase in ultimate moment ranging from 23% to 53% over the corresponding beams without NSM GFRP bars. The influence of epoxy type was found conspicuously dominated the moment-deflection response up to the peak moment. Besides, the ultimate moment of concrete beams reinforced with GFRP bars could be predicted satisfactorily using the equation provided in ACI 318-95 Building Code. (author)

  2. Bamboo reinforced polymer composite - A comprehensive review

    Science.gov (United States)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  3. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    Science.gov (United States)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  4. Strengthening of self-compacting reinforced concrete deep beams containing circular openings with CFRP

    Directory of Open Access Journals (Sweden)

    Al-Bayati Nabeel

    2018-01-01

    Full Text Available This paper shows the behavior of reinforced self-compacting concrete deep beams with circular openings strengthened in shear with various arrangements of externally bonded Carbon Fibre Reinforced Polymer (CFRP. Six simply supported deep beams were constructed and tested under two points load up to the failure for this purpose. All tested beams had same geometry, compressive strength, shear span to depth ratio, main flexural and web reinforcement. The variables considered in this study include the influence of fiber orientation, utilizing longitudinal CFRP strips with vertical strips and area of CFRP. The test results indicated that the presence of the circular openings in center of load path reduce stiffness and ultimate strength by about 50% when compared with solid one, also it was found that the externally bonded CFRP can significantly increase the ultimate load and enhance the stiffness of deep beam with openings.

  5. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  6. Fibre Reinforced Polymer Composites as Internal and External Reinforcements for Building Elements

    Directory of Open Access Journals (Sweden)

    Cătălin Banu

    2008-01-01

    Full Text Available During the latest decades fibre reinforced polymer (FRP composite materials have proven valuable properties and suitable to be used in construction of new buildings and in upgrading the existing ones. These materials have covered the road from research laboratory and demonstration projects to implementation in actual structures. Nowadays the civil and structural engineering communities are about to commence the stage in which the use of FRP composites is becoming a routine similar to that of traditional material such as concrete, masonry and wood. Two main issues are presented in this paper, the use of FRP composite materials for new structural members (internal reinforcements and strengthening of existing members (externally bonded reinforcements. The advantages and disadvantages as well as the problems and constraints associated with both issues are discussed in detail mainly related to concrete members.

  7. Influence of ties on the behavior of short reinforced concrete columns strengthened by external CFRP

    Directory of Open Access Journals (Sweden)

    Sarsam Kaiss

    2018-01-01

    Full Text Available An experimental study was carried out to investigate the behavior of normal strength reinforce concret (RC circular short column strengthned with “carbon fiber reinforced polymer (CFRP sheets”. Three series comprising totally of (15 specimens loaded until failure under concentric compresion load. Strengthening was varied by changing the number of CFRP strips, spacing and wrapping methods. The findings of this research can be summarized as follows: for the columns without CFRP, the influence of the tie spacing was significant: compared with 130 mm tie spacing, dropping the spacing to 100 mm and 70 mm increased the load carrying capacity by 18% and 26%, respectively. The columns with less internal confinement (lesser amount of ties were strengthened more significantly by the CFRP than the ones with greater amount of internal ties. As an example of the varying effectiveness of the fully wrapped CFRP, the column with ties at 130 mm was strengthened by 90% with the CFRP. In contrast, the ones with 70 mm spaced ties only increased in strength with CFRP by 66%. Compared with the control specimen (no CFRP, the same amount of CFRP when used as hoop strips led to more strengthening than using CFRP as a spiral strip- the former led to nearly 9% more strengthening than the latter in the case of 130 mm spaced internal steel ties. In the case of 100 mm internal steel ties, the difference (between the hoops & spiral CFRP strengthening is close to 4%. In contrast, there is no difference between the two methods of strengthening in the heavily tied columns (70 mm tied spacing.

  8. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    Science.gov (United States)

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  9. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  10. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  11. Flexural Behavior of Concrete Beam Strengthened by Near-Surface Mounted CFRP Reinforcement Using Equivalent Section Model

    Directory of Open Access Journals (Sweden)

    Woo-tai Jung

    2017-01-01

    Full Text Available FRP (fiber reinforced polymer has found wide applications as an alternative to steel rebar not only for the repair and strengthening of existing structures but also for the erection of new structures. Near-surface mounted (NSM strengthening was introduced as an alternative of externally bonded reinforcement (EBR but this method also experiences early bond failure, which stresses the importance of predicting accurately the bond failure behavior in order to evaluate precisely the performance of NSM reinforcement. This study proposes the equivalent section model assuming monolithic behavior of the filler and CFRP reinforcement. This equivalent section model enables establishing a bond failure model applicable independently of the sectional shape of the CFRP reinforcement. This so-derived bond failure model is then validated experimentally by means of beams flexure-strengthened by NSM CFRP reinforcements with various cross-sections. Finally, analytical analysis applying the bond failure model considering the equivalent section and defined failure criteria is performed. The results show the accuracy of the prediction of the failure mode as well as the accurate prediction of the experimental results regardless of the sectional shape of the CFRP reinforcement.

  12. A Study on Load Carrying Capacity of Fly Ash Based Polymer Concrete Columns Strengthened Using Double Layer GFRP Wrapping

    Directory of Open Access Journals (Sweden)

    S. Nagan

    2014-01-01

    Full Text Available This paper investigates the suitability of glass fiber reinforced polymer (GFRP sheets in strengthening of fly ash based polymer members under compression. Experimental results revealed that load carrying capacity of the confined columns increases with GFRP sheets wrapping. Altogether 18 specimens of M30 and G30 grade short columns were fabricated. The G30 specimens were prepared separately in 8 molarity and 12 molarity of sodium hydroxide concentration. Twelve specimens for low calcium fly ash based reinforced polymer concrete and six specimens of ordinary Portland cement reinforced concrete were cast. Three specimens from each molarity fly ash based reinforced polymer concrete and ordinary Portland cement reinforced concrete were wrapped with double layer of GFRP sheets. The load carrying capacity of fly ash based polymer concrete was tested and compared with control specimens. The results show increase in load carrying capacity and ductility index for all strengthened elements. The maximum increase in load carrying capacity was 68.53% and is observed in strengthened G30 specimens.

  13. Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available Environmental awareness motivates researchers worldwide to perform studies of natural fibre reinforced polymer composites, as they come with many advantages and are primarily sustainable. The present study aims at evaluating the mechanical characteristics of natural woven jute fibre reinforced polymer (FRP composite subjected to three different pretreatments, alkali, benzyl chloride, and lastly heat treatment. It was concluded that heat treatment is one of the most suitable treatment methods for enhancing mechanical properties of jute FRP. Durability studies on Jute FRP pertaining to some common environmental conditions were also carried out such as effect of normal water and thermal aging on the tensile strength of jute FRP followed by fire flow test. The heat treated woven jute FRP composites were subsequently used for flexural strengthening of reinforced concrete beams in full and strip wrapping configurations. The study includes the effect of flexural strengthening provided by woven jute FRP, study of different failure modes, load deflection behavior, effect on the first crack load, and ultimate flexural strength of concrete beams strengthened using woven jute FRP subjected to bending loads. The study concludes that woven jute FRP is a suitable material which can be used for flexural upgradation of reinforced concrete beams.

  14. Digital-image-correlation-based experimental stress analysis of reinforced concrete beams strengthened using carbon composites

    Science.gov (United States)

    Helm, Jeffrey; Kurtz, Stephen

    2005-01-01

    The strengthening of reinforced concrete beams through the use of epoxy-bonded carbon composites has been widely researched in the United States since 1991. Despite the widespread attention of researchers, however, there are no reliable methods of predicting the failure of the repaired and strengthened beams by peeling of the fiber reinforced polymer (FRP) material from the parent concrete. To better understand peeling failure, several investigators have presented analytical work to predict the distribution of stresses along the interface between the FRP and the concrete. Several closed-form solutions can be found in the literature to predict the levels of shear stress present between the bonded composite plate and the parent concrete beam. However, there has been very little experimental verification of these analytical predictions because few experiments on large-scale beams have had sufficient instrumentation to facilitate the comparison. Some experiments have been presented1 in which electrical resistance strain gages were placed along the length of the carbon plate in order to deduce the interfacial shear stress using first differences. This method, though very crude, demonstrated that there are substantial differences between the distributions of interfacial shear stresses in actual repaired beams versus the analytical predictions. This paper presents a new test program in which large-scale carbon-fiber-strengthened reinforced concrete beams are load-tested to failure, while employing digital image correlation (DIC) to record the strains in the carbon fiber plate. Relying on the linear elasticity of carbon fiber, the interfacial shear can be determined and compared with the analytical predictions of the literature. The focus of this paper is the presentation of the experimental shear stress distributions and comparisons of these distributions with previous results available in the literature.

  15. Investigation of nanoscale reinforcement into textile polymers

    Science.gov (United States)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  16. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  17. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  18. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  19. The Influence of Moisture on the Performance of Polymer Fibre-Reinforced Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Kamaruddin Ibrahim

    2016-01-01

    Full Text Available A number of researches have been done worldwide to evaluate the damage caused by water in bituminous pavements. The use of the retained strength ratios obtained from laboratory moisture damage tests is a useful tool in making quantitative predictions of the related damage caused by water. This study involved laboratory work on the effect of water on the performance of bituminous mixtures. Comparisons are made between the performances of Hot-rolled Asphalt (HRA bituminous mixtures containing base bitumen of 50 pen grade to that of a polymer-fibre reinforced HRA mixture. Two types of polymer fibre were studied, namely polypropylene and polyester and these fibre were added in different concentrations in the bituminous mixtures. Changes in both the cohesive properties of the bitumen and the adhesion of the bitumen to the aggregate surface were observed as a result of exposing the bituminous mixtures to moisture. The effect of polymer fibre reinforcement in bituminous mixtures helps reduce the level of moisture damage. This was evident in the lower moisture susceptibility achieved in the polymer fibre reinforced bituminous mixtures as compared to the control mixture. The additional bitumen in the fibre reinforced mixtures also afforded an increased film thickness on the aggregate particles, thus affording additional protection of the mixtures from moisture. The reinforcement of polymer fibres in bituminous mixtures also acts to decrease the moisture sensitivity of the bitumen to aggregate bonding. This may be due to the strengthening of the wetted binder matrix that helps promote both adhesion and cohesion retention.

  20. Flexural Behavior of RC Slabs Strengthened in Flexure with Basalt Fabric-Reinforced Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Sugyu Lee

    2018-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC slabs strengthened in flexure with basalt fabric-reinforced cementitious matrix (FRCM. A total of 13 specimens were fabricated to evaluate the flexural behavior of RC slabs strengthened with basalt FRCM composite and were tested under four-point loading. The fiber type, tensile reinforcement ratio, and the number of fabric layers were chosen as experimental variables. The maximum load of FRCM-strengthened specimens increased from 11.2% to 98.2% relative to the reference specimens. The energy ratio and ductility of the FRCM-strengthened specimens decreased with the higher amount of fabric and tensile reinforcement. The effective stress level of FRCM fabric can be accurately predicted by a bond strength of ACI 549 and Jung’s model.

  1. Shear strength of reinforced concrete beams strengthened by P.B.O. fiber mesh under loading

    Directory of Open Access Journals (Sweden)

    Blikharskyy Zinoviy

    2017-01-01

    Full Text Available This article presents experimental study of sheer strength of reinforced concrete beams without transverse steel reinforcement, which strengthened by composite materials. The feature of tests is that the beams’ strengthening is made under simultaneous action of loading. The research program involves a series of test beams with size 2100 × 200 × 100 mm and which contains control sample and three reinforced samples by reinforcing FRCM system. FRCM system consisting of two components: mineral mortar based on modified cement Ruredil X Mesh M750 and reinforcing P.B.O. fiber mesh Ruredil X Mesh Gold (Italy. The strength research of test samples was carried out with the shear distance to effective depth ratio a/d = 2. The strengthening loading levels were selected at 0.0, 0.3, 0.5 from shear strength of non strengthened control sample. As a result of experimental studies we found that during strengthening design the inclined cross section of beams we should take into account the existing level of loading. Using the strengthening system Ruredil X Mesh Gold the strengthening effect is reduced at 2.8 to 2.9 times while the existing level of loading increase from 0 to 50%.

  2. Strengthening of non-seismically detailed reinforced concrete beam ...

    Indian Academy of Sciences (India)

    work and in order to carry the anchorages sufficiently away from the column face ..... Owing to the strengthening application, joint shear stress–strain behaviour was ..... structures (ACI 352R-02), MI: American Concrete Institute, Farmington Hills.

  3. Development and performance evaluation of fiber reinforced polymer bridge.

    Science.gov (United States)

    2014-03-01

    Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...

  4. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    Science.gov (United States)

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  5. Effect of horizontal reinforcement in strengthening of masonry members

    International Nuclear Information System (INIS)

    Farooq, S.H.; Ilyas, M.; Ggaffar, A.

    2008-01-01

    An experimental research program was undertaken to ascertain the effectiveness of a new technique for strengthening masonry wall panels using steel strips on compressive and shear strength enhancement. The experimental work includes eight wall panels, four each for compressive and shear strength evaluation. This work was the phase I of extensive research project which include testing of strengthened masonry wall panels under monotonic load (Phase-I), static cyclic load (Phase-2) and dynamic load (Phase-3). The wall panels were strengthened with different steel strip arrangements, which consist of single/double face application of coarse and fine steel strip mesh with reduced spacing of horizontal strips. This paper investigates only the effectiveness of horizontal steel strips on strength enhancement. Four masonry wall panels are considered in two groups and in each group, one wall was retrofitted with coarse steel mesh on single face and on second wall fine steel mesh was applied on one side. Furthermore, test results of strengthened specimens are also compared with the un-strengthened specimen (REFE). The mechanisms by which load was carried were observed, varying from the initial, uncracked state, and the final, fully cracked state. The results demonstrate a quite significant increase in the compressive and shear capacity of strengthened panels as compared to REFE-panel. However, increase in the compressive strength of fine mesh above that of coarse mesh is negligible. The technique/approach is found quite viable for strengthening of masonry walls, for rehabilitation of old deteriorated buildings and unreinforced masonry structures in seismic zones. (author)

  6. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  7. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  8. The Efficiency of Basalt Fibres in Strengthening the Reinforced Concrete Beams

    OpenAIRE

    Şerbescu, Andreea; Kypros, Pilakoutas; Ţăranu, N.

    2006-01-01

    The technique of externally bonding fibre reinforced polymer (FRP) composite laminates on the tension side of reinforced concrete (RC) beams is already widely accepted as an easy to apply, corrosion resistant and effective solution due to the high strength as well as the low weight of the composite material. The basalt fibres are produced from volcano rocks by a simple process; their applicability as reinforcing material composites utilized for plate bonding of RC beams was not enough researc...

  9. Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-11-01

    Full Text Available Carbon fiber-reinforced polymer (CFRP is recognized as a promising anode material to prevent steel corrosion in reinforced concrete. However, the electrochemical performance of CFRP itself is unclear. This paper focuses on the understanding of electrochemical and mechanical properties of CFRP in an oxygen evolution environment by conducting accelerated polarization tests. Different amounts of current density were applied in polarization tests with various test durations, and feeding voltage and potential were measured. Afterwards, tensile tests were carried out to investigate the failure modes for the post-polarization CFRP specimens. Results show that CFRP specimens had two typical tensile-failure modes and had a stable anodic performance in an oxygen evolution environment. As such, CFRP can be potentially used as an anode material for impressed current cathodic protection (ICCP of reinforced concrete structures, besides the fact that CFRP can strengthen the structural properties of reinforced concrete.

  10. Technology and Development of Self-Reinforced Polymer Composites

    Science.gov (United States)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  11. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  12. Glass Fiber Reinforced Polymer (GFRP Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique

    Directory of Open Access Journals (Sweden)

    Md. Akter Hosen

    2017-05-01

    Full Text Available Reinforced concrete (RC structures require strengthening for numerous factors, such as increased load, modification of the structural systems, structural upgrade or errors in the design and construction stages. The side near-surface mounted (SNSM strengthening technique with glass fiber-reinforced polymer (GFRP bars is a relatively new emerging technique for enhancing the flexural capacities of existing RC elements. Nine RC rectangular beams were flexurally strengthened with this technique and tested under four-point bending loads until failure. The main goal of this study is to optimize the structural capacity of the RC beams by varying the amount of strengthening reinforcement and bond length. The experimental test results showed that strengthening with SNSM GFRP bars significantly enhanced the flexural responses of the specimens compared with the control specimen. The first cracking and ultimate loads, energy absorption capacities, ductility and stiffness were remarkably enhanced by the SNSM technique. It was also confirmed that the bond length of the strengthened reinforcement greatly influences the energy absorption capacities, ductility and stiffness. The effect of the bond length on these properties is more significant compared to the amount of strengthening reinforcement.

  13. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  14. Investigation of digital light processing using fibre-reinforced polymers

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre-reinforced polym......Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre...... of miniaturized objects with relatively high surface quality compared to other additive manufacturing technologies. This paper aim to move fibre reinforced resin parts one step closer towards mechanically strong production-quality components....

  15. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  16. Experimental analysis of reinforced concrete columns strengthened with Self-Compacting concrete

    Directory of Open Access Journals (Sweden)

    M. Y. M. Omar

    Full Text Available This paper presents the results of reinforced concrete columns strengthened by addition of a self-compacting concrete overlay at the compressed and at the tensioned face of the member, with and without addition of longitudinal steel bars. Eight columns were submit- ted to loading with an initial eccentricity of 60 mm . These columns had 120 mm x 250 mm of rectangular cross section, 2000 mm in length and four longitudinal reinforcement steel bars with 10 mm in diameter. Reference columns P1 and P2 were tested to failure without any type of rehabilitation. Columns P3 to P8 were loaded to a predefined load (close to the initial yield point of tension reinforce- ment, then unloaded and strengthened for a subsequent test until failure. Results showed that the method of rehabilitation used was effective, increasing the loading capacity of the strengthened pieces by 2 to 5 times the ultimate load of the reference column.

  17. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  18. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    International Nuclear Information System (INIS)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-01-01

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  19. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nerilli, Francesca [Unicusano - Università degli Studi Niccolò Cusano Telematica Roma, 00166 Rome (Italy); Vairo, Giuseppe [Università degli Studi di Roma “Tor Vergata”- (DICII), 00133 Rome (Italy)

    2016-06-08

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  20. Strengthening of reinforced concrete beams with basalt-based FRP sheets: An analytical assessment

    Science.gov (United States)

    Nerilli, Francesca; Vairo, Giuseppe

    2016-06-01

    In this paper the effectiveness of the flexural strengthening of RC beams through basalt fiber-reinforced sheets is investigated. The non-linear flexural response of RC beams strengthened with FRP composites applied at the traction side is described via an analytical formulation. Validation results and some comparative analyses confirm soundness and consistency of the proposed approach, and highlight the good mechanical performances (in terms of strength and ductility enhancement of the beam) produced by basalt-based reinforcements in comparison with traditional glass or carbon FRPs.

  1. Structural Behavior of Fibrous Reinforced Concrete Hollow Core One-Way Slabs Strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    وصيف مجيد

    2016-02-01

    Full Text Available A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self-weight of the construction. The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRPThis study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers (ا, and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to (96.2%, as has been observed decrease in deflection value of models after strengthening by (CFRP.It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP.

  2. structural behavior of fibrous reinforced concrete hollowcore one-way slabs strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    wassif khudair majeed

    2016-02-01

    Full Text Available Abstract A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self weight of the construction . The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs  reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRP This study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers ( , and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to ( 96.2% , as has been observed decrease in deflection value of models after strengthening by (CFRP. It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP .

  3. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  4. Reinforced glass beams composed of annealed, heat-strengthened and fully tempered glass

    NARCIS (Netherlands)

    Louter, P.C.; Belis, J.L.I.F.; Bos, F.P.; Veer, F.A.

    Annealed, heat-strengthened and fully tempered SG-laminated reinforced glass beam specimens were subjected to four-point bending tests to investigate the effects of glass type on their structural response. During the test the beams showed linear elastic response until initial glass failure, followed

  5. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    Science.gov (United States)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  6. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    International Nuclear Information System (INIS)

    Martínez-Cruz, E; Martínez-López, M; Martínez-Barrera, G

    2013-01-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  7. Collaboration of polymer composite reinforcement and cement concrete

    Science.gov (United States)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  8. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  9. Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2013-01-01

    This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...

  10. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  11. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...

  12. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  13. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, Ankita [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Srivastava, Mukul [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Nanomaterials and Applications Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Kumar, R. Manoj [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Lahiri, Indranil [Nanomaterials and Applications Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India); Lahiri, Debrupa, E-mail: dlahifmt@iitr.ac.in [Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667 (India)

    2017-05-17

    Graphene nanoplatelets (GNP) reinforced aluminum matrix composites, with ≤5 wt% GNP content, were synthesized by spark plasma sintering (SPS). GNPs were found to withstand severe conditions of high pressure and temperature during processing. Strength of composite was observed to be depending on the content and uniform dispersion of GNP in aluminum matrix, as verified by scanning electron micrographs. X-ray diffraction analysis confirmed that no reaction products exist at Al-GNP interface in significant amount. Instrumented indentation studies revealed improvement in hardness by 21.4% with 1 wt% GNP. This is due to the presence of stronger reinforcement, which provides high resistance to matrix against deformation. Improvement in yield strength and tensile strength was 84.5% and 54.8%, respectively, with 1 wt% GNP reinforcement. Properties deteriorated at higher concentration due to agglomeration of GNP. Reinforcing effect of GNPs, in terms of strengthening of composite, is found to be dominated by Orowan strengthening mechanism. Pinning of grains boundaries by GNPs led to uniform grain size distribution in the composites structure. Overall, graphene reinforcement has offered 86% improvement in specific strength of aluminum matrix.

  14. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  15. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    International Nuclear Information System (INIS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-01-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete

  16. The Method of Calculating the Settlement of Weak Ground Strengthened with the Reinforced Sandy Piles

    Directory of Open Access Journals (Sweden)

    Maltseva Tatyana

    2016-01-01

    Full Text Available The paper presents an engineering method for calculating the weak clay base, strengthened with sandy piles reinforced along the contour. The method is based on the principle of layer-by-layer summation, which is used when designing the bases and foundations. The novelty of the suggested method lies in the taking account of the soil reaction along the pile lateral surface and the impact of external vertical loads on the vertical displacement of the base.

  17. Bond Behavior of Wet-Bonded Carbon Fiber-Reinforced Polymer-Concrete Interface Subjected to Moisture

    OpenAIRE

    Yiyan Lu; Tao Zhu; Shan Li; Zhenzhen Liu

    2018-01-01

    The use of carbon fiber-reinforced polymer (CFRP) composite materials to strengthen concrete structures has become popular in coastal regions with high humidity levels. However, many concrete structures in these places remain wet as a result of tides and wave-splashing, so they cannot be completely dried before repair. Therefore, it is vital to investigate the effects of moisture on the initial and long-term bond behavior between CFRP and wet concrete. This research assesses the effects of mo...

  18. Additive manufacturing of short and mixed fibre-reinforced polymer

    Science.gov (United States)

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  19. Strengthening Performance of PALF-Epoxy Composite Plate on Reinforced Concrete Beams

    Science.gov (United States)

    Chin, Siew C.; Tong, Foo S.; Doh, Shu I.; Gimbun, Jolius; Ong, Huey R.; Serigar, Januar P.

    2018-03-01

    This paper presents the effective strengthening potential of pineapple leaves fiber (PALF)-epoxy composite plate on reinforced concrete (RC) beam. At first the PALF is treated with alkali (NaOH) and its morphology is observed via scanning electron microscope (SEM). The composite plates made of PALF and epoxy with fiber loading ranging from 0.1 to 0.4 v/v was tested for its flexural behaviour. The composite was then used for external RC beam strengthening. The structural properties of RC beams were evaluated and all the beams were tested under four-point bending. It was found that the flexural strength increased as the fiber volume ratio increases. The maximum flexural strength (301.94 MPa) was obtained at the fiber volume ratio of 40%. The beam strengthened with PALF-epoxy composite plate has a 7% higher beam capacity compared to the control beam. Cracks formed at the edge of the plate of PALF-strengthened beams resulted in diagonal cracking. Result from this work shows that the PALF-epoxy composite plate has the potential to be used as external strengthening material for RC beam.

  20. Parameters That Effect the Interfacial Stresses in Fibre Reinforced Plastic Laminates Strengthened Rc Beams

    Directory of Open Access Journals (Sweden)

    Barış Sayın

    2010-01-01

    Full Text Available The use of externally bonded fiber-reinforced plastic (FRP laminates for strengthening of reinforced concrete beams has become an effective method. This method has been used because of the advantages of FRP materials such as their high strength-to-weight ratio, good corrosion resistance, and versatility in coping with different sectional shapes and corners. Many studies on this theme have been carried out since the early 1900s. In this study, interfacial stresses of reinforced concrete beams strengthened with FRP effect the parameters will be studied as experimental and numerical. Adhesives used in the beams applied to FRP's thickness, adhesive type and the state of the concrete surface, produced experimental samples are exposed to the bending effect will be studied as a comparative. Afterwards, by using the ANSYS® WB finite element program to model and analyze RC beams by externally bonding FRP will be carried out. Adhesive thickness, adhesive type, the concrete surface will be performed by entering the parameters for analysis of stress can be obtained as a result. Thus, the analytical expressions of stress and normal stress equations will establish should be modified. Finite element analysis and experimental results will be compared, compatibility investigated, the results and recommendations presented by the study be completed.

  1. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  2. Fique Fabric: A Promising Reinforcement for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA. The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS. The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.

  3. Self Healing Fibre-reinforced Polymer Composites: an Overview

    Science.gov (United States)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  4. Dispersion and Reinforcement of Nanotubes in High Temperature Polymers for Ultrahigh Strength and Thermally Conductive Nanocomposites

    National Research Council Canada - National Science Library

    Yang, Arnold C

    2007-01-01

    Fundamental approaches for controlled dispersion of multiwalled carbon nanotubes in polymers and the molecular reinforcement in their nanocomposites were studied to design and fabricate well-dispersed...

  5. Finite element analysis of Polymer reinforced CRC columns under close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Experimental and numerical results of two PCRC columns subjected to close-in detonation are presented in this paper. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description...

  6. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-02-01

    Full Text Available The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  7. Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique

    International Nuclear Information System (INIS)

    Verstrynge, E; Wevers, M; Ghiassi, B; Lourenço, P B

    2016-01-01

    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection. (paper)

  8. Microstructure and Strengthening Mechanisms of Carbon Nanotube Reinforced Magnesium Matrix Composites Fabricated by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Yoo, Seong Jin; Kim, Woo Jin

    2014-01-01

    A combination of accumulative roll bonding (ARB) and high-energy ball milling was used to fabricate carbon nano tube (CNT)-reinforced Mg composites in sheet form. CNT-Al composite powders synthesized using the high-energy ball-milling process, were coated on the surface of Mg sheets using either spraying or dipping methods. The coated sheets were stacked and then subjected to ARB. Formation of CNT-intermetallic compounds through inter-diffusion between Al and Mg, fragmentation of the CNTintermetallic compounds, and their dispersion into the matrix by plastic flow; as well as dissolution of the intermetallic compound particles into the matrix while leaving CNTs in the matrix, occurred in sequence during the ARB process. This eventually resulted in the uniform distribution of nano-sized CNT particles in the Mg matrix. As the thickness of the Mg sheet and of the coating layer of Al-CNT powder on the surface of the Mg sheet were similar, the dispersion of CNTs into the Mg matrix occurred more uniformly and the strengthening effect of adding CNTs was greater. The strengthening gained by adding CNTs was attributed to Orowan strengthening and dislocation-density increase due to a thermal mismatch between the matrix and the CNTs.

  9. Experimental analysis of reinforced concrete columns strengthened with self-compacting concrete and connectors

    Directory of Open Access Journals (Sweden)

    P. P. Nascimento

    Full Text Available There are many problems involving cases of destruction of buildings and other structures. The columns can deteriorate for several reasons such as the evolution and changing habits of the loads. The experimental phase of this work was based on a test involving nine reinforced concrete columns under combined bending and axial compression, at an initial eccentricity of 60 mm. Two columns were used as reference, one having the original dimensions of the column and the other, monolithic, had been cast along the thickness of the strengthened piece. The remaining columns received a 35 mm thick layer of self-compacting concrete on their compressed face. For the preparation of the interface between the two materials, this surface was scarified and furrowed and connectors were inserted onto the columns' shear reinforcement in various positions and amounts.As connectors, 5 mm diameter steel bars were used (the same as for stirrups, bent in the shape of a "C" with 25 mm coatings. >As a conclusion, not only the quantity, but mainly, the location of the connectors used in the link between substrate and reinforcement is crucial to increase strength and to change failure mode.

  10. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  11. Strength Analysis of the Carbon-Fiber Reinforced Polymer Impeller Based on Fluid Solid Coupling Method

    Directory of Open Access Journals (Sweden)

    Jinbao Lin

    2014-01-01

    Full Text Available Carbon-fiber reinforced polymer material impeller is designed for the centrifugal pump to deliver corrosive, toxic, and abrasive media in the chemical and pharmaceutical industries. The pressure-velocity coupling fields in the pump are obtained from the CFD simulation. The stress distribution of the impeller couple caused by the flow water pressure and rotation centrifugal force of the blade is analyzed using one-way fluid-solid coupling method. Results show that the strength of the impeller can meet the requirement of the centrifugal pumps, and the largest stress occurred around the blades root on a pressure side of blade surface. Due to the existence of stress concentration at the blades root, the fatigue limit of the impeller would be reduced greatly. In the further structure optimal design, the blade root should be strengthened.

  12. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  13. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    Directory of Open Access Journals (Sweden)

    R. Ananda Kumar

    2015-01-01

    Full Text Available Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral load reviews are also presented. This review paper is prepared to find out the performance of basalt fibre reinforced polymer BFRP composite retrofitted reinforced cement concrete single end bearing piles.

  14. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    Science.gov (United States)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  15. Strengthening of Reinforced Concrete Beam in Shear Zone by Compensation the Stirrups with Equivalent External Steel Plates

    Directory of Open Access Journals (Sweden)

    Khamail Abdul-Mahdi Mosheer

    2016-09-01

    Full Text Available An experimental study on reinforced concrete beams strengthened with external steel plates instead of shear stirrups has been held in this paper. Eight samples of the same dimensions and properties were used. Two of them were tested up to failure and specified as references beams; one with shear reinforcement and the other without shear reinforcement. Another samples without shear reinforcement were tested until the first shear crack occurs, then the samples strengthened on both sides with external steel plates as equivalent area of removed stirrups. The strengthened beams were divided into three groups according to the thickness of plates (1, 1.5, 2 mm, each group involved two beams; one bonded using epoxy and the other bonded using epoxy with anchored bolts. Finally, the strengthened beams tested when using anchored bolts with epoxy glue to bond plates. Where the increasing in maximum load is higher than that in reference beam with no internal stirrups reach to (75.46 –106.13% and has a good agreement with the control beam with shear reinforcement reach to (76.06 – 89.36% of ultimate load.

  16. On Healable Polymers and Fiber-Reinforced Composites

    Science.gov (United States)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  17. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  18. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  19. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  20. Preparation and characterization of corn reinforced polymer sheet of fibers

    International Nuclear Information System (INIS)

    Moreira, Tatiana Martinez; Seo, Emilia Satoshi Miyamaru

    2016-01-01

    There is a global trend in seeking plant fibers to replace the synthetic fibers to obtain reinforced composites aimed at the use of renewable resources. In this context, this paper aims to develop the process of preparing maize leaf fibers, characterizing them and adapting them for applications in the construction industry and develop a reinforced polymer composite with these fibers. Corn leaves were dried in environmental temperature, treated by mercerizing, then neutralized with acid solution and washed in running water. The characterization of the corn leaf fibers was carried out by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, specific surface area, thermogravimetry and specific mass. The mercerizing treatment was effective, because the maize fibers have characteristics similar to synthetic fibers, leading to a possibility of new technological uses. The polymeric composite material was developed by extrusion processes and injection and tested for tensile testing, differential scanning calorimetry and scanning electron microscopy, thus reused an organic waste that would be disposed of by inserting it in a technological process, contributing to the research and development of new polymeric materials as well as to reduce waste discarded as scrap. (author)

  1. The Modeling of Ultimate Bearing Capacity of Fiber Reinforced Polymer and Its acidic/alkaline Corrosion Mechanism Analysis

    Directory of Open Access Journals (Sweden)

    Qin Liping

    2014-01-01

    Full Text Available In this study, the overall property of fiber reinforced polymer (FRP was researched. It is currently widely used in all areas, mainly in civil engineering. The huge need of this material drives the research of its mechanical property and corrosion mechanism. It is proven that the FRP can significantly strengthen the whole structure due to the support of fiber. And by applying osmosis hypothesis into the explanation of corrosion of FRP, we concluded that its corrosion rate is much slower than common materials, like steel. Generally, based on these conclusions, FRP is suitable for most of the facilities in civil engineering.

  2. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  3. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    The theory for concrete structures strengthened with fiber reinforced polymer materials has been developing for approximately two decades, and there are at the present time numerous guidelines covering strengthening of many commonly encountered structural building elements. Strengthening of in...... that describes a unit width strip of a strengthened disk. The unit width strip is named a strengthened concrete tension member and contains a single tensile crack and four debonding cracks. Analysis of the member results in closed form expressions for the load-crack opening relationship. Further analysis...... of the response, results in the ability to determine and characterize the two-way crack propagation, i.e. the relationship between tensile cracking in the concrete and interface debonding between strengthening and concrete. Using the load-crack opening relationship from the strengthened concrete tension member...

  4. Study on an Improved Phosphate Cement Binder for the Development of Fiber-Reinforced Inorganic Polymer Composites

    Directory of Open Access Journals (Sweden)

    Zhu Ding

    2014-11-01

    Full Text Available Magnesium phosphate cement (MPC has been proven to be a very good repair material for deteriorated concrete structures. It has excellent adhesion performance, leading to high bonding strength with old concrete substrates. This paper presents an experimental study into the properties of MPC binder as the matrix of carbon fiber sheets to form fiber-reinforced inorganic polymer (FRIP composites. The physical and mechanical performance of the fresh mixed and the hardened MPC paste, the bond strength of carbon fiber sheets in the MPC matrix, the tensile strength of the carbon FRIP composites and the microstructure of the MPC matrix and fiber-reinforced MPC composites were investigated. The test results showed that the improved MPC binder is well suited for developing FRIP composites, which can be a promising alternative to externally-bonded fiber-reinforced polymer (FRP composites for the strengthening of concrete structures. Through the present study, an in-depth understanding of the behavior of fiber-reinforced inorganic MPC composites has been achieved.

  5. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  6. Behavior of masonry strengthened infilled reinforced concrete frames under in-plane load

    Directory of Open Access Journals (Sweden)

    Lila M. Abdel-Hafez

    2015-08-01

    The ductility of infilled frame strengthened with ferrocement was the best of all strengthened frames, while strengthening with GFRP increases its ultimate load carrying capacity but reduces its ductility.

  7. Thermo-mechanical durability of carbon fiber reinforced polymer strengthened reinforced concrete beams.

    Science.gov (United States)

    2009-07-20

    In recent years the Federal Highway Administration (FHWA) has identified a critical need to upgrade the transportation infrastructure in the United States. Of the nearly 600,000 bridges in the FHWA's bridge inventory, upwards of 90,000 bridges have b...

  8. The role of TiB2 in strengthening TiB2 reinforced aluminium casting composites

    International Nuclear Information System (INIS)

    Chen, Z; Kang, H; Zhao, Y; Zheng, Y; Wang, T

    2016-01-01

    With an aim of developing high quality in situ TiB 2 reinforced aluminium foundry alloy based composites, the conventional direct synthesis method was modified into a two-step route. In step one we optimized the halide salt route to fabricate in situ TiB 2 particulate reinforced aluminium matrix composites and in step two we investigated the effects of the Al-5wt.% TiB 2 composite, as a “master composite”, on strengthening the practical foundry alloys. The in situ formed TiB 2 particles play two roles while strengthening the composites: (1) The grain refinement effect that improves the quality of the alloy matrix; and (2) The interactions between the hard particulates and the matrix add extra increment to the material strength. In different alloy systems, TiB 2 may play distinct roles in these two aspects (figure 1). Further analysis of the strengthening mechanisms shows that particle agglomeration behaviour during solidification is responsible for the latter one. The present work details the role of TiB 2 in strengthening TiB 2 reinforced aluminium casting composites. (paper)

  9. Static and dynamic experimental study of strengthened reinforced short concrete corbel by using carbon fabrics, crack path in shear zone

    Directory of Open Access Journals (Sweden)

    I. Ivanova

    2015-10-01

    Full Text Available The paper presents an experimental analysis of tracking the path of the cracks and crack growth in strengthened or repair reinforced concrete short corbels bonded by carbon fiber fabrics under static and dynamic loads. The reinforced short concrete corbel is a used precast element, for industrial buildings and structures. In fact, their functioning interestingly unconventional is compared to classical beam type elements. Then the effects of bending and shearing are combined in this case. The horizontal reinforced steel is localized to resist to tensile strength induced in bending top and a transversal strength-absorbing contribution. The introduction of carbon fiber composite in the field of Civil Engineering allows to strengthen or repair reinforced concrete structures using adhesive. So the carbon fiber material has many advantages as its low weight, flexibility, easier handling and also interesting physicochemical properties. However maintenance of civil engineering works is to protect them by ensuring better sealing or limiting corrosion. Then strengthening is to repair structures by using bonding technique to compensate their rigidity loss and limit the cracking. This allows to improve their performance and durability. Bonding of composite material in tensile zone of corbel retrieves most tensile stress and allows the structure to extend their load-bearing capacity. The local behavior of the structure is measured by means of the extensometer technique based on electrical strain gauges. This technique allowed to measure strains of steel, carbon fiber fabrics and concrete. The results of this investigation showed that strengthened reinforced concrete corbel bonded by carbon fiber fabrics can improve the ultimate load to twice and stiffens less than a third. The ultimate load, strain and displacement of the specimen are compared to reference experimental model of monotonic and cyclic applied loads. The success of strengthening depends strongly

  10. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    Science.gov (United States)

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  11. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    Science.gov (United States)

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  12. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  13. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  14. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites

    OpenAIRE

    Meng Jiangyan; Wang Yunying

    2016-01-01

    As is known, factors in climate environment such as hygrothermal effect and UV may have a negative effect on the mechanical properties of fiber reinforced polymer-matrix composites, resulting in their strength and stiffness degraded. In this review, we summarize all the recent studies on the artificial climate aging, hygrothermal aging, and thermal-oxidation aging of fiber reinforced polymer-matrix composites, as well as their artificial accelerated aging and natural aging. In addition, studi...

  15. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  16. Comparative Analysis of the Reinforcement of Polymers with 2D-Nanofillers: Organoclay and Boron Nitride

    Science.gov (United States)

    Kozlov, G. V.; Kuvshinova, S. A.; Dolbin, I. V.; Koifman, O. I.

    2018-03-01

    Using the percolation reinforcement model, it has been shown that the main factor governing the degree of reinforcement of polymer/2D-nanofiller composites is the ability of a nanofiller to generate interfacial regions. This parameter is interrelated with two fundamental structural characteristics of a nanocomposite, i.e., the fractal dimension of its structure and the content of polymer matrix/nanofiller interfacial surfaces. The negative effect of high nanofiller anisotropy on the elasticity modulus of a nanocomposite is demonstrated.

  17. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    International Nuclear Information System (INIS)

    Alubaidy, M; Venkatakrishnan, K; Tan, B

    2010-01-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  18. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  19. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, Eric Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-26

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations and details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.

  20. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  1. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    International Nuclear Information System (INIS)

    Cabibbo, Marcello; Spigarelli, Stefano

    2011-01-01

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K were carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: → TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. → The evaluation has been extended to different compression temperature conditions. → Linear and Quadratic sum has been proposed and validated. → Hall-Petch was found to be the most prominent strengthening contributions.

  2. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  3. Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: Micromechanical numerical study

    DEFF Research Database (Denmark)

    Pontefisso, Alessandro; Mishnaevsky, Leon

    2016-01-01

    of nanocomposites with inclusions of arbitrary and complex shapes. The effect of curved, zigzagged, snakelike shapes of real carbon nanotubes, as well as re-stacking of graphene on the damage evolution was studied in the computational experiments based on the developed code. The potential of hybrid (carbon...... nanotubes and graphene) nanoscale reinforcement was studied with view on its effect of damage resistance. It was demonstrated that idealized, cylinder like models of carbon nanotubes in polymers lead to an underestimation of the stress concentration and damage likelihood in the nanocomposites. The main...... damage mechanisms in CNT reinforced polymers are debonding and pull-out/fiber bridging, while in graphene reinforced polymers the main role is played by crack deviation and stack splitting, with following micro-crack merging. The potential of hybrid (carbon nanotubes and graphene) nanoscale reinforcement...

  4. RETROVIT KOLOM PENDEK BETON BERTULANG PERSEGI DENGAN PERKUATAN EKSTERNAL CARBON FIBER-REINFORCED POLYMER DI BAWAH PENGARUH PEMBEBANAN SIKLIK

    Directory of Open Access Journals (Sweden)

    Agus Sulistiawan

    2014-01-01

    Full Text Available The retrofit of non-slender square concrete column with an external strength­ener of carbon fiber-reinforced polymer (CFRP under the influence of cyclic load. The purpose of this study is to know the increase of strength and ductility of a column structure element that has an initial damage, then it is fixed and strengthened by CFRP external strengthening. The column structure element is tested by giving a constant axial load and varying the cyclic load using a displacement control. In this research, two specimens t are used, C-1 column (original column and C-1RC column (retrofit column. The results of the study show that (1 the effectiveness of the C-1CR’s restraint and moment of force are increased by 1.58 times and 52.78% compared to the C-1’s ones, and (2 the installation of CFRP reinforcement increases the strength in accepting lateral load by 52.15% and decreases of ductility by 52.12%.   Tujuan penelitian ini mengetahui peningkatan kekuatan dan daktilitas ele­men struktur kolom yang mengalami kerusakan awal, kemudian diperbaiki, dan diperkuat dengan perkuatan eksternal carbon fiber-reinforced polymer (CFRP. Pengujian ter­hadap elemen struktur kolom dilakukan dengan memberikan beban aksial yang konstan dan memvariasikan beban siklik dengan kontrol perpindahan. Dalam penelitian ini digunakan dua spesimen yaitu kolom C-1 (kolom original dan kolom C-1RC (kolom retrofit. Hasil penelitian menunjukkan (1 efektifitas pengekangan C-1CR meningkat 1,58 kali dan kekuatan terhadap momen meningkat sebesar 52,78% dibanding kolom C-1, dan (2  pemasangan perkuatan CFRP memberikan peningkatan kekuatan dalam menerima beban lateral sebesar 52,15% dan penurunan daktilitas sebesar -52,12%.

  5. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  6. Mechanical reinforcement and segmental dynamics of polymer nanocomposites

    Science.gov (United States)

    Gong, Shushan

    The addition of nanofiller into a polymer matrix will dramatically change the physical properties of polymer. The introduction of nanofiller makes the polymer more applicable in many industries, such as automobile tires, coatings, semiconductors, and packaging. The altered properties are not the simple combination of the characters from the two components. The interactions in polymer nanocomposites play an important role in determining the physical properties. This dissertation focuses on the mechanical properties of polymer nanocomposites (silica/poly-2-vinylpyridine) above their glass transition temperature Tg, as a model for automobile tires, which utilize small silica particles in crosslinked rubber far above Tg. We also investigate the impacts of the interaction between particle filler and polymer matrix on the altered mechanical properties. Dielectric relaxation spectroscopy (DRS) is used to study the glassy bound polymer layers formed around the particles. The results show evidence of the existence of immobilized polymer layers at the surface of each nanoparticle. At the same time, the thickness of the immobilized polymer layers is quantified and formed to be around 2 nm. Then we consider particles with glassy bound polymer layers are bridged together (either rubbery bridge or glassy bridge) by polymer chains and form small clusters. Clusters finally percolate to form a particle-polymer network as loading fraction increases. Rheology is used to study the network formation, and to predict the boundary of rubbery bridge and glassy bridge regimes. The distance between particles determines the type of polymer bridging. The particle spacing larger than Kuhn length makes flexible (rubbery) bridge with rheology described by a flexible Rouse model for percolation. When the spacing is shorter than the Kuhn length (~ 1nm), stiffer bridge forms instead, which is called glassy bridge. The mechanical differences between rubbery bridge and glassy bridge, and the effect of

  7. Articularities of Analysis and Behaviour of Concrete Beams Reinforced with Fibrous Polymer Composite Bars

    Directory of Open Access Journals (Sweden)

    N. Ţăranu

    2006-01-01

    Full Text Available Traditional steel based reinforcement systems for concrete elements are facing with serious problems mainly caused by corrosion due to chemically aggressive environments and salts used in deicing procedures, especially in case of bridge steel reinforced concrete girders. Also in some cases special applications require structural members with magnetic transparency. An alternative to this major problem has recently become the use of fiber reinforced polymer (FPR composite bars as internal reinforcement for concrete beams. The particularities of their mechanical properties are making the design process a difficult task for engineers, numerous research centers being involved in correcting this situation. The general aspects concerning the conceiving of FR.P reinforced concrete beams are firstly analyzed, compared to those reinforced with steel bars. Some results of a Finite Element Analysis, as part of a complex program which also implies full scale testing of FRP reinforced beams subjected to bending, are given and discussed in the paper. The low elasticity modulus presented by glass fiber reinforced polymer (GFRP bars does not justify its use from structural point of view when deflection is the limiting condition but for corrosive resistance reasons and special electromagnetic properties this system can be promoted.

  8. Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading

    Directory of Open Access Journals (Sweden)

    Valentino Paolo Berardi

    2012-11-01

    Full Text Available Polymer concretes (PCs represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section. The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.

  9. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  10. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  11. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  12. Comparison of Properties of Polymer Composite Materials Reinforced with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2015-04-01

    Full Text Available Carbon nanotubes because of their high mechanical, optical or electrical properties, have found use as semiconducting materials constituting the reinforcing phase in composite materials. The paper presents the results of the studies on the mechanical properties of polymer composites reinforced with carbon nanotubes (CNT. Three-point bending tests were carried out on the composites. The density of each obtained composite was determined as well as the surface roughness and the resistivity at room temperature.

  13. Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Soydan [ORNL; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Nelson, Kim [American Process Inc.

    2016-07-13

    ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.

  14. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  15. Development of Composite Made of HDPE and Fiber Reinforced Polymer Dust

    International Nuclear Information System (INIS)

    Muhamad Noor Izwan Ishak; Ismail Mustapha; Mohd Reusmazran Yusof; Yusof Abdullah; Nor Pai'za Mohamad Hasan; Mohamad Ridzuan Ahamad; Md Fakarudin Ab Rahman; Hafizal Yazid; Ainul Mardhiah Terry; Airwan Affandi Mahmood; Nurliyana Abdullah

    2016-01-01

    Full text: Composite of High Density Polyethylene and Fiber Reinforced Polymer Dust (HDPE/ FRPD) were prepared by melt mixing technique. The blend was mixed and compression molded by hydraulic press at 150 degree Celsius. Effect of blend ratio on mechanical properties of the developed composite was determined. Tensile properties of the blends found to show decreasing trend with addition of FRPD. While impact strength and hardness properties showed promising result. Reuse of ' Fiber Reinforced Polymer ' dust can be improved by the present invention. (author)

  16. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  17. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    International Nuclear Information System (INIS)

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-01-01

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete

  18. Green Route Fabrication of Graphene Oxide Reinforced Polymer Composites with Enhanced Mechanical Properties

    International Nuclear Information System (INIS)

    Mahendran, R.; Sridharan, D.; Santhakumar, K.; Gnanasekaran, G.

    2016-01-01

    A facile and “Green” route has been applied to fabricate graphene oxide (GO) reinforced polymer composites utilizing “deionized water” as solvent. The GO was reinforced into water soluble poly(vinyl alcohol) (PVA) and poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) matrix by ultrasonication followed by mechanical stirring. The incorporation and dispersion of the GO in the polymer matrix were analyzed by XRD, FE-SEM, AFM, FT-IR, and TGA. Further, the FE-SEM and AFM images revealed that the surface roughness and agglomeration of the GO in the polymer matrix increased by increasing its concentration. Ionic exchange capacity, proton conductivity, and tensile texture results showed that the reinforcement of GO in the polymer matrix enhances the physicochemical properties of the host polymer. These PVA/PAMPS/GO nano composites showed improved mechanical stability compared to the pristine polymer, because of strong interfacial interactions within the components and homogeneous dispersion of the GO sheets in the PVA/PAMPS matrix.

  19. Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Kragh-Poulsen, Jens C.; Hoang, Cao Linh; Goltermann, Per

    2011-01-01

    This paper deals with the application of a plasticity model for shear strength estimation of fibre reinforced concrete beams without stirrups. When using plastic theory to shear problems in structural concrete, the so-called effective strengths are introduced, usually determined by calibrating...... the plastic solutions with tests. This approach is, however, problematic when dealing with fibre reinforced concrete (FRC), as the effective strengths depend also on the type and the amount of fibres. In this paper, it is suggested that the effective tensile strength of FRC can be determined on the basis...

  20. PENGGUNAAN CARBON FIBER-REINFORCED POLYMER SEBAGAI PERKUATAN KOLOM BETON BERTULANG AKIBAT BEBAN SIKLIK UNTUK MENINGKATKAN DAKTILITAS PERPINDAHAN STRUKTUR

    Directory of Open Access Journals (Sweden)

    Karmila Achmad

    2014-01-01

    Full Text Available The use of carbon fiber-reinforced polymer (CFRP as a concrete column re­inforcement in order to improve the structure displacement ductility caused by a cyclic load. The aim of this research is to improve the displacement ductility of a column specimen by giving CFRP strengthener (Carbon Fiber Reinforced Polymer. Two full-scale specimens are used, C-1 (original column and C-1C (column with CFRP strengthener 1 layer. The tests on C-1 and C-1C are respectively shown on the following results: Pmax is 278.9 kN and 432.2 kN, dmax is 53.24 mm and 96.46 mm, and Mmax is 328.04 kNm and 509.63 kNm. The displacement ductility of C-1 are 6.70, 6.11 and 5.44, and the displacement ductility of C-1C are 11.02, 12.75, and 11.89. The percentages of the increase of displacement ductility in column C-1C compared to C-1 are 64.48%, 108.74% and 118.68%  respectivelyfor plastic hinge zone, half high of the column effectiveness and as high as the column effectiveness.   Penelitian ini bertujuan untuk meningkatkan daktilitas perpindahan pada spe­simen kolom yang diberi perkuatan CFRP (Carbon Fiber Reinforced Polymer. Ada dua spesimen kolom skala penuh yang digunakan, yaitu C-1 (kolom original dan C-1C (kolom dengan perkuatan CFRP 1 lapis. Hasil penelitian untuk masing-masing C-1 dan C-1C adalah Pmax sebesar 278,9 kN dan 432,2 kN, dmax sebesar 53,24 mm dan 96,46 mm, serta Mmax sebesar 328,04 kNm dan 509,63 kNm. Hasil daktilitas perpindahan untuk C-1 adalah 6,70; 6,11 dan 5,44, sedang C-1C adalah 11,02; 12,75 dan 11,89. Peningkatan persentase daktilitas per­pindahan kolom C-1C terhadap C-1 adalah 64,48%, 108,74% dan 118,68% masing-masing untuk zona sendi plastis, setengah tinggi efektif kolom dan setinggi efektif kolom.

  1. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    Wintec

    initiated in our laboratory on synthesis and study of pro- perties of Hibiscus sabdariffa fibre reinforced urea– formaldehyde (U–F) resin matrix based biocomposites. 2. Experimental. 2.1 Material and methods. Urea (Qualigens Chemicals Ltd), formaldehyde solution. (Qualigens Chemicals Ltd.) and sodium hydroxide (Quali-.

  2. Les polymères auto-renforcés à cristaux liquides Self-Reinforcing Liquid-Crystal Polymers

    Directory of Open Access Journals (Sweden)

    Dorbon M.

    2006-11-01

    Full Text Available Les polymères auto-renforcés à cristaux liquides (PARCL sont des matériaux dont les molécules, des polymères organiques, sont susceptibles de s'auto-orienter les unes par rapport aux autres. Cette propriété leur confère des caractéristiques mécaniques proches de celles des acier: pour des poids plus faibles sans qu'il soit nécessaire d'avoir recours à des fibres renforçantes. Il existe deux types de PARCL: ceux pouvant s'orienter en solution, qualifiés de lyotropiques, et ceux pouvant s'orienter à l'état fondu, appelés thermotropiques. Des fibres en poly (p-phénylène térephtalamide PPT, PARCL de type lyotropique, sont disponibles commercialement et connaissent déjà de nombreuses applications. Les PARCL thermotropiques n'existent pas encore sur le marché mais sont porteurs de nombreux espoirs car ils sont susceptibles d'être moulés et donc de prendre les formes les plus diverses, ce qui n'est pas le cas de ceux de type lyotropique. Self-reinforcing liquid-crystal polymers are materials in which the molecules, i. e. organic polymers, are capable of orienting themselves in relation to one another. This property gives them mechanical characteristics close to those of steels yet of much less weight without having to use reinforcing fibers. There are two types of self-reinforcing liquid-crystal polymers: (i those capable of orienting themselves in solution, called Iyotropic, and (ii those capable of orienting themselves in a molten state, called thermotropic. Poly (p-phenylene terephthalamide fibers, self-reinforcing liquid-crystal polymers of the Iyotropic type, are commercially available and have already found numerous applications. Thermotropic self-reinforcing liquid-crystal polymers are not yet on the market but seem to be very promising because they are capable of being molded and hence of taking on a wide variety of shapes, which is not the case of those of the lyotropic type.

  3. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures

    International Nuclear Information System (INIS)

    Lieboldt, M.; Mechtcherine, V.

    2013-01-01

    The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement, the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well

  4. Asset management business model for design, realization, and maintenance of fibre reinforced polymer bridges

    NARCIS (Netherlands)

    Sebastian, R.

    2013-01-01

    This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP) for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7) titled Trans-IND and PANTURA. FRP has

  5. Laser surface treatment for enhanced titanium to carbon fiber-reinforced polymer adhesion

    NARCIS (Netherlands)

    Palavra, Armin; Coelho, Bruno N.; de Hosson, Jeff Th. M.; Lima, Milton S. F.; Carvalho, Sheila M.; Costa, Adilson R.

    The adhesion between carbon fiber-reinforced polymer (CFRP) and titanium parts can be improved by laser surface texturing before gluing them together. Here, a pulsed Nd:YAG laser was employed before bonding of the textured surfaces using an epoxy paste adhesive. To investigate the influence of the

  6. STUDY OF SINGLE WALLED CARBON NANOTUBE REINFORCED POLYMER COMPOSITES BY HANSEN SOLUBILITY PARAMETERS

    DEFF Research Database (Denmark)

    Ma, Jing

    reinforcement of the polymer by the addition of SWNTs. Existence of agglomerates, voids, and the lower glass transition temperature of epoxy resin, may give the negative effect on the mechanical properties of nanocomposite materials. In the design aspect of the composite material, HSP could help match SWNTs...

  7. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  8. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  9. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    International Nuclear Information System (INIS)

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie

    2017-01-01

    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.

  10. Electron beam irradiation in natural fibres reinforced polymers (NFRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kechaou, B. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Salvia, M. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Fakhfakh, Z. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Juve, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Boufi, S. [LSME-Faculte des Sciences de Sfax, 3018 Sfax (Tunisia); Kallel, A. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Treheux, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France)], E-mail: daniel.treheux@ec-lyon.fr

    2008-11-15

    This study focuses on the electric charge motion in unsatured polyester and epoxy composites reinforced by natural fibres of Alfa type, treated by different coupling agents. The electric charging phenomenon is studied by scanning electron microscopy mirror effect (SEMME) coupled with the induced current method (ICM). Previously, using the same approach, glass fibre reinforced epoxy (GFRE) was studied to correlate mechanical [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Composites Science and Technology 64 (2004) 1467], or tribological [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Dielectric and friction behaviour of unidirectionalglass fibre reinforced epoxy (GFRE), Wear, 265 (2008) 763.] properties and dielectric properties. It was shown that the dielectric properties of the fibre-matrix interfaces play a significant role in the optimization of the composite. This result seems to be the same for natural fibre composites: the fibre-matrix interfaces allow a diffusion of the electric charges which can delocalize the polarization energy and consequently delay the damage of the composite. However, a non-suited sizing can lead to a new trapping of electric charges along these same interfaces with, as a consequence, a localization of the polarisation energy. The optimum composite is obtained for one sizing which helps, at the same time, to have a strong fibre-matrix adhesion and an easy flow of the electric charges along the interface.

  11. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    International Nuclear Information System (INIS)

    Mistica, R.; Sood, D.K.; Janardhana, M.N.

    1993-01-01

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs

  12. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R; Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M N [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1994-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  13. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M.N. [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1993-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  14. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  15. Measurement of defects in carbon fiber reinforced polymer drilled

    Directory of Open Access Journals (Sweden)

    Pascual Víctor

    2017-01-01

    Full Text Available Increasingly, fiber-reinforced materials are more widely used because of their good mechanical properties. It is usual to join pieces of these materials through screws and rivets, for which it is necessary to make a hole in the piece, usually by drilling. One of the problems of use CFRP resides in the appearance of defects due to the machining. The main defect to be taken into account is the delamination. Delamination implies poor tolerance when assembling parts, reducing the structural integrity of the part, and areas with high wear, as a series of stresses arise when mounting the screws. Much has been published about delamination and the factors that influence its appearance, so we are not going to focus on it. The present study aims to quantify and measure the defects associated with the drilling of compounds reinforced with carbon fibers, in relation to the cutting parameters used in each case. For this purpose, an optical measurement system and a posterior digital image processing will be used through Deltec Vision software.

  16. Machining and characterization of self-reinforced polymers

    Science.gov (United States)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.

  17. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebényi, G.; Romhány, G.; Vajna, B.; Czvikovszky, T.

    2012-01-01

    A small amount — less than 0.5% — carbon nanotube reinforcement may improve the mechanical properties of epoxy based composite materials significantly. The basic technical problem on one side is the dispersion of the nanotubes into the viscous matrix resin, namely, the fine powder-like — less than 100 nanometer diameter — nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, which is determining the success of the reinforcement, requires some efficient adhesion promoting treatment. The goal of our research was to give one such treatment capable of industrial size application. A two step curing epoxy/vinylester resin process technology has been developed where the epoxy component has been cured conventionally, while the vinylester has been cured by electron treatment afterwards. The sufficient irradiation dose has been selected according to Raman spectroscopy characterization. Using the developed hybrid resin system hybrid composites containing carbon fibers and multiwalled carbon nanotubes have been prepared. The effect of the electron beam induced curing of the vinylester resin on the mechanical properties of the composites has been characterized by three point bending and interlaminar shear tests, which showed clearly the superiority of the developed resin system. The results of the mechanical tests have been supported by AFM studies of the samples, which showed that the difference in the viscoelastic properties of the matrix constituents decreased significantly by the electron beam treatment.

  18. Prediction of Elastic Constants of the Fuzzy Fibre Reinforced Polymer Using Computational Micromechanics

    Science.gov (United States)

    Pawlik, Marzena; Lu, Yiling

    2018-05-01

    Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.

  19. Seismic Retrofitting: Reinforced Concrete (RC shear wall versus Reinforcement of RC element by Carbon Fiber Reinforced Polymer (CFRP using PUSHOVER analysis

    Directory of Open Access Journals (Sweden)

    Yahya RIYAD

    2016-12-01

    Full Text Available Seismic retrofitting of constructions vulnerable to earthquakes is a current problem of great political and social relevance. During the last sixty years, moderate to severe earthquakes have occurred in Morocco (specifically in Agadir 1960 and Hoceima 2004. Such events have clearly shown the vulnerability of the building stock in particular and of the built environment in general. Hence, it is very much essential to retrofit the vulnerable building to cope up for the next damaging earthquake. In this paper, the focus will be on a comparative study between two techniques of seismic retrofitting, the first one is a reinforcement using carbon fiber reinforced polymer (CFRP applied to RC elements by bonding , and the second one is a reinforcement with a shear wall. For this study, we will use a non-linear static analysis -also known as Pushover analysis - on a reinforced concrete structure consisting of beams and columns, and composed from eight storey with a gross area of 240 m², designed conforming to the Moroccan Seismic code[1].

  20. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  1. Applications of Fiber-Reinforced Polymers in Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies are these years entering the market of functional final parts. Initial research has been performed targeting the integration of fibers into additive manufactured plastic composites. Major advantages, among others, are for example increased tensile strength...... and Young's modulus. Key challenges in the field, as of now, are proper fiber placement, fiber seizing, an increased knowledge in the used materials and how they are applied into engineering solutions through proper control of the additive manufacturing process. The aim of this research is the improved...... understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization...

  2. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  3. Flexural behavior of reinforced concrete beam with polymer coated pumice

    Science.gov (United States)

    Nainggolan, Christin Remayanti; Wijatmiko, Indradi; Wibowo, Ari

    2017-09-01

    Sustainable development has become an important issue due to the increasing consideration of preserving the nature. Many alternative for coarse aggregate replacement have been investigated ranging from natural and fabricated aggregates. In this study, natural aggregate pumice was investigated since it offers lower density that give paramount benefit in reducing total building weight and hence reducing the earthquake excitation effect and optimizing the structural dimension. However, the characteristic of porous surfaces of pumice causes excessive water absorption during concrete mixing process. Therefore, to reduce the additional water, the pumice aggregates were coated with polymer. The tested specimens consisted of normal concrete beams (NCB), uncoated pumice aggregate concrete beam (UPA) and polymer coated pumice aggregate concrete beam (PCP). The objective of the research was to obtain the effect of coating on the pumice aggregate to the flexural behavior of concrete beams. The lateral load-displacement behavior, ductility and collapse mechanism were studied. The results showed that there were only marginal drop on the load-carrying capacity of the pumice aggregate beam compared to those of normal beam. Additionally, the ductility coefficient of specimens UPA and PCP decreased of 11,97% and 14,03% respectively compared to NCB, and the ultimate load capacity decreased less than 1%. Overall, the pumice aggregate showed good characteristic for replacing normal coarse aggregate.

  4. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  5. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Täljsten, Björn

    2012-01-01

    force, and the presence of a deviator were investigated. The results were compared to those observed with analogous beams prestressed with steel tendons, common beam theory, and predictions made using an analytical model adapted from the literature. It was found that steel and CFRP tendons had very...... similar effects on the structural behavior of the strengthened beams; the minor differences that were observed are attributed to the difference between the modulus of elasticity of the CFRP and the steel used in the tests. The models predicted the beams' load-bearing behavior accurately but were less...

  6. A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    C. H. Lee

    2014-01-01

    Full Text Available Natural fibre is a well-known reinforcement fibre in polymer-matrix Composites (PMC lately. Natural fibre has fast growing and abundance properties which make it available at very low cost. For kenaf fibre there is long lists of research projects which have been done regarding its behaviour, and properties and modification made to it. In this paper, fire flammability is the main concern for natural fibre reinforced polymer (NFRP composites especially kenaf fibre. To estimate its flammability, a wide range of factors can be considered such as fibre content, type of matrices, pH conditions, treatment, and fire retardant (FR filler’s type. The most important criteria are the ignition time, rate of propagation, and fire behavior. thermogravimetric analysis (TGA, different scanning calorimetric (DSC, and dynamic mechanical analysis (DMA are the three most famous methods used to investigate the fire behaviour of composites.

  7. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  8. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    Science.gov (United States)

    Abd El Baky, Hussien

    --slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical

  9. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  10. Investigation Characteristics Of Pulp Fibers AS Green Potential Polymer Reinforcing Agents

    OpenAIRE

    Masruchin, Nanang; Subyakto

    2012-01-01

    Three kinds of pulp fiber (i.e. kenaf, pineapple and coconut fiber)were characterized as reinforcing agents in compositematerials to be applied at automotive interior industry.Abetter understanding on characteristics of fiber will lead to enhance interface adhesion between fiber and matrices. Furthermore, it will improve the properties of polymer significantly. Chemical, surface compositions as well as morphology of pulp fiber were investigated using TAPPI standard test method, Fourier Transf...

  11. Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures

    OpenAIRE

    Viriyavudh Sim; Woo Young Jung

    2017-01-01

    Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall perform...

  12. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  13. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    International Nuclear Information System (INIS)

    Bang, Hyejin; Cho, Chongdu

    2017-01-01

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  14. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)

    2017-08-15

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  15. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  16. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  17. Cyclic behavior, development, and characteristics of a ductile hybrid fiber-reinforced polymer (DHFRP) for reinforced concrete members

    Science.gov (United States)

    Hampton, Francis Patrick

    Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3

  18. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  19. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  20. A Testing Platform for Durability Studies of Polymers and Fiber-reinforced Polymer Composites under Concurrent Hygrothermo-mechanical Stimuli

    Science.gov (United States)

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-01-01

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus. PMID:25548950

  1. A testing platform for durability studies of polymers and fiber-reinforced polymer composites under concurrent hygrothermo-mechanical stimuli.

    Science.gov (United States)

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-12-11

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus.

  2. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  3. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.

    Science.gov (United States)

    Segerström, Susanna; Ruyter, I Eystein

    2007-09-01

    Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.

  4. Experimental Study on Unconfined Compressive Strength of Organic Polymer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-01-01

    Full Text Available The natural sand is loose in structure with a small cohesive force. Organic polymer can be used to reinforce this sand. To assess the effectiveness of organic polymer as soil stabilizer (PSS, a series of unconfined compressive strength tests have been performed on reinforced sand. The focus of this study was to determine a curing method and a mix design to stabilize sand. The curing time, PSS concentration, and sand density were considered as variables in this study. The reinforcement mechanism was analyzed with images of scanning electron microscope (SEM. The results indicated that the strength of stabilized sand increased with the increase in the curing time, concentration, and sand density. The strength plateaus are at about curing time of 48 h. The UCS of samples with density of 1.4 g/cm3 at 10%, 20%, 30%, 40%, and 50% PSS concentration are 62.34 kPa, 120.83 kPa, 169.22 kPa, 201.94 kPa, and 245.28 kPa, respectively. The UCS of samples with PSS concentration of 30% at 1.4 g/cm3, 1.5 g/cm3, and 1.6 g/cm3 density are 169.22 kPa, 238.6 kPa 5, and 281.69 kPa, respectively. The chemical reaction between PSS and sand particle is at its microlevel, which improves the sand strength by bonding its particles together and filling the pore spaces. In comparison with the traditional reinforcement methods, PSS has the advantages of time saving, lower cost, and better environment protection. The research results can be useful for practical engineering applications, especially for reinforcement of foundation, embankment, and landfill.

  5. Microstructural characterization of PAN based carbon fiber reinforced nylon 6 polymer composites

    Science.gov (United States)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2018-04-01

    Microstructural characterization of nylon 6/polyacrolonitrile based carbon fibers (PAN-CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o-Ps lifetime (τ3), o-Ps intensity (I3) and fractional free volume (Fv) of nylon 6/PAN-CF composites are correlated with the mechanical properties viz., Tensile strength and Young's modulus. The Fv show negative deviation with the reinforcement of 10 to 40 wt% of PAN-CF from the linear additivity relation. The negative deviation in nylon 6/PAN-CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN-CF. This is evident from Fourier Transform Infrared Spectrometry (FTIR) studies. The FTIR results suggests that observed negative deviation in PALS results of nylon 6/PAN-CF reinforced polymer composites is due to the induced chemical interaction at N-H-O sites. The improved tensile strength (TS) and Young's modulus (YM) in nylon 6/PAN-CF reinforced polymer composites is due to AS4C (surface treated and epoxy coated) PAN-CF has shown highest adhesion level due to better stress transfer between nylon 6 and PAN-CF.

  6. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  7. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    Science.gov (United States)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  8. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  9. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  10. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  11. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  12. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    Science.gov (United States)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  13. FRP strengthening of RC walls with openings

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Sas, Gabriel; Täljsten, Björn

    2009-01-01

    Strengthening reinforced concrete (RC) walls with openings using fibre reinforced polymers (FRP) has been experimentally proven to be a viable rehabilitation method. However, very few theoretical investigations are reported. In this paper two methods of analysis are presented. Since openings vary...... in size, the analysis of a strengthened wall can be divided into frame idealization method for large openings, and combined disk and frame analysis for smaller openings. The first method provides an easy to use tool in practical engineering, where the latter describes the principles of a ductile...

  14. Experimental data on the properties of natural fiber particle reinforced polymer composite material

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2017-08-01

    Full Text Available This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  15. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    Science.gov (United States)

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  16. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shen

    2013-01-01

    Full Text Available Graphene nanoplatelets (GNPs are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.

  17. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  18. Gamma radiation processed bamboo polymer composites. III. Possible applications for tensile reinforcement of concrete

    International Nuclear Information System (INIS)

    Adur, A.M.

    1978-01-01

    Three species of bamboo were converted to bamboo-polymer composites by vacuum impregnation with monomer and in situ polymerization using gamma irradiation. Resistance of the composites to various chemicals present in concrete was tested. Resistance to termites, fungus and other forms of biological attack was examined. Strength-to-weight ratios were calculated based on mechanical tests performed earlier (paper II of this three-part series). Possible application for tensile reinforcement of concrete is discussed in considerable detail. 2 figures, 4 tables

  19. Microwave detection of delaminations between fiber reinforced polymer (FRP) composite and hardened cement paste

    Science.gov (United States)

    Hughes, D.; Kazemi, M.; Marler, K.; Zoughi, R.; Myers, J.; Nanni, A.

    2002-05-01

    Fiber reinforced polymer (FRP) composites are increasingly being used for the rehabilitation of concrete structures. Detection and characterization of delaminations between an FRP composite and a concrete surface are of paramount importance. Consequently, the development of a one sided, non-contact, real time and rapid nondestructive testing (NDT) technique for this purpose is of great interest. Near-field microwave NDT techniques, using open-ended rectangular waveguide probes, have shown great potential for detecting delaminations in layered composite structures such as these. The results of some theoretical and experimental investigations on a specially prepared cement paste specimen are presented here.

  20. The dispersion of SWCNTs treated by coupling and dispersing agents in fiber reinforced polymer composities

    Science.gov (United States)

    Duan, Yuexin; Yuan, Lu; Zhao, Yan; Guan, Fengxia

    2007-07-01

    It is an obstacle issue for Carbon nanotubes (CNTs) applied in fiber reinforced polymer composites that CNTs is dispersed in nano-level, particularly for single-wall Carbon nanotubes (SWCNTs). In this paper, SWCNTs were treated by the coupling agent like volan and dispersing agent as BYK to improve the dispersion in the Glass Fiber/Epoxy composites. The result of dispersion of SWCNTs in composites was observed by Scanning electron microscopy (SEM). Then the Glass Transition Temperature (Tg) of these kinds of composites with treated and untreated SWCNTs were obtained by Dynamic Mechanical Thermal Analysis (DMTA). Moreover, the bending properties of these composites were tested.

  1. Development of PLA hybrid yarns for biobased self-reinforced polymer composites

    Science.gov (United States)

    Köhler, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight materials are a necessity in various industries. Lightweight design is in the key interest of the mobility sector, e.g. the automotive and aerospace industry. This trend applies also for the consumer industries, e.g. sporting goods. In addition, the worldwide demand for replacing fossil-based materials has led to a significant growth of bioplastics. Due to their low mechanical performance and durability, their use is still limited. Therefore, it is necessary to develop biobased, sustainable polymeric materials with high stiffness, high impact and high durability without impairing recyclability at a similar price level of non-biobased solutions. Biobased self-reinforced polymer composites offer these unique properties.

  2. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.

    Science.gov (United States)

    Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K

    2018-02-01

    This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (Pprepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Liquid crystalline polymer nanocomposites reinforced with in-situ reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2015-08-01

    Full Text Available In this work liquid-crystalline polymer (LCP nanocomposites reinforced with in-situ reduced graphene oxide are investigated. Graphene oxide (GO was first synthesized by the Hummers method, and the kinetics of its thermal reduction was assessed. GO layers were then homogeneously dispersed in a thermotropic liquid crystalline polymer matrix (Vectran®, and an in-situ thermal reduction of GO into reduced graphene oxide (rGO was performed. Even at low rGO amount, the resulting nanocomposites exhibited an enhancement of both the mechanical properties and the thermal stability. Improvements of the creep stability and of the thermo-mechanical behavior were also observed upon nanofiller incorporation. Furthermore, in-situ thermal reduction of the insulating GO into the more electrically conductive rGO led to an important surface resistivity decrease in the nanofilled samples.

  4. Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests

    International Nuclear Information System (INIS)

    Bai Wenfeng; Zhang Jianhua; Yan Peng; Wang Xinli

    2009-01-01

    Polymer concrete (PC), because of its good vibration alleviating properties, is a proper material for elementary machine parts in high-precision machine tools. Glass fiber was applied in PC to improve its mechanical properties, and the material obtained is called glass fiber reinforced polymer concrete (GFRPC). The best parameter to estimate the vibration alleviating property is damping ratio. Orthogonal tests were carried out to prepare GFRPC specimens with different component proportions. Damping ratio of the GFRPC specimens was measured. The effect of the factors considered in the experiments on damping ratio of GFRPC was studied. Results of the tests show that granite proportion plays the most important role in determining damping ratio of GFRPC, then flexibilizer dosage and glass fiber length, while epoxy resin dosage and glass fiber dosage play a comparatively less important part. Detailed descriptions were made about how the considered factors affect damping ratio of GFRPC in this paper

  5. Effect of mixed adhesive joints and tapered plate on stresses in retrofitted beams bonded with a fiber-reinforced polymer plate

    International Nuclear Information System (INIS)

    Bouchikhi, A.S.; Megueni, A.; Gouasmi, S.; Boukoulda, F.B.

    2013-01-01

    Highlights: • Interface stress distribution in beams reinforced composites jointed by homogeneous adhesive. • The reduction of stresses interfaces by using the tapered plate at edges. • The reduction of stresses interfaces by using the bi-adhesive. • The reduction of stresses interfaces by combining between the tapered plate and the bi-adhesive. - Abstract: This paper focuses on the reduction of interfacial stresses when using bonded laminates in strengthening existing structures. The presence of high interfacial stresses that develop near the end of composite known as edge effect may compromise the résistance to failure of strengthened structure. It is known that the decrease of plate thickness and fitness of adhesive (Young modulus) reduces the stress concentration at plate ends. Another way to tackle the problem is proper design of the plate end shape (tapered plate) and using mixed adhesive joints (MAJs) between the adherents. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJs) and tapering plate on the interfacial stress distribution in the adhesive layer in retrofitted steel beam with fiber reinforced polymer (FRP) plate, This results indicate that using the correct combination of tapering plate at the end and mixed adhesive joints can reduce the magnitude of the interfacial stresses significantly

  6. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  7. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  8. Experimental Study of Concrete-filled Carbon Fiber Reinforced Polymer Tube with Internal Reinforcement under Axially Loading

    Directory of Open Access Journals (Sweden)

    Wenbin SUN

    2014-12-01

    Full Text Available Comparing with the circular concrete columns confined with fiber reinforced polymer (FRP wrap or tube, the rectilinear confined columns were reported much less. Due to the non-uniform distribution of confining pressure in the rectilinear confined columns, the FRP confinement effectiveness was significant reduced. This paper presents findings of an experimental program where nine prefabricated rectangular cross-section CFRP tubes with CFRP integrated crossties filled concrete to form concrete-filled FRP tube (CFFT short columns and three plain concrete control specimens were tested. All specimens were axially loaded until failure. The rest results showed that the stress-strain curves of CFFTs consisted of two distinct branches, an ascending branch before the concrete peak stress was reaches and a second branch that terminated when the tube ruptured, and that the CFFTs with integrated crossties experienced most uniform confinement pressure distribution. Test research also found that the stress-strain curves of CFFTs indicated an increase in ductility. These demonstrate that this confinement system can produce higher lateral confinement stiffness. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6035

  9. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    Science.gov (United States)

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  10. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    Science.gov (United States)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  11. The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2012-12-01

    Full Text Available Fiber reinforced composites are widely used instead of traditional materials in various technological applications. Therefore, by considering the extensive applications of these materials, a proper knowledge of their impact behavior (from low- to high-velocity as well as their static behavior is necessary. In order to study the effects of strain rates on the behavior of these materials, special testing machines are needed. Most of the research efforts in this feld are focused on application of real loading and gripping boundary conditions on the testing specimens. In this paper, a detailed review of different types of impact testing techniques and the strain rate dependence of mechanical and strength properties of polymer composite materials  are presented. In this respect, an attempt is made to present and summarize the methods of impact tests and the strain rate effects on the tensile, compressive, shear and bending properties of the fber-reinforced polymer composite materials. Moreover, a classifcation of the state-of-the-art of the testing techniques to characterize composite material properties in a wide range of strain rates are also given.

  12. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    Science.gov (United States)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  13. Characterization and properties of acetylated nanocrystalline cellulose (aNC) reinforced polylactic acid (PLA) polymer

    Science.gov (United States)

    Kasa, Siti Norbaya; Omar, Mohd Firdaus; Ismail, Ismarul Nizam

    2017-12-01

    Nanocrystalline cellulose (NCC) was synthesized from banana stem through strong acid hydrolysis with measured length of approximately 287.0 ± 56.4 nm and diameter of 26.6 ± 4.8 nm. Modification of NCC was carried by acetylation reaction in order to increase the compatibility during reinforcement with polylactic acid (PLA) polymer. The reinforcing effect towards morphology, crystallinity, mechanical and thermal properties of bio-nanocomposites was investigated. Scanning Electron Microscope (SEM) micrograph reveals the uniform dispersion achieved at 1 %, 3 % and 5% aNC loading while agglomeration was found at 7 % aNC loading. Disappearance of crystallinity peak at 2θ = 22.7⁰ for low aNC loading during elemental analysis using X-Ray Diffraction (XRD) indicates the proper dispersion of aNC in PLA polymer. From the tensile test, 1 % aNC loading gives the highest mechanical properties of bio-nanocomposite film with 82.71 %, 118.7 % and 24.18 % increment in tensile strength, tensile modulus and elongation at break. However, 7 % aNC loading gives the highest increment in TGA of aNC-PLA nanocomposites which is from 310 °C to 320 °C.

  14. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Minh-Tai Le

    2015-08-01

    Full Text Available In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA and thermogravimetric analysis (TGA are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg, as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  15. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Science.gov (United States)

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-01-01

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521

  16. PERBAIKAN KEKUATAN DAN DAKTILITAS KOLOM BETON BERTULANG YANG MENDAPAT BEBAN GEMPA MENGGUNAKAN GLASS FIBER REINFORCED POLYMER

    Directory of Open Access Journals (Sweden)

    Parmo Parmo

    2014-05-01

    Full Text Available Repairing the Strength and Ductility of Reinforced Concrete Column That Got Earthquake using Gla­ss Fiber Reinforced Polymer. This study aims to identify the additional strength and ductility of reinforced concrete columns af­ter being re­­­­tro­fitted using glass fiber reinforced polymer (GFRP and got the brunt of the earth­quake. This study uses two objects tested columns, which are being tested for three times. Each column size is 350 x 350 x 1100 mm with f'c = 20.34 MPa and fy = 549.94 MPa. The tes­t­ing is performed by giving a constant axial load of 748 kN and cyclic lateral load using con­trol displacement method in order to simulate the brunt of earth­quake. The results show an in­crea­se in lateral capacity of co­lumn by 43.96%. Re­tro­­fitting the column with GFRP has a duc­tile property, which is shown by the increase of the displacement ductility by 129.14% and curvature ductility by 118.27%.   Penelitian ini ber­tujuan untuk mengetahui penambahan kekuatan dan dak­ti­li­­­­tas kolom beton bertulang se­telah diretrofit menggunakan glass fiber reinforced po­ly­­­mer (GFRP dan mendapat be­ban gempa. Penelitian ini menggunakan benda ­uji dua buah kolom dengan tiga kali pengujian. Masing-masing ukuran kolom 350 x 350 x 1100 mm dengan f’c = 20,34 MPa dan fy = 549,94 MPa. Pengujian dilakukan de­ngan memberikan beban ak­sial konstan 748 kN dan beban lateral siklik yang meng­gu­nakan metode di­splacemet con­trol untuk mensimulasikan beban gempa. Hasil pe­ne­­­litian menunjukkan pe­ningkatan kapasitas lateral pada kolom sebesar 43,96%. Retrofit kolom dengan GFRP bersifat dak­tail yang ditunjukkan dengan meningkatnya daktilitas per­pindahan sebesar 129,14% dan dak­­­tilitas kurvatur se­besar 118,27%.

  17. Self-reinforced bioresorbable polymer P (L/DL LA 70:30 for the manufacture of craniofacial implant

    Directory of Open Access Journals (Sweden)

    Steferson L. Stares

    2012-01-01

    Full Text Available The importance of self-reinforced bioabsorbable polymers has been growing due to their use in orthopedic and dental implants. Bioabsorbable polymeric implants manufactured only by the processes of injection or extrusion without the post processing of self-reinforcing leave a great deal on presenting an appealing alternative in terms of the mechanical strength suitable for use in the fixation of bone fractures. One of the most promising ways to promote the increase of mechanical properties of bioresorbable polymers is through the self-reinforcing technique. Self-reinforcing occurs when the internal structure of the polymer is strongly oriented in the direction of the deformation. Knowing the levels of mechanical strength obtained is essential to determine the sites of application of the component. The objective of this work was to study the method and the influence of self-reinforcing conditions, such as reduction ratio, temperature and deformation speed, on the quality and mechanical properties of small cylindrical bars obtained from the bioresorbable polymer P (L/DL LA 70:30. The different processing conditions led to distinct levels of mechanical strength. Resistance values obtained in this work are the highest ever recorded for this material. It is important to stress that the values of mechanical strength achieved are within the limits accepted as safe for utilization in the fixation of craniofacial fractures, a fact that significantly enhances the prospects in this area.

  18. Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Høgh, Jacob Herold

    2013-01-01

    A holistic approach to strain monitoring in fibre-reinforced polymer composites is presented using embedded fibre Bragg grating sensors. Internal strains are monitored in unidirectional E-glass/epoxy laminate beams during vacuum infusion, curing, post-curing and subsequent loading in flexure until...... of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical...

  19. Numerical Simulation of Thermal Performance of Glass-Fibre-Reinforced Polymer

    Science.gov (United States)

    Zhao, Yuchao; Jiang, Xu; Zhang, Qilin; Wang, Qi

    2017-10-01

    Glass-Fibre-Reinforced Polymer (GFRP), as a developing construction material, has a rapidly increasing application in civil engineering especially bridge engineering area these years, mainly used as decorating materials and reinforcing bars for now. Compared with traditional construction material, these kinds of composite material have obvious advantages such as high strength, low density, resistance to corrosion and ease of processing. There are different processing methods to form members, such as pultrusion and resin transfer moulding (RTM) methods, which process into desired shape directly through raw material; meanwhile, GFRP, as a polymer composite, possesses several particular physical and mechanical properties, and the thermal property is one of them. The matrix material, polymer, performs special after heated and endue these composite material a potential hot processing property, but also a poor fire resistance. This paper focuses on thermal performance of GFRP as panels and corresponding researches are conducted. First, dynamic thermomechanical analysis (DMA) experiment is conducted to obtain the glass transition temperature (Tg) of the object GFRP, and the curve of bending elastic modulus with temperature is calculated according to the experimental data. Then compute and estimate the values of other various thermal parameters through DMA experiment and other literatures, and conduct numerical simulation under two condition respectively: (1) the heat transfer process of GFRP panel in which the panel would be heated directly on the surface above Tg, and the hot processing under this temperature field; (2) physical and mechanical performance of GFRP panel under fire condition. Condition (1) is mainly used to guide the development of high temperature processing equipment, and condition (2) indicates that GFRP’s performance under fire is unsatisfactory, measures must be taken when being adopted. Since composite materials’ properties differ from each other

  20. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  1. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  2. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  3. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2014-07-01

    Full Text Available An investigation was performed by using carbon fiber-reinforced polymer (CFRP as the anode material in the impressed current cathodic protection (ICCP system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  4. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material.

    Science.gov (United States)

    Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng

    2014-07-24

    An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  5. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled

    2017-02-16

    Techniques that monitor the change in the electrical properties of materials are promising for both non-destructive testing and structural health monitoring of carbon-fiber-reinforced polymers (CFRPs). However, achieving reliable monitoring using these techniques requires an in-depth understanding of the impedance response of these materials when subjected to an alternating electrical excitation, information that is only partially available in the literature. In this work, we investigate the electrical impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface ply and the probing depth for different CFRP configurations for more efficient electrical signal-based inspections. We also investigate the effect of the amplitude of the input signal.

  6. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    Science.gov (United States)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  7. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  8. Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications

    Directory of Open Access Journals (Sweden)

    N. G. Ozdemir

    2016-05-01

    Full Text Available This study investigates the effects of nano carboxylic acrylonitrile butadiene rubber (CNBR-NP and nano acrylonitrile butadiene rubber (NBR-NP on the interlaminar shear strength and fracture toughness of carbon fibre reinforced polymer composites (CFRP with dicyandiamide-cured epoxy matrix. The results show that nano-size dispersion of rubber significantly improved the Mode I delamination fracture toughness (GIC of the CFRP by 250% and its Mode II delamination fracture toughness (GIIC by 80% with the addition of 20 phr of CNBR-NP. For the NBR-NP system, the GIC and GIIC delamination fracture toughness of the CFRP were increased by 200 and 80% respectively with the addition of 20 phr (parts per hundred rubber of nano rubber to the matrix. Scanning electron microscopy (SEM images of the fracture surface revealed that the toughening was mainly achieved by debonding of the nano rubber, crack path deflection and fibre bridging.

  9. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    International Nuclear Information System (INIS)

    Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2014-01-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf) 3 ) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69–108%) to successfully mitigate against crack propagation within the composite microstructure. (paper)

  10. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  11. Reinforced poly(propylene oxide): a very soft and extensible dielectric electroactive polymer

    International Nuclear Information System (INIS)

    Goswami, K; Mazurek, P; Daugaard, A E; Skov, A L; Galantini, F; Gallone, G

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of α,ω-diallyl PPO with a tetra-functional thiol. The elastomer was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 10 3 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910. The electromechanical actuation performance of both PPO and its composites showed properties as good as VHB4910 and a lower viscous loss. (paper)

  12. Reinforced poly(propylene oxide)- a very soft and extensible dielectric electroactive polymer

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Galantini, F.; Mazurek, Piotr Stanislaw

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of ,!-diallyl PPO with a tetra-functional thiol. The elastomer...... was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability...... of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 103 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910...

  13. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    Science.gov (United States)

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  14. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    Science.gov (United States)

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  15. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    Science.gov (United States)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  16. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Science.gov (United States)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  17. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative study on Their Microstructures and Effects as Polymer Reinforcing Agents

    Science.gov (United States)

    Xuezhu Xu; Fei Liu; Long Jiang; J.Y. Zhu; Darrin Haagenson; Dennis P. Wiesenborn

    2013-01-01

    Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions...

  18. Electrospun Polymer Nanofibers Reinforced by Tannic Acid/Fe+++ Complexes †

    Science.gov (United States)

    Yang, Weiqiao; Sousa, Ana M. M.; Thomas-Gahring, Audrey; Fan, Xuetong; Jin, Tony; Li, Xihong; Tomasula, Peggy M.; Liu, LinShu

    2016-01-01

    We report the successful preparation of reinforced electrospun nanofibers and fibrous mats of polyvinyl alcohol (PVA) via a simple and inexpensive method using stable tannic acid (TA) and ferric ion (Fe+++) assemblies formed by solution mixing and pH adjustment. Changes in solution pH change the number of TA galloyl groups attached to the Fe+++ from one (pH PVA and TA. At pH ~ 5.5, the morphology and fiber diameter size (FDS) examined by SEM are determinant for the mechanical properties of the fibrous mats and depend on the PVA content. At an optimal 8 wt % concentration, PVA becomes fully entangled and forms uniform nanofibers with smaller FDS (p mechanical properties when compared to mats of PVA alone and of PVA with TA (p mechanical properties (p 0.05) suggesting the potential of TA-Fe+++ assemblies to reinforce polymer nanofibers with high functionality for use in diverse applications including food, biomedical and pharmaceutical. PMID:28773876

  19. Intra-Laminar Fracture Toughness of Glass Fiber Reinforced Polymer By Using Theory, Experimentation and FEA

    Science.gov (United States)

    Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital

    2018-04-01

    Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.

  20. Standard Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide establishes essential and desirable data elements for fiber-reinforced composite materials for two purposes: to establish the material identification component of data-reporting requirements for test reporting and to provide information for the design of material property databases. 1.1.1 This guide is the first part of a two-part modular approach. The first part serves to identify the material and the second part serves to describe testing procedures and variables and to record results. 1.1.2 For mechanical testing, the related document is Guide E 1434. The interaction of this guide with Guide E 1434 is emphasized by the common numbering of data elements. Data Elements A1 through G13 are included in this guide, and numbering of data elements in Guide E 1434 begins with H1 for the next data element block. This guide is most commonly used in combination with a guide for reporting the test procedures and results such as Guide E 1434. 1.2 These guidelines are specific to fiber-reinforced polyme...

  1. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  2. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  3. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  4. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  5. Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    B. Soltannia

    2016-01-01

    Full Text Available Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM model of Goldberg and his coworkers and Halpin-Tsai’s micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin.

  6. Double-Sided Terahertz Imaging of Multilayered Glass Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Przemyslaw Lopato

    2017-06-01

    Full Text Available Polymer matrix composites (PMC play important roles in modern industry. Increasing the number of such structures in aerospace, construction, and automotive applications enforces continuous monitoring of their condition. Nondestructive inspection of layered composite materials is much more complicated process than evaluation of homogenous, (mostly metallic structures. Several nondestructive methods are utilized in this case (ultrasonics, shearography, tap testing, acoustic emission, digital radiography, infrared imaging but none of them gives full description of evaluated structures. Thus, further development of NDT techniques should be studied. A pulsed terahertz method seems to be a good candidate for layered PMC inspection. It is based on picosecond electromagnetic pulses interacting with the evaluated structure. Differences of dielectric parameters enables detection of a particular layer in a layered material. In the case of multilayered structures, only layers close to surface can be detected. The response of deeper ones is averaged because of multiple reflections. In this paper a novel inspection procedure with a data processing algorithm is introduced. It is based on a double-sided measurement, acquired signal deconvolution, and data combining. In order to verify the application of the algorithm stress-subjected glass fiber-reinforced polymer (GFRP was evaluated. The obtained results enabled detection and detailed analysis of delaminations introduced by stress treatment and proved the applicability of the proposed algorithm.

  7. A multimodal data-set of a unidirectional glass fibre reinforced polymer composite

    Directory of Open Access Journals (Sweden)

    Monica J. Emerson

    2018-06-01

    Full Text Available A unidirectional (UD glass fibre reinforced polymer (GFRP composite was scanned at varying resolutions in the micro-scale with several imaging modalities. All six scans capture the same region of the sample, containing well-aligned fibres inside a UD load-carrying bundle. Two scans of the cross-sectional surface of the bundle were acquired at a high resolution, by means of scanning electron microscopy (SEM and optical microscopy (OM, and four volumetric scans were acquired through X-ray computed tomography (CT at different resolutions. Individual fibres can be resolved from these scans to investigate the micro-structure of the UD bundle. The data is hosted at https://doi.org/10.5281/zenodo.1195879 and it was used in Emerson et al. (2018 [1] to demonstrate that precise and representative characterisations of fibre geometry are possible with relatively low X-ray CT resolutions if the analysis method is robust to image quality. Keywords: Geometrical characterisation, Polymer-matrix composites (PMCs, Volumetric fibre segmentation, Automated fibre tracking, X-ray imaging, Microscopy, Non-destructive testing

  8. Preparation and Properties of Polymer/Vermiculite Hybrid Superabsorbent Reinforced by Fiber for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Fayang Jin

    2014-01-01

    Full Text Available A series of polymer/clay hybrid superabsorbent composites (SACFs comprising acrylamide, acrylic acid, sodium 2-acrylamido-tetradecyl sulfonate, fiber, and vermiculite by in situ intercalation and exfoliated method was successfully synthesized. The structure of SACFs was characterized by IR, SXRD, and SEM measurements. Much notable absorbency for SACF-2 was observed compared to that for SACF-1 in the absence of hydrophobic group in the high cationic solution due to the alkyl carbon chain and sulfonic acid group of hydrophobic moistures protecting the cations from attacking the carboxylate groups. What is more, high temperature fiber which acts as bridge connection for the polymeric network structure enhanced both toughness and strength for SACF-4 in the harsh conditions. At the total dissolved substance of 212000 mg/L for Tarim Basin injected water and the temperature of 120°C, desired absorbency as well as water retaining property for SACF-4 was observed during the long period of thermal ageing. Core flooding experiments demonstrated that SACFs could migrate as amoeba in the porous medium and accumulated in the narrow channel to adjust injection profile, promoting the subsequent water diverting into the unswept zones. Finally, characteristic parameters for SACFs calculated from flooding experiment further confirmed these polymer/clay hybrid composites reinforced by fiber would have robust application in the mature oilfield for profile control.

  9. Strengthening of defected beam–column joints using CFRP

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mahmoud

    2014-01-01

    Full Text Available This paper presents an experimental study for the structural performance of reinforced concrete (RC exterior beam–column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP. The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam–column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  10. Strengthening of defected beam-column joints using CFRP.

    Science.gov (United States)

    Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M

    2014-01-01

    This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  11. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, University of Constantine 1, Constantine, Algeria e-mail: zergua.abdesselam@umc.edu.dz. MS received 24 April 2014; revised 14 July 2014; accepted 12 September 2014. Abstract. The failure of strengthened beams with fibre-reinforced polymer (FRP) materials is due to high stress ...

  12. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance.

    Science.gov (United States)

    Guan, Kecheng; Liang, Feng; Zhu, Haipeng; Zhao, Jing; Jin, Wanqin

    2018-04-25

    Two-dimensional graphene oxide (GO) in hybrid membranes provides fast water transfer across its surface due to the abundant oxygenated functional groups to afford water sorption and the hydrophobic basal plane to create fast transporting pathways. To establish more compatible and efficient interactions for GO and sodium alginate (SA) polymer chains, cations sourced from lignin are employed to decorate GO (labeled as cation-functionalized GO (CG)) nanosheets via cation-π and π-π interactions, providing more interactive sites to confer synergetic benefits with polymer matrix. Cations from CG are also functional to partially interlock SA chains and intensify water diffusion. And with the aid of two-dimensional pathways of CG, fast selective water permeation can be realized through hybrid membranes with CG fillers. In dehydrating aqueous ethanol solution, the hybrid membrane exhibits considerable performance compared with bare SA polymer membrane (long-term stable permeation flux larger than 2500 g m -2 h -1 and water content larger than 99.7 wt %, with feed water content of 10 wt % under 70 °C). The effects of CG content in SA membrane were investigated, and the transport mechanism was correspondingly studied through varying operation conditions and membrane materials. In addition, such a membrane possesses long-term stability and almost unchanged high dehydration capability.

  13. Nanoindentation of Functionally Graded Polymer Nanocomposites: Assessment of the Strengthening Parameters through Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Tommaso eNardi

    2015-08-01

    Full Text Available NNanoindentation tests were carried out on the surface of polymer nanocomposites exhibiting either graded or homogeneous distributions of Fe3O4@silica core-shell nanoparticles in a photocurable polymeric matrix. The results reveal a complex interplay between graded morphology, indentation depth and calculated modulus and hardness values, which was elucidated through numerical simulations. First, it was experimentally shown how for small (1 µm indentations, large increases in modulus (up to +40% and hardness (up to +93% were obtained for graded composites with respect to their homogeneous counterparts, whereas at a larger indentation depth (20 µm the modulus and hardness of the graded and homogeneous composites did not substantially differ from each other and from those of the pure polymer. Then, through a Material Point Method approach, experimental nanoindentation tests were successfully simulated, confirming the importance of the indentation depth and of the associated plastic zone as key factors for a more accurate design of graded polymer nanocomposites whose mechanical properties are able to fulfill the requirements encountered during operational life.

  14. Fracture mechanical analysis of strengthened concrete tension members with one crack

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2012-01-01

    A concrete tension member strengthened 2 with fiber reinforced polymer plates on two sides 3 is analyzed with non-linear fracture mechanics. The 4 analysis of the strengthened tension member incorpo5 rates cohesive properties for both concrete and inter6 face between concrete and strengthening...... the structural classification parameters, is inves13 tigated in a non-dimensional analysis, and found to 14 depend strongly on the ratio between interfacial and 15 concrete fracture energies....

  15. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  16. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    Science.gov (United States)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  17. Nanoscaled boehmites' modes of action in a polymer and its carbon fiber reinforced plastic under compression load; Wirkungsweisen nanoskaliger Boehmite in einem Polymer und seinem Kohlenstofffaserverbund unter Druckbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, Christine

    2011-07-01

    Increasing ecological awareness as well as quality and safety demands, which are present, for instance, in the aerospace and automotive sectors, lead to the need to use more sophisticated and more effective materials. For that purpose, laminates of carbon fiber reinforced plastic (CFRP), which are manufactured by injection technology, are reinforced with boehmite particles. This doping strengthens the laminates, whose original properties are weaker than prepregs. Besides the shear strength, compression strength and the damage tolerance, the mode of action of the nanoparticles in resin and in CRFP is also analyzed. It thereby reveals that the hydroxyl groups and even more a taurine modification of the boehmites' surface after the elementary polymer morphology. Consequently a new flow and reaction comportment, lower glass transition temperatures and shrinkage, as well as a changed mechanical behavior occur. Due to a structural upgrading of the matrix (higher shear stiffness, reduced residual stress), a better fiber-matrix adhesion, and differing crack paths, the boehmite nanoparticles move the degradation barrier of the material to higher loadings, thus resulting in considerably upgraded new CFRP. (orig.)

  18. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites

    International Nuclear Information System (INIS)

    Da Silva, Nelson Marques

    2001-01-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  19. Repair and rehabilitation of wood utility poles with fibre-reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Polyzois, D.; Kell, J.A. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2007-01-15

    In order to ensure safe and reliable service, all wood utility poles need an effective maintenance program. The service life of a wood utility pole depends on several factors, such as decay, mechanical damage, weathering, and changing design requirements. An effective preservative treatment and maintenance program can effectively extend the service life of the wood pole. However, all poles will attain a point when they are no longer suitable for their intended use. New innovative methods are therefore required to restore and maintain the structural integrity of existing wood poles, especially in light of the increasing cost of quality wood for use in poles as well as a result of environmental concerns regarding pole disposal and chemical treatment of existing poles. This article presented results from a research program carried out at the University of Manitoba to develop a repair and rehabilitation technique for wood poles using fibre-reinforced polymers (FRP). It also provided a brief overview of current standards for wood utility poles and reinforcing stubs and discussed the experimental program where long, air-dried jack pine poles were tested in order to evaluate the effectiveness of a proposed rehabilitation system consisting of FRP splines and FRP jackets. The ultimate capacity of the poles was determined using the CSA standard for wood poles. The capacity of the rehabilitated poles was nearly 93 per cent of the average ultimate capacity of the average ultimate capacity of poles tested during the first phase of the study, and 23 per cent higher than the capacity required by CSA standards. 7 refs., 2 figs., 4 tabs.

  20. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.

    Science.gov (United States)

    Shi, Zhuqun; Huang, Junchao; Liu, Chuanjun; Ding, Beibei; Kuga, Shigenori; Cai, Jie; Zhang, Lina

    2015-10-21

    With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability. Polymerization of the monomer gave P(MMA/BMA)/NCG, P(MMA/BA)/NCG nanocomposites with a volume fraction of NCG ranging from 15% to 78%. SEM, TEM, and XRD analyses show that the NCG are finely distributed and preserved well in the nanocomposites after polymerization. DMA analysis demonstrates a significant improvement in tensile storage modulus E' above the glass transition temperature; for instance, at 95 °C, E' is increased by over 4 orders of magnitude from 0.03 MPa of the P(MMA/BMA) up to 350 MPa of nanocomposites containing 15% v/v NCG. This reinforcement effect can be explained by the percolation model. The nanocomposites also show remarkable improvement in solvent resistance (swelling ratio of 1.3-2.2 in chloroform, acetone, and toluene), thermal stability (do not melt or decompose up to 300 °C), and low coefficients of thermal expansion (in-plane CTE of 15 ppm·K(-1)). These nanocomposites will have great promising applications in flexible display, packing, biomedical implants, and many others.

  1. Deformation Analysis of RC Ties Externally Strengthened with FRP Sheets

    Science.gov (United States)

    Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E.

    2014-11-01

    The current study has two objectives: to validate the ability of the Atena finite-element software to estimate the deformations of reinforced concrete (RC) elements strengthened with fiber-reinforced polymer (FRP) sheets and to assess the effect of FRP-to-concrete bond strength on the results of numerical simulation. It is shown that the bond strength has to be selected according to the overall stiffness of the composite element. The numerical results found are corroborated experimentally by tensile tests of RC elements strengthened with basalt FRP sheets.

  2. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    Science.gov (United States)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  3. Strengthening of RC bridge slabs using CFRP sheets

    Directory of Open Access Journals (Sweden)

    Fahmy A. Fathelbab

    2014-12-01

    Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.

  4. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    Science.gov (United States)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  5. Fretting Fatigue Behaviour of Pin-Loaded Thermoset Carbon-Fibre-Reinforced Polymer (CFRP Straps

    Directory of Open Access Journals (Sweden)

    Fabio Baschnagel

    2016-04-01

    Full Text Available This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail. An S–N curve was generated for a load ratio R of 0.1 and a frequency f of 10 Hz, showing a fatigue limit stress of the straps around the matrix fatigue limit, corresponding to 46% of the straps’ ultimate tensile strength (σUTS. The fatigue limit was defined as 3 million load cycles (N = 3 × 106, but tests were even conducted up to N = 11.09 × 106. Catastrophic failure of the straps was initiated in their vertex areas. Investigations on the residual strength and stiffness properties of straps tested around the fatigue limit stress (for N ≥ 1 × 106 showed little influence of the fatigue loading on these properties. Quasi-static finite element analyses (FEA were conducted. The results obtained from the FEA are in good agreement with the experiments and demonstrate a fibre parallel stress concentration in the vertex area of factor 1.3, under the realistic assumption of a coefficient of friction (cof between pin and strap of 0.5.

  6. Modeling and optimization for rotary ultrasonic face milling of carbon fiber reinforced polymers

    Directory of Open Access Journals (Sweden)

    Amin Muhammad

    2017-01-01

    Full Text Available Carbon fiber reinforced polymers (CFRP have got paramount importance in aerospace, and other industries due to their attractive properties of high specific strength, high specific stiffness, high corrosion resistance, and low thermal expansion. However, due to their properties like heterogeneity, anisotropy, and low heat dissipation, the issues in machining like excessive cutting forces and high surface roughness have found. In this research, a cutting force model has developed for rotary ultrasonic face milling of CFRP composites. The experimental machining was carried out on CFRP-T700. From the analysis, it has found that experimental and simulation values of cutting forces have variation/ error below than 10% in the most of the groups of parameters. However, the error found higher in few cases, due to heterogeneity, anisotropy and some other properties of these materials. The formula for contact area of the abrasive core tool improved and an overlapping cutting allowance has applied the first time. The optimal combination of parameters has investigated for cutting force and surface roughness. The developed cutting force model then further validated with pilot experiments and found the same results. So, the model developed in this paper is robust and can be applied to predict cutting force and optimization.

  7. Warpage Analysis of Electroplated Cu Films on Fiber-Reinforced Polymer Packaging Substrates

    Directory of Open Access Journals (Sweden)

    Cheolgyu Kim

    2015-06-01

    Full Text Available This paper presents a warpage analysis method that predicts the warpage behavior of electroplated Cu films on glass fiber-reinforced polymer (GFRP packaging substrates. The analysis method is performed using the following sequence: fabricate specimens for scanning 3D contours, transform 3D data into curvatures, compute the built-in stress of the film using a stress-curvature analytic model, and verify it through comparisons of the finite element method (FEM simulations with the measured data. The curvature is used to describe the deflection and warpage modes and orientations of the specimen. Two primary factors that affect the warpage behavior of the electroplated Cu film on FRP substrate specimens are investigated. The first factor is the built-in stress in a Cu film that explains the room temperature warpage of the specimen under no thermal process. The second factor is the misfit of the coefficient of thermal expansion (CTE between the Cu and FRP layer, which is a dominant factor during the temperature change. The calculated residual stress, and predicted curvatures using FEM simulation throughout the reflow process temperature range between 25 and 180 °C are proven to be accurate by the comparison of the FEM simulations and experiment measurements.

  8. Mechanical properties of carbon fibre-reinforced polymer/magnesium alloy hybrid laminates

    Science.gov (United States)

    Zhou, Pengpeng; Wu, Xuan; Pan, Yingcai; Tao, Ye; Wu, Guoqing; Huang, Zheng

    2018-04-01

    In this study, we prepared fibre metal laminates (FMLs) consisting of high-modulus carbon fibre-reinforced polymer (CFRP) prepregs and thin AZ31 alloy sheets by using hot-pressing technology. Tensile and low-velocity impact tests were performed to evaluate the mechanical properties and fracture behaviour of the magnesium alloy-based FMLs (Mg-FMLs) and to investigate the differences in the fracture behaviour between the Mg-FMLs and traditional Mg-FMLs. Results show that the Mg-FMLs exhibit higher specific tensile strength and specific tensile modulus than traditional Mg-FMLs and that the tensile behaviour of the Mg-FMLs is mainly governed by the CFRP because of the combination of high interlaminar shear properties and thin magnesium alloy layers. The Mg-FMLs exhibit excellent bending stiffness. Hence, no significant difference between the residual displacement d r and indentation depth d i , and the permanent deformation is mainly limited to a small zone surrounding the impact location after the impact tests.

  9. Optimal Electrode Selection for Electrical Resistance Tomography in Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi

    2017-01-01

    Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection. PMID:28772485

  10. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  11. Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands

    Science.gov (United States)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2018-06-01

    This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.

  12. Laser-assisted nanoceramics reinforced polymer scaffolds for tissue engineering: additional heating and stem cells behavior

    Science.gov (United States)

    Shishkovsky, Igor; Scherbakov, Vladimir; Volchkov, Vladislav; Volova, Larisa

    2018-02-01

    The conditions of selective laser melting (SLM) of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation, and differentiation. In the present study, the influence of additional heating during SLM process on stem cell viability near biopolymer matrix reinforced by nanoceramics additives was carried out. We used the biocompatible and bioresorbable polymers (polyetheretherketone /PEEK/ and polycaprolactone /PCL/) as a matrix and nano-oxide ceramics - TiO2, Al2O3, ZrO2, FexOy and/or hydroxyapatite as a basis of the additives. The rate of pure PEEK and PCL bio-resorption and in mixtures with nano oxides on the matrix was studied by the method of mass loss on bacteria of hydroxylase and enzyme complex. The stem cellular morphology, proliferative MMSC activity, and adhesion of the 2D and 3D nanocomposite matrices were the subjects of comparison. Medical potential of the SLS/M-fabricated nano-oxide ceramics after additional heating as the basis for tissue engineering scaffolds and cell targeting systems were discussed.

  13. Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites

    International Nuclear Information System (INIS)

    Aigbodion, V.S.; Hassan, S.B.; Agunsoye, J.O.

    2012-01-01

    Highlights: → The influence of wear parameters on the wear rate of RLDPE were investigated. → The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. → The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance. -- Abstract: The tribological behaviour of recycled low density polyethylene (RLDPE) polymer composites with bagasse ash particles as a reinforcement was studied using a pin-on-disc wear rig under dry sliding conditions. The influence of wear parameters like, applied load, sliding speed, sliding distance and percentage of bagasse ash fillers, on the wear rate were investigated. A plan of experiments was performed to acquire data in a controlled way. Scanning electron microscope was used to analyse the worn surface of the samples. Linear regression equation and analysis of variance (ANOVA) were employed to investigate the influence of process parameters on the wear rate of the samples. The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. The confirmation of the experiments conducted using ANOVA to verify the optimal testing parameters show that sliding speed and applied load had significant effect on the wear rate. The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance of the composite greatly.

  14. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    Science.gov (United States)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  15. Asset Management Business Model for Design, Realization, and Maintenance of Fibre Reinforced Polymer Bridges

    Directory of Open Access Journals (Sweden)

    Rizal Sebastian

    2013-01-01

    Full Text Available This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7 titled Trans-IND and PANTURA. FRP has emerged as a real alternative structural material based on various sustainability considerations, among others the reduced life-cycle cost due to less maintenance needs, longer lifetime, and easiness to repair, replace, or recycle the components. The Trans-IND research project aims to develop and demonstrate new industrialized processes to use FRP for civil infrastructure projects at a large scale. In order to be cost effective, a new value-chain strategy for the design, realization, and maintenance of FRP bridges is required to replace the fragmented supply chain and the one-off approach to a construction project. This paper focuses on the development of new business models based on asset management strategy, which covers the entire demand and supply chains. Research on new business models is supported by the insight into the market and regulatory frameworks in different EU countries. This is based on field surveys across the EU that have been carried out as a part of the Trans-IND and PANTURA collaborative research projects.

  16. Experimental investigation of span length for flexural test of fiber reinforced polymer composite laminates

    Directory of Open Access Journals (Sweden)

    Akhil Mehndiratta

    2018-01-01

    Full Text Available Testing and evaluation of mechanical properties for FRP (Fiber Reinforced Polymer composite parts play a significant role to qualify it for the end use. Among the mechanical properties, the flexural strength is significant and vital as it may vary with specimen depth, temperature and the test span length. The flexural strength varies for different materials with varying the test span length hence the current work aims to find an optimum span length to test flexural strength for the specimens made of Glass (7781, EC9756 and Carbon (HTA7, G801 prepreg materials. Experiments are conducted as per the ASTM Standard D 790 for flexural test by varying the span lengths to understand the behavior of the flexural strength and flexural modulus. The experimental data were compared with those obtained from the finite element program software Altair Hyper works 14.0. The results indicate that flexural modulus increases with the span length to a point and then it decreases. Thereby, an optimum span length can be obtained for testing flexural strength, which will be useful to the designers and the composite manufacturers to accomplish better standard testing procedures.

  17. The concept of sustainable prefab modular housing made of natural fiber reinforced polymer (NFRP)

    Science.gov (United States)

    Setyowati, E.; Pandelaki, E. E.

    2018-03-01

    This research aims to formulate the concept of public housing based on research results on natural fiber reinforced polymer (FRP) material which has been done in the road map of research. Research output is the public housing design and specifications of FRP made of water hyacinths and coconut fiber. Method used is descriptive review of the concept based on references and material test which consists of density, water absorption, modulus of rupture (MOR), tensile strength, absorption coefficient and Sound Transmission Loss (STL). The entire tests of material were carried out in the laboratory of materials and construction, while the acoustic tests carried out using the impedance tubes method. The test results concluded that the FRP material may have a density between 0.2481 – 0.2777 g/cm3, the absorption coefficient is average of 0.450 – 0.900, the Modulus of Elasticity is between 4061 – 15193 kg/cm2, while the average of sound transmission loss is 52 – 59 dB. Furthermore, that the concept of public housing must be able to be the embryo of the concept of environment-friendly and low emissions housing.

  18. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  19. Computational analysis of particle reinforced viscoelastic polymer nanocomposites - statistical study of representative volume element

    Science.gov (United States)

    Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine

    2018-05-01

    The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.

  20. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    International Nuclear Information System (INIS)

    Nji, Jones; Li, Guoqiang

    2010-01-01

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency

  1. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, A. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Rafii-Tabar, H., E-mail: rafii-tabar@nano.ipm.ac.ir [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)

    2011-10-31

    A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.

  2. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites

    International Nuclear Information System (INIS)

    Montazeri, A.; Rafii-Tabar, H.

    2011-01-01

    A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.

  3. Mass optimization of a small pressure vessel using metal/FRP (fiber reinforced polymers) hybrid structures

    International Nuclear Information System (INIS)

    Nisar, J.A.; Abdullah, A.N.; Iqbal, N.

    2004-01-01

    In hybrid pressure vessels, composite (Fiber) is wound over a metallic liner (Steel/Aluminum) in hoop direction. In this concept of hybrid pressure vessel structure, metallic liner takes all the axial loads and fiber reinforced polymers (FRP/sub s/) takes load in circumferential (Hoop) direction. Hybrid structures combine the relatively high shear stiffness and ductility of metal alloy with high specific stiffness, strength and fatigue properties of FRP/sub s/. The relatively simple methods for producing hybrid structures circumvent the need for the complex and expensive equipment that is used for advanced composites processing. This paper presents an efficient way of designing a hybrid pressure vessel where prime concern is weight reduction over an equivalent aluminum structure and investigates various methodologies regarding combinations of metals and FRP/sub s/ for optimization of a given pressure vessel. For this purpose we adopted two different methods of simulation one is computer simulation using ANSYS and other is experimental verification by hydrostatic testing of manufactured pressure vessel. Two different pressure vessels one with aluminum liner and other with steel liner were fabricated. Kevlar 49/epoxy was wrapped around the liners in hoop direction. Both the pressure vessels were put into hydrostatic test. Strains were measured during the test and then converted into corresponding stresses. Results of hydrostatic test were quite in favor of the ANSYS results. In this way we have successfully designed, manufactured and tested the Hybrid pressure vessel saving almost 40% weight in case of aluminum liner and 43.6% in case of steel liner. (author)

  4. In situ corrosion monitoring of PC structures with distributed hybrid carbon fiber reinforced polymer sensors

    Science.gov (United States)

    Yang, C. Q.; Wu, Z. S.

    2007-08-01

    Firstly, the fabrication and sensing properties of hybrid carbon fiber reinforced polymer (HCFRP) composite sensors are addressed. In order to provide a distributed sensing manner, the HCFRP sensors were divided into multi-zones with electrodes, and each zone was regarded as a separate sensor. Secondly, their application is studied to monitor the steel corrosion of prestressed concrete (PC) beams. The HCFRP sensors with different gauge lengths were mounted on a PC tendon, steel bar and embedded in tensile and compressive sides of the PC beam. The experiment was carried out under an electric accelerated corrosion and a constant load of about 54 kN. The results reveal that the corrosion of the PC tendon can be monitored through measuring the electrical resistance (ER) change of the HCFRP sensors. For the sensors embedded in tensile side of the PC beam, their ER increases as the corrosion progresses, whereas for the sensors embedded in compressive side, their ER decreases with corrosion time. Moreover, the strains due to the corrosion can be obtained based on the ER change and calibration curves of HCFRP sensors. The strains measured with traditional strain gauges agree with the strains calculated from the ER changes of HCFRP sensors. The electrical behavior of the zones where the corrosion was performed is much different from those of the other zones. In these zones, either there exist jumps in ER, or the ER increases with a much larger rate than those of the other zones. Distributed corrosion monitoring for PC structures is thus demonstrated with the application of HCFRP sensors through a proper installation of multi-electrodes.

  5. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  6. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Tang, Wenliang; Chen, Yan; Yang, Haojun; Wang, Hua; Yao, Qiwei

    2018-03-01

    Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.

  7. The mechanical characteristics of polymer concrete using polyester ...

    African Journals Online (AJOL)

    Polymer concretes depending on the type of used polymer have good mechanical characteristics like high compressive strength and strain- stress proper behavior and increase lifetime and strength against concrete environmental factors. Therefore, they can be used for strengthening and retrofitting reinforced concrete ...

  8. Shear Strengthening of Concrete Structures with the use of mineral based composites

    DEFF Research Database (Denmark)

    Blanksvärd, Thomas; Täljsten, Björn; Carolin, Anders

    2009-01-01

    concrete (RC) beams strengthened in shear with the use of cementitious bonding agents and carbon fiber grids, denoted mineral based composites (MBC). In this study it is shown that the MBC system has a strengthening effect corresponding to that of strengthening systems using epoxy bonding agents and carbon...... for rehabilitation. In addition, more traffic and heavier loads lead to the need for upgrading. Existing externally bonded strengthening systems using FRP (fiber reinforced polymers) and epoxy as bonding agents have been proven to be a good approach to repair and strengthen concrete structures. However, the use...... fiber sheets. Different designs and material properties of the MBC system have been tested. An extensive monitoring set-up has been carried out using traditional strain gauges and photometric strain measurements to obtain strains in steel reinforcement, in FRP and strain fields on the strengthened...

  9. Preloading Effect on Strengthening Efficiency of RC Beams Strengthened with Non- and Pretensioned NSM Strips

    Directory of Open Access Journals (Sweden)

    Renata Kotynia

    2018-02-01

    Full Text Available The near surface mounted (NSM technique has been shown to be one of the most promising methods for upgrading reinforced concrete (RC structures. Many tests carried out on RC members strengthened in flexure with NSM fiber-reinforced polymer (FRP systems have demonstrated greater strengthening efficiency than the use of externally-bonded (EB FRP laminates. Strengthening with simultaneous pretensioning of the FRP results in improvements in the serviceability limit state (SLS conditions, including the increased cracking moment and decreased deflections. The objective of the reported experimental program, which consisted of two series of RC beams strengthened in flexure with NSM CFRP strips, was to investigate the influence of a number of parameters on the strengthening efficiency. The test program focused on an analysis of the effects of preloading on the strengthening efficiency which has been investigated very rarely despite being one of the most important parameters to be taken into account in strengthening design. Two preloading levels were considered: the beam self-weight only, which corresponded to stresses on the internal longitudinal reinforcement of 25% and 14% of the yield stress (depending on a steel reinforcement ratio, and the self-weight with the additional superimposed load, corresponding to 60% of the yield strength of the unstrengthened beam and a deflection equal to the allowable deflection at the SLS. The influence of the longitudinal steel reinforcement ratio was also considered in this study. To reflect the variability seen in existing structures, test specimens were varied by using different steel bar diameters. Finally, the impact of the composite reinforcement ratio and the number of pretensioned FRP strips was considered. Specimens were divided into two series based on their strengthening configuration: series “A” were strengthened with one pretensioned and two non-pretensioned carbon FRP (CFRP strips, while series

  10. Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire

    Science.gov (United States)

    Sayin, B.

    2014-09-01

    There are two main approaches to improving the fire resistance of fiber-reinforced polymer (FRP) systems. While the most common method is to protect or insulate the FRP system, an other way is to use fibers and resins with a better fire performance. This paper presents a numerical investigation into the five protection behavior of insulated carbon-fiber-reinforced-polymer (CFRP)-strengthened reinforced concrete (RC) beams. The effects of external loading and thermal expansion of materials at elevated temperatures are taken into consideration in a finite-element model. The validity of the numerical model is demonstrated with results from an existing experimental study on insulated CFRP-strengthened RC beams. Conclusions of this investigation are employed to predict the structural behavior of CFRP-strengthened concrete structures.

  11. Finite element analysis and experimental verification of Polymer reinforced CRC improved for close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik

    2007-01-01

    Compact Reinforced Composite, CRC, is a high-strength cement-based composite that holds an enormous flexural and energy-absorbing capacity due to the close-spaced high strength steel reinforcement and a high-strength cement-based fiber DSP matrix. The material has been used in various constructions...

  12. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  13. Ageing of fibre reinforced polymer composite selected as a bearing material for Rams of 540 MWe fuelling machine

    International Nuclear Information System (INIS)

    Limaye, P.K.; Soni, N.L.; Agrawal, R.G.

    2006-01-01

    Fibre-reinforced-polymer-composite material has been suggested as a bearing material to overcome tribological problems witnessed during the testing of Ram assembly of the 540 MWe fuelling machine at RTD. After successful trials at B-Ram the composite material has been adapted for B-RAM, C-Ram and RDB head at fuelling machines being tested at RTD, Hall 7 and at Tarapur. Laboratory evaluations were also carried out at Tribology Lab RTD to study effect of radiation on the composite. Paper deals with the various aspects of life prediction of this material in term of wear and radiation damage. (author)

  14. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  15. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    Science.gov (United States)

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  17. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    Science.gov (United States)

    Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong

    2018-03-01

    Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  18. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Hazimmah Dayang

    2018-01-01

    Full Text Available Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber –matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  19. Mineral-Based Bonding of Carbon FRP to Strengthen Concrete Structures

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, T.

    2007-01-01

    The advantages of fiber-reinforced polymer (FRP) -strengthening have been shown time and again during the last decade. Several thousand structures retrofitted with FRPs exist worldwide. There are various reasons why the retrofit is needed, but it is not uncommon for the demands on the structure...

  20. Crack monitoring method for an FRP-strengthened steel structure based on an antenna sensor

    NARCIS (Netherlands)

    Liu, Z.; Chen, Kai; Li, Z.; Jiang, X.

    2017-01-01

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it

  1. Crack Propagation on ESE(T) Specimens Strengthened with CFRP Sheets

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Jensen, Peter Holmstrøm; Dyrelund, Jens

    2009-01-01

    In this paper fatigue tests on side notched steel test specimens strengthened with adhesive bonded fibre reinforced polymer (FRP) sheets are presented. The specimens are subject to crack growth both in the steel and bond line. Influence of the load ratio and initial crack length on the overall...

  2. Influence of temperature on concrete beams strengthened in flexure with CFRP

    NARCIS (Netherlands)

    Klamer, E.L.

    2009-01-01

    The increasingly faster changing demands to existing buildings and ongoing deterioration of buildings and infrastructure have increased the need to strengthen existing structures. One of developments during the last two decades is the use of externally bonded Carbon Fiber Reinforced Polymer (CFRP)

  3. Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has...

  4. Effect of the Fiber Type and Axial Stiffness of FRCM on the Flexural Strengthening of RC Beams

    Directory of Open Access Journals (Sweden)

    Abdulla Jabr

    2017-01-01

    Full Text Available The use of externally-bonded fiber-reinforced polymer (FRP sheets has been successfully used in the repair and strengthening of both the shear and flexural capacities of reinforced concrete (RC beams, slabs and columns since the 1990s. However, the externally-bonded FRP reinforcements still present many disadvantages, such as poor performance in elevated temperature and fire, lack of permeability and strength degradation when exposed to ultraviolet radiation. To remedy such drawbacks, the fiber-/fabric-reinforced cementitious matrix (FRCM has been recently introduced. The FRCM system consists of a fiber mesh or grid embedded in a cementitious bonding material. The present research investigates the flexural strengthening of reinforced concrete (RC beams with FRCM. The experimental testing included eight large-scale concrete beams, 150 mm × 250 mm × 2400 mm, internally reinforced with steel bars and strengthened in flexure with FRCM. The investigated parameters were the internal steel reinforcement ratio and the FRCM systems. Two steel reinforcement ratios of 0.18 and 0.36 of the balanced reinforcement ratio, as well as three FRCM systems using glass, carbon and PBO fibers were investigated. Test results are presented in terms of load-deflection, load-strain and load-crack width relationships. The test results indicated that the PBO FRCM significantly increased the ultimate capacity of the strengthened RC beams with both low and moderate internal reinforcement ratios compared to the glass and carbon FRCM.

  5. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    Science.gov (United States)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  6. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: An in vitro analysis

    OpenAIRE

    S Prakasam; Prakasam Bharadwaj; S C Loganathan; B Krishna Prasanth

    2014-01-01

    Objective: The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. Materials and Methods: One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with...

  7. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: an in vitro analysis.

    Science.gov (United States)

    Prakasam, S; Bharadwaj, Prakasam; Loganathan, S C; Prasanth, B Krishna

    2014-01-01

    The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with 50% Portland cement (PMZNPC 50%) Group 2: Polymer-reinforced zinc oxide eugenol with 25% Portland cement (PMZNPC 25%) Group 3: Polymer-reinforced zinc oxide eugenol with 0% Portland cement (PMZNPC 0%) Group 4: Zinc oxide eugenol with 50% Portland cement (ZNPC 50%) Group 5: Zinc oxide eugenol with 25% Portland cement (ZNPC 25%) Group 6: Zinc oxide eugenol with 0% Portland cement (ZNPC 0%) These samples were further subdivided based on time interval and were tested at 1 hour, 24 hours and at 7 th day. After each period of time all the specimens were tested by vertical CVR loaded frame with capacity of 5 tones/0473-10kan National Physical laboratory, New Delhi and the results were statistically analyzed using ANOVA and Scheffe test. Polymer-reinforced cement with 50% Portland cement, Zinc oxide with 50% Portland cement, Polymer-reinforced cement with 25% Portland cement and Zinc oxide with 25% Portland cement exhibited higher compressive strength when compared to Zinc oxide with 0% Portland cement and Polymer-reinforced cement with 0% Portland cement, at different periods of time. The difference between these two groups were statistically significant (P Portland cement in Zinc oxide eugenol and Polymer-modified zinc oxide cement can be used as core build up material and permanent filling material. It is concluded that 50% and 25% Portland cement in zinc oxide eugenol and polymer-modified zinc oxide eugenol results in higher compressive strength and hence can be used as permanent filling material and core built

  8. Limit analysis on FRP-strengthened RC members

    Directory of Open Access Journals (Sweden)

    D. De Domenico

    2014-07-01

    Full Text Available Reinforced concrete (RC members strengthened with externally bonded fiber-reinforced-polymer (FRP plates are numerically investigated by a plasticity-based limit analysis approach. The key-concept of the present approach is to adopt proper constitutive models for concrete, steel reinforcement bars (re-bars and FRP strengthening plates according to a multi-yield-criteria formulation. This allows the prediction of concrete crushing, steel bars yielding and FRP rupture that may occur at the ultimate limit state. To simulate such limitstate of the analysed elements, two iterative methods performing linear elastic analyses with adaptive elastic parameters and finite elements (FEs description are employed. The peak loads and collapse mechanisms predicted for FRP-plated RC beams are validated by comparison with the corresponding experimental findings.

  9. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  10. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    Science.gov (United States)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  11. Studies on fabrication of glass fiber reinforced composites using polymer blends

    Science.gov (United States)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  12. A Review on Strengthening Steel Beams Using FRP under Fatigue

    Directory of Open Access Journals (Sweden)

    Mohamed Kamruzzaman

    2014-01-01

    Full Text Available In recent decades, the application of fibre-reinforced polymer (FRP composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  13. A review on strengthening steel beams using FRP under fatigue.

    Science.gov (United States)

    Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

  14. A Review on Strengthening Steel Beams Using FRP under Fatigue

    Science.gov (United States)

    Jumaat, Mohd Zamin; Ramli Sulong, N. H.

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221

  15. FEM performance of concrete beams reinforced by carbon fiber bars

    Directory of Open Access Journals (Sweden)

    Hasan Hashim

    2018-01-01

    Full Text Available Concrete structures may be vulnerable to harsh environment, reinforcement with Fiber Reinforced Polymer (FRP bars have an increasing acceptance than normal steel. The nature of (FRP bar is (non-corrosive which is very beneficial for increased durability as well as the reinforcement of FRP bar has higher strength than steel bar. FRP usage are being specified more and more by public structural engineers and individual companies as main reinforcement and as strengthening of structures. Steel reinforcement as compared to (FRP reinforcement are decreasingly acceptable for structural concrete reinforcement including precast concrete, cast in place concrete, columns, beams and other components. Carbon Fiber Reinforcement Polymer (CFRP have a very high modulus of elasticity “high modulus” and very high tensile strength. In aerospace industry, CFRP with high modulus are popular among all FRPs because it has a high strength to weight ratio. In this research, a finite element models will be used to represent beams with Carbon Fiber Reinforcement and beams with steel reinforcement. The primary objective of the research is the evaluation of the effect of (CFR on beam reinforcement.

  16. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Jon [Fiberlean Technologies; Ireland, Sean [Fiberlean Technologies; Skuse, David [Imerys; Edwards, Martha [Imerys; Mclain, Leslie [Imerys; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Ozcan, Soydan [ORNL

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  17. Condition assessment and strengthening of residential units

    Directory of Open Access Journals (Sweden)

    Tatheer Zahra

    2014-01-01

    Full Text Available About 40, ground plus one (G+1 residential units were designed using a hybrid structural framing system (RC frame and load bearing walls. A few months after the completion of the ground floor of the residential units, cracks appeared at several locations in the structure. Field and Laboratory testing was conducted to ascertain the in situ strength of concrete and steel reinforcement. The results of the experimental work were used in the analytical ETABS model for the structural stability calculations. The results indicated that residential units were marginally safe in the existing condition (completed ground floor, but the anticipated construction of the floor above the ground floor (G+1 could not be carried out as the strength of the structural system was inadequate. To increase the safety of existing ground floor and to provide the option of the construction of one floor above, rehabilitation and strengthening design was performed. The proposed strengthening design made use of welded wire fabric (WWF and carbon fibre reinforced polymer (CFRP laminates/sheets for the strengthening of walls, columns and slabs. The residential units will be strengthened in the near future.

  18. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  19. Study of long term chemo-hydro-mechanic behaviour of hydraulic barrier reinforced by polymer

    International Nuclear Information System (INIS)

    Razakamanantsoa, Andry Rico

    2009-01-01

    Passive barrier for landfill liners are designed with bentonite material as Geo-synthetic Clay Liners (GCL's) or Sand Bentonite Mixtures (SBM). This thesis is focused on the experimental study of the long term Chemo-Hydro-Mechanic behaviour of polymer treated geo-materials. Tests are performed with two powder polyelectrolyte polymers (P1, P2). Soil and one selected type of bentonite from a set of six are used. The corresponding testing fluid is composed with: synthesized leachate, CaCl_2 and NaCl. This first step of the study is to select the suitable bentonite (B) and the corresponding polymer concentration (2%) that gives the best swelling ability to the bentonite. Compatibility test of the bentonite polymer mixture with synthesized leachable is done. Tests are performed by fabricating GL's, with filter press and oedo-permeameter. Results show that hydraulic performance grows with the bentonite concentration. And the LS aggressiveness occurs immediately in a case of bentonite. The effects of polymer treatment are different: P1 increases the swelling ability of bentonite by flocculation, P2 increases the hydraulic performance of the bentonite by dispersion. The long term hydraulic performance tests with SBM are carried out with a rigid wall permeameter. Tests results show that pre-hydration delays only the fluid aggressiveness in spite of reducing the corresponding effects. The long term effect of polymer treatment reveals benefits to geo-material behaviour by increasing water retention and reducing the undesired effects of pollutant. The chemical index is proposed to forecast the geo-material degradation. (author)

  20. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  1. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    Science.gov (United States)

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  2. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    Science.gov (United States)

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  3. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate Polymer Complex

    Directory of Open Access Journals (Sweden)

    Ivona Jerkovic

    2017-10-01

    Full Text Available Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  4. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    Science.gov (United States)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  5. Carbon nanotube reinforced polymer composites–A state of the art

    Indian Academy of Sciences (India)

    TECS

    Abstract. Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess ...

  6. Challenges and opportunities of fibre-reinforced polymers in additive manufacturing with focus on industrial applications

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Functional parts made by additive manufacturing of polymers have entered the area of industrial applications in recent years providing a wide range of materials with various mechanical, thermal, and electrical properties. These additive manufacturing processes can be combined with known fibre...

  7. Shrinkage Behaviour of Fibre Reinforced Concrete with Recycled Tyre Polymer Fibres

    Directory of Open Access Journals (Sweden)

    Marijana Serdar

    2015-01-01

    Full Text Available Different types of fibres are often used in concrete to prevent microcracking due to shrinkage, and polypropylene fibres are among the most often used ones. If not prevented, microcracks can lead to the development of larger cracks as drying shrinkage occurs, enabling penetration of aggressive substances from the environment and reducing durability of concrete structures. The hypothesis of the present research is that polypropylene fibres, used in concrete for controlling formation of microcracks due to shrinkage, can be replaced with recycled polymer fibres obtained from end-of-life tyres. To test the hypothesis, concrete mixtures containing polypropylene fibres and recycled tyre polymer fibres were prepared and tested. Experimental programme focused on autogenous, free, and restrained shrinkage. It was shown that PP fibres can be substituted with higher amount of recycled tyre polymer fibres obtaining concrete with similar shrinkage behaviour. The results indicate promising possibilities of using recycled tyre polymer fibres in concrete products. At the same time, such applications would contribute to solving the problem of waste tyre disposal.

  8. Carbon nanotube reinforced polymer composites—A state of the art

    Indian Academy of Sciences (India)

    Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess enhanced or ...

  9. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    Science.gov (United States)

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  10. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  11. The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review

    OpenAIRE

    Mahmood Mehrdad Shokrieh; Majid Jamal Omidi

    2012-01-01

    Fiber reinforced composites are widely used instead of traditional materials in various technological applications. Therefore, by considering the extensive applications of these materials, a proper knowledge of their impact behavior (from low- to high-velocity) as well as their static behavior is necessary. In order to study the effects of strain rates on the behavior of these materials, special testing machines are needed. Most of the research efforts in this feld are focused on application ...

  12. A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate

    Directory of Open Access Journals (Sweden)

    Yongtaeg LEE

    2015-11-01

    Full Text Available The increase of well-being culture of problem related to environmental depletion of resource is not the growing interest in timber the natural material of construction markets. Also, the perception for historic preservation has been increased in respond to heightened interest. However, it is fairly difficult for architectural properties to maintain their durability because it was made by timber construction. Preventing traditional structure from damage and structural performance reduction is paramount in maintenance problem. A number of studies of reinforced method have been conducted in order to solve such a problem. In this paper, external bonded reinforcement and near-surface mounted was used as a way to reinforce timber structure’s durability. Bond strength for specimens with different bond length was investigated. As a result showed, maximum bond strength in bond length 300 mm from all method, was found to be not increased of bond strength over the certain bond length.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9702

  13. Estimating the behavior of RC beams strengthened with NSM system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Seyed Rohollah Hosseini Vaez

    2017-12-01

    Full Text Available In the last decade, conventional materials such as steel and concrete are being replaced by fiber reinforced polymer (FRP materials for the strengthening of concrete structures. Among the strengthening techniques based on Fiber Reinforced Polymer composites, the use of near-surface mounted (NSM FRP rods is emerging as a promising technology for increasing flexural and shear strength of deficient concrete, masonry and timber members. An artificial neural network is an information processing tool that is inspired by the way biological nervous systems (such as the brain process the information. The key element of this tool is the novel structure of the information processing system. In engineering applications, a neural network can be a vector mapper which maps an input vector to an output one. In the present study, a new approach is developed to predict the behavior of strengthened concrete beam using a large number of experimental data by applying artificial neural networks. Having parameters used as input nodes in ANN modeling such as elastic modulus of the FRP reinforcement, the ratio of the steel longitudinal reinforcement, dimensions of the beam section, the ratio of the NSM-FRP reinforcement and characteristics of concrete, the output node was the flexural strength of beams. The idealized neural network was employed to generate empirical charts and equations to be used in design. The aim of this study is to investigate the behavior of strengthened RC beam using artificial neural networks.

  14. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    Science.gov (United States)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft

  15. Physico-Chemical studies on irradiated polymer-reinforcement cement mortar composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    2001-01-01

    The reinforced concrete suffers from corrosion by several salts, acids or alkalies and physico-mechanical properties are greatly affected. This leads to reduce the life of reinforced concrete structure. The present investigation deals with a comparison of corrosion presentation efficiency and passivity retention of reinforcement steel coated with methylethyl and propyl inhibitors which are prepared by using γ radiation and non-coated steel embedded in γ -induced polyester cement mortar composites. From the results of these studies several conclusions could be derived and these are summarized as follows: 1- The time required to reach passivation for coated steel embedded in the mortar after soaking in tap water for 28 days lies within the range 5-15 minutes; whereas, the time required to reach passivation for steel embedded in the polyester cement mortar composites is very short (1 minute). This result is related to the presence of copolymerized polyester in the pore system of the specimens. 2- The time required to reach passivation for steel coated by inhibitors in the mortar specimens after curing in tap water for 6 months is lower than that of non -coated steel embedded in the mortar specimens cured at the same conditions. 3- A relatively high degree of corrosion inhibition was obtained for the steel embedded in polyester-cement mortar composites after curing in sea water for 28 days, the time required to reach passivation is considered as moderate in the case of methyl and ethyl inhibitors the time to passivation (T.T.P.) = 9 minutes and the degree of inhibition of steel coated with the propyl inhibitor is comparatively low (T.T.P.=21 minutes)

  16. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    Directory of Open Access Journals (Sweden)

    Nciri M.

    2015-01-01

    Full Text Available This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  17. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  18. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    OpenAIRE

    R. Ananda Kumar; Dr. C. Selvamony; A. Seeni; Dr. T. R. Sethuraman

    2015-01-01

    Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral lo...

  19. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  20. Milling damage on Carbon Fibre Reinforced Polymer using TiAlN coated End mills

    Science.gov (United States)

    Konneh, Mohamed; Izman, Sudin; Rahman Kassim, Abdullah Abdul

    2015-07-01

    This paper reports on the damage caused by milling Carbon Fibre Reinforced Composite (CFRP) with 2-flute 4 mm-diameter solid carbide end mills, coated with titanium aluminium nitride. The machining parameters considered in work are, rotation speed, feed rate and depth of cut. Experiments were designed based on Box-Behnken design and the experiments conducted on a Mikrotool DT-110 CNC micro machine. A laser tachometer was used to ascertain a rotational speed for conducting any machining trial. Optical microscopy examination reveals minimum delamination value of 4.05 mm at the spindle speed of 25,000 rpm, depth of cut of 50μm and feed rate of 3 mm/min and the maximum delamination value of 5.04 mm at the spindle speed of 35000 rpm, depth of cut of 150μm and feed rate of 9 mm/min A mathematical model relating the milling parameters and delamination has been established.

  1. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  2. In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo L.

    2000-01-01

    Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.

  3. UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE

    Directory of Open Access Journals (Sweden)

    Subyakto Subyakto

    2013-06-01

    Full Text Available Sisal (Agave sisalana as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP and polylactic acid (PLA to bond together with the reinforcement agent (e.g. sisal fibers. In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites. Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite, the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA. With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE of MSFC

  4. Effect of oil palm empty fruit bunches fibers reinforced polymer recycled

    Science.gov (United States)

    Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.

    2017-07-01

    The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).

  5. Mechanical and durability characteristics of externally GFRP reinforced unsaturated polyester polymer concrete

    Science.gov (United States)

    Bouguessir, H.; Harkati, E.; Rokbi, M.; Priniotakis, G.; Vassiliadis, S.

    2017-10-01

    The last decades of the XXe century cognized a huge extent of composite materials uses to almost all everyday life’s applications, replacing the conventional materials, due to their outstanding properties especially highest strength-to-weight ratio and the ability to be designed to satisfy specific performance requirements. To get the most out of these wonder materials, a new concept, combining polymer concrete and composite laminates, is currently used in Algeria. This research work has the aim to investigate applicability of this concept in civil engineering through tensile and bending tests. On the other hand, the influence of various chemicals (Sodium hydroxide, Potassium Hydroxide and Calcium Carbonates) on our material and its tensile properties retention over long-time exposure was examined. The mechanical properties obtained indicate the convenience of this material for use in civil engineering thanks to its very good tensile and flexural performances in addition to its sufficient residual strength after theoretically 56 years.

  6. A mechanical model for FRP-strengthened beams in bending

    Directory of Open Access Journals (Sweden)

    P. S. Valvo

    2012-10-01

    Full Text Available We analyse the problem of a simply supported beam, strengthened with a fibre-reinforced polymer (FRP strip bonded to its intrados and subjected to bending couples applied to its end sections. A mechanical model is proposed, whereby the beam and FRP strip are modelled according to classical beam theory, while the adhesive and its neighbouring layers are modelled as an interface having a piecewise linear constitutive law defined over three intervals (elastic response – softening response – debonding. The model is described by a set of differential equations with appropriate boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces, displacements and interfacial stresses. The model predicts an overall non-linear mechanical response for the strengthened beam, ranging over several stages: from linearly elastic behaviour to damage, until the complete detachment of the FRP reinforcement.

  7. Milling damage on Carbon Fibre Reinforced Polymer using TiAlN coated End mills

    International Nuclear Information System (INIS)

    Konneh, Mohamed; Kassim, Abdullah Abdul Rahman; Izman, Sudin

    2015-01-01

    This paper reports on the damage caused by milling Carbon Fibre Reinforced Composite (CFRP) with 2-flute 4 mm-diameter solid carbide end mills, coated with titanium aluminium nitride. The machining parameters considered in work are, rotation speed, feed rate and depth of cut. Experiments were designed based on Box-Behnken design and the experiments conducted on a Mikrotool DT-110 CNC micro machine. A laser tachometer was used to ascertain a rotational speed for conducting any machining trial. Optical microscopy examination reveals minimum delamination value of 4.05 mm at the spindle speed of 25,000 rpm, depth of cut of 50μm and feed rate of 3 mm/min and the maximum delamination value of 5.04 mm at the spindle speed of 35000 rpm, depth of cut of 150μm and feed rate of 9 mm/min A mathematical model relating the milling parameters and delamination has been established. (paper)

  8. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot recreational yachts

    Directory of Open Access Journals (Sweden)

    Dave (Dae-Wook Kim

    2010-03-01

    Full Text Available Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL, vacuum infusion (VI, and hybrid (HL + VI processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

  9. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

    Science.gov (United States)

    Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel

    2010-03-01

    Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results

  10. Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers

    Science.gov (United States)

    Hübler, M.; Nissle, S.; Gurka, M.; Wassenaar, J.

    2016-04-01

    Static vortex generators (VGs) are installed on different aircraft types. They generate vortices and interfuse the slow boundary layer with the fast moving air above. Due to this energizing, a flow separation of the boundary layer can be suppressed at high angles of attack. However the VGs cause a permanently increased drag over the whole flight cycle reducing the cruise efficiency. This drawback is currently limiting the use of VGs. New active VGs, deployed only on demand at low speed, can help to overcome this contradiction. Active hybrid structures, combining the actuation of shape memory alloys (SMA) with fiber reinforced polymers (FRP) on the materials level, provide an actuation principle with high lightweight potential and minimum space requirements. Being one of the first applications of active hybrid structures from SMA and FRP, these active vortex generators help to demonstrate the advantages of this new technology. A new design approach and experimental results of active VGs are presented based on the application of unique design tools and advanced manufacturing approaches for these active hybrid structures. The experimental investigation of the actuation focuses on the deflection potential and the dynamic response. Benchmark performance data such as a weight of 1.5g and a maximum thickness of only 1.8mm per vortex generator finally ensure a simple integration in the wing structure.

  11. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis

    International Nuclear Information System (INIS)

    Satheesh Raja, R.; Manisekar, K.; Manikandan, V.

    2014-01-01

    Highlights: • FRP with and without fly ash filler were prepared. • Mechanical properties of composites were analyzed. • Mixture Design Method was used to model the system. • Experimental and mathematical model results were compared. - Abstract: This paper describes the mechanical behavior of fly ash impregnated E-glass fiber reinforced polymer composite (GFRP). Initially the proportion of fiber and resin were optimized from the analysis of the mechanical properties of the GFRP. It is observed that the 30 wt% of E-glass in the GFRP without filler material yields better results. Then, based on the optimized value of resin content, the varying percentage of E-glass and fly ash was added to fabricate the hybrid composites. Results obtained in this study were mathematically evaluated using Mixture Design Method. Predictions show that 10 wt% addition of fly ash with fiber improves the mechanical properties of the composites. The fly ash impregnated GFRP yields significant improvement in mechanical strength compared to the GFRP without filler material. The surface morphologies of the fractured specimens were characterized using Scanning Electron Microscope (SEM). The chemical composition and surface morphology of the fly ash is analyzed by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope

  12. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    International Nuclear Information System (INIS)

    El-Tahan, M; Dawood, M; Song, G

    2015-01-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements. (paper)

  13. ASCE application guide for recommended practice for fiber-reinforced polymer products for overhead utility line structures

    Energy Technology Data Exchange (ETDEWEB)

    Gnandt, E. [T and D High Voltage Consulting, Vancouver, BC (Canada)

    2002-07-01

    The participants to the American Society of Civil Engineers (ASCE) prepared an application guide to provide guidelines to utilities and manufacturers on topics ranging from design to manufacture, testing and installation of fiber-reinforced polymer (FRP) products. The intent was also to help utilities with a possible replacement material for wood, steel and pre-stressed concrete. FRP products are constructed from fiber and resin and offer several advantages such as light weight and high strength-to-weight ratio, low maintenance, dimensional stability, resistance to rot, corrosion, chemicals and pest damage. FRP products can be used for lighting poles, ladders and grating, transformer pads, pole line hardware and crossarms, and other applications. There are five structural configurations: (1) cantilevered structures (single pole), (2) guyed structures, framed structures (H-Frame), (4) a combination of (1), (2), and (3), and (5) lattice structures (transmission class). The author listed some of the initial considerations: physical characteristics, guying and grounding, deflection and load testing, attached items, and durability to name only a few. The materials and manufacturing processes were briefly explained, namely the pultrusion method, the filament winding method, and the centrifugal casting method. Design loads considerations are discussed, as are performance-based criteria such as mechanical, coating durability and electrical. Quality control, assembly erection and storage, and in-service considerations are also discussed. The author concluded the presentation with a section dealing with field inspections. figs.

  14. Coupling of a structural analysis and flow simulation for short-fiber-reinforced polymers: property prediction and transfer of results

    Science.gov (United States)

    Kröner, C.; Altenbach, H.; Naumenko, K.

    2009-05-01

    The aim of this paper is to discuss the basic theories of interfaces able to transfer the results of an injection molding analyis of fiber-reinforced polymers, performed by using the commercial computer code Moldflow, to the structural analysis program ABAQUS. The elastic constants of the materials, such as Young's modulus, shear modulus, and Poisson's ratio, which depend on both the fiber content and the degree of fiber orientation, were calculated not by the usual method of "orientation averaging," but with the help of linear functions fitted to experimental data. The calculation and transfer of all needed data, such as material properties, geometry, directions of anisotropy, and so on, is performed by an interface developed. The interface is suit able for midplane elements in Moldflow. It calculates and transfers to ABAQUS all data necessary for the use of shell elements. In addition, a method is described how a nonlinear orthotropic behavior can be modeled starting from the generalized Hooke's law. It is also shown how such a model can be implemented in ABAQUS by means of a material subroutine. The results obtained according to this subroutine are compared with those based on an orthotropic, linear, elastic simulation.

  15. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength

    OpenAIRE

    Yongmin Yang; Zhaoheng Li; Tongsheng Zhang; Jiangxiong Wei; Qijun Yu

    2017-01-01

    Basalt Fiber Reinforced Polymer (BFRP) bars have bright potential application in concrete structures subjected to marine environment due to their superior corrosion resistance. Available literatures mainly focused on the mechanical properties of BFRP concrete structures, while the bond-slip behavior of BFRP bars, which is a key factor influencing the safety and service life of ocean concrete structures, has not been clarified yet. In this paper, effects of BFRP bars size, corrosion age, and c...

  16. "Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites.

    Science.gov (United States)

    De Luca, Francois; Sernicola, Giorgio; Shaffer, Milo S P; Bismarck, Alexander

    2018-02-28

    The fiber-matrix interface plays a critical role in determining composite mechanical properties. While a strong interface tends to provide high strength, a weak interface enables extensive debonding, leading to a high degree of energy absorption. Balancing these conflicting requirements by engineering composite interfaces to improve strength and toughness simultaneously still remains a great challenge. Here, a nanostructured fiber coating was realized to manifest the critical characteristics of natural nacre, at a reduced length scale, consistent with the surface curvature of fibers. The new interphase contains a high proportion (∼90 wt %) of well-aligned inorganic platelets embedded in a polymer; the window of suitable platelet dimensions is very narrow, with an optimized platelet width and thickness of about 130 and 13 nm, respectively. An anisotropic, nanostructured coating was uniformly and conformally deposited onto a large number of 9 μm diameter glass fibers, simultaneously, using self-limiting layer-by-layer assembly (LbL); this parallel approach demonstrates a promising strategy to exploit LbL methods at scale. The resulting nanocomposite interphase, primarily loaded in shear, provides new mechanisms for stress dissipation and plastic deformation. The energy released by fiber breakage in tension appear to spread and dissipate within the nanostructured interphase, accompanied by stable fiber slippage, while the interfacial strength was improved up to 30%.

  17. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  18. An overview of the Oil Palm Empty Fruit Bunch (OPEFB potential as reinforcing fibre in polymer composite for energy absorption applications

    Directory of Open Access Journals (Sweden)

    Faizi M.K.

    2017-01-01

    Full Text Available The oil palm empty fruit bunch (OPEFB natural fibres were comprehensively reviewed to assess their potential as reinforcing materials in polymer composites for energy absorption during low-velocity impact. The typical oil palm wastes include trunks, fronds, kernel shells, and empty fruit bunches. This has a tendency to burden the industry players with disposal difficulties and escalates the operating cost. Thus, there are several initiatives have been employed to convert these wastes into value added products. The objective of this study is to review the potential of oil palm empty fruit bunch (OPEFB as natural fibre polymer composite reinforcement to absorb the energy during low-velocity impact as another option for value added products. Initially, this paper reviewed the local oil palm waste issues. Previous research works on OPEFB polymer composite, and their mechanical characterization is appraised. Their potential for energy absorption in low-velocity impact application was also elaborated. The review suggests high potential applications of OPEFB as reinforcing materials in composite structures. Furthermore, it is wisely to utilize the oil palm biomass waste into a beneficial composite, hence, promotes the green environment.

  19. Influence of Cutting Temperature on the Tensile Strength of a Carbon Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Jérémy Delahaigue

    2017-12-01

    Full Text Available Carbon fiber-reinforced plastics (CFRP have seen a significant increase in use over the years thanks to their specific properties. Despite continuous improvements in the production methods of laminated parts, a trimming operation is still necessary to achieve the functional dimensions required by engineering specifications. Laminates made of carbon fibers are very abrasive and cause rapid tool wear, and require high cutting temperatures. This creates damage to the epoxy matrix, whose glass-transition temperature is often recognized to be about 180 °C. This study aims to highlight the influence of the cutting temperature generated by tool wear on the surface finish and mechanical properties obtained from tensile tests. Trimming operations were performed on a quasi-isotropic 24-ply carbon/epoxy laminate, of 3.6 mm thickness, with a 6 flutes diamond-coated (CVD cutter. The test specimens of 6 mm and 12 mm wide were obtained by trimming. The reduced width of the coupons allowed amplification of the effect of defects on the measured properties by increasing the proportion of coupon cross-section occupied by the defects. A new tool and a tool in an advanced state of wear were used to generate different cutting temperatures. Results showed a cutting temperature of 300 °C for the new tool and 475 °C for the worn tool. The analysis revealed that the specimens machined with the new tool have no thermal damage and the cut is clean. The plies oriented at −45° presented the worst surface finish according to the failure mode of the fiber. For the worn tool, the surface was degraded and the matrix was carbonized. After cutting, observations showed a degraded resin spread on the machined surface, which reduced the surface roughness and hid the cutting defects. In support of these observations, the tensile tests showed no variation of the mechanical properties for the 12 mm-wide specimens, but did show a 10% loss in mechanical properties for the 6 mm

  20. 3D FE Analysis of RC Beams Externally Strengthened with SRG/SRP Systems

    Directory of Open Access Journals (Sweden)

    Francesco Bencardino

    2016-05-01

    Full Text Available The purpose of this study is to evaluate, through a nonlinear Finite Element (FE analysis, the structural behavior of Reinforced Concrete (RC beams externally strengthened by using Steel Reinforced Grout (SRG and Steel Reinforced Polymer (SRP systems. The parameters taken into account were the external strengthening configuration, with or without U-wrap end anchorages, as well as the strengthening materials. The numerical simulations were carried out by using a three-dimensional (3D FE model. The linear and nonlinear behavior of all materials was modeled by appropriate constitutive laws and the connection between concrete substrate and external reinforcing layer was simulated by means of cohesive surfaces with appropriate bond-slip laws. In order to overcome convergence difficulties, to simulate the quasi-static response of the strengthened RC beams, a dynamic approach was adopted. The numerical results in terms of load-displacement curves, failure modes, and load and strain values at critical stages were validated against some experimental data. As a result, the proposed 3D FE model can be used to predict the structural behavior up to ultimate stage of similar strengthened beams without carrying out experimental tests.

  1. Failure Load Test of a CFRP Strengthened Railway Bridge in Oumlrnskoumlldsvik, Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Bergström, Markus; Carolin, Anders

    2009-01-01

    using carbon fiber reinforced polymer (CFRP) rectangular rods epoxy bonded in sawed up slots, e.g., near surface mounted reinforcement. The strengthening was very successful and resulted in a desired shear failure when the bridge was loaded to failure. The load-carrying capacity in bending...... steel reinforcement by approximately 10%, and increased the height of the compressed zone by 100 mm. When the shear failure occurred, the utilization of the compression concrete and CFRP rods were 100 and 87.5%, respectively. This indicates that a bending failure indeed was about to occur, even though......, Sweden is presented. In this particular test the shear capacity of the concrete girders was of primary interest. However, for any reasonable placement of the load (a line load placed transverse to the track direction) a bending failure would occur. This problem was solved by strengthening for flexure...

  2. Design procedures for the use of composites in strengthening of reinforced concrete structures state-of-the-art report of the RILEM Technical Committee 234-DUC

    CERN Document Server

    Sena-Cruz, José

    2016-01-01

    This book analyses the current knowledge on structural behaviour of RC elements and structures strengthened with composite materials (experimental, analytical and numerical approaches for EBR and NSM), particularly in relation to the above topics, and the comparison of the predictions of the current available codes/recommendations/guidelines with selected experimental results. The book shows possible critical issues (discrepancies, lacunae, relevant parameters, test procedures, etc.) related to current code predictions or to evaluate their reliability, in order to develop more uniform methods and basic rules for design and control of FRP strengthened RC structures. General problems/critical issues are clarified on the basis of the actual experiences, detect discrepancies in existing codes, lacunae in knowledge and, concerning these identified subjects, provide proposals for improvements. The book will help to contribute to promote and consolidate a more qualified and conscious approach towards rehabilitation...

  3. Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case study

    Directory of Open Access Journals (Sweden)

    P. Palanisamy

    2018-06-01

    Full Text Available The studies are mainly carried out on strength development for various grades of geo-polymer mortar with varying molarity (M for producing geo-polymer earth brick (GPEB. The studies are focused on use of more sandy soil sieved from the raw earth available at site and quarry dust on replaced with river sand for making the un-burnt brick. The brick is reinforced with fibrous coir waste to increase shear strength and further pressed by hand compaction. Geo-polymer mortar is based on an inorganic alumina silicate binder system and it has more advantages of quick strength gain, negligence of water curing, best mechanical properties, eco-friendly, sustainable and alternate to ordinary Portland cement (OPC based mortar. Fly Ash (FA, Ground Granulated Blast-furnace Slag (GGBS, sandy soil sieved from earth and Quarry Dust (QD are mixed with alkaline solution in different molarities 6 M, 8 M and 10 M to prepare specimens. Specimens are tested against workability, compressive strength, and water absorption test, rate of water absorption, abraded test and also fiber content of the brick. The research found that the brick is made by FA & GGBS as binders and soil & quarry dust as fine aggregate in ratio of 0.5:0.5:1.75:0.25 with fibrous coir waste 1% and alkaline solution 10 M for preparing mortar to produce, excellent compressive strength, low water absorption, low rate of absorption, good abrasive resistance etc., The new brick is placed an alternate to compressed stabilized earth block, cement block and traditional burnt brick. Keywords: Fiber reinforced geo-polymer earth brick, Geo-polymer mortar using sandy soil and quarry dust as fine-aggregate, Nature fibrous coir wastes, Un-burnt brick, Alternate to compressed stabilized earth block

  4. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Directory of Open Access Journals (Sweden)

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  5. Comparison between TRM and FRP strengthening systems at preventing buckling failure of brick masonry walls

    Directory of Open Access Journals (Sweden)

    Bernat-Maso, E.

    2016-09-01

    Full Text Available Fibre Reinforced Polymer (FRP and Textile Reinforced Mortar (TRM have been studied, compared and applied to strengthen brick masonry walls. The comparison of their performance against second order bending effects is addressed in this paper for the first time. Experimental and analytical data from previous researches and new analytical data for TRM cases are summarised, ordered and systematically compared to analyse the structural response of strengthened brick masonry walls. The results show a similar performance for both systems in terms of load bearing capacity and in-plane response. However, TRM strengthened cases showed greater lateral deformation than FRP ones.Materiales tipo Fibre Reinforced Polymer (FRP y Textile Reinforced Mortar (TRM han sido estudiados, comparados y aplicados para reforzar muros de fábrica de ladrillo. La comparación de su comportamiento frente a efectos de flexión de segundo orden se abordada en este artículo por primera vez. Datos experimentales y analíticos de investigaciones previas y nuevos datos analíticos para los casos de TRM son resumidos, ordenados y sistemáticamente comparados para analizar la respuesta estructural de los muros de fábrica de ladrillo reforzados. Los resultados muestran un comportamiento similar de los dos sistemas respecto su capacidad de carga y su respuesta en el plano. Los casos reforzados con TRM mostraron desplazamientos laterales superiores a los reforzados con FRP.

  6. Effect of CFRP and TRM Strengthening of RC Slabs on Punching Shear Strength

    Directory of Open Access Journals (Sweden)

    Husain Abbas

    Full Text Available Abstract The paper presents experiments involving punching of RC slabs strengthened using externally bonded carbon fiber reinforced polymer (CFRP sheet and textile reinforced mortar (TRM. Twelve RC slab specimens of two concrete grades (39.9 and 63.2 MPa and employing two strengthening schemes (CFRP and TRM were tested. Specimens were supported on two opposite edges. Experimental load-displacement variations show two peak loads in strengthened slabs and one peak followed by a plateau in control. Second peak or the plateau corresponds to the combined action of aggregate interlock and the dowel action of back face rebars and strengthening layers. The dowel action of back face rebars and strengthening layers had no role in ultimate punching load (i.e. first peak. Strengthened slabs showed 9-18% increase in ultimate punching load (i.e. first peak whereas there was significant increase in the second peak load (190-276% for CFRP; 55-136% for TRM and energy absorption (~66% for CFRP and 22-56% for TRM. An analytical model was also developed for predicting the punching shear strength (first and second peaks of strengthened slabs showing good comparison with experiments.

  7. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.

  8. FRP Composites Strengthening of Concrete Columns under Various Loading Conditions

    Directory of Open Access Journals (Sweden)

    Azadeh Parvin

    2014-04-01

    Full Text Available This paper provides a review of some of the progress in the area of fiber reinforced polymers (FRP-strengthening of columns for several loading scenarios including impact load. The addition of FRP materials to upgrade deficiencies or to strengthen structural components can save lives by preventing collapse, reduce the damage to infrastructure, and the need for their costly replacement. The retrofit with FRP materials with desirable properties provides an excellent replacement for traditional materials, such as steel jacket, to strengthen the reinforced concrete structural members. Existing studies have shown that the use of FRP materials restore or improve the column original design strength for possible axial, shear, or flexure and in some cases allow the structure to carry more load than it was designed for. The paper further concludes that there is a need for additional research for the columns under impact loading senarios. The compiled information prepares the ground work for further evaluation of FRP-strengthening of columns that are deficient in design or are in serious need for repair due to additional load or deterioration.

  9. Prospective study on cranioplasty with individual carbon fiber reinforced polymer (CFRP) implants produced by means of stereolithography.

    Science.gov (United States)

    Wurm, Gabriele; Tomancok, Berndt; Holl, Kurt; Trenkler, Johannes

    2004-12-01

    The aim of this study was to evaluate the value of carbon fiber reinforced polymer (CFRP) cranial implants produced by means of 3-dimensional (3D) stereolithography (SL) and template modeling for reconstructions of complex or extensive cranial defects. A series of 41 cranioplasties with individual CFRP implants was performed in 37 patients between April 1996 and November 2002. Only patients with complex and/or large cranial defects were included, most of them having extended scarring or dural calcification and poor quality of the overlying soft-tissue cover after infection or multiple preceding operations. Involvement of frontal sinus, a known risk factor for complications after cranioplasty, was the case in 21 patients (51.2%). A computer-based 3D model of the skull with the bony defect was generated by means of stereolithography after acquisition, evaluation and transfer of the patient's helical computed tomography (CT) data. A wax template of the defect that was used to design the individual prosthesis-shape was invested in dental stone. Then, the cranial implant was fabricated out of CFRP by loosen mold. Reconstruction of defects measuring up to 17 x 9 cm was performed. The intra-operative fit of the implants was excellent in 36 (87.8%), good in 1 (2.4%), and fair in 4 (9.8%) of the cases. Problems of implant fit occurred because of extended scarring and poor quality of soft-tissue cover. Adverse reactions were observed in 5 patients (1 subdural, 1 subcutaneous hematoma, 2 infections, 1 allergic reaction). Excellent contours and a solid stable reconstruction have been maintained in 30 out of 35 remaining plates (mean follow-up 3.6 years). No adverse effects concerning postoperative imaging, the accuracy of electroencephalograms and radiation therapy have been observed. The authors believe that this relatively new technique represents an advance in the management of complex and large cranial defects, but seems less suitable for simple defects because of cost

  10. Strengthening of structurally damaged wide shallow RC beams using externally bonded CFRP plates

    Directory of Open Access Journals (Sweden)

    Rajeh A. Al-Zaid

    Full Text Available Reinforced concrete wide shallow beams (WSBs are commonly used in the joist flooring systems. The structural behavior of WSBs strengthened with carbon fiber reinforced polymer (CFRP reinforcement was studied on isolated beams and as part of full-scale building. The effect of structural damage on the performance of WSBs flexurally strengthened with CFRP plates was investigated and presented in this paper. Eight full-scale WSBs were tested under four-point bending up to failure. Seven beams were strengthened with CFRP plates bonded to the soffit of the beams and one beam was unstrengthened serving as control. Prior to strengthening, the beams were subjected to different levels of damaging by preloading to 30-95% of the beams' flexural capacity. One beam was fully damaged by preloading to failure and repaired before strengthening by replacing the crushed concrete. The data showed that the pre-damaged strengthened beams exhibited ultimate capacities up to 8% lower than those of the undamaged strengthened beams. However, the load carrying capacities of pre-damaged strengthened beams were more than those predicted by ACI 440 design guide, fib Bulletin 14, and JSCE design recommendations. Both fib Bulletin 14 and JSCE design recommendations gave very conservative predictions with average ratios of experimental to predicted ultimate capacity of 2.02 and 2.35, respectively. More accurate predictions were obtained by ACI 440 design guide as the corresponding ratio was 1.24. These results indicate that strong confidence and reliability can be placed in applying CFRP strengthening to structurally damaged WSBs.

  11. Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties

    CSIR Research Space (South Africa)

    Matabola, KP

    2011-07-01

    Full Text Available by dynamic mechanical analyser (DMA). 2. Experimental 2.1. Materials High molecular weight PMMA (PMMAhigh, Mw = 996 000 g/mol) was purchased from Sigma Aldrich (Schenelldorf, Germany). N,N-dimethylformamide (DMF) and tetrahydrofuran (THF) were obtained...% PMMA in a 1:1 THF:DMF solvent mixture. The electrospun PMMAhigh nanofibers were used as the reinforcing phase and a low molecular weight PMMA (PMMAlow, 90 000 g/mol, Altuglass V825- TL grade) purchased from Advanced Polymers (Altuglass...

  12. Experimental Investigation for Behavior of Spliced Continuous RC Girders Strengthened with CFRP Laminates

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2016-03-01

    Full Text Available In this paper, the behavior of spliced continuous reinforced concrete girders was experimentally investigated. The main objective was to examine the contribution of the carbon fiber reinforced polymer (CFRP laminates in strengthening the spliced continuous reinforced concrete girders. Eight models of continuous reinforced concrete girder were constructed and tested. The test variables were strengthening the splice joints by different schemes of CFRP laminates, presence of horizontal stirrups through the interfaces of the joints and using binder material at the interfaces of the joints. The results showed that strengthening the continuous spliced girders with 45° inclined CFRP laminates led to an increase in the ultimate load in a range of (47 to 74%. Besides, strengthening the continuous spliced girder with horizontal CFRP laminates bonded at its lateral faces could increase the ultimate load by 70%. Additionally, the ultimate load of the continuous spliced girder was increased by (30% due to presence of the horizontal steel stirrups through the interfaces of the joints

  13. Comparison of PZT and FBG sensing technologies for debonding detection on reinforced concrete beams strengthened with external CFRP strips subjected to bending loads

    Directory of Open Access Journals (Sweden)

    Sevillano, E.

    2016-06-01

    Full Text Available The development of monitoring technologies particularly suitable to be used with novel CFRP strengthening techniques has gained great attention in recent years. However, in spite of the high performance of these advanced composite materials in the strengthening and repairing of structures in service, they are usually associated with brittle and sudden failure mainly caused by debonding phenomena, originated either at the CFRP-plate end or at the intermediate areas in the vicinity of flexural cracks in the RC beam. Thus, it is highly recommended for these structures to be monitored in order to ensure their integrity while in service. Specifically, the feasibility of smart sensing technologies such as Fiber Bragg Grating (FBG sensors and piezo-impedance transducers (PZT has been studied. To the knowledge of the authors, none serious study has been carried out until now concerned to the topic of damage detection due to debonding in rehabilitated structures with CFRP composites.El desarrollo de tecnologías de monitorización aplicables junto con las novedosas técnicas de refuerzo basadas en materiales CFRP ha recibido una atención creciente los últimos años. Sin embargo, a pesar del alto rendimiento de estos avanzados materiales compuestos en la reparación y refuerzo de estructuras en servicio, están habitualmente asociados a fallos frágiles y repentinos causados principalmente por fenómenos de despegue, originados bien en los extremos del refuerzo, bien en áreas intermedias en las proximidades de grietas de flexión existentes en la viga. Por tanto, es altamente recomendable monitorizar estas soluciones estructurales de cara a garantizar su integridad en servicio. Específicamente, se ha estudiado la viabilidad de sensores inteligentes tales como los sensores Fiber Bragg Grating (FBG o los transductores piezoeléctricos (PZT. Hasta donde los autores saben, no se han realizado estudios serios hasta la fecha abordando la detección de da

  14. Bending and Shear Behavior of Pultruded Glass Fiber Reinforced Polymer Composite Beams With Closed and Open Sections

    Science.gov (United States)

    Estep, Daniel Douglas

    Several advantages, such as high strength-to-weight ratio, high stiffness, superior corrosion resistance, and high fatigue and impact resistance, among others, make FRPs an attractive alternative to conventional construction materials for use in developing new structures as well as rehabilitating in-service infrastructure. As the number of infrastructure applications using FRPs grows, the need for the development of a uniform Load and Resistance Factor Design (LRFD) approach, including design procedures and examples, has become paramount. Step-by-step design procedures and easy-to-use design formulas are necessary to assure the quality and safety of FRP structural systems by reducing the possibility of design and construction errors. Since 2008, the American Society of Civil Engineers (ASCE), in coordination with the American Composites Manufacturers Association (ACMA), has overseen the development of the Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures using probability-based limit states design. The fifth chapter of the pre-standard focuses on the design of members in flexure and shear under different failure modes, where the current failure load prediction models proposed within have been shown to be highly inaccurate based on experimental data and evaluation performed by researchers at the West Virginia University Constructed Facilities Center. A new prediction model for determining the critical flexural load capacity of pultruded GFRP square and rectangular box beams is presented within. This model shows that the type of failure can be related to threshold values of the beam span-to-depth ratio (L/h) and total flange width-to-thickness ratio (bf /t), resulting in three governing modes of failure: local buckling failure in the compression flange (4 ≤ L/h < 6), combined strain failure at the web-flange junction (6 ≤ L/h ≤ 10), and bending failure in the tension flange (10 < L/h ≤ 42

  15. Strengthening of Unreinforced Masonry Walls with Composite Materials

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available Unreinforced masonry (URM is considered one of the oldest construction materials being until the end of XIXth century, the basic material for: foundations, walls, columns, volts, staircases, floor joints, roofs, retaining walls, drainage channels, barrages, etc. Construction with URM elements posses a series of advantages such as: fire resistance, thermal an acoustic insulations between interior and outside spaces, humidity resistance. However the URM elements have some significant inconveniences such as: large self weight (heaviness causes cracks in the other elements of structures, reduced mechanical strengths in comparison with other traditional materials (steel and concrete, low tenacity, great manual labor consumptions, and vulnerability to earthquakes. Various factors cause deteriorations which must be overcome by strengthening solutions. Some strengthening solutions based on fiber reinforced polymers (FRP products applied directly on URM brick walls are presented in the paper.

  16. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  17. FE Modelling of the Seismic Behavior of Wide Beam-Column Joints Strengthened with CFRP Systems

    Directory of Open Access Journals (Sweden)

    Giuseppe Santarsiero

    2018-02-01

    Full Text Available A large share of reinforced concrete (RC framed buildings is provided with wide beams being a type of beam allowing greater freedom in the architectural arrangement of interiors, beyond further advantage due to fewer formworks needed during the construction. Nevertheless, little attention has been devoted to the seismic vulnerability of this kind of framed RC buildings as well as to the study of strengthening systems purposely developed for wide beams and wide beam-column connections. Under these premises, this paper proposes simple strengthening solutions made by Fibre Reinforced Polymers (FRP systems able to effectively improve seismic capacity through feasible arrangement suitable in case a wide beam is present. On the basis of wide beam-column joints previously tested without strengthening system, detailed nonlinear finite element models were calibrated. Then, an FRP strengthening intervention based on a brand new arrangement was modeled in order to perform additional simulations under seismic actions. This way, the effectiveness of the strengthening intervention was assessed finding out that significant strength and ductility increments were achieved with a relatively simple and cheap strengthening arrangement. Additional research would be desirable in the form of experimental tests on the simulated wide beam-column joints.

  18. Nonlinear Analysis of External Prestressed Reinforced Concrete Beams with BFRP and CFRP

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2017-05-01

    Full Text Available The traditional strengthening methods for concrete structure (girders, beams, columns…. consuming time and could be an economical, a new modern repair methods using the Carbon Fiber Reinforced Polymers (CFRP and Basalt Fiber Reinforced Polymer (BFRP as a laminate strips or bars,and considered a competitive solution that will increase the life-cycle of repaired structures. This study investigated the strengthen reinforced concrete girder. Nonlinear analysis have been adopted to the models using FEM analysis (ANSYS to simulate the theoretical results compared with experimental results.Using finite element packages, more efficient and better analyses can be made to fully understand the response of individual structural components and their contribution to a structure as a whole.Three type of material are used in this study as an external prestressed wire (steel, CFRP and BFRP. The prestressed beam is modeled as simply supported beam with two concentrated point load. The results showed that all tested strengthening beam increased the load carryingcapacity of the beams depend on prestressing force. Obtained Result was compared for different type of beam.This study also was enlarged to include using CFRP and BFRPbarwhich are light weight and moredurable, lead to ease of handling and maintenance. The research conducted analytical work to evaluate the effectiveness of concrete beams reinforced normally by the use of CFRP and BFRP bars. The results showed a significant gain in the beam’s ultimate capacities using CFRP bars comparing with beam reinforced with BFRP bar and reference beam

  19. Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications

    International Nuclear Information System (INIS)

    Yan, Libo; Chouw, Nawawi; Jayaraman, Krishnan

    2015-01-01

    Highlights: • UV weathering degraded mechanical properties of flax/epoxy composites. • SEM confirmed degradation in fibre/matrix interfacial bonding. • UV weathering caused discolouration, matrix erosion, microcracking. - Abstract: The lack of data related to durability is one major challenge that needed to be addressed prior to the widespread acceptance of natural fibre reinforced polymer composites for engineering applications. In this work, the combined effect of ultraviolet (UV) radiation and water spraying on the mechanical properties of flax fabric reinforced epoxy composite was investigated to assess the durability performance of this composite used for civil engineering applications. Specimens fabricated by hand lay-up process were exposed in an accelerated weathering chamber for 1500 h. Tensile and three-point bending tests were performed to evaluate the mechanical properties. Scanning electron microscope (SEM) was used to analyse the microstructures of the composites. In addition, the durability performance of flax/epoxy composite was compared with synthetic (glass and carbon) and hybrid fibre reinforced composites. The test results show that the tensile strength/modulus of the weathered composites decreased 29.9% and 34.9%, respectively. The flexural strength/modulus reduced 10.0% and 10.2%, respectively. SEM study confirmed the degradation in fibre/matrix interfacial bonding after exposure. Comparisons with other composites implies that flax fabric/epoxy composite has potential to be used for civil engineering applications when taking its structural and durability performance into account. Proper treatments to enhance its durability performance will make it more comparable to synthetic fibre reinforced composites when considering as construction building materials

  20. Fatigue Crack Propagation Behavior of RC Beams Strengthened with CFRP under High Temperature and High Humidity Environment

    Directory of Open Access Journals (Sweden)

    Dongyang Li

    2017-01-01

    Full Text Available Numerical and experimental methods were applied to investigate fatigue crack propagation behavior of reinforced concrete (RC beams strengthened with a new type carbon fiber reinforced polymer (CFRP named as carbon fiber laminate (CFL subjected to hot-wet environment. J-integral of a central crack in the strengthened beam under three-point bending load was calculated by ABAQUS. In finite element model, simulation of CFL-concrete interface was based on the bilinear cohesive zone model under hot-wet environment and indoor atmosphere. And, then, fatigue crack propagation tests were carried out under high temperature and high humidity (50°C, 95% R · H environment pretreatment and indoor atmosphere (23°C, 78% R · H to obtain a-N curves and crack propagation rate, da/dN, of the strengthened beams. Paris-Erdogan formula was developed based on the numerical analysis and environmental fatigue tests.

  1. The Impact of the HMCFRP Ratio on the Strengthening of Steel Composite I-Beams

    Directory of Open Access Journals (Sweden)

    E. Agcakoca

    2012-01-01

    Full Text Available Carbon fiber-reinforced polymer materials have become popular in the construction industry during the last decade for their ability to strengthen and retrofit concrete structures. The recent availability of high-modulus carbon fiber-reinforced polymer strips (HMCFRP has opened up the possibility of using this material in strengthening steel structures as well. The strips can be used in steel bridge girders and structures that are at risk of corrosion-induced cross-sectional losses, structural deterioration from aging, or changes in function. In this study, a set of bending experiments was performed on three types of steel beams reinforced with HMCFRP. The results were used to enhance a nonlinear finite element model built with ABAQUS software. The accuracy of the mathematical models for HMCFRP, epoxy, and steel profiles was compared with the experimental results, and the ability of HMCFRP to continue carrying load from the steel beams during rupture and postrupture scenarios was observed using numerical analysis. Using these verified finite element models, a parametric analysis was performed on the HMCFRP failure modes and the quantity to be used with IPE profile steel beams. The maximum amount of HMCFRP needed for strengthening was determined, and an upper limit for its use was calculated to avoid any debonding failure of the fiber material.

  2. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  3. Flexural Behavior of Self-Compacting RC Continuous Beams Strengthened by CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Sabih Z. Al-Sarraf

    2018-01-01

    Full Text Available This search presented an experimental study of the flexural behavior of self-compacting reinforced concrete continuous beams externally strengthened by carbon fiber reinforced polymer (CFRP Sheets. The practical study contained eight self-compacting reinforced concrete continuous beams (with two span, each span had (1500 mm length and (150x250 mm cross sectional dimensions. Seven of these beams strengthened externally by CFRP sheets with and without external anchorage. The experimental variables included location of CFRP sheets and anchor type and location. The results, shows that the beams strengthened externally by CFRP sheets provided improvement in ultimate loads reached (60.71%. The usage of CFRP in the anchorage zone indicated an effective method in comparison to increasing the CFRP sheets lengths or extending them up to the support or under the loading points. Test results also showed that side strengthening provided an effective tool for increasing the load at the cracking stage and also the load capacity and reducing flexural crack widths.

  4. RC Beams Strengthened with Mechanically Fastened Composites: Experimental Results and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Enzo Martinelli

    2014-03-01

    Full Text Available The use of mechanically-fastened fiber-reinforced polymer (MF-FRP systems has recently emerged as a competitive solution for the flexural strengthening of reinforced concrete (RC beams and slabs. An overview of the experimental research has proven the effectiveness and the potentiality of the MF-FRP technique which is particularly suitable for emergency repairs or when the speed of installation and immediacy of use are imperative. A finite-element (FE model has been recently developed by the authors with the aim to simulate the behavior of RC beams strengthened in bending by MF-FRP laminates; such a model has also been validated by using a wide experimental database collected from the literature. By following the previous study, the FE model and the assembled database are considered herein with the aim of better exploring the influence of some specific aspects on the structural response of MF-FRP strengthened members, such as the bearing stress-slip relationship assumed for the FRP-concrete interface, the stress-strain law considered for reinforcing steel rebars and the cracking process in RC members resulting in the well-known tension stiffening effect. The considerations drawn from this study will be useful to researchers for the calibration of criteria and design rules for strengthening RC beams through MF-FRP laminates.

  5. Flexural Strengthening of RC Slabs with Prestressed CFRP Strips Using Different Anchorage Systems

    Directory of Open Access Journals (Sweden)

    José Sena-Cruz

    2015-10-01

    Full Text Available Externally Bonded Reinforcement (EBR technique has been widely used for flexural strengthening of concrete structures by using carbon fiber-reinforced polymers (CFRP. EBR technique offers several structural advantages when the CFRP material is prestressed. This paper presents an experimental and numerical study on reinforced (RC slabs strengthened in flexure with prestressed CFRP strips as a structural strengthening system. The strips are applied as an externally bonded reinforcement (EBR and anchored with either a mechanical or a gradient anchorage. The former foresees metallic anchorage plates fixed to the concrete substrate, while the latter is based on an accelerated epoxy resin curing followed by a segment-wise prestress force decrease at the strip ends. Both anchorage systems, in combination with different CFRP strip geometries, were subjected to static loading tests. It could be demonstrated that the composite strip’s performance is better exploited when prestressing is used, with slightly higher overall load carrying capacities for mechanical anchorages than for the gradient anchorage. The performed investigations by means of a cross-section analysis supported the experimental observation that in case a mechanical anchorage is used, progressive strip debonding changes the fully bonded configuration to an unbonded end-anchored system. The inclusion of defined debonding criteria for both the anchorage zones and free length between the anchorage regions allowed to precisely capture the ultimate loading forces.

  6. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  7. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    Science.gov (United States)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  8. Fibre Length Reduction in Natural Fibre-Reinforced Polymers during Compounding and Injection Moulding—Experiments Versus Numerical Prediction of Fibre Breakage

    Directory of Open Access Journals (Sweden)

    Katharina Albrecht

    2018-03-01

    Full Text Available To establish injection-moulded, natural fibre-reinforced polymers in the automotive industry, numerical simulations are important. To include the breakage behaviour of natural fibres in simulations, a profound understanding is necessary. In this study, the length and width reduction of flax and sisal fibre bundles were analysed experimentally during compounding and injection moulding. Further an optical analysis of the fibre breakage behaviour was performed via scanning electron microscopy and during fibre tensile testing with an ultra-high-speed camera. The fibre breakage of flax and sisal during injection moulding was modelled using a micromechanical model. The experimental and simulative results consistently show that during injection moulding the fibre length is not reduced further; the fibre length was already significantly reduced during compounding. For the mechanical properties of a fibre-reinforced composite it is important to overachieve the critical fibre length in the injection moulded component. The micromechanical model could be used to predict the necessary fibre length in the granules.

  9. Preparation and characterization of corn reinforced polymer sheet of fibers; Obtencao e caracterizacao de polimero reforcado com fibras da folha de milho

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Tatiana Martinez; Seo, Emilia Satoshi Miyamaru, E-mail: tatianaltda@hotmail.com, E-mail: esmiyseo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-10-15

    There is a global trend in seeking plant fibers to replace the synthetic fibers to obtain reinforced composites aimed at the use of renewable resources. In this context, this paper aims to develop the process of preparing maize leaf fibers, characterizing them and adapting them for applications in the construction industry and develop a reinforced polymer composite with these fibers. Corn leaves were dried in environmental temperature, treated by mercerizing, then neutralized with acid solution and washed in running water. The characterization of the corn leaf fibers was carried out by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, specific surface area, thermogravimetry and specific mass. The mercerizing treatment was effective, because the maize fibers have characteristics similar to synthetic fibers, leading to a possibility of new technological uses. The polymeric composite material was developed by extrusion processes and injection and tested for tensile testing, differential scanning calorimetry and scanning electron microscopy, thus reused an organic waste that would be disposed of by inserting it in a technological process, contributing to the research and development of new polymeric materials as well as to reduce waste discarded as scrap. (author)

  10. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    OpenAIRE

    Yelin Deng; Yajun Tian

    2015-01-01

    The study implements the consequential life cycle assessment (CLCA) to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70%) and French flax fibre (30%). Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that...

  11. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    OpenAIRE

    Jiří Witzany; Radek Zigler

    2016-01-01

    The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cra...

  12. Structural Behaviors of Reinforced Concrete Piers Rehabilitated with FRP Wraps

    Directory of Open Access Journals (Sweden)

    Junsuk Kang

    2017-01-01

    Full Text Available The use of fiber-reinforced polymer (FRP wraps to retrofit and strengthen existing structures such as reinforced concrete piers is becoming popular due to the higher tensile strength, durability, and flexibility gained and the method’s ease of handling and low installation and maintenance costs. As yet, however, few guidelines have been developed for determining the optimum thicknesses of the FRP wraps applied to external surfaces of concrete or masonry structures. In this study, nonlinear pushover finite element analyses were utilized to analyze the complex structural behaviors of FRP-wrapped reinforced rectangular piers. Design parameters such as pier section sizes, pier heights, pier cap lengths, compressive strengths of concrete, and the thicknesses of the FRP wraps used were thoroughly tested under incremental lateral and vertical loads. The results provide useful guidelines for analyzing and designing appropriate FRP wraps for existing concrete piers.

  13. Towards Rational Design Method for Strengthening of Concrete Structures by External Bonding

    Directory of Open Access Journals (Sweden)

    Furuuchi H.

    2012-01-01

    Full Text Available Many infrastructures need to be repaired or strengthened due to various reasons, such as unexpected deterioration and changes in performance requirement. This paper presents the following recent achievements by the authors’ group on design method for flexural strengthening of concrete structures by external bonding; (i fracture characteristics of interface between substrate concrete and cementitious overlay, (ii crack spacing of flexural strengthened beams, which affects debonding strength, (iii strengths of intermediate crack (IC debonding and end peeling, (iv strength of concrete cover separation, and (v effectiveness of strengthening by external bonding. A unified approach for flexural strengthening by steel plate, fiber reinforced polymer lami¬nate and cementitious overlay, for both intermediate crack (IC debonding, including end peeling, and concrete cover separation is pre¬sented with consideration of crack spacing in the streng¬thened members. Appropriate interfacial rough¬¬¬ness to achieve efficient interface bond property is clari¬fied and the concept of effectiveness of strengthen¬ing is proposed for better strengthening design.

  14. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    Science.gov (United States)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  15. Effect of fiber content on tensile retention properties of Cellulose Microfiber Reinforced Polymer Composites for Automobile Application

    Science.gov (United States)

    Aseer, J. R.; Sankaranarayanasamy, K.

    2017-12-01

    Today, the utilization of biodegradable materials has been hogging much attention throughout the world. Due to the disposal issues of petroleum based products, there is a focus towards developing biocomposites with superior mechanical properties and degradation rate. In this research work, Hibiscus Sabdariffa (HS) fibers were used as the reinforcement for making biocomposites. The HS fibers were reinforced in the polyester resin by compression moulding method. Water absorption studies of the composite at room temperature are carried out as per ASTM D 570. Also, degradation behavior of HS/Polyester was done by soil burial method. The HS/polyester biocomposites containing 7.5 wt% of HS fiber has shown higher value of tensile strength. The tensile strength retention of the HS/Polyester composites are higher than the neat polyester composites. This value increases with increase of HS fiber loading in the composites. The results indicated that HS/polyester biocomposites can be used for making automobile components such as bumper guards etc.

  16. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  17. Multiple strengthening mechanisms in nanoparticle-reinforced ...

    Indian Academy of Sciences (India)

    Institute of Nuclear Sciences “Vinca”, University of Belgrade, 11001 Belgrade, Serbia. MS received 6 .... sphere using the 'NF' press with 200 MPa maximal applied pressure ..... Nadkarni V N and Synk E J 1984 Metals handbook (Metals Park,.

  18. Study of the reflective behaviour of carbon fibres reinforced polymer composite up to 450°C

    Science.gov (United States)

    Le Louët, Violaine; Rousseau, Benoit; Le Corre, Steven; Boyard, Nicolas; Tardif, Xavier; Delmas, Jérôme; Delaunay, Didier

    2017-10-01

    This study aims at characterizing the radiative properties of a carbon/PEEK composite, a material known to be opaque for usual thicknesses and to scatter thermal radiation in the infrared spectral range. The scattering behaviour is probed here at room temperature with a variable angle reflectivity unit linked to a Fourier Transform InfraRed Spectrometer (0.6-25 µm), for different fibre orientations and various angles of incidence. Moreover, in order to study the influence of temperature, particularly of the polymer matrix melting, a compact cell, based on a customized resistive heater, is adapted to the sample compartment of the spectrometer to measure the thermal dependency of the normal reflectivity. The new sample holder can be used at a temperature ranging between 20 and 450°C and with a temperature stability lower than 0.1 K. For the carbon/PEEK composite, the effects of the polymer phase change are observed to be small, confirming the predominant role of carbon on those composites optical properties.

  19. Carboxymethyl Cellulose From Kenaf Reinforced Composite Polymer Electrolytes Based 49 % Poly (Methyl Methacrylate)-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Serawati Jafirin; Ishak Ahmad; Azizan Ahmad; Ishak Ahmad; Azizan Ahmad

    2014-01-01

    Composite polymer electrolytes based 49 % poly(methyl methacrylate)-grafted natural rubber (MG49) incorporating lithium triflate (LiCF 3 SO 3 ) were prepared. The study mainly focuses on the ionic conductivity performances and mechanical properties. Prior to that, carboxymethyl cellulose was synthesized from kenaf fiber. The films were characterized by electrochemical impedance (EIS) spectroscopy, linear sweep voltammetry (LSV), universal testing machine and scanning electron microscopy (SEM). The conductivity was found to increase with carboxymethyl cellulose loading. The highest conductivity value achieved was 6.5 x 10 -6 Scm -1 upon addition of 6 wt % carboxymethyl cellulose. LSV graph shows the stability of this film was extended to 2.7 V at room temperature. The composition with 6 wt % carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of Young's modulus. The morphology of the electrolytes showed a smooth surface of films after addition of salt and filler indicating amorphous phase in electrolytes system. Excellent mechanical properties and good ionic conductivity are obtained, enlightening that the film is suitable for future applications as thin solid polymer electrolytes in lithium batteries. (author)

  20. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, A. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Sadeghi, M. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R., E-mail: naghdabd@sharif.ed [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)

    2011-04-04

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: A transverse-isotropic elastic model of SWCNTs is presented. A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. Behavior of these nanocomposites under shear deformation is studied. A symmetric shear stress distribution occurs only in SWCNTs with 45{sup o} orientation. The total shear load sustained is greatest in the case of 45{sup o} orientation.

  1. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    International Nuclear Information System (INIS)

    Montazeri, A.; Sadeghi, M.; Naghdabadi, R.; Rafii-Tabar, H.

    2011-01-01

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: → A transverse-isotropic elastic model of SWCNTs is presented. → A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. → Behavior of these nanocomposites under shear deformation is studied. → A symmetric shear stress distribution occurs only in SWCNTs with 45 o orientation. → The total shear load sustained is greatest in the case of 45 o orientation.

  2. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.

    Science.gov (United States)

    Liu, Zhiping; Chen, Kai; Li, Zongchen; Jiang, Xiaoli

    2017-10-20

    Fiber-reinforced polymer (FRP) has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs) on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain-crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP). FRP thickness affects the antenna sensor's performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  3. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor

    Directory of Open Access Journals (Sweden)

    Zhiping Liu

    2017-10-01

    Full Text Available Fiber-reinforced polymer (FRP has been increasingly applied to steel structures for structural strengthening or crack repair, given its high strength-to-weight ratio and high stiffness-to-weight ratio. Cracks in steel structures are the dominant hidden threats to structural safety. However, it is difficult to monitor structural cracks under FRP coverage and there is little related research. In this paper, a crack monitoring method for an FRP-strengthened steel structure deploying a microstrip antenna sensor is presented. A theoretical model of the dual-substrate antenna sensor with FRP is established and the sensitivity of crack monitoring is studied. The effects of the weak conductivity of carbon fiber reinforced polymers (CFRPs on the performance of crack monitoring are analyzed via contrast experiments. The effects of FRP thickness on the performance of the antenna sensor are studied. The influence of structural strain on crack detection coupling is studied through strain–crack coupling experiments. The results indicate that the antenna sensor can detect cracks in steel structures covered by FRP (including CFRP. FRP thickness affects the antenna sensor’s performance significantly, while the effects of strain can be ignored. The results provide a new approach for crack monitoring of FRP-strengthened steel structures with extensive application prospects.

  4. EBR Strengthening Technique for Concrete, Long-Term Behaviour and Historical Survey

    Directory of Open Access Journals (Sweden)

    Christoph Czaderski

    2018-01-01

    Full Text Available Epoxy bonded steel plates (externally bonded reinforcemen: EBR for the strengthening of concrete structures were introduced to the construction industry in the late 1960s, and the use of fibre reinforced polymers (FRPs was introduced in the 1990s, which means that these techniques have already been used in construction for 50 and 25 years, respectively. In the first part of the paper, a historical survey of the development and introduction of these strengthening techniques into the construction industry are presented. The monitoring of such applications in construction is very important and gives more confidence to this strengthening technique. Therefore, in the second part of the paper, two long-term monitoring campaigns over an extraordinarily long duration will be presented. Firstly, a 47-year monitoring campaign on a concrete beam with an epoxy bonded steel plate and, secondly, a 20-year monitoring campaign on a road bridge with epoxy bonded CFRP (carbon fibre reinforced polymers strips are described. The paper is an expanded version of the paper presented at the SMAR2017 Conference.

  5. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites; Obtencao e comportamento mecanodinamico de compositos com matriz polimerica reforcada com fibras de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, Nelson Marques

    2001-07-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  6. Long-term performance of GFRP reinforcement : technical report.

    Science.gov (United States)

    2009-12-01

    Significant research has been performed on glass fiber-reinforced polymer (GFRP) concrete reinforcement. : This research has shown that GFRP reinforcement exhibits high strengths, is lightweight, can decrease time of : construction, and is corrosion ...

  7. Polycrystalline strengthening

    DEFF Research Database (Denmark)

    Hansen, Niels

    1985-01-01

    for the understanding of polycrystalline strengthening is obtained mainly from surface relief patterns and from bulk structures observed by transmission electron microscopy of thin foils. The results obtained by these methods are discussed and correlations are proposed. A number of features characterizing the deformed...... structure are summarized and the behavior of a number of metals and alloys is reviewed with emphasis on the structural changes in the interior of the grains and in the vicinity of the grain boundaries. The models for strain accommodation during deformation are discussed on the basis of the microstructures...

  8. Investigation of Mechanical and Thermal Properties of Polymer Composites Reinforced by Multi-Walled Carbon Nanotube for Reduction of Residual Stresses

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Ghasemi

    2014-08-01

    Full Text Available The micromechanical models are used to investigate mechanical and thermal properties of a polymer matrix nanocomposite containing multi-walled carbon nanotubes (MWCNT in their effects to reduce residual stresses in nanocomposites. To do this, first nanotubes with different weights and volume fractions were dispersed in ML-506 epoxy resin. By using different micromechanical models, the effect additional nanotubes on elastic modulus and coefficient of thermal expansion (CTE of nanotubes/epoxy were studied as critical parameters. Comparing the model and available experimental results, the modified Halpin-Tsai model and the modified Schapery model were chosen to calculate the mechanical and thermal properties of the nanocomposites. Then, using the matrix reinforced with MWCNT and classical micromechanics models the elastic modulus and coefficients of thermal expansion of the nanocomposites were determined for a single orthotropic ply. The results showed that the rule of mixture (ROM and Hashin-Rosen model to determine the longitudinal and transverse elastic moduli and Van Fo Fy model to calculate the coefficient of thermal expansion were in good agreements with the experimental results of a single-layer nanocomposite. Finally, the classical laminated plate theory (CLPT was used to calculate the residual stresses of the CNT/carbon fiber/epoxy composites with different weights and volume fractions of MWCNT for angle-ply, cross-ply and quasi-isotropic laminated composite materials. The results showed that residual stresses were reduced using a maximum of 1% wt or 0.675% volume fraction of the MWCNT in polymer composites. Also, the highest reduction in residual stresses was observed in [02/902] cross-ply laminated composite materials.

  9. Investigation on Strengthening Approaches Adopted for Poorly Detailed RC Corbels

    Directory of Open Access Journals (Sweden)

    Ram Chandra Neupane

    2017-05-01

    Full Text Available Poor detailing of the position of bearing pad over reinforced concrete (RC corbel may lead to premature failure, which is undesired and structurally vulnerable. An appropriate retrofitting solution is necessary to ensure the functionality of such RC corbels. Considering the growing popularity of external carbon fiber-reinforced polymer (CFRP in retrofitting, this research examines the effectiveness of an externally wrapped unidirectional CFRP sheet and compares its performance against traditional retrofitting methods. Moreover, it is intended to fulfill the lack of extensive research on external CFRP application for corbel strengthening. A total of eight medium-scale corbel specimens were tested on vertical load. Observed premature failure due to placing the bearing pad near the edge of corbel was verified and the effectiveness of the proposed structural strengthening solutions was studied. Experimental results show that although the loading capacity of the damaged corbel due to the poor detailing of bearing pad position could not be fully recovered, the external CFRP wrapping method demonstrated superior performance over RC jacketing and was able to prevent localized failure. Further study based on non-linear 3D finite element analysis (FEA was carried out to identify the governing parameters of each retrofitting solution. Numerical studies suggested important parameters of various retrofitting alternatives for higher capacity assurance.

  10. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  11. Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites

    International Nuclear Information System (INIS)

    Hawileh, Rami A.; El-Maaddawy, Tamer A.; Naser, Mohannad Z.

    2012-01-01

    Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.

  12. Study on shear strengthening of RC continuous T-beams using different layers of CFRP strips

    Energy Technology Data Exchange (ETDEWEB)

    Alferjani, M. B. S.; Samad, A. A. Abdul; Mohamad, Noridah [Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Elrawaff, Blkasem S.; Elzaroug, Omer [Faculty of Civil Engineering Omar Al Mukhtar University, Bayda, Libya, Africa (Libya)

    2015-05-15

    Carbon fiber reinforced polymer (CFRP) laminates are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. However, this paper presents the results of an experimental investigation for enhancing the shear capacity of reinforced concrete (RC) continuous T- beams using different layers of CFRP wrapping schemes. A total of three concrete beams were tested and various sheet configurations and layouts were studied to determine their effects on ultimate shear strength and shear capacity of the beams. One beam was kept as control beams, while other beams were strengthened with externally bonded CFRP strips with three side bonding and one or two layers of CFRP strips. From the test results, it was found that all schemes were found to be effective in enhancing the shear strength of RC beams. It was observed that the strength increases with the number of sheet layers provided the most effective strengthening for RC continuous T- beam. Beam strengthened using this scheme showed 23.21% increase in shear capacity as compared to the control beam. Two prediction models available in literature were used for computing the contribution of CFRP strips and compared with the experimental results.

  13. CNTs, Al2O3 and SiO2 Reinforced Epoxy: Tribological Properties of Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M.A. Ramadan,

    2017-09-01

    Full Text Available The present work studied the effect of filling epoxy matrix by different types and concentrations of nanoparticles on the friction and wear behaviors. Various concentrations (0.2 %, 0.4 %, 0.6 %, 0.8 % and 1 wt.% of multi walled carbon nano tubes (MWCNTs, aluminum oxide (Al2O3, and silica (SiO2 nanoparticles were used to reinforce epoxy matrix. These epoxy nanocomposites are widely used as indoor flooring tiles in schools, boutiques, hospitals, offices, conference rooms, homes, trade fair stands and homes for the aged. Experiments involved sliding of the epoxy nanocomposite specimens against rotating steel disc at dry sliding condition. Experiments were carried out using a test rig of pin-on-disc, designed and manufactured for the test. The friction force was measured using load cell which connected with a digital screen to detect the friction force. All experiments were done at room temperature and carried out at constant normal load (7 N, constant speed (0.93 m/sec and constant running time (300 seconds. The worn surfaces were investigated with back scattered scanning electron microscopy (SEM. Based on the observations in the present work, it was found that addition of the tested filling nanoparticles have greatly affected the friction and highly improves wear resistance.

  14. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective

    Directory of Open Access Journals (Sweden)

    Yelin Deng

    2015-08-01

    Full Text Available The study implements the consequential life cycle assessment (CLCA to provide a market based perspective on how overall environmental impact will change when shifting glass fibres to flax fibres as reinforcements in composite fabrication. With certain assumptions, the marginal flax fibre supply is identified to be a combination of Chinese flax fibre (70% and French flax fibre (30%. Due to inferior cultivars and coal-fired electricity in Chinese flax cultivation, the CLCA study reveals that flax mat-PP has 0.8–2 times higher environmental impact values than the glass mat-PP in most environmental impact categories over the production and end-of-life (EoL phases. For purpose of providing potential trajectories of marginal flax fibre supply, additional scenarios: the “all French fibre”, and “all Chinese fibre” are evaluated formulating the lower and upper boundaries in terms of environmental impact change, respectively. A “the attributional fibre supply mix” scenario is supplied as well. All of these scenarios are useful for policy analysis.

  15. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester.

    Science.gov (United States)

    Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun

    2018-05-16

    There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.

  16. Machinability study of Carbon Fiber Reinforced Polymer in the longitudinal and transverse direction and optimization of process parameters using PSO–GSA

    Directory of Open Access Journals (Sweden)

    K. Shunmugesh

    2016-09-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP composites are widely used in aerospace industry in lieu of its high strength to weight ratio. This study is an attempt to evaluate the machinability of Bi-Directional Carbon Fiber–Epoxy composite and optimize the process parameters of cutting speed, feed rate and drill tool material. Machining trials were carried using drill bits made of high speed steel, TiN and TiAlN at different cutting speeds and feed rates. Output parameters of thrust force and torque were monitored using Kistler multicomponent dynamometer 9257B and vibrations occurring during machining normal to the work surface were measured by a vibration sensor (Dytran 3055B. Linear regression analysis was carried out by using Response Surface Methodology (RSM, to correlate the input and output parameters in drilling of the composite in the longitudinal and transverse directions. The optimization of process parameters were attempted using Genetic Algorithm (GA and Particle Swarm Optimization–Gravitational Search Algorithm (PSO–GSA techniques.

  17. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Science.gov (United States)

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  18. Geometry effect on the behaviour of single and glue-laminated glass fibre reinforced polymer composite sandwich beams loaded in four-point bending

    International Nuclear Information System (INIS)

    Awad, Ziad K.; Aravinthan, Thiru; Manalo, Allan

    2012-01-01

    Highlights: ► Investigated the behaviour of single and glue-laminated GFRP sandwich beam. ► Effect of shear span to depth was a key factor affecting the overall behaviour. ► Comparison with prediction models gave reasonable results in specific regions. ► A failure map was developed to identify the shear and flexural failures of panels. -- Abstract: The research investigated the behaviour of single and glue laminated glass fibre reinforced polymer (GFRP) composite sandwich beams considering different spans and beam cross sections. The composite sandwich beams with different thicknesses (1, 2, 3, 4, and 5 sandwich layers) have been tested in four-point static flexural test with different shear span to depth ratio (a/d). The a/d ratios showed a direct effect on the flexural and shear behaviour. The capacity of the beam decreased with increasing a/d. Various failure modes were observed including core crushing, core shear, and top skin compression failure. The failure mode map developed based on the experimental finding and analytical prediction indicated that the failure mode is affected by the a/d with the number of glue laminated panels.

  19. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available Basalt Fiber Reinforced Polymer (BFRP bars have bright potential application in concrete structures subjected to marine environment due to their superior corrosion resistance. Available literatures mainly focused on the mechanical properties of BFRP concrete structures, while the bond-slip behavior of BFRP bars, which is a key factor influencing the safety and service life of ocean concrete structures, has not been clarified yet. In this paper, effects of BFRP bars size, corrosion age, and concrete strength on the bond-slip behavior of BFRP bars in concrete cured in artificial seawater were investigated, and then an improved Bertero, Popov, and Eligehausen (BPE model was employed to describe the bond-slip behavior of BFRP bars in concrete. The results indicated that the maximum bond stress and corresponding slip decreased gradually with the increase of corrosion age and size of BFRP bars, and ultimate slip also decreased sharply. The ascending segment of bond-slip curve tends to be more rigid and the descending segment tends to be softer after corrosion. A horizontal end in bond-slip curve indicates that the friction between BFRP bars and concrete decreased sharply.

  20. The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Azim Shukri

    2015-07-01

    Full Text Available Tension stiffening is a characteristic behavior of reinforced concrete (RC beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.

  1. The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams.

    Science.gov (United States)

    Shukri, Ahmad Azim; Darain, Kh Mahfuz Ud; Jumaat, Mohd Zamin

    2015-07-08

    Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM) technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP) contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.

  2. Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer.

    Science.gov (United States)

    Liu, Xue; Wang, Zengyao; Zhao, Chengji; Bu, Wenhuan; Na, Hui

    2018-04-01

    A series of fluorinated dental resin composites were prepared with two kinds of SiO 2 particles. Bis-GMA (bisphenol A-glycerolate dimethacrylate)/4-TF-PQEA (fluorinated acrylate monomer)/TEGDMA (triethylene glycol dimethacrylate) (40/30/30, wt/wt/wt) was introduced as resin matrix. SiO 2 nanopartices (30nm) and SiO 2 microparticles (0.3µm) were silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) and used as fillers. After mixing the resin matrix with 0%, 10%, 20%, 30% SiO 2 nanopartices and 0%, 10%, 20%, 30%, 40%, 50% SiO 2 microparticles, respectively, the fluorinated resin composites were obtained. Properties including double bond conversion (DC), polymerization shrinkage (PS), water sorption (W p ), water solubility (W y ), mechanical properties and cytotoxicity were investigated in comparison with those of neat resin system. The results showed that, filler particles could improve the overall performance of resin composites, particularly in improving mechanical properties and reducing PS of composites along with the addition of filler loading. Compared to resin composites containing SiO 2 microparticles, SiO 2 nanoparticles resin composites had higher DC, higher mechanical properties, lower PS and lower W p under the same filler content. Especially, 50% SiO 2 microparticles reinforced resins exhibited the best flexural strength (104.04 ± 7.40MPa), flexural modulus (5.62 ± 0.16GPa), vickers microhardness (37.34 ± 1.13 HV), compressive strength (301.54 ± 5.66MPa) and the lowest polymerization (3.42 ± 0.22%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Dispersion strengthening

    International Nuclear Information System (INIS)

    Scattergood, R.O.; Das, E.S.P.

    1976-01-01

    Using digital computer-based methods, models for dispersion strengthening can now be developed which take into account many of the important effects that have been neglected in the past. In particular, the self interaction of a dislocation can be treated, and a computer simulation method was developed to determine the flow stress of a random distribution of circular, impenetrable obstacles, taking into account all such interactions. The flow stress values depended on the obstacle sizes and spacings, over and above the usual 1/L dependence where L is the average obstacle spacing. From an analysis of the results, it was found that the main effects of the self interactions can be captured in a line tension analogue in which the obstacles appear to be penetrable

  4. Experimental study on behavior of steel channel strengthened with CFRP

    Directory of Open Access Journals (Sweden)

    Tang Hongyuan

    2017-11-01

    Full Text Available This paper describes the behaviour of axially loaded long and eccentrically loaded short thin-walled steel channels, strengthened with transversely bonded carbon fibre reinforced polymer (CFRP sheets. Seven long members, each 1400 mm long, and seven short members, each 750mmlong, were tested. The main parameters were the number of CFRP plies (one or two and the clear spacing between the CFRP strips (50, 100 or 150 mm. The effect of CFRP sheet layer and clear spacing was studied. All the ultimate load capacity of the reinforced members was improved in different extent. A maximum strength gain of 9.13% was achieved for long members with two CFRP layers and 50 mm spacing of CFRP strips. The experimental results show that the global buckling happens to all the long specimens. For short members, the maximum strength gain of 12.1% was achieved with two CFRP layers and 50 mm spacing of CFRP strips. With the exception of the most heavily reinforced (2 plies at 50 and 100 mm, local buckling was observed prior to global buckling for short members, which was completely opposite of the control specimens. Meanwhile, when the clear spacing of CFRP strips is greater than theweb height of steel channel, the transversely bonded CFRP does not have a significant improvement in buckling load capacity of the short- and long-channel components. While the clear spacing is less than the web height, the more number of CFRP layer, the more enhancement of buckling load capacity.

  5. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  6. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-01-01

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults. PMID:28793697

  7. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults.

    Science.gov (United States)

    Corradi, Marco; Borri, Antonio; Castori, Giulio; Coventry, Kathryn

    2015-11-27

    An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers). For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L'Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  8. Experimental Analysis of Dynamic Effects of FRP Reinforced Masonry Vaults

    Directory of Open Access Journals (Sweden)

    Marco Corradi

    2015-11-01

    Full Text Available An increasing interest in the preservation of historic structures has produced a need for new methods for reinforcing curved masonry structures, such as arches and vaults. These structures are generally very ancient, have geometries and materials which are poorly defined and have been exposed to long-term historical movements and actions. Consequently, they are often in need of repair or reinforcement. This article presents the results of an experimental study carried out in the laboratory and during on-site testing to investigate the behaviour of brick masonry vaults under dynamic loading strengthened with FRPs (Fiber Reinforced Polymers. For the laboratory tests, the brick vaults were built with solid sanded clay bricks and weak mortar and were tested under dynamic loading. The experimental tests were designed to facilitate analysis of the dynamic behaviour of undamaged, damaged and reinforced vaulted structures. On-site tests were carried out on an earthquake-damaged thin brick vault of an 18th century aristocratic residence in the city of L’Aquila, Italy. The provision of FRP reinforcement is shown to re-establish elastic behavior previously compromised by time induced damage in the vaults.

  9. Glulam beams reinforced with FRP strips and their application in architecture

    Directory of Open Access Journals (Sweden)

    Solarov Radivoj

    2014-01-01

    Full Text Available This paper emphasizes the advantage of using carbon polymers while producing and strengthening glulam beams. Due to advanced research carried out in this field, the first application of carbon polymers based products was implemented in Western countries. Structural elements containing carbon polymers, or being reinforced by them, show higher resistance and durability properties, as well as the ability to be produced in various shapes. These features can find best application in architecture so the architects’ imagination in design could be realized. Many attractive buildings were constructed over the last decade, each of them showing exceptional safety, resistance to atmospheric influences, durability and cost-efficiency. Beside application of carbon polymers in the construction of new buildings, they are even more important in the field of historic heritage restoration. The original research carried out on ten samples in the laboratory is presented in the second part of the paper. Position of the reinforcement on the samples was chosen as it would be done in practical retrofit cases. Deformations of the samples exposed to pure bending were measured, so their behaviour in the elastic range could be analysed based on the results. Measured results were compared to those calculated by using FEM model, developed with software package AxisVM. Based on performed analysis, the conclusion was made that by strengthening timber glulam beams with FRP strips, the simple and efficient static load bearing capacity upgrade is gained.

  10. Timber Elements: Traditional and Modern Strengthening Techniques

    Directory of Open Access Journals (Sweden)

    Raluca Hohan

    2010-01-01

    Full Text Available The main idea of this paper is to analyse the means for the rehabilitation of our cultural heritage timber structures. Several methods together with their application techniques are described, and also, the reasons for what these strengthening operations become imminent at a point. First of all, the necessity of the timber structural elements strengthening is explained through a short presentation of the factors which are degrading the material. Then, certain precautions and strengthening procedures are presented, all involving the usage of traditional materials like wood, metal, or concrete, and of modern materials like fiber reinforced polymeric composite.

  11. 3D stereolithography printing of graphene oxide reinforced complex architectures

    International Nuclear Information System (INIS)

    Lin, Dong; Jin, Shengyu; Cheng, Gary J; Zhang, Feng; Zhou, Chi; Wang, Chao; Wang, Yiqian

    2015-01-01

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young’s modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. (paper)

  12. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    Science.gov (United States)

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  13. Fiber reinforced polymer bridge decks.

    Science.gov (United States)

    2011-01-01

    The overarching goal of this study was to perform a comprehensive evaluation of various issues related to the strength and serviceability : of the FRP deck panels that are available in the industry. Specific objectives were to establish critical limi...

  14. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Directory of Open Access Journals (Sweden)

    Kamanli Mehmet

    2017-01-01

    Full Text Available After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  15. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Science.gov (United States)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  16. Strengthening method of concrete structure

    Science.gov (United States)

    Inge, Wewin; Audrey; Nugroho, Sofie; Njo, Helen

    2018-03-01

    Building extension in Indonesia is not favored, and not many people know the advantages of the method because architects and engineers tend to lack the knowledge and experience. The aim of this paper is to explain a method on how to strengthen a concrete building structure that people can use/learn as a better way to cut potential cost and save time. The strengthening method explained in this paper is steel jacketing, providing a case study of this method in the extension of a restaurant located in Medan, Indonesia. In this study, engineers calculated that the tensile stress of the existing RC column and beam is not strong enough to reinforce the building extension applied load. Therefore, the steel jacketing method can be applied to improve the column and beam strength and ductility. The result of the case study proves that this is one of the best methods for building extension applied in Indonesia.

  17. Design of fibre reinforced PV concepts for building integrated applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; de Wit, H.; de Boer, Andries; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a

  18. Fiberglass Grids as Sustainable Reinforcement of Historic Masonry

    Science.gov (United States)

    Righetti, Luca; Edmondson, Vikki; Corradi, Marco; Borri, Antonio

    2016-01-01

    Fiber-reinforced composite (FRP) materials have gained an increasing success, mostly for strengthening, retrofitting and repair of existing historic masonry structures and may cause a significant enhancement of the mechanical properties of the reinforced members. This article summarizes the results of previous experimental activities aimed at investigating the effectiveness of GFRP (Glass Fiber Reinforced Polymers) grids embedded into an inorganic mortar to reinforce historic masonry. The paper also presents innovative results on the relationship between the durability and the governing material properties of GFRP grids. Measurements of the tensile strength were made using specimens cut off from GFRP grids before and after ageing in aqueous solution. The tensile strength of a commercially available GFRP grid has been tested after up 450 days of storage in deionized water and NaCl solution. A degradation in tensile strength and Young’s modulus up to 30.2% and 13.2% was recorded, respectively. This degradation indicated that extended storage in a wet environment may cause a decrease in the mechanical properties. PMID:28773725

  19. FRP reinforcement of timber structures

    OpenAIRE

    Schober, Kay-Uwe; Harte, Annette M.; Kliger, Robert; Jockwer, Robert; Xu, Qingfeng; Chen, Jian-Fei

    2015-01-01

    Timber engineering has advanced over recent decades to offer an alternative to traditional materials and methods. The bonding of fibre reinforced plastics (FRP) with adhesives to timber structures for repair and strengthening has many advantages. However, the lack of established design rules has strongly restrained the use of FRP strengthening in many situations, where these could be a preferable option to most traditional techniques. A significant body of research has been carried out in rec...

  20. Study of the compressive behavior of short concrete columns confined by fiber reinforced composite

    International Nuclear Information System (INIS)

    Benzaid, Riad; Mesbah, Habib; Chikh, Nasr eddine

    2009-01-01

    Fiber reinforced polymer (FRP) composites are very attractive for use in civil engineering applications due to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, light weight, and potentially high durability. There is a growing interest in the use of FRP for strengthening of concrete structures such as buildings, bridges, chimneys, etc. This is mainly due to their tailorable performance characteristics, ease of application, and low life cycle costs. The present paper deals with the analysis of experimental results, in terms of load carrying capacity and strains, obtained from tests on circular and square prismatic high strength concrete specimens, strengthened with external E-glass fiber reinforced polymer (GFRP). The parameters considered are the number of composite layers, the corner radius for square shape, and the relation of GFRP confinement with steel reinforcement. All the test specimens were loaded to failure in axial compression and the behavior of the specimens in the axial directions was investigated. The obtained results showed that the efficiency of the confinement was very sensitive to the specimen cross section geometry (circular and square) and the confining stress expressed in the number of the GFRP sheet layers applied. In square cross sections, the stress-strain curve was influenced by the radius to which the corners of the section are rounded off, in order to avoid the breakage of the fibers. (author)

  1. Flexural and Shear Behavior of FRP Strengthened AASHTO Type Concrete Bridge Girders

    Directory of Open Access Journals (Sweden)

    Nur Yazdani

    2016-01-01

    Full Text Available Fiber-reinforced polymers (FRP are being increasingly used for the repair and strengthening of deteriorated or unsafe concrete structures, including structurally deficient concrete highway bridges. The behavior of FRP strengthened concrete bridge girders, including failure modes, failure loads, and deflections, can be determined using an analytical finite element modeling approach, as outlined in this paper. The differences in flexural versus shear FRP strengthening and comparison with available design guidelines are also beneficial to design professionals. In this paper, a common AASHTO type prestressed concrete bridge girder with FRP wrapping was analyzed using the ANSYS FEM software and the ACI analytical approach. Both flexural and shear FRP applications, including vertical and inclined shear strengthening, were examined. Results showed that FRP wrapping can significantly benefit concrete bridge girders in terms of flexure/shear capacity increase, deflection reduction, and crack control. The FRP strength was underutilized in the section selected herein, which could be addressed through decrease of the amount of FRP and prestressing steel used, thereby increasing the section ductility. The ACI approach produced comparable results to the FEM and can be effectively and conveniently used in design.

  2. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  3. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  4. The extrinsic influence of carbon fibre reinforced plastic laminates to ...

    Indian Academy of Sciences (India)

    The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures ... The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have ... Sadhana | News.

  5. Shear strength estimation of the concrete beams reinforced with FRP; comparison of artificial neural network and equations of regulations

    Directory of Open Access Journals (Sweden)

    Mahmood Akbari

    2017-12-01

    Full Text Available In recent years, numerous experimental tests were done on the concrete beams reinforced with the fiber-reinforced polymer (FRP. In this way, some equations were proposed to estimate the shear strength of the beams reinforced with FRP. The aim of this study is to explore the feasibility of using a feed-forward artificial neural network (ANN model to predict the ultimate shear strength of the beams strengthened with FRP composites. For this purpose, a database consists of 304 reinforced FRP concrete beams have been collected from the available articles on the analysis of shear behavior of these beams. The inputs to the ANN model consists of the 11 variables including the geometric dimensions of the section, steel reinforcement amount, FRP amount and the properties of the concrete, steel reinforcement and FRP materials while the output variable is the shear strength of the FRP beam. To assess the performance of the ANN model for estimating the shear strength of the reinforced beams, the outputs of the ANN are compared to those of equations of the Iranian code (Publication No. 345 and the American code (ACI 440. The comparisons between the outputs of Iran and American regulations with those of the proposed model indicates that the predictive power of this model is much better than the experimental codes. Specifically, for under study data, mean absolute relative error (MARE criteria is 13%, 34% and 39% for the ANN model, the American and the Iranian codes, respectively.

  6. Strengthening Mechanisms in Microtruss Metals

    Science.gov (United States)

    Ng, Evelyn K.

    Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing

  7. Process of cracking in reinforced concrete beams (simulation and experiment

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and solved using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. A series of sequential quasi-static 4-point bend tests leading to the formation of cracks in a reinforced concrete beam were performed. At each loading step, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. During the first stage the nonconservative process of deformation begins to develope, but has not visible signs. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the ordinary concrete beams and the beams strengthened with a carbon-fiber polymer. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring crack formation and assessing the quality of measures aimed at strengthening concrete structures

  8. Analysis of the Dynamic Response in Blast-Loaded CFRP-Strengthened Metallic Beams

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2013-01-01

    Full Text Available Carbon fiber-reinforced polymer composites (CFRPs are good candidates in enhancing the blast resistant performance of vulnerable public buildings and in reinforcing old buildings. The use of CFRP in retrofitting and strengthening applications is traditionally associated with concrete structures. Nevertheless, more recently, there has been a remarkable aspiration in strengthening metallic structures and components using CFRP. This paper presents a relatively simple analytical solution for the deformation and ultimate strength calculation of hybrid metal-CFRP beams when subjected to pulse loading, with a particular focus on blast loading. The analytical model is based on a full interaction between the metal and the FRP and is capable of producing reasonable results in a dynamic loading scenario. A nonlinear finite element (FE model is also developed to reveal the full dynamic behavior of the CFRP-epoxy-steel hybrid beam, considering the detailed effects, that is, large strains, high strain rates in metal, and different failure modes of the hybrid beam. Experimental results confirm the analytical and the FE results and show a strong correlation.

  9. Delamination of carbon-fiber strengthening layer from concrete beam during deformation (infrared thermography)

    OpenAIRE

    Shardakov, I. N.; Shestakov, A. P.; Bykov, A.A.

    2016-01-01

    Technology of strengthening reinforced concrete structures with composite materials has found wide application. The effectiveness of strengthening of concrete structures with externally bonded reinforcement is supported by a great deal of experimental evidence. However, the problem of serviceability of such structures has not been adequately explored. The present work describes the results of experimental studies on the loadcarrying capacity of concrete beams strengthened with carbon fiber re...

  10. Mechanical Properties and Wear Behavior of a Novel Composite of Acrylonitrile–Butadiene–Styrene Strengthened by Short Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Abdellah

    2018-06-01

    Full Text Available Polymer matrix composites (PMC have a competitive and dominant role in a lot of industries, like aerospace and automobiles. Short basalt fiber (SBF is used to strengthen acrylonitrile–butadiene–styrene (ABS polymers as a composite. The composite material is fabricated using injection molding with a new technique to obtain a uniform distribution for the ABS matrix at an elevated temperature range from 140 °C to 240 °C. Four types of specimen were produced according to the mechanically mixed amounts of SBF, which were (5, 10, 15, 20 wt %. The produced material was tested for tension, hardness and impact to measure the enhancement of the mechanical properties of the ABS only and the ABS reinforced by SBF composite. Wear tests were carried out using a pin on disc at a velocity of 57.5 m/s at three normal loads of 5, 10 and 15 kN. Tensile strength increased with up to 5 wt % of SBF, then decreased with an increasing amount of SBF reinforcement, while surface hardness increased with increasing SBF. The impact strength was found to degrade with the whole increment of SBF. Wear resistance increased with the increasing SBF reinforcement amount at all applied normal loads.

  11. Mesomorphic structure of poly(styrene)-block-poly(4-vinylpyridine) with oligo(ethylene oxide)sulfonic acid side chains as a model for molecularly reinforced polymer electrolyte

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Hartikainen, J; Eerikainen, H; Torkkeli, M; Jokela, K; Serimaa, R; Sundholm, F; ten Brinke, G; Ikkala, O; Eerikäinen, Hannele

    2002-01-01

    We report self-organized polymer electrolytes based on poly(styrene)-block-poly(4-vinylpyridine) (PS-block-P4VP). Liquidlike ethylene oxide (EO) oligomers with sulfonic acid end groups are bonded to the P4VP block, leading to comb-shaped supramolecules with the PS-block-P4VP backbone. Lithium

  12. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  13. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress

    International Nuclear Information System (INIS)

    Larrinaga, Pello; Chastre, Carlos; Biscaia, Hugo C.; San-José, José T.

    2014-01-01

    Highlights: • Making more deepen the knowledge of textile reinforced mortar in tensile stress. • Analyzing the effect of the reinforcing ratio of the composite. • To compare results with Aveston–Cooper–Kelly theory. • To develop a numerical model based on a finite element code. • Considering the importance of the bond-slip law of the mortar-to-textile-interface. - Abstract: During the last years several projects and studies have improved the knowledge about textile reinforced mortar (TRM) technology. TRM has already been used in strengthening masonry and reinforced concrete structural elements such as walls, arches, columns and beams. This material is presented as a real alternative to the use of fiber-reinforced polymers (FRP) in situations where these composites have presented some drawbacks or their use is banned. Textile reinforced mortar show a complex mechanical behavior derived from the heterogeneity of the constituent materials. This paper aims to deepen the knowledge of this composite material in terms of tensile behavior. Following this scope, this paper presents an experimental campaign focused on thirty-one TRM specimens reinforced with four different reinforcing ratios. The results are analyzed and contrasted with two distinct models. (i) The Aveston–Cooper–Kelly theory (ACK) which is based on a tri-linear analytical approach; and (ii) a non-linear numerical simulation with a 3D finite element code. The finite element analysis (FEA) of the TRM tensile tests also showed no significant dependence on the basalt-to-mortar interface, i.e., the choice of a bond-slip curve in order to reproduce the bond stresses and slippages along the interface is irrelevant and it can be simply considered as rigid interface

  14. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  15. Reinforced concrete beams with web openings: A state of the art review

    International Nuclear Information System (INIS)

    Ahmed, A.; Fayyadh, M.M.; Naganathan, S.; Nasharuddin, K.

    2012-01-01

    Highlights: ► Present paper highlights the gaps in the work related RC beams with web opening. ► There is limited work on comparing of design approaches of RC beams with opening. ► Strengthening with externally bonded steel or FRP sheets needs to be investigated. ► There is no repair work been done on the RC beams with opening. -- Abstract: The construction of modern buildings requires many pipes and ducts in order to accommodate essential services such as air conditioning, electricity, telephone, and computer network. Web openings in concrete beams enable the installation of these services. A number of studies have been conducted with regards to reinforced concrete beams which contain web openings. The present paper aims to compile this state of the art work on the behaviour, analysis and design of Reinforced Concrete (RC) beams with transverse web openings. A variety of aspects will be highlighted and discussed including the classification of openings, guidelines for opening location, and the structural behaviour of RC beams with web openings. Various design approaches will also be detailed, for example the American Concrete Institute (ACI) approach, the Architectural Institute of Japan (AIJ) approach and the strut and tie method. Moreover, the strengthening of RC beams with openings using Fibre Reinforced Polymer (FRP) material and steel plates is presented. Finally, directions for future research based on the gaps which exist in the present work are presented.

  16. Effect of anodic surface treatment on PAN-based carbon fiber and its relationship to the fracture toughness of the carbon fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Sarraf, Hamid; Skarpova, Ludmila

    2008-01-01

    The effect of anodic surface treatment on the polyacrylonitrile (PAN)-based carbon fibers surface properties and the mechanical behavior of the resulting carbon fiber-polymer composites has been studied in terms of the contact angle measurements of fibers and the fracture toughness of composites...... in the fiber surface nature and the mechanical interfacial properties between the carbon fiber and epoxy resin matrix of the resulting composites, i.e., the fracture toughness. We suggest that good wetting plays an important role in improving the degree of adhesion at interfaces between fibers and matrices...

  17. Strengthening of a railway bridge with NSMR and CFRP tubes

    DEFF Research Database (Denmark)

    Täljsten, Björn; Bennitz, Anders; Danielsson, Georg

    2008-01-01

    Strengthening of structures with CFRP is today considered an accepted method to upgrade concrete structures. In this paper two different CFRP strengthening systems are combined to give extended service life to a Swedish double-trough-double-track railway bridge, constructed in concrete with a 10 ....... Sensors on bars and tubes display proofs of utilization of the CFRP while displacement sensors and strain gauges on the steel reinforcement due to the small loads in the service limit state show minor effect....

  18. Modeling and characterization of strengthened concrete tension members

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2011-01-01

    The structural potential for cracking of externally strengthened concrete tension members, can be predicted with three parameters, describing the structural cracking potential based on fracture mechanical properties of the of concrete and interface between concrete and strengthening medium....... With these parameters, it is possible to design reinforcement and obtain a required cracking behavior of a given structure. Design recommendations for single and multiple cracking of the tension specimen are given in terms of fracture mechanical parameters, and a structural stiffness parameter....

  19. RC T beams strengthened to shear with carbon fiber composites

    Directory of Open Access Journals (Sweden)

    L. A. Spagnolo JR

    Full Text Available This paper presents the experimental data of the behavior of reinforced concrete beams strengthened to shear with carbon fiber composites. The tests were composed of eight T beams, b w=15 cm, h=40 cm, flange width 40 cm, flange height 8 cm, and length 300 cm, divided into two series with the same longitudinal steel reinforcement and a reference beam without strengthening in each series. The beams had two types of arrangement of internal steel stirrups. The test variables were the internal and external geometric ratio of the transverse reinforcement and the mechanical ratio of carbon fiber composites stirrups. All the beams were loaded at two points. The strengthened beams were submitted to a preloading and the strengthening was applied to the cracked beam. All the beams were designed in order to guarantee shear failure, and the ultimate load of the strengthened beams was 36% to 54% greater than the reference beams. The Cracking Sliding Model applied to the strengthened beams was evaluated and showed good agreement with the experimental results.

  20. Improving geotechnical properties of clayey soil using polymer material

    OpenAIRE

    Karim Hussein; Al-Soudany Kawther

    2018-01-01

    This study illustrates the application of polymer material for clayey soil stabilization. The article will focus on studying the strength behavior of the clayey soils reinforced with homogenously polymer fiber. In the current research, “polypropylene” was selected as polymer material to reinforce the natural clay soil. This polymer fiber was added to the clayey soil with four different percentages of (0, 1.5, 3, and 5%) by weight of soil. Various tests with different polymer contents were per...

  1. Effect of Mechanical Impact Energy on the Sorption and Diffusion of Moisture in Reinforced Polymer Composite Samples on Variation of Their Sizes

    Science.gov (United States)

    Startsev, V. O.; Il'ichev, A. V.

    2018-05-01

    The effect of mechanical impact energy on the sorption and diffusion of moisture in polymer composite samples on variation of their sizes was investigated. Square samples, with sides of 40, 60, 80, and 100 mm, made of a KMKU-2m-120.E0,1 carbon-fiber and KMKS-2m.120.T10 glass-fiber plastics with different resistances to calibrated impacts, were compared. Impact loading diagrams of the samples in relation to their sizes and impact energy were analyzed. It is shown that the moisture saturation and moisture diffusion coefficient of the impact-damaged materials can be modeled by Fick's second law with account of impact energy and sample sizes.

  2. The power reinforcement framework revisited

    DEFF Research Database (Denmark)

    Nielsen, Jeppe; Andersen, Kim Normann; Danziger, James N.

    2016-01-01

    Whereas digital technologies are often depicted as being capable of disrupting long-standing power structures and facilitating new governance mechanisms, the power reinforcement framework suggests that information and communications technologies tend to strengthen existing power arrangements within...... public organizations. This article revisits the 30-yearold power reinforcement framework by means of an empirical analysis on the use of mobile technology in a large-scale programme in Danish public sector home care. It explores whether and to what extent administrative management has controlled decision......-making and gained most benefits from mobile technology use, relative to the effects of the technology on the street-level workers who deliver services. Current mobile technology-in-use might be less likely to be power reinforcing because it is far more decentralized and individualized than the mainly expert...

  3. Caracterización de bentonitas y zeolitas sin tratamiento como refuerzo en materiales compuestos de matriz polimérica//Characterization of untreated zeolites and bentonites as reinforcement in polymer matrix composites

    Directory of Open Access Journals (Sweden)

    Francisco Jesús Mondelo‐García

    2014-01-01

    Full Text Available Las bentonitas con microestructuras compuestas de placas silicio aluminosas. Se logró el objetivo de caracterizar las bentonitas sódicas de Wyoming, USA, Patagonia de Argentina, nordeste de Brasil, así como las bentonitas policatiónicas de Brasil, la cálcica activada con sodio y zeolita de Cuba no organofilizadas para emplearlas como refuerzo en materiales compuestos de matriz polimérica. Estosmateriales se evaluaron usando técnicas físico-químicas como fluorescencia de rayos X, difracción de rayos X, microscopia electrónica de barrido, humedad, capacidad de intercambio catiónico, absorción e hinchabilidad en diluyente acuoso. Los resultados confirmaron rangos variables de intercambio catiónico,hinchamiento y absorciòn en agua entre las bentonitas analizadas, debido a su naturaleza química estructural en hidratación, logrando mayores valores las sódicas, luego la cálcica activada y con menor valor las policatiónicas, pero permiten usarlas como carga en polímeros.Palabras claves: bentonita, zeolita, matriz polimérica, organofilizada, materiales compuestos._____________________________________________________________________________AbstractBentonites with aluminous silicon microstructure composed of plates. The work accomplished to characterize the sodium bentonites in Wyoming USA, Patagonia Argentina, Northeast Brazil and the Brazilian polycationic bentonites, calcium-activated sodium zeolite from Cuba without organic modificationnot organophilized to employ as reinforcing in composite materials of polymer matrix. These materials were evaluated for physical and chemical assay techniques such as X-ray fluorescence, X-ray diffraction, scanning electron microscopy, moisture, cation exchange capacity, absorption and swelling aqueousdiluent. The results confirmed variables ranges of cationic exchange, swelling and water absorption from the bentonites tested, due to its chemical-structural hydration, achieving higher values nature

  4. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  5. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact.

    Science.gov (United States)

    Hart, Robert J; Zhupanska, Olesya I

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  6. Determination of hoop direction effective elastic moduli of non-circular profile, fiber reinforced polymer composite sewer liner pipes from lateral ring compression tests

    International Nuclear Information System (INIS)

    Czél, Gergely; Takács, Dénes

    2015-01-01

    A new material property determination method is presented for the calculation of effective elastic moduli of non-circular ring specimens cut from filament wound oval profile polymer composite sewer liner pipes. The hoop direction elastic moduli was determined using the test results obtained from ring compression tests, which is a very basic setup, and requires no special equipment. Calculations were executed for many different oval profiles, and diagrams were constructed, from which the cross section dependent C_e_f_f constants can be taken. The new method was validated by the comparison of tests and finite element analysis results. The calculation method and the diagrams are essential design tools for engineers, and a big step forward in sizing non-circular profile liner pipes. - Highlights: • A simple modulus measurement method is presented for non-circular ring specimens. • The evaluation method is validated against a finite element model. • Profile shape dependent constants are presented for a wide range of cross-sections. • A set of charts with the constants are provided to aid design engineers.

  7. Evaluating the performance of skewed prestressed concrete bridge after strengthening

    Science.gov (United States)

    Naser, Ali Fadhil; Zonglin, Wang

    2013-06-01

    The objectives of this paper are to explain the application of repairing and strengthening methods on the damaged members of the bridge structure, to analyze the static and dynamic structural response under static and dynamic loads after strengthening, and to evaluate the structural performance after application of strengthening method. The repairing and strengthening methods which are used in this study include treatment of the cracks, thickening the web of box girder along the bridge length and adding internal pre-stressing tendons in the thickening web, and construct reinforced concrete cross beams (diaphragms) between two box girders. The results of theoretical analysis of static and dynamic structural responses after strengthening show that the tensile stresses are decreased and become less than the allowable limit values in the codes. The values of vertical deflection are decreased after strengthening. The values of natural frequencies after strengthening are increased, indicating that the strengthening method is effective to reduce the vibration of the bridge structure. Therefore, the strengthening methods are effective to improve the bearing capacity and elastic working state of the bridge structure and to increase the service life of the bridge structure.

  8. Effect of Thermal Distress on Residual Behavior of CFRP-Strengthened Steel Beams Including Periodic Unbonded Zones

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2015-11-01

    Full Text Available This paper presents the residual behavior of wide-flange steel beams strengthened with high-modulus carbon fiber-reinforced polymer (CFRP laminates subjected to thermal loading. Because the coefficients of thermal expansion of the steel and the CFRP are different, temperature-induced distress may take place along their interface. Periodic unbonded zones are considered to represent local interfacial damage. Five test categories are designed depending on the size of the unbonded zones from 10 to 50 mm, and corresponding beams are loaded until failure occurs after exposing to a cyclic temperature range of ΔT = 25 °C (−10 to 15 °C up to 84 days. The composite action between the CFRP and the steel substrate is preserved until yielding of the beams happens, regardless of the thermal cycling and periodic unbonded zones. The initiation and progression of CFRP debonding become apparent as the beams are further loaded, particularly at geometric discontinuities in the vicinity of the unbonded zones along the interface. A simple analytical model is employed to predict the interfacial stress of the strengthened beams. A threshold temperature difference of ΔT = 30 °C is estimated for the initiation and progression of CFRP debonding. Multiple debonding-progression stages in conjunction with the extent of thermal distress appear to exist. It is recommended that high-modulus CFRP be restrictively used for strengthening steel members potentially exposed to a wide temperature variation range.

  9. Evaluation of the increased load bearing capacity of steel beams strengthened with pre-stressed FRP laminates

    Directory of Open Access Journals (Sweden)

    S. Bennati

    2016-10-01

    Full Text Available We analyse the problem of a simply supported steel beam subjected to uniformly distributed load, strengthened with a pre-stressed fibre-reinforced polymer (FRP laminate. We assume that the laminate is first put into tension, then bonded to the beam bottom surface, and finally fixed at both its ends by suitable connections. The beam and laminate are modelled according to classical beam theory. The adhesive is modelled as a cohesive interface with a piecewise linear constitutive law defined over three intervals (elastic response, softening response, debonding. The model is described by a set of differential equations with suitable boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces and interfacial stresses. As an application, we consider the standard IPE series for the steel beam and the Sika® CarboDur® system for the adhesive and laminate. For each considered cross section, we first carry out a preliminary design of the unstrengthened steel beam. Then, we imagine to apply the FRP strengthening and calculate the loads corresponding to the elastic limit states in the steel beam, adhesive, and laminate. Lastly, we take into account the ultimate limit state corresponding to the plasticisation of the mid-span steel cross section and evaluate the increased load bearing capacity of the strengthened beam

  10. Interfacial stresses in damaged RC beams strengthened with externally bonded CFRP plate

    International Nuclear Information System (INIS)

    Benrahou, K.H.; Adda bedia, E.A.; Benyoucef, S.; Tounsi, A.; Benguediab, M.

    2006-01-01

    A theoretical method to predict the interfacial stresses in the adhesive layer of damaged reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The adopted model is developed including the adherend shear deformations by assuming a linear shear stress through the depth of the RC beam [A. Tounsi, Int. J. Solids Struct., in press], while all existing solutions neglect this effect [e.g. S. Benyoucef, A. Tounsi, S.A. Meftah, E.A. Adda Bedia, Compos. Interfaces, in press; S.T. Smith, J.G. Teng, Eng. Struct. 23 (7) (2001) 857-871; T.M. Roberts, Struct. Eng. 67 (12) (1989) 229-233; A. Tounsi, S. Benyoucef, Int. J. Adhes. Adhes., in press; T. Stratford, J. Cadei, Construct. Building Mater. 20 (2006) 34-35]. In addition, in the present study the anisotropic damage model is adopted to describe the damage of the RC beams. It is shown that the damage has a significant effect on the interfacial stresses in FRP-damaged RC beam

  11. GFRP seismic strengthening and structural heath monitoring of Portage Creek Bridge concrete columns

    International Nuclear Information System (INIS)

    Huffman, S.; Bagchi, A.; Mufti, A.; Neale, K.; Sargent, D.; Rivera, E.

    2006-01-01

    Located in Victoria British Columbia (BC), Canada, the Portage Creek Bridge is a 124m long, three-span structure with a reinforced concrete piers and abutments on H piles. The bridge was designed prior to the introduction of current bridge seismic design codes and construction practices. Therefore it was not designed to resist the earthquake forces as required by today's standards. The bridge is on a route classified as a Municipal Disaster Route scheduled to be retrofitted to prevent collapse during a design seismic event, with a return period of 475 years (i.e., an event with 105 probability of exceedance in 50 years). Conventional materials and methods were used to retrofit most of the bridge. The dynamic analysis of the bridge predicted the two tall columns of Pier No. 1 will form plastic hinges under an earthquake resulting an additional shear to the short columns of Pier No. 2. A non-liner static pushover analysis indicated the short columns will not be able to form plastic hinges prior to failure in shear. The innovative solution of Fiber Reinforced Polymer wraps (FRPs) was chosen to strengthen the short columns for shear without increasing the moment capacity. The FRP wraps and the bridge were instrumented as one of 36 demonstration projects across Canada sponsored by ISIS (Intelligent Sensing for Innovative Structure) Canada, federally funded Network of Centers of Excellence, to access the performance of FRP and the use of FOS (Fiber Optic Sensors) for Structural Health Monitoring (SHM). The two columns of the bridge pier were strengthened with GFRP (Glass Fiber Reinforced Polymer) wraps with eight bi-directional rosette type strain gauges and four long gauge fiber optic sensors attached to the outer layer of the wraps. In addition, two 3-D Crossbow accelerometers are installed on the pier cap above the columns and a traffic web-cam mounted above the deck at the pier location. The data is collected through high sped internet line to an interactive web page

  12. Reinforcing a Regime: Strengthening Clientelism in Iran with Sanctions

    Science.gov (United States)

    2015-09-01

    bazaari proved incredibly resilient —surviving even the Islamic Revolution—and it still exists in Iranian society to this day. For Iran, the arrival...front- runners emerged from the six contenders in the 2013 presidential election: Mohammad Galibaf and Hassan Rouhani. Considering Galibaf’s poor

  13. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  14. Origins of food reinforcement in infants12345

    Science.gov (United States)

    Kong, Kai Ling; Feda, Denise M; Eiden, Rina D; Epstein, Leonard H

    2015-01-01

    Background: Rapid weight gain in infancy is associated with a higher risk of obesity in children and adults. A high relative reinforcing value of food is cross-sectionally related to obesity; lean children find nonfood alternatives more reinforcing than do overweight/obese children. However, to our knowledge, there is no research on how and when food reinforcement develops. Objective: This study was designed to assess whether the reinforcing value of food and nonfood alternatives could be tested in 9- to 18-mo-old infants and whether the reinforcing value of food and nonfood alternatives is differentially related to infant weight status. Design: Reinforcing values were assessed by using absolute progressive ratio schedules of reinforcement, with presentation of food and nonfood alternatives counterbalanced in 2 separate studies. Two nonfood reinforcers [Baby Einstein–Baby MacDonald shows (study 1, n = 27) or bubbles (study 2, n = 30)] were tested against the baby’s favorite food. Food reinforcing ratio (FRR) was quantified by measuring the reinforcing value of food (Food Pmax) in proportion to the total reinforcing value of food and a nonfood alternative (DVD Pmax or BUB Pmax). Results: Greater weight-for-length z score was associated with a greater FRR of a favorite food in study 1 (FRR-DVD) (r = 0.60, P positively associated with FRR-DVD (r = 0.57, P = 0.009) and FRR-BUB (r = 0.37, P = 0.047). Conclusions: Our newly developed paradigm, which tested 2 different nonfood alternatives, demonstrated that lean infants find nonfood alternatives more reinforcing than do overweight/obese infants. This observation suggests that strengthening the alternative reinforcers may have a protective effect against childhood obesity. This research was registered at clinicaltrials.gov as NCT02229552. PMID:25733636

  15. Cable strengthened arches

    NARCIS (Netherlands)

    Kamerling, M.W.

    2013-01-01

    The structural efficiency of arches, subjected to several variable loads, can be increased by strengthening these arches with cables. For these structures it can be necessary, especially in case the permanent load is small, to post-tension the cables to avoid any compression acting on the cables. A

  16. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  17. Improving Fatigue Strength of polymer concrete using nanomaterials.

    Science.gov (United States)

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  18. Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Lu

    2017-11-01

    Full Text Available Basalt fiber-reinforced polymer (BFRP composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH. The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet.

  19. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  20. The Effect of CFRP Length on the Failure Mode of Strengthened Concrete Beams

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2014-06-01

    Full Text Available This paper reports the effects of carbon fiber-reinforced polymer (CFRP length on the failure process, pattern and crack propagation for a strengthened concrete beam with an initial notch. The experiments measuring load-bearing capacity for concrete beams with various CFRP lengths have been performed, wherein the crack opening displacements (COD at the initial notch are also measured. The application of CFRP can significantly improve the load-bearing capacity, and the failure modes seem different with various CFRP lengths. The stress profiles in the concrete material around the crack tip, at the end of CFRP and at the interface between the concrete and CFRP are then calculated using the finite element method. The experiment measurements are validated by theoretical derivation and also support the finite element analysis. The results show that CFRP can significantly increase the ultimate load of the beam, while such an increase stops as the length reaches 0.15 m. It is also concluded that the CFRP length can influence the stress distribution at three critical stress regions for strengthened concrete beams. However, the optimum CFRP lengths vary with different critical stress regions. For the region around the crack tip, it is 0.15 m; for the region at the interface it is 0.25 m, and for the region at the end of CFRP, it is 0.30 m. In conclusion, the optimum CFRP length in this work is 0.30 m, at which CFRP strengthening is fully functioning, which thus provides a good reference for the retrofitting of buildings.