WorldWideScience

Sample records for reinforced polymer cfrp

  1. Shear Strengthening of Corbels with Carbon Fibre Reinforced Polymers (CFRP

    Directory of Open Access Journals (Sweden)

    Nawaz, A.

    2010-09-01

    Full Text Available Corbels constitute what are known as “disturbed” regions in concrete structures, where typical shear failure may be anticipated on the grounds of small shear span-to-depth ratios. The concentration of stress induced by the weight of girders on the very small loadbearing areas in corbels often causes cracking in bridges and other structures. Little experimental research can be found in the literature on the shear strengthening of corbels. In the present study, nine such members were tested. Two had no carbon fibre reinforced polymers attached, while CFRP laminates were externally bonded to the other seven, in a number of different spatial arrangements. Ultimate shear strength was found and compared for all specimens. The results showed that CFRP configuration and geometry directly affected corbel shear strength, which was higher in all the CFRPstrengthened corbels than in the controls. The highest strength values were recorded for specimens whose shear-critical area was wrapped in CFRP.

    Las ménsulas constituyen lo que conocemos como regiones de “distorsión” en las estructuras de hormigón, zonas en que pueden preverse roturas por cortante debido a las bajas relaciones luz de cortante-canto presentes en ellas. La concentración de solicitaciones producida por el peso de las vigas sobre superficies de carga muy reducidas en las ménsulas a menudo provoca el agrietamiento de puentes y otras estructuras de obra civil. En la literatura especializada sobre el refuerzo a cortante de las ménsulas existen escasos ejemplos de estudios experimentales. Para la presente investigación se han realizado ensayos con nueve elementos de este tipo. Dos de ellos no incluían polímeros reforzados con fibra de carbono (CFRP, mientras que los siete restantes llevaban láminas externas de CFRP, dispuestas siguiendo distintas configuraciones espaciales. Los resultados indican que la configuración y la disposición geométrica de los CFRP repercuten

  2. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  3. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    Science.gov (United States)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  4. Fretting Fatigue Behaviour of Pin-Loaded Thermoset Carbon-Fibre-Reinforced Polymer (CFRP Straps

    Directory of Open Access Journals (Sweden)

    Fabio Baschnagel

    2016-04-01

    Full Text Available This paper focuses on the fretting fatigue behaviour of pin-loaded carbon-fibre-reinforced polymer (CFRP straps studied as models for rigging systems in sailing yachts, for suspenders of arch bridges and for pendent cables in cranes. Eight straps were subjected to an ultimate tensile strength test. In total, 26 straps were subjected to a fretting fatigue test, of which ten did not fail. An S–N curve was generated for a load ratio R of 0.1 and a frequency f of 10 Hz, showing a fatigue limit stress of the straps around the matrix fatigue limit, corresponding to 46% of the straps’ ultimate tensile strength (σUTS. The fatigue limit was defined as 3 million load cycles (N = 3 × 106, but tests were even conducted up to N = 11.09 × 106. Catastrophic failure of the straps was initiated in their vertex areas. Investigations on the residual strength and stiffness properties of straps tested around the fatigue limit stress (for N ≥ 1 × 106 showed little influence of the fatigue loading on these properties. Quasi-static finite element analyses (FEA were conducted. The results obtained from the FEA are in good agreement with the experiments and demonstrate a fibre parallel stress concentration in the vertex area of factor 1.3, under the realistic assumption of a coefficient of friction (cof between pin and strap of 0.5.

  5. Seismic Retrofitting: Reinforced Concrete (RC shear wall versus Reinforcement of RC element by Carbon Fiber Reinforced Polymer (CFRP using PUSHOVER analysis

    Directory of Open Access Journals (Sweden)

    Yahya RIYAD

    2016-12-01

    Full Text Available Seismic retrofitting of constructions vulnerable to earthquakes is a current problem of great political and social relevance. During the last sixty years, moderate to severe earthquakes have occurred in Morocco (specifically in Agadir 1960 and Hoceima 2004. Such events have clearly shown the vulnerability of the building stock in particular and of the built environment in general. Hence, it is very much essential to retrofit the vulnerable building to cope up for the next damaging earthquake. In this paper, the focus will be on a comparative study between two techniques of seismic retrofitting, the first one is a reinforcement using carbon fiber reinforced polymer (CFRP applied to RC elements by bonding , and the second one is a reinforcement with a shear wall. For this study, we will use a non-linear static analysis -also known as Pushover analysis - on a reinforced concrete structure consisting of beams and columns, and composed from eight storey with a gross area of 240 m², designed conforming to the Moroccan Seismic code[1].

  6. Prospective study on cranioplasty with individual carbon fiber reinforced polymer (CFRP) implants produced by means of stereolithography.

    Science.gov (United States)

    Wurm, Gabriele; Tomancok, Berndt; Holl, Kurt; Trenkler, Johannes

    2004-12-01

    The aim of this study was to evaluate the value of carbon fiber reinforced polymer (CFRP) cranial implants produced by means of 3-dimensional (3D) stereolithography (SL) and template modeling for reconstructions of complex or extensive cranial defects. A series of 41 cranioplasties with individual CFRP implants was performed in 37 patients between April 1996 and November 2002. Only patients with complex and/or large cranial defects were included, most of them having extended scarring or dural calcification and poor quality of the overlying soft-tissue cover after infection or multiple preceding operations. Involvement of frontal sinus, a known risk factor for complications after cranioplasty, was the case in 21 patients (51.2%). A computer-based 3D model of the skull with the bony defect was generated by means of stereolithography after acquisition, evaluation and transfer of the patient's helical computed tomography (CT) data. A wax template of the defect that was used to design the individual prosthesis-shape was invested in dental stone. Then, the cranial implant was fabricated out of CFRP by loosen mold. Reconstruction of defects measuring up to 17 x 9 cm was performed. The intra-operative fit of the implants was excellent in 36 (87.8%), good in 1 (2.4%), and fair in 4 (9.8%) of the cases. Problems of implant fit occurred because of extended scarring and poor quality of soft-tissue cover. Adverse reactions were observed in 5 patients (1 subdural, 1 subcutaneous hematoma, 2 infections, 1 allergic reaction). Excellent contours and a solid stable reconstruction have been maintained in 30 out of 35 remaining plates (mean follow-up 3.6 years). No adverse effects concerning postoperative imaging, the accuracy of electroencephalograms and radiation therapy have been observed. The authors believe that this relatively new technique represents an advance in the management of complex and large cranial defects, but seems less suitable for simple defects because of cost

  7. Multiscale Modeling of Carbon Fiber Reinforced Polymer (CFRP) for Integrated Computational Materials Engineering Process

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jiaying; Liang, Biao; Zhang, Weizhao; Liu, Zeliang; Cheng, Puikei; Bostanabad, Ramin; Cao, Jian; Chen, Wei; Liu, Wing Kam; Su, Xuming; Zeng, Danielle; Zhao, John

    2017-10-23

    In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can be modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.

  8. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.

    Science.gov (United States)

    Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng

    2015-07-15

    This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.

  9. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    Science.gov (United States)

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  10. Deflection of Steel Reinforced Concrete Beam Prestressed With CFRP Bar

    Directory of Open Access Journals (Sweden)

    Selvachandran P.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced polymer (CFRP bars are weak in yielding property which results in sudden failure of structure at failure load. Inclusion of non-pretensioned steel reinforcement in the tension side of CFRP based prestressed concrete beam will balance the yielding requirements of member and it will show the definite crack failure pattern before failure. Experimental investigation has been carried out to study the deflection behavior of partially prestressed beam. Experimental works includes four beam specimens stressed by varying degree of prestressing. The Partial Prestressing Ratio (PPR of specimen is considered for experimental works in the range of 0.6 to 0.8. A new deflection model is recommended in the present study considering the strain contribution of CFRP bar and steel reinforcement for the fully bonded member. New deflection model converges to experimental results with the error of less than 5% .

  11. Bending Moment Decrease of Reinforced Concrete Beam Supported by Additional CFRP

    Directory of Open Access Journals (Sweden)

    Mykolas Daugevičius

    2011-04-01

    Full Text Available The calculation method of reinforced concrete beam with additional CFRP composite is proposed in this article. This method estimates tangential angular concrete deformations in tensioned beam layers between steel and bonded carbon fiber reinforced polymer. The horizontal slip of CFRP composite reduce beam bending moment capacity. An additional coefficient to reduce CFRP resultant force is necessary for better precision of bending moment capacity. Also, various calculation methods of bending moment capacity are considered. Article in Lithuanian

  12. Strengthening Reinforced Concrete Beams with CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Mehmet Mustafa Önal

    2014-01-01

    Full Text Available Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP or glass fiber reinforced polymer (GFRP. The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150 × 250 × 2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

  13. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  14. PRACTICAL STUDY ON THE CFRP REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Catalina IANASI

    2016-05-01

    Full Text Available One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of CFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem which are presented in this paper.

  15. Strengthening of self-compacting reinforced concrete deep beams containing circular openings with CFRP

    Directory of Open Access Journals (Sweden)

    Al-Bayati Nabeel

    2018-01-01

    Full Text Available This paper shows the behavior of reinforced self-compacting concrete deep beams with circular openings strengthened in shear with various arrangements of externally bonded Carbon Fibre Reinforced Polymer (CFRP. Six simply supported deep beams were constructed and tested under two points load up to the failure for this purpose. All tested beams had same geometry, compressive strength, shear span to depth ratio, main flexural and web reinforcement. The variables considered in this study include the influence of fiber orientation, utilizing longitudinal CFRP strips with vertical strips and area of CFRP. The test results indicated that the presence of the circular openings in center of load path reduce stiffness and ultimate strength by about 50% when compared with solid one, also it was found that the externally bonded CFRP can significantly increase the ultimate load and enhance the stiffness of deep beam with openings.

  16. Influence of ties on the behavior of short reinforced concrete columns strengthened by external CFRP

    Directory of Open Access Journals (Sweden)

    Sarsam Kaiss

    2018-01-01

    Full Text Available An experimental study was carried out to investigate the behavior of normal strength reinforce concret (RC circular short column strengthned with “carbon fiber reinforced polymer (CFRP sheets”. Three series comprising totally of (15 specimens loaded until failure under concentric compresion load. Strengthening was varied by changing the number of CFRP strips, spacing and wrapping methods. The findings of this research can be summarized as follows: for the columns without CFRP, the influence of the tie spacing was significant: compared with 130 mm tie spacing, dropping the spacing to 100 mm and 70 mm increased the load carrying capacity by 18% and 26%, respectively. The columns with less internal confinement (lesser amount of ties were strengthened more significantly by the CFRP than the ones with greater amount of internal ties. As an example of the varying effectiveness of the fully wrapped CFRP, the column with ties at 130 mm was strengthened by 90% with the CFRP. In contrast, the ones with 70 mm spaced ties only increased in strength with CFRP by 66%. Compared with the control specimen (no CFRP, the same amount of CFRP when used as hoop strips led to more strengthening than using CFRP as a spiral strip- the former led to nearly 9% more strengthening than the latter in the case of 130 mm spaced internal steel ties. In the case of 100 mm internal steel ties, the difference (between the hoops & spiral CFRP strengthening is close to 4%. In contrast, there is no difference between the two methods of strengthening in the heavily tied columns (70 mm tied spacing.

  17. Nonlinear Analysis of External Prestressed Reinforced Concrete Beams with BFRP and CFRP

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2017-05-01

    Full Text Available The traditional strengthening methods for concrete structure (girders, beams, columns…. consuming time and could be an economical, a new modern repair methods using the Carbon Fiber Reinforced Polymers (CFRP and Basalt Fiber Reinforced Polymer (BFRP as a laminate strips or bars,and considered a competitive solution that will increase the life-cycle of repaired structures. This study investigated the strengthen reinforced concrete girder. Nonlinear analysis have been adopted to the models using FEM analysis (ANSYS to simulate the theoretical results compared with experimental results.Using finite element packages, more efficient and better analyses can be made to fully understand the response of individual structural components and their contribution to a structure as a whole.Three type of material are used in this study as an external prestressed wire (steel, CFRP and BFRP. The prestressed beam is modeled as simply supported beam with two concentrated point load. The results showed that all tested strengthening beam increased the load carryingcapacity of the beams depend on prestressing force. Obtained Result was compared for different type of beam.This study also was enlarged to include using CFRP and BFRPbarwhich are light weight and moredurable, lead to ease of handling and maintenance. The research conducted analytical work to evaluate the effectiveness of concrete beams reinforced normally by the use of CFRP and BFRP bars. The results showed a significant gain in the beam’s ultimate capacities using CFRP bars comparing with beam reinforced with BFRP bar and reference beam

  18. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  19. Evaluation of Seismic Behaviors of Partially Deteriorated Reinforced Concrete Circular Columns Retrofitted with CFRP

    Directory of Open Access Journals (Sweden)

    Dongxu Hou

    2014-01-01

    Full Text Available Deficiency of the concrete strength in some regions of reinforced concrete (RC columns in practice may weaken the seismic behaviors of columns. Its effects on RC columns should be well understood. This paper aims to investigate the influences of deteriorated segment on the seismic behaviors of partially deteriorated RC columns and attempts to recover the seismic behaviors of partially deteriorated columns with Carbon Fiber Reinforced Polymer (CFRP composites. A finite element analysis was carried out to simulate the seismic behaviors of CFRP-confined partially deteriorated RC columns. The numerical results were verified by the laboratory tests of six specimens. Based on the finite element results, the failure location of partially deteriorated columns in an earthquake was predicted, and the effectiveness of CFRP retrofitted on partially deteriorated columns was evaluated.

  20. FEM investigation of concrete silos damaged and reinforced externally with CFRP

    Science.gov (United States)

    Kermiche, Sihem; Boussaid, Ouzine; Redjel, Bachir; Amirat, Abdelaziz

    2018-03-01

    The present work investigates the reinforcement of concrete wheat-grain silos under initial damage. The reinforcement is achieved by mounting bands of carbon fiber reinforced polymer (CFRP) on the external walls of the silo. 4 modes of reinforcement are adapted according to the width of the band, the gap between two bands, the height of reinforcement and the number of layers achieved through banding. Analytical analyses were conducted using the Reimbert method and the Eurocode 1 Part 4 method, as well as numerically through the finite element software Abaqus. Results show that the normal pressure reaches a peak value when approaching the silo hopper. Initial damage in a concrete silo was first determined using a 3D geometrical model, while the damage analyses were conducted to optimize the CFRP reinforcement by mounting 2 CFRP bands close together above and below the cylinder-hopper joint. Increasing the number of banding layers could produce better performance as the damage was slightly decreased from 0.161 to 0.152 for 1 and 4 layers respectively.

  1. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  2. Smart CFRP systems for the controlled retrofitting of reinforced concrete members

    Science.gov (United States)

    Schaller, M.-B.; Käseberg, S.; Kuhne, M.

    2010-09-01

    During the last ten years an increasing amount of Carbon Fiber Reinforced Polymer (CFRP) applications to rehabilitate damaged concrete elements was observed. Thereby some important disadvantages of the brittle materials must be considered, for example the low ductility of the bond between CFRP and concrete and brittle failure of FRP. With embedded sensor systems it is possible to measure crack propagation and strains. In this paper a sensor based CFRP system will be presented, that can be used for strengthening and measuring. The used optical fibers with Fiber Bragg Gratings (FBG) have a large number of advantages in opposite to electrical measuring methods. Examples are small dimensions, low weight as well as high static and dynamic resolution of measured values. The main problem during the investigations was the fixing of the glass fiber and the small FBG at the designated position. In this paper the possibility of setting the glass fiber with embroidery at the reinforcing fiber material will be presented. On the basis of four point bending tests on beams (dimensions of 700 x 150 x 150 mm) and tests on wrapped columns the potential of the Smart CFRP system is introduced.

  3. Mechanical and Electrochemical Performance of Carbon Fiber Reinforced Polymer in Oxygen Evolution Environment

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-11-01

    Full Text Available Carbon fiber-reinforced polymer (CFRP is recognized as a promising anode material to prevent steel corrosion in reinforced concrete. However, the electrochemical performance of CFRP itself is unclear. This paper focuses on the understanding of electrochemical and mechanical properties of CFRP in an oxygen evolution environment by conducting accelerated polarization tests. Different amounts of current density were applied in polarization tests with various test durations, and feeding voltage and potential were measured. Afterwards, tensile tests were carried out to investigate the failure modes for the post-polarization CFRP specimens. Results show that CFRP specimens had two typical tensile-failure modes and had a stable anodic performance in an oxygen evolution environment. As such, CFRP can be potentially used as an anode material for impressed current cathodic protection (ICCP of reinforced concrete structures, besides the fact that CFRP can strengthen the structural properties of reinforced concrete.

  4. Flexural Behavior of Concrete Beam Strengthened by Near-Surface Mounted CFRP Reinforcement Using Equivalent Section Model

    Directory of Open Access Journals (Sweden)

    Woo-tai Jung

    2017-01-01

    Full Text Available FRP (fiber reinforced polymer has found wide applications as an alternative to steel rebar not only for the repair and strengthening of existing structures but also for the erection of new structures. Near-surface mounted (NSM strengthening was introduced as an alternative of externally bonded reinforcement (EBR but this method also experiences early bond failure, which stresses the importance of predicting accurately the bond failure behavior in order to evaluate precisely the performance of NSM reinforcement. This study proposes the equivalent section model assuming monolithic behavior of the filler and CFRP reinforcement. This equivalent section model enables establishing a bond failure model applicable independently of the sectional shape of the CFRP reinforcement. This so-derived bond failure model is then validated experimentally by means of beams flexure-strengthened by NSM CFRP reinforcements with various cross-sections. Finally, analytical analysis applying the bond failure model considering the equivalent section and defined failure criteria is performed. The results show the accuracy of the prediction of the failure mode as well as the accurate prediction of the experimental results regardless of the sectional shape of the CFRP reinforcement.

  5. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  6. Finite Element Simulation of GFRP Reinforced Concrete Beam Externally Strengthened With CFRP Plates

    Directory of Open Access Journals (Sweden)

    Salleh Norhafizah

    2017-01-01

    Full Text Available The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress–strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.

  7. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  8. Finite element analysis of CFRP reinforced silo structure design method

    Science.gov (United States)

    Yuan, Long; Xu, Xinsheng

    2017-11-01

    Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.

  9. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2014-07-01

    Full Text Available An investigation was performed by using carbon fiber-reinforced polymer (CFRP as the anode material in the impressed current cathodic protection (ICCP system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  10. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material.

    Science.gov (United States)

    Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng

    2014-07-24

    An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  11. Repair of reinforced concrete beams using carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Karzad Abdul Saboor

    2017-01-01

    Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.

  12. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    N. Askarizadeh

    2017-12-01

    Full Text Available Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, passage of time, damaging environmental factors, patch of rebar in plastic hinges and in some cases failures and weaknesses caused by previous earthquakes or explosion loads. Recently, Fiber Reinforced Polymer (FRP components have been extensively and successfully used in seismic improvement. This study reinforces FRP reinforced concrete shear walls and steel strips. CFRP and steel strips are evaluated by different yield and ultimate strength. Numerical and experimental studies are done on walls with scale 1/2. These walls are exposed to cyclic loading. Hysteresis curves of force, drift and strain of FRP strips are reviewed in order to compare results of numerical work and laboratory results. Both numerical and laboratory results show that CFRP and steel strips increase resistance, capacity and ductility of the structure.

  13. Prediction of Bending Stiffness for Laminated CFRP and Its Application to Manufacturing of Roof Reinforcement

    Directory of Open Access Journals (Sweden)

    Jeong-Min Lee

    2014-05-01

    Full Text Available Recently, carbon fiber reinforced plastic (CFRP with high strength, stiffness, and lightweight is used widely in number of composite applications such as commercial aircraft, transportation, machinery, and sports equipment. Especially, it is necessary to apply lightweight materials to car components for reducing energy consumption and CO2 emissions. In case of car roof reinforcement manufactured using CFRP, superior strength and bending stiffness are required for the safety of drivers in the rollover accident. Mechanical properties of CFRP laminates are generally dependent on the stacking sequence. Therefore, research of stacking sequence using CFRP prepreg is required for superior bending stiffness. In this study, the 3-point bending FE-analysis for predicting the bending stiffness of CFRP roof reinforcement was carried out on three cases [0PW∘]5, [0PW°/0UD°/0-PW°]s, and [0UD∘]5. Material properties that the six independent elastic constants are E11, E22, G12, G23, G13, and ν12 used in FE-analysis were evaluated by the tensile test in 0°, 45°, and 90° directions. Through structural strength analysis of the automobile roof reinforcement fabricated using CFRP, the effect of the stacking sequence on the bending stiffness was evaluated and validated through experiments under the same conditions as the analysis.

  14. structural behavior of fibrous reinforced concrete hollowcore one-way slabs strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    wassif khudair majeed

    2016-02-01

    Full Text Available Abstract A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self weight of the construction . The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs  reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRP This study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers ( , and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to ( 96.2% , as has been observed decrease in deflection value of models after strengthening by (CFRP. It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP .

  15. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan; Lubineau, Gilles; Alfano, Marco Francesco; Buttner, Ulrich

    2016-01-01

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a

  16. Structural Behavior of Fibrous Reinforced Concrete Hollow Core One-Way Slabs Strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    وصيف مجيد

    2016-02-01

    Full Text Available A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self-weight of the construction. The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRPThis study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers (ا, and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to (96.2%, as has been observed decrease in deflection value of models after strengthening by (CFRP.It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP.

  17. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    Directory of Open Access Journals (Sweden)

    Ji-Hua Zhu

    2016-02-01

    Full Text Available The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  18. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    Science.gov (United States)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  19. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer

    International Nuclear Information System (INIS)

    Akbarzadeh, H.; Maghsoudi, A.A.

    2010-01-01

    Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment-curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress-strain curves of concrete, steel and FRP were considered as integrity model. Stress-strain model of concrete is extended from Oztekin et al.'s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.

  20. Experimental study on behavior of steel channel strengthened with CFRP

    Directory of Open Access Journals (Sweden)

    Tang Hongyuan

    2017-11-01

    Full Text Available This paper describes the behaviour of axially loaded long and eccentrically loaded short thin-walled steel channels, strengthened with transversely bonded carbon fibre reinforced polymer (CFRP sheets. Seven long members, each 1400 mm long, and seven short members, each 750mmlong, were tested. The main parameters were the number of CFRP plies (one or two and the clear spacing between the CFRP strips (50, 100 or 150 mm. The effect of CFRP sheet layer and clear spacing was studied. All the ultimate load capacity of the reinforced members was improved in different extent. A maximum strength gain of 9.13% was achieved for long members with two CFRP layers and 50 mm spacing of CFRP strips. The experimental results show that the global buckling happens to all the long specimens. For short members, the maximum strength gain of 12.1% was achieved with two CFRP layers and 50 mm spacing of CFRP strips. With the exception of the most heavily reinforced (2 plies at 50 and 100 mm, local buckling was observed prior to global buckling for short members, which was completely opposite of the control specimens. Meanwhile, when the clear spacing of CFRP strips is greater than theweb height of steel channel, the transversely bonded CFRP does not have a significant improvement in buckling load capacity of the short- and long-channel components. While the clear spacing is less than the web height, the more number of CFRP layer, the more enhancement of buckling load capacity.

  1. Laser surface treatment for enhanced titanium to carbon fiber-reinforced polymer adhesion

    NARCIS (Netherlands)

    Palavra, Armin; Coelho, Bruno N.; de Hosson, Jeff Th. M.; Lima, Milton S. F.; Carvalho, Sheila M.; Costa, Adilson R.

    The adhesion between carbon fiber-reinforced polymer (CFRP) and titanium parts can be improved by laser surface texturing before gluing them together. Here, a pulsed Nd:YAG laser was employed before bonding of the textured surfaces using an epoxy paste adhesive. To investigate the influence of the

  2. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    International Nuclear Information System (INIS)

    Bang, Hyejin; Cho, Chongdu

    2017-01-01

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  3. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)

    2017-08-15

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  4. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    Science.gov (United States)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  5. Hysteretic Behavior of Tubular Steel Braces Having Carbon Fiber Reinforced Polymer Reinforcement Around End Net Sections

    Directory of Open Access Journals (Sweden)

    Cem Haydaroğlu

    2015-12-01

    Full Text Available This study presents an experimental investigation into the seismic retrofit of tubular steel braces using carbon fiber reinforced polymer (CFRP members. CFRP retrofitting of net sections for compact tubes are proposed for delaying potential local net section failure. A total of almost full-scale three (TB-1, TB-2, and TB-3 compact steel tubular specimens were designed per AISC specifications, constructed, and cyclically tested to fracture. Retrofitted braces, when compared to the reference specimen, developed fuller hysteretic curves. Increase in cumulative hysteretic energy dissipation and the elongation in fracture life in the specimen retrofitted with CFRP plates and CFRP sheet wraps at net sections are observed during testing. This resulted in a maximum of 82.5% more dissipated energy for compact tube specimens. Also, this retrofit provided a longer experimental fracture life (maximum 59% more. Due to fracture initiation during the last cycles, significant reductions in strength and stiffness have been obtained. No significant change (maximum 10% in the brace stiffness was observed, which could be desirable in seismic retrofit applications. Pushover analysis per FEMA 356 for the bare specimen shows that FEMA does not represent actual brace behavior in the compression side although pushover and experimental results are in good agreement in the tension side.

  6. Bond Behavior of Wet-Bonded Carbon Fiber-Reinforced Polymer-Concrete Interface Subjected to Moisture

    OpenAIRE

    Yiyan Lu; Tao Zhu; Shan Li; Zhenzhen Liu

    2018-01-01

    The use of carbon fiber-reinforced polymer (CFRP) composite materials to strengthen concrete structures has become popular in coastal regions with high humidity levels. However, many concrete structures in these places remain wet as a result of tides and wave-splashing, so they cannot be completely dried before repair. Therefore, it is vital to investigate the effects of moisture on the initial and long-term bond behavior between CFRP and wet concrete. This research assesses the effects of mo...

  7. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  8. Numerical simulation of CFRP-repaired reinforced concrete columns.

    Science.gov (United States)

    2014-07-01

    The overarching goal of this study was to investigate the influence of repair to individual reinforced concrete bridge columns on the : post-repair seismic performance of the bridge system. A method was developed to rapidly repair an earthquake-damag...

  9. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  10. Short-Term Creep Behavior of CFRP-Reinforced Wood Composites Subjected to Cyclic Loading at Different Climate Conditions

    OpenAIRE

    Xiaojun Yang; Meng Gong; Ying Hei Chui

    2014-01-01

    Carbon fiber reinforced plastic (CFRP) was used to adhesively reinforce Chinese fir (Cunninghamia lanceolata) wood specimens. This study examined the flexural static and creep performances of CFPR-reinforced wood composites that had been subjected to changes in moisture and stress levels. The major findings were as follows: 1) the cyclic creep was slightly lower for those specimens subjected to the cyclic stress condition than for those subjected to a constant stress level due to the deflecti...

  11. Analytical and Experimental Study of Residual Stresses in CFRP

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available Fiber Bragg Grating sensors (FBGs have been utilized in various engineering and photoelectric fields because of their good environment tolerance. In this research, residual stresses of carbon fiber reinforced polymer composites (CFRP were studied using both experimental and analytical approach. The FBGs were embedded inside middle layers of CFRP to study the formation of residual stress during curing process. Finite element analysis was performed using ABAQUS software to simulate the CFRP curing process. Both experimental and simulation results showed that the residual stress appeared during cooling process and the residual stresses could be released when the CFRP was machined to a different shape.

  12. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  13. Full Scale Reinforced Concrete Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Directory of Open Access Journals (Sweden)

    Alessandro De Vita

    2017-07-01

    Full Text Available This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy in order to investigate the seismic performance of reinforced concrete (RC beam-column joints strengthened with steel reinforced polymer (SRP systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP, and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by carbon fiber-reinforced polymer (CFRP systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems, the performances and the failure modes experienced in the several cases studied are provided.

  14. Assessment of adhesive setting time in reinforced concrete beams strengthened with carbon fibre reinforced polymer laminates

    International Nuclear Information System (INIS)

    Fayyadh, Moatasem M.; Abdul Razak, H.

    2012-01-01

    Highlights: ► This study investigated the effect of adhesive setting time on the modal parameters. ► Modal parameters recommend the 18th day as the maturity age of the adhesive. ► Static data recommend 7th day as the maturity age of the adhesive. ► Setting time affects the modal parameters as tool for assessment repaired structures. ► Carrying the modal parameters after 1st day results in 55% loss of the actual improvement. -- Abstract: The strengthened effectiveness and the performance capacity of repaired Reinforced Concrete (RC) structures with Carbon Fibre Reinforced Polymer (CFRP) sheets is dependent on the properties of the adhesive interface layer. Adhesive material requires a specific setting time to achieve the maximum design capacity. Adhesive producer provides technical data which demonstrates the increase with time of the capacity, up to the maximum. The aim of this study is to investigate the effect of the adhesive setting time on the modal parameters as an indication of the effectiveness of CFRP on repaired RC beams. Firstly, datum modal parameters were determined on the undamaged beam and subsequently the parameters were obtained when damaged was induced on the RC beam by application of load until the appearance of the first crack. Finally, the RC beam is repaired with externally bonded CFRP sheets, and modal parameters are once again applied after 0.5, 1, 2, 3, 5, 8, 11, 15 and 18 days. The comparison is made with the data based on half day results in order to monitor the change in the modal parameters corresponding to the adhesive setting time. The modal parameters where used as indicators for the effectiveness of CFRP are affected by the adhesive time as shown in this study. Results are compared with the adhesive technical data provided by the adhesive producer.

  15. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  16. Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications

    Directory of Open Access Journals (Sweden)

    N. G. Ozdemir

    2016-05-01

    Full Text Available This study investigates the effects of nano carboxylic acrylonitrile butadiene rubber (CNBR-NP and nano acrylonitrile butadiene rubber (NBR-NP on the interlaminar shear strength and fracture toughness of carbon fibre reinforced polymer composites (CFRP with dicyandiamide-cured epoxy matrix. The results show that nano-size dispersion of rubber significantly improved the Mode I delamination fracture toughness (GIC of the CFRP by 250% and its Mode II delamination fracture toughness (GIIC by 80% with the addition of 20 phr of CNBR-NP. For the NBR-NP system, the GIC and GIIC delamination fracture toughness of the CFRP were increased by 200 and 80% respectively with the addition of 20 phr (parts per hundred rubber of nano rubber to the matrix. Scanning electron microscopy (SEM images of the fracture surface revealed that the toughening was mainly achieved by debonding of the nano rubber, crack path deflection and fibre bridging.

  17. Analytical Study on the Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates

    International Nuclear Information System (INIS)

    Woo, S. K.; Song, Y. C.; Lee, H. P.; Byun, K. J.

    2007-01-01

    This study aims to predict the behavior of concrete structures strengthened with prestressed CFRP plates with more reliability, and then develop a nonlinear structural analysis model that can be applied more effectively in reinforcement designs, after examining the behavior characteristics of CFRP plates and epoxy, and the behavior of the boundary layer between CFRP plates and concrete

  18. Predicting fatigue service life extension of RC bridges with externally bonded CFRP repairs : [project brief].

    Science.gov (United States)

    2015-12-01

    Externally bonded carbon fiber reinforced polymer composites (CFRPs) are increasingly used to : repair concrete bridges. CFRP design techniques are a proven approach for enhancing the strength : of existing structures. This project investigated the d...

  19. Strengthening of defected beam–column joints using CFRP

    Directory of Open Access Journals (Sweden)

    Mohamed H. Mahmoud

    2014-01-01

    Full Text Available This paper presents an experimental study for the structural performance of reinforced concrete (RC exterior beam–column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP. The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam–column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  20. Strengthening of defected beam-column joints using CFRP.

    Science.gov (United States)

    Mahmoud, Mohamed H; Afefy, Hamdy M; Kassem, Nesreen M; Fawzy, Tarek M

    2014-01-01

    This paper presents an experimental study for the structural performance of reinforced concrete (RC) exterior beam-column joints rehabilitated using carbon-fiber-reinforced polymer (CFRP). The present experimental program consists of testing 10 half-scale specimens divided into three groups covering three possible defects in addition to an adequately detailed control specimen. The considered defects include the absence of the transverse reinforcement within the joint core, insufficient bond length for the beam main reinforcement and inadequate spliced implanted column on the joint. Three different strengthening schemes were used to rehabilitate the defected beam-column joints including externally bonded CFRP strips and sheets in addition to near surface mounted (NSM) CFRP strips. The failure criteria including ultimate capacity, mode of failure, initial stiffness, ductility and the developed ultimate strain in the reinforcing steel and CFRP were considered and compared for each group for the control and the CFRP-strengthened specimens. The test results showed that the proposed CFRP strengthening configurations represented the best choice for strengthening the first two defects from the viewpoint of the studied failure criteria. On the other hand, the results of the third group showed that strengthening the joint using NSM strip technique enabled the specimen to outperform the structural performance of the control specimen while strengthening the joints using externally bonded CFRP strips and sheets failed to restore the strengthened joints capacity.

  1. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  2. TEA CO2 laser machining of CFRP composite

    OpenAIRE

    Salama, Adel; Li, Lin; Mativenga, Paul; Whitehead, David

    2016-01-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO...

  3. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

    Science.gov (United States)

    Shishevan, Farzin Azimpour; Akbulut, Hamid; Mohtadi-Bonab, M. A.

    2017-06-01

    In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

  4. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  5. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    International Nuclear Information System (INIS)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan

    2014-01-01

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components

  6. Scanning tone burst eddy-current thermography (S-TBET) for NDT of carbon fiber reinforced plastic (CFRP) components

    Energy Technology Data Exchange (ETDEWEB)

    Libin, M. N.; Maxfield, B. W.; Balasubramanian, Krishnan [Centre for Nondestructive Evaluation, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-02-18

    Tone Burst Eddy Current technique uses eddy current to apply transient heating inside a component and uses a conventional IR camera for visualization of the response to the transient heating. This technique has been earliest demonstrated for metallic components made of AL, Steel, Stainless Steel, etc., and for detection of cracks, corrosion and adhesive dis-bonds. Although, not nearly as conducting as metals, the Carbon Fibre Reinforced Plastic (CFRP) material absorbs measurable electromagnetic radiation in the frequency range above 10 kHz. When the surface temperature is observed on the surface that is being heated (defined as the surface just beneath and slightly to one side of the heating coil), the surface temperature increases with increasing frequency because the internal heating increases with frequency. A 2-D anisotropic transient Eddy current heating and thermal conduction model has been developed that provides a reasonable description of the processes described above. The inherent anisotropy of CFRP laminates is included in this model by calculating the heating due to three superimposed, tightly coupled isotropic layers having a specified ply-layup. The experimental apparatus consists of an induction heating coil and an IR camera with low NETD and high frame rates. The coil is moved over the sample using a stepper motor controlled manipulator. The IR data recording is synchronized with the motion control to provide a movie of the surface temperature over time. Several components were evaluated for detection of impact damage, location of stiffeners, etc. on CFRP components.

  7. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  8. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  9. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, Eric Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-26

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations and details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.

  10. Cranioplasty with individual carbon fibre reinforced polymere (CFRP) medical grade implants based on CAD/CAM technique.

    Science.gov (United States)

    Saringer, W; Nöbauer-Huhmann, I; Knosp, E

    2002-11-01

    The authors present a new method for the reconstruction of large or complex-formed cranial bone defects using prefabricated, computer-generated, individual CFRP (carbon fibre reinforced plastics) medical grade implants. CFRP is a composite material containing carbon fibres embedded in an epoxy resin matrix. It is radiolucent, heat-resistant, extremely strong and light (its weight is 20% that of steel), has a modulus of elasticity close to that of bone, and an established biocompatibility. The utilisation of a CAD/CAM (computer aided design/computer aided manufacture) technique based on digitised computed tomography (CT) data, with stereolithographic modelling as intermediate step, enabled the production of individual, prefabricated CFRP medical grade implants with an arithmetical maximum aberration in extension of less than +/-0.25 mm. Between 1995 and February 2002, 29 patients (15 men and 14 women; mean age, 39.9 years; range, 16 to 67 years) underwent cranioplasty with CFRP medical grade implants at the neurosurgical department of the University of Vienna. Twenty-four patients were repaired secondarily (delayed cranioplasty) while 5 were repaired immediately following craniectomy (single stage cranioplasty). All cases were assessed for the accuracy of the intra-operative fit of the implant, restoration of the natural skull contour and aesthetics and adverse symptoms. The intra-operative fit was excellent in 93.1% and good in 6.9% of the implants. In two cases minor adjustments of the bony margin of the defect were required. The operating time for insertion ranged from 16 to 38 minutes, median 21 minutes. Postoperatively, 86.2% of the patients graded the restoration of their natural skull shape and symmetry as excellent while 13.8% termed it good. In one patient a non-space occupying subdural hygroma was found at the follow-up, but required no intervention. Two patients experienced atrophy of the frontal portion of the temporal muscle while one patient had a

  11. The optimization study on the tool wear of carbide cutting tool during milling Carbon Fibre Reinforced (CFRP) using Response Surface Methodology (RSM)

    Science.gov (United States)

    Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.

    2018-01-01

    Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.

  12. RETROVIT KOLOM PENDEK BETON BERTULANG PERSEGI DENGAN PERKUATAN EKSTERNAL CARBON FIBER-REINFORCED POLYMER DI BAWAH PENGARUH PEMBEBANAN SIKLIK

    Directory of Open Access Journals (Sweden)

    Agus Sulistiawan

    2014-01-01

    Full Text Available The retrofit of non-slender square concrete column with an external strength­ener of carbon fiber-reinforced polymer (CFRP under the influence of cyclic load. The purpose of this study is to know the increase of strength and ductility of a column structure element that has an initial damage, then it is fixed and strengthened by CFRP external strengthening. The column structure element is tested by giving a constant axial load and varying the cyclic load using a displacement control. In this research, two specimens t are used, C-1 column (original column and C-1RC column (retrofit column. The results of the study show that (1 the effectiveness of the C-1CR’s restraint and moment of force are increased by 1.58 times and 52.78% compared to the C-1’s ones, and (2 the installation of CFRP reinforcement increases the strength in accepting lateral load by 52.15% and decreases of ductility by 52.12%.   Tujuan penelitian ini mengetahui peningkatan kekuatan dan daktilitas ele­men struktur kolom yang mengalami kerusakan awal, kemudian diperbaiki, dan diperkuat dengan perkuatan eksternal carbon fiber-reinforced polymer (CFRP. Pengujian ter­hadap elemen struktur kolom dilakukan dengan memberikan beban aksial yang konstan dan memvariasikan beban siklik dengan kontrol perpindahan. Dalam penelitian ini digunakan dua spesimen yaitu kolom C-1 (kolom original dan kolom C-1RC (kolom retrofit. Hasil penelitian menunjukkan (1 efektifitas pengekangan C-1CR meningkat 1,58 kali dan kekuatan terhadap momen meningkat sebesar 52,78% dibanding kolom C-1, dan (2  pemasangan perkuatan CFRP memberikan peningkatan kekuatan dalam menerima beban lateral sebesar 52,15% dan penurunan daktilitas sebesar -52,12%.

  13. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  14. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  15. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester.

    Science.gov (United States)

    Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun

    2018-05-16

    There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.

  16. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Elisa Borowski

    2015-06-01

    Full Text Available Carbon fiber reinforced polymer (CFRP laminates exhibit limited fracture toughness due to characteristic interlaminar fiber-matrix cracking and delamination. In this article, we demonstrate that the fracture toughness of CFRP laminates can be improved by the addition of multi-walled carbon nanotubes (MWCNTs. Experimental investigations and numerical modeling were performed to determine the effects of using MWCNTs in CFRP laminates. The CFRP specimens were produced using an epoxy nanocomposite matrix reinforced with carboxyl functionalized multi-walled carbon nanotubes (COOH–MWCNTs. Four MWCNTs contents of 0.0%, 0.5%, 1.0%, and 1.5% per weight of the epoxy resin/hardener mixture were examined. Double cantilever beam (DCB tests were performed to determine the mode I interlaminar fracture toughness of the unidirectional CFRP composites. This composite material property was quantified using the critical energy release rate, GIC. The experimental results show a 25%, 20%, and 17% increase in the maximum interlaminar fracture toughness of the CFRP composites with the addition of 0.5, 1.0, and 1.5 wt% MWCNTs, respectively. Microstructural investigations using Fourier transform infrared (FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS verify that chemical reactions took place between the COOH–MWCNTs and the epoxy resin, supporting the improvements experimentally observed in the interlaminar fracture toughness of the CFRP specimens containing MWCNTs. Finite element (FE simulations show good agreement with the experimental results and confirm the significant effect of MWCNTs on the interlaminar fracture toughness of CFRP.

  17. Modeling and optimization for rotary ultrasonic face milling of carbon fiber reinforced polymers

    Directory of Open Access Journals (Sweden)

    Amin Muhammad

    2017-01-01

    Full Text Available Carbon fiber reinforced polymers (CFRP have got paramount importance in aerospace, and other industries due to their attractive properties of high specific strength, high specific stiffness, high corrosion resistance, and low thermal expansion. However, due to their properties like heterogeneity, anisotropy, and low heat dissipation, the issues in machining like excessive cutting forces and high surface roughness have found. In this research, a cutting force model has developed for rotary ultrasonic face milling of CFRP composites. The experimental machining was carried out on CFRP-T700. From the analysis, it has found that experimental and simulation values of cutting forces have variation/ error below than 10% in the most of the groups of parameters. However, the error found higher in few cases, due to heterogeneity, anisotropy and some other properties of these materials. The formula for contact area of the abrasive core tool improved and an overlapping cutting allowance has applied the first time. The optimal combination of parameters has investigated for cutting force and surface roughness. The developed cutting force model then further validated with pilot experiments and found the same results. So, the model developed in this paper is robust and can be applied to predict cutting force and optimization.

  18. Effects of machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites

    Science.gov (United States)

    Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.

    2017-10-01

    This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.

  19. Bamboo reinforced polymer composite - A comprehensive review

    Science.gov (United States)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  20. Full Scale RC Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Science.gov (United States)

    De Vita, Alessandro; Napoli, Annalisa; Realfonzo, Roberto

    2017-07-01

    This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy) in order to investigate the seismic performance of RC beam-column joints strengthened with Steel Reinforced Polymer (SRP) systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by Carbon Fiber Reinforced Polymer (CFRP) systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems), the performances and the failure modes experienced in the several cases studied are provided.

  1. The Effect of CFRP Length on the Failure Mode of Strengthened Concrete Beams

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2014-06-01

    Full Text Available This paper reports the effects of carbon fiber-reinforced polymer (CFRP length on the failure process, pattern and crack propagation for a strengthened concrete beam with an initial notch. The experiments measuring load-bearing capacity for concrete beams with various CFRP lengths have been performed, wherein the crack opening displacements (COD at the initial notch are also measured. The application of CFRP can significantly improve the load-bearing capacity, and the failure modes seem different with various CFRP lengths. The stress profiles in the concrete material around the crack tip, at the end of CFRP and at the interface between the concrete and CFRP are then calculated using the finite element method. The experiment measurements are validated by theoretical derivation and also support the finite element analysis. The results show that CFRP can significantly increase the ultimate load of the beam, while such an increase stops as the length reaches 0.15 m. It is also concluded that the CFRP length can influence the stress distribution at three critical stress regions for strengthened concrete beams. However, the optimum CFRP lengths vary with different critical stress regions. For the region around the crack tip, it is 0.15 m; for the region at the interface it is 0.25 m, and for the region at the end of CFRP, it is 0.30 m. In conclusion, the optimum CFRP length in this work is 0.30 m, at which CFRP strengthening is fully functioning, which thus provides a good reference for the retrofitting of buildings.

  2. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design

    International Nuclear Information System (INIS)

    Firmo, J.P.; Arruda, M.R.T.; Correia, J.R.; Tiago, C.

    2015-01-01

    Highlights: • The mechanical behaviour of partially bonded CFRP strengthened beams was modelled. • Two dimensional non-linear finite element models were developed. • Partially bonded beams can present similar flexural strength to fully bonded ones. • Relations between the bonded length and the strength reduction were proposed. • The proposed relations were used for the design of fire protection systems. - Abstract: Recent fire resistance tests on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymers (CFRP) laminates showed that it is possible to attain considerable fire endurance provided that thermal insulation is applied at the anchorage zones of the strengthening system. With such protection, although the CFRP laminate prematurely debonds in the central part of the beam, it transforms into a cable fixed at the extremities until one of the anchorage zones loses its bond strength. The main objective of this paper is to propose a simplified methodology for the design of fire protection systems for CFRP strengthened-RC beams, which is based on applying thicker insulation at the anchorage zones (promoting the above mentioned “cable behaviour”) and a thinner one at the current zone (avoiding tensile rupture of the carbon fibres). As a first step towards the validation of this methodology, finite element (FE) models were developed to simulate the flexural behaviour at ambient temperature of full-scale RC beams strengthened with CFRP laminates according to the externally bonded reinforcement (EBR) and near surface mounted (NSM) techniques, in both cases fully or partially bonded (the latter simulating the cable). The FE models were calibrated with results of 4-point bending tests on small-scale beams and then extended for different beam geometries, with spans (L) varying from 2 m to 5 m, in which the influence of the CFRP bonded length (l b ) and the loading type (point or uniformly distributed) on the strength reduction was

  3. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Tang, Wenliang; Chen, Yan; Yang, Haojun; Wang, Hua; Yao, Qiwei

    2018-03-01

    Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.

  4. Experimental Study of Concrete-filled Carbon Fiber Reinforced Polymer Tube with Internal Reinforcement under Axially Loading

    Directory of Open Access Journals (Sweden)

    Wenbin SUN

    2014-12-01

    Full Text Available Comparing with the circular concrete columns confined with fiber reinforced polymer (FRP wrap or tube, the rectilinear confined columns were reported much less. Due to the non-uniform distribution of confining pressure in the rectilinear confined columns, the FRP confinement effectiveness was significant reduced. This paper presents findings of an experimental program where nine prefabricated rectangular cross-section CFRP tubes with CFRP integrated crossties filled concrete to form concrete-filled FRP tube (CFFT short columns and three plain concrete control specimens were tested. All specimens were axially loaded until failure. The rest results showed that the stress-strain curves of CFFTs consisted of two distinct branches, an ascending branch before the concrete peak stress was reaches and a second branch that terminated when the tube ruptured, and that the CFFTs with integrated crossties experienced most uniform confinement pressure distribution. Test research also found that the stress-strain curves of CFFTs indicated an increase in ductility. These demonstrate that this confinement system can produce higher lateral confinement stiffness. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6035

  5. Comparison Study of Axial Behavior of RPC-CFRP Short Columns

    Directory of Open Access Journals (Sweden)

    Taghreed Khaleefa Mohammed Ali

    2015-05-01

    Full Text Available In this paper, the axial behaviors of reactive powder     concrete (RPC short  columns confined with carbon fiber reinforced polymer (CFRP were   investigated. All the specimens have square cross section of 100 mm × 100   mm and length of 400 mm with aspect ratio 4. The experimental work consists   of three groups. The first group consists of six specimens of RPC with 2%  micro steel fiber, without ordinary reinforcing steel and confining by zero, one and two layer of CFRP respectively. The second group consists of six    specimens of RPC with 2% micro steel fiber and minimum ordinary reinforcing  steel and confining by zero, one and two layers of CFRP respectively. The third  group consists of four specimens of RPC without micro steel fiber and ordinary  reinforcing steel and confining by one and two layers of CFRP respectively.  Experimental data for strength, longitudinal and lateral displacement and  failure mode were obtained for each test. The toughness (area under the curve  for each test was obtained by using numerical integration. The RPC columns confined with CFRP showed stiffer behavior compared with RPC columns without CFRP. The ultimate load of the RPC columns with 2% micro steel  fiber + two layers of CFRP + minimum ordinary reinforcement were more than that of the RPC columns with 2% micro steel fiber + minimum ordinary   reinforcement and without CFRP by about 1.333.

  6. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  7. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  8. Femtosecond laser ablation of carbon reinforced polymers

    International Nuclear Information System (INIS)

    Moreno, P.; Mendez, C.; Garcia, A.; Arias, I.; Roso, L.

    2006-01-01

    Interaction of intense ultrashort laser pulses (120 fs at 795 nm) with polymer based composites has been investigated. We have found that carbon filled polymers exhibit different ultrafast ablation behaviour depending on whether the filling material is carbon black or carbon fiber and on the polymer matrix itself. The shape and dimensions of the filling material are responsible for some geometrical bad quality effects in the entrance and inner surfaces of drilled microholes. We give an explanation for these non-quality effects in terms of fundamentals of ultrafast ablation process, specifically threshold laser fluences and material removal paths. Since carbon fiber reinforced polymers seemed particularly concerned, this could prevent the use of ultrafast ablation for microprocessing purposes of some of these materials

  9. CFRP-Strengthening and Long-Term Performance of Fatigue Critical Welds of a Steel Box Girder

    Directory of Open Access Journals (Sweden)

    Roland E. Koller

    2014-02-01

    Full Text Available Empa’s research efforts in the 1990s provided evidence that a considerable increase of the fatigue strength of welded aluminum beams can be achieved by externally bonding pultruded carbon fiber reinforced polymer (CFRP laminates using rubber-toughened epoxies over the fatigue-weak welding zone on their tensile flange. The reinforcing effect obtained is determined by the stiffness of the unidirectional CFRP laminate which has twice the elastic modulus of aluminum. One can therefore easily follow that an unstressed CFRP laminate reinforcement of welded beams made of steel will not lead to a substantial increase in fatigue strength of the steel structure. This consideration led to the idea of prestressing an external reinforcement of the welded zone. The present investigation describes experimental studies to identify the adhesive system suitable for achieving high creep and fatigue strength of the prestressed CFRP patch. Experimental results (Wöhler-fields of shear-lap-specimens and welded steel beams reinforced with prestressed CFRP laminates are presented. The paper concludes by presenting a field application, the reinforcement of a steel pendulum by adhesively bonded prestressed CFRP laminates to the tensile flanges of the welded box girder. Inspections carried out periodically on this structure revealed neither prestress losses nor crack initiation after nine years of service.

  10. PENGGUNAAN CARBON FIBER-REINFORCED POLYMER SEBAGAI PERKUATAN KOLOM BETON BERTULANG AKIBAT BEBAN SIKLIK UNTUK MENINGKATKAN DAKTILITAS PERPINDAHAN STRUKTUR

    Directory of Open Access Journals (Sweden)

    Karmila Achmad

    2014-01-01

    Full Text Available The use of carbon fiber-reinforced polymer (CFRP as a concrete column re­inforcement in order to improve the structure displacement ductility caused by a cyclic load. The aim of this research is to improve the displacement ductility of a column specimen by giving CFRP strengthener (Carbon Fiber Reinforced Polymer. Two full-scale specimens are used, C-1 (original column and C-1C (column with CFRP strengthener 1 layer. The tests on C-1 and C-1C are respectively shown on the following results: Pmax is 278.9 kN and 432.2 kN, dmax is 53.24 mm and 96.46 mm, and Mmax is 328.04 kNm and 509.63 kNm. The displacement ductility of C-1 are 6.70, 6.11 and 5.44, and the displacement ductility of C-1C are 11.02, 12.75, and 11.89. The percentages of the increase of displacement ductility in column C-1C compared to C-1 are 64.48%, 108.74% and 118.68%  respectivelyfor plastic hinge zone, half high of the column effectiveness and as high as the column effectiveness.   Penelitian ini bertujuan untuk meningkatkan daktilitas perpindahan pada spe­simen kolom yang diberi perkuatan CFRP (Carbon Fiber Reinforced Polymer. Ada dua spesimen kolom skala penuh yang digunakan, yaitu C-1 (kolom original dan C-1C (kolom dengan perkuatan CFRP 1 lapis. Hasil penelitian untuk masing-masing C-1 dan C-1C adalah Pmax sebesar 278,9 kN dan 432,2 kN, dmax sebesar 53,24 mm dan 96,46 mm, serta Mmax sebesar 328,04 kNm dan 509,63 kNm. Hasil daktilitas perpindahan untuk C-1 adalah 6,70; 6,11 dan 5,44, sedang C-1C adalah 11,02; 12,75 dan 11,89. Peningkatan persentase daktilitas per­pindahan kolom C-1C terhadap C-1 adalah 64,48%, 108,74% dan 118,68% masing-masing untuk zona sendi plastis, setengah tinggi efektif kolom dan setinggi efektif kolom.

  11. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  12. The strength of compressed structures with CFRP materials reinforcement when exceeding the cross-section size

    Science.gov (United States)

    Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor

    2018-03-01

    The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.

  13. Flexural Behavior of Self-Compacting RC Continuous Beams Strengthened by CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Sabih Z. Al-Sarraf

    2018-01-01

    Full Text Available This search presented an experimental study of the flexural behavior of self-compacting reinforced concrete continuous beams externally strengthened by carbon fiber reinforced polymer (CFRP Sheets. The practical study contained eight self-compacting reinforced concrete continuous beams (with two span, each span had (1500 mm length and (150x250 mm cross sectional dimensions. Seven of these beams strengthened externally by CFRP sheets with and without external anchorage. The experimental variables included location of CFRP sheets and anchor type and location. The results, shows that the beams strengthened externally by CFRP sheets provided improvement in ultimate loads reached (60.71%. The usage of CFRP in the anchorage zone indicated an effective method in comparison to increasing the CFRP sheets lengths or extending them up to the support or under the loading points. Test results also showed that side strengthening provided an effective tool for increasing the load at the cracking stage and also the load capacity and reducing flexural crack widths.

  14. Stochastic finite element analysis of long-span bridges with CFRP ...

    Indian Academy of Sciences (India)

    Stochastic seismic analysis of long-span bridges with Carbon fibre reinforced polymer (CFRP) cables are presented in this study through combination of the advantages ... Gümüşhane University, Department of Civil Engineering, 29000, Gümüşhane, Turkey; Karadeniz Technical University, Department of Civil Engineering, ...

  15. Influence of temperature on concrete beams strengthened in flexure with CFRP

    NARCIS (Netherlands)

    Klamer, E.L.

    2009-01-01

    The increasingly faster changing demands to existing buildings and ongoing deterioration of buildings and infrastructure have increased the need to strengthen existing structures. One of developments during the last two decades is the use of externally bonded Carbon Fiber Reinforced Polymer (CFRP)

  16. A Numerical Investigation of CFRP-Steel Interfacial Failure with Material Point Method

    International Nuclear Information System (INIS)

    Shen Luming; Faleh, Haydar; Al-Mahaidi, Riadh

    2010-01-01

    The success of retrofitting steel structures by using the Carbon Fibre Reinforced Polymers (CFRP) significantly depends on the performance and integrity of CFRP-steel joint and the effectiveness of the adhesive used. Many of the previous numerical studies focused on the design and structural performance of the CFRP-steel system and neglected the mechanical responses of adhesive layer, which results in the lack of understanding in how the adhesive layer between the CFRP and steel performs during the loading and failure stages. Based on the recent observation on the failure of CFRP-steel bond in the double lap shear tests, a numerical approach is proposed in this study to simulate the delamination process of CFRP sheet from steel plate using the Material Point Method (MPM). In the proposed approach, an elastoplasticity model with a linear hardening and softening law is used to model the epoxy layer. The MPM, which does not employ fixed mesh-connectivity, is employed as a robust spatial discretization method to accommodate the multi-scale discontinuities involved in the CFRP-steel bond failure process. To demonstrate the potential of the proposed approach, a parametric study is conducted to investigate the effects of bond length and loading rates on the capacity and failure modes of CFRP-steel system. The evolution of the CFRP-steel bond failure and the distribution of stress and strain along bond length direction will be presented. The simulation results not only well match the available experimental data but also provide a better understanding on the physics behind the CFRP sheet delamination process.

  17. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled

    2017-02-16

    Techniques that monitor the change in the electrical properties of materials are promising for both non-destructive testing and structural health monitoring of carbon-fiber-reinforced polymers (CFRPs). However, achieving reliable monitoring using these techniques requires an in-depth understanding of the impedance response of these materials when subjected to an alternating electrical excitation, information that is only partially available in the literature. In this work, we investigate the electrical impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface ply and the probing depth for different CFRP configurations for more efficient electrical signal-based inspections. We also investigate the effect of the amplitude of the input signal.

  18. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    International Nuclear Information System (INIS)

    Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2014-01-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf) 3 ) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69–108%) to successfully mitigate against crack propagation within the composite microstructure. (paper)

  19. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    Science.gov (United States)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  20. Mechanical properties of carbon fibre-reinforced polymer/magnesium alloy hybrid laminates

    Science.gov (United States)

    Zhou, Pengpeng; Wu, Xuan; Pan, Yingcai; Tao, Ye; Wu, Guoqing; Huang, Zheng

    2018-04-01

    In this study, we prepared fibre metal laminates (FMLs) consisting of high-modulus carbon fibre-reinforced polymer (CFRP) prepregs and thin AZ31 alloy sheets by using hot-pressing technology. Tensile and low-velocity impact tests were performed to evaluate the mechanical properties and fracture behaviour of the magnesium alloy-based FMLs (Mg-FMLs) and to investigate the differences in the fracture behaviour between the Mg-FMLs and traditional Mg-FMLs. Results show that the Mg-FMLs exhibit higher specific tensile strength and specific tensile modulus than traditional Mg-FMLs and that the tensile behaviour of the Mg-FMLs is mainly governed by the CFRP because of the combination of high interlaminar shear properties and thin magnesium alloy layers. The Mg-FMLs exhibit excellent bending stiffness. Hence, no significant difference between the residual displacement d r and indentation depth d i , and the permanent deformation is mainly limited to a small zone surrounding the impact location after the impact tests.

  1. Optimal Electrode Selection for Electrical Resistance Tomography in Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi

    2017-01-01

    Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection. PMID:28772485

  2. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  3. TEA CO2 laser machining of CFRP composite

    Science.gov (United States)

    Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.

    2016-05-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.

  4. Damage in woven CFRP laminates under impact loading

    Science.gov (United States)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fibre-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution affects both in-service properties and performance of CFRP that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to dynamic bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection dynamic bending in impact tests carried out to obtain the force-time and absorbed energy profiles for CFRP laminates. Damage in the impacted laminates is analysed using optical microscopy. Numerical simulations are performed to study the deformation behaviour and damage in CFRP for cases of large-deflection bending based on three-dimensional finite-element models implemented in the commercial code Abaqus/Explicit. Multiple layers of bilinear cohesive-zone elements are employed to model the initiation and progression of inter-ply delamination observed in the microscopy studies. The obtained results of simulations show good agreement with experimental data.

  5. Investigation of nanoscale reinforcement into textile polymers

    Science.gov (United States)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  6. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  7. Effect of Temperature Variation on Bond Characteristics between CFRP and Steel Plate

    Directory of Open Access Journals (Sweden)

    Shan Li

    2016-01-01

    Full Text Available In recent years, application of carbon fiber reinforced polymer (CFRP composite materials in the strengthening of existing reinforced concrete structures has gained widespread attention, but the retrofitting of metallic buildings and bridges with CFRP is still in its early stages. In real life, these structures are possibly subjected to dry and hot climate. Therefore, it is necessary to understand the bond behavior between CFRP and steel at different temperatures. To examine the bond between CFRP and steel under hot climate, a total of twenty-one double strap joints divided into 7 groups were tested to failure at constant temperatures from 27°C to 120°C in this paper. The results showed that the joint failure mode changed from debonding along between steel and adhesive interface failure to debonding along between CFRP and adhesive interface failure as the temperature increased beyond the glass transition temperature (Tg of the adhesive. The load carrying capacity decreased significantly at temperatures approaching or exceeding Tg. The interfacial fracture energy showed a similar degradation trend. Analytical models of the ultimate bearing capacity, interfacial fracture energy, and bond-slip relationship of CFRP-steel interface at elevated temperatures were presented.

  8. Study on the Connecting Length of CFRP

    Science.gov (United States)

    Liu, Xiongfei; Li, Yue; Li, Zhanguo

    2018-05-01

    The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.

  9. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  10. Prestressing Concrete with CFRP Composites for Sustainability and Corrosion-Free Applications

    Directory of Open Access Journals (Sweden)

    Belarbi A.

    2018-01-01

    Full Text Available Advancement in material science has enabled the engineers to enhance the strength and long-term behavior of concrete structures. The conventional approach is to use steel for prestressed bridge girders. Despite having good ductility and strength, beams prestressed with steel are susceptible to corrosion when subjected to environmental exposure. The corrosion of the prestressing steel reduces load carrying capacity of the prestressed member and result in catastrophic failures. In the last decades, more durable composite materials such as Aramid Fiber Reinforced Polymer (AFRP, Glass Fiber Reinforced Polymer (GFRP and Carbon Fiber Reinforced Polymer (CFRP have been implemented in concrete structures as a solution to this problem. Among these materials, CFRP stands out as a primary prestressing reinforcement, which has the potential to replace steel and provide corrosion free prestressed bridge girders. Despite its promise, prestressing CFRP has not frequently been used for bridge construction worldwide. The major contributing factor to the lack of advancement of this promising technology in the United States (U.S. is the lack of comprehensive design specifications. Apart from a limited number of guides, manuals, and commentaries, there is currently no standard or comprehensive design guideline available to bridge engineers in the U.S. for the design of concrete structures prestressed with CFRP systems. The main goal is to develop design guidelines in AASHTO-LRFD format for concrete bridge girders with prestressing CFRP materials. The guidelines are intended to address the limitation in current AASHTO-LRFD Bridge Design Specifications which is applicable for prestressed bridge girders with steel strands. To accomplish this goal, some of the critical parameters that affect the design and long-term behavior of prestressed concrete bridge girders with prestressing CFRP systems are identified and included in the research work. This paper presents

  11. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method.

    Science.gov (United States)

    Wang, Dongyao; He, Xiaodong; Xu, Zhonghai; Jiao, Weicheng; Yang, Fan; Jiang, Long; Li, Linlin; Liu, Wenbo; Wang, Rongguo

    2017-02-20

    Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP) has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM) was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin's criteria a numerical model was further proposed in terms of the finite element method (FEM). A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP.

  12. The effect of CFRP on retrofitting of damaged HSRC beams using AE technique

    Science.gov (United States)

    Soffian Noor, M. S.; Noorsuhada, M. N.

    2017-12-01

    This paper presents the effect of carbon fibre reinforced polymer (CFRP) on retrofitted high strength reinforced concrete (HSRC) beams using acoustic emission (AE) technique. Two RC beam parameters were prepared. The first was the control beam which was undamaged HSRC beam. The second was the damaged HSRC beam retrofitted with CFRP on the soffit. The main objective of this study is to assess the crack modes of HSRC beams using AE signal strength. The relationship between signal strength, load and time were analysed and discussed. The crack pattern observed from the visual observation was also investigated. HSRC beam retrofitted with CFRP produced high signal strength compared to control beam. It demonstrates the effect of the AE signal strength for interpretation and prediction of failure modes that might occur in the beam specimens.

  13. CFRP materials reinforced with LCP fibres for applications in vehicle and aircraft engineering. Final report; Faserverbundkunststoffe mit einer LCP-Faserverstaerkung fuer Anwendungen im Fahrzeug- und Flugzeugbau. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-11

    CFRP materials reinforced with liquid crystalline polyester (LCP) fibres were produced and characterized with regard to their physical and mechanical characteristics. Compared with non-reinforced plastics, polypropylene/LCP fibre-UD laminates produced by filmstacking, epoxy resin/LCP fibre-UD laminates produced by spooling and epoxy resin composites with internal LCP fibre fleece had significantly higher strength and stiffness as well as high thermoforming resistance and waterproofness. [Deutsch] In diesem Forschungsvorhaben wurden Faserverbundkunststoffe mit einer Verstaerkungsfaser auf Basis eines thermotropen fluessigkristallinen Polyester [Liquid Crystalline Polyester, abgekuerzt LCP] hergestellt und bezueglich der physikalisch-mechanischen Eigenschaften charakterisiert. Die im `filmstacking`-Verfahren hergestellte Polypropylen/LCP-Faser-UD-Laminate und mittels Bewicklung gewonnene Epoxidharz/LCP-Faser-UD-Laminate sowie Epoxidharzverbunde mit eingearbeiteten LCP-Faservlies zeigen gegenueber den unverstaerkten Kunststoffmaterialien einen betraechtlichen Anstieg von Festigkeit und Steifigkeit. Die Faserverbunde weisen ausserdem eine hohe Waermeformbestaendigkeit und Wassersperrwirkung auf. (orig.)

  14. Study on shear strengthening of RC continuous T-beams using different layers of CFRP strips

    Energy Technology Data Exchange (ETDEWEB)

    Alferjani, M. B. S.; Samad, A. A. Abdul; Mohamad, Noridah [Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Elrawaff, Blkasem S.; Elzaroug, Omer [Faculty of Civil Engineering Omar Al Mukhtar University, Bayda, Libya, Africa (Libya)

    2015-05-15

    Carbon fiber reinforced polymer (CFRP) laminates are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. However, this paper presents the results of an experimental investigation for enhancing the shear capacity of reinforced concrete (RC) continuous T- beams using different layers of CFRP wrapping schemes. A total of three concrete beams were tested and various sheet configurations and layouts were studied to determine their effects on ultimate shear strength and shear capacity of the beams. One beam was kept as control beams, while other beams were strengthened with externally bonded CFRP strips with three side bonding and one or two layers of CFRP strips. From the test results, it was found that all schemes were found to be effective in enhancing the shear strength of RC beams. It was observed that the strength increases with the number of sheet layers provided the most effective strengthening for RC continuous T- beam. Beam strengthened using this scheme showed 23.21% increase in shear capacity as compared to the control beam. Two prediction models available in literature were used for computing the contribution of CFRP strips and compared with the experimental results.

  15. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  16. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  17. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  18. Short and long term behaviour of externally bonded fibre reinforced polymer laminates with bio-based resins for flexural strengthening of concrete beams

    Science.gov (United States)

    McSwiggan, Ciaran

    The use of bio-based resins in composites for construction is emerging as a way to reduce of embodied energy produced by a structural system. In this study, two types of bio-based resins were explored: an epoxidized pine oil resin blend (EP) and a furfuryl alcohol resin (FA) derived from corn cobs and sugar cane. Nine large-scale reinforced concrete beams strengthened using externally bonded carbon and glass fibre reinforced bio-based polymer (CFRP and GFRP) sheets were tested. The EP resin resulted in a comparable bond strength to conventional epoxy (E) when used in wet layup, with a 7% higher strength for CFRP. The FA resin, on the other hand, resulted in a very weak bond, likely due to concrete alkalinity affecting curing. However, when FA resin was used to produce prefabricated cured CFRP plates which were then bonded to concrete using conventional epoxy paste, it showed an excellent bond strength. The beams achieved an increase in peak load ranging from 18-54% and a 9-46% increase in yielding load, depending on the number of FRP layers and type of fibres and resin. Additionally, 137 concrete prisms with a mid-span half-depth saw cut were used to test CFRP bond durability, and 195 CFRP coupons were used to examine tensile strength durability. Specimens were conditioned in a 3.5% saline solution at 23, 40 or 50°C, for up to 240 days. Reductions in bond strength did not exceed 15%. Bond failure of EP was adhesive with traces of cement paste on CFRP, whereas that of FA was cohesive with a thicker layer of concrete on CFRP, suggesting that the bond between FA and epoxy paste is excellent. EP tension coupons had similar strength and modulus to E resin, whereas FA coupons had a 9% lower strength and 14% higher modulus. After 240 days of exposure, maximum reductions in tensile strength were 8, 19 and 10% for EP, FA and E resins, respectively. Analysis of Variance (ANOVA) was also performed to assess the significance of the reductions observed. High degrees of

  19. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  20. Static and Dynamic Mechanical Properties of Long-Span Cable-Stayed Bridges Using CFRP Cables

    Directory of Open Access Journals (Sweden)

    Mei Kuihua

    2017-01-01

    Full Text Available The elastic modulus and deadweight of carbon fiber-reinforced polymer (CFRP cables are different from those of steel cables. Thus, the static and dynamic behaviors of cable-stayed bridges using CFRP cables are different from those of cable-stayed bridges using steel cables. The static and dynamic performances of the two kinds of bridges with a span of 1000 m were studied using the numerical method. The effects of geometric nonlinear factors on static performance of the two kinds of cable-stayed bridges were analyzed. The live load effects and temperature effects of the two cable-stayed bridges were also analyzed. The influences of design parameters, including different structural systems, the numbers of auxiliary piers, and the space arrangement types of cable, on the dynamic performance of the cable-stayed bridge using CFRP cables were also studied. Results demonstrate that sag effect of the CFRP cable is much smaller than that of steel cable. The temperature effects of CFRP cable-stayed bridge are less than those of steel cable-stayed bridge. The vertical bending natural vibration frequency of the CFRP cable-stayed bridge is generally lower than that of steel cable-stayed bridge, whereas the torsional natural vibration frequency of the former is higher than that of the latter.

  1. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact.

    Science.gov (United States)

    Hart, Robert J; Zhupanska, Olesya I

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  2. Development and performance evaluation of fiber reinforced polymer bridge.

    Science.gov (United States)

    2014-03-01

    Fiber reinforced polymers (FRP) have become more popular construction materials in the last decade due to the reduction of : material costs. The installation and performance evaluation of the first FRP-wrapped balsa wood bridge in Louisiana is descri...

  3. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  4. optimisation of thickness of fibre reinforced polymer sheets for ...

    African Journals Online (AJOL)

    The use of Fiber Reinforced Polymer (FRP) is becoming a widely accepted solution for repairing and strengthening of deteriorated reinforced concrete members, to restore their load carrying capacities. One of the major concerns in the use of FRP is its cost. This therefore calls for the use of efficient and cost effective design ...

  5. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  6. Experimental Investigation for Behavior of Spliced Continuous RC Girders Strengthened with CFRP Laminates

    Directory of Open Access Journals (Sweden)

    Ammar Yasir Ali

    2016-03-01

    Full Text Available In this paper, the behavior of spliced continuous reinforced concrete girders was experimentally investigated. The main objective was to examine the contribution of the carbon fiber reinforced polymer (CFRP laminates in strengthening the spliced continuous reinforced concrete girders. Eight models of continuous reinforced concrete girder were constructed and tested. The test variables were strengthening the splice joints by different schemes of CFRP laminates, presence of horizontal stirrups through the interfaces of the joints and using binder material at the interfaces of the joints. The results showed that strengthening the continuous spliced girders with 45° inclined CFRP laminates led to an increase in the ultimate load in a range of (47 to 74%. Besides, strengthening the continuous spliced girder with horizontal CFRP laminates bonded at its lateral faces could increase the ultimate load by 70%. Additionally, the ultimate load of the continuous spliced girder was increased by (30% due to presence of the horizontal steel stirrups through the interfaces of the joints

  7. Flexural Strengthening of RC Slabs with Prestressed CFRP Strips Using Different Anchorage Systems

    Directory of Open Access Journals (Sweden)

    José Sena-Cruz

    2015-10-01

    Full Text Available Externally Bonded Reinforcement (EBR technique has been widely used for flexural strengthening of concrete structures by using carbon fiber-reinforced polymers (CFRP. EBR technique offers several structural advantages when the CFRP material is prestressed. This paper presents an experimental and numerical study on reinforced (RC slabs strengthened in flexure with prestressed CFRP strips as a structural strengthening system. The strips are applied as an externally bonded reinforcement (EBR and anchored with either a mechanical or a gradient anchorage. The former foresees metallic anchorage plates fixed to the concrete substrate, while the latter is based on an accelerated epoxy resin curing followed by a segment-wise prestress force decrease at the strip ends. Both anchorage systems, in combination with different CFRP strip geometries, were subjected to static loading tests. It could be demonstrated that the composite strip’s performance is better exploited when prestressing is used, with slightly higher overall load carrying capacities for mechanical anchorages than for the gradient anchorage. The performed investigations by means of a cross-section analysis supported the experimental observation that in case a mechanical anchorage is used, progressive strip debonding changes the fully bonded configuration to an unbonded end-anchored system. The inclusion of defined debonding criteria for both the anchorage zones and free length between the anchorage regions allowed to precisely capture the ultimate loading forces.

  8. Technology and Development of Self-Reinforced Polymer Composites

    Science.gov (United States)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  9. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  10. Investigation of digital light processing using fibre-reinforced polymers

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre-reinforced polym......Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre...... of miniaturized objects with relatively high surface quality compared to other additive manufacturing technologies. This paper aim to move fibre reinforced resin parts one step closer towards mechanically strong production-quality components....

  11. EXTERNAL PRESTRESSING OF RC T-BEAMS WITH CFRP TENDONS

    DEFF Research Database (Denmark)

    Bennitz, Anders; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    FRPs is about to become common practice. Several guidelines on the subject have been presented during the last decade, e.g. [1-5]. Next step is to further utilize the excellent behaviour of the advanced material, in particular CFRP (Carbon Fiber Reinforced Polymers). CFRPs have mechanical properties...... capacity could be increased, with a carefully applied compressive stress existing open cracks in concrete may be partly closed and it might also be possible to reduce large deflections. In that way the durability of the entire RC (Reinforced Concrete) -structure can be increased. Application of FRPs......As the acceptance for non-stressed FRP (Fibre Reinforced Polymers) increase steadily in the construction industry, the industries susceptibility for new ideas in the material’s usage increase. Improving the performance of a bridge, a parking garage or a multistory building by the use of appropriate...

  12. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  13. Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete.

    Science.gov (United States)

    Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok

    2015-01-29

    This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.

  14. Failure Load Test of a CFRP Strengthened Railway Bridge in Oumlrnskoumlldsvik, Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Bergström, Markus; Carolin, Anders

    2009-01-01

    using carbon fiber reinforced polymer (CFRP) rectangular rods epoxy bonded in sawed up slots, e.g., near surface mounted reinforcement. The strengthening was very successful and resulted in a desired shear failure when the bridge was loaded to failure. The load-carrying capacity in bending...... steel reinforcement by approximately 10%, and increased the height of the compressed zone by 100 mm. When the shear failure occurred, the utilization of the compression concrete and CFRP rods were 100 and 87.5%, respectively. This indicates that a bending failure indeed was about to occur, even though......, Sweden is presented. In this particular test the shear capacity of the concrete girders was of primary interest. However, for any reasonable placement of the load (a line load placed transverse to the track direction) a bending failure would occur. This problem was solved by strengthening for flexure...

  15. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP) Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    OpenAIRE

    Askarizadeh, N.; Mohammadizadeh, M. R.

    2017-01-01

    Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, p...

  16. Properties of Fiber Reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Marinela Bărbuţă

    2008-01-01

    Full Text Available Polymer concrete is a composite material realized with resin and aggregates. In the present study the epoxy resin was used for binding the aggregates. In the composition were introduced near the fly ash, used as filler, the cellulose fibers. The mechanical characteristics such as compressive strength, flexural strength and split tensile strength of polymer concrete with fibers were investigated. The fiber percentage was constant, the epoxy resin and the filler dosages were varied. The cellulose fiber had not improved the mechanical characteristics of the polymer concrete in comparison to that of polymer concrete without cellulose fibers.

  17. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    Science.gov (United States)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  18. Measurement of defects in carbon fiber reinforced polymer drilled

    Directory of Open Access Journals (Sweden)

    Pascual Víctor

    2017-01-01

    Full Text Available Increasingly, fiber-reinforced materials are more widely used because of their good mechanical properties. It is usual to join pieces of these materials through screws and rivets, for which it is necessary to make a hole in the piece, usually by drilling. One of the problems of use CFRP resides in the appearance of defects due to the machining. The main defect to be taken into account is the delamination. Delamination implies poor tolerance when assembling parts, reducing the structural integrity of the part, and areas with high wear, as a series of stresses arise when mounting the screws. Much has been published about delamination and the factors that influence its appearance, so we are not going to focus on it. The present study aims to quantify and measure the defects associated with the drilling of compounds reinforced with carbon fibers, in relation to the cutting parameters used in each case. For this purpose, an optical measurement system and a posterior digital image processing will be used through Deltec Vision software.

  19. Effect of Thermal Distress on Residual Behavior of CFRP-Strengthened Steel Beams Including Periodic Unbonded Zones

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2015-11-01

    Full Text Available This paper presents the residual behavior of wide-flange steel beams strengthened with high-modulus carbon fiber-reinforced polymer (CFRP laminates subjected to thermal loading. Because the coefficients of thermal expansion of the steel and the CFRP are different, temperature-induced distress may take place along their interface. Periodic unbonded zones are considered to represent local interfacial damage. Five test categories are designed depending on the size of the unbonded zones from 10 to 50 mm, and corresponding beams are loaded until failure occurs after exposing to a cyclic temperature range of ΔT = 25 °C (−10 to 15 °C up to 84 days. The composite action between the CFRP and the steel substrate is preserved until yielding of the beams happens, regardless of the thermal cycling and periodic unbonded zones. The initiation and progression of CFRP debonding become apparent as the beams are further loaded, particularly at geometric discontinuities in the vicinity of the unbonded zones along the interface. A simple analytical model is employed to predict the interfacial stress of the strengthened beams. A threshold temperature difference of ΔT = 30 °C is estimated for the initiation and progression of CFRP debonding. Multiple debonding-progression stages in conjunction with the extent of thermal distress appear to exist. It is recommended that high-modulus CFRP be restrictively used for strengthening steel members potentially exposed to a wide temperature variation range.

  20. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    Science.gov (United States)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  1. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    Science.gov (United States)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  2. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    International Nuclear Information System (INIS)

    Martínez-Cruz, E; Martínez-López, M; Martínez-Barrera, G

    2013-01-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  3. Current Distribution Characteristics of CFRP Panels

    Science.gov (United States)

    Yamamoto, Kazuo

    CFRP (Carbon Fiber Reinforced Plastic) is widely used in the structures of aircrafts, automobiles, wing turbines, and rockets because of its qualities of high mechanical strength, low weight, fatigue resistance, and dimensional stability. However, these structures are often at risk of being struck by lightning. When lightning strikes such structures and lightning current flows through the CFRP, it may be structurally damaged because of the impact of the lightning strike or ignitions between layers. If there are electronic systems near the CFRP, they may break down or malfunction because of the resulting electromagnetic disturbance. In fact, the generation mechanisms of these breakdowns and malfunctions depend on the current distribution in the CFRP. Hence, it is critical to clarify the current distribution in various kinds of CFRPs. In this study, two kinds of CFRP panels—one composed of quasi-isotropic lamination layers and the other composed of 0°/90° lamination layers of unidirectional CFRP prepregs—are used to investigate the dependence of current distribution on the nature of the lamination layers. The current distribution measurements and simulations for CFRP panels are compared with those for a same-sized aluminum plate. The knowledge of these current distribution characteristics would be very useful for designing the CFRP structures of aircrafts, automobiles, wing turbines, rockets, etc. in the future.

  4. Collaboration of polymer composite reinforcement and cement concrete

    Science.gov (United States)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  5. Ensayos de resistencia de pórticos de concreto a escala, reforzados con CFRP en los nudos

    Directory of Open Access Journals (Sweden)

    Andrés Duque

    2011-06-01

    Full Text Available The results of an experimental study of four scale concrete frames (1:2 subjected to monotonic load are presented. The four frames were designed and constructed without confinement zones in the joints and considering only the gravitational load. Two of the four concrete frames of concrete were reinforced in the joints with a confinement with polymers reinforced with carbon fiber (CFRP. The instrumentation of the tests consisted of a load cell, analogous deformimeters and strain gages in the reinforcement steel bars and in the carbonfibers. According to the experimental results, the reinforcement with fibers duplicates the resistance and the rigidity of the frames and increases its total displacement without loss of resistance in 60%.Also the confinement of the joints with CFRP diminishes remarkably the fissures and the cracks of the structural elements.

  6. NDE and SHM Simulation for CFRP Composites

    Science.gov (United States)

    Leckey, Cara A. C.; Parker, F. Raymond

    2014-01-01

    Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.

  7. Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions

    International Nuclear Information System (INIS)

    Bigaud, David; Ali, Osama

    2014-01-01

    Time-variant reliability analysis of RC highway bridges strengthened with carbon fibre reinforced polymer CFRP laminates under four possible competing damage modes (concrete crushing, steel rupture after yielding, CFRP rupture and FRP plate debonding) and three degradation factors is analyzed in terms of reliability index β using FORM. The first degradation factor is chloride-attack corrosion which induces reduction in steel area and concrete cover cracking at characteristic key times (corrosion initiation, severe surface cover cracking). The second degradation factor considered is fatigue which leads to damage in concrete and steel rebar. Interaction between corrosion and fatigue crack growth in steel reinforcing bars is implemented. The third degradation phenomenon is the CFRP properties deterioration due to aging. Considering these three degradation factors, the time-dependent flexural reliability profile of a typical simple 15 m-span intermediate girder of a RC highway bridge is constructed under various traffic volumes and under different corrosion environments. The bridge design options follow AASHTO-LRFD specifications. Results of the study have shown that the reliability is very sensitive to factors governing the corrosion. Concrete damage due to fatigue slightly affects reliability profile of non-strengthened section, while service life after strengthening is strongly related to fatigue damage in concrete. - Highlights: • We propose a method to follow the time-variant reliability of strengthened RC beams. • We consider multiple competing failure modes of CFRP strengthened RC beams. • We consider combined degradation mechanisms (corrosion, fatigue, ageing of CFRP)

  8. Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2013-01-01

    This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...

  9. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  10. Effects of moisture on glass fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Alzamora Guzman, Vladimir Joel; Brøndsted, Povl

    2015-01-01

    performance of wind turbine blades over their lifetime. Here, environmental moisture conditions were simulated by immersing glass fiber-reinforced polymer specimens in salt water for a period of up to 8 years. The mechanical properties of specimens were analyzed before and after immersion to evaluate...

  11. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  12. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  13. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    Science.gov (United States)

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  14. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  15. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    Science.gov (United States)

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  16. Analysis of the Dynamic Response in Blast-Loaded CFRP-Strengthened Metallic Beams

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2013-01-01

    Full Text Available Carbon fiber-reinforced polymer composites (CFRPs are good candidates in enhancing the blast resistant performance of vulnerable public buildings and in reinforcing old buildings. The use of CFRP in retrofitting and strengthening applications is traditionally associated with concrete structures. Nevertheless, more recently, there has been a remarkable aspiration in strengthening metallic structures and components using CFRP. This paper presents a relatively simple analytical solution for the deformation and ultimate strength calculation of hybrid metal-CFRP beams when subjected to pulse loading, with a particular focus on blast loading. The analytical model is based on a full interaction between the metal and the FRP and is capable of producing reasonable results in a dynamic loading scenario. A nonlinear finite element (FE model is also developed to reveal the full dynamic behavior of the CFRP-epoxy-steel hybrid beam, considering the detailed effects, that is, large strains, high strain rates in metal, and different failure modes of the hybrid beam. Experimental results confirm the analytical and the FE results and show a strong correlation.

  17. Effect of CFRP and TRM Strengthening of RC Slabs on Punching Shear Strength

    Directory of Open Access Journals (Sweden)

    Husain Abbas

    Full Text Available Abstract The paper presents experiments involving punching of RC slabs strengthened using externally bonded carbon fiber reinforced polymer (CFRP sheet and textile reinforced mortar (TRM. Twelve RC slab specimens of two concrete grades (39.9 and 63.2 MPa and employing two strengthening schemes (CFRP and TRM were tested. Specimens were supported on two opposite edges. Experimental load-displacement variations show two peak loads in strengthened slabs and one peak followed by a plateau in control. Second peak or the plateau corresponds to the combined action of aggregate interlock and the dowel action of back face rebars and strengthening layers. The dowel action of back face rebars and strengthening layers had no role in ultimate punching load (i.e. first peak. Strengthened slabs showed 9-18% increase in ultimate punching load (i.e. first peak whereas there was significant increase in the second peak load (190-276% for CFRP; 55-136% for TRM and energy absorption (~66% for CFRP and 22-56% for TRM. An analytical model was also developed for predicting the punching shear strength (first and second peaks of strengthened slabs showing good comparison with experiments.

  18. Strengthening of a railway bridge with NSMR and CFRP tubes

    DEFF Research Database (Denmark)

    Täljsten, Björn; Bennitz, Anders; Danielsson, Georg

    2008-01-01

    Strengthening of structures with CFRP is today considered an accepted method to upgrade concrete structures. In this paper two different CFRP strengthening systems are combined to give extended service life to a Swedish double-trough-double-track railway bridge, constructed in concrete with a 10 ....... Sensors on bars and tubes display proofs of utilization of the CFRP while displacement sensors and strain gauges on the steel reinforcement due to the small loads in the service limit state show minor effect....

  19. Analysis of nonlinear deformations and damage in CFRP textile laminates

    International Nuclear Information System (INIS)

    Ullah, H; Harland, A R; Silberschmidt, V V; Lucas, T; Price, D

    2011-01-01

    Carbon fibre-reinforced polymer (CFRP) textile composites are widely used in aerospace, automotive and construction components and structures thanks to their relatively low production costs, higher delamination and impact strength. They can also be used in various products in sports industry. These products are usually exposed to different in-service conditions such as large bending deformation and multiple impacts. Composite materials usually demonstrate multiple modes of damage and fracture due to their heterogeneity and microstructure, in contrast to more traditional homogeneous structural materials like metals and alloys. Damage evolution affects both their in-service properties and performance that can deteriorate with time. These damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation, numerical simulations and microtomography analysis. This research deals with a deformation behaviour and damage in composite laminates linked to their quasi-static bending. Experimental tests are carried out to characterise the behaviour of woven CFRP material under large-deflection bending. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus/Explicit to study the deformation behaviour and damage in woven CFRP laminates. Multiple layers of bilinear cohesive-zone elements are employed to model the onset and progression of inter-ply delamination process. X-ray Micro-Computed Tomography (MicroCT) analysis is carried out to investigate internal damage mechanisms such as cracking and delaminations. The obtained results of simulations are in agreement with experimental data and MicroCT scans.

  20. Analysis of nonlinear deformations and damage in CFRP textile laminates

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, H; Harland, A R; Silberschmidt, V V [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicester-shire, LE11 3TU (United Kingdom); Lucas, T; Price, D, E-mail: H.Ullah@lboro.ac.uk [Adidas AG, Herzogenaruch (Germany)

    2011-07-19

    Carbon fibre-reinforced polymer (CFRP) textile composites are widely used in aerospace, automotive and construction components and structures thanks to their relatively low production costs, higher delamination and impact strength. They can also be used in various products in sports industry. These products are usually exposed to different in-service conditions such as large bending deformation and multiple impacts. Composite materials usually demonstrate multiple modes of damage and fracture due to their heterogeneity and microstructure, in contrast to more traditional homogeneous structural materials like metals and alloys. Damage evolution affects both their in-service properties and performance that can deteriorate with time. These damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation, numerical simulations and microtomography analysis. This research deals with a deformation behaviour and damage in composite laminates linked to their quasi-static bending. Experimental tests are carried out to characterise the behaviour of woven CFRP material under large-deflection bending. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus/Explicit to study the deformation behaviour and damage in woven CFRP laminates. Multiple layers of bilinear cohesive-zone elements are employed to model the onset and progression of inter-ply delamination process. X-ray Micro-Computed Tomography (MicroCT) analysis is carried out to investigate internal damage mechanisms such as cracking and delaminations. The obtained results of simulations are in agreement with experimental data and MicroCT scans.

  1. Analysis of nonlinear deformations and damage in CFRP textile laminates

    Science.gov (United States)

    Ullah, H.; Harland, A. R.; Lucas, T.; Price, D.; Silberschmidt, V. V.

    2011-07-01

    Carbon fibre-reinforced polymer (CFRP) textile composites are widely used in aerospace, automotive and construction components and structures thanks to their relatively low production costs, higher delamination and impact strength. They can also be used in various products in sports industry. These products are usually exposed to different in-service conditions such as large bending deformation and multiple impacts. Composite materials usually demonstrate multiple modes of damage and fracture due to their heterogeneity and microstructure, in contrast to more traditional homogeneous structural materials like metals and alloys. Damage evolution affects both their in-service properties and performance that can deteriorate with time. These damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation, numerical simulations and microtomography analysis. This research deals with a deformation behaviour and damage in composite laminates linked to their quasi-static bending. Experimental tests are carried out to characterise the behaviour of woven CFRP material under large-deflection bending. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus/Explicit to study the deformation behaviour and damage in woven CFRP laminates. Multiple layers of bilinear cohesive-zone elements are employed to model the onset and progression of inter-ply delamination process. X-ray Micro-Computed Tomography (MicroCT) analysis is carried out to investigate internal damage mechanisms such as cracking and delaminations. The obtained results of simulations are in agreement with experimental data and MicroCT scans.

  2. Nanoscaled boehmites' modes of action in a polymer and its carbon fiber reinforced plastic under compression load; Wirkungsweisen nanoskaliger Boehmite in einem Polymer und seinem Kohlenstofffaserverbund unter Druckbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, Christine

    2011-07-01

    Increasing ecological awareness as well as quality and safety demands, which are present, for instance, in the aerospace and automotive sectors, lead to the need to use more sophisticated and more effective materials. For that purpose, laminates of carbon fiber reinforced plastic (CFRP), which are manufactured by injection technology, are reinforced with boehmite particles. This doping strengthens the laminates, whose original properties are weaker than prepregs. Besides the shear strength, compression strength and the damage tolerance, the mode of action of the nanoparticles in resin and in CRFP is also analyzed. It thereby reveals that the hydroxyl groups and even more a taurine modification of the boehmites' surface after the elementary polymer morphology. Consequently a new flow and reaction comportment, lower glass transition temperatures and shrinkage, as well as a changed mechanical behavior occur. Due to a structural upgrading of the matrix (higher shear stiffness, reduced residual stress), a better fiber-matrix adhesion, and differing crack paths, the boehmite nanoparticles move the degradation barrier of the material to higher loadings, thus resulting in considerably upgraded new CFRP. (orig.)

  3. Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-01-01

    The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383

  4. State-of-Practice on the Dynamic Response of Structures Strengthened with Fiber Reinforced Polymers (FRPs)

    Science.gov (United States)

    2015-07-01

    entitled “Design guidelines for blast strengthening of concrete and masonry structures using Fiber - Reinforced Polymer (FRP).” Seismic provision...2 Reinforced Concrete Fiber Reinforced Polymers are frequently used to retrofit and repair reinforced concrete structures. Most of the work...tested 72 laboratory-size beams (3-in. by 3-in. cross-section and 30–in. long) of unreinforced and nylon fiber reinforced light-weight concrete that

  5. Additive manufacturing of short and mixed fibre-reinforced polymer

    Science.gov (United States)

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  6. MODELLING THE DELAMINATION FAILURE ALONG THE CFRP-CFST BEAM INTERACTION SURFACE USING DIFFERENT FINITE ELEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    AHMED W. AL-ZAND

    2017-01-01

    Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.

  7. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  8. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  9. Fibre Reinforced Polymer Composites as Internal and External Reinforcements for Building Elements

    Directory of Open Access Journals (Sweden)

    Cătălin Banu

    2008-01-01

    Full Text Available During the latest decades fibre reinforced polymer (FRP composite materials have proven valuable properties and suitable to be used in construction of new buildings and in upgrading the existing ones. These materials have covered the road from research laboratory and demonstration projects to implementation in actual structures. Nowadays the civil and structural engineering communities are about to commence the stage in which the use of FRP composites is becoming a routine similar to that of traditional material such as concrete, masonry and wood. Two main issues are presented in this paper, the use of FRP composite materials for new structural members (internal reinforcements and strengthening of existing members (externally bonded reinforcements. The advantages and disadvantages as well as the problems and constraints associated with both issues are discussed in detail mainly related to concrete members.

  10. Fique Fabric: A Promising Reinforcement for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA. The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS. The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.

  11. Self Healing Fibre-reinforced Polymer Composites: an Overview

    Science.gov (United States)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  12. Effects of the shock duration on the response of CFRP composite laminates

    International Nuclear Information System (INIS)

    Gay, Elise; Berthe, Laurent; Boustie, Michel; Arrigoni, Michel; Buzaud, Eric

    2014-01-01

    Shock loads induce a local tensile stress within a sample. The location and amplitude of this high strain rate stress can be monitored respectively by the duration and intensity of the shock. The process is applied to carbon fibre reinforced polymer (CFRP) composites, involved in aeronautic or defense industry. This paper describes the response of CFRP laminates of different thicknesses to a shock load normal to the fibres direction. The effects of the shock duration on the wave propagation are key issues of this work. Experiments have been performed on high power laser facilities and on a high power pulsed generator to get a wide range of pulse duration from fs to µs. Numerical simulation provides a comprehensive approach of the wave propagation and tensile stress generation within these complex materials. The main result concerns the relation between the load duration, the tensile stress and the induced delamination within 1, 4 and 8 ply composite laminates. (paper)

  13. Flexure Behavior of Hybrid Continuous Deep Beam Strengthened by Carbon Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Hayder M.K.Al-Mutairee

    2017-08-01

    Full Text Available This study present an experimental investigation for overall flexure behavior of reinforced concrete continuous deep beams (RCCDB made of hybrid concrete, normal strength concrete (NSC and high strength concrete (HSC at different location and percentage. The experimental work includes testing of sixteen specimens of RCCDB under two points loads. The effects of HSC layer thickness and CFRP on strength of RCCDB had been studied. The experimental results showed that the strengthening of RCCDB by HSC layer from top is better than from bottom, where the increment in the ultimate flexural strength increased by (14,21,27% for top strengthening and (12,15,13% for bottom strengthening for (25,50,75% thickness of total depth of beam respectively. The optimal strengthening of RCCDB by HSC layer at top was of 25%. The results also proved that the strengthening of hybrid RCCDB by (10,15cm CFRP strip at the bottom for flexure gave increment in the ultimate strength by (32, 29% respectively, and the strengthening by CFRP strip for flexure at the bottom is better than at top for hybrid RCCDB. The shear strengthening of hybrid RCCDB increases the ultimate strength by 23.4% and 13.8% if the strengthening has O and U shape respectively

  14. Dispersion and Reinforcement of Nanotubes in High Temperature Polymers for Ultrahigh Strength and Thermally Conductive Nanocomposites

    National Research Council Canada - National Science Library

    Yang, Arnold C

    2007-01-01

    Fundamental approaches for controlled dispersion of multiwalled carbon nanotubes in polymers and the molecular reinforcement in their nanocomposites were studied to design and fabricate well-dispersed...

  15. Finite element analysis of Polymer reinforced CRC columns under close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Experimental and numerical results of two PCRC columns subjected to close-in detonation are presented in this paper. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description...

  16. Assessing the Contribution of the CFRP Strip of Bearing the Applied Load Using Near-Surface Mounted Strengthening Technique with Innovative High-Strength Self-Compacting Cementitious Adhesive (IHSSC-CA

    Directory of Open Access Journals (Sweden)

    Alyaa Mohammed

    2018-01-01

    Full Text Available Efficient transfer of load between concrete substrate and fibre reinforced polymer (FRP by the bonding agent is the key factor in any FRP strengthening system. An innovative high-strength self-compacting non-polymer cementitious adhesive (IHSSC-CA was recently developed by the authors and has been used in a number of studies. Graphene oxide and cementitious materials are used to synthesise the new adhesive. The successful implementation of IHSSC-CA significantly increases carbon FRP (CFRP strip utilization and the load-bearing capacity of the near-surface mounted (NSM CFRP strengthening system. A number of tests were used to inspect the interfacial zone in the bonding area of NSM CFRP strips, including physical examination, pore structure analysis, and three-dimensional laser profilometery analysis. It was deduced from the physical inspection of NSM CFRP specimens made with IHSSC-CA that a smooth surface for load transfer was found in the CFRP strip without stress concentrations in some local regions. A smooth surface of the adhesive layer is very important for preventing localized brittle failure in the concrete. The pore structure analysis also confirmed that IHSSC-CA has better composite action between NSM CFRP strips and concrete substrate than other adhesives, resulting in the NSM CFRP specimens made with IHSSC-CA sustaining a greater load. Finally, the results of three-dimensional laser profilometery revealed a greater degree of roughness and less deformation on the surface of the CFRP strip when IHSSC-CA was used compared to other adhesives.

  17. Optical and mechanical excitation thermography for impact response in basalt-carbon hybrid fiber-reinforced composite laminates

    OpenAIRE

    Zhang, Hai; Sfarra, Stefano; Sarasini, Fabrizio; Ibarra-Castanedo, Clemente; Perilli, Stefano; Fernandes, Henrique; Duan, Yuxia; Peeters, Jeroen; Avelidis, Nicholas P; Maldague, Xavier

    2017-01-01

    Abstract: In this paper, optical and mechanical excitation thermography were used to investigate basalt fiber reinforced polymer (BFRP), carbon fiber reinforced polymer (CFRP) and basalt-carbon fiber hybrid specimens subjected to impact loading. Interestingly, two different hybrid structures including sandwich-like and intercalated stacking sequence were used. Pulsed phase thermography (PPT), principal component thermography (PCT) and partial least squares thermography (PLST) were used to pro...

  18. Strengthening of structurally damaged wide shallow RC beams using externally bonded CFRP plates

    Directory of Open Access Journals (Sweden)

    Rajeh A. Al-Zaid

    Full Text Available Reinforced concrete wide shallow beams (WSBs are commonly used in the joist flooring systems. The structural behavior of WSBs strengthened with carbon fiber reinforced polymer (CFRP reinforcement was studied on isolated beams and as part of full-scale building. The effect of structural damage on the performance of WSBs flexurally strengthened with CFRP plates was investigated and presented in this paper. Eight full-scale WSBs were tested under four-point bending up to failure. Seven beams were strengthened with CFRP plates bonded to the soffit of the beams and one beam was unstrengthened serving as control. Prior to strengthening, the beams were subjected to different levels of damaging by preloading to 30-95% of the beams' flexural capacity. One beam was fully damaged by preloading to failure and repaired before strengthening by replacing the crushed concrete. The data showed that the pre-damaged strengthened beams exhibited ultimate capacities up to 8% lower than those of the undamaged strengthened beams. However, the load carrying capacities of pre-damaged strengthened beams were more than those predicted by ACI 440 design guide, fib Bulletin 14, and JSCE design recommendations. Both fib Bulletin 14 and JSCE design recommendations gave very conservative predictions with average ratios of experimental to predicted ultimate capacity of 2.02 and 2.35, respectively. More accurate predictions were obtained by ACI 440 design guide as the corresponding ratio was 1.24. These results indicate that strong confidence and reliability can be placed in applying CFRP strengthening to structurally damaged WSBs.

  19. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Täljsten, Björn

    2012-01-01

    force, and the presence of a deviator were investigated. The results were compared to those observed with analogous beams prestressed with steel tendons, common beam theory, and predictions made using an analytical model adapted from the literature. It was found that steel and CFRP tendons had very...... similar effects on the structural behavior of the strengthened beams; the minor differences that were observed are attributed to the difference between the modulus of elasticity of the CFRP and the steel used in the tests. The models predicted the beams' load-bearing behavior accurately but were less...

  20. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  1. Joining strength performances of metal skin and CFRP core laminate structures realized by compression-curing process, with supporting experiments

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Kim, Naksoo

    2018-05-01

    In the recent years, the trend of lightening vehicles and structures of every kind has become an ever-growing issue, both for university and industrial researchers. As demonstrated in previous authors' works, laminate structures made of metal skin (MS) and carbon fiber reinforced polymer (CFRP) core show high specific bending strength properties while granting considerable weight reduction but, so far, no investigations have been carried out on the hole sensitivity and joinability of these hybrid structures. In the present research work, the hole size sensitivity of MS-CFRP structure has been studied by means of uniaxial tensile test on 160mm (length), 25mm (width), 2.0mm (average thickness) specimens bored with Ø06mm, Ø9mm, and Ø12mm holes. The specimen thickness is composed of two metal skins of 0.4mm thickness each, 8×0.2mm CFRP stacked layers and two thin epoxy-based adhesive layers. The specimens have been manufactured by means of a compression-curing process in which the different materials are stacked and, thanks to die pressure and temperature, the curing process is completed in a relatively short time (15˜20 minutes). The specimens have been tested by means of simple tension test showing that, for the MS-CFRP material, the smaller the hole the smaller the maximum bearable load. Moreover, specimens with the same hole sizes have been bolted together with class 12 resistance bolts and tested by means of tensile test, allowing to determine the maximum transferable load between the two MS-CFRP plates. Aiming to prove the improvement in the specific transferable load, experiments on only-steel specimens with the same weight of the MS-CFRP ones and joined with the same method and bolts have been carried out, allowing to conclude that, for the 9mm hole bolted plates, the proposed material has a specific maximum transferable 27% higher than that of the steel composing their skins.

  2. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dongyao Wang

    2017-02-01

    Full Text Available Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin’s criteria a numerical model was further proposed in terms of the finite element method (FEM. A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP.

  3. On Healable Polymers and Fiber-Reinforced Composites

    Science.gov (United States)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  4. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  5. Performance of Sprayed Fiber Reinforced Polymer Strengthened Timber Beams

    Directory of Open Access Journals (Sweden)

    S. Talukdar

    2010-01-01

    Full Text Available A study was carried out to investigate the use of Sprayed Fiber Reinforced Polymer (SFRP for retrofit of timber beams. A total of 10-full scale specimens were tested. Two different timber preservatives and two different bonding agents were investigated. Strengthening was characterized using load deflection diagrams. Results indicate that it is possible to enhance load-carrying capacity and energy absorption characteristics using the technique of SFRP. Of the two types of preservatives investigated, the technique appears to be more effective for the case of creosote-treated specimens, where up to a 51% improvement in load-carrying capacity and a 460% increase in the energy absorption capacity were noted. Effectiveness of the bonding agent used was dependent on the type of preservative the specimen had been treated with.

  6. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  7. FEM performance of concrete beams reinforced by carbon fiber bars

    Directory of Open Access Journals (Sweden)

    Hasan Hashim

    2018-01-01

    Full Text Available Concrete structures may be vulnerable to harsh environment, reinforcement with Fiber Reinforced Polymer (FRP bars have an increasing acceptance than normal steel. The nature of (FRP bar is (non-corrosive which is very beneficial for increased durability as well as the reinforcement of FRP bar has higher strength than steel bar. FRP usage are being specified more and more by public structural engineers and individual companies as main reinforcement and as strengthening of structures. Steel reinforcement as compared to (FRP reinforcement are decreasingly acceptable for structural concrete reinforcement including precast concrete, cast in place concrete, columns, beams and other components. Carbon Fiber Reinforcement Polymer (CFRP have a very high modulus of elasticity “high modulus” and very high tensile strength. In aerospace industry, CFRP with high modulus are popular among all FRPs because it has a high strength to weight ratio. In this research, a finite element models will be used to represent beams with Carbon Fiber Reinforcement and beams with steel reinforcement. The primary objective of the research is the evaluation of the effect of (CFR on beam reinforcement.

  8. Comparison of PZT and FBG sensing technologies for debonding detection on reinforced concrete beams strengthened with external CFRP strips subjected to bending loads

    Directory of Open Access Journals (Sweden)

    Sevillano, E.

    2016-06-01

    Full Text Available The development of monitoring technologies particularly suitable to be used with novel CFRP strengthening techniques has gained great attention in recent years. However, in spite of the high performance of these advanced composite materials in the strengthening and repairing of structures in service, they are usually associated with brittle and sudden failure mainly caused by debonding phenomena, originated either at the CFRP-plate end or at the intermediate areas in the vicinity of flexural cracks in the RC beam. Thus, it is highly recommended for these structures to be monitored in order to ensure their integrity while in service. Specifically, the feasibility of smart sensing technologies such as Fiber Bragg Grating (FBG sensors and piezo-impedance transducers (PZT has been studied. To the knowledge of the authors, none serious study has been carried out until now concerned to the topic of damage detection due to debonding in rehabilitated structures with CFRP composites.El desarrollo de tecnologías de monitorización aplicables junto con las novedosas técnicas de refuerzo basadas en materiales CFRP ha recibido una atención creciente los últimos años. Sin embargo, a pesar del alto rendimiento de estos avanzados materiales compuestos en la reparación y refuerzo de estructuras en servicio, están habitualmente asociados a fallos frágiles y repentinos causados principalmente por fenómenos de despegue, originados bien en los extremos del refuerzo, bien en áreas intermedias en las proximidades de grietas de flexión existentes en la viga. Por tanto, es altamente recomendable monitorizar estas soluciones estructurales de cara a garantizar su integridad en servicio. Específicamente, se ha estudiado la viabilidad de sensores inteligentes tales como los sensores Fiber Bragg Grating (FBG o los transductores piezoeléctricos (PZT. Hasta donde los autores saben, no se han realizado estudios serios hasta la fecha abordando la detección de da

  9. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    Science.gov (United States)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  10. Preparation and characterization of corn reinforced polymer sheet of fibers

    International Nuclear Information System (INIS)

    Moreira, Tatiana Martinez; Seo, Emilia Satoshi Miyamaru

    2016-01-01

    There is a global trend in seeking plant fibers to replace the synthetic fibers to obtain reinforced composites aimed at the use of renewable resources. In this context, this paper aims to develop the process of preparing maize leaf fibers, characterizing them and adapting them for applications in the construction industry and develop a reinforced polymer composite with these fibers. Corn leaves were dried in environmental temperature, treated by mercerizing, then neutralized with acid solution and washed in running water. The characterization of the corn leaf fibers was carried out by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, specific surface area, thermogravimetry and specific mass. The mercerizing treatment was effective, because the maize fibers have characteristics similar to synthetic fibers, leading to a possibility of new technological uses. The polymeric composite material was developed by extrusion processes and injection and tested for tensile testing, differential scanning calorimetry and scanning electron microscopy, thus reused an organic waste that would be disposed of by inserting it in a technological process, contributing to the research and development of new polymeric materials as well as to reduce waste discarded as scrap. (author)

  11. Damage in woven CFRP laminates subjected to low velocity impacts

    International Nuclear Information System (INIS)

    Ullah, H; Abdel-Wahab, A A; Harland, A R; Silberschmidt, V V

    2012-01-01

    Carbon fabric-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in these materials affects both their in-service properties and performance that can deteriorate with time. These processes need adequate means of analysis and investigation, the major approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in woven composite laminates due to low-velocity dynamic out-of-plane bending. Experimental tests are carried out to characterise the behaviour of such laminates under large-deflection dynamic bending in un-notched specimens in Izod tests using a Resil Impactor. A series of low-velocity impact tests is carried out at various levels of impact energy to assess the energy absorbed and force-time response of CFRP laminates. X-ray micro computed tomography (micro-CT) is used to investigate material damage modes in the impacted specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply delamination and intra-ply delamination, such as tow debonding and fabric fracture, were the prominent damage modes.

  12. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  13. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  14. Field tests of Fibre Bragg Grating sensors incorporated into CFRP for Railway Bridge strengthening condition monitoring

    DEFF Research Database (Denmark)

    Täljsten, Björn; Kerrouche, Abdelfathe; Leighton, J

    2008-01-01

    made with the FBG- based system were found to be in agreement with the changes expected in the structure (together with the embedded reinforcement), produced by the loading applied. The study has demonstrated the successful use of FBG-based technology pre-mounted in ‘smart’ carbon fiber composite...... project ‘Sustainable Bridges’. The FBG sensors were embedded in Carbon Fibre Reinforced Polymers (CFRP) rods incorporated into grooves specially created in the concrete cover of the bridge structure and interrogated using a compact system based on Wavelength Division Multiplexing (WDM). Throughout...... the study, the FBG sensors were continuously monitored, allowing the incremental increases in the strain to be seen and through the yield point of the carbon composite reinforcement. The sensors were able to follow the resulting induced changes in strain of over a range in excess of 4000µε. The measurements...

  15. CFRP 積層板の硬化温度の同定

    OpenAIRE

    清水, 理能; 山本, 成章; 五嶋, 孝仁

    2002-01-01

    In the present paper, curing temperature of carbon fiber reinforced plastic (CFRP) laminates was estimated from room-temperature shapes which ware calculated theoretically and compared with experimental results. The analyzed model was CFRP laminate plate having a stacking sequence [0°/90°], and the specimens were made of unidirectional carbon fiber/epoxy prepreg. And room-temperature shapes of CFRP laminates are analyzed theoretically by means of classical lamination theory, correspondence pr...

  16. Experimental study on flexural members strengthened with variable bonded pre-stressed CFRP plates

    Science.gov (United States)

    Zhang, Baojing; Shang, Shouping

    2017-08-01

    Aiming at the problem that the structural adhesive between CFRP and concrete interface is aging with time and then lost the bond strength, the concept of variable bond prestressed CFRP is put forward. In order to obtain the bearing capacity and failure pattern of the beam strengthened with variable bonding prestressed CFRP plate, three concrete beams of 5.6m long were strengthened by the technology of non-bonding, bonding and variable bonding strengthened with prestressed CFRP plates respectively, the mechanical properties and crack changes of the test beams under three conditions had been compared and analyzed. Test results show that the variable bond strengthened with prestressed CFRP plates with unbonded prestressed CFRP, cracking load was increased by 36%, yield load increased by 4%, the ultimate load increased by 12%; The reinforcement technology of variable bonding prestressed CFRP plate has the characteristics of non-bonding and bonding prestressed CFRP plate reinforcement, which is similar to that of the bonded reinforcement in the early stage of the development of the cracks, then is gradually developing into the non-bonding prestressed reinforcement, the crack spacing and width have the same characteristics as the bonding reinforcement (both crack spacing and width are small), which is more conducive to enhance the durability of the structure.

  17. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  18. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  19. Modèle de confinement pour les colonnes de section circulaire en béton armé confiné avec des enveloppes en polymère renforcé de fibres de carbone Confinement model for circular RC columns wrapped with CFRP composite

    Directory of Open Access Journals (Sweden)

    Benzaid R.

    2012-09-01

    Full Text Available Un programme experimental comprenant des essais sur 30 cylindres 160×320 mm a ete mene en vue de determiner le gain de resistance et de ductilite du beton confine par collage externe de tissu de polymere renforce de fibres de carbone (PRFC. Les variables etudiees sont la resistance a la compression du beton non confine f’co, le niveau de confinement, exprime par le nombre de plis de PRFC applique aux eprouvettes. La deformation circonferentielle a la rupture du composite PRF et l’feffet de la pression de confinement laterale effective de l’fenveloppe composite ont ete egalement etudies. Pour l’fensemble des specimens testes, l’faugmentation de la rigidite du confinement entraine a la fois une augmentation significative de la resistance a la compression axiale et de la ductilite des specimens en beton confine avec des PRFC par rapport aux specimens en beton non confine. Base sur les resultats experimentaux, un modele de confinement pratique est propose pour predire la resistance a la compression maximale du beton confine avec des materiaux composites (f’cc et la deformation axiale correspondante (εcc. The present paper deals with the analysis of experimental results, in terms of load carrying capacity and strains, obtained from tests on plain- and reinforced- concrete (RC cylinder, strengthened with external carbon-fiber-reinforced polymer (CFRP. The parameters considered are the number of composite layers, the compressive strength of unconfined concrete. The effective circumferential FRP failure strain and the effect of the effective lateral confining pressure were investigated. Totally thirty cylinders (160×320 mm were subjected to axial compression which includes control specimens. All the test specimens were loaded to failure in axial compression and the behaviour of the specimens in the axial and transverse directions was investigated. Test results shown that the CFRP wrap increases the strength and ductility of reinforced

  20. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    Science.gov (United States)

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  1. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    Science.gov (United States)

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  2. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  3. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  4. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites

    OpenAIRE

    Meng Jiangyan; Wang Yunying

    2016-01-01

    As is known, factors in climate environment such as hygrothermal effect and UV may have a negative effect on the mechanical properties of fiber reinforced polymer-matrix composites, resulting in their strength and stiffness degraded. In this review, we summarize all the recent studies on the artificial climate aging, hygrothermal aging, and thermal-oxidation aging of fiber reinforced polymer-matrix composites, as well as their artificial accelerated aging and natural aging. In addition, studi...

  5. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  6. Comparative Analysis of the Reinforcement of Polymers with 2D-Nanofillers: Organoclay and Boron Nitride

    Science.gov (United States)

    Kozlov, G. V.; Kuvshinova, S. A.; Dolbin, I. V.; Koifman, O. I.

    2018-03-01

    Using the percolation reinforcement model, it has been shown that the main factor governing the degree of reinforcement of polymer/2D-nanofiller composites is the ability of a nanofiller to generate interfacial regions. This parameter is interrelated with two fundamental structural characteristics of a nanocomposite, i.e., the fractal dimension of its structure and the content of polymer matrix/nanofiller interfacial surfaces. The negative effect of high nanofiller anisotropy on the elasticity modulus of a nanocomposite is demonstrated.

  7. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    International Nuclear Information System (INIS)

    Alubaidy, M; Venkatakrishnan, K; Tan, B

    2010-01-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  8. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  9. EXPERIMENTAL INVESTIGATION ON THE EFFECT OF NATURAL TROPICAL WEATHER ON INTERFACIAL BONDING PERFORMANCE OF CFRP-CONCRETE BONDING SYSTEM

    Directory of Open Access Journals (Sweden)

    MOHD H. MOHD HASHIM

    2016-04-01

    Full Text Available The existing reinforced concrete structures may require rehabilitation and strengthening to overcome deficiencies due to defect and environmental deterioration. Fibre Reinforced Polymer (FRP-concrete bonding systems can provide solution for the deficiencies, but the durability of the bonded joint needs to be investigated for reliable structural performance. In this research the interfacial bonding behaviour of CFRP-concrete system under tropical climate exposure is main interest. A 300 mm concrete prism was bonded with CFRP plate on its two sides and exposed for 3, 6, and 9 months to laboratory environment, continuous natural weather, and wet-dry exposure in 3.5% saltwater solution at room and 40 °C temperature. The prisms were subjected to tension and compression load under bonding test to measure the strain and determine stress distribution and shear stress transfer behaviour. The results of the bonding test showed that load transfer was fairly linear and uniform at lower load level and changed to non-linear and non- uniform at higher load level. The force transfers causes the shear stress distribution being shifted along the bonded length. The combination of climate effects may have provided better curing of the bonded joints, but longer duration of exposure may be required to weaken the bond strength. Nevertheless, CFRP-concrete bonding system was only minimally affected under the tropical climate and salt solution.

  10. Milling damage on Carbon Fibre Reinforced Polymer using TiAlN coated End mills

    Science.gov (United States)

    Konneh, Mohamed; Izman, Sudin; Rahman Kassim, Abdullah Abdul

    2015-07-01

    This paper reports on the damage caused by milling Carbon Fibre Reinforced Composite (CFRP) with 2-flute 4 mm-diameter solid carbide end mills, coated with titanium aluminium nitride. The machining parameters considered in work are, rotation speed, feed rate and depth of cut. Experiments were designed based on Box-Behnken design and the experiments conducted on a Mikrotool DT-110 CNC micro machine. A laser tachometer was used to ascertain a rotational speed for conducting any machining trial. Optical microscopy examination reveals minimum delamination value of 4.05 mm at the spindle speed of 25,000 rpm, depth of cut of 50μm and feed rate of 3 mm/min and the maximum delamination value of 5.04 mm at the spindle speed of 35000 rpm, depth of cut of 150μm and feed rate of 9 mm/min A mathematical model relating the milling parameters and delamination has been established.

  11. Mechanical behavior of fiber/matrix interfaces in CFRP sheets subjected to plastic deformation

    Directory of Open Access Journals (Sweden)

    Kamiya Ryuta

    2016-01-01

    Full Text Available The use of Carbon Fiber Reinforced Plastic (CFRP is increasing markedly, partially in the aviation industry, but it has been considered that CFRP sheets cannot be formed by press-forming techniques owing to the low ductility of CFRP. Since the mechanical characteristics of CFRP are dominated by the microscale structure, it is possible to improve its formability by optimizing the material structure. Therefore, to improve the formability, the interaction between the carbon fibers and the matrix must be clarified. In this study, microscale analyses were conducted by a finite-element model with cohesive zone elements.

  12. Enhanced FBG sensor-based system performance assessment for monitoring strain along a prestressed CFRP rod in structural monitoring

    DEFF Research Database (Denmark)

    Kerrouche, A.; Boyle, W.J.O.; Sun, T.

    2009-01-01

    of the existing FBG-based system and the evaluation of the software developed to be compatible with a resolution reaching as high as +/- 0.15 mu epsilon is presented. The system has been tested under particular conditions where a prestressed CFRP (carbon fiber reinforced polymer) rod to which a FBG sensor......Fiber Bragg grating (FBG) sensor-based systems have been widely used for many engineering applications including most recently a number of applications in structural health monitoring. It is well known that strain and temperature both affect the FBG spectrum which in the interrogation system...

  13. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  14. Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: Micromechanical numerical study

    DEFF Research Database (Denmark)

    Pontefisso, Alessandro; Mishnaevsky, Leon

    2016-01-01

    of nanocomposites with inclusions of arbitrary and complex shapes. The effect of curved, zigzagged, snakelike shapes of real carbon nanotubes, as well as re-stacking of graphene on the damage evolution was studied in the computational experiments based on the developed code. The potential of hybrid (carbon...... nanotubes and graphene) nanoscale reinforcement was studied with view on its effect of damage resistance. It was demonstrated that idealized, cylinder like models of carbon nanotubes in polymers lead to an underestimation of the stress concentration and damage likelihood in the nanocomposites. The main...... damage mechanisms in CNT reinforced polymers are debonding and pull-out/fiber bridging, while in graphene reinforced polymers the main role is played by crack deviation and stack splitting, with following micro-crack merging. The potential of hybrid (carbon nanotubes and graphene) nanoscale reinforcement...

  15. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  16. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  17. Mechanical reinforcement and segmental dynamics of polymer nanocomposites

    Science.gov (United States)

    Gong, Shushan

    The addition of nanofiller into a polymer matrix will dramatically change the physical properties of polymer. The introduction of nanofiller makes the polymer more applicable in many industries, such as automobile tires, coatings, semiconductors, and packaging. The altered properties are not the simple combination of the characters from the two components. The interactions in polymer nanocomposites play an important role in determining the physical properties. This dissertation focuses on the mechanical properties of polymer nanocomposites (silica/poly-2-vinylpyridine) above their glass transition temperature Tg, as a model for automobile tires, which utilize small silica particles in crosslinked rubber far above Tg. We also investigate the impacts of the interaction between particle filler and polymer matrix on the altered mechanical properties. Dielectric relaxation spectroscopy (DRS) is used to study the glassy bound polymer layers formed around the particles. The results show evidence of the existence of immobilized polymer layers at the surface of each nanoparticle. At the same time, the thickness of the immobilized polymer layers is quantified and formed to be around 2 nm. Then we consider particles with glassy bound polymer layers are bridged together (either rubbery bridge or glassy bridge) by polymer chains and form small clusters. Clusters finally percolate to form a particle-polymer network as loading fraction increases. Rheology is used to study the network formation, and to predict the boundary of rubbery bridge and glassy bridge regimes. The distance between particles determines the type of polymer bridging. The particle spacing larger than Kuhn length makes flexible (rubbery) bridge with rheology described by a flexible Rouse model for percolation. When the spacing is shorter than the Kuhn length (~ 1nm), stiffer bridge forms instead, which is called glassy bridge. The mechanical differences between rubbery bridge and glassy bridge, and the effect of

  18. The Influence of Moisture on the Performance of Polymer Fibre-Reinforced Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Kamaruddin Ibrahim

    2016-01-01

    Full Text Available A number of researches have been done worldwide to evaluate the damage caused by water in bituminous pavements. The use of the retained strength ratios obtained from laboratory moisture damage tests is a useful tool in making quantitative predictions of the related damage caused by water. This study involved laboratory work on the effect of water on the performance of bituminous mixtures. Comparisons are made between the performances of Hot-rolled Asphalt (HRA bituminous mixtures containing base bitumen of 50 pen grade to that of a polymer-fibre reinforced HRA mixture. Two types of polymer fibre were studied, namely polypropylene and polyester and these fibre were added in different concentrations in the bituminous mixtures. Changes in both the cohesive properties of the bitumen and the adhesion of the bitumen to the aggregate surface were observed as a result of exposing the bituminous mixtures to moisture. The effect of polymer fibre reinforcement in bituminous mixtures helps reduce the level of moisture damage. This was evident in the lower moisture susceptibility achieved in the polymer fibre reinforced bituminous mixtures as compared to the control mixture. The additional bitumen in the fibre reinforced mixtures also afforded an increased film thickness on the aggregate particles, thus affording additional protection of the mixtures from moisture. The reinforcement of polymer fibres in bituminous mixtures also acts to decrease the moisture sensitivity of the bitumen to aggregate bonding. This may be due to the strengthening of the wetted binder matrix that helps promote both adhesion and cohesion retention.

  19. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    Science.gov (United States)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  20. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    Science.gov (United States)

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Articularities of Analysis and Behaviour of Concrete Beams Reinforced with Fibrous Polymer Composite Bars

    Directory of Open Access Journals (Sweden)

    N. Ţăranu

    2006-01-01

    Full Text Available Traditional steel based reinforcement systems for concrete elements are facing with serious problems mainly caused by corrosion due to chemically aggressive environments and salts used in deicing procedures, especially in case of bridge steel reinforced concrete girders. Also in some cases special applications require structural members with magnetic transparency. An alternative to this major problem has recently become the use of fiber reinforced polymer (FPR composite bars as internal reinforcement for concrete beams. The particularities of their mechanical properties are making the design process a difficult task for engineers, numerous research centers being involved in correcting this situation. The general aspects concerning the conceiving of FR.P reinforced concrete beams are firstly analyzed, compared to those reinforced with steel bars. Some results of a Finite Element Analysis, as part of a complex program which also implies full scale testing of FRP reinforced beams subjected to bending, are given and discussed in the paper. The low elasticity modulus presented by glass fiber reinforced polymer (GFRP bars does not justify its use from structural point of view when deflection is the limiting condition but for corrosive resistance reasons and special electromagnetic properties this system can be promoted.

  2. Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading

    Directory of Open Access Journals (Sweden)

    Valentino Paolo Berardi

    2012-11-01

    Full Text Available Polymer concretes (PCs represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section. The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.

  3. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  4. Machinability study of Carbon Fiber Reinforced Polymer in the longitudinal and transverse direction and optimization of process parameters using PSO–GSA

    Directory of Open Access Journals (Sweden)

    K. Shunmugesh

    2016-09-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP composites are widely used in aerospace industry in lieu of its high strength to weight ratio. This study is an attempt to evaluate the machinability of Bi-Directional Carbon Fiber–Epoxy composite and optimize the process parameters of cutting speed, feed rate and drill tool material. Machining trials were carried using drill bits made of high speed steel, TiN and TiAlN at different cutting speeds and feed rates. Output parameters of thrust force and torque were monitored using Kistler multicomponent dynamometer 9257B and vibrations occurring during machining normal to the work surface were measured by a vibration sensor (Dytran 3055B. Linear regression analysis was carried out by using Response Surface Methodology (RSM, to correlate the input and output parameters in drilling of the composite in the longitudinal and transverse directions. The optimization of process parameters were attempted using Genetic Algorithm (GA and Particle Swarm Optimization–Gravitational Search Algorithm (PSO–GSA techniques.

  5. Identification and Modelling of the In-Plane Reinforcement Orientation Variations in a CFRP Laminate Produced by Manual Lay-Up

    Science.gov (United States)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2017-08-01

    Reinforcement angle orientation has a significant effect on the mechanical properties of composite materials. This work presents a methodology to introduce variable reinforcement angles into finite element (FE) models of composite structures. The study of reinforcement orientation variations uses meta-models to identify and control a continuous variation across the composite ply. First, the reinforcement angle is measured through image analysis techniques of the composite plies during the lay-up phase. Image analysis results show that variations in the mean ply orientations are between -0.5 and 0.5° with standard deviations ranging between 0.34 and 0.41°. An automatic post-treatment of the images determines the global and local angle variations yielding good agreements visually and numerically between the analysed images and the identified parameters. A composite plate analysed at the end of the cooling phase is presented as a case of study. Here, the variation in residual strains induced by the variability in the reinforcement orientation are up to 28% of the strain field of the homogeneous FE model. The proposed methodology has shown its capabilities to introduce material and geometrical variability into FE analysis of layered composite structures.

  6. Identification and Modelling of the In-Plane Reinforcement Orientation Variations in a CFRP Laminate Produced by Manual Lay-Up

    Science.gov (United States)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2018-06-01

    Reinforcement angle orientation has a significant effect on the mechanical properties of composite materials. This work presents a methodology to introduce variable reinforcement angles into finite element (FE) models of composite structures. The study of reinforcement orientation variations uses meta-models to identify and control a continuous variation across the composite ply. First, the reinforcement angle is measured through image analysis techniques of the composite plies during the lay-up phase. Image analysis results show that variations in the mean ply orientations are between -0.5 and 0.5° with standard deviations ranging between 0.34 and 0.41°. An automatic post-treatment of the images determines the global and local angle variations yielding good agreements visually and numerically between the analysed images and the identified parameters. A composite plate analysed at the end of the cooling phase is presented as a case of study. Here, the variation in residual strains induced by the variability in the reinforcement orientation are up to 28% of the strain field of the homogeneous FE model. The proposed methodology has shown its capabilities to introduce material and geometrical variability into FE analysis of layered composite structures.

  7. Comparison of Properties of Polymer Composite Materials Reinforced with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2015-04-01

    Full Text Available Carbon nanotubes because of their high mechanical, optical or electrical properties, have found use as semiconducting materials constituting the reinforcing phase in composite materials. The paper presents the results of the studies on the mechanical properties of polymer composites reinforced with carbon nanotubes (CNT. Three-point bending tests were carried out on the composites. The density of each obtained composite was determined as well as the surface roughness and the resistivity at room temperature.

  8. Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Soydan [ORNL; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Nelson, Kim [American Process Inc.

    2016-07-13

    ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.

  9. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  10. Development of Composite Made of HDPE and Fiber Reinforced Polymer Dust

    International Nuclear Information System (INIS)

    Muhamad Noor Izwan Ishak; Ismail Mustapha; Mohd Reusmazran Yusof; Yusof Abdullah; Nor Pai'za Mohamad Hasan; Mohamad Ridzuan Ahamad; Md Fakarudin Ab Rahman; Hafizal Yazid; Ainul Mardhiah Terry; Airwan Affandi Mahmood; Nurliyana Abdullah

    2016-01-01

    Full text: Composite of High Density Polyethylene and Fiber Reinforced Polymer Dust (HDPE/ FRPD) were prepared by melt mixing technique. The blend was mixed and compression molded by hydraulic press at 150 degree Celsius. Effect of blend ratio on mechanical properties of the developed composite was determined. Tensile properties of the blends found to show decreasing trend with addition of FRPD. While impact strength and hardness properties showed promising result. Reuse of ' Fiber Reinforced Polymer ' dust can be improved by the present invention. (author)

  11. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  12. Green Route Fabrication of Graphene Oxide Reinforced Polymer Composites with Enhanced Mechanical Properties

    International Nuclear Information System (INIS)

    Mahendran, R.; Sridharan, D.; Santhakumar, K.; Gnanasekaran, G.

    2016-01-01

    A facile and “Green” route has been applied to fabricate graphene oxide (GO) reinforced polymer composites utilizing “deionized water” as solvent. The GO was reinforced into water soluble poly(vinyl alcohol) (PVA) and poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) matrix by ultrasonication followed by mechanical stirring. The incorporation and dispersion of the GO in the polymer matrix were analyzed by XRD, FE-SEM, AFM, FT-IR, and TGA. Further, the FE-SEM and AFM images revealed that the surface roughness and agglomeration of the GO in the polymer matrix increased by increasing its concentration. Ionic exchange capacity, proton conductivity, and tensile texture results showed that the reinforcement of GO in the polymer matrix enhances the physicochemical properties of the host polymer. These PVA/PAMPS/GO nano composites showed improved mechanical stability compared to the pristine polymer, because of strong interfacial interactions within the components and homogeneous dispersion of the GO sheets in the PVA/PAMPS matrix.

  13. Shear Capacity of Steel and Polymer Fibre Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Kragh-Poulsen, Jens C.; Hoang, Cao Linh; Goltermann, Per

    2011-01-01

    This paper deals with the application of a plasticity model for shear strength estimation of fibre reinforced concrete beams without stirrups. When using plastic theory to shear problems in structural concrete, the so-called effective strengths are introduced, usually determined by calibrating...... the plastic solutions with tests. This approach is, however, problematic when dealing with fibre reinforced concrete (FRC), as the effective strengths depend also on the type and the amount of fibres. In this paper, it is suggested that the effective tensile strength of FRC can be determined on the basis...

  14. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    Wintec

    initiated in our laboratory on synthesis and study of pro- perties of Hibiscus sabdariffa fibre reinforced urea– formaldehyde (U–F) resin matrix based biocomposites. 2. Experimental. 2.1 Material and methods. Urea (Qualigens Chemicals Ltd), formaldehyde solution. (Qualigens Chemicals Ltd.) and sodium hydroxide (Quali-.

  15. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  16. Les polymères auto-renforcés à cristaux liquides Self-Reinforcing Liquid-Crystal Polymers

    Directory of Open Access Journals (Sweden)

    Dorbon M.

    2006-11-01

    Full Text Available Les polymères auto-renforcés à cristaux liquides (PARCL sont des matériaux dont les molécules, des polymères organiques, sont susceptibles de s'auto-orienter les unes par rapport aux autres. Cette propriété leur confère des caractéristiques mécaniques proches de celles des acier: pour des poids plus faibles sans qu'il soit nécessaire d'avoir recours à des fibres renforçantes. Il existe deux types de PARCL: ceux pouvant s'orienter en solution, qualifiés de lyotropiques, et ceux pouvant s'orienter à l'état fondu, appelés thermotropiques. Des fibres en poly (p-phénylène térephtalamide PPT, PARCL de type lyotropique, sont disponibles commercialement et connaissent déjà de nombreuses applications. Les PARCL thermotropiques n'existent pas encore sur le marché mais sont porteurs de nombreux espoirs car ils sont susceptibles d'être moulés et donc de prendre les formes les plus diverses, ce qui n'est pas le cas de ceux de type lyotropique. Self-reinforcing liquid-crystal polymers are materials in which the molecules, i. e. organic polymers, are capable of orienting themselves in relation to one another. This property gives them mechanical characteristics close to those of steels yet of much less weight without having to use reinforcing fibers. There are two types of self-reinforcing liquid-crystal polymers: (i those capable of orienting themselves in solution, called Iyotropic, and (ii those capable of orienting themselves in a molten state, called thermotropic. Poly (p-phenylene terephthalamide fibers, self-reinforcing liquid-crystal polymers of the Iyotropic type, are commercially available and have already found numerous applications. Thermotropic self-reinforcing liquid-crystal polymers are not yet on the market but seem to be very promising because they are capable of being molded and hence of taking on a wide variety of shapes, which is not the case of those of the lyotropic type.

  17. Experimental research into the relation between the peeling angle and the debonding of CFRP laminates bonded to concrete

    NARCIS (Netherlands)

    Klamer, E.L.

    2004-01-01

    CFRP is a relatively new, innovative strengthening material to strengthen reinforced concrete structures. Main issue, when strengthening a concrete structure is the debonding of CFRP. Although a lot of research has been carried out into the debonding behavior, still some questions remain open. In

  18. Remote Laser Cutting of CFRP: Improvements in the Cut Surface

    Science.gov (United States)

    Stock, Johannes; Zaeh, Michael F.; Conrad, Markus

    In the automotive industry carbon fibre reinforced plastics (CFRP) are considered as a future key material to reduce the weight of the vehicle. Therefore, capable production techniques are required to process this material in mass industry. E.g., state of the art methods for cutting are limited by the high tool wear or the feasible feed rate. Laser cutting processes are still under investigation. This paper presents detailed new studies on remote laser cutting of CFRP focusing on the influence of the material properties and the quality of the cut surface. By adding light absorbing soot particles to the resin of the matrix, the cutting process is improved and fewer defects emerge.

  19. Comparative Analysis of Existing RC Columns Jacketed with CFRP or FRCC

    Directory of Open Access Journals (Sweden)

    Marta Del Zoppo

    2018-03-01

    Full Text Available Reinforced concrete (RC columns typical of existing structures often exhibit premature failures during seismic events (i.e., longitudinal bars buckling and shear interaction mechanisms due to the poor quality concrete and the absence of proper seismic details in the potential plastic hinge region. The Fiber Reinforced Polymers (FRP externally bonded reinforcement is known to be a valid technique to improve the shear capacity or the ductility of existing RC columns. However, few experimental tests have proven its effectiveness in the case of columns affected by shear interaction mechanisms. In this work, the behavior of existing RC columns with border line behavior between flexure and shear have been investigated in the case of poor quality concrete and light FRP strengthening with local jacketing and medium quality concrete and strong FRP strengthening with local jacketing, in order to highlight the effect of concrete strength on the effectiveness of the retrofit intervention. As an alternative to FRP jacketing; the effectiveness of the Fiber Reinforced Cementitious Composite (FRCC jacketing for the seismic strengthening of columns with highly deteriorated concrete cover or columns already damaged by an earthquake is also evaluated. Six full-scale RC columns have been tested under cyclic loading: one was used as a control specimen; four were strengthened in the potential plastic hinge region with carbon FRP (CFRP; and one was fully jacketed with FRCC. The comparison between poor and medium quality concrete columns showed that the CFRP local jacketing is more effective in the case of poor quality concrete. The FRCC jacketing appears to be a sound repair strategy and a suitable alternative to the FRP jacketing in case of poor quality; however, more experimental research is needed for improving this retrofit technique.

  20. Asset management business model for design, realization, and maintenance of fibre reinforced polymer bridges

    NARCIS (Netherlands)

    Sebastian, R.

    2013-01-01

    This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP) for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7) titled Trans-IND and PANTURA. FRP has

  1. STUDY OF SINGLE WALLED CARBON NANOTUBE REINFORCED POLYMER COMPOSITES BY HANSEN SOLUBILITY PARAMETERS

    DEFF Research Database (Denmark)

    Ma, Jing

    reinforcement of the polymer by the addition of SWNTs. Existence of agglomerates, voids, and the lower glass transition temperature of epoxy resin, may give the negative effect on the mechanical properties of nanocomposite materials. In the design aspect of the composite material, HSP could help match SWNTs...

  2. Investigation of CFRP in aerospace field and improvement of the molding accuracy by using autoclave

    Science.gov (United States)

    Minamisawa, Takunori

    2017-07-01

    In recent years, CFRP (Carbon Fiber Reinforced Plastic) has come to be used in a wide range of industries such as sporting goods, fishing tackle and cars because it has a large number of advantages. In this situation, even the passenger aircraft industry also pays attention to the material. CFRP is an ideal material for airplanes because it has a lot of advantages such as light weight and strong, chemical resistance and corrosion resistance. Generally, autoclave is used for molding CFRP in the field of aerospace engineering. Autoclave is a machine that can mold a product by heating and pressurizing material in an evacuated bag. What is examined in this paper is an observation on handmade CFRP by a polarizing microscope. In addition, mechanical characteristics were investigated. Furthermore, an improvement of accuracy in CFRP molding using an autoclave is suggested from viewpoint of thermodynamics.

  3. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  4. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  5. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  6. Electron beam irradiation in natural fibres reinforced polymers (NFRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kechaou, B. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Salvia, M. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Fakhfakh, Z. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Juve, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Boufi, S. [LSME-Faculte des Sciences de Sfax, 3018 Sfax (Tunisia); Kallel, A. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Treheux, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France)], E-mail: daniel.treheux@ec-lyon.fr

    2008-11-15

    This study focuses on the electric charge motion in unsatured polyester and epoxy composites reinforced by natural fibres of Alfa type, treated by different coupling agents. The electric charging phenomenon is studied by scanning electron microscopy mirror effect (SEMME) coupled with the induced current method (ICM). Previously, using the same approach, glass fibre reinforced epoxy (GFRE) was studied to correlate mechanical [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Composites Science and Technology 64 (2004) 1467], or tribological [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Dielectric and friction behaviour of unidirectionalglass fibre reinforced epoxy (GFRE), Wear, 265 (2008) 763.] properties and dielectric properties. It was shown that the dielectric properties of the fibre-matrix interfaces play a significant role in the optimization of the composite. This result seems to be the same for natural fibre composites: the fibre-matrix interfaces allow a diffusion of the electric charges which can delocalize the polarization energy and consequently delay the damage of the composite. However, a non-suited sizing can lead to a new trapping of electric charges along these same interfaces with, as a consequence, a localization of the polarisation energy. The optimum composite is obtained for one sizing which helps, at the same time, to have a strong fibre-matrix adhesion and an easy flow of the electric charges along the interface.

  7. Milling damage on Carbon Fibre Reinforced Polymer using TiAlN coated End mills

    International Nuclear Information System (INIS)

    Konneh, Mohamed; Kassim, Abdullah Abdul Rahman; Izman, Sudin

    2015-01-01

    This paper reports on the damage caused by milling Carbon Fibre Reinforced Composite (CFRP) with 2-flute 4 mm-diameter solid carbide end mills, coated with titanium aluminium nitride. The machining parameters considered in work are, rotation speed, feed rate and depth of cut. Experiments were designed based on Box-Behnken design and the experiments conducted on a Mikrotool DT-110 CNC micro machine. A laser tachometer was used to ascertain a rotational speed for conducting any machining trial. Optical microscopy examination reveals minimum delamination value of 4.05 mm at the spindle speed of 25,000 rpm, depth of cut of 50μm and feed rate of 3 mm/min and the maximum delamination value of 5.04 mm at the spindle speed of 35000 rpm, depth of cut of 150μm and feed rate of 9 mm/min A mathematical model relating the milling parameters and delamination has been established. (paper)

  8. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    International Nuclear Information System (INIS)

    Mistica, R.; Sood, D.K.; Janardhana, M.N.

    1993-01-01

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs

  9. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R; Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M N [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1994-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  10. The effect of ion implantation on the tribomechanical properties of carbon fibre reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mistica, R.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Janardhana, M.N. [Deakin University, Geelong, VIC (Australia). School of Engineering and Technology

    1993-12-31

    Graphite fibre reinforced epoxy composite material (GFRP) is used extensively in the aerospace and other industries for structural application. The trend is to address the 20 to 30 year life endurance of this material in service. Mechanical joints in air crafts are exposed to dynamic loads during service and wear may be experienced by the composite material joint. Generally it has been shown that graphite fibre reinforced polymers have superior wear and friction properties as compared with the unfilled polymers. In the described experiment, ion implantation was used as a novel surface treatment. Wear and friction of a polymer composite material (GFRP) was studied and ion implantation was used in order to observe the effect on the tribomechanical properties of the material. It was found that ion implantation of C on GFRP sliding against Ti changes the tribological properties of the system, and in particular decreases the coefficient of friction and wear. 4 refs., 2 figs.

  11. Roughness Influence On Macro- And Micro-Tribology Of Multi-Layered Hard Coatings On Carbon Fibre Polymer Composite

    Directory of Open Access Journals (Sweden)

    Lackner J.M.

    2015-09-01

    Full Text Available Goal of this work is the investigation of roughness influences on the abrasive wear behaviour of magnetron sputtered multi-layered, low-friction coatings on carbon-fibre reinforced polymers (CFRP. Higher coating roughness at similar CFRP quality was realized by higher deposition rates, leading to increased heat flux to the substrates during deposition. Thermal expansion of the epoxy matrix on the micro scale results in a wavy, wrinkled surface topography. Both in scratch and reciprocal sliding testing against alumina, the friction coefficients are lower for the smooth coatings, but their wear rate is higher due to low-cycle fatigue caused abrasion.

  12. Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.

    Science.gov (United States)

    Cong, W L; Pei, Z J; Sun, X; Zhang, C L

    2014-02-01

    Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Defect recognition in CFRP components using various NDT methods within a smart manufacturing process

    Science.gov (United States)

    Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe

    2018-04-01

    The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.

  14. Effect of Eccentricity of Load on Critical Force of Thin-Walled Columns CFRP

    Directory of Open Access Journals (Sweden)

    Pawel Wysmulski

    2017-09-01

    Full Text Available The subject of study was a thin-walled C-section made of carbon fiber reinforced polymer (CFRP. Column was subjected to eccentric compression in the established direction. In the computer simulation, the boundary conditions were assumed in the form of articulated support of the sections of the column. Particular studies included an analysis of the effects of eccentricity on the critical force value. The research was conducted using two independent research methods: numerical and experimental. Numerical simulations were done using the finite element method using the advanced system Abaqus®. The high sensitivity of the critical force value corresponding to the local buckling of the channel section to the load eccentricity was demonstrated.

  15. NONLINEAR ANALYSIS OF CFRP- PRESTRESSED CONCRETE BEAMS SUBJECTED TO INCREMENTAL STATIC LOADING BY FINITE ELEMENTS

    Directory of Open Access Journals (Sweden)

    Husain M. Husain

    2013-05-01

    Full Text Available In this work a program is developed to carry out the nonlinear analysis (material nonlinearity of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. are examined by the developed computer program to reach a certain analytical approach of the design and analysis of such beams because there is no available restrictions or recommendations covering this material in the codes. The program uses the finite element analysis by dividing the beams into isoparametric 20-noded brick elements. The results obtained are good in comparison with experimental results.

  16. Finite element modelling for mode-I fracture behaviour of CFRP

    Science.gov (United States)

    Chetan, H. C.; Kattimani, Subhaschandra; Murigendrappa, S. M.

    2018-04-01

    Debonding is a major failure mechanism in Carbon Fiber Reinforced Polymer (CFRP) due to presence of many adhesion joins, in between many layers. In the current study a finite element simulation is carried out using Virtual Crack Closure Technique (VCCT) and Cohesive Zone Modelling (CZM) using Abaqus as analysis tool. A comparative study is performed in to order analyze convergence of results from CZM and VCCT. It was noted that CZM results matched well with published literature. The results from VCCT were also in good comparison with experimental data of published literature, but were seen to be overestimated. Parametric study is performed to evaluate the variation of input parameters like initial stiffness, element size, peak stress and energy release rate `G'. From the numerical evaluation, it was noted that CZM simulation relies largely on element size and peak stress.

  17. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  18. Fatigue Crack Propagation Behavior of RC Beams Strengthened with CFRP under High Temperature and High Humidity Environment

    Directory of Open Access Journals (Sweden)

    Dongyang Li

    2017-01-01

    Full Text Available Numerical and experimental methods were applied to investigate fatigue crack propagation behavior of reinforced concrete (RC beams strengthened with a new type carbon fiber reinforced polymer (CFRP named as carbon fiber laminate (CFL subjected to hot-wet environment. J-integral of a central crack in the strengthened beam under three-point bending load was calculated by ABAQUS. In finite element model, simulation of CFL-concrete interface was based on the bilinear cohesive zone model under hot-wet environment and indoor atmosphere. And, then, fatigue crack propagation tests were carried out under high temperature and high humidity (50°C, 95% R · H environment pretreatment and indoor atmosphere (23°C, 78% R · H to obtain a-N curves and crack propagation rate, da/dN, of the strengthened beams. Paris-Erdogan formula was developed based on the numerical analysis and environmental fatigue tests.

  19. Machining and characterization of self-reinforced polymers

    Science.gov (United States)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.

  20. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebényi, G.; Romhány, G.; Vajna, B.; Czvikovszky, T.

    2012-01-01

    A small amount — less than 0.5% — carbon nanotube reinforcement may improve the mechanical properties of epoxy based composite materials significantly. The basic technical problem on one side is the dispersion of the nanotubes into the viscous matrix resin, namely, the fine powder-like — less than 100 nanometer diameter — nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, which is determining the success of the reinforcement, requires some efficient adhesion promoting treatment. The goal of our research was to give one such treatment capable of industrial size application. A two step curing epoxy/vinylester resin process technology has been developed where the epoxy component has been cured conventionally, while the vinylester has been cured by electron treatment afterwards. The sufficient irradiation dose has been selected according to Raman spectroscopy characterization. Using the developed hybrid resin system hybrid composites containing carbon fibers and multiwalled carbon nanotubes have been prepared. The effect of the electron beam induced curing of the vinylester resin on the mechanical properties of the composites has been characterized by three point bending and interlaminar shear tests, which showed clearly the superiority of the developed resin system. The results of the mechanical tests have been supported by AFM studies of the samples, which showed that the difference in the viscoelastic properties of the matrix constituents decreased significantly by the electron beam treatment.

  1. Prediction of Elastic Constants of the Fuzzy Fibre Reinforced Polymer Using Computational Micromechanics

    Science.gov (United States)

    Pawlik, Marzena; Lu, Yiling

    2018-05-01

    Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.

  2. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  3. Analysis of fracture surface of CFRP material by three-dimensional reconstruction methods

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.

    2009-01-01

    Fracture surfaces of CFRP (carbon Fiber Reinforced Polymer) materials, used in the nuclear fuel cycle, presents an elevated roughness, mainly due to the fracture mode known as pulling out, that displays pieces of carbon fibers after debonding between fiber and matrix. The fractographic analysis, by bi-dimensional images is deficient for not considering the so important vertical resolution as much as the horizontal resolution. In this case, the knowledge of this heights distribution that occurs during the breaking, can lead to the calculation of the involved energies in the process that would allows a better agreement on the fracture mechanisms of the composite material. An important solution for the material characterization, whose surface presents a high roughness due to the variation in height, is to reconstruct three-dimensionally these fracture surfaces. In this work, the 3D reconstruction was done by two different methods: the variable focus reconstruction, through a stack of images obtained by optical microscopy (OM) and the parallax reconstruction, carried through with images acquired by scanning electron microscopy (SEM). The results of both methods present an elevation map of the reconstructed image that determine the height of the surface pixel by pixel,. The results obtained by the methods of reconstruction for the CFRP surfaces, have been compared with others materials such as aluminum and copper that present a ductile type fracture surface, with lower roughness. (author)

  4. Ensemble variational Bayes tensor factorization for super resolution of CFRP debond detection

    Science.gov (United States)

    Lu, Peng; Gao, Bin; Feng, Qizhi; Yang, Yang; Woo, W. L.; Tian, Gui Yun

    2017-09-01

    The carbon fiber reinforced polymer (CFRP) is widely used in aircraft and wind turbine blades. The common type of CFRP defect is debond. Optical pulse thermographic nondestructive evaluation (OPTNDE) and relevant thermal feature extraction algorithms are generally used to detect the debond. However, the resolution of detection performance remain as challenges. In this paper, the ensemble variational Bayes tensor factorization has been proposed to conduct super resolution of the debond detection. The algorithm is based on the framework of variational Bayes tensor factorization and it constructs spatial-transient multi-layer mining structure which can significantly enhance the contrast ratio between the defective regions and sound regions. In order to quantitatively evaluate the results, the event based F-score is computed. The different information regions of the extracted thermal patterns are considered as different events and the purpose is to objectively evaluate the detectability for different algorithms. Experimental tests and comparative studies have been conducted to prove the efficacy of the proposed method.

  5. Cost and Ductility Effectiveness of Concrete Columns Strengthened with CFRP and SFRP Sheets

    Directory of Open Access Journals (Sweden)

    Khaled Abdelrahman

    2014-05-01

    Full Text Available Recently, steel fibre reinforced polymers (SFRP sheets have been introduced for the repair and rehabilitation of concrete structures. Few researchers studied the behaviour of the concrete columns wrapped with SFRP sheets; however, several critical parameters such as the cost and ductility effectiveness of the SFRP wrapped concrete columns have been lightly addressed. Thus, the main objective of this paper is to study the cost and ductility effectiveness of SFRP wrapped concrete columns and compare the results with the conventionally used carbon FRP (CFRP wrapped concrete columns. In addition, an analytical procedure to predict the cost effectiveness of SFRP wrapped concrete columns is also suggested, from which, a parametric study was conducted. The parametric study investigated the effect of the concrete strength, the number of SFRP layers, and the size and slenderness effects on the cost effectiveness of the concrete columns wrapped with SFRP sheets. The results from the cost and ductility effectiveness study indicated that the SFRP wrapped concrete columns showed enhanced performance over the CFRP wrapped concrete columns. The suggested analytical procedure proved to be a reliable and accurate method to predict the cost effectiveness parameter of SFRP wrapped concrete columns. The parametric study showed the significant impact of the investigated parameters on the cost effectiveness of concrete columns wrapped with SFRP sheets.

  6. Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis

    Science.gov (United States)

    Xu, Jinyang; El Mansori, Mohamed

    2016-01-01

    In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824

  7. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase

    Directory of Open Access Journals (Sweden)

    B. E. B. Uribe

    2017-01-01

    Full Text Available In this paper, a cost-effective and eco-friendly method to improve mechanical performance in continuous carbon fiber-reinforced polymer (CFRP matrix composites is presented. Unsized fiber fabric preforms are coated with self-assembling sugarcane bagasse microfibrillated cellulose, and undergo vacuum-assisted liquid epoxy resin infusion to produce solid laminates after curing at ambient temperature. Quasi-static tensile, flexural and short beam testing at room temperature indicated that the stiffness, ultimate strength and toughness at ultimate load of the brand-new two-level hierarchical composite are substantially higher than in baseline, unsized fiber-reinforced epoxy laminate. Atomic force microscopy for height and phase imaging, along with scanning electron microscopy for the fracture surface survey, revealed a 400 nm-thick fiber/matrix interphase wherein microfibrillated cellulose exerts strengthening and toughening roles in the hybrid laminate. Market expansion of this class of continuous fiber-reinforced-polymer matrix composites exhibiting remarkable mechanical performance/cost ratios is thus conceivable.

  8. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  9. Prestressed CFRP Fabrics for Flexural Strengthening of Concrete Beams with an Easy Prestressing Technique

    Science.gov (United States)

    Şakar, G.; Tanarslan, H. M.

    2014-09-01

    It is proposed to use prestressed CFRP plates for strengthening in order to prevent their debonding and thus to increase their strengthening efficiency. For this purpose, and easy-to-use piece of equipment was created. To determine the effectiveness of this method, an experimental program was carried out, and the effect of prestressed CFRP on the behavior and ultimate strength of reinforced concrete beams was examined in threepoint bending tests. A remarkable increase in their strength with debonding was seen for every specimen to which a prestressed CFRP plate had been applied.

  10. Applications of Fiber-Reinforced Polymers in Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies are these years entering the market of functional final parts. Initial research has been performed targeting the integration of fibers into additive manufactured plastic composites. Major advantages, among others, are for example increased tensile strength...... and Young's modulus. Key challenges in the field, as of now, are proper fiber placement, fiber seizing, an increased knowledge in the used materials and how they are applied into engineering solutions through proper control of the additive manufacturing process. The aim of this research is the improved...... understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization...

  11. Flexural behavior of reinforced concrete beam with polymer coated pumice

    Science.gov (United States)

    Nainggolan, Christin Remayanti; Wijatmiko, Indradi; Wibowo, Ari

    2017-09-01

    Sustainable development has become an important issue due to the increasing consideration of preserving the nature. Many alternative for coarse aggregate replacement have been investigated ranging from natural and fabricated aggregates. In this study, natural aggregate pumice was investigated since it offers lower density that give paramount benefit in reducing total building weight and hence reducing the earthquake excitation effect and optimizing the structural dimension. However, the characteristic of porous surfaces of pumice causes excessive water absorption during concrete mixing process. Therefore, to reduce the additional water, the pumice aggregates were coated with polymer. The tested specimens consisted of normal concrete beams (NCB), uncoated pumice aggregate concrete beam (UPA) and polymer coated pumice aggregate concrete beam (PCP). The objective of the research was to obtain the effect of coating on the pumice aggregate to the flexural behavior of concrete beams. The lateral load-displacement behavior, ductility and collapse mechanism were studied. The results showed that there were only marginal drop on the load-carrying capacity of the pumice aggregate beam compared to those of normal beam. Additionally, the ductility coefficient of specimens UPA and PCP decreased of 11,97% and 14,03% respectively compared to NCB, and the ultimate load capacity decreased less than 1%. Overall, the pumice aggregate showed good characteristic for replacing normal coarse aggregate.

  12. Behaviour of Prestressed CFRP Anchorages during and after Freeze-Thaw Cycle Exposure

    Directory of Open Access Journals (Sweden)

    Yunus Emre Harmanci

    2018-05-01

    Full Text Available The long-term performance of externally-bonded reinforcements (EBR on reinforced concrete (RC structures highly depends on the behavior of constituent materials and their interfaces to various environmental loads, such as temperature and humidity exposure. Although significant efforts have been devoted to understanding the effect of such conditions on the anchorage resistance of unstressed EBR, with or without sustained loading, the effect of a released prestressing has not been thoroughly investigated. For this purpose, a series of experiments has been carried out herein, with concrete blocks strengthened with carbon fiber-reinforced polymer (CFRP strips, both unstressed, as well as prestressed using the gradient anchorage. The gradient anchorage is a non-mechanical technique to anchor prestressed CFRP by exploiting the accelerated curing property of epoxy under higher temperatures and segment-wise prestress-force releasing. Subsequently, strengthened blocks are transferred into a chamber for exposure in dry freeze-thaw cycles (FTC. Following FTC exposure, the blocks are tested in a conventional lap-shear test setup to determine their residual anchorage resistance and then compared with reference specimens. Blocks were monitored during FTC by conventional and Fabry–Pérot-based fiber optic strain (FOS sensors and a 3D-digital image correlation (3D-DIC system during gradient application and lap-shear testing. Results indicate a reduction of residual anchorage resistance, stiffness and deformation capacity of the system after FTC and a change in the failure mode from concrete substrate to epoxy-concrete interface failure. It was further observed that all of these properties experienced a more significant reduction for prestressed specimens. These findings are presented with a complementary finite element model to shed more light onto the durability of such systems.

  13. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  14. Prestressed CFRP Strips with Gradient Anchorage for Structural Concrete Retrofitting: Experiments and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Julien Michels

    2014-01-01

    Full Text Available This paper presents a study on the load carrying capacity of reinforced concrete (RC beams strengthened with externally bonded (EB carbon fiber reinforced polymer (CFRP strips prestressed up to 0.6% in strain. At the strip ends, the innovative gradient anchorage is used instead of conventional mechanical fasteners. This method, based on the epoxy resin’s ability to rapidly cure under high temperatures, foresees a sector-wise heating followed by a gradual decrease of the initial prestress force towards the strip ends. The experimental investigation shows a promising structural behavior, resulting in high strip tensile strains, eventually almost reaching tensile failure of the composite strip. Additionally, ductility when considering deflection at steel yielding and at ultimate load is satisfying, too. From a practical point of view, it is demonstrated that premature strip grinding in the anchorage zone is not beneficial. In addition, a non-commercial 1D finite element code has been enlarged to an EB reinforcement with prestressed composite strips. A bilinear bond stress-slip relation obtained in earlier investigations is introduced as an additional failure criterion to the code. The numerical code is able to almost perfectly predict the overall structural behavior. Furthermore, the calculations are used for comparison purposes between an initially unstressed and a prestressed externally bonded composite reinforcement. The increase in cracking and yielding load, as well as differences in structural stiffness are apparent.

  15. A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    C. H. Lee

    2014-01-01

    Full Text Available Natural fibre is a well-known reinforcement fibre in polymer-matrix Composites (PMC lately. Natural fibre has fast growing and abundance properties which make it available at very low cost. For kenaf fibre there is long lists of research projects which have been done regarding its behaviour, and properties and modification made to it. In this paper, fire flammability is the main concern for natural fibre reinforced polymer (NFRP composites especially kenaf fibre. To estimate its flammability, a wide range of factors can be considered such as fibre content, type of matrices, pH conditions, treatment, and fire retardant (FR filler’s type. The most important criteria are the ignition time, rate of propagation, and fire behavior. thermogravimetric analysis (TGA, different scanning calorimetric (DSC, and dynamic mechanical analysis (DMA are the three most famous methods used to investigate the fire behaviour of composites.

  16. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  17. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  18. Investigation Characteristics Of Pulp Fibers AS Green Potential Polymer Reinforcing Agents

    OpenAIRE

    Masruchin, Nanang; Subyakto

    2012-01-01

    Three kinds of pulp fiber (i.e. kenaf, pineapple and coconut fiber)were characterized as reinforcing agents in compositematerials to be applied at automotive interior industry.Abetter understanding on characteristics of fiber will lead to enhance interface adhesion between fiber and matrices. Furthermore, it will improve the properties of polymer significantly. Chemical, surface compositions as well as morphology of pulp fiber were investigated using TAPPI standard test method, Fourier Transf...

  19. Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures

    OpenAIRE

    Viriyavudh Sim; Woo Young Jung

    2017-01-01

    Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall perform...

  20. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  1. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  2. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  3. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    International Nuclear Information System (INIS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-01-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete

  4. Cyclic behavior, development, and characteristics of a ductile hybrid fiber-reinforced polymer (DHFRP) for reinforced concrete members

    Science.gov (United States)

    Hampton, Francis Patrick

    Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3

  5. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  6. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  7. A Testing Platform for Durability Studies of Polymers and Fiber-reinforced Polymer Composites under Concurrent Hygrothermo-mechanical Stimuli

    Science.gov (United States)

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-01-01

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus. PMID:25548950

  8. A testing platform for durability studies of polymers and fiber-reinforced polymer composites under concurrent hygrothermo-mechanical stimuli.

    Science.gov (United States)

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-12-11

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus.

  9. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  10. Damage assessment in CFRP laminates exposed to impact fatigue loading

    International Nuclear Information System (INIS)

    Tsigkourakos, George; Silberschmidt, Vadim V; Ashcroft, I A

    2011-01-01

    Demand for advanced engineering composites in the aerospace industry is increasing continuously. Lately, carbon fibre reinforced polymers (CFRPs) became one of the most important structural materials in the industry due to a combination of characteristics such as: excellent stiffness, high strength-to-weight ratio, and ease of manufacture according to application. In service, aerospace composite components and structures are exposed to various transient loads, some of which can propagate in them as cyclic impacts. A typical example is an effect of the wind gusts during flight. This type of loading is known as impact fatigue (IF); it is a repetition of low-energy impacts. Such loads can cause various types of damage in composites: fibre breaking, transverse matrix cracking, de-bonding between fibres and matrix and delamination resulting in reduction of residual stiffness and loss of functionality. Furthermore, this damage is often sub-surface, which reinforces the need for more regular inspection. The effects of IF are of major importance due its detrimental effect on the structural integrity of components that can be generated after relatively few impacts at low force levels compared to those in a standard fatigue regime. This study utilises an innovative testing system with the capability of subjecting specimens to a series of repetitive impacts. The primary subject of this paper is to assess the damaging effect of IF on the behaviour of drilled CFRP specimens, exposed to such loading. A detailed damage analysis is implemented utilising an X-ray micro computed tomography system. The main findings suggested that at early stages of life damage is governed by o degree splits along the length of the specimens resulting in a 20% reduction of stiffness. The final failure damage scenario indicated that transverse crasks in the 90 degree plies are the main reason for complete delamination which can be translated to a 50% stiffness reduction.

  11. Self-diagnosis of structures strengthened with hybrid carbon-fiber-reinforced polymer sheets

    Science.gov (United States)

    Wu, Z. S.; Yang, C. Q.; Harada, T.; Ye, L. P.

    2005-06-01

    The correlation of mechanical and electrical properties of concrete beams strengthened with hybrid carbon-fiber-reinforced polymer (HCFRP) sheets is studied in this paper. Two types of concrete beams, with and without reinforcing bars, are strengthened with externally bonded HCFRP sheets, which have a self-structural health monitoring function due to the electrical conduction and piezoresistivity of carbon fibers. Parameters investigated include the volume fractions and types of carbon fibers. According to the investigation, it is found that the hybridization of uniaxial HCFRP sheets with several different types of carbon fibers is a viable method for enhancing the mechanical properties and obtaining a built-in damage detection function for concrete structures. The changes in electrical resistance during low strain ranges before the rupture of carbon fibers are generally smaller than 1%. Nevertheless, after the gradual ruptures of carbon fibers, the electrical resistance increases remarkably with the strain in a step-wise manner. For the specimens without reinforcing bars, the electrical behaviors are not stable, especially during the low strain ranges. However, the electrical behaviors of the specimens with reinforcing bars are relatively stable, and the whole range of self-sensing function of the HCFRP-strengthened RC structures has realized the conceptual design of the HCFRP sensing models and is confirmed by the experimental investigations. The relationships between the strain/load and the change in electrical resistance show the potential self-monitoring capacity of HCFRP reinforcements used for strengthening concrete structures.

  12. Mechanical analysis of CFRP-steel hybrid composites considering the interfacial adhesion

    Science.gov (United States)

    Jang, Jinhyeok; Sung, Minchang; Han, Sungjin; Shim, Wonbo; Yu, Woong-Ryeol

    2017-10-01

    Recently, hybrid composites of carbon fiber reinforced plastics (CFRP) and steel have attracted great attention from automotive engineers due to their high potential for lightweight and multi-materials structures. Interestingly, such hybrid composites have demonstrated increased breaking strain, i.e., the breaking strain of CFRP in the hybrid was larger than that of single CFRP. As such the mechanical properties of hybrid composites could not be calculated using the rule of mixture. In addition, such increase is strongly dependent on the adhesion between CFRP and steel. In this study, a numerical analysis model was built to investigate the mechanism behind increased breaking strain of CFRP in the hybrid structure. Using cohesive zone model, the adhesion between CFRP and steel was effectively considered. The numerical results showed that the simulated mechanical behavior of the hybrid composites did not change as much as observed in experimental as the interfacial adhesion varied. We will investigate this discrepancy in detail and will report new analysis method suitable for CFRP and steel hybrid composites.

  13. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.

    Science.gov (United States)

    Segerström, Susanna; Ruyter, I Eystein

    2007-09-01

    Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.

  14. Experimental Study on Unconfined Compressive Strength of Organic Polymer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-01-01

    Full Text Available The natural sand is loose in structure with a small cohesive force. Organic polymer can be used to reinforce this sand. To assess the effectiveness of organic polymer as soil stabilizer (PSS, a series of unconfined compressive strength tests have been performed on reinforced sand. The focus of this study was to determine a curing method and a mix design to stabilize sand. The curing time, PSS concentration, and sand density were considered as variables in this study. The reinforcement mechanism was analyzed with images of scanning electron microscope (SEM. The results indicated that the strength of stabilized sand increased with the increase in the curing time, concentration, and sand density. The strength plateaus are at about curing time of 48 h. The UCS of samples with density of 1.4 g/cm3 at 10%, 20%, 30%, 40%, and 50% PSS concentration are 62.34 kPa, 120.83 kPa, 169.22 kPa, 201.94 kPa, and 245.28 kPa, respectively. The UCS of samples with PSS concentration of 30% at 1.4 g/cm3, 1.5 g/cm3, and 1.6 g/cm3 density are 169.22 kPa, 238.6 kPa 5, and 281.69 kPa, respectively. The chemical reaction between PSS and sand particle is at its microlevel, which improves the sand strength by bonding its particles together and filling the pore spaces. In comparison with the traditional reinforcement methods, PSS has the advantages of time saving, lower cost, and better environment protection. The research results can be useful for practical engineering applications, especially for reinforcement of foundation, embankment, and landfill.

  15. Microstructural characterization of PAN based carbon fiber reinforced nylon 6 polymer composites

    Science.gov (United States)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2018-04-01

    Microstructural characterization of nylon 6/polyacrolonitrile based carbon fibers (PAN-CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o-Ps lifetime (τ3), o-Ps intensity (I3) and fractional free volume (Fv) of nylon 6/PAN-CF composites are correlated with the mechanical properties viz., Tensile strength and Young's modulus. The Fv show negative deviation with the reinforcement of 10 to 40 wt% of PAN-CF from the linear additivity relation. The negative deviation in nylon 6/PAN-CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN-CF. This is evident from Fourier Transform Infrared Spectrometry (FTIR) studies. The FTIR results suggests that observed negative deviation in PALS results of nylon 6/PAN-CF reinforced polymer composites is due to the induced chemical interaction at N-H-O sites. The improved tensile strength (TS) and Young's modulus (YM) in nylon 6/PAN-CF reinforced polymer composites is due to AS4C (surface treated and epoxy coated) PAN-CF has shown highest adhesion level due to better stress transfer between nylon 6 and PAN-CF.

  16. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  17. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    Science.gov (United States)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  18. DELAMINATION PREDICTION IN DRILLING OF CFRP COMPOSITES USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    K. PALANIKUMAR

    2011-04-01

    Full Text Available Carbon fibre reinforced plastic (CFRP materials play a major role in the applications of aeronautic, aerospace, sporting and transportation industries. Machining is indispensible and hence drilling of CFRP materials is considered in this present study with respect to spindle speed in rpm, drill size in mm and feed in mm/min. Delamination is one of the major defects to be dealt with. The experiments are carried out using computer numerical control machine and the results are applied to an artificial neural network (ANN for the prediction of delamination factor at the exit plane of the CFRP material. It is found that ANN model predicts the delamination for any given set of machining parameters with a maximum error of 0.81% and a minimum error of 0.03%. Thus an ANN model is highly suitable for the prediction of delamination in CFRP materials.

  19. Acoustic damage detection in laser-cut CFRP composite materials

    Science.gov (United States)

    Nishino, Michiteru; Harada, Yoshihisa; Suzuki, Takayuki; Niino, Hiroyuki

    2012-03-01

    Carbon fiber reinforced plastics (CFRP) composite material, which is expected to reduce the weight of automotive, airplane and etc., was cut by laser irradiation with a pulsed-CO2 laser (TRUMPF TFL5000; P=800W, 20kHz, τ=8μs, λ=10.6μm, V=1m/min) and single-mode fiber lasers (IPG YLR-300-SM; P=300W, λ=1.07μm, V=1m/min)(IPG YLR- 2000-SM; P=2kW, λ=1.07μm, V=7m/min). To detect thermal damage at the laser cutting of CFRP materials consisting of thermoset resin matrix and PAN or PITCH-based carbon fiber, the cut quality was observed by X-ray CT. The effect of laser cutting process on the mechanical strength for CFRP tested at the tensile test. Acoustic emission (AE) monitoring, high-speed camera and scanning electron microscopy were used for the failure process analysis. AE signals and fractographic features characteristic of each laser-cut CFRP were identified.

  20. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  1. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  2. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications

    Directory of Open Access Journals (Sweden)

    Layth Mohammed

    2015-01-01

    Full Text Available Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

  3. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  4. Experimental data on the properties of natural fiber particle reinforced polymer composite material

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2017-08-01

    Full Text Available This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  5. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    Science.gov (United States)

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  6. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shen

    2013-01-01

    Full Text Available Graphene nanoplatelets (GNPs are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.

  7. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  8. Gamma radiation processed bamboo polymer composites. III. Possible applications for tensile reinforcement of concrete

    International Nuclear Information System (INIS)

    Adur, A.M.

    1978-01-01

    Three species of bamboo were converted to bamboo-polymer composites by vacuum impregnation with monomer and in situ polymerization using gamma irradiation. Resistance of the composites to various chemicals present in concrete was tested. Resistance to termites, fungus and other forms of biological attack was examined. Strength-to-weight ratios were calculated based on mechanical tests performed earlier (paper II of this three-part series). Possible application for tensile reinforcement of concrete is discussed in considerable detail. 2 figures, 4 tables

  9. Microwave detection of delaminations between fiber reinforced polymer (FRP) composite and hardened cement paste

    Science.gov (United States)

    Hughes, D.; Kazemi, M.; Marler, K.; Zoughi, R.; Myers, J.; Nanni, A.

    2002-05-01

    Fiber reinforced polymer (FRP) composites are increasingly being used for the rehabilitation of concrete structures. Detection and characterization of delaminations between an FRP composite and a concrete surface are of paramount importance. Consequently, the development of a one sided, non-contact, real time and rapid nondestructive testing (NDT) technique for this purpose is of great interest. Near-field microwave NDT techniques, using open-ended rectangular waveguide probes, have shown great potential for detecting delaminations in layered composite structures such as these. The results of some theoretical and experimental investigations on a specially prepared cement paste specimen are presented here.

  10. The dispersion of SWCNTs treated by coupling and dispersing agents in fiber reinforced polymer composities

    Science.gov (United States)

    Duan, Yuexin; Yuan, Lu; Zhao, Yan; Guan, Fengxia

    2007-07-01

    It is an obstacle issue for Carbon nanotubes (CNTs) applied in fiber reinforced polymer composites that CNTs is dispersed in nano-level, particularly for single-wall Carbon nanotubes (SWCNTs). In this paper, SWCNTs were treated by the coupling agent like volan and dispersing agent as BYK to improve the dispersion in the Glass Fiber/Epoxy composites. The result of dispersion of SWCNTs in composites was observed by Scanning electron microscopy (SEM). Then the Glass Transition Temperature (Tg) of these kinds of composites with treated and untreated SWCNTs were obtained by Dynamic Mechanical Thermal Analysis (DMTA). Moreover, the bending properties of these composites were tested.

  11. Development of PLA hybrid yarns for biobased self-reinforced polymer composites

    Science.gov (United States)

    Köhler, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight materials are a necessity in various industries. Lightweight design is in the key interest of the mobility sector, e.g. the automotive and aerospace industry. This trend applies also for the consumer industries, e.g. sporting goods. In addition, the worldwide demand for replacing fossil-based materials has led to a significant growth of bioplastics. Due to their low mechanical performance and durability, their use is still limited. Therefore, it is necessary to develop biobased, sustainable polymeric materials with high stiffness, high impact and high durability without impairing recyclability at a similar price level of non-biobased solutions. Biobased self-reinforced polymer composites offer these unique properties.

  12. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.

    Science.gov (United States)

    Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K

    2018-02-01

    This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (Pprepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Liquid crystalline polymer nanocomposites reinforced with in-situ reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2015-08-01

    Full Text Available In this work liquid-crystalline polymer (LCP nanocomposites reinforced with in-situ reduced graphene oxide are investigated. Graphene oxide (GO was first synthesized by the Hummers method, and the kinetics of its thermal reduction was assessed. GO layers were then homogeneously dispersed in a thermotropic liquid crystalline polymer matrix (Vectran®, and an in-situ thermal reduction of GO into reduced graphene oxide (rGO was performed. Even at low rGO amount, the resulting nanocomposites exhibited an enhancement of both the mechanical properties and the thermal stability. Improvements of the creep stability and of the thermo-mechanical behavior were also observed upon nanofiller incorporation. Furthermore, in-situ thermal reduction of the insulating GO into the more electrically conductive rGO led to an important surface resistivity decrease in the nanofilled samples.

  14. Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests

    International Nuclear Information System (INIS)

    Bai Wenfeng; Zhang Jianhua; Yan Peng; Wang Xinli

    2009-01-01

    Polymer concrete (PC), because of its good vibration alleviating properties, is a proper material for elementary machine parts in high-precision machine tools. Glass fiber was applied in PC to improve its mechanical properties, and the material obtained is called glass fiber reinforced polymer concrete (GFRPC). The best parameter to estimate the vibration alleviating property is damping ratio. Orthogonal tests were carried out to prepare GFRPC specimens with different component proportions. Damping ratio of the GFRPC specimens was measured. The effect of the factors considered in the experiments on damping ratio of GFRPC was studied. Results of the tests show that granite proportion plays the most important role in determining damping ratio of GFRPC, then flexibilizer dosage and glass fiber length, while epoxy resin dosage and glass fiber dosage play a comparatively less important part. Detailed descriptions were made about how the considered factors affect damping ratio of GFRPC in this paper

  15. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    Science.gov (United States)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  16. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    Science.gov (United States)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  17. Comparative Environmental Benefits of Lightweight Design in the Automotive Sector: The Case Study of Recycled Magnesium Against CFRP and Steel

    Science.gov (United States)

    D'Errico, Fabrizio; Ranza, Luigi

    A LCA feasibility study was undertaken to determine the environmental impact of an Eco-magnesium process route by recycled chips to manufacture panel for the automotive sector to be compared with comparative scenarios, a non-recycled carbon fiber reinforced polymer (CFRP) and a baseline steel-made component scenario. The objective of this LCA study was to assess the actual benefits of a lightweight solution considering the whole life cycle, including the dirty-phase (i.e. the "cradle-to-exit gate" stage) that impacts differently for the different materials. For this reason the analysis has regarded the net "cradle-to-grave" scenario. Different automotive floor pans were then compared considering the rate of fuel consumption during vehicle operation — i.e. the fuel-mass correlation factor — and the different material substitution factors allowed by the different materials selected.

  18. Influence of Cutting Temperature on the Tensile Strength of a Carbon Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Jérémy Delahaigue

    2017-12-01

    Full Text Available Carbon fiber-reinforced plastics (CFRP have seen a significant increase in use over the years thanks to their specific properties. Despite continuous improvements in the production methods of laminated parts, a trimming operation is still necessary to achieve the functional dimensions required by engineering specifications. Laminates made of carbon fibers are very abrasive and cause rapid tool wear, and require high cutting temperatures. This creates damage to the epoxy matrix, whose glass-transition temperature is often recognized to be about 180 °C. This study aims to highlight the influence of the cutting temperature generated by tool wear on the surface finish and mechanical properties obtained from tensile tests. Trimming operations were performed on a quasi-isotropic 24-ply carbon/epoxy laminate, of 3.6 mm thickness, with a 6 flutes diamond-coated (CVD cutter. The test specimens of 6 mm and 12 mm wide were obtained by trimming. The reduced width of the coupons allowed amplification of the effect of defects on the measured properties by increasing the proportion of coupon cross-section occupied by the defects. A new tool and a tool in an advanced state of wear were used to generate different cutting temperatures. Results showed a cutting temperature of 300 °C for the new tool and 475 °C for the worn tool. The analysis revealed that the specimens machined with the new tool have no thermal damage and the cut is clean. The plies oriented at −45° presented the worst surface finish according to the failure mode of the fiber. For the worn tool, the surface was degraded and the matrix was carbonized. After cutting, observations showed a degraded resin spread on the machined surface, which reduced the surface roughness and hid the cutting defects. In support of these observations, the tensile tests showed no variation of the mechanical properties for the 12 mm-wide specimens, but did show a 10% loss in mechanical properties for the 6 mm

  19. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  20. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  1. Carbon fiber-reinforced polymer strengthening and monitoring of the grondals bridge in Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Hejll, Arvid; James, Gerard

    2007-01-01

    to be strengthened. The strengthening methods used were CFRP plates at the serviceability limit state and prestressed dywidag stays at the ultimate limit state. The strengthening was carried out during 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fiber sensors....

  2. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    Science.gov (United States)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  3. The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2012-12-01

    Full Text Available Fiber reinforced composites are widely used instead of traditional materials in various technological applications. Therefore, by considering the extensive applications of these materials, a proper knowledge of their impact behavior (from low- to high-velocity as well as their static behavior is necessary. In order to study the effects of strain rates on the behavior of these materials, special testing machines are needed. Most of the research efforts in this feld are focused on application of real loading and gripping boundary conditions on the testing specimens. In this paper, a detailed review of different types of impact testing techniques and the strain rate dependence of mechanical and strength properties of polymer composite materials  are presented. In this respect, an attempt is made to present and summarize the methods of impact tests and the strain rate effects on the tensile, compressive, shear and bending properties of the fber-reinforced polymer composite materials. Moreover, a classifcation of the state-of-the-art of the testing techniques to characterize composite material properties in a wide range of strain rates are also given.

  4. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes

    Science.gov (United States)

    Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali

    2017-12-01

    Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.

  5. Characterization and properties of acetylated nanocrystalline cellulose (aNC) reinforced polylactic acid (PLA) polymer

    Science.gov (United States)

    Kasa, Siti Norbaya; Omar, Mohd Firdaus; Ismail, Ismarul Nizam

    2017-12-01

    Nanocrystalline cellulose (NCC) was synthesized from banana stem through strong acid hydrolysis with measured length of approximately 287.0 ± 56.4 nm and diameter of 26.6 ± 4.8 nm. Modification of NCC was carried by acetylation reaction in order to increase the compatibility during reinforcement with polylactic acid (PLA) polymer. The reinforcing effect towards morphology, crystallinity, mechanical and thermal properties of bio-nanocomposites was investigated. Scanning Electron Microscope (SEM) micrograph reveals the uniform dispersion achieved at 1 %, 3 % and 5% aNC loading while agglomeration was found at 7 % aNC loading. Disappearance of crystallinity peak at 2θ = 22.7⁰ for low aNC loading during elemental analysis using X-Ray Diffraction (XRD) indicates the proper dispersion of aNC in PLA polymer. From the tensile test, 1 % aNC loading gives the highest mechanical properties of bio-nanocomposite film with 82.71 %, 118.7 % and 24.18 % increment in tensile strength, tensile modulus and elongation at break. However, 7 % aNC loading gives the highest increment in TGA of aNC-PLA nanocomposites which is from 310 °C to 320 °C.

  6. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Minh-Tai Le

    2015-08-01

    Full Text Available In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA and thermogravimetric analysis (TGA are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg, as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs.

  7. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    Science.gov (United States)

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-01-01

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521

  8. PERBAIKAN KEKUATAN DAN DAKTILITAS KOLOM BETON BERTULANG YANG MENDAPAT BEBAN GEMPA MENGGUNAKAN GLASS FIBER REINFORCED POLYMER

    Directory of Open Access Journals (Sweden)

    Parmo Parmo

    2014-05-01

    Full Text Available Repairing the Strength and Ductility of Reinforced Concrete Column That Got Earthquake using Gla­ss Fiber Reinforced Polymer. This study aims to identify the additional strength and ductility of reinforced concrete columns af­ter being re­­­­tro­fitted using glass fiber reinforced polymer (GFRP and got the brunt of the earth­quake. This study uses two objects tested columns, which are being tested for three times. Each column size is 350 x 350 x 1100 mm with f'c = 20.34 MPa and fy = 549.94 MPa. The tes­t­ing is performed by giving a constant axial load of 748 kN and cyclic lateral load using con­trol displacement method in order to simulate the brunt of earth­quake. The results show an in­crea­se in lateral capacity of co­lumn by 43.96%. Re­tro­­fitting the column with GFRP has a duc­tile property, which is shown by the increase of the displacement ductility by 129.14% and curvature ductility by 118.27%.   Penelitian ini ber­tujuan untuk mengetahui penambahan kekuatan dan dak­ti­li­­­­tas kolom beton bertulang se­telah diretrofit menggunakan glass fiber reinforced po­ly­­­mer (GFRP dan mendapat be­ban gempa. Penelitian ini menggunakan benda ­uji dua buah kolom dengan tiga kali pengujian. Masing-masing ukuran kolom 350 x 350 x 1100 mm dengan f’c = 20,34 MPa dan fy = 549,94 MPa. Pengujian dilakukan de­ngan memberikan beban ak­sial konstan 748 kN dan beban lateral siklik yang meng­gu­nakan metode di­splacemet con­trol untuk mensimulasikan beban gempa. Hasil pe­ne­­­litian menunjukkan pe­ningkatan kapasitas lateral pada kolom sebesar 43,96%. Retrofit kolom dengan GFRP bersifat dak­tail yang ditunjukkan dengan meningkatnya daktilitas per­pindahan sebesar 129,14% dan dak­­­tilitas kurvatur se­besar 118,27%.

  9. Self-reinforced bioresorbable polymer P (L/DL LA 70:30 for the manufacture of craniofacial implant

    Directory of Open Access Journals (Sweden)

    Steferson L. Stares

    2012-01-01

    Full Text Available The importance of self-reinforced bioabsorbable polymers has been growing due to their use in orthopedic and dental implants. Bioabsorbable polymeric implants manufactured only by the processes of injection or extrusion without the post processing of self-reinforcing leave a great deal on presenting an appealing alternative in terms of the mechanical strength suitable for use in the fixation of bone fractures. One of the most promising ways to promote the increase of mechanical properties of bioresorbable polymers is through the self-reinforcing technique. Self-reinforcing occurs when the internal structure of the polymer is strongly oriented in the direction of the deformation. Knowing the levels of mechanical strength obtained is essential to determine the sites of application of the component. The objective of this work was to study the method and the influence of self-reinforcing conditions, such as reduction ratio, temperature and deformation speed, on the quality and mechanical properties of small cylindrical bars obtained from the bioresorbable polymer P (L/DL LA 70:30. The different processing conditions led to distinct levels of mechanical strength. Resistance values obtained in this work are the highest ever recorded for this material. It is important to stress that the values of mechanical strength achieved are within the limits accepted as safe for utilization in the fixation of craniofacial fractures, a fact that significantly enhances the prospects in this area.

  10. Assessment of the behavior of reinforced concrete beams retrofitted with pre-stressed CFPR subjected to cyclic loading

    Science.gov (United States)

    Hojatkashani, Ata; Zanjani, Sara

    2018-03-01

    Rehabilitation of weak and damaged structures has been considered widely during recent years. A relatively modern way of strengthening concrete components is to confine parts under tension and shear by means of carbon fiber reinforce polymer (CFRP). This way of strengthening due to the conditions of composite materials such as light weight, linear elastic behavior until failure point, high tensile strength, high elastic modulus, resistance against corrosion, and high fatigue resistance has become so common. During structural strengthening by means of not pre-stressed FRP materials, usually, it is not possible to benefit from the maximum capacity of FRP materials. In addition, sometimes, the expensive cost of such materials will not make a suitable balance between rates of strengthening and consuming spending. Thus, pre-stressing CFRP materials has an undeniable role in the effective use of materials. In the current research, general procedure of simulation using finite-element method (FEM) by means of the numerical package ABAQUS has been presented. In this article, 12 reinforced concrete (RC) models in two states (strengthened with simple and pre-stressed CFRP) under cycling loading have been considered. A parametric study has been carried out in this research on the effects of parameters such as CFRP surface area, percentage of tensile steel rebar and pre-stressing stress on ultimate load carrying capacity (ULCC), stiffness, and the ability of depreciation energy for the samples. In the current article also, for design parameters, percentages of tensile steel rebars, surface area of CFPR sheets, and the effective pre-stressing stress in RC beams retrofitted with pre-stressed CFPR sheets have investigated. In this paper, it was investigated that using different amount of parameters such as steel rebar percentage, CFRP surface area percentage, and CFRP pre-stressing, the resulted ULCC and energy depreciation of the specimens was observed to be increasing and

  11. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    Science.gov (United States)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  12. Three-dimensional numerical simulation during laser processing of CFRP

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2017-09-01

    We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.

  13. Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Høgh, Jacob Herold

    2013-01-01

    A holistic approach to strain monitoring in fibre-reinforced polymer composites is presented using embedded fibre Bragg grating sensors. Internal strains are monitored in unidirectional E-glass/epoxy laminate beams during vacuum infusion, curing, post-curing and subsequent loading in flexure until...... of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical...

  14. Numerical Simulation of Thermal Performance of Glass-Fibre-Reinforced Polymer

    Science.gov (United States)

    Zhao, Yuchao; Jiang, Xu; Zhang, Qilin; Wang, Qi

    2017-10-01

    Glass-Fibre-Reinforced Polymer (GFRP), as a developing construction material, has a rapidly increasing application in civil engineering especially bridge engineering area these years, mainly used as decorating materials and reinforcing bars for now. Compared with traditional construction material, these kinds of composite material have obvious advantages such as high strength, low density, resistance to corrosion and ease of processing. There are different processing methods to form members, such as pultrusion and resin transfer moulding (RTM) methods, which process into desired shape directly through raw material; meanwhile, GFRP, as a polymer composite, possesses several particular physical and mechanical properties, and the thermal property is one of them. The matrix material, polymer, performs special after heated and endue these composite material a potential hot processing property, but also a poor fire resistance. This paper focuses on thermal performance of GFRP as panels and corresponding researches are conducted. First, dynamic thermomechanical analysis (DMA) experiment is conducted to obtain the glass transition temperature (Tg) of the object GFRP, and the curve of bending elastic modulus with temperature is calculated according to the experimental data. Then compute and estimate the values of other various thermal parameters through DMA experiment and other literatures, and conduct numerical simulation under two condition respectively: (1) the heat transfer process of GFRP panel in which the panel would be heated directly on the surface above Tg, and the hot processing under this temperature field; (2) physical and mechanical performance of GFRP panel under fire condition. Condition (1) is mainly used to guide the development of high temperature processing equipment, and condition (2) indicates that GFRP’s performance under fire is unsatisfactory, measures must be taken when being adopted. Since composite materials’ properties differ from each other

  15. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  16. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  17. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  18. Analysis of hazardous substances released during CFRP laser processing

    Science.gov (United States)

    Hustedt, Michael; Walter, Juergen; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    2017-02-01

    Due to their outstanding mechanical properties, in particular their high specific strength parallel to the carbon fibers, carbon fiber reinforced plastics (CFRP) have a high potential regarding resource-efficient lightweight construction. Consequently, these composite materials are increasingly finding application in important industrial branches such as aircraft, automotive and wind energy industry. However, the processing of these materials is highly demanding. On the one hand, mechanical processing methods such as milling or drilling are sometimes rather slow, and they are connected with notable tool wear. On the other hand, thermal processing methods are critical as the two components matrix and reinforcement have widely differing thermophysical properties, possibly leading to damages of the composite structure in terms of pores or delamination. An emerging innovative method for processing of CFRP materials is the laser technology. As principally thermal method, laser processing is connected with the release of potentially hazardous, gaseous and particulate substances. Detailed knowledge of these process emissions is the basis to ensure the protection of man and the environment, according to the existing legal regulations. This knowledge will help to realize adequate protective measures and thus strengthen the development of CFRP laser processing. In this work, selected measurement methods and results of the analysis of the exhaust air and the air at the workplace during different laser processes with CFRP materials are presented. The investigations have been performed in the course of different cooperative projects, funded by the German Federal Ministry of Education and Research (BMBF) in the course of the funding initiative "Photonic Processes and Tools for Resource-Efficient Lightweight Structures".

  19. Investigating the efficiency of using the carbon fiber polymer on beam–column connection

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Eldeeb

    2016-03-01

    Full Text Available Due to the huge amount of energy induced from earthquakes, such natural hazards usually represent the most significant threat on existing and new buildings. Recently, a lot of considerable efforts were dedicated to design buildings capable of withstanding earthquakes' ground motions by utilizing lateral resisting elements, such as reinforced concrete shear walls, cores, frames, and steel bracing. Contrasting the experience gained from the previously designed guidelines and provisions for lateral resisting systems, recent studies illustrated that the existence of lateral resisting system in low-rise buildings is essential in order to resist ground motions. As such, some endeavors are directed to reinforce old buildings against seismic loads. This paper focuses on investigating the efficiency of using Carbon Fiber Polymer (CFRP sheets on the behavior of beam–column connections considering a cantilever beam with concentrated load at its free end. In addition, to complement the published data, finite element model using the computer package ANSYS was used. The additional beam–column connections in this study are classified in 4 groups (A, B, C, and D depending on the percentage of reinforcement at the bottom and top of the beam (%As. The efficiency of using CFRP was concluded; the CFRP sheet improves or decreases the efficiency of beam–column connection depending on %As in the beam. The paper investigates the influence of boundary condition, columns as hinged supports, and the efficiency of using CFRP. It is concluded that the CFRP sheet improves or decreases the efficiency of beam–column connection depending on %As in the beam.

  20. Interfacial stresses in damaged RC beams strengthened with externally bonded CFRP plate

    International Nuclear Information System (INIS)

    Benrahou, K.H.; Adda bedia, E.A.; Benyoucef, S.; Tounsi, A.; Benguediab, M.

    2006-01-01

    A theoretical method to predict the interfacial stresses in the adhesive layer of damaged reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The adopted model is developed including the adherend shear deformations by assuming a linear shear stress through the depth of the RC beam [A. Tounsi, Int. J. Solids Struct., in press], while all existing solutions neglect this effect [e.g. S. Benyoucef, A. Tounsi, S.A. Meftah, E.A. Adda Bedia, Compos. Interfaces, in press; S.T. Smith, J.G. Teng, Eng. Struct. 23 (7) (2001) 857-871; T.M. Roberts, Struct. Eng. 67 (12) (1989) 229-233; A. Tounsi, S. Benyoucef, Int. J. Adhes. Adhes., in press; T. Stratford, J. Cadei, Construct. Building Mater. 20 (2006) 34-35]. In addition, in the present study the anisotropic damage model is adopted to describe the damage of the RC beams. It is shown that the damage has a significant effect on the interfacial stresses in FRP-damaged RC beam

  1. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  2. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner.

    Science.gov (United States)

    Pelivanov, Ivan; Ambroziński, Łukasz; Khomenko, Anton; Koricho, Ermias G; Cloud, Gary L; Haq, Mahmoodul; O'Donnell, Matthew

    2016-06-01

    Damage induced in polymer composites by various impacts must be evaluated to predict a component's post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example). X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU) scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP) composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  3. Automatic design of the flexural strengthening of reinforced concrete beams using fiber reinforced polymers (FRP - doi: 10.4025/actascitechnol.v34i2.8318

    Directory of Open Access Journals (Sweden)

    Rafael Alves de Souza

    2012-03-01

    Full Text Available Changing the functions of a building, the presence of some design or construction errors, the incidence of seismic actions and even the updating of design codes may demand the strengthening of certain structures. In the specific case of reinforced concrete structures it is desirable the application of a technique of strengthening which is fast, economic and efficient, in order to provide advantages when an intervention is necessary. The technique of strengthening chosen must provide less disorder as possible as well as the guaranty of safety. Taking into account this scenery, fiber reinforced polymers have been working as a very attractive alternative for rehabilitating in-service structures. In that way, the present study aims at presenting the main properties of this new material as well as the design routines for flexural strengthening of reinforced concrete beams. Finally, a package-software developed into the MATLAB platform is presented, intending to generate a simple tool for the automatic design using fiber reinforced polymers.

  4. The CFRP primary structure of the MIRI instrument onboard the James Webb Space Telescope

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J

    2004-01-01

    The design of the Primary Structure of the Mid Infra-Red Instrument (MIRI) onboard the NASA/ESA James Webb Space Telescope will be presented. The main design driver is the energy flow from the 35 K "hot" satellite interface to the 7 K "cold" MIRI interface. Carbon fibre reinforced plastic (CFRP...

  5. Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

    Directory of Open Access Journals (Sweden)

    Giovanni P. Terrasi

    2014-07-01

    Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable

  6. Strength Analysis of the Carbon-Fiber Reinforced Polymer Impeller Based on Fluid Solid Coupling Method

    Directory of Open Access Journals (Sweden)

    Jinbao Lin

    2014-01-01

    Full Text Available Carbon-fiber reinforced polymer material impeller is designed for the centrifugal pump to deliver corrosive, toxic, and abrasive media in the chemical and pharmaceutical industries. The pressure-velocity coupling fields in the pump are obtained from the CFD simulation. The stress distribution of the impeller couple caused by the flow water pressure and rotation centrifugal force of the blade is analyzed using one-way fluid-solid coupling method. Results show that the strength of the impeller can meet the requirement of the centrifugal pumps, and the largest stress occurred around the blades root on a pressure side of blade surface. Due to the existence of stress concentration at the blades root, the fatigue limit of the impeller would be reduced greatly. In the further structure optimal design, the blade root should be strengthened.

  7. Reinforced poly(propylene oxide): a very soft and extensible dielectric electroactive polymer

    International Nuclear Information System (INIS)

    Goswami, K; Mazurek, P; Daugaard, A E; Skov, A L; Galantini, F; Gallone, G

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of α,ω-diallyl PPO with a tetra-functional thiol. The elastomer was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 10 3 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910. The electromechanical actuation performance of both PPO and its composites showed properties as good as VHB4910 and a lower viscous loss. (paper)

  8. Reinforced poly(propylene oxide)- a very soft and extensible dielectric electroactive polymer

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Galantini, F.; Mazurek, Piotr Stanislaw

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of ,!-diallyl PPO with a tetra-functional thiol. The elastomer...... was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability...... of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 103 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910...

  9. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    Science.gov (United States)

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  10. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    Science.gov (United States)

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  11. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Science.gov (United States)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  12. Effect of Fused Filament Fabrication Process Parameters on the Mechanical Properties of Carbon Fiber Reinforced Polymers

    Science.gov (United States)

    2017-09-14

    production line. AM utilizes three-dimensional computer-aided design (CAD) models to create an object by selectively adding material. This process allows...for significantly less part production waste 2 compared to ‘subtractive’ manufacturing methods such as Computer Numeric Control (CNC) machining...from prototyping to more custom products in the medical failed and small- scale businesses. Traditional manufactured CFRP is relatively mature

  13. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative study on Their Microstructures and Effects as Polymer Reinforcing Agents

    Science.gov (United States)

    Xuezhu Xu; Fei Liu; Long Jiang; J.Y. Zhu; Darrin Haagenson; Dennis P. Wiesenborn

    2013-01-01

    Both cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are nanoscale cellulose fibers that have shown reinforcing effects in polymer nanocomposites. CNCs and CNFs are different in shape, size and composition. This study systematically compared their morphologies, crystalline structure, dispersion properties in polyethylene oxide (PEO) matrix, interactions...

  14. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  15. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    Science.gov (United States)

    Pozegic, T. R.; Anguita, J. V.; Hamerton, I.; Jayawardena, K. D. G. I.; Chen, J.-S.; Stolojan, V.; Ballocchi, P.; Walsh, R.; Silva, S. R. P.

    2016-11-01

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

  16. Electrospun Polymer Nanofibers Reinforced by Tannic Acid/Fe+++ Complexes †

    Science.gov (United States)

    Yang, Weiqiao; Sousa, Ana M. M.; Thomas-Gahring, Audrey; Fan, Xuetong; Jin, Tony; Li, Xihong; Tomasula, Peggy M.; Liu, LinShu

    2016-01-01

    We report the successful preparation of reinforced electrospun nanofibers and fibrous mats of polyvinyl alcohol (PVA) via a simple and inexpensive method using stable tannic acid (TA) and ferric ion (Fe+++) assemblies formed by solution mixing and pH adjustment. Changes in solution pH change the number of TA galloyl groups attached to the Fe+++ from one (pH PVA and TA. At pH ~ 5.5, the morphology and fiber diameter size (FDS) examined by SEM are determinant for the mechanical properties of the fibrous mats and depend on the PVA content. At an optimal 8 wt % concentration, PVA becomes fully entangled and forms uniform nanofibers with smaller FDS (p mechanical properties when compared to mats of PVA alone and of PVA with TA (p mechanical properties (p 0.05) suggesting the potential of TA-Fe+++ assemblies to reinforce polymer nanofibers with high functionality for use in diverse applications including food, biomedical and pharmaceutical. PMID:28773876

  17. Intra-Laminar Fracture Toughness of Glass Fiber Reinforced Polymer By Using Theory, Experimentation and FEA

    Science.gov (United States)

    Firojkhan, Pathan; Tanpure, Kshitijit; Dawale, Ajinkya; Patil, Shital

    2018-04-01

    Fiber reinforced polymer (FRP) composites are widely use in aerospace, marine, auto-mobile and civil engineering applications because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and potentially high durability. The purpose of this research is to experimentally investigate the mechanical and fracture properties of glass-fiber reinforced polyester composite material, 450 g/m 2 randomly distributed glass-fiber mat also known as woven strand mat with polyester resin as a matrix. The samples have been produced by the conventional hand layup process and the specimens were prepared as per the ASTM standards. The tensile test was performed on the composite specimens using Universal testing machine (UTM) which are used for the finite element simulation of composite Layered fracture model. The mechanical properties were evaluated from the stress vs. strain curve obtained from the test result. Later, fracture tests were performed on the CT specimen. In case of CT specimen the load vs. Displacement plot obtained from the experimental results was used to determine the fracture properties of the composite. The failure load of CT specimen using FEA is simulated which gives the Stress intensity factor by using FEA. Good agreement between the FEA and experimental results was observed.

  18. Standard Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide establishes essential and desirable data elements for fiber-reinforced composite materials for two purposes: to establish the material identification component of data-reporting requirements for test reporting and to provide information for the design of material property databases. 1.1.1 This guide is the first part of a two-part modular approach. The first part serves to identify the material and the second part serves to describe testing procedures and variables and to record results. 1.1.2 For mechanical testing, the related document is Guide E 1434. The interaction of this guide with Guide E 1434 is emphasized by the common numbering of data elements. Data Elements A1 through G13 are included in this guide, and numbering of data elements in Guide E 1434 begins with H1 for the next data element block. This guide is most commonly used in combination with a guide for reporting the test procedures and results such as Guide E 1434. 1.2 These guidelines are specific to fiber-reinforced polyme...

  19. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  20. Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    B. Soltannia

    2016-01-01

    Full Text Available Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM model of Goldberg and his coworkers and Halpin-Tsai’s micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin.

  1. Double-Sided Terahertz Imaging of Multilayered Glass Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Przemyslaw Lopato

    2017-06-01

    Full Text Available Polymer matrix composites (PMC play important roles in modern industry. Increasing the number of such structures in aerospace, construction, and automotive applications enforces continuous monitoring of their condition. Nondestructive inspection of layered composite materials is much more complicated process than evaluation of homogenous, (mostly metallic structures. Several nondestructive methods are utilized in this case (ultrasonics, shearography, tap testing, acoustic emission, digital radiography, infrared imaging but none of them gives full description of evaluated structures. Thus, further development of NDT techniques should be studied. A pulsed terahertz method seems to be a good candidate for layered PMC inspection. It is based on picosecond electromagnetic pulses interacting with the evaluated structure. Differences of dielectric parameters enables detection of a particular layer in a layered material. In the case of multilayered structures, only layers close to surface can be detected. The response of deeper ones is averaged because of multiple reflections. In this paper a novel inspection procedure with a data processing algorithm is introduced. It is based on a double-sided measurement, acquired signal deconvolution, and data combining. In order to verify the application of the algorithm stress-subjected glass fiber-reinforced polymer (GFRP was evaluated. The obtained results enabled detection and detailed analysis of delaminations introduced by stress treatment and proved the applicability of the proposed algorithm.

  2. A multimodal data-set of a unidirectional glass fibre reinforced polymer composite

    Directory of Open Access Journals (Sweden)

    Monica J. Emerson

    2018-06-01

    Full Text Available A unidirectional (UD glass fibre reinforced polymer (GFRP composite was scanned at varying resolutions in the micro-scale with several imaging modalities. All six scans capture the same region of the sample, containing well-aligned fibres inside a UD load-carrying bundle. Two scans of the cross-sectional surface of the bundle were acquired at a high resolution, by means of scanning electron microscopy (SEM and optical microscopy (OM, and four volumetric scans were acquired through X-ray computed tomography (CT at different resolutions. Individual fibres can be resolved from these scans to investigate the micro-structure of the UD bundle. The data is hosted at https://doi.org/10.5281/zenodo.1195879 and it was used in Emerson et al. (2018 [1] to demonstrate that precise and representative characterisations of fibre geometry are possible with relatively low X-ray CT resolutions if the analysis method is robust to image quality. Keywords: Geometrical characterisation, Polymer-matrix composites (PMCs, Volumetric fibre segmentation, Automated fibre tracking, X-ray imaging, Microscopy, Non-destructive testing

  3. Preparation and Properties of Polymer/Vermiculite Hybrid Superabsorbent Reinforced by Fiber for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Fayang Jin

    2014-01-01

    Full Text Available A series of polymer/clay hybrid superabsorbent composites (SACFs comprising acrylamide, acrylic acid, sodium 2-acrylamido-tetradecyl sulfonate, fiber, and vermiculite by in situ intercalation and exfoliated method was successfully synthesized. The structure of SACFs was characterized by IR, SXRD, and SEM measurements. Much notable absorbency for SACF-2 was observed compared to that for SACF-1 in the absence of hydrophobic group in the high cationic solution due to the alkyl carbon chain and sulfonic acid group of hydrophobic moistures protecting the cations from attacking the carboxylate groups. What is more, high temperature fiber which acts as bridge connection for the polymeric network structure enhanced both toughness and strength for SACF-4 in the harsh conditions. At the total dissolved substance of 212000 mg/L for Tarim Basin injected water and the temperature of 120°C, desired absorbency as well as water retaining property for SACF-4 was observed during the long period of thermal ageing. Core flooding experiments demonstrated that SACFs could migrate as amoeba in the porous medium and accumulated in the narrow channel to adjust injection profile, promoting the subsequent water diverting into the unswept zones. Finally, characteristic parameters for SACFs calculated from flooding experiment further confirmed these polymer/clay hybrid composites reinforced by fiber would have robust application in the mature oilfield for profile control.

  4. Polarization dependence of laser interaction with carbon fibers and CFRP.

    Science.gov (United States)

    Freitag, Christian; Weber, Rudolf; Graf, Thomas

    2014-01-27

    A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.

  5. Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network

    Science.gov (United States)

    Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei

    2018-06-01

    A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.

  6. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  7. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    Science.gov (United States)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  8. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    Science.gov (United States)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  9. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    International Nuclear Information System (INIS)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun; Kim, Yong Kwon

    2014-01-01

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  10. Prediction of the Tensile Load of Drilled CFRP by Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Burak Yenigun

    2018-04-01

    Full Text Available The application areas of carbon fiber reinforced plastics (CFRP have been increasing day by day. The machining of CFRP with incorrect machining parameters leads in huge loss cost and time. Therefore, it is very important that the composite materials are machined with correct machining parameters. The aim of this paper is to examine the influence of drilling parameters on tensile load after drilling of CFRP. The drilling operations were carried out on Computer Numerical Control (CNC by Tungsten Carbide (WC, High Speed Steel (HSS and Brad Spur type drill bits with spindle speeds of 1000, 3000 and 5000 rpm and feed rates of 0.05, 0.10 and 0.15 mm/rev. The results indicate that the surface roughness, delamination and thrust force, were affected by drilling parameters therefore tensile load was also affected by the same parameters. It was observed that increase in surface roughness, delamination and thrust force all lead to the decrease of tensile load of CFRP. If the correct drilling parameters are selected; the decrease in tensile load of CFRP can be saved up to 25%. Furthermore, an artificial neural network (ANN model has been used to predict of tensile load. The results of the ANN model are in close agreement with the experimental results.

  11. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Yong Kwon [Technology Research and Development Institute, KEPCO Plant Service and Engineering Co., Ltd, Naju (Korea, Republic of)

    2014-04-15

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  12. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites

    International Nuclear Information System (INIS)

    Da Silva, Nelson Marques

    2001-01-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  13. Repair and rehabilitation of wood utility poles with fibre-reinforced polymers

    Energy Technology Data Exchange (ETDEWEB)

    Polyzois, D.; Kell, J.A. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2007-01-15

    In order to ensure safe and reliable service, all wood utility poles need an effective maintenance program. The service life of a wood utility pole depends on several factors, such as decay, mechanical damage, weathering, and changing design requirements. An effective preservative treatment and maintenance program can effectively extend the service life of the wood pole. However, all poles will attain a point when they are no longer suitable for their intended use. New innovative methods are therefore required to restore and maintain the structural integrity of existing wood poles, especially in light of the increasing cost of quality wood for use in poles as well as a result of environmental concerns regarding pole disposal and chemical treatment of existing poles. This article presented results from a research program carried out at the University of Manitoba to develop a repair and rehabilitation technique for wood poles using fibre-reinforced polymers (FRP). It also provided a brief overview of current standards for wood utility poles and reinforcing stubs and discussed the experimental program where long, air-dried jack pine poles were tested in order to evaluate the effectiveness of a proposed rehabilitation system consisting of FRP splines and FRP jackets. The ultimate capacity of the poles was determined using the CSA standard for wood poles. The capacity of the rehabilitated poles was nearly 93 per cent of the average ultimate capacity of the average ultimate capacity of poles tested during the first phase of the study, and 23 per cent higher than the capacity required by CSA standards. 7 refs., 2 figs., 4 tabs.

  14. Mechanical and Non-Destructive Study of CFRP Adhesive Bonds Subjected to Pre-Bond Thermal Treatment and De-Icing Fluid Contamination

    Directory of Open Access Journals (Sweden)

    Paweł H. Malinowski

    2018-04-01

    Full Text Available Composite materials are commonly used in many branches of industry. One of the effective methods to join the carbon fibre reinforced polymer (CFRP parts includes the use of adhesives. There is a search on effective methods for quality assurance of bonded parts. In the research here reported the influence of surface pre-bond modification on the adhesive bonds of CFRP plates has been analyzed. Adherends surface modifications, to include defects affecting the bonding quality, were obtained through surface thermal treatment, surface contamination with de-icing fluid and a combination of both the previously described treatments. Characterization of bonded joints was performed by means of mechanical testing, ultrasounds and electromechanical impedance (EMI measurements. The study here proposed has also the aim to evaluate the ability of different destructive and non-destructive techniques to assess the quality of the bonds. While mechanical tests were strongly affected by the surface modifications, results obtained ultrasound and EMI test have demonstrate only a limited ability of these techniques to differentiate between the different samples. In fact, ultrasounds did not show any changes in the bondline, due to pre-bond modifications. However, this technique was able to detect delamination in CFRP for one of the samples thermally treated at 280 °C. Electromechanical impedance (EMI measurements showed similar behavior as mechanical tests for samples thermally treated at 260 °C and 280 °C, and for the sample whose surface modification was made with a combination of thermally and de-icing fluid treatments.

  15. Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound

    Science.gov (United States)

    Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.

    2017-02-01

    Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape

  16. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.

    Science.gov (United States)

    Shi, Zhuqun; Huang, Junchao; Liu, Chuanjun; Ding, Beibei; Kuga, Shigenori; Cai, Jie; Zhang, Lina

    2015-10-21

    With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability. Polymerization of the monomer gave P(MMA/BMA)/NCG, P(MMA/BA)/NCG nanocomposites with a volume fraction of NCG ranging from 15% to 78%. SEM, TEM, and XRD analyses show that the NCG are finely distributed and preserved well in the nanocomposites after polymerization. DMA analysis demonstrates a significant improvement in tensile storage modulus E' above the glass transition temperature; for instance, at 95 °C, E' is increased by over 4 orders of magnitude from 0.03 MPa of the P(MMA/BMA) up to 350 MPa of nanocomposites containing 15% v/v NCG. This reinforcement effect can be explained by the percolation model. The nanocomposites also show remarkable improvement in solvent resistance (swelling ratio of 1.3-2.2 in chloroform, acetone, and toluene), thermal stability (do not melt or decompose up to 300 °C), and low coefficients of thermal expansion (in-plane CTE of 15 ppm·K(-1)). These nanocomposites will have great promising applications in flexible display, packing, biomedical implants, and many others.

  17. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  18. Flexural repair/strengthening of pre-damaged R.C. beams using embedded CFRP rods

    Directory of Open Access Journals (Sweden)

    Alaa M. Morsy

    2015-12-01

    Full Text Available Many reinforced concrete R.C. elements need either strengthening due to the need of increasing the service loads or repair due to overloading stress or environmental deterioration affecting these elements. In this paper an experimental program is presented to investigate the effect of using embedded CFRP rod as NSM reinforcement for strengthening/repairing R.C. beams pre-damaged by loading to different loading levels and comparing the results to those of non-preloaded beams. A total of five beams were cast and six beams were tested under four point loading. The main objective of this paper was to investigate the effect of providing one 12 mm diameter CFRP rod in addition to the existing steel reinforcement. Three beams were tested to failure directly without any preloading, whereas the other three beams were firstly subjected to preloading to different load levels. Following that these three beams were strengthened and were tested up to failure.

  19. Mechanical Property Evaluation of Palm/Glass Sandwiched Fiber Reinforced Polymer Composite in Comparison with few natural composites

    Science.gov (United States)

    Raja Dhas, J. Edwin; Pradeep, P.

    2017-10-01

    Natural fibers available plenty can be used as reinforcements in development of eco friendly polymer composites. The less utilized palm leaf stalk fibers sandwiched with artificial glass fibers was researched in this work to have a better reinforcement in preparing a green composite. The commercially available polyester resin blend with coconut shell filler in nano form was used as matrix to sandwich these composites. Naturally available Fibers of palm leaf stalk, coconut leaf stalk, raffia and oil palm were extracted and treated with potassium permanganate solution which enhances the properties. For experimentation four different plates were fabricated using these fibers adopting hand lay-up method. These sandwiched composite plates are further machined to obtain ASTM standards Specimens which are mechanically tested as per standards. Experimental results reveal that the alkali treated palm leaf stalk fiber based polymer composite shows appreciable results than the others. Hence the developed composite can be recommended for fabrication of automobile parts.

  20. Diffusion bonding of transition structures for integral aluminium-fibre reinforced polymer (FRP) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hehl, A. von [IWT - Stiftung Institut fuer Werkstofftechnik, Hauptabteilung Werkstofftechnik, Bremen (Germany); Syassen, F. [Airbus Operations GmbH, Metal Technology, Bremen (Germany); Schimanski, K.

    2012-04-15

    Components in hybrid design become more and more important in terms of their lightweight potential. In this context the demand for weight saving in aerospace leads to increasing numbers of applications of fibre composites for primary structural components. In consequence the use of FRP-metal compounds is necessary. Within the investigations of the researcher group ''Schwarz Silber'' (FOR 1224) founded by the DFG (German Research Foundation) material optimised interface structures for advanced CFRP-aluminium compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium) and fibres (glass fibre) as transition elements between CFRP and aluminium. For the connection of the aluminium sheet and the transition element die-casting and laser beam welding are basically used. As a possible alternative to the both liquid phase processes a feasibility study haven been done focussing the solid state processes diffusion bonding. The experimental results show the high potential of this process in view of the transferable loads for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    Science.gov (United States)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  2. Warpage Analysis of Electroplated Cu Films on Fiber-Reinforced Polymer Packaging Substrates

    Directory of Open Access Journals (Sweden)

    Cheolgyu Kim

    2015-06-01

    Full Text Available This paper presents a warpage analysis method that predicts the warpage behavior of electroplated Cu films on glass fiber-reinforced polymer (GFRP packaging substrates. The analysis method is performed using the following sequence: fabricate specimens for scanning 3D contours, transform 3D data into curvatures, compute the built-in stress of the film using a stress-curvature analytic model, and verify it through comparisons of the finite element method (FEM simulations with the measured data. The curvature is used to describe the deflection and warpage modes and orientations of the specimen. Two primary factors that affect the warpage behavior of the electroplated Cu film on FRP substrate specimens are investigated. The first factor is the built-in stress in a Cu film that explains the room temperature warpage of the specimen under no thermal process. The second factor is the misfit of the coefficient of thermal expansion (CTE between the Cu and FRP layer, which is a dominant factor during the temperature change. The calculated residual stress, and predicted curvatures using FEM simulation throughout the reflow process temperature range between 25 and 180 °C are proven to be accurate by the comparison of the FEM simulations and experiment measurements.

  3. Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands

    Science.gov (United States)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2018-06-01

    This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.

  4. Laser-assisted nanoceramics reinforced polymer scaffolds for tissue engineering: additional heating and stem cells behavior

    Science.gov (United States)

    Shishkovsky, Igor; Scherbakov, Vladimir; Volchkov, Vladislav; Volova, Larisa

    2018-02-01

    The conditions of selective laser melting (SLM) of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation, and differentiation. In the present study, the influence of additional heating during SLM process on stem cell viability near biopolymer matrix reinforced by nanoceramics additives was carried out. We used the biocompatible and bioresorbable polymers (polyetheretherketone /PEEK/ and polycaprolactone /PCL/) as a matrix and nano-oxide ceramics - TiO2, Al2O3, ZrO2, FexOy and/or hydroxyapatite as a basis of the additives. The rate of pure PEEK and PCL bio-resorption and in mixtures with nano oxides on the matrix was studied by the method of mass loss on bacteria of hydroxylase and enzyme complex. The stem cellular morphology, proliferative MMSC activity, and adhesion of the 2D and 3D nanocomposite matrices were the subjects of comparison. Medical potential of the SLS/M-fabricated nano-oxide ceramics after additional heating as the basis for tissue engineering scaffolds and cell targeting systems were discussed.

  5. Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites

    International Nuclear Information System (INIS)

    Aigbodion, V.S.; Hassan, S.B.; Agunsoye, J.O.

    2012-01-01

    Highlights: → The influence of wear parameters on the wear rate of RLDPE were investigated. → The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. → The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance. -- Abstract: The tribological behaviour of recycled low density polyethylene (RLDPE) polymer composites with bagasse ash particles as a reinforcement was studied using a pin-on-disc wear rig under dry sliding conditions. The influence of wear parameters like, applied load, sliding speed, sliding distance and percentage of bagasse ash fillers, on the wear rate were investigated. A plan of experiments was performed to acquire data in a controlled way. Scanning electron microscope was used to analyse the worn surface of the samples. Linear regression equation and analysis of variance (ANOVA) were employed to investigate the influence of process parameters on the wear rate of the samples. The predicted wear rate of the RLDPE and it composites were found to lie close to that experimentally observed ones. The confirmation of the experiments conducted using ANOVA to verify the optimal testing parameters show that sliding speed and applied load had significant effect on the wear rate. The results showed that the addition of bagasse ash as filler materials in RLDPE composites increase the wear resistance of the composite greatly.

  6. Asset Management Business Model for Design, Realization, and Maintenance of Fibre Reinforced Polymer Bridges

    Directory of Open Access Journals (Sweden)

    Rizal Sebastian

    2013-01-01

    Full Text Available This paper particularly addresses the market implementation of Fibre Reinforced Polymer (FRP for bridges. It presents the concept of demand and supply chain innovation as being investigated within two ongoing European collaborative research projects (FP7 titled Trans-IND and PANTURA. FRP has emerged as a real alternative structural material based on various sustainability considerations, among others the reduced life-cycle cost due to less maintenance needs, longer lifetime, and easiness to repair, replace, or recycle the components. The Trans-IND research project aims to develop and demonstrate new industrialized processes to use FRP for civil infrastructure projects at a large scale. In order to be cost effective, a new value-chain strategy for the design, realization, and maintenance of FRP bridges is required to replace the fragmented supply chain and the one-off approach to a construction project. This paper focuses on the development of new business models based on asset management strategy, which covers the entire demand and supply chains. Research on new business models is supported by the insight into the market and regulatory frameworks in different EU countries. This is based on field surveys across the EU that have been carried out as a part of the Trans-IND and PANTURA collaborative research projects.

  7. Experimental investigation of span length for flexural test of fiber reinforced polymer composite laminates

    Directory of Open Access Journals (Sweden)

    Akhil Mehndiratta

    2018-01-01

    Full Text Available Testing and evaluation of mechanical properties for FRP (Fiber Reinforced Polymer composite parts play a significant role to qualify it for the end use. Among the mechanical properties, the flexural strength is significant and vital as it may vary with specimen depth, temperature and the test span length. The flexural strength varies for different materials with varying the test span length hence the current work aims to find an optimum span length to test flexural strength for the specimens made of Glass (7781, EC9756 and Carbon (HTA7, G801 prepreg materials. Experiments are conducted as per the ASTM Standard D 790 for flexural test by varying the span lengths to understand the behavior of the flexural strength and flexural modulus. The experimental data were compared with those obtained from the finite element program software Altair Hyper works 14.0. The results indicate that flexural modulus increases with the span length to a point and then it decreases. Thereby, an optimum span length can be obtained for testing flexural strength, which will be useful to the designers and the composite manufacturers to accomplish better standard testing procedures.

  8. Bond Behavior of Historical Clay Bricks Strengthened with Steel Reinforced Polymers (SRP)

    Science.gov (United States)

    Grande, Ernesto; Imbimbo, Maura; Sacco, Elio

    2011-01-01

    In the strengthening interventions of past and historical masonry constructions, the non-standardized manufacture processes, the ageing and the damage of masonry units, could significantly affect the properties of the surfaces where strengthening materials are applied. This aspect requires particular care in evaluating the performance of externally bonded strengthening layers, especially with reference to the detachment mechanism. The bond response of old masonries could be very different from that occurring in new masonry units which are the ones generally considered in most of the bond tests available in technical literature. The aim of the present paper is the study of the bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP) materials. In particular, the results of an experimental study concerning new manufactured clay bricks and old bricks extracted from different historical masonry buildings are presented. The obtained results, particularly in terms of bond resistance, detachment mechanism and strain distributions, are discussed for the purpose of analyzing the peculiarities of the historical bricks in comparison with new manufactured ones. Some considerations on the efficacy of the theoretical formulations of the recent Italian code are also carried out. PMID:28880008

  9. The concept of sustainable prefab modular housing made of natural fiber reinforced polymer (NFRP)

    Science.gov (United States)

    Setyowati, E.; Pandelaki, E. E.

    2018-03-01

    This research aims to formulate the concept of public housing based on research results on natural fiber reinforced polymer (FRP) material which has been done in the road map of research. Research output is the public housing design and specifications of FRP made of water hyacinths and coconut fiber. Method used is descriptive review of the concept based on references and material test which consists of density, water absorption, modulus of rupture (MOR), tensile strength, absorption coefficient and Sound Transmission Loss (STL). The entire tests of material were carried out in the laboratory of materials and construction, while the acoustic tests carried out using the impedance tubes method. The test results concluded that the FRP material may have a density between 0.2481 – 0.2777 g/cm3, the absorption coefficient is average of 0.450 – 0.900, the Modulus of Elasticity is between 4061 – 15193 kg/cm2, while the average of sound transmission loss is 52 – 59 dB. Furthermore, that the concept of public housing must be able to be the embryo of the concept of environment-friendly and low emissions housing.

  10. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  11. Fiber-Reinforced Polymer Nets for Strengthening Lava Stone Masonries in Historical Buildings

    Directory of Open Access Journals (Sweden)

    Santi Maria Cascone

    2016-04-01

    Full Text Available The strengthening of masonries is a crucial step in building restoration works because of its relevance, mostly with regard to the improvement of building seismic behavior. Current building technologies are based on the use of steel nets which are incorporated into cement plasters. The use of steel has a number of contraindications that can be solved by using composite materials such as glass fiber nets, which have high mechanical characteristics and lightness, elasticity, corrosion resistance, and compatibility with lime plaster. Building interventions, that take into account the application of glass fiber nets, are very sustainable from several points of view, e.g., material production, in situ works, economic cost and durability. In Italy, several experiments have been carried out in situ with the aim of testing the mechanical characteristics of masonries which have been treated with fiber-reinforced polymer (FRP nets. This paper deals with a series of in situ tests carried out during the restoration works of an important historical building located in Catania (Sicily, Italy. The results achieved are largely positive.

  12. Computational analysis of particle reinforced viscoelastic polymer nanocomposites - statistical study of representative volume element

    Science.gov (United States)

    Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine

    2018-05-01

    The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.

  13. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    International Nuclear Information System (INIS)

    Nji, Jones; Li, Guoqiang

    2010-01-01

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency

  14. Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Sayed Mohamad Soleimani

    2012-01-01

    Full Text Available The effectiveness of externally bonded sprayed glass fiber reinforced polymer (Sprayed GFRP in shear strengthening of RC beams under quasi-static loading is investigated. Different techniques were utilized to enhance the bond between concrete and Sprayed GFRP, involving the use of through bolts and nuts paired with concrete surface preparation through sandblasting and through the use of a pneumatic chisel prior to Sprayed GFRP application. It was found that roughening the concrete surface using a pneumatic chisel and using through bolts and nuts were the most effective techniques. Also, Sprayed GFRP applied on 3 sides (U-shaped was found to be more effective than 2-sided Sprayed GFRP in shear strengthening. Sprayed GFRP increased the shear load-carrying capacity and energy absorption capacities of RC beams. It was found that the load-carrying capacity of strengthened RC beams was related to an effective strain of applied Sprayed GFRP. This strain was related to Sprayed GFRP configuration and the technique used to enhance the concrete-FRP bond. Finally, an equation was proposed to calculate the contribution of Sprayed GFRP in the shear strength of an RC beam.

  15. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, A. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Rafii-Tabar, H., E-mail: rafii-tabar@nano.ipm.ac.ir [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)

    2011-10-31

    A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.

  16. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites

    International Nuclear Information System (INIS)

    Montazeri, A.; Rafii-Tabar, H.

    2011-01-01

    A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.

  17. Hybrid ray-FDTD model for the simulation of the ultrasonic inspection of CFRP parts

    Science.gov (United States)

    Jezzine, Karim; Ségur, Damien; Ecault, Romain; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    Carbon Fiber Reinforced Polymers (CFRP) are commonly used in structural parts in the aeronautic industry, to reduce the weight of aircraft while maintaining high mechanical performances. Simulation of the ultrasonic inspections of these parts has to face the highly heterogeneous and anisotropic characteristics of these materials. To model the propagation of ultrasound in these composite structures, we propose two complementary approaches. The first one is based on a ray model predicting the propagation of the ultrasound in an anisotropic effective medium obtained from a homogenization of the material. The ray model is designed to deal with possibly curved parts and subsequent continuously varying anisotropic orientations. The second approach is based on the coupling of the ray model, and a finite difference scheme in time domain (FDTD). The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Inspections of flat or curved composite panels, as well as stiffeners can be performed. The models have been implemented in the CIVA software platform and compared to experiments. We also present an application of the simulation to the performance demonstration of the adaptive inspection technique SAUL (Surface Adaptive Ultrasound).

  18. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    Science.gov (United States)

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  19. On impact damage detection and quantification for CFRP laminates using structural response data only

    Science.gov (United States)

    Sultan, M. T. H.; Worden, K.; Pierce, S. G.; Hickey, D.; Staszewski, W. J.; Dulieu-Barton, J. M.; Hodzic, A.

    2011-11-01

    The overall purpose of the research is to detect and attempt to quantify impact damage in structures made from composite materials. A study that uses simplified coupon specimens made from a Carbon Fibre-Reinforced Polymer (CFRP) prepreg with 11, 12 and 13 plies is presented. PZT sensors were placed at three separate locations in each test specimen to record the responses from impact events. To perform damaging impact tests, an instrumented drop-test machine was used and the impact energy was set to cover a range of 0.37-41.72 J. The response signals captured from each sensor were recorded by a data acquisition system for subsequent evaluation. The impacted specimens were examined with an X-ray technique to determine the extent of the damaged areas and it was found that the apparent damaged area grew monotonically with impact energy. A number of simple univariate and multivariate features were extracted from the sensor signals recorded during impact by computing their spectra and calculating frequency centroids. The concept of discordancy from the statistical discipline of outlier analysis is employed in order to separate the responses from non-damaging and damaging impacts. The results show that the potential damage indices introduced here provide a means of identifying damaging impacts from the response data alone.

  20. Study on an Improved Phosphate Cement Binder for the Development of Fiber-Reinforced Inorganic Polymer Composites

    Directory of Open Access Journals (Sweden)

    Zhu Ding

    2014-11-01

    Full Text Available Magnesium phosphate cement (MPC has been proven to be a very good repair material for deteriorated concrete structures. It has excellent adhesion performance, leading to high bonding strength with old concrete substrates. This paper presents an experimental study into the properties of MPC binder as the matrix of carbon fiber sheets to form fiber-reinforced inorganic polymer (FRIP composites. The physical and mechanical performance of the fresh mixed and the hardened MPC paste, the bond strength of carbon fiber sheets in the MPC matrix, the tensile strength of the carbon FRIP composites and the microstructure of the MPC matrix and fiber-reinforced MPC composites were investigated. The test results showed that the improved MPC binder is well suited for developing FRIP composites, which can be a promising alternative to externally-bonded fiber-reinforced polymer (FRP composites for the strengthening of concrete structures. Through the present study, an in-depth understanding of the behavior of fiber-reinforced inorganic MPC composites has been achieved.

  1. Glass Fiber Reinforced Polymer (GFRP Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique

    Directory of Open Access Journals (Sweden)

    Md. Akter Hosen

    2017-05-01

    Full Text Available Reinforced concrete (RC structures require strengthening for numerous factors, such as increased load, modification of the structural systems, structural upgrade or errors in the design and construction stages. The side near-surface mounted (SNSM strengthening technique with glass fiber-reinforced polymer (GFRP bars is a relatively new emerging technique for enhancing the flexural capacities of existing RC elements. Nine RC rectangular beams were flexurally strengthened with this technique and tested under four-point bending loads until failure. The main goal of this study is to optimize the structural capacity of the RC beams by varying the amount of strengthening reinforcement and bond length. The experimental test results showed that strengthening with SNSM GFRP bars significantly enhanced the flexural responses of the specimens compared with the control specimen. The first cracking and ultimate loads, energy absorption capacities, ductility and stiffness were remarkably enhanced by the SNSM technique. It was also confirmed that the bond length of the strengthened reinforcement greatly influences the energy absorption capacities, ductility and stiffness. The effect of the bond length on these properties is more significant compared to the amount of strengthening reinforcement.

  2. Influence of extreme low temperature conditions on the dynamic mechanical properties of carbon fiber reinforced polymers

    Science.gov (United States)

    Zaoutsos, S. P.; Zilidou, M. C.

    2017-12-01

    In the current study dynamic mechanical analysis (DMA) is performed in CFRPs that have been exposed for certain periods of time to extreme low temperatures. Through experimental data arising from respective DMA tests the influence of low temperature exposure (-40 °C) on the dynamic mechanical properties is studied. DMA tests were conducted in CFRP specimens in three point bending mode at both frequency and thermal scans in order to determine the viscoelastic response of the material in low temperatures. All experimental tests were run both for aged and pristine materials for comparison purposes. The results occurred reveal that there is deterioration both on transition temperature (Tg) and storage modulus values while there is also a moderate increase in the damping ability of the tested material as expressed by the factor tanδ as the period of exposure to low temperature increases.

  3. A fractal image analysis methodology for heat damage inspection in carbon fiber reinforced composites

    Science.gov (United States)

    Haridas, Aswin; Crivoi, Alexandru; Prabhathan, P.; Chan, Kelvin; Murukeshan, V. M.

    2017-06-01

    The use of carbon fiber-reinforced polymer (CFRP) composite materials in the aerospace industry have far improved the load carrying properties and the design flexibility of aircraft structures. A high strength to weight ratio, low thermal conductivity, and a low thermal expansion coefficient gives it an edge for applications demanding stringent loading conditions. Specifically, this paper focuses on the behavior of CFRP composites under stringent thermal loads. The properties of composites are largely affected by external thermal loads, especially when the loads are beyond the glass temperature, Tg, of the composite. Beyond this, the composites are subject to prominent changes in mechanical and thermal properties which may further lead to material decomposition. Furthermore, thermal damage formation being chaotic, a strict dimension cannot be associated with the formed damage. In this context, this paper focuses on comparing multiple speckle image analysis algorithms to effectively characterize the formed thermal damages on the CFRP specimen. This would provide us with a fast method for quantifying the extent of heat damage in carbon composites, thus reducing the required time for inspection. The image analysis methods used for the comparison include fractal dimensional analysis of the formed speckle pattern and analysis of number and size of various connecting elements in the binary image.

  4. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  5. Mass optimization of a small pressure vessel using metal/FRP (fiber reinforced polymers) hybrid structures

    International Nuclear Information System (INIS)

    Nisar, J.A.; Abdullah, A.N.; Iqbal, N.

    2004-01-01

    In hybrid pressure vessels, composite (Fiber) is wound over a metallic liner (Steel/Aluminum) in hoop direction. In this concept of hybrid pressure vessel structure, metallic liner takes all the axial loads and fiber reinforced polymers (FRP/sub s/) takes load in circumferential (Hoop) direction. Hybrid structures combine the relatively high shear stiffness and ductility of metal alloy with high specific stiffness, strength and fatigue properties of FRP/sub s/. The relatively simple methods for producing hybrid structures circumvent the need for the complex and expensive equipment that is used for advanced composites processing. This paper presents an efficient way of designing a hybrid pressure vessel where prime concern is weight reduction over an equivalent aluminum structure and investigates various methodologies regarding combinations of metals and FRP/sub s/ for optimization of a given pressure vessel. For this purpose we adopted two different methods of simulation one is computer simulation using ANSYS and other is experimental verification by hydrostatic testing of manufactured pressure vessel. Two different pressure vessels one with aluminum liner and other with steel liner were fabricated. Kevlar 49/epoxy was wrapped around the liners in hoop direction. Both the pressure vessels were put into hydrostatic test. Strains were measured during the test and then converted into corresponding stresses. Results of hydrostatic test were quite in favor of the ANSYS results. In this way we have successfully designed, manufactured and tested the Hybrid pressure vessel saving almost 40% weight in case of aluminum liner and 43.6% in case of steel liner. (author)

  6. In situ corrosion monitoring of PC structures with distributed hybrid carbon fiber reinforced polymer sensors

    Science.gov (United States)

    Yang, C. Q.; Wu, Z. S.

    2007-08-01

    Firstly, the fabrication and sensing properties of hybrid carbon fiber reinforced polymer (HCFRP) composite sensors are addressed. In order to provide a distributed sensing manner, the HCFRP sensors were divided into multi-zones with electrodes, and each zone was regarded as a separate sensor. Secondly, their application is studied to monitor the steel corrosion of prestressed concrete (PC) beams. The HCFRP sensors with different gauge lengths were mounted on a PC tendon, steel bar and embedded in tensile and compressive sides of the PC beam. The experiment was carried out under an electric accelerated corrosion and a constant load of about 54 kN. The results reveal that the corrosion of the PC tendon can be monitored through measuring the electrical resistance (ER) change of the HCFRP sensors. For the sensors embedded in tensile side of the PC beam, their ER increases as the corrosion progresses, whereas for the sensors embedded in compressive side, their ER decreases with corrosion time. Moreover, the strains due to the corrosion can be obtained based on the ER change and calibration curves of HCFRP sensors. The strains measured with traditional strain gauges agree with the strains calculated from the ER changes of HCFRP sensors. The electrical behavior of the zones where the corrosion was performed is much different from those of the other zones. In these zones, either there exist jumps in ER, or the ER increases with a much larger rate than those of the other zones. Distributed corrosion monitoring for PC structures is thus demonstrated with the application of HCFRP sensors through a proper installation of multi-electrodes.

  7. Finite element simulations and experiments to determine the residual damage of a CFRP composite material after ballistic impacts

    NARCIS (Netherlands)

    Herlaar, K.; Jagt-Deutekom, M. van der

    2005-01-01

    The use of lightweight systems is essential for future combat systems. More and more steel structures are replaced by composite structures. This also influences the vulnerability of the platform. A finite element material model is created in Autodyn of the carbon fiber reinforced plastic (CFRP)

  8. Comparison of NDT techniques to evaluate CFRP. Results obtained in a MAIzfp round robin test

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Christian U. [Technische Univ. Muenchen (Germany). Chair of Non-destructive Testing; Goldammer, Matthias; Grager, Jan-Carl [Siemens AG Corporate Technology, Muenchen (Germany); and others

    2016-10-01

    Fiber reinforced polymeric materials are used for lightweight constructions and are an integral part of cars, airplanes or rotor blades of wind turbines. Nondestructive testing (NDT) methods play an increasing role concerning the manufacturing process and the inspection during lifetime. The selection of the best NDT technique for a certain application depends - of course - on many factors including the type, position and size of the defect to be detected but also on secondary issues like accessibility, automation, testing costs, reliability and resolution to mention only some. For the more technical-scientific part of these issues, the determination of the probability of detection (PoD) plays a significant role. Early in the design process questions should be raised concerning the probability with which certain attribute of interest (a defect that has an effect on the structural behavior) can be detected (and localized) in a certain construction. Several defect types have been identified to be critical like impact damages, undulations and porosity. Test samples out of differently processed Carbon Fiber-Reinforced Polymers (CFRP) as used in the automotive or aeronautical industry have been produced including defects of different type and size. In order to determine the PoD and to check whether a technique is applicable the different partners applied a broad variety of selected NDT techniques including Micro CT, Ultrasound (including phased-array and air-coupled UT), Active Thermography, Eddy Current, Vibration and Visual Analysis and Local Acoustic Resonance Spectroscopy (LARS). The presentation will summarize some of the results of the experiments and ongoing data analysis.

  9. Comparison of NDT techniques to evaluate CFRP. Results obtained in a MAIzfp round robin test

    International Nuclear Information System (INIS)

    Grosse, Christian U.

    2016-01-01

    Fiber reinforced polymeric materials are used for lightweight constructions and are an integral part of cars, airplanes or rotor blades of wind turbines. Nondestructive testing (NDT) methods play an increasing role concerning the manufacturing process and the inspection during lifetime. The selection of the best NDT technique for a certain application depends - of course - on many factors including the type, position and size of the defect to be detected but also on secondary issues like accessibility, automation, testing costs, reliability and resolution to mention only some. For the more technical-scientific part of these issues, the determination of the probability of detection (PoD) plays a significant role. Early in the design process questions should be raised concerning the probability with which certain attribute of interest (a defect that has an effect on the structural behavior) can be detected (and localized) in a certain construction. Several defect types have been identified to be critical like impact damages, undulations and porosity. Test samples out of differently processed Carbon Fiber-Reinforced Polymers (CFRP) as used in the automotive or aeronautical industry have been produced including defects of different type and size. In order to determine the PoD and to check whether a technique is applicable the different partners applied a broad variety of selected NDT techniques including Micro CT, Ultrasound (including phased-array and air-coupled UT), Active Thermography, Eddy Current, Vibration and Visual Analysis and Local Acoustic Resonance Spectroscopy (LARS). The presentation will summarize some of the results of the experiments and ongoing data analysis.

  10. Analyzing the effect of carbon fiber reinforced polymer on the crashworthiness of aluminum square hollow beam for crash box application

    Science.gov (United States)

    Raman, R.; Jayanth, K.; Sarkar, I.; Ravi, K.

    2017-11-01

    Crashworthiness of a material is a measure of its ability to absorb energy during a crash. A well-designed crash box is instrumental in protecting the costly vehicle components. A square, hollow, hybrid beam of aluminum/CFRP was subjected to dynamic axial load to analyze the effect of five different lay-up sequences on its crashworthiness. The beam was placed between two plates. Boundary conditions were imposed on them to simulate a frontal body crash test model. Modeling and dynamic analysis of composite structures was done on ABAQUS. Different orientation of carbon fibers varies the crashworthiness of the hybrid beam. Addition of CFRP layer showed clear improvement in specific energy absorption and crush force efficiency compared to pure aluminum beam. Two layers of CFRP oriented at 90° on Aluminum showed 52% increase in CFE.

  11. A New Generation of Sub Mm Telescopes, Made of Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Mezger, P.; Baars, J. W. M.; Ulich, B. L.

    1984-01-01

    Carbon fiber reinforced plastic (CFRP) appears to be the material most suited for the construction of submillimeter telescopes (SMT) not only for ground-based use but also for space applications. The accuracy of the CFRP reflectors needs to be improved beyond value of the 17 micron rms envisaged for the 10 m SMT.

  12. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    Science.gov (United States)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  13. Finite element analysis and experimental verification of Polymer reinforced CRC improved for close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik

    2007-01-01

    Compact Reinforced Composite, CRC, is a high-strength cement-based composite that holds an enormous flexural and energy-absorbing capacity due to the close-spaced high strength steel reinforcement and a high-strength cement-based fiber DSP matrix. The material has been used in various constructions...

  14. Thermal conductivity measurement below 40 K of the CFRP tubes for the Mid-Intrared Instrument mounting struts

    DEFF Research Database (Denmark)

    Shaughnessy, B. M.; Eccleston, P.; Fereday, K. J.

    2007-01-01

    The Mid-Infrared Instrument (MIRI) is one of four instruments on the James Webb Space Telescope observatory, scheduled for launch in 2013. It must be cooled to about 7 K and is supported within the telescope’s 40 K instrument module by a hexapod of carbon fibre reinforced plastic (CFRP) tubing. T....... This article describes the measurement of cryogenic thermal conductivity of the candidate CFRP. Measured thermal conductivities were about 0.05 W/m K at a mean temperature of 10 K increasing to about 0.20 W/m K at a mean temperature of 40 K....

  15. Ageing of fibre reinforced polymer composite selected as a bearing material for Rams of 540 MWe fuelling machine

    International Nuclear Information System (INIS)

    Limaye, P.K.; Soni, N.L.; Agrawal, R.G.

    2006-01-01

    Fibre-reinforced-polymer-composite material has been suggested as a bearing material to overcome tribological problems witnessed during the testing of Ram assembly of the 540 MWe fuelling machine at RTD. After successful trials at B-Ram the composite material has been adapted for B-RAM, C-Ram and RDB head at fuelling machines being tested at RTD, Hall 7 and at Tarapur. Laboratory evaluations were also carried out at Tribology Lab RTD to study effect of radiation on the composite. Paper deals with the various aspects of life prediction of this material in term of wear and radiation damage. (author)

  16. The Modeling of Ultimate Bearing Capacity of Fiber Reinforced Polymer and Its acidic/alkaline Corrosion Mechanism Analysis

    Directory of Open Access Journals (Sweden)

    Qin Liping

    2014-01-01

    Full Text Available In this study, the overall property of fiber reinforced polymer (FRP was researched. It is currently widely used in all areas, mainly in civil engineering. The huge need of this material drives the research of its mechanical property and corrosion mechanism. It is proven that the FRP can significantly strengthen the whole structure due to the support of fiber. And by applying osmosis hypothesis into the explanation of corrosion of FRP, we concluded that its corrosion rate is much slower than common materials, like steel. Generally, based on these conclusions, FRP is suitable for most of the facilities in civil engineering.

  17. [Fusion implants of carbon fiber reinforced plastic].

    Science.gov (United States)

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  18. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    Science.gov (United States)

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Parametric study on patch repaired CFRP laminates using FEA

    Energy Technology Data Exchange (ETDEWEB)

    Kashfuddoja, M.; Ramji, M. [Indian Institute of Technology. Engineering Optics Lab. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Carbon fibre reinforced plastic (CFRP) composite laminates have become popular for structural applications as they are lighter, stronger and tougher. Composite structures are also susceptible to damage while in service. For improved service life, the damage needs to be repaired so that repair structure integrity is enhanced. Various parameters like patch size and shape, it's layup sequence and adhesive thickness would influence the performance of the repaired structure. In present work, a parametric study is carried out using finite element analysis (FEA) to investigate the influence of various parameters involved in composite repair. The panel is made of carbon / epoxy composite laminate with stacking sequence of (0/{+-}45/900)s and is subjected to tensile load. Damaged CFRP laminates is repaired by symmetrical patch adhesively bonded over the damaged area. Circular patch of different stacking sequence and size is considered. Influence of adhesive material and it's thickness on repair efficiency is also investigated. The influence of various repair parameters on peel stress is also analysed. (Author)

  20. Pitch catch ultrasonic study on unidirectional CFRP composite laminates using rayleigh wave transducers

    International Nuclear Information System (INIS)

    Park, Je Woong; Yang, In Young; Im, Kwang Hee; Hsu, David K.; Jung, Jong An

    2012-01-01

    The importance of carbon fiber reinforced plastics (CFRP) has been generally recognized, and CFRP composite laminates have become widely used. Thus, a nondestructive technique would be very useful for evaluating CF/epoxy composite laminates. A pitch catch UT signal is more sensitive than is a normal incidence backwall echo of a longitudinal wave in composites. The depth of the sampling volume where the pitch catch UT signal came from is relatively shallow, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Moreover, a method is utilized to determine the porosity content of a composite lay up by processing micrograph images of the laminate. The porosity content of a composite structure is critical to the overall strength and performance of the structure. The image processing method developed utilizes software to process micrograph images of the test sample. The results from the image processing method are compared with existing data. Beam profile is characterized in unidirectional CFRP using pitch catch Rayleigh probes. The one sided and two sided pitch catch techniques are utilized to produce C scan images with the aid of an automatic scanner. The pitch catch ultrasonic signal corresponds with the simulated results of unidirectional CFRP composites

  1. Effects of specialized drill bits on hole defects of CFRP laminates

    Science.gov (United States)

    Li, Chao; Xu, Jinyang; Chen, Ming

    2018-05-01

    Drilling is a conventional machining process widely applied to carbon fiber reinforced plastics (CFRP) for the riveting and fastening purposes in the aerospace and automotive industries. However, the machining mechanism of CFRP composites differ significantly from that of homogeneous metal alloys owing to their prominent anisotropy and heterogeneity. Serious hole defects such as fiber pullout, matrix debonding and delamination are generally produced during the hole-making process, resulting in the poor machined surface quality, low fatigue durability or even the part rejections. In order to minimize the defects especially the delamination damage in composites drilling, specialized drill bits are often a primary choice being widely adopted in a real production. This paper aims to study the effects of two drills differing in geometrical characteristics during the drilling of CFRP laminates. A number of drilling experiments were carried out with the aim to evaluate the drilling performance of different drill bits. A scanning electron microscope (SEM) was used to observe the drilled surfaces to study the surface roughness. A high frequency scanning acoustic microscope (SAM) was applied to characterize the drilled hole morphologies with a particular focus on the delamination damage occurring in the CFRP laminates. The obtained results indicate that the fiber orientation relative to the cutting direction is a key factor affecting hole morphology and hole wall defects can be reduced by utilizing specialized drill geometries. Moreover, the dagger drill was confirmed outperforming the brad spur drill from the aspect of reducing drilling-induced delamination.

  2. A Force Sensorless Method for CFRP/Ti Stack Interface Detection during Robotic Orbital Drilling Operations

    Directory of Open Access Journals (Sweden)

    Qiang Fang

    2015-01-01

    Full Text Available Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.

  3. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    Science.gov (United States)

    Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong

    2018-03-01

    Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  4. Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Hazimmah Dayang

    2018-01-01

    Full Text Available Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber –matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.

  5. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  6. Carbon Fibre-reinforced Polymer Strengthening and monitoring of the Gröndals Bridge in Sweden

    DEFF Research Database (Denmark)

    Täljsten, Björn; Hejll, A.; James, G.

    2007-01-01

    to be strengthened. The strengthening methods used were CFRP plates at the serviceability limit state and prestressed dywidag stays at the ultimate limit state. The strengthening was carried out during 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fiber sensors....

  7. Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has...

  8. Análisis de métodos para evaluar el refuerzo a esfuerzo cortante con CFRP en vigas de hormigón armado

    Directory of Open Access Journals (Sweden)

    Parra, C.

    2012-06-01

    Full Text Available Different models of shear-strengthened calculation by means of Carbon Fiber-Reinforced Polymer (CFRP are compared in this investigation works classified according to the way of failure. We take into account the modification of the behavior of the beam for the reinforcement in its design. The surveys show that as long as it is possible the main direction of the fibers must be perpendicular to the shear crakc. The contribution of the reinforcement to the resistance to shear-strengthened of the beam depends on the steel stirrups in the original beam. When the reinforcement strips thickness increases the resistance to shear-strengthened of the beam also increases. This relation tends to be lineal when the beam is not cracks. At last we must state that both the inclination angle of the crack and the shear-strengthened resisted by the reinforcement depend on the inclination angle of the fiber.

    En este trabajo de investigación se comparan diferentes modelos de cálculo de refuerzo a esfuerzo cortante mediante polímeros reforzados con fibras de carbono (CFRP clasificados según el modo de fallo. En el diseño del refuerzo se tiene en cuenta la modificación del comportamiento de la viga por el refuerzo. Los estudios muestran que siempre que sea posible, la dirección principal de las fibras debe ser perpendicular a las fisuras de cortante. La contribución del refuerzo a la resistencia a cortante de la viga depende de los estribos de acero existentes en la viga original. Cuando aumenta el espesor del refuerzo la resistencia a cortante de la viga se incrementa. Esta relación tiende a ser lineal cuando la viga no está fisurada. Por último indicar que tanto el ángulo de inclinación de las fisuras, como el cortante resistido por el refuerzo, dependen del ángulo de inclinación de las fibras.

  9. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    Directory of Open Access Journals (Sweden)

    Martin Herbrand

    2017-09-01

    Full Text Available Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  10. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    Science.gov (United States)

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  11. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    Science.gov (United States)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  12. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: An in vitro analysis

    OpenAIRE

    S Prakasam; Prakasam Bharadwaj; S C Loganathan; B Krishna Prasanth

    2014-01-01

    Objective: The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. Materials and Methods: One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with...

  13. Renovation and Strengthening of Wooden Beams With CFRP Bands Including the Rheological Effects

    Directory of Open Access Journals (Sweden)

    Kula Krzysztof

    2016-09-01

    Full Text Available The paper presents a work analysis of wooden beams reinforced with glued composite bands from the top and resin inclusions, taking into account the rheology of materials. The paper presents numerical model of the multimaterial beam work including rheological phenomena described by linear equations of viscoelasticity. For the construction of this model one used MES SIMULIA ABAQUS environment in which were prepared its own procedures containing rheological models. The calculation results were compared with the literature data. One has done an analysis of the advisability of the use of CFRP reinforcements bands in terms of rheological phenomena.

  14. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: an in vitro analysis.

    Science.gov (United States)

    Prakasam, S; Bharadwaj, Prakasam; Loganathan, S C; Prasanth, B Krishna

    2014-01-01

    The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with 50% Portland cement (PMZNPC 50%) Group 2: Polymer-reinforced zinc oxide eugenol with 25% Portland cement (PMZNPC 25%) Group 3: Polymer-reinforced zinc oxide eugenol with 0% Portland cement (PMZNPC 0%) Group 4: Zinc oxide eugenol with 50% Portland cement (ZNPC 50%) Group 5: Zinc oxide eugenol with 25% Portland cement (ZNPC 25%) Group 6: Zinc oxide eugenol with 0% Portland cement (ZNPC 0%) These samples were further subdivided based on time interval and were tested at 1 hour, 24 hours and at 7 th day. After each period of time all the specimens were tested by vertical CVR loaded frame with capacity of 5 tones/0473-10kan National Physical laboratory, New Delhi and the results were statistically analyzed using ANOVA and Scheffe test. Polymer-reinforced cement with 50% Portland cement, Zinc oxide with 50% Portland cement, Polymer-reinforced cement with 25% Portland cement and Zinc oxide with 25% Portland cement exhibited higher compressive strength when compared to Zinc oxide with 0% Portland cement and Polymer-reinforced cement with 0% Portland cement, at different periods of time. The difference between these two groups were statistically significant (P Portland cement in Zinc oxide eugenol and Polymer-modified zinc oxide cement can be used as core build up material and permanent filling material. It is concluded that 50% and 25% Portland cement in zinc oxide eugenol and polymer-modified zinc oxide eugenol results in higher compressive strength and hence can be used as permanent filling material and core built

  15. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  16. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    Directory of Open Access Journals (Sweden)

    R. Ananda Kumar

    2015-01-01

    Full Text Available Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral load reviews are also presented. This review paper is prepared to find out the performance of basalt fibre reinforced polymer BFRP composite retrofitted reinforced cement concrete single end bearing piles.

  17. Whole field strain measurement in critical thin adhesive layer of single- and double-sided repaired CFRP panel using DIC

    Science.gov (United States)

    Kashfuddoja, Mohammad; Ramji, M.

    2015-03-01

    In the present work, the behavior of thin adhesively layer in patch repaired carbon fiber reinforced polymer (CFRP) panel under tensile load is investigated experimentally using digital image correlation (DIC) technique. The panel is made of Carbon/epoxy composite laminate and the stacking sequence in the panel is [0º]4. A circular hole of 10 mm diameter (d) is drilled at the center of the panel to mimic the case of low velocity impact damage removal. The panel with open hole is repaired with double sided (symmetrical) and single sided (unsymmetrical) rectangular patch made of same panel material having stacking sequence of [0º]3. Araldite 2011 is used for bonding the patch onto the panel over the damaged area. The global behavior of thin adhesive layer is examined by analyzing whole field strain distribution using DIC. Longitudinal, peel and shear strain field in both double and single sided repair configuration is studied and a compression is made between them. An estimate of shear transfer length which is an essential parameter in arriving at an appropriate overlap length in patch design is proposed from DIC and FEA. Damage development, failure mechanism and load displacement behavior is also investigated. The experimental results are compared with the numerical predictions.

  18. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    Science.gov (United States)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  19. Studies on fabrication of glass fiber reinforced composites using polymer blends

    Science.gov (United States)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  20. CFRP mirror technology for cryogenic space interferometry: review and progress to date

    Science.gov (United States)

    Jones, Martyn L.; Walker, David; Naylor, David A.; Veenendaal, Ian T.; Gom, Brad G.

    2016-07-01

    The FP7 project, FISICA (Far Infrared Space Interferometer Critical Assessment), called for the investigation into the suitability of Carbon fiber Reinforced Plastic (CFRP) for a 2m primary mirror. In this paper, we focus on the major challenge for application, the development of a mirror design that would maintain its form at cryogenic temperatures. In order to limit self-emission the primary is to be cooled to 4K whilst not exceeding a form error of 275nm PV. We then describe the development of an FEA model that utilizes test data obtained from a cryogenic test undertaken at the University of Lethbridge on CFRP samples. To conclude, suggestions are made in order to advance this technology to be suitable for such an application in order to exploit the low density and superior specific properties of polymeric composites.

  1. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Jon [Fiberlean Technologies; Ireland, Sean [Fiberlean Technologies; Skuse, David [Imerys; Edwards, Martha [Imerys; Mclain, Leslie [Imerys; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Ozcan, Soydan [ORNL

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  2. Damage sensing and mechanical characteristics of CFRP strengthened steel plate

    Science.gov (United States)

    Mieda, Genki; Nakano, Daiki; Fuji, Yuya; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro; Matsui, Takahiro; Ochi, Yutaka; Matsumoto, Yukihiro

    2017-10-01

    In recent years, a large number of structures that were built during the period of high economic growth in Japan is beginning to show signs of aging. For example, the structural performance of steel structures has degraded due to corrosion. One measure that has been proposed and studied to address this issue is the adhesive bonding method, which can be used to repair and reinforce these structures. However, this method produces brittle fracture in the adhesive layer and is difficult to maintain after bonding. To solve the problem faced by this method, a clarification of the mechanical properties inside the adhesive is necessary. Then this background, a fiber Bragg grating (FBG) sensor has been used in this study. This sensor can be embedded within the building material that needs repairing and reinforcing because an FBG sensor is extremely small. Eventually based on this, a three-point bending test of a carbon fiber reinforced plastic (CFRP) strengthened steel plate that was embedded with an FBG sensor was conducted. This paper demonstrates that an FBG sensor is effectively applicable for sensing when damage occurs.

  3. Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach

    Science.gov (United States)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yuan, Fuh-Gwo

    2015-01-01

    NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered

  4. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    Directory of Open Access Journals (Sweden)

    Caterina Casavola

    2018-04-01

    Full Text Available Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT on T-pull samples made by carbon fiber reinforced polymers (CFRP and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  5. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  6. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    Directory of Open Access Journals (Sweden)

    Al Saadi Hamza Salim Mohammed

    2017-01-01

    Full Text Available One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP. For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  7. Fiber-reinforced plastic composites. Possibilities and limitations of applications as machine-construction materials

    Science.gov (United States)

    Ophey, Lothar

    1988-01-01

    The use of fiber-reinforced composite structural materials in engineering applications is discussed in a survey of currently available technology and future prospects. The ongoing rapid growth in the use of these materials is described, and the criteria to be applied in selecting base materials, lamination schemes, fasteners, and processing methods are examined in detail and illustrated with graphs, diagrams, flow charts, and drawings. A description of a sample application (comparing the properties of steel, CFRP, SiC-reinforced Al, CFRP/steel, and CFRP/Al automobile piston rods) is included.

  8. Study of long term chemo-hydro-mechanic behaviour of hydraulic barrier reinforced by polymer

    International Nuclear Information System (INIS)

    Razakamanantsoa, Andry Rico

    2009-01-01

    Passive barrier for landfill liners are designed with bentonite material as Geo-synthetic Clay Liners (GCL's) or Sand Bentonite Mixtures (SBM). This thesis is focused on the experimental study of the long term Chemo-Hydro-Mechanic behaviour of polymer treated geo-materials. Tests are performed with two powder polyelectrolyte polymers (P1, P2). Soil and one selected type of bentonite from a set of six are used. The corresponding testing fluid is composed with: synthesized leachate, CaCl_2 and NaCl. This first step of the study is to select the suitable bentonite (B) and the corresponding polymer concentration (2%) that gives the best swelling ability to the bentonite. Compatibility test of the bentonite polymer mixture with synthesized leachable is done. Tests are performed by fabricating GL's, with filter press and oedo-permeameter. Results show that hydraulic performance grows with the bentonite concentration. And the LS aggressiveness occurs immediately in a case of bentonite. The effects of polymer treatment are different: P1 increases the swelling ability of bentonite by flocculation, P2 increases the hydraulic performance of the bentonite by dispersion. The long term hydraulic performance tests with SBM are carried out with a rigid wall permeameter. Tests results show that pre-hydration delays only the fluid aggressiveness in spite of reducing the corresponding effects. The long term effect of polymer treatment reveals benefits to geo-material behaviour by increasing water retention and reducing the undesired effects of pollutant. The chemical index is proposed to forecast the geo-material degradation. (author)

  9. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  10. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    Science.gov (United States)

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  11. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate Polymer Complex

    Directory of Open Access Journals (Sweden)

    Ivona Jerkovic

    2017-10-01

    Full Text Available Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  12. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    Science.gov (United States)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  13. Carbon nanotube reinforced polymer composites–A state of the art

    Indian Academy of Sciences (India)

    TECS

    Abstract. Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess ...

  14. Challenges and opportunities of fibre-reinforced polymers in additive manufacturing with focus on industrial applications

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Functional parts made by additive manufacturing of polymers have entered the area of industrial applications in recent years providing a wide range of materials with various mechanical, thermal, and electrical properties. These additive manufacturing processes can be combined with known fibre...

  15. Shrinkage Behaviour of Fibre Reinforced Concrete with Recycled Tyre Polymer Fibres

    Directory of Open Access Journals (Sweden)

    Marijana Serdar

    2015-01-01

    Full Text Available Different types of fibres are often used in concrete to prevent microcracking due to shrinkage, and polypropylene fibres are among the most often used ones. If not prevented, microcracks can lead to the development of larger cracks as drying shrinkage occurs, enabling penetration of aggressive substances from the environment and reducing durability of concrete structures. The hypothesis of the present research is that polypropylene fibres, used in concrete for controlling formation of microcracks due to shrinkage, can be replaced with recycled polymer fibres obtained from end-of-life tyres. To test the hypothesis, concrete mixtures containing polypropylene fibres and recycled tyre polymer fibres were prepared and tested. Experimental programme focused on autogenous, free, and restrained shrinkage. It was shown that PP fibres can be substituted with higher amount of recycled tyre polymer fibres obtaining concrete with similar shrinkage behaviour. The results indicate promising possibilities of using recycled tyre polymer fibres in concrete products. At the same time, such applications would contribute to solving the problem of waste tyre disposal.

  16. Carbon nanotube reinforced polymer composites—A state of the art

    Indian Academy of Sciences (India)

    Because of their high mechanical strength, carbon nanotubes (CNTs) are being considered as nanoscale fibres to enhance the performance of polymer composite materials. Novel CNT-based composites have been fabricated using different methods, expecting that the resulting composites would possess enhanced or ...

  17. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites.

    Science.gov (United States)

    Invernizzi, Marta; Natale, Gabriele; Levi, Marinella; Turri, Stefano; Griffini, Gianmarco

    2016-07-16

    Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  18. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  19. The Impact Resistance of Fiber-Reinforced Polymer Composites: A Review

    OpenAIRE

    Mahmood Mehrdad Shokrieh; Majid Jamal Omidi

    2012-01-01

    Fiber reinforced composites are widely used instead of traditional materials in various technological applications. Therefore, by considering the extensive applications of these materials, a proper knowledge of their impact behavior (from low- to high-velocity) as well as their static behavior is necessary. In order to study the effects of strain rates on the behavior of these materials, special testing machines are needed. Most of the research efforts in this feld are focused on application ...

  20. A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate

    Directory of Open Access Journals (Sweden)

    Yongtaeg LEE

    2015-11-01

    Full Text Available The increase of well-being culture of problem related to environmental depletion of resource is not the growing interest in timber the natural material of construction markets. Also, the perception for historic preservation has been increased in respond to heightened interest. However, it is fairly difficult for architectural properties to maintain their durability because it was made by timber construction. Preventing traditional structure from damage and structural performance reduction is paramount in maintenance problem. A number of studies of reinforced method have been conducted in order to solve such a problem. In this paper, external bonded reinforcement and near-surface mounted was used as a way to reinforce timber structure’s durability. Bond strength for specimens with different bond length was investigated. As a result showed, maximum bond strength in bond length 300 mm from all method, was found to be not increased of bond strength over the certain bond length.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9702

  1. Optimum Electrode Configurations for Two-Probe, Four-Probe and Multi-Probe Schemes in Electrical Resistance Tomography for Delamination Identification in Carbon Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Luis Waldo Escalona-Galvis

    2018-04-01

    Full Text Available Internal damage in Carbon Fiber Reinforced Polymer (CFRP composites modifies the internal electrical conductivity of the composite material. Electrical Resistance Tomography (ERT is a non-destructive evaluation (NDE technique that determines the extent of damage based on electrical conductivity changes. Implementation of ERT for damage identification in CFRP composites requires the optimal selection of the sensing sites for accurate results. This selection depends on the measuring scheme used. The present work uses an effective independence (EI measure for selecting the minimum set of measurements for ERT damage identification using three measuring schemes: two-probe, four-probe and multi-probe. The electrical potential field in two CFRP laminate layups with 14 electrodes is calculated using finite element analyses (FEA for a set of specified delamination damage cases. The measuring schemes consider the cases of 14 electrodes distributed on both sides and seven electrodes on only one side of the laminate for each layup. The effectiveness of EI reduction is demonstrated by comparing the inverse identification results of delamination cases for the full and the reduced sets using the measuring schemes and electrode sets. This work shows that the EI measure optimally reduces electrode and electrode combinations in ERT based damage identification for different measuring schemes.

  2. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  3. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    Science.gov (United States)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft

  4. Physico-Chemical studies on irradiated polymer-reinforcement cement mortar composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    2001-01-01

    The reinforced concrete suffers from corrosion by several salts, acids or alkalies and physico-mechanical properties are greatly affected. This leads to reduce the life of reinforced concrete structure. The present investigation deals with a comparison of corrosion presentation efficiency and passivity retention of reinforcement steel coated with methylethyl and propyl inhibitors which are prepared by using γ radiation and non-coated steel embedded in γ -induced polyester cement mortar composites. From the results of these studies several conclusions could be derived and these are summarized as follows: 1- The time required to reach passivation for coated steel embedded in the mortar after soaking in tap water for 28 days lies within the range 5-15 minutes; whereas, the time required to reach passivation for steel embedded in the polyester cement mortar composites is very short (1 minute). This result is related to the presence of copolymerized polyester in the pore system of the specimens. 2- The time required to reach passivation for steel coated by inhibitors in the mortar specimens after curing in tap water for 6 months is lower than that of non -coated steel embedded in the mortar specimens cured at the same conditions. 3- A relatively high degree of corrosion inhibition was obtained for the steel embedded in polyester-cement mortar composites after curing in sea water for 28 days, the time required to reach passivation is considered as moderate in the case of methyl and ethyl inhibitors the time to passivation (T.T.P.) = 9 minutes and the degree of inhibition of steel coated with the propyl inhibitor is comparatively low (T.T.P.=21 minutes)

  5. A viscoelastic-viscoplastic model for short-fibre reinforced polymers with complex fibre orientations

    Directory of Open Access Journals (Sweden)

    Nciri M.

    2015-01-01

    Full Text Available This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite’s macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.

  6. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  7. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  8. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  9. Acoustic Emission Monitoring of Lightning-Damaged CFRP Laminates during Compression-after-Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Shin, Jae Ha [Department of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2012-06-15

    Carbon-fiber reinforced plastic(CFRP) laminates made of nano-particle-coated carbon fibers and damaged by a simulated lightning strike were tested under compression-after-impact(CAI) mode, during which the damage progress due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. Conductive nano-particles were coated directly on the fibers, from which CFRP coupons were made. The coupon were subjected to the strikes with a high voltage/current impulse of 10-40 kA within a few . The effects of nano-particle coating and the degree of damage induced by the simulated lightning strikes on AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. The assessment during the CAI tests of damaged CFRP showed that AE monitoring appeared to be useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

  10. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  11. In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo L.

    2000-01-01

    Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.

  12. Comparative environmental and human health evaluations of thermolysis and solvolysis recycling technologies of carbon fiber reinforced polymer waste.

    Science.gov (United States)

    Khalil, Y F

    2018-06-01

    This quantitative research aims to compare environmental and human health impacts associated with two recycling technologies of CFRP waste. The 'baseline' recycling technology is the conventional thermolysis process via pyrolysis and the 'alternative' recycling technology is an emerging chemical treatment via solvolysis using supercritical water (SCW) to digest the thermoset matrix. Two Gate-to-Gate recycling models are developed using GaBi LCA platform. The selected functional unit (FU) is 1 kg CFRP waste and the geographical boundary of this comparative LCIA is defined to be within the U.S. The results of this comparative assessment brought to light new insights about the environmental and human health impacts of CFRP waste recycling via solvolysis using SCW and, therefore, helped close a gap in the current state of knowledge about sustainability of SCW-based solvolysis as compared to pyrolysis. Two research questions are posed to identify whether solvolysis recycling offers more environmental and human health gains relative to the conventional pyrolysis recycling. These research questions lay the basis for formulating two null hypotheses (H 0,1 and H 0,2 ) and their associated research hypotheses (H 1,1 and H 1,2 ). LCIA results interpretation included 'base case' scenarios, 'sensitivity studies,' and 'scenarios analysis.' The results revealed that: (a) recycling via solvolysis using SCW exhibits no gains in environmental and human health impacts relative to those impacts associated with recycling via pyrolysis and (b) use of natural gas in lieu of electricity for pyrolyzer's heating reduces the environmental and human health impacts by 37% (lowest) and up to 95.7% (highest). It is recommended that on-going experimental efforts that focus only on identifying the best solvent for solvolysis-based recycling should also consider quantification of the energy intensity as well as environmental and human health impacts of the proposed solvents. Copyright © 2018

  13. The Applicability of Taylor’s Model to the Drilling of CFRP Using Uncoated WC-Co Tools: The Influence of Cutting Speed on Tool Wear

    OpenAIRE

    Merino Perez, J.L.; Merson, E.; Ayvar-Soberanis, S.; Hodzic, A.

    2014-01-01

    This work investigates the applicability of Taylor’s model on the drilling of CFRP using uncoated WC-Co tools, by assessing the influence of cutting speed (Vc) on tool wear. Two different resins, possessing low and high glass transition temperatures (Tg), and two different reinforcements, high strength and high modulus woven fabrics, were combined into three different systems. Flank wear rate gradient exhibited to be more reinforcement dependent, while the actual flank wear rate showed to be ...

  14. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    Science.gov (United States)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  15. Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications

    International Nuclear Information System (INIS)

    Ahlborn, K.

    1989-01-01

    The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de

  16. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs

    Directory of Open Access Journals (Sweden)

    Zhi-Yu Wang

    2015-08-01

    Full Text Available Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.

  17. UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE

    Directory of Open Access Journals (Sweden)

    Subyakto Subyakto

    2013-06-01

    Full Text Available Sisal (Agave sisalana as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP and polylactic acid (PLA to bond together with the reinforcement agent (e.g. sisal fibers. In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites. Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite, the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA. With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE of MSFC

  18. Resistance of CFRP structures to environmental degradation in low Earth orbit

    Science.gov (United States)

    Suliga, Agnieszka

    Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical

  19. WPŁYW SUBSTYTUCJI WŁÓKIEN BAZALTOWYCH PRZEZ WŁÓKNA WĘGLOWE NA WŁAŚCIWOŚCI MECHANICZNE PRĘTÓW B/CFRP (HFRP

    Directory of Open Access Journals (Sweden)

    Kostiantyn PROTCHENKO

    2016-07-01

    Full Text Available W niniejszym artykule przedstawiono analityczne i numeryczne obliczenia mechanicznych właściwości obecnie opracowywanych prętów hybrydowych HFRP (Hybrid Fibre Reinforced Polymer powstałych poprzez zastąpienie (substytucję części włókien bazaltowych BFRP (Basalt Fibre Reinforced Polymer włóknami węglowymi CFRP (Carbon Fibre Reinforced Polymer. W tym aspekcie termin ,,substytucja” rozumiany będzie jako modyfikacja prętów BFRP polegająca na zastąpieniu pewnej części włókien bazaltowych przez włókna węglowe. Celem analizy jest określenie optymalnego modelu prętów hybrydowych HFRP, które stanowiłyby realną alternatywę dla prętów stalowych stosowanych do zbrojenia konstrukcji betonowych. Zamiana włókien bazaltowych, włóknami węglowymi prowadzi do uzyskania lepszych właściwości mechanicznych prętów. Względy ekonomiczne skłaniają do ograniczenia procentowego udziału włókien węglowych w prętach HFRP do rozsądnej wielkości, oraz zastosowaniu włókien węglowych o stosunkowo niedużej wytrzymałości (Low Strength Carbon Fibres jak na włókna CFRP. W pracy przedstawiony został opis struktury pręta hybrydowego, oszacowanie właściwości mechanicznych wzdłuż i w poprzek włókien, a także wpływ układu włókien w przekroju poprzecznym pręta na jego zachowanie mechaniczne. Analizę przeprowadzono dla różnych proporcji udziału włókien węglowych do włókien bazaltowych (1:9; 1:4; 1:3; 1:2; 1:1 w prętach HFRP. Rozpatrzono dwa przypadki rozmieszczenia włókien w przekroju poprzecznym pręta (Bar Architecture. Pierwszy z włóknami węglowymi zlokalizowanymi w rdzeniu, natomiast drugi z włóknami węglowymi usytuowanymi w powierzchniowej warstwie pręta.

  20. Effect of oil palm empty fruit bunches fibers reinforced polymer recycled

    Science.gov (United States)

    Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.

    2017-07-01

    The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).

  1. Mechanical and durability characteristics of externally GFRP reinforced unsaturated polyester polymer concrete

    Science.gov (United States)

    Bouguessir, H.; Harkati, E.; Rokbi, M.; Priniotakis, G.; Vassiliadis, S.

    2017-10-01

    The last decades of the XXe century cognized a huge extent of composite materials uses to almost all everyday life’s applications, replacing the conventional materials, due to their outstanding properties especially highest strength-to-weight ratio and the ability to be designed to satisfy specific performance requirements. To get the most out of these wonder materials, a new concept, combining polymer concrete and composite laminates, is currently used in Algeria. This research work has the aim to investigate applicability of this concept in civil engineering through tensile and bending tests. On the other hand, the influence of various chemicals (Sodium hydroxide, Potassium Hydroxide and Calcium Carbonates) on our material and its tensile properties retention over long-time exposure was examined. The mechanical properties obtained indicate the convenience of this material for use in civil engineering thanks to its very good tensile and flexural performances in addition to its sufficient residual strength after theoretically 56 years.

  2. FY 2000 Project of developing international standards for supporting new industries. Standardization of the crushed, recycled CFRPs (carbon-fiber reinforced plastics); 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Recycle CFRP (tanso sen'i kyoka plastic) funsaihin no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the basic technologies for, e.g., recycling CFRPs by crushing/screening them and also recycling carbon fibers by removing the matrices; development of the methods of measuring characteristics of the recycled stock materials; and standardization of the specifications, for proposing the international standards. The program for methods of crushing CFRPs tests the cylindrical CFRP samples (thickness: approximately 7mm) composed of high-strength carbon fibers and epoxy resin, to confirm feasibility of crushing by a shear type crusher. The program for removing the CFRP matrices studies epoxy resin as the representative thermosetting resin matrix material, to confirm that the matrix can be removed basically without greatly deteriorating strength of the carbon fibers by selecting an adequate catalyst and treating conditions. The program for studying the international standards finds neither international standard dedicated only for recycling CFRPs nor movement for establishing them. (NEDO)

  3. Fabrication of CFRP/Al Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  4. Experimental study of surface quality and damage when drilling unidirectional CFRP composites

    Directory of Open Access Journals (Sweden)

    Eshetu D. Eneyew

    2014-10-01

    Full Text Available In this study, an experimental investigation on the drilling of unidirectional carbon fiber reinforced plastic (UD-CFRP composite was conducted using polycrystalline diamond (PCD tipped eight facet drill. The quality of the drilled hole surface was examined through surface roughness measurements and surface damage by scanning electron microscopy (SEM. It was found that fiber pullout occurred in two specific sectors relative to the angle between the cutting direction and the fiber orientation. The thrust force was highly influenced by the feed rate than the cutting speed and it shows a significant variation throughout the rotation of the drill.

  5. Optics of carbon fiber-reinforced plastics – A theoretical and an experimental study

    International Nuclear Information System (INIS)

    Hohmann, Ansgar; ElMaklizi, Ahmed; Foschum, Florian; Voit, Florian; Bergmann, Florian; Simon, Emanuel; Reitzle, Dominik; Kienle, Alwin

    2016-01-01

    Laser processing of carbon fiber-reinforced plastics (CFRP) as well as their design optimization are strongly emerging fields. As the optics of CFRP is still rather unknown, the optical behavior of CFRP was investigated in this study. Different simulation models were implemented to simulate reflectance from CFRP samples as well as distribution and absorption of light within these samples. The methods include an analytical solution of Maxwell's equations and Monte Carlo solutions of the radiative transfer theory. We show that strong inaccurracies occur, if light propagation in CFRP is modeled using the radiative transfer theory. Therefore, the solution of Maxwell's equations is the method of choice for calculation of light propagation in CFRP. Furthermore, measurements of the reflectance of light from CFRP were performed and compared to the simulations for investigation of the optical behavior. Information on the refractive index of carbon fibers was obtained via goniometric measurements. The amount of reflected light was determined as 6.05±0.38% for light polarized parallel to the fiber direction, while it was 3.65±0.41% for light polarized perpendicular to the fiber direction in case of laser-processed CFRP. - Highlights: • The light scattering of CFRP was studied using Maxwell's equations and radiative transfer theory. • The simulations were validated by experiments. • Strong inaccuracies occur if light propagation in CFRP structures is modeled with the RTT. • The Bouguer–Lambert–Beer model with μ_a=4πf_VIm(n_c_y_l)/λ cannot be used in CFRP samples. • Reflectance values were determined and information on the refractive index was inferred.

  6. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Directory of Open Access Journals (Sweden)

    Jankowiak Iwona

    2017-12-01

    Full Text Available One of the methods to increase the load carrying capacity of the reinforced concrete (RC structure is its strengthening by using carbon fiber (CFRP strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments. The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  7. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Science.gov (United States)

    Jankowiak, Iwona; Madaj, Arkadiusz

    2017-12-01

    One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  8. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot recreational yachts

    Directory of Open Access Journals (Sweden)

    Dave (Dae-Wook Kim

    2010-03-01

    Full Text Available Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL, vacuum infusion (VI, and hybrid (HL + VI processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

  9. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

    Science.gov (United States)

    Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel

    2010-03-01

    Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results

  10. Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers

    Science.gov (United States)

    Hübler, M.; Nissle, S.; Gurka, M.; Wassenaar, J.

    2016-04-01

    Static vortex generators (VGs) are installed on different aircraft types. They generate vortices and interfuse the slow boundary layer with the fast moving air above. Due to this energizing, a flow separation of the boundary layer can be suppressed at high angles of attack. However the VGs cause a permanently increased drag over the whole flight cycle reducing the cruise efficiency. This drawback is currently limiting the use of VGs. New active VGs, deployed only on demand at low speed, can help to overcome this contradiction. Active hybrid structures, combining the actuation of shape memory alloys (SMA) with fiber reinforced polymers (FRP) on the materials level, provide an actuation principle with high lightweight potential and minimum space requirements. Being one of the first applications of active hybrid structures from SMA and FRP, these active vortex generators help to demonstrate the advantages of this new technology. A new design approach and experimental results of active VGs are presented based on the application of unique design tools and advanced manufacturing approaches for these active hybrid structures. The experimental investigation of the actuation focuses on the deflection potential and the dynamic response. Benchmark performance data such as a weight of 1.5g and a maximum thickness of only 1.8mm per vortex generator finally ensure a simple integration in the wing structure.

  11. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis

    International Nuclear Information System (INIS)

    Satheesh Raja, R.; Manisekar, K.; Manikandan, V.

    2014-01-01

    Highlights: • FRP with and without fly ash filler were prepared. • Mechanical properties of composites were analyzed. • Mixture Design Method was used to model the system. • Experimental and mathematical model results were compared. - Abstract: This paper describes the mechanical behavior of fly ash impregnated E-glass fiber reinforced polymer composite (GFRP). Initially the proportion of fiber and resin were optimized from the analysis of the mechanical properties of the GFRP. It is observed that the 30 wt% of E-glass in the GFRP without filler material yields better results. Then, based on the optimized value of resin content, the varying percentage of E-glass and fly ash was added to fabricate the hybrid composites. Results obtained in this study were mathematically evaluated using Mixture Design Method. Predictions show that 10 wt% addition of fly ash with fiber improves the mechanical properties of the composites. The fly ash impregnated GFRP yields significant improvement in mechanical strength compared to the GFRP without filler material. The surface morphologies of the fractured specimens were characterized using Scanning Electron Microscope (SEM). The chemical composition and surface morphology of the fly ash is analyzed by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope

  12. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    International Nuclear Information System (INIS)

    El-Tahan, M; Dawood, M; Song, G

    2015-01-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements. (paper)

  13. ASCE application guide for recommended practice for fiber-reinforced polymer products for overhead utility line structures

    Energy Technology Data Exchange (ETDEWEB)

    Gnandt, E. [T and D High Voltage Consulting, Vancouver, BC (Canada)

    2002-07-01

    The participants to the American Society of Civil Engineers (ASCE) prepared an application guide to provide guidelines to utilities and manufacturers on topics ranging from design to manufacture, testing and installation of fiber-reinforced polymer (FRP) products. The intent was also to help utilities with a possible replacement material for wood, steel and pre-stressed concrete. FRP products are constructed from fiber and resin and offer several advantages such as light weight and high strength-to-weight ratio, low maintenance, dimensional stability, resistance to rot, corrosion, chemicals and pest damage. FRP products can be used for lighting poles, ladders and grating, transformer pads, pole line hardware and crossarms, and other applications. There are five structural configurations: (1) cantilevered structures (single pole), (2) guyed structures, framed structures (H-Frame), (4) a combination of (1), (2), and (3), and (5) lattice structures (transmission class). The author listed some of the initial considerations: physical characteristics, guying and grounding, deflection and load testing, attached items, and durability to name only a few. The materials and manufacturing processes were briefly explained, namely the pultrusion method, the filament winding method, and the centrifugal casting method. Design loads considerations are discussed, as are performance-based criteria such as mechanical, coating durability and electrical. Quality control, assembly erection and storage, and in-service considerations are also discussed. The author concluded the presentation with a section dealing with field inspections. figs.

  14. Coupling of a structural analysis and flow simulation for short-fiber-reinforced polymers: property prediction and transfer of results

    Science.gov (United States)

    Kröner, C.; Altenbach, H.; Naumenko, K.

    2009-05-01

    The aim of this paper is to discuss the basic theories of interfaces able to transfer the results of an injection molding analyis of fiber-reinforced polymers, performed by using the commercial computer code Moldflow, to the structural analysis program ABAQUS. The elastic constants of the materials, such as Young's modulus, shear modulus, and Poisson's ratio, which depend on both the fiber content and the degree of fiber orientation, were calculated not by the usual method of "orientation averaging," but with the help of linear functions fitted to experimental data. The calculation and transfer of all needed data, such as material properties, geometry, directions of anisotropy, and so on, is performed by an interface developed. The interface is suit able for midplane elements in Moldflow. It calculates and transfers to ABAQUS all data necessary for the use of shell elements. In addition, a method is described how a nonlinear orthotropic behavior can be modeled starting from the generalized Hooke's law. It is also shown how such a model can be implemented in ABAQUS by means of a material subroutine. The results obtained according to this subroutine are compared with those based on an orthotropic, linear, elastic simulation.

  15. Bond-Slip Behavior of Basalt Fiber Reinforced Polymer Bar in Concrete Subjected to Simulated Marine Environment: Effects of BFRP Bar Size, Corrosion Age, and Concrete Strength

    OpenAIRE

    Yongmin Yang; Zhaoheng Li; Tongsheng Zhang; Jiangxiong Wei; Qijun Yu

    2017-01-01

    Basalt Fiber Reinforced Polymer (BFRP) bars have bright potential application in concrete structures subjected to marine environment due to their superior corrosion resistance. Available literatures mainly focused on the mechanical properties of BFRP concrete structures, while the bond-slip behavior of BFRP bars, which is a key factor influencing the safety and service life of ocean concrete structures, has not been clarified yet. In this paper, effects of BFRP bars size, corrosion age, and c...

  16. "Brick-and-Mortar" Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites.

    Science.gov (United States)

    De Luca, Francois; Sernicola, Giorgio; Shaffer, Milo S P; Bismarck, Alexander

    2018-02-28

    The fiber-matrix interface plays a critical role in determining composite mechanical properties. While a strong interface tends to provide high strength, a weak interface enables extensive debonding, leading to a high degree of energy absorption. Balancing these conflicting requirements by engineering composite interfaces to improve strength and toughness simultaneously still remains a great challenge. Here, a nanostructured fiber coating was realized to manifest the critical characteristics of natural nacre, at a reduced length scale, consistent with the surface curvature of fibers. The new interphase contains a high proportion (∼90 wt %) of well-aligned inorganic platelets embedded in a polymer; the window of suitable platelet dimensions is very narrow, with an optimized platelet width and thickness of about 130 and 13 nm, respectively. An anisotropic, nanostructured coating was uniformly and conformally deposited onto a large number of 9 μm diameter glass fibers, simultaneously, using self-limiting layer-by-layer assembly (LbL); this parallel approach demonstrates a promising strategy to exploit LbL methods at scale. The resulting nanocomposite interphase, primarily loaded in shear, provides new mechanisms for stress dissipation and plastic deformation. The energy released by fiber breakage in tension appear to spread and dissipate within the nanostructured interphase, accompanied by stable fiber slippage, while the interfacial strength was improved up to 30%.

  17. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  18. An overview of the Oil Palm Empty Fruit Bunch (OPEFB potential as reinforcing fibre in polymer composite for energy absorption applications

    Directory of Open Access Journals (Sweden)

    Faizi M.K.

    2017-01-01

    Full Text Available The oil palm empty fruit bunch (OPEFB natural fibres were comprehensively reviewed to assess their potential as reinforcing materials in polymer composites for energy absorption during low-velocity impact. The typical oil palm wastes include trunks, fronds, kernel shells, and empty fruit bunches. This has a tendency to burden the industry players with disposal difficulties and escalates the operating cost. Thus, there are several initiatives have been employed to convert these wastes into value added products. The objective of this study is to review the potential of oil palm empty fruit bunch (OPEFB as natural fibre polymer composite reinforcement to absorb the energy during low-velocity impact as another option for value added products. Initially, this paper reviewed the local oil palm waste issues. Previous research works on OPEFB polymer composite, and their mechanical characterization is appraised. Their potential for energy absorption in low-velocity impact application was also elaborated. The review suggests high potential applications of OPEFB as reinforcing materials in composite structures. Furthermore, it is wisely to utilize the oil palm biomass waste into a beneficial composite, hence, promotes the green environment.

  19. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  20. Effects of Carbon Nanomaterial Reinforcement on Composite Joints Under Cyclic and Impact Loading

    Science.gov (United States)

    2012-03-01

    prepreg . 2 Figure 1. Composite decks on DDG1000. (From [3]) Figure 2. USV built from nanotube-reinforced carbon fiber composites. (From [2...been proven that the infusion of CNTs enhances the strength and fracture toughness of CFRP laminates under static loading (mode I and mode II...Kostopoulos et al. [5] investigated the influence of the multi-walled carbon nanotubes (MWCNTs) on the impact and after-impact behavior of CFRP laminates