WorldWideScience

Sample records for reinforced epoxy matrix

  1. Development and characterization of woven kevlar reinforced epoxy matrix composite materials

    International Nuclear Information System (INIS)

    Imran, A.; Alam, S.; Irfan, S.; Iftikhar, F.; Raza, M.A.

    2006-01-01

    Composite materials are actually well established materials that have demonstrated their promising advantages among the light weight structural materials used for aerospace and advanced applications. A great effort is now being made to develop and characterize the Kevlar Epoxy Composite Materials by changing the % age composition of curing agent in epoxy matrix. In order to study the phenomenon; how the change in composition of curing agent effect the composite material and which optimum composition can give the optimum properties of the material, when Kevlar reinforced to Epoxy Matrix by Hand Lay-up process. It was ensured that factors which can .affect the experiment remained the same for each experiment. The composite produced were subjected to mechanical tests to analyze the performance, to optimize the material. (author)

  2. Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites

    OpenAIRE

    Halil B. Kaybal; Hasan Ulus; Okan Demir; Ömer S. Şahin; Ahmet Avcı

    2018-01-01

    The influence of alumina (Al2O3) nanoparticles addition upon low-velocity impact behaviors of carbon fiber (CF) reinforced laminated epoxy nanocomposites have been investigated. For this purpose, different amounts of Al2O3 nanoparticles ranging from 1 to 5 wt% were added to the epoxy resin in order to observe the effect of nanoparticle loadings. CF reinforced epoxy based laminated nanocomposites were produced using Vacuum Assisted Resin Infusion Method (VARIM). The low velocity impact (LVI) t...

  3. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    International Nuclear Information System (INIS)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-01-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with "6"0Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0–1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite. - Highlights: • The properties of basalt fiber reinforced epoxy resin matrix composite under "6"0Co γ irradiation up to 2.0 MGy were studied. • Basalt fiber can weaken the aging effects of γ irradiation on the resin matrix. • Tensile property of basalt fiber composite remains stable and flexural property has a low degree of attenuation. • Basalt fiber composite is an ideal candidate of structural material for nuclear industry.

  4. Optimization and characterization of woven kevlar reinforced epoxy matrix composite materials

    International Nuclear Information System (INIS)

    Imran, A.; Aslam, S.

    2007-01-01

    Composite materials are actually well established materials that have demonstrated their promising advantages among the light weight structural materials used for aerospace and advanced applications. An effort is now being made to develop and characterize the Kevlar Epoxy Composite Materials by changing the vol. fraction of Kevlar in epoxy matrix. The optimum characteristics were observed with 37% fiber with resin by applying hand-lay-up process. The composites produced were subjected to mechanical testing to evaluate the mechanical characteristics. (author)

  5. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    Science.gov (United States)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-11-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with 60Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0-1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite.

  6. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  7. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  8. The effect of particle addition and fibrous reinforcement on epoxy-matrix composites for severe sliding conditions

    DEFF Research Database (Denmark)

    Larsen, Thomas Ricco Ølholm; Løgstrup Andersen, Tom; Thorning, Bent

    2008-01-01

    This paper reports production and tribological testing of epoxy-matrix composites for dry-sliding conditions. The examined composites are produced using the following components: epoxy resin (EP), glass fiber weave (G), carbon/aramid hybrid weave (CA), PTFE particles and nano-scale CuO particles...... are seen when the fibers are parallel and anti-parallel (P-AP) to the sliding direction compared to normal and parallel (N-P). Experiments with incorporating micro-scale PTFE particles and nano-scale CuO particles, respectively, into the epoxy resin along with the carbon/aramid weave shows no difference...... in friction but minor improvements in wear. When micro-scale PTFE particles are incorporated into the neat epoxy resin, i.e. without fibers, an increase in and a decrease in A are measured. When the same is done with nano-CuO a deterioration of both friction and wear properties are seen. At the three roughest...

  9. Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

    International Nuclear Information System (INIS)

    Kim, Byungjoo; Bae, Kyongmin; An, Kayhyeok; Park, Soojin

    2012-01-01

    Aluminum oxide (Al 2 O 3 ) nanofibers were treated thermally under an ammonia (NH 3 ) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of Al 2 O 3 /epoxy nanocomposites. The micro-structural and morphological properties of the NH 3 -assisted thermally-treated Al 2 O 3 nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and N 2 /77 K isothermal adsorptions. From the results, the formation of AlN on Al 2 O 3 nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified Al 2 O 3 nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated Al 2 O 3 /epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers

  10. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... and modifiers to create products with an almost unlimited range and variety of performance properties [The epoxy book, 2000]. Epoxy resins are widely used as high-grade synthetic resins, for example, in the electronics, aeronautics and astronautic industries...

  11. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... are electrical insulators, and the widespread use of the epoxy resins for many high-performance applications is constrained because of their inherent brittleness, delamination and fracture toughness limitations. There were quite a few approaches to enhance...

  12. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  13. (nanoclay and CaSiO3)-reinforced E-glass-reinforced epoxy

    Indian Academy of Sciences (India)

    For instance, Zhang et al. [6] have prepared 30 types of epoxy matrix reinforced with ... the resin in a high-speed metal blade rotation medium. The .... Tests were run for .... Figure 2. Mean effect plots showing the influence of load, nanoclay content and speed on ..... [8] Wang K, Chen L, Wu J, Toh M L, He C and Yee A F 2005.

  14. Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment

    Directory of Open Access Journals (Sweden)

    Zhongyu Lu

    2017-11-01

    Full Text Available Basalt fiber-reinforced polymer (BFRP composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH. The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet.

  15. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites

    Science.gov (United States)

    Kanimozhi, K.; Sethuraman, K.; Selvaraj, V.; Alagar, M.

    2014-01-01

    Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix. PMID:25279372

  16. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  17. Study of flax hybrid preforms reinforced epoxy composites

    International Nuclear Information System (INIS)

    Muralidhar, B. A

    2013-01-01

    Highlights: • We examine the thermal, viscoelastic and mechanical behaviour of flax preform hybrid composites. • The thermal stability of the matrix decrease with increasing volume fraction of flax preforms. • The effect of number of preform layers and the lay-up architecture were studied.. • Morphological study on the fractured surface of the composite laminate is carried out. - Abstracts: This study investigates the thermal, mechanical and thermomechanical properties of flax hybrid preform reinforced epoxy composites. Flax plain weave fabric and 1 × 1 weft rib knitted structures were together used as reinforcements and the composites were produced using hand lay-up technique. Specimen preparation and testing were carried out as per ASTM standards. Thermogravimetric analysis (TGA) indicates a decrease in thermal stability of the matrix polymer with the incorporation of flax hybrid preform. The dynamic mechanical analysis revealed a shift in the T g with the addition of flax hybrid preforms. Mechanical data obtained showed that tensile strength and stiffness is a product of the fibre/matrix synergy, whereas the compressive strength and stiffness are contributed by the reinforcing matrix. Additionally, investigation show that laminate with knitted preform as skin layer exhibits superior mechanical properties. However, improved tensile properties at lower fibre volume fraction, reinforces the opinion that hybrid preform composites can offer significant benefits in terms of performance, weight and overall cost. The failure mechanism was analysed, by scanning electron microscope (SEM)

  18. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    OpenAIRE

    Aseel Basim Abdul Hussein; Emad Saadi AL-Hassani; Reem Alaa Mohamed

    2015-01-01

    In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than n...

  19. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    Science.gov (United States)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  20. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  1. Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites

    Science.gov (United States)

    Sapiai, Napisah; Jumahat, Aidah; Mahmud, Jamaluddin

    2018-04-01

    This paper aims to study the effect of functionalised carbon nanotubes (CNT) on mechanical properties of kenaf fibre reinforced polymer composites. The CNT was functionalised using acid mixtures of H2SO4:HNO3 and 3-Aminopropyl Triethoxysilane before it was incorporated into epoxy resin. Three different types of CNT were used, i.e. pristine (PCNT), acid-treated (ACNT) and acid-silane treated (SCNT), to fabricate kenaf composite. Three different filler contents were mixed in each composite system, i.e. 0.5, 0.75 and 1.0 wt%. The functionalised CNT was characterized using x-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Tensile, flexural and Izod impact tests were conducted in order to evaluate the effect of CNT contents and surface treatment of mechanical properties of kenaf composites. It was observed that the inclusion of 1 wt% acid-silane treated CNT improved the tensile, flexural and impact strengths of kenaf/epoxy composite by 43.30%, 21.10%, and 130%, respectively. Silane modification had been proven to be beneficial in enhancing the dispersibility and reducing agglomeration of CNT in the epoxy matrix.

  2. Behavior of Epoxy-Coated Textured Reinforcing Bars

    Science.gov (United States)

    2018-04-01

    Cracking in bridge decks is a common but difficult problem to control. Both research and experience show that the use of epoxy-coated reinforcement, which is mandated by most state departments of transportation (DOTs) for bridge decks, increases c...

  3. Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep hybrid composite

    Directory of Open Access Journals (Sweden)

    J.S. Pang

    2014-08-01

    Full Text Available This paper introduces the application of Taguchi optimization methodology in optimizing the cutting parameters of end-milling process for machining the halloysite nanotubes (HNTs with aluminium reinforced epoxy hybrid composite material under dry condition. The machining parameters which are chosen to be evaluated in this study are the depth of cut (d, cutting speed (S and feed rate (f. While, the response factors to be measured are the surface roughness of the machined composite surface and the cutting force. An orthogonal array of the Taguchi method was set-up and used to analyse the effect of the milling parameters on the surface roughness and cutting force. The result from this study shows that the application of the Taguchi method can determine the best combination of machining parameters that can provide the optimal machining response conditions which are the lowest surface roughness and lowest cutting force value. For the best surface finish, A1–B3–C3 (d = 0.4 mm, S = 1500 rpm, f = 60 mmpm is found to be the optimized combination of levels for all the three control factors from the analysis. Meanwhile, the optimized combination of levels for all the three control factors from the analysis which provides the lowest cutting force was found to be A2–B2–C2 (d = 0.6 mm, S = 1000 rpm, f = 40 mmpm.

  4. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method.

    Science.gov (United States)

    Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo

    2017-12-01

    In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mechanical properties of ramie fiber reinforced epoxy lamina composite for socket prosthesis

    Directory of Open Access Journals (Sweden)

    Tresna Soemardi

    2010-10-01

    Full Text Available This paper presents an investigation into the application of natural fiber composite especially ramie fiber reinforced epoxy lamina composite for socket prosthesis. The research focuses on the tensile and shear strength from ramie fiber reinforced epoxy lamina composite which will be applied as alternative material for socket prosthesis. The research based on American Society for Testing Material (ASTM standard D 3039/D 3039M for tensile strength and ASTM D 4255/D 4255M-83 for shear strength. The ramie fiber applied is a fiber continue 100 % Ne14'S with Epoxy Resin Bakelite EPR 174 as matrix and Epoxy Hardener V-140 as hardener. The sample composite test made by hand lay up method. Multiaxial characteristic from ramie fiber reinforced epoxy composite will be compared with ISO standard for plastic/polymer for health application and refers strength of material application at Prosthetics and Orthotics. The analysis was completed with the mode of the failure and the failure criterion observation by using Scanning Electron Microscope (SEM. Based on results of the research could be concluded that ramie fiber reinforced epoxy composite could be developed further as the alternative material for socket prosthesis on Vf 40-50%. Results of the research will be discussed in more detail in this paper.

  6. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  7. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.

    2012-10-01

    Epoxy nanocomposites reinforced with recycled cellulose fibres (RCFs) and organoclay platelets (30B) have been fabricated and investigated in terms of WAXS, TEM, mechanical properties and TGA. Results indicated that mechanical properties generally increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF/epoxy composites considerably increased the impact strength and toughness. The presence of either nanoclay or RCF accelerated the thermal degradation of neat epoxy, but at high temperature, thermal stability was enhanced with increased char residue over neat resin. The failure micromechanisms and energy dissipative processes in these nanocomposites were discussed in terms of microstructural observations. © 2012 Published by Elsevier Ltd. All rights reserved.

  8. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites - Insight study

    Science.gov (United States)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-10-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance.

  9. Failure phenomena in fibre-reinforced composites. Part 6: a finite element study of stress concentrations in unidirectional carbon fibre-reinforced epoxy composites

    NARCIS (Netherlands)

    van den Heuvel, P.W.J.; Goutianos, S.; Young, R.J.; Peijs, A.A.J.M.

    2004-01-01

    A three-dimensional (3-D) finite element (FE) analysis of the stress situation around a fibre break in a unidirectional carbon fibre-reinforced epoxy composite has been performed. Two cases were considered: (i) good fibre/matrix adhesion and (ii) fibre/matrix debonding. In the case of good adhesion,

  10. ELABORATION OF AN EPOXY COATING REINFORCED WITH ZIRCONIUM CARBIDE NANOSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lucia G. Díaz-Barriga

    2013-12-01

    Full Text Available This work shows the preparation of a transparent epoxy coating reinforced with 200 PPM of zirconium carbide nanostructures. The nanostructures of ZrC were prepared by mechanosynthesis. The additive characteristics analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM were presented. Epoxy coating adhesion on a steel plate was analyzed using MEB. Thermogravimetric analysis (TGA was performed to the reinforced paints between 20-700 °C. The reinforced enamel was compared with an enamel without nanostructures. There is not vaporization of reinforced enamel at a 95 y 100 °C with ZrC particles size of 10 µm y 120 nm respectively. The final enamel degradation is slower when there is a 14% by weight of the residue and 426 °C with 120nm diameter particles.

  11. Mechanical properties of short random oil palm fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Mohd Zuhri Mohamed Yusoff; Mohd Sapuan Salit; Napsiah Ismail; Riza Wirawan

    2010-01-01

    This paper presents the study of mechanical properties of short random oil palm fibre reinforced epoxy (OPF/epoxy) composites. Empty fruit bunch (EFB) was selected as the fibre and epoxy as the matrix. Composite plate with four different volume fractions of oil palm fibre was fabricated, (5 vol %, 10 vol %, 15 vol % and 20 vol %). The fabrication was made by hand-lay up techniques. The tensile and flexural properties showed a decreasing trend as the fibre loading was increased. The highest tensile properties was obtained for the composite with fibre loading of 5 vol % and there were no significant effect for addition of more than 5 vol % to the flexural properties. Interaction between fibre and matrix was observed from the scanning electron microscope (SEM) micrograph. (author)

  12. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  13. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Goyat, M.S., E-mail: goyatmanjeetsingh@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India); Suresh, Sumit; Bahl, Sumit [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India); Halder, Sudipta [Department of Mechanical Engineering, National Institute of Technology, Silchar, 788010, Assam (India); Ghosh, P.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 (India)

    2015-09-15

    The current research on carbon nano beads (CNB) is focused on various applications such as high strength nanocomposites, electronic devices, lubricants, semiconductors, and high-performance batteries, etc. The commercial uses of CNB are yet juvenile for the market. Only limited results have been published so far on CNB reinforced polymers [1]. This study highlights the synthesis of uniform size, spherical CNB using chemical vapour deposition (CVD) method. The synthesized CNB are introduced into epoxy matrix by ultrasonic dual mode mixing route to produce CNB/epoxy nanocomposite. The CNB are characterized by X-ray diffraction, Energy dispersive X-ray analysis and field emission scanning electron microscope (FESEM). Morphology, thermal and mechanical properties of the CNB/epoxy nanocomposites is characterized by FESEM, Thermo-gravimetric analyzer and tensile and bending tests respectively. A noticeable improvement in thermal and mechanical properties of CNB reinforced epoxy matrix with low nanofiller content is observed. Several toughening mechanisms such as particle pull out, crack deflection, particle bridging, crack pinning, shear yielding or plastic deformation, and microcracking are identified. But, only the crack deflection, particle bridging and shear yielding or plastic deformations are recognized as the leading toughening mechanisms for CNB/epoxy nanocomposite. These results can be considered as symptomatic of a potential CNB espousal in new composites. - Highlights: • Synthesis of uniform size, spherical CNB using chemical vapour deposition method. • Fabrication of CNB/epoxy nanocomposites by ultrasonic dual mode mixing route. • Significant enhancement in thermomechanical properties of CNB/epoxy nanocomposite. • Main toughening mechanisms: Crack deflection, particle bridging and shear yielding.

  14. Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite

    International Nuclear Information System (INIS)

    Goyat, M.S.; Suresh, Sumit; Bahl, Sumit; Halder, Sudipta; Ghosh, P.K.

    2015-01-01

    The current research on carbon nano beads (CNB) is focused on various applications such as high strength nanocomposites, electronic devices, lubricants, semiconductors, and high-performance batteries, etc. The commercial uses of CNB are yet juvenile for the market. Only limited results have been published so far on CNB reinforced polymers [1]. This study highlights the synthesis of uniform size, spherical CNB using chemical vapour deposition (CVD) method. The synthesized CNB are introduced into epoxy matrix by ultrasonic dual mode mixing route to produce CNB/epoxy nanocomposite. The CNB are characterized by X-ray diffraction, Energy dispersive X-ray analysis and field emission scanning electron microscope (FESEM). Morphology, thermal and mechanical properties of the CNB/epoxy nanocomposites is characterized by FESEM, Thermo-gravimetric analyzer and tensile and bending tests respectively. A noticeable improvement in thermal and mechanical properties of CNB reinforced epoxy matrix with low nanofiller content is observed. Several toughening mechanisms such as particle pull out, crack deflection, particle bridging, crack pinning, shear yielding or plastic deformation, and microcracking are identified. But, only the crack deflection, particle bridging and shear yielding or plastic deformations are recognized as the leading toughening mechanisms for CNB/epoxy nanocomposite. These results can be considered as symptomatic of a potential CNB espousal in new composites. - Highlights: • Synthesis of uniform size, spherical CNB using chemical vapour deposition method. • Fabrication of CNB/epoxy nanocomposites by ultrasonic dual mode mixing route. • Significant enhancement in thermomechanical properties of CNB/epoxy nanocomposite. • Main toughening mechanisms: Crack deflection, particle bridging and shear yielding.

  15. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    An, Feng; Lu, Chunxiang; Li, Yonghong; Guo, Jinhai; Lu, Xiaoxuan; Lu, Huibin; He, Shuqing; Yang, Yu

    2012-01-01

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m 2 /g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  16. Adhesion of pineapple-leaf fiber to epoxy matrix: The role of surface treatments

    Directory of Open Access Journals (Sweden)

    Yusran Payae

    2009-07-01

    Full Text Available Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principle benefits: moderate strength and stiffness, low cost, and be an environmental friendly, degradable, and renewablematerial. Due to their inherently hydrophilic nature, they are prone to absorb moisture, which can plasticise or weaken theadhesion of fibers to the surrounding matrix and by this affect the performance of composites used in atmospheric humidity,particularly at elevated temperatures. The surface treatments are often applied to the fiber to improve the bond strengthbetween the fibers and matrix. This work discussed the effect of sodium hydroxide (NaOH treatment and epoxy resin as acompatibilizing agent on interface properties of pineapple leaf fiber (PALF-epoxy composites. A single-fiber fragmentationtest coupled with data reduction technique was employed to assess interface quality in terms of apparent interfacial shearstrength (IFSS or a of untreated, NaOH, and epoxy resin treated PALFs-epoxy composites. Tensile properties of untreatedand treated PALFs were also examined. It was found that both treatments substantially increase a, corresponding to animproved level of adhesion. The improvement in the level of adhesion for the alkali and epoxy treated fiber composites wasdue to an increase in the physical bonding between the alkali treated fibers and the matrix, and due to a promoted compatibilitybetween the epoxy treated fibers and matrix, respectively.

  17. Carbon black reinforced C8 ether linked bismaleimide toughened electrically conducting epoxy nanocomposites

    International Nuclear Information System (INIS)

    Mandhakini, M.; Chandramohan, A.; Jayanthi, K.; Alagar, M.

    2014-01-01

    Highlight: • The toughness of the epoxy is improved with C8e-BMI. • Conduction through ohmic contact chain takes the leading mechanism for electrical conduction instead of tunneling with 5 wt% CB. • The phase segregation between epoxy/C8 e-BMI improves the toughness of the nanocomposite. • Both toughening and flexibilization effect is responsible for improvement in impact strength. • The largest challenge of appropriate balance between the electrical conductivity and mechanical behavior is attained in a cost effective manner. - Abstract: The present work deals with the toughening of brittle epoxy matrix with C8 ether linked bismaleimide (C8 e-BMI) and then study the reinforcing effect of carbon black (CB) in enhancing the conducting properties of insulating epoxy matrix. The Fourier transform infrared spectroscopy (FTIR) and Raman analysis indicate the formation of strong covalent bonds between CB and C8 e-BMI/epoxy matrix. The X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) analysis indicate the event of phase separation in 5 wt% CB loaded epoxy C8 e-BMI nanocomposites. The impact strength increased up to 5 wt% of CB loading with particle pull and crack deflection to be driving mechanism for enhancing the toughness of the nanocomposite and beyond 5 wt% the impact strength started to decrease due to aggregation of CB. The dynamic mechanical analysis (DMA) also indicates the toughness of the nanocomposites was improved with 5 wt% of CB loading due to the phase segregation between epoxy and C8 e-BMI in the presence of CB. The electrical conductivity was also increased with 5 wt% of CB due to classical conduction by ohmic chain contact

  18. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  19. Imidazolium Ionic Liquid Modified Graphene Oxide: As a Reinforcing Filler and Catalyst in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Qing Lyu

    2017-09-01

    Full Text Available Surface modification of graphene oxide (GO is one of the most important issues to produce high performance GO/epoxy composites. In this paper, the imidazole ionic liquid (IMD-Si was introduced onto the surface of GO sheets by a cheap and simple method, to prepare a reinforcing filler, as well as a catalyst in epoxy resin. The interlayer spacing of GO sheets was obviously increased by the intercalation of IMD-Si, which strongly facilitated the dispersibility of graphene oxide in organic solvents and epoxy matrix. The addition of 0.4 wt % imidazolium ionic liquid modified graphene oxide (IMD-Si@GO, yielded a 12% increase in flexural strength (141.3 MPa, a 26% increase in flexural modulus (4.69 GPa, and a 52% increase in impact strength (18.7 kJ/m2, compared to the neat epoxy. Additionally the IMD-Si@GO sheets could catalyze the curing reaction of epoxy resin-anhydride system significantly. Moreover, the improved thermal conductivities and thermal stabilities of epoxy composites filled with IMD-Si@GO were also demonstrated.

  20. Comparison of tensile strength of different carbon fabric reinforced epoxy composites

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2006-03-01

    Full Text Available Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS using pre-impregnated materials (prepregs based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW and Eight Harness Satin (8HS. The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

  1. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S.

    2014-01-01

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  2. Mechanical and morphological characterizations of carbon fiber fabric reinforced epoxy composites used in aeronautical field

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2009-09-01

    Full Text Available Carbon fiber reinforced composites (CFRC have been used in aeronautical industry in the manufacture of different aircraft components that must attend tight mechanical requirements. This paper shows a study involving mechanical (flexural, shear, tensile and compressive tests and morphological characterizations of four different laminates based on 2 epoxy resin systems (8552TM and F584TM and 2 carbon fiber fabric reinforcements (Plain Weave (PW and Eight Harness Satin (8HS. All laminates were obtained by handing lay-up of prepregs plies (0º/90º and consolidation in an autoclave following an appropriate curing cycle with vacuum and pressure. The results show that the F584-epoxy matrix laminates present better mechanical properties in the tensile and compressive tests than 8552 composites. It is also observed that PW laminates for both matrices show better flexural and interlaminar shear properties.

  3. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  4. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2013-01-01

    Recycled cellulose fibre (RCF) reinforced epoxy/clay nanocomposites were successfully synthesized with different weight percentages (0%, 1%, 3% and 5%) of organoclay platelets (30B). The objective of this study was to investigate the effect of water absorption on the physical and mechanical properties of the RCF reinforced epoxy/clay nanocomposites. TEM images indicated a well-intercalated structure of nanoclay/epoxy matrix with some exfoliated regions. Water absorption was found to decrease as the clay content increased. The flexural strength, flexural modulus and fracture toughness significantly decreased as a result of water absorption. However, the properties of impact strength and impact toughness were found to increase after exposing to water. The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd. All rights reserved.

  5. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  6. Corrosion performance of epoxy-coated reinforcement in aggressive environments

    Science.gov (United States)

    Vaca Cortes, Enrique

    The objective of this research was to investigate the integrity and corrosion performance of epoxy-coated reinforcement in aggressive environments. A series of experimental studies were conducted: (a) hot water immersion and knife adhesion testing for assessment of coating adhesion; (b) materials and procedures for repairing coating damage; (c) degree of mechanical damage caused during concrete placement when using metal head and rubber head vibrators; (d) accelerated corrosion of coated bars embedded in macrocell and beam specimens placed in a corrosive environment for more than four years. The effects of coating condition and amount of damage, repaired vs. unrepaired damage, bar fabrication, and concrete cracking were studied. Regardless of coating condition, the performance of epoxy-coated bars was better than that of uncoated bars. Unlike black bars, coated bars did not exhibit deep pitting or substantial loss of cross section at crack locations. Damage to epoxy coating was the most significant factor affecting corrosion performance. Bars with coating in good condition, without any visible damage, performed best. The greater the size and frequency of damage, the more severe and extensive the amount of corrosion. The performance of bars that were fabricated or bent after coating was worse than that of coated straight bars. Mixing coated and uncoated bars in the same concrete member led to undesirable performance. Patching damaged coating reduced but did not prevent corrosion, particularly at bar ends. The most important factor in coating repair was the type and properties of the patching material. Surface preparation prior to coating had little effect. The absence of cracks in the concrete delayed, but did not prevent the onset of corrosion of coated bars. During consolidation of concrete, rubber head vibrators caused less damage to epoxy-coated reinforcement than did comparable metal heads. Hot water and adhesion tests were useful and practical for evaluating

  7. MWCNTs/P(St-co-GMA) composite nanofibers of engineered interface chemistry for epoxy matrix nanocomposites.

    Science.gov (United States)

    Özden-Yenigün, Elif; Menceloğlu, Yusuf Z; Papila, Melih

    2012-02-01

    Strengthened nanofiber-reinforced epoxy matrix composites are demonstrated by engineering composite electrospun fibers of multi-walled carbon nanotubes (MWCNTs) and reactive P(St-co-GMA). MWCNTs are incorporated into surface-modified, reactive P(St-co-GMA) nanofibers by electrospinning; functionalization of these MWCNT/P(St-co-GMA) composite nanofibers with epoxide moieties facilitates bonding at the interface of the cross-linked fibers and the epoxy matrix, effectively reinforcing and toughening the epoxy resin. Rheological properties are determined and thermodynamic stabilization is demonstrated for MWCNTs in the P(St-co-GMA)-DMF polymer solution. Homogeneity and uniformity of the fiber formation within the electrospun mats are achieved at polymer concentration of 30 wt %. Results show that the MWCNT fraction decreases the polymer solution viscosity, yielding a narrower fiber diameter. The fiber diameter drops from an average of 630 nm to 460 nm, as the MWCNTs wt fraction (1, 1.5, and 2%) is increased. The electrospun nanofibers of the MWCNTs/P(St-co-GMA) composite are also embedded into an epoxy resin to investigate their reinforcing abilities. A significant increase in the mechanical response is observed, up to >20% in flexural modulus, when compared to neat epoxy, despite a very low composite fiber weight fraction (at about 0.2% by a single-layer fibrous mat). The increase is attributed to the combined effect of the two factors the inherent strength of the well-dispersed MWCNTs and the surface chemistry of the electrospun fibers that have been modified with epoxide to enable cross-linking between the polymer matrix and the nanofibers.

  8. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    Science.gov (United States)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  9. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    Science.gov (United States)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  10. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    Science.gov (United States)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  11. Multidimensional Nanocomposites of Epoxy Reinforced with 1D and 2D Carbon Nanostructures for Improve Fracture Resistance

    Directory of Open Access Journals (Sweden)

    Juventino López-Barroso

    2018-03-01

    Full Text Available A hybrid nanocomposites based on epoxy reinforced with a combination of 1D and 2D carbon nanomaterials for improving impact resistance are reported. Multi-walled carbon nanotubes and oxidized-multi-walled carbon nanotubes are used as 1D nanoreinforcements, and graphene derivative materials such as graphene oxide and reduced graphene oxide are utilized as 2D nanoreinforcements. In this research, the impact resistance of epoxy matrix reinforced with 1D or 2D and the mixture of both nanomaterials is studied. The research is focused on evaluation of the influence of adding different combinations of nanomaterials into epoxy resin and their Izod impact response. Moreover, fracture surface of nanocomposites is observed by scanning electron microscopy. Images show differences between the surfaces of brittle nature on thermoset epoxy polymer and tough nanocomposites. Synergy created with 1D and 2D nanomaterials produces stable dispersions in the processing, reflected in the interface. The interactions in nanocomposites are evidenced by infrared spectra, principally on the peaks related to oxygenated functional groups present in nanomaterials and absent in polymer matrix. Consequently, an increase of 138% in fracture strength of nanocomposites is exhibited, in comparison to the neat epoxy matrix. In addition, hybrid nanocomposites were synthesized in two different methods to evaluate the influence of manufacturing method on final properties of nanocomposites.

  12. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  13. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Bachtiar, D.; Sapuan, S.M.; Hamdan, M.M.

    2008-01-01

    A study on the effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites is presented in this paper. The treatment was carried out using sodium hydroxide (NaOH) solutions at two different concentrations and three different soaking times. The hydrophilic nature of sugar palm fibre makes it difficult to adhere to hydrophobic epoxy and therefore posed the problem of interfacial bonding between fibre and matrix and such treatment was needed to alleviate such problem. The composite specimens were tested for tensile property determination. Some fractured specimens were examined under scanning electron microscope (SEM) to study the microstructure of the materials. Inconsistent results were obtained for tensile strengths, which indicate that the treatment is not very effective yet to improve the interfacial bonding. However, for tensile modulus, the results are much higher than untreated fibre composite specimens, which proved the effectiveness of the treatment

  14. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    Science.gov (United States)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  15. Mechanical properties of unidirectional oil palm empty fruit bunch (OPEFB) fiber reinforced epoxy composite

    Science.gov (United States)

    Hassan, C. S.; Yeo, C. W.; Sahari, B.; Salit, M. S.; Aziz, N. Abdul

    2017-06-01

    Natural fibers have proven to be an excellent reinforcement material for various polymers. In this study, OPEFB fiber with unidirectional alignment was incorporated in epoxy and an investigation on tensile and flexural characteristics of the composite has been carried out. A fiber surface modification utilizing alkaline treatment with 1 sodium hydroxide solution was used in order to increase the fiber matrix bond in the composite. The investigation was carried out for 0°, 45° and 90° fiber orientation. Result showed that the higher the angle of the fiber orientation, the higher the tensile strength and flexural strength the composite will yield.

  16. Hygrothermal effects on the mechanical behaviour of graphite fibre-reinforced epoxy laminates beyond initial failure

    Science.gov (United States)

    Ishai, O.; Garg, A.; Nelson, H. G.

    1986-01-01

    The critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed has been determined by loading graphite fiber-reinforced epoxy laminates to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. The residual stiffness and strength parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Within the range of experimental conditions studied, it is concluded that the transverse cracking process does not have a crucial effect on the structural performance of multidirectional composite laminates.

  17. Nanosilica reinforced epoxy floor coating composites: preparation and thermophysical characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2012-01-01

    Full Text Available In this study, flooring grade epoxy/nanoSiO2 nanocomposites were prepared by in-situ polymerization method. Nano silica was treated by coupling agent in order to surface treating and introducing of reactive functional groups to achieving adequate bonding between polar inorganic nano particles and epoxy organic polymer. γ-Aminopropyltriethoxysilane (Amino A-100 was used as an effective and commercially available coupling agent and nano silica treated in acetone media. SEM observations of cured samples revealed that the nano silica was completely dispersed into polymer matrix into nanoscale particles. Thermal and physical properties of prepared samples were investigated and data showed improvements in physical and mechanical properties of the flooring samples in comparison with unfilled resin.

  18. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    International Nuclear Information System (INIS)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-01-01

    Commercially available CNFs (diameter 30–300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  19. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    Science.gov (United States)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-11-01

    Commercially available CNFs (diameter 30-300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  20. Conduction noise absorption by fiber-reinforced epoxy composites with carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Ok Hyoung; Kim, Sung-Soo; Lim, Yun-Soo

    2011-01-01

    Nearly all electronic equipment is susceptible to malfunction as a result of electromagnetic interference. In this study, glass fiber, and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave. - Research Highlights: → In this study, glass fiber and carbon fiber as a type reinforcement and epoxy as a matrix material were used to fabricate composite materials. In an attempt to increase the conduction noise absorption, carbon nanotubes (CNTs) were grown on the surface of glass fibers and carbon fibers. A microstrip line with characteristic impedance of 50 Ω in connection with network analyzer was used to measure the conduction noise absorption. → In comparing a glass fiber/epoxy composite with a GF-CNT/Ep composite, it was demonstrated that the CNTs significantly influence the noise absorption property mainly due to increase in electric conductivity. In the carbon fiber composites, however, the effectiveness of CNTs on the degree of electric conductivity is negligible, resulting in a small change in reflection and transmission of an electromagnetic wave.

  1. Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Yakubu Dan-mallam

    2015-01-01

    Full Text Available The development of interwoven fabric for composite production is a novel approach that can be adopted to address the challenges of balanced mechanical properties and water absorption behaviour of polymer composites. In this paper, kenaf and PET (polyethylene terephthalate fibre were selected as reinforcing materials to develop the woven fabric, and low viscosity epoxy resin was chosen as the matrix. Vacuum infusion process was adopted to produce the hybrid composite due to its superior advantages over hand lay-up technique. The weight percentage composition of the Epoxy/kenaf/PET hybrid composite was maintained at 70/15/15 and 60/20/20, respectively. A significant increase in tensile strength and elastic modulus of approximately 73% and 53% was recorded in relation to neat epoxy. Similarly, a substantial increase in flexural, impact, and interlaminar properties was also realized in relation to neat epoxy. This enhancement in mechanical properties may be attributed to the interlocking structure of the interwoven fabric, individual properties of kenaf and PET fibres, strong interfacial bonding, and resistance of the fibres to impact loading. The water absorption of the composites was studied by prolonged exposure in distilled water, and the moisture absorption pattern was found to follow Fickian behaviour.

  2. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    Mahjoub, Reza; Yatim, Jamaludin Mohamad; Mohd Sam, Abdul Rahman; Raftari, Mehdi

    2014-01-01

    Highlights: • To show the potential of continuous kenaf fiber to use in bio-composite. • To introduce new method of hand lay-up for fabricating bio-fiber composite. • To characterize the properties of kenaf fiber epoxy composite. • Morphology of the fracture area by using of SEM. • To use analytical method to predict the bio-composite properties. - Abstract: Kenaf fibers generally has some advantages such as eco-friendly, biodegradability, renewable nature and lighter than synthetic fibers. The aims of the study are to characterize and evaluate the physical and mechanical properties of continuous unidirectional kenaf fiber epoxy composites with various fiber volume fractions. The composites materials and sampling were prepared in the laboratory by using the hand lay-up method with a proper fabricating procedure and quality control. Samples were prepared based on ASTM: D3039-08 for tensile test and the scanning electron microscopy (SEM) was employed for microstructure analysis to observe the failure mechanisms in the fracture planes. A total of 40 samples were tested for the study. Results from the study showed that the rule of mixture (ROM) analytical model has a close agreement to predict the physical and tensile properties of unidirectional kenaf fiber reinforced epoxy composites. It was also observed that the tensile strength, tensile modulus, ultimate strain and Poisson’s ratio of 40% fiber volume content of unidirectional kenaf fiber epoxy composite were 164 MPa, 18150 MPa, 0.9% and 0.32, respectively. Due to the test results, increasing the fiber volume fraction in the composite caused the increment in the tensile modulus and reduction in the ultimate tensile strain of composite

  3. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer.

    Science.gov (United States)

    Hao, Mingyang; Wu, Hongwu; Qiu, Feng; Wang, Xiwen

    2018-03-07

    To improve the interfacial bonding of sisal fiber-reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with addition of a commercial grade epoxy-functionalized oligomer Joncryl ADR @ -4368 (ADR). The FTIR (Fourier Transform infrared spectroscopy) analysis and SEM (scanning electron microscope) characterization demonstrated that the PLA molecular chain was bonded to the fiber surface and the epoxy-functionalized oligomer played a hinge-like role between the sisal fibers and the PLA matrix, which resulted in improved interfacial adhesion between the fibers and the PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of the ADR oligomer, which in turn reflected the improved interfacial interaction between SF and the PLA matrix. These results were further justified with the calculation of activation energies of glass transition relaxation (∆ E a ) by dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened with the addition of ADR oligomer. The interfacial interaction and structure-properties relationship of the composites are the key points of this study.

  4. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  5. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites – Insight study

    International Nuclear Information System (INIS)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-01-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance. - Highlights: • The γ-irradiation was used for structural modification of halloysite nanotubes. • Composite materials with irradiated HNTs showed improved mechanical properties. • The γ-irradiation treatment is a promising surface modification method.

  6. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers

    International Nuclear Information System (INIS)

    Miyagawa, Hiroaki; Rich, Michael J.; Drzal, Lawrence T.

    2006-01-01

    In this study, the thermo-physical properties of epoxy nanocomposites reinforced by fluorinated single wall carbon nanotubes (FSWCNT) and vapor grown carbon fibers (VGCF) were investigated. A sonication technique using a suspension of FSWCNT and VGCF in acetone was utilized to process nanocomposites in anhydride-cured epoxy. The viscoelastic properties of the nanocomposites were measured with dynamic mechanical analysis. The glass transition temperature decreased approximately 30 deg. C with an addition of 0.14 vol.% (0.2 wt.%) FSWCNT. The depression in T g is attributed to non-stoichiometric balance of the epoxy matrix caused by the fluorine on single wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally determined by DMA measurements. After adjusting the amount of the anhydride curing agent for stoichiometry, the storage modulus of the epoxy at room temperature increased 0.63 GPa with the addition of only 0.21 vol.% (0.30 wt.%) of FSWCNT, a 20% improvement compared with the anhydride-cured neat epoxy. For VGCF, the storage modulus at room temperature increased 0.48 GPa with the addition of only 0.94 vol.% (1.5 wt.%) and then reached a plateau for larger amounts of VGCF. To understand the influence of VGCF on thermo-physical properties, the microstructure of the nanocomposites was interrogated using transmission electron microscopy (TEM). This study discusses the chemical effects of fluorine on matrix properties and the effect of stoichiometric balance on the thermo-physical properties of nanocomposites

  7. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Patricia A. Saliba

    2016-01-01

    Full Text Available The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding γ-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite with the development of interfacial reactions between organic-inorganic and inorganic-inorganic components was observed. These hybrid nanostructures produced better integration between nanoparticles and epoxy matrix and improved mechanical properties that are expected to enhance the overall performance of the system against underwater corrosion.

  8. The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix

    Science.gov (United States)

    Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel

    2018-05-01

    This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.

  9. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.

    Science.gov (United States)

    He, Yuxin; Yang, Song; Liu, Hu; Shao, Qian; Chen, Qiuyu; Lu, Chang; Jiang, Yuanli; Liu, Chuntai; Guo, Zhanhu

    2018-05-01

    The epoxy nanocomposites with ordered multi-walled carbon nanotubes (MWCNTs) were used to influence the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) laminate at 77 K, Oxidized MWCNTs functionalized with Fe 3 O 4 (Fe 3 O 4 /O-MWCNTs) with good magnetic properties were prepared by co-precipitation method and used to modify epoxy (EP) for cryogenic applications. Fe 3 O 4 /O-MWCNTs reinforced carbon fiber epoxy composites were also prepared through vacuum-assisted resin transfer molding (VARTM). The ordered Fe 3 O 4 /O-MWCNTs were observed to have effectively improved the mechanical properties of epoxy (EP) matrix at 77 K and reduce the coefficient of thermal expansion (CTE) of EP matrix. The ordered Fe 3 O 4 /O-MWCNTs also obviously improved the micro-cracks resistance of CF/EP composites at 77 K. Compared to neat EP, the CTE of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites was decreased 37.6%. Compared to CF/EP composites, the micro-cracks density of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites at 77 K was decreased 37.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Thermal conductivity of microPCMs-filled epoxy matrix composites

    OpenAIRE

    Su, J.F.; Wang, X.Y; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.

    2011-01-01

    Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of microPCMs have been fabricated using the in situ polymerization with various core/shell ratio and average diameter; the thermal conductivity of microPCMs/epoxy composites were investigated in detai...

  11. Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    Suresh Kumar, S.M.; Duraibabu, D.; Subramanian, K.

    2014-01-01

    Highlights: • UTCSE and TCSE composites have been fabricated by compression molding technique. • The prepared specimens were characterized by FTIR, DMA, TGA and SEM techniques. • TCSE composite showed higher mechanical properties compared to UTCSE composite. • DMA showed that TCSE composite exhibited higher storage modulus than UTCSE composite. • TCSE composite showed higher thermal stability than UTCSE composite. - Abstract: The untreated (raw) coconut sheath fiber reinforced epoxy (UTCSE) composite and treated coconut sheath fiber reinforced epoxy (TCSE) composite have been fabricated using hand layup followed by compression molding technique. The prepared specimens were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. The prepared specimens are cut as per ASTM Standards to measure tensile, flexural and impact strengths by using universal testing machine and izod impact tester respectively. The treated coconut sheath fiber reinforced epoxy composite (TCSE) posses higher mechanical strength and thermal stability compared to untreated (raw) coconut sheath fiber reinforced epoxy composite (UTCSE). In the SEM fracture analysis, TCSE composite showed better fiber–matrix bonding and absence of voids compared to UTCSE composite

  12. FLEXURAL PROPERTIES OF ALKALINE TREATED SUGAR PALM FIBRE REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    D. Bachtiar

    2010-06-01

    Full Text Available A study of the effect of alkaline treatment on the flexural properties of sugar palm fibre reinforced epoxy composites is presented in this paper. The composites were reinforced with 10% weight fraction of the fibres. The fibres were treated using sodium hydroxide (NaOH with 0.25 M and 0.5 M concentration solution for 1 hour, 4 hours and 8 hours soaking time. The purpose of treating fibres with alkali was to enhance the interfacial bonding between matrix and fibre surfaces. The maximum flexural strength occurred at 0.25 M NaOH solution with 1 hour of soaking time, i.e 96.71 MPa, improving by 24.41% from untreated fibre composite. But, the maximum flexural modulus took place at 0.5 M NaOH solution with 4 hours soaking time, i.e. 6948 MPa, improving by 148% from untreated composite.

  13. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    Science.gov (United States)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  14. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  15. Synthesis and characterization of optically transparent epoxy matrix nanocomposites

    International Nuclear Information System (INIS)

    Esposito Corcione, C.; Manera, M.G.; Maffezzoli, A.; Rella, R.

    2009-01-01

    In this work optically transparent nanocomposites were prepared and characterized from an optical and morphological point of view. An organically modified boehmite was added at different concentrations in a diglycidyl ether of bisphenol A (DGEBA) epoxy matrix, hardened with a polyether diamine. Nanocomposites were characterized structurally by X-ray diffraction (XRD), optically by UV-Vis-NIR spectrophotometry and their morphology was investigated by Atomic Force Microscopy (AFM). Morphological investigation reveals the presence of boehmite particles dispersed in the epoxy matrix in different dimensions ranging from ten to hundreds of nanometers; some aggregation in the particles is the tendency noticed in the AFM images. The acquisition of multiple AFM images in different areas of the sample was used for a statistical analysis of the volumetric distribution of boehmite aggregates. The obtained result, (3.6 ± 0.3)%vol, is well comparable to thermogravimetric analysis.

  16. Tribological performance of the epoxy-based composite reinforced by WS{sub 2} fullerene-like nanoparticles and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shneider, Mark; Dodiuk, Hanna; Kenig, Shmuel [Shenkar College of Engineering and Design, Ramat Gan 52526 (Israel); Rapoport, Lev; Moshkovich, Alexey; Zak, Alla [Department of Science, Holon Academic Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Tenne, Reshef [Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-11-15

    Recently large amounts of inorganic nanotubes (INT) and inorganic fullerene-like (IF) nanoparticles of WS{sub 2} became available and methods for their dispersion in different media were developed. In the present work the tribological properties of epoxy composite compounded with tungsten disulfide particles of different sizes and morphologies, including quasi-spherical IF nanoparticles, one-dimensional INT as well as micron-size platelets (2H) were investigated. The coefficient of friction and wear loss were measured under dry contact conditions using different tribological rigs. Remarkable reduction in wear and also friction (under high load) was demonstrated for the IF/INT epoxy nanocomposite. The reduced wear is attributed in general to the reinforcement of the polymer matrix by nanoparticles and the simultaneous reduction of the epoxy brittleness. Contrarily, the friction of the neat epoxy sample and epoxy mixed with platelets was accompanied with strong wear and transfer of a polymer film onto the rubbed surfaces. These results are consistent with the recently reported improvements in the fracture toughness, peel and shear strength of the epoxy-nanoparticles (IF/INT) composites. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Tribological performance of the epoxy-based composite reinforced by WS2 fullerene-like nanoparticles and nanotubes

    International Nuclear Information System (INIS)

    Shneider, Mark; Dodiuk, Hanna; Kenig, Shmuel; Rapoport, Lev; Moshkovich, Alexey; Zak, Alla; Tenne, Reshef

    2013-01-01

    Recently large amounts of inorganic nanotubes (INT) and inorganic fullerene-like (IF) nanoparticles of WS 2 became available and methods for their dispersion in different media were developed. In the present work the tribological properties of epoxy composite compounded with tungsten disulfide particles of different sizes and morphologies, including quasi-spherical IF nanoparticles, one-dimensional INT as well as micron-size platelets (2H) were investigated. The coefficient of friction and wear loss were measured under dry contact conditions using different tribological rigs. Remarkable reduction in wear and also friction (under high load) was demonstrated for the IF/INT epoxy nanocomposite. The reduced wear is attributed in general to the reinforcement of the polymer matrix by nanoparticles and the simultaneous reduction of the epoxy brittleness. Contrarily, the friction of the neat epoxy sample and epoxy mixed with platelets was accompanied with strong wear and transfer of a polymer film onto the rubbed surfaces. These results are consistent with the recently reported improvements in the fracture toughness, peel and shear strength of the epoxy-nanoparticles (IF/INT) composites. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Highly transparent and rollable PVA-co-PE nanofibers synergistically reinforced with epoxy film for flexible electronic devices.

    Science.gov (United States)

    Xiong, Bing; Zhong, Weibing; Zhu, Qing; Liu, Ke; Li, Mufang; Sun, Gang; Wang, Dong

    2017-12-14

    The development of electronics towards a more functions-integrated, flexible and stretchable direction requires mechanically flexible substrates with high thermal and dimensional stability and optical transparency. Herein, rolls of an optically transparent PVA-co-PE nanofibrous membrane/epoxy composite with synergistically enhanced thermal stability, very low CTE, and outstanding mechanical properties are reported. The nanoscale size, the unique inter-stack structure, and the strong interfacial interactions between the PVA-co-PE nanofibers and the epoxy contribute to the synergistic effects. Because of the match between the refractive index (RI) of the PVA-co-PE nanofibers and the epoxy matrix, the visible light transmittance of nanocomposite film could be as high as 85% and the composite film was still optically transparent with a nanofiber loading content of up to 61.7 wt%. The break strength and compliance matrix of the composite film with a high fiber loading of 61.7 wt% increased by 2.3 times of that of the neat epoxy film and exceeded 3000 m 2 N -1 , respectively. PVA-co-PE nanofibers have a very low CTE value (3.634 × 10 -6 K -1 ) and could be applicable as a reinforcement to reduce the thermal expansion of epoxy. Furthermore, we developed a flexible alternating current electroluminescent (ACEL) device based on the transparent composite film and the experimental results showed that the transparent composite film could serve as substrate for flexible electronic devices. In addition, their electrical and optical properties were evaluated.

  19. Annealing effects of carbon fiber-reinforced epoxy resin composites irradiated by electron beams

    International Nuclear Information System (INIS)

    Udagawa, Akira; Sasuga, Tuneo; Ito, Hiroshi; Hagiwara, Miyuki

    1987-01-01

    Carbon cloth-reinforced epoxy resin composites were irradiated with 2 MeV electrons at room temperature and then annealed in air for 2 h at temperatures up to 180 deg C. A considerable decrease in the three-point bending strength occurred when the irradiated composites were annealed in the temperature range of 115 - 135 deg C which is below the glass transition temperature T g of the matrix resin, while the bending strength remained unchanged up to 180 deg C for the unirradiated composites. In the dynamic viscoelastic spectra of the irradiated matrix, a new relaxation appeared at the temperature extending from 50 deg C to just below the matrix T g and disappeared on annealing for 2 h at 135 deg C. Annealing also decreased the concentration of free radicals existing stably in the irradiated matrix at room temperature. After annealing, a large amount of clacks and voids were observed in the fractography of the composites by scanning electron microscopy. These results indicate: (1) Annealing brings about rearrangement of the radiation-induced molecular chain scission in the matrix; (2) The bending strength of the irradiated composites decreased owing to the increased brittleness of the matrix by annealing. (author)

  20. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  1. Tribo-performance of epoxy hybrid composites reinforced with carbon fibers and potassium titanate whiskers

    Science.gov (United States)

    Suresha, B.; Harshavardhan, B.; Ravishankar, R.

    2018-04-01

    The present investigation deals with the fabrication and characterization of epoxy reinforced with bidirectional carbon fiber mat (CF/Ep) and filled with 2.5, 5 and 7.5 wt% potassium titanate whiskers (PTw) composites. The effect of PTw loading on hardness, tensile properties and dry sliding wear behaviour of CF/Ep composite were carefully investigated in expectation of providing valuable information for the application of hybrid CF/Ep composites. Results indicated that the incorporation of PTw actually improved the hardness, tensile strength and tensile modulus of CF/Ep composites. Meanwhile, the specific wear rate of CF/Ep filled by 5 wt % PTw reached to 6.3× 10-14 m3/N-m, which is 41% lower than that of CF/Ep composite at the same dry sliding condition. It also seen that the fiber and filler worked synergistically to enhance the wear resistance. Further, for all composites the friction coefficient increases with increase in load and sliding velocity. However, PTw reinforced CF/Ep exhibited considerably higher coefficient of friction compared to unfilled ones, while PTw filler loading of 5 wt% was effective in reducing the specific wear rate of CF/Ep composite. The carbon fiber carried the applied load between the contact surfaces and protected the epoxy from severe abrasion of the counterface. At the same time, the exposed PTw out of the epoxy matrix around the fiber inhibited the direct scraping between the fiber and counterface so that the fibers could be less directly impacted during the subsequent wear process and they were protected from severe damage.

  2. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Mylsamy, K.; Rajendran, I.

    2011-01-01

    Research highlights: → New renewable and biodegradable Agave americana fibre. → Environmentally free materials. → Good mechanical properties of Agave fibre reinforced epoxy composite materials. → Surface modification of the fibre (Alkali treatment) imported good mechanical properties. → Future scope in light weight materials manufacture. -- Abstract: The mechanical properties such as tensile, compressive, flexural, impact strength and water absorption of the alkali treated continuous Agave fibre reinforced epoxy composite (TCEC) and untreated continuous Agave fibre reinforced epoxy composite (UTCEC) were analysed. A comparison of the surfaces of TCEC and UTCEC composites was carried out by dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermomechanical properties of the composite reinforced with sodium hydroxide (NaOH) treated Agave fibres were considerably good as the shrinkage of the fibre during alkali treatment had facilitated more points of fibre resin interface. The SEM micrograph and FTIR spectra of the impact fracture surfaces of TCEC clearly demonstrate the better interfacial adhesion between fibre and the matrix. In both analyses the TCEC gave good performance than UTCEC and, thus, there is a scope for its application in light weight manufacture in future.

  3. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  4. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  5. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites

    Science.gov (United States)

    Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md

    2018-05-01

    Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.

  6. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    Science.gov (United States)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  7. A Nanomechanical Approach on the Measurement of the Elastic Properties of Epoxy Reinforced Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    G. Mansour

    2013-09-01

    Full Text Available The mechanical behavior of nanocomposite materials with multiwallcarbon nanotube ( MWCNT reinforcements is investigated in the present paper. Epoxy nanocomposites with different weight percentages of carbon nanotubes have been characterized following tensile tests and nanoindentations. The objective of this work was to investigate the efficiency of the reinforcement provided by nanotubes and to examine the agreement between the mechanical properties of the epoxynanocomposites obtained via a macroscale and nanoscale experimentalmethods. Higher increase in modulus was accomplished at weight fraction of nanotube reinforcement of 1 %. The modulus as measured by the tensile tests differed an average of 18% with the results obtained from the nanoindentations, however by utilizing a proper calibration method the resulting data were corrected to only a 3% difference. The modulus results obtained from the experiments were compared with the Halpin - Tsai model and with the Thostenson - Chou model accounting for the outer layer interactions of the nanotube with the hosting matrix. A relatively good agreement was found between the models and the experiments.

  8. CNTs, Al2O3 and SiO2 Reinforced Epoxy: Tribological Properties of Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M.A. Ramadan,

    2017-09-01

    Full Text Available The present work studied the effect of filling epoxy matrix by different types and concentrations of nanoparticles on the friction and wear behaviors. Various concentrations (0.2 %, 0.4 %, 0.6 %, 0.8 % and 1 wt.% of multi walled carbon nano tubes (MWCNTs, aluminum oxide (Al2O3, and silica (SiO2 nanoparticles were used to reinforce epoxy matrix. These epoxy nanocomposites are widely used as indoor flooring tiles in schools, boutiques, hospitals, offices, conference rooms, homes, trade fair stands and homes for the aged. Experiments involved sliding of the epoxy nanocomposite specimens against rotating steel disc at dry sliding condition. Experiments were carried out using a test rig of pin-on-disc, designed and manufactured for the test. The friction force was measured using load cell which connected with a digital screen to detect the friction force. All experiments were done at room temperature and carried out at constant normal load (7 N, constant speed (0.93 m/sec and constant running time (300 seconds. The worn surfaces were investigated with back scattered scanning electron microscopy (SEM. Based on the observations in the present work, it was found that addition of the tested filling nanoparticles have greatly affected the friction and highly improves wear resistance.

  9. The Effect of an Active Diluent on the Properties of Epoxy Resin and Unidirectional Carbon-Fiber-Reinforced Plastics

    Science.gov (United States)

    Solodilov, V. I.; Gorbatkina, Y. A.; Kuperman, A. M.

    2003-11-01

    The influence of an active diluent on the properties of an epoxy matrix and carbon-fiber-reinforced plastics (CFRP) is investigated. The physicomechanical properties of an ED-20 epoxy resin modified with diglycidyl ether of diethylene glycol (DEG-1), the adhesion strength at the epoxy matrix-steel wire interface, and the mechanical properties of unidirectional CFRP are determined. The concentration of DEG-1 was varied from 0 to 50 wt.%. The properties of the matrix, the interface, and the composites are compared. It is stated that the matrix strength affects the strength of unidirectional CFRP in bending and not their strength in tension, compression, and shear. The latter fact seems somewhat unexpected. The interlaminar fracture toughness of the composites investigated correlates with the ultimate elongation of the binder. A comparison between the concentration dependences of adhesion strength and the strength of CFRP shows that the matrices utilized provide such a high interfacial strength that the strength of CFRP no longer depends on the adhesion of its constituents.

  10. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  11. Development study of concrete reinforcement made of aramid fiber-reinforced plastic rods with high radiation resistance. 1. Epoxy resin compounds with a handling at room temperature impregnation

    International Nuclear Information System (INIS)

    Udagawa, Akira; Seguchi, Tadao; Moriya, Toshio; Matsubara, Sumiyuki; Hongou, Yoshihiko

    1999-03-01

    Aramid fiber-reinforced plastic (ArFRP) rods were developed in order to avoid from conduction current and/or magnetization of the metallic reinforcement using concrete constructions. For the polymer matrix, new epoxy resin compounds consist of tetraglycidyl diaminodiphenylmethane (30%), diglycidyl ether of bisphenol-A (60%), styrene oxide (10%) and aromatic diamine as a hardner were found to be the best formulation, and which were easily impregnated to the aramid fiber braiding yarn at room temperature. The ArFRP rods has a high radiation resistance, and the tensile strength was maintained to 98% (1.45 GPa) after irradiation dose of 100 MGy (absorbed energy MJ/kg), which is available for the reinforcement of concrete construction for the house of fusion reactor with super conducting magnets. (author)

  12. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  13. Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites

    KAUST Repository

    Alamri, H.; Low, I.M.; Alothman, Z.

    2012-01-01

    increased as a result of the addition of nanoclay into the epoxy matrix. The presence of RCF significantly enhanced flexural strength, fracture toughness, impact strength and impact toughness of the composites. However, the inclusion of 1 wt.% clay into RCF

  14. Improvement of Interfacial Adhesion of Incorporated Halloysite-Nanotubes in Fiber-Reinforced Epoxy-Based Composites

    Directory of Open Access Journals (Sweden)

    Jin-Woo Lee

    2017-04-01

    Full Text Available The heart of composite materials depends on the characteristics of their interface. The physical properties of composite materials are often described by the rule of mixtures, representing the average physical properties of the reinforcement and the matrix resin. However, in practical applications there are situations which arise where the rule of mixtures is not followed. This is because when an external energy applied to the composite material is transferred from the matrix to the reinforcement, the final physical properties are affected by the interface between them rather than the intrinsic properties of both the reinforcement and the matrix. The internal bonding strength of the interface of these composites can be enhanced by enhancing the bonding strength by adding a small amount of material at the interface. In this study, the mechanical properties were evaluated by producing a carbon fiber-reinforced composite material and improved by dispersing halloysite nanotubes (HNTs and the epoxy resin using an ultrasonic homogenizer. The interfacial bond strength increased with the addition of HNT. On the other hand, the addition of HNTs more than 3 wt % did not show the reinforcing effect by HNT agglomeration.

  15. MECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    R. K. Misra

    2014-03-01

    Full Text Available Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping properties of the composites. Therefore, 2.468% banana fiber reinforced composite plate stabilizes early as compared to 7.7135 % banana fiber reinforced composite plate but less stiff as compared to 7.7135 % banana fiber reinforced composite plate

  16. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  17. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    Science.gov (United States)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  18. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  19. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    Science.gov (United States)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  20. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  1. A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles

    Science.gov (United States)

    Bulut, Mehmet; Alsaadi, Mohamad; Erkliğ, Ahmet

    2018-02-01

    Present study compares the tensile and impact characteristics of Kevlar, carbon and glass fiber reinforced composites with addition of microscale silicon carbide (SiC) within the common matrix of epoxy. The variation of tensile and impact strength values was explored for different content of SiC in the epoxy resin by weight (0, 5, 10, 15 and 20 wt%). Resulting failure characteristics were identified by assisting Charpy impact tests. The influence of interfacial adhesion between particle and fiber/matrix on failure and tensile properties was discussed from obtained results and scanning electron microscopy (SEM) figures. It is concluded from results that the content of SiC particles, and fiber types used as reinforcement are major parameters those effecting on tensile and impact resistance of composites as a result of different interface strength properties between particle-matrix and particle-fiber.

  2. Bending test in epoxy composites reinforced with continuous and aligned PALF fibers

    Directory of Open Access Journals (Sweden)

    Gabriel Oliveira Glória

    2017-10-01

    Full Text Available Sustainable actions aiming to prevent increasing worldwide pollution are motivating the substitution of environmentally friendly materials for conventional synthetic ones. A typical example is the use of natural lignocellulosic fiber (LCF as reinforcement of polymer composites that have traditionally been reinforced with glass fiber. Both scientific research and engineering applications support the use of numerous LCFs composites. The pineapple fiber (PALF, extracted from the leaves of Ananas comosus, is considered a LCF with potential for composite reinforcement. However, specific mechanical properties and microstructural characterization are still necessary for this purpose. Therefore, the objective of this short work is to evaluate the flexural properties, by means of three points, bend tests, of epoxy composites incorporated with up to 30 vol% of PALF. Results reveal that continuous and aligned fibers significantly increase the flexural strength. Scanning electron microscopy disclosed the fracture mechanism responsible for this reinforcement. Keywords: Pineapple fibers, PALF, Flexural properties, Bending test, Epoxy composites, Fracture mechanism

  3. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    OpenAIRE

    Sudhir Kumar Saw; Chandan Datta

    2009-01-01

    Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA) to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy comp...

  4. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu [School of MechatronicEngineering, Korea University of Technology and Education, Chunan (Korea, Republic of); Nah, Hwan Seon [Structural Engineering Lab., Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  5. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    International Nuclear Information System (INIS)

    Kim, No Hyu; Nah, Hwan Seon

    2014-01-01

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  6. Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy.

    Science.gov (United States)

    Salehi-Khojin, Amin; Jana, Soumen; Zhong, Wei-Hong

    2007-03-01

    We previously developed a series of reactive graphitic nanofibers (r-GNFs) reinforced epoxy (nano-epoxy) as composite matrices, which have shown good wetting and adhesion properties with continuous fiber. In this work, the thermal-mechanical properties of the nano-epoxy system containing EponTM Resin 828 and Epi-cure Curing Agent W were characterized. Results from three-point bending tests showed that the flexural strength and flexural modulus of this system with 0.30 wt% of reactive nanofibers were increased by 16%, and 21% respectively, over pure epoxy. Fracture toughness increased by ca. 40% for specimens with 0.50 wt% of r-GNFs. By dynamic mechanical analysis (DMA) test, specimens with 0.30 wt% of r-GNFs showed a significant increase in storage modulus E' (by ca. 122%) and loss modulus E" (by ca. 111%) with respect to that of pure epoxy. Also thermo-dilatometry analysis (TDA) was used to measure dimensional change of specimens as a function of temperature, and then, coefficients of thermal expansion (CTE) before and after glass transition temperature (Tg) were obtained. Results implied that nano-epoxy materials had good dimensional stability and reduced CTE values when compared to those of pure epoxy.

  7. UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite

    International Nuclear Information System (INIS)

    Wong, Tsz-ting; Lau, Kin-tak; Tam, Wai-yin; Leng, Jinsong; Etches, Julie A.

    2014-01-01

    Highlights: • A GFRE composite with UV resistibility is introduced. • The bonding behaviour and UV resistibility of the composite were studied upon the addition of nano-ZnO particles. • The solvent effect in the dispersion of nano-ZnO particles was also studied. • The nano-ZnO/GFRE composite shows effective UV absorption with enhanced bonding behaviour. - Abstract: The harmfulness of ultraviolet (UV) radiation (UVR) to human health and polymer degradation has been the focus recently in all engineering industries. A polymer-based composite filled with nano-ZnO particles can enhance its UV resistibility. It has been found that the use of appropriate amount of nano-ZnO/Isopropyl alcohol solvent to prepare a UV resistant nano-ZnO/glass fibre reinforced epoxy (ZGFRE) composite can effectively block the UV transmission with negligible influence on the crystal structure of its resin system. This paper aims at investigating the interfacial bonding behaviour and UV resistibility of a ZGFRE composite. The solvent effect in relation to the dispersion properties of ZnO in the composite is also discussed. XRD results indicated that 20 wt% Isopropyl alcohol was an effective solvent for filling nano-ZnO particles into an epoxy. SEM examination also showed that the bonding behaviour between glass fibre and matrix was enhanced after filling 20 wt% nano-ZnO particles with 20 wt% Isopropyl alcohol into the composite. Samples filled with 20 wt% nano-ZnO/Isopropyl alcohol and 40 wt% nano-ZnO/Isopropyl alcohol has full absorption of UVA (315–400 nm), UVB (280–315 nm) and a part of UVC (190–280 nm)

  8. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  9. Tensile properties of compressed moulded Napier/glass fibre reinforced epoxy composites

    Science.gov (United States)

    Fatinah, T. S.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Hong, T. W.; Amin, N. A. M.; Afendi, M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of compressed moulded Napier grass fibres reinforced epoxy composites. The effect of treatment 5% sodium hydroxide (NaOH) concentrated solution and hybridization of Napier with CSM E-glass fibres on tensile properties was also studied. The untreated and treated Napier fibres with 25% fibre loading were fabricated with epoxy resin by a cold press process. 7% fibre loading of CSM glass fibre was hybrid as the skin layer for 18% fibre loading of untreated Napier grass fibre. The tensile tests were conducted using Universal Testing Machine in accordance with ASTM D638. The tensile properties of the untreated Napier/epoxy composites were compared with treated Napier/epoxy and untreated Napier/CSM/epoxy composites. The results demonstrated that the tensile performance of untreated Napier fibre composites was significantly improved by both of the modification; alkali treatment and glass fibre hybridization. Napier grass fibres showed promising potentials to be used as reinforcement in the polymer based composites.

  10. Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave

    International Nuclear Information System (INIS)

    Yadav, S.N.; Kumar, Vijai; Verma, Sushil K.

    2006-01-01

    This work was to evaluate as to how mode II fracture toughness G II is affected by interleave having Kevlar fibre reinforcement in the fracture plane. Thermoset interleave and chopped Kevlar fibres were applied between the carbon/epoxy composite layers. An artificial crack starter was implanted in the mid-plane to initiate the fracture process. The following five different types of carbon fibre/epoxy composites were prepared and tested. (a) Base laminate without interleave (b) unreinforced interleave and (c) 0.5, 1.0 and 1.5 mg/cm 2 chopped Kevlar fibre reinforced interleave. Results obtained show that fracture toughness G IIC enhanced up to about two times in all the laminates. However, enhancement in fracture toughness G IIC was more effective in interleaved laminate than Kevlar reinforced interleaved because of large energy absorbing capabilities of interleaf. Mechanism of fracture and toughening were examined by using scanning electron microscope

  11. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites

    International Nuclear Information System (INIS)

    Song Wei; Gu Aijuan; Liang Guozheng; Yuan Li

    2011-01-01

    The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.

  12. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  13. Design, Fabrication and Testing of Carbon Fiber Reinforced Epoxy Drive Shaft for All Terrain Vehicle using Filament Winding

    Directory of Open Access Journals (Sweden)

    Yeshwant Nayak Suhas

    2018-01-01

    Full Text Available Filament winding is a composite material fabrication technique that is used to manufacture concentric hollow components. In this study Carbon/Epoxy composite drive shafts were fabricated using filament winding process with a fiber orientation of [852/±452/252]s. Carbon in the form of multifilament fibers of Tairyfil TC-33 having 3000 filaments/strand was used as reinforcement with low viscosity epoxy resin as the matrix material. The driveshaft is designed to be used in SAE Baja All Terrain Vehicle (ATV that makes use of a fully floating axle in its rear wheel drive system. The torsional strength of the shaft was tested and compared to that of an OEM steel shaft that was previously used in the ATV. Results show that the composite shaft had 8.5% higher torsional strength in comparison to the OEM steel shaft and was also lighter by 60%. Scanning electron microscopy (SEM micrographs were studied to investigate the probable failure mechanism. Delamination, matrix agglomeration, fiber pull-out and matrix cracking were the prominent failure mechanisms identified.

  14. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  15. X-ray imaging inspection of fiberglass reinforced by epoxy composite

    International Nuclear Information System (INIS)

    Rique, A.M.; Machado, A.C.; Oliveira, D.F.; Lopes, R.T.; Lima, I.

    2015-01-01

    The goal of this work was to study the voids presented in bonded joints in order to minimize failures due to low adhesion of the joints in the industry field. One of the main parameters to be characterized is the porosity of the glue, since these pores are formed by several reasons in the moment of its adhesion, which are formed by composite of epoxy resin reinforced by fiberglass. For such purpose, it was used high energy X-ray microtomography and the results show its potential effective in recognizing and quantifying directly in 3D all the occlusions regions presented at glass fiber-epoxy adhesive joints

  16. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2014-12-01

    Full Text Available The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo

  17. Morphology and contact angle studies of poly(styrene-co-acrylonitrile modified epoxy resin blends and their glass fibre reinforced composites

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, the surface characteristics of blends and composites of epoxy resin were investigated. Poly(styrene-co-acylonitrile (SAN was used to modify diglycedyl ether of bisphenol-A (DGEBA type epoxy resin cured with diamino diphenyl sulfone (DDS and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRP’s. E-glass fibre was used as the fibre reinforcement. The scanning electron micrographs of the fractured surfaces of the blends and composites were analyzed. Morphological analysis revealed different morphologies such as dispersed, cocontinuous and phase-inverted structures for the blends. Contact angle studies were carried out using water and methylene iodide at room temperature. The solid surface energy was calculated using harmonic mean equations. Blending of epoxy resin increases its contact angle. The surface free energy, work of adhesion, interfacial free energy, spreading coefficient and Girifalco-Good’s interaction parameter were changed significantly in the case of blends and composites. The incorporation of thermoplastic and glass fibre reduces the wetting and hydrophilicity of epoxy resin.

  18. Development of radioactive sealed sources in epoxy matrix

    International Nuclear Information System (INIS)

    Benega, Marcos A.G.; Nagatomi, Helio R.; Rostelato, Maria Elisa C.M.; Karan Junior, Dib; Souza, Carla D.; Tiezzi, Rodrigo; Rodrigues, Bruna T.; Peleias Junior, Fernando S.

    2013-01-01

    The aim of the present work is to study and develop commercial resins for manufacturing solid sealed sources. The sources are produced with radionuclides of barium-133, cesium-137 and cobalt-57. They are used in radiation detectors verification. For the immobilization of the radionuclides in the epoxy matrix, it is made use of emulsifying agents that ensure the miscibility between resin and aqueous radioactive solution, as well as curing agents for controlling, curing and sealing the standard radioactive solution completely. As a result, it is expected to obtain standard sealed sources and equivalent to water. The equivalence to water is an important and necessary characteristic. The radioisotopes used in nuclear medicine are supplied in an aqueous form and the resin applied must have a very similar density comparing to the water. The sources must also be comparable in quality to sources produced internationally, but with low cost and wide available materials in the market. It is intended to create a national technology able to meet the demand of this product in the domestic market and achieve excellence in quality through accreditation and certification of the product by the appropriate agencies. The study of the necessary parameters used in the production of these sources, will bring technology for the manufacture of other categories of standard sealed sources, those used for nuclear medicine, image, laboratories and industry. (author)

  19. 1D and 2D oxidized carbon nanomaterials on epoxy matrix: performance of composites over the same processing conditions

    Science.gov (United States)

    Ramos-Galicia, Lourdes; Martinez-Hernandez, Ana Laura; Fuentes-Ramirez, Rosalba; Velasco-Santos, Carlos

    2017-11-01

    Oxidized multi-walled carbon nanotubes and graphene oxide were evaluated as reinforcements of an epoxy resin. The composites were synthesized at concentrations of 0.1, 0.5, and 1.0 wt% under the same processing conditions. Nanocomposites with graphene oxide at 0.5 wt% present the highest mechanical properties, reaching up to ~180%, and ~760% of improvement in tensile strength and tensile toughness with respect to neat epoxy. Nevertheless, composites with oxidized nanotubes exhibit a tendency to improve mechanical properties as load increases. Storage moduli diminish due to cross-linking density reduction in all nanocomposites. Difference in thermal degradation are not observed in composites in comparison with matrix. Dimension play an important role in mechanical properties, because each nanoreinforcement has different performance with the concentration.

  20. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix.

    Science.gov (United States)

    Kuo, Pei-Yu; Barros, Luizmar de Assis; Yan, Ning; Sain, Mohini; Qing, Yan; Wu, Yiqiang

    2017-12-01

    Although there is a growing interest in utilizing nanocellulose fibres (NCFs) based composites for achieving a higher sustainability, mechanical performance of these composites is limited due to the poor compatibility between fibre reinforcement and polymer matrices. Here we developed a bio-nanocomposite with an enhanced fibre/resin interface using a hybrid-toughened epoxy. A strong reinforcing effect of NCFs was achieved, demonstrating an increase up to 88% in tensile strength and 298% in tensile modulus as compared to neat petro-based P-epoxy. The toughness of neat P-epoxy was improved by 84% with the addition of 10wt% bio-based E-epoxy monomers, which also mitigated the amount of usage of bisphenol A (BPA). The morphological analyses showed that the hybrid epoxy improved the resin penetration and fibre distribution significantly in the resulting composites. Thus, our findings demonstrated the promise of developing sustainable and high performance epoxy composites combing NCFs with a hybrid petro-based and bio-based epoxy resin system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers.

    Science.gov (United States)

    Prolongo, S G; Gude, M R; Ureña, A

    2009-10-01

    Epoxy nanocomposites were fabricated using two kinds of nanofiller, amino-functionalized multi-walled carbon nanotubes (CNTs) and non-treated long carbon nanofibers (CNFs). The non-cured mixtures were analysed through viscosity measurements. The effect of the nanoreinforcement on the curing process was determined by differential scanning calorimetry. Finally, the characterisation of cured nanocomposites was carried out studying their thermo-mechanical and electrical behaviour. At room temperature, the addition of CNTs causes a viscosity increase of epoxy monomer much more marked than the introduction of CNFs due to their higher specific area. It was probed that in that case exists chemical reaction between amino-functionalized CNTs and the oxirane rings of epoxy monomer. The presence of nanoreinforcement induces a decrease of curing reaction rate and modifies the epoxy conversion reached. The glass transition temperature of the nanocomposites decreases with the contents of CNTs and CNFs added, which could be related to plasticization phenomena of the nanoreinforcements. The storage modulus of epoxy resin significantly increases with the addition of CNTs and CNFs. This augment is higher with amino-functionalized CNTs due, between other reasons, to the stronger interaction with the epoxy matrix. The electrical conductivity is greatly increased with the addition of CNTs and CNFs. In fact, the percolation threshold is lower than 0.25 wt% due to the high aspect ratio of the used nanoreinforcements.

  2. Interfacial characteristics of an epoxy composite reinforced with phosphoric acid-functionalized Kevlar fibers

    Science.gov (United States)

    Li, J.; Xia, Y. C.

    2010-07-01

    A Kevlar fiber was functionalized with the phosphoric acid (PA) of different concentrations. The surface characteristics of the fiber were examined by using the X-ray photoelectron spectroscopy. It was found that the PA functionalization considerably increased the bond strength between the Kevlar fiber and an epoxy matrix.

  3. Evaluation of Mechanical Properties and Morphological Studies of Rice Husk (Treated/Untreated)-CaCO3 Reinforced Epoxy Hybrid Composites

    Science.gov (United States)

    Verma, Deepak; Joshi, Garvit; Gupta, Ayush

    2016-10-01

    Natural fiber reinforced composites are a very popular area of research because of the easy availability and biodegradability of these fibers. The manufacturing of natural fiber composite is done by reinforcing fibers in the particulate form, fiber form or in woven mat form. Natural fiber composites also utilize industrial wastes as a secondary reinforcements like fly ash, sludge etc. By keeping all these point of views in the present investigation the effect of rice husk flour (chemically treated/untreated) and micro sized calcium carbonate with epoxy resin have been evaluated. The diameter of rice husk flour was maintained at 600 µm through mechanical sieving machine. The husk flour was chemically treated with NaOH (5 % w/v). Mechanical properties like hardness, flexural impact and compression strength were evaluated and found to be superior in modified or chemically treated flour as compared to unmodified or untreated flour reinforced composites. Scanning electron microscopy (SEM) study was also undertaken for the developed composites. SEM study shows the distribution of the rice husk flour and calcium carbonate over the matrix.

  4. Two-dimensional magnesium oxide nanosheets reinforced epoxy nanocomposites for enhanced fracture toughness

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Guruvishnu, T.; Aditya, D. B.; Mahadevan, S. M.; Thumu, Udayabhaskararao

    2018-01-01

    Metal oxide nanoparticles have been used as excellent reinforcements to enhance mechanical properties of polymers, natural composites, and ceramics. To date, a major portion of metal oxides used as nanofillers is three dimensional spherical nanoparticles. In the last decade, two-dimensional (2D) materials such as graphene have been widely investigated to improve the mechanical and electrical properties of polymer materials. In this paper, 2D Magnesium oxide (MgO) nanosheets reinforced epoxy composites (0.1, 0.2 and 0.4 wt%) are fabricated and studied for their ability to resist the propagation of preexisting flaw by conducting fracture toughness test for K IC, critical stress intensity factor. This property is an important mechanical property for designing applications in various engineering technologies. Our results show that the MgO with 0.2 wt% is the optimized level to improve the fracture toughness of the epoxy polymer by 47%.

  5. Investigation of Thermal Behavior for Natural Fibres Reinforced Epoxy using Thermogravimetric and Differential Scanning Calorimetric Analysis

    Directory of Open Access Journals (Sweden)

    Fauzi F.A.

    2016-01-01

    Full Text Available This paper presented the research works on the investigation of the thermal behavior of the natural fibres; i.e. pineapple leaf fibre, kenaf fibre and mengkuang fibres reinforced epoxy. The thermogravimetric analysis and differential scanning calorimetric analysis were used to measure the thermal behavior of the treated and untreated pineapple, kenaf and mengkuang fibres reinforced epoxy. The samples for both analysis were subjected to maximum temperature 600°C at the heating rate of 10°C/min. The results showed that the treated fibres show higher maximum peak temperature as compared to the untreated fibres. Additionally, the glass transition temperature showed a lower value for all treated fibre. It can be concluded that investigation of thermal properties of these natural fibres could improve the utilization of natural fibre composites in various applications i.e. sports applications.

  6. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines

    OpenAIRE

    Patricia A. Saliba; Alexandra A. P. Mansur; Herman S. Mansur

    2016-01-01

    The performance of fusion-bonded epoxy coatings can be improved through advanced composite coatings reinforced with nanomaterials. Hence, in this study a novel organic-inorganic nanocomposite finish was designed, synthesized, and characterized, achieved by adding γ-aminopropyltriethoxysilane modified silica nanoparticles produced via sol-gel process in epoxy-based powder. After the curing process of the coating reinforced with nanoparticles, the formation of a homogenous novel nanocomposite w...

  7. Experimental Investigation and Taguchi Optimisation of Drilling Properties on Teak Wood Reinforced Epoxy Resin

    Science.gov (United States)

    Lilly Mercy, J.; Shaqir Tanvir, Mohamed; Swaroopkanth, K.

    2017-05-01

    The drilling properties of teak reinforced epoxy resin composite are explored in this work. The thrust force and temperature during the drilling process was found and optimised. Nine holes were drilled in accordance with L9 orthogonal array on Medium Density Fibre board and Teak wood reinforced epoxy composite board and the thrust force and temperature induced during drilling is measured. Drilling experiments were conducted using CNC Vertical drilling machine and the thrust force was measured using dynamometer and temperature using infra-red thermometer. The experiments were conducted with varying levels of spindle speed and feed rate and optimised using Taguchi optimisation. It was observed that higher thrust and temperature were observed while drilling teak wood composite due to the high mechanical strength of teak wood. The hard and brittle properties of the resin seemed to be more pronounced in the composite. The experimental results were optimised to find the best combination of input parameters for reduced thrust and temperature. When speed increases, thrust force decreases and temperature increases. When feed increases, thrust force increases and temperature decreases. Experimental findings encouragesto use teak wood reinforced epoxy resin as a substitute for the traditionally used Medium Density Fibre Board. The percentage of mixing of teak dust can be increased with various resin combinations to arrive at the best suitable combination for obtaining optimal mechanical properties.

  8. Mechanical properties of woven banana fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Leenie, A.; Harimi, M.; Beng, Y.K.

    2006-01-01

    In this paper, the experiments of tensile and flexural (three-point bending) tests were carried out using natural fibre with composite materials (Musaceae/epoxy). Three samples prepared from woven banana fibre composites of different geometries were used in this research. From the results obtained, it was found that the maximum value of stress in x-direction is 14.14 MN/m 2 , meanwhile the maximum value of stress in y-direction is 3.398 MN/m 2 . For the Young's modulus, the value of 0.976 GN/m 2 in x-direction and 0.863 GN/m 2 in y-direction were computed. As for the case of three-point bending (flexural), the maximum load applied is 36.25 N to get the deflection of woven banana fibre specimen beam of 0.5 mm. The maximum stress and Young's modulus in x-direction was recorded to be 26.181 MN/m 2 and 2.685 GN/m 2 , respectively. Statistical analysis using ANOVA-one way has showed that the differences of results obtained from those three samples are not significant, which confirm a very stable mechanical behaviour of the composites under different tests. This shows the importance of this product and allows many researchers to develop an adequate system for producing a good quality of woven banana fibre composite which maybe used for household utilities

  9. Preparation and characterization of glass fibers – polymers (epoxy bars (GFRP reinforced concrete for structural applications

    Directory of Open Access Journals (Sweden)

    Alkjk Saeed

    2016-06-01

    Full Text Available The paper presents some of the results from a large experimental program undertaken at the Department of Civil Engineering of Damascus University. The project aims to study the ability to reinforce and strengthen the concrete by bars from Epoxy polymer reinforced with glass fibers (GFRP and compared with reinforce concrete by steel bars in terms of mechanical properties. Five diameters of GFRP bars, and steel bars (4mm, 6mm, 8mm, 10mm, 12mm tested on tensile strength tests. The test shown that GFRP bars need tensile strength more than steel bars. The concrete beams measuring (15cm wide × 15cm deep × and 70cm long reinforced by GFRP with 0.5 vol.% ratio, then the concrete beams reinforced by steel with 0.89 vol.% ratio. The concrete beams tested on deflection test. The test shown that beams which reinforced by GFRP has higher deflection resistance, than beams which reinforced by steel. Which give more advantage to reinforced concrete by GFRP.

  10. Hybrid welding of carbon-fiber reinforced epoxy based composites

    NARCIS (Netherlands)

    Lionetto, Francesca; De Nicolas Morillas, M.; Pappadà, Silvio; Buccoliero, Giuseppe; Fernandez Villegas, I.; Maffezzoli, Alfonso

    2018-01-01

    The approach for joining thermosetting matrix composites (TSCs) proposed in this study is based on the use of a low melting co-cured thermoplastic film, added as a last ply in the stacking sequence of the composite laminate. During curing, the thermoplastic film partially penetrates in the first

  11. Mechanical properties of woven banana fibre reinforced epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: sapuan@eng.upm.my; Leenie, A. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Harimi, M. [School of Engineering and Information Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia); Beng, Y.K. [School of Engineering and Information Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2006-07-01

    In this paper, the experiments of tensile and flexural (three-point bending) tests were carried out using natural fibre with composite materials (Musaceae/epoxy). Three samples prepared from woven banana fibre composites of different geometries were used in this research. From the results obtained, it was found that the maximum value of stress in x-direction is 14.14 MN/m{sup 2}, meanwhile the maximum value of stress in y-direction is 3.398 MN/m{sup 2}. For the Young's modulus, the value of 0.976 GN/m{sup 2} in x-direction and 0.863 GN/m{sup 2} in y-direction were computed. As for the case of three-point bending (flexural), the maximum load applied is 36.25 N to get the deflection of woven banana fibre specimen beam of 0.5 mm. The maximum stress and Young's modulus in x-direction was recorded to be 26.181 MN/m{sup 2} and 2.685 GN/m{sup 2}, respectively. Statistical analysis using ANOVA-one way has showed that the differences of results obtained from those three samples are not significant, which confirm a very stable mechanical behaviour of the composites under different tests. This shows the importance of this product and allows many researchers to develop an adequate system for producing a good quality of woven banana fibre composite which maybe used for household utilities.

  12. Influence of carbon nanotubes on the properties of epoxy based composites reinforced with a semicrystalline thermoplastic

    Science.gov (United States)

    Díez-Pascual, A.; Shuttleworth, P.; Gónzalez-Castillo, E.; Marco, C.; Gómez-Fatou, M.; Ellis, G.

    2014-08-01

    Novel ternary nanocomposites based on a thermoset (TS) system composed of triglycidyl p-aminophenol (TGAP) epoxy resin and 4,4'-diaminodiphenylsulfone (DDS) curing agent incorporating 5 wt% of a semicrystalline thermoplastic (TP), an ethylene/1-octene copolymer, and 0.5 or 1.0 wt% multi-walled carbon nanotubes (MWCNTs) have been prepared via physical blending and curing. The influence of the TP and the MWCNTs on the curing process, morphology, thermal and mechanical properties of the hybrid nanocomposites has been analyzed. Different morphologies evolved depending on the CNT content: the material with 0.5 wt% MWCNTs showed a matrix-dispersed droplet-like morphology with well-dispersed nanofiller that selectively located at the TS/TP interphase, while that with 1.0 wt% MWCNTs exhibited coarse dendritic TP areas containing agglomerated MWCNTs. Although the cure reaction was accelerated in its early stage by the nanofillers, curing occurred at a lower rate since these obstructed chain crosslinking. The nanocomposite with lower nanotube content displayed two crystallization peaks at lower temperature than that of pure TP, while a single peak appearing at similar temperature to that of TP was observed for the blend with higher nanotube loading. The highest thermal stability was found for TS/TP (5.0 wt%)/MWCNTs (0.5 wt%), due to a synergistic barrier effect of both TP and the nanofiller. Moreover, this nanocomposite displayed the best mechanical properties, with an optimal combination of stiffness, strength and toughness. However, poorer performance was found for TS/TP (5.0 wt%)/MWCNTs (1.0 wt%) due to the less effective reinforcement of the agglomerated nanotubes and the coalescence of the TP particles into large areas. Therefore, finely tuned morphologies and properties can be obtained by adjusting the nanotube content in the TS/TP blends, leading to high-performance hybrid nanocomposites suitable for structural and high-temperature applications.

  13. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  14. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene.

    Science.gov (United States)

    Naveh, Naum; Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called "stacked" graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior.

  15. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

    Directory of Open Access Journals (Sweden)

    Naum Naveh

    2017-09-01

    Full Text Available Impregnation of expandable graphite (EG after thermal treatment with an epoxy resin containing surface-active agents (SAAs enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called “stacked” graphene (SG. This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior.

  16. Strengthening Performance of PALF-Epoxy Composite Plate on Reinforced Concrete Beams

    Science.gov (United States)

    Chin, Siew C.; Tong, Foo S.; Doh, Shu I.; Gimbun, Jolius; Ong, Huey R.; Serigar, Januar P.

    2018-03-01

    This paper presents the effective strengthening potential of pineapple leaves fiber (PALF)-epoxy composite plate on reinforced concrete (RC) beam. At first the PALF is treated with alkali (NaOH) and its morphology is observed via scanning electron microscope (SEM). The composite plates made of PALF and epoxy with fiber loading ranging from 0.1 to 0.4 v/v was tested for its flexural behaviour. The composite was then used for external RC beam strengthening. The structural properties of RC beams were evaluated and all the beams were tested under four-point bending. It was found that the flexural strength increased as the fiber volume ratio increases. The maximum flexural strength (301.94 MPa) was obtained at the fiber volume ratio of 40%. The beam strengthened with PALF-epoxy composite plate has a 7% higher beam capacity compared to the control beam. Cracks formed at the edge of the plate of PALF-strengthened beams resulted in diagonal cracking. Result from this work shows that the PALF-epoxy composite plate has the potential to be used as external strengthening material for RC beam.

  17. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water

    International Nuclear Information System (INIS)

    Bai, Yongping; Wang, Zhi; Feng, Liqun

    2010-01-01

    The carbon fibers in carbon fibers reinforced epoxy resin composites were recovered in oxygen in supercritical water at 30 ± 1 MPa and 440 ± 10 o C. The microstructure of the recovered carbon fibers was observed using scanning electron microscopy (SEM) and atom force microscopy (AFM). The results revealed that the clean carbon fibers were recovered and had higher tensile strength relative to the virgin carbon fibers when the decomposition rate was above 85 wt.%, although the recovered carbon fibers have clean surface, the epoxy resin on the surface of the recovered carbon fibers was readily observed. As the decomposition rate increased to above 96 wt.%, no epoxy resin was observed on the surface of the carbon fibers and the oxidation of the recovered carbon fibers was readily measured by X-ray photoelectron spectroscopy (XPS) analysis. The carbon fibers were ideally recovered and have original strength when the decomposition rates were between 94 and 97 wt.%. This study clearly showed the oxygen in supercritical water is a promising way for recycling the carbon fibers in carbon fibers reinforced resin composites.

  18. A strategy for prediction of the elastic properties of epoxy-cellulose nanocrystal-reinforced fiber networks

    Science.gov (United States)

    Johnathan E. Goodsell; Robert J. Moon; Alionso Huizar; R. Byron Pipes

    2014-01-01

    The reinforcement potential of cellulose nanocrystal (CNC) additions on an idealized 2-dirmensional (2-D) fiber network structure consisting of micron sized fiber elements was investigated. The reinforcement mechanism considered in this study was through the stiffening of the micron sized fiber elements via a CNC-epoxy coating. A hierarchical analytical modeling...

  19. Development of design data for graphite reinforced epoxy and polyimide composites

    Science.gov (United States)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  20. Analysis and Tests of Reinforced Carbon-Epoxy/Foam-Core Sandwich Panels with Cutouts

    Science.gov (United States)

    Baker, Donald J.; Rogers, Charles

    1996-01-01

    The results of a study of a low-cost structurally efficient minimum-gage shear-panel design that can be used in light helicopters are presented. The shear-panel design is based on an integrally stiffened syntactic-foam stabilized-skin with an all-bias-ply tape construction for stabilized-skin concept with an all-bias-ply tape construction for the skins. This sandwich concept is an economical way to increase the panel bending stiffness weight penalty. The panels considered in the study were designed to be buckling resistant up to 100 lbs/in. of shear load and to have an ultimate strength of 300 lbs/in. The panel concept uses unidirectional carbon-epoxy tape on a syntactic adhesive as a stiffener that is co-cured with the skin and is an effective concept for improving panel buckling strength. The panel concept also uses pultruded carbon-epoxy rods embedded in a syntactic adhesive and over-wrapped with a bias-ply carbon-epoxy tape to form a reinforcing beam which is an effective method for redistributing load around rectangular cutout. The buckling strength of the reinforced panels is 83 to 90 percent of the predicted buckling strength based on a linear buckling analysis. The maximum experimental deflection exceeds the maximum deflection predicted by a nonlinear analysis by approximately one panel thickness. The failure strength of the reinforced panels was two and a half to seven times of the buckling strength. This efficient shear-panel design concept exceeds the required ultimate strength requirement of 300 lbs/in by more than 100 percent.

  1. Morphology and Properties of Geopolymer Coatings on Glass Fibre-Reinforced Epoxy (GRE pipe

    Directory of Open Access Journals (Sweden)

    Shahedan Noor Fifinatasha

    2016-01-01

    Full Text Available Geopolymer coatings were coated on glass fibre-reinforced epoxy (GRE pipe by using kaolin, white clay and silica sand as source materials and sodium hydroxide (NaOH and sodium silicate (Na2SiO3 as alkaline solution. The microstructure and mechanical property of geopolymer coating on GRE pipe were methodically investigated through morphology analysis, and flexural strength test. The result indicates the microstructure and interfacial layer between geopolymer coating and GRE pipe significantly influence the mechanical property of geopolymer coating. However, different source materials gave different microstructure and property in geopolymer coating.

  2. Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2012-08-01

    Full Text Available A brand-new type of multifunctional nanocomposites with high DC conductivity and enhanced mechanical strength was fabricated. Ionic liquid functionalized Carbon Nanotubes (CNTs-IL were embedded into epoxy matrix with covalent bonding by the attached epoxy groups. The highest DC conductivity was 8.38 x 10-3 S.m-1 with 1.0 wt. (% loading of CNTs-IL and the tensile strength was increased by 36.4% only at a 0.5 wt. (% concentration. A mixing solvent was used to disperse CNTs-IL in the epoxy monomer. The dispersion and distribution of CNTs-IL in the polymer matrix were measured by utilizing both optical microscopy and scanning electron microscopy, respectively.

  3. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  4. Analysis and modeling of delamination factor in drilling of woven kenaf fiber reinforced epoxy using Box Behnken experimental design

    Science.gov (United States)

    Suhaily, M.; Che Hassan, C. H.; Jaharah, A. G.; Afifah, M. A.; Nor Khairusshima, M. K.

    2018-01-01

    In this research study, it presents a comprehensive mathematical model for correlating the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates using the Box Behnken experimental design. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated HSS drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs.

  5. Dry sliding wear behavior of epoxy composite reinforced with short palmyra fibers

    International Nuclear Information System (INIS)

    Biswal, Somen; Satapathy, Alok

    2016-01-01

    The present work explores the possibility of using palmyra fiber as a replacement for synthetic fiber in conventional polymer composites for application against wear. An attempt has been made in this work to improve the sliding wear resistance of neat epoxy by reinforcing it with short palmyra fibers (SPF). Epoxy composites with different proportions (0, 4, 8 and 12 wt. %) of SPF are fabricated by conventional hand lay-up technique. Dry sliding wear tests are performed on the composite samples using a pin-on-disc test rig as per ASTM G 99-05 standards under various operating parameters. Design of experiment approach based on Taguchi's L16 Orthogonal Arrays is used for the analysis of the wear. This parametric analysis reveals that the SPF content is the most significant factor affecting the wear process followed by the sliding velocity. The sliding wear behavior of these composites under an extensive range of test conditions is predicted by a model based on the artificial neural network (ANN). A well trained ANN has been used to predict the sliding wear response of epoxy based composites over a wide range. (paper)

  6. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    Science.gov (United States)

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  7. Mutual irradiation grafting on indigenous aramid fiber-3 in diethanolamine and epichlorohydrin and its effect on interfacially reinforced epoxy composite

    International Nuclear Information System (INIS)

    Xing, Lixin; Liu, Li; Xie, Fei; Huang, Yudong

    2016-01-01

    Highlights: • High energy gamma rays were used to decorate the surface of aramid fiber via mutual irradiation grafting process in two medium. • The effects of different grafting medium on aramid fiber surface were investigated through SEM, AFM, XPS, wettability and adsorption measurements. • Interfacial properties of aramid reinforced polymer composites were remarkable improved after mutual irradiation. - Abstract: The surface of indigenous aramid fiber-3 (IAF3) was decorated via mutual irradiation grafting process in diethanolamine (DEA) and epichlorohydrin (ECH), respectively, with the assist of high energy gamma rays. This modification method with great permeability produced the homogeneous and ameliorative AF3 surfaces, which were observed by the scanning electron microscopy (SEM) and atom forced microscopy (AFM). Enhanced surface free energy and reduced contact angles of irradiated AF3 verified the fabulous effectiveness of mutual irradiation without seriously injured tensile strength. The composites based on epoxy resin (ER) polymer as the matrix and irradiated IAF3 grafted DEA and ECH as the reinforcement. By capitalizing on the irradiated IAF3 which has higher wettability and adsorption on resin, the irradiated IAF3-ECH/ER composites exhibit admirable interfacial mechanical performance as compared to the pristine IAF3 contained composites. The interfacial shear strength (IFSS), interlaminar shear strength (ILSS) and flexural strength of composites were remarkable improved to 86.5, 60.13 and 511 MPa respectively, from the pristine IAF3/ER composite with IFSS of 65.9 MPa, ILSS of 48.1 MPa, and flexural strength of 479 MPa.

  8. Mutual irradiation grafting on indigenous aramid fiber-3 in diethanolamine and epichlorohydrin and its effect on interfacially reinforced epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Lixin [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Liu, Li, E-mail: liuli@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); Xie, Fei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); Huang, Yudong [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,China (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-01

    Highlights: • High energy gamma rays were used to decorate the surface of aramid fiber via mutual irradiation grafting process in two medium. • The effects of different grafting medium on aramid fiber surface were investigated through SEM, AFM, XPS, wettability and adsorption measurements. • Interfacial properties of aramid reinforced polymer composites were remarkable improved after mutual irradiation. - Abstract: The surface of indigenous aramid fiber-3 (IAF3) was decorated via mutual irradiation grafting process in diethanolamine (DEA) and epichlorohydrin (ECH), respectively, with the assist of high energy gamma rays. This modification method with great permeability produced the homogeneous and ameliorative AF3 surfaces, which were observed by the scanning electron microscopy (SEM) and atom forced microscopy (AFM). Enhanced surface free energy and reduced contact angles of irradiated AF3 verified the fabulous effectiveness of mutual irradiation without seriously injured tensile strength. The composites based on epoxy resin (ER) polymer as the matrix and irradiated IAF3 grafted DEA and ECH as the reinforcement. By capitalizing on the irradiated IAF3 which has higher wettability and adsorption on resin, the irradiated IAF3-ECH/ER composites exhibit admirable interfacial mechanical performance as compared to the pristine IAF3 contained composites. The interfacial shear strength (IFSS), interlaminar shear strength (ILSS) and flexural strength of composites were remarkable improved to 86.5, 60.13 and 511 MPa respectively, from the pristine IAF3/ER composite with IFSS of 65.9 MPa, ILSS of 48.1 MPa, and flexural strength of 479 MPa.

  9. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    Science.gov (United States)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  10. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer - Sized SiO{sub 2} Particle - Reinforced Epoxy Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyu Sang; Kang, Hee Yong; Lee, Gyo Woo [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-02-15

    In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix.

  11. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer - Sized SiO2 Particle - Reinforced Epoxy Composites

    International Nuclear Information System (INIS)

    Jo, Hyu Sang; Kang, Hee Yong; Lee, Gyo Woo

    2015-01-01

    In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix

  12. Influence of surface modification of halloysite nanotubes on their dispersion in epoxy matrix: Mesoscopic DPD simulation

    Science.gov (United States)

    Komarov, P.; Markina, A.; Ivanov, V.

    2016-06-01

    The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.

  13. Development of radioactive standards in epoxy matrix for the control of quality of activimeters

    International Nuclear Information System (INIS)

    Fragoso, Maria da Conceicao de Farias; Monteiro, Luciane Carollyne de Oliveira Reis; Oliveira, Marcia Liane de

    2016-01-01

    In the present study, a new approach for development of the standards for positron emitting radionuclides in epoxy matrix is presented. Different formulations were prepared using epoxy resin (bisphenol A diglycidyl ether - DGEBA) and curing agents, to immobilize the radioactive material. The efficiency curve and standard sample methods were applied for activity determination of a long-lived positron emitter ("2"2Na). Satisfactory results were obtained in the 3"r"d combination. Thus, these radioactive standards can be used to evaluate the metrological behavior of the systems used for the measurement of the radiopharmaceuticals (activimeters) in the production centers and in nuclear medicine services. (author)

  14. Epoxy matrix with triaromatic mesogenic unit in dielectric spectroscopy observation

    Science.gov (United States)

    Włodarska, Magdalena; Mossety-Leszczak, Beata; Bąk, Grzegorz W.; Kisiel, Maciej; Dłużniewski, Maciej; Okrasa, Lidia

    2018-04-01

    This paper describes the dielectric response of a selected liquid crystal epoxy monomer (plain and in curing systems) in a wide range of frequency and temperature. The dielectric spectroscopy, thanks to its sensitivity, is a very good tool for studying phase transitions, reaction progress, or material properties. This sensitivity is important in the case of liquid crystal epoxy resins, where properties of the final network depend on the choice of monomers, curing agents, curing conditions and post-curing treatment, or applying an external electric or magnetic field during the reaction. In most of the obtained cured products, the collected dielectric data show two relaxation processes. The α-process is related to a structural reorientation; it can usually be linked with the glass transition and the mechanical properties of the material. The β-process can be identified as a molecular motion process, probably associated with the carboxyl groups in the mesogen. A transient Maxwell-Wagner relaxation observed in one of the compositions after the initial curing is removed by post-curing treatment at elevated temperatures. Post-curing is therefore necessary for obtaining uniformly cured products in those cases. In the investigated systems, the choice of a curing agent can change the glass transition temperature by at least 70 °C. The obtained results are in a good agreement with an earlier study employing other techniques. Finally, we assess the influence of the direction of mesogen alignment on the dielectric properties of one selected system, where a global order was induced by applying an external magnetic field in the course of curing.

  15. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  16. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  17. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks

    Directory of Open Access Journals (Sweden)

    P. Yu

    2015-01-01

    Full Text Available In this study, lignin-novolac epoxy resin networks were fabricated in the styrene butadiene rubber (SBR matrix by combination of latex compounding and melt mixing. Firstly, SBR/lignin compounds were co-coagulated by SBR latex and lignin aqueous solution. Then the novolac epoxy resin (F51 was added in the SBR/lignin compounds by melt compounding method. F51 was directly cured by lignin via the ring-opening reaction of epoxy groups of F51 and OH groups (or COOH groups of lignin during the curing process of rubber compounds, as was particularly evident from Fourier transform infrared spectroscopy (FTIR studies and maximum torque of the curing analysis. The existence of lignin-F51 networks were also detected by scanning electron microscope (SEM and dynamic mechanical analysis (DMA. The structure of the SBR/lignin/F51 was also characterized by rubber process analyzer (RPA, thermogravimetric analysis (TGA and determination of crosslinking density. Due to rigid lignin-F51 networks achieved in SBR/lignin/F51 composites, it was found that the hardness, modulus, tear strength, crosslinking density, the temperature of 5 and 10% weight-loss were significantly enhanced with the loading of F51.

  18. Evaluation of Impact Strength of Epoxy Based Hybrid Composites Reinforced with E-Glass/Kevlar 49

    Directory of Open Access Journals (Sweden)

    SUBHAN ALIJOGI

    2017-10-01

    Full Text Available In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving and Kevlar 49 fabrics stacked with epoxy resin. The layers formulation was set up by hand layup method. Impregnationsof epoxy resin of commercial grade (601A in fabrics were accomplished by VRTM (Vacuum Bagging Resin Transfer Molding technique. Layup placementof Glass fibers/ Kevlar at 0°/90°, 45°/45° and 30°/60° were set for this work. Mechanical properties such as impact strength, bear resistance and break resistance were analyzed by usingASTM D-256 and D-3763 standard.Experimental investigation was conducted using instrumented Dart impact and Izod Impact test. E-glass/Kevlar 49 at layup 0°/90°and 30°/60°exhibited improvedimpact strength than 45°/45°. The surface morphology and fractography were also investigated by capturing different images of Specimens by using the SEM (Scanning Electron Microscopy. The fiberreinforcement and matrix fracture were also observed by using SEM.The SEM images suggest that epoxy resin tightly bonded with Kevlar fibers whereas Glass fibers were pulled out from laminations.

  19. Evaluation of impact strength of epoxy based hybrid composites reinforced with e-glass/kevlar 49

    International Nuclear Information System (INIS)

    Jogi, S.A.; Memon, I.A.; Baloch, M.; Chandio, A.D.

    2017-01-01

    In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving) and Kevlar 49 fabrics stacked with epoxy resin. The layers formulation was set up by hand layup method. Impregnations of epoxy resin of commercial grade (601A) in fabrics were accomplished by VRTM (Vacuum Bagging Resin Transfer Molding) technique. Layup placementof Glass fibers/ Kevlar at 0 degree/90 degree, 45 degree/45 degree and 30 degree/60 degree were set for this work. Mechanical properties such as impact strength, bear resistance and break resistance were analyzed by using ASTM D-256 and D-3763 standard. Experimental investigation was conducted using instrumented Dart impact and Izod Impact test. E-glass/Kevlar 49 at layup 0 degree/90 degree and 30 degree/60 degree exhibited improvedimpact strength than 45 degree/45 degree. The surface morphology and fractography were also investigated by capturing different images of Specimens by using the SEM (Scanning Electron Microscopy). The fiberreinforcement and matrix fracture were also observed by using SEM.The SEM images suggest that epoxy resin tightly bonded with Kevlar fibers whereas Glass fibers were pulled out from laminations. (author)

  20. Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Dehghanian, Changiz; Kosari, Ali

    2015-01-01

    Highlights: • Epoxy/polyaniline–camphorsulfonate nanocomposite coating well protects steel rebar. • Coating performance is evaluated by impedance measurements up to 1 year. • Ultimate bond strength between the coated rebars and concrete is measured. • Self-compacting concrete shows better anticorrosive property compared to normal one. - Abstract: In this study, an epoxy/polyaniline–camphorsulfonate nanocomposite (epoxy/PANI–CSA) is employed to protect reinforcing steels in chloride-laden concrete environment. The synthesized nanocomposite was characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. Bare, epoxy-coated and epoxy/PANI–CSA nanocomposite-coated steel rebars were embedded in normal and self-compacting concretes. To evaluate their corrosion behaviors, open circuit potential and impedance measurements were performed for the duration of 1 year. Ultimate bond strength of concrete with the reinforcement bars were measured in corroded and uncorroded conditions. It was found that epoxy/PANI–CSA coating provides good corrosion resistance and durable bond strength with concrete for steel rebars

  1. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  2. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  3. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    B. P. Singh

    2012-06-01

    Full Text Available In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs carbon fiber (CF fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz. The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE from −29.4 dB for CF/epoxy-composite to −51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  4. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  5. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    Science.gov (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  6. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-11-15

    Research highlights: {yields} Hybrid composites constituents of natural fibres show good mechanical performances. {yields} Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. {yields} Outer or core material affect mechanical performance of hybrid composites. {yields} Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  7. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Abdul Khalil, H.P.S.; Abu Bakar, A.

    2010-01-01

    Research highlights: → Hybrid composites constituents of natural fibres show good mechanical performances. → Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. → Outer or core material affect mechanical performance of hybrid composites. → Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  8. Study of wear mechanism of chopped fiber reinforced epoxy composite filled with graphite and bronze

    Science.gov (United States)

    Patil, Nitinchand; Prasad, Krishna

    2018-04-01

    The combined effect of graphite and sintered bronze with a short glass fiber reinforced epoxy composites was investigated in this work. A pin on disc wear test was carried out to study the wear behaviour and mechanism of the composites. The objective of this work is to develop an alternate friction resistance material for the application of sliding bearing. It was observed that the addition of sintered bronze improved mechanical and thermal stability of the composites as bronze has low contact resistance with graphite and has high thermal conductivity. It was observed from the test results that increased volume percentage of graphite and presence of bronze are play significant role in wear mechanism of the composites. It was observed from the scanning electronic microscopes (SEM) that the abrasive and adhesive wear mechanism was prominent in this study. It was also evident from the result that the frictional force remains stable irrespective of the applied normal load.

  9. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser

    International Nuclear Information System (INIS)

    Wan Hong; Hu Kaiwei; Mu Jingyang; Bai Shuxin

    2008-01-01

    In this paper, the damage modes of the carbon fiber and the glass fiber reinforced epoxy or bakelite resin matrix composites irradiated by CW laser under different power densities were analyzed, and the changes of the microstructure and the tensile strength of the composites were also researched. When the resin matrix composites were radiated at a power density more than 0.1 kW/cm 2 , the matrix would be decomposed and the tensile properties of the radiated samples were lost over 30% while the carbon fiber hardly damaged and the glass fiber melted. When the power density of the laser was raised to 1 kW/cm 2 , the matrix burned violently and the carbon fiber cloth began to split with some carbon fiber being fractured, therefore, the fracture strength of the radiated sample lost over 80%. The higher the power density of radiation was, the more serious the damage of the sample was. It was also found that the difference of the matrixes had little effect on the damage extent of the composites. The influence of the radiation density on the temperature of the radiated surface of the carbon/resin composite was numerically calculated by ANSYS finite element software and the calculation results coincided with the damage mode of the radiated composites. (authors)

  10. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix

    Science.gov (United States)

    Clements, L. L.; Moore, R. L.

    1979-01-01

    The authors have measured thermal and mechanical properties of several composites of S-2 glass fiber in a room-temperature-curable epoxy matrix. The filament-wound composites ranged from 50 to 70 vol% fiber. The composites had generally good to excellent mechanical properties, particularly in view of the moderate cost of the material. However, the composites showed rapid increases in transverse thermal expansion above 50 C, and this property must be carefully considered if any use above that temperature is contemplated.

  11. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  12. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  13. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    Science.gov (United States)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network

  14. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Science.gov (United States)

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Magnetic epoxy nanocomposites reinforced with hierarchical α-Fe2O3 nanoflowers: a study of mechanical properties

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Thumu, Udayabhaskararao

    2017-09-01

    In this work, we presented the potentiality of monodispersed 3D hierarchical α-Fe2O3 nanoflowers (α-Fe2O3) as reinforcement for epoxy polymer. α-Fe2O3 are synthesized through the thermal decomposition of iron alkoxide precursor in ethylene glycol. α-Fe2O3/epoxy nanocomposites (0.1 wt% of α-Fe2O3) show 109%, 59%, 13%, and 15% enhancement in impact (un-notched), impact (notched), flexural and tensile properties, respectively. The uniformly embedded α- Fe2O3 nanoflowers in epoxy polymer not only provide mechanical strength but also induced magnetic nature to the nanocomposite as observed from the Scanning electron microscopy and vibrating sample magnetometer.

  16. Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites.

    Science.gov (United States)

    Ribeiro, Hélio; Trigueiro, João Paulo C; Silva, Wellington M; Woellner, Cristiano F; Owuor, Peter S; Cristian Chipara, Alin; Lopes, Magnovaldo C; Tiwary, Chandra S; Pedrotti, Jairo J; Villegas Salvatierra, Rodrigo; Tour, James M; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G; Ajayan, Pulickel M

    2017-09-26

    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS 2 ), hexagonal boron nitride (h-BN), and their hybrid (MoS 2 /h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS 2 /h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance.

  17. The used epoxy matrix in immobilization sludge process of alpha emitter radioactive waste

    International Nuclear Information System (INIS)

    Walman, E.; Salimin, Z.; Johan, B.

    1998-01-01

    Immobilization of alpha emitter radioactive waste containing of ion complex of uranyl carbonate on uranium concentration ≤ 50 mg/l has been carried out using epoxy matrix. The first step of process is the coagulation of uranium with 1.3 mole/l of Ca(OH) 2 coagulant concentration on pH 8 to precipitate the calcium uranyl carbonate on uranium concentration ≤ g/l. The immobilization of calcium uranyl carbonate with epoxy matrix was done on variation of the ratio of resin epoxy and hardener of 1 : 1 (giving the maximum value of density and compressive strength), the increasing of precipitate loading capacity give the decreasing of compressive strength of embedded waste. The test of compressive strength and leaching was done for the embedded waste after its curing time using Paul Weber equipment and 7 days immersion of samples in normal water. On the precipitate loading capacity of 70%, the quality of embedded waste still conform to the standard quality value i.e. density 1.2 g/cm 3 , compressive strength 10 kN/cm 2 and there is not any release of radionuclide during leaching test (undetectable).. (author)

  18. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    Science.gov (United States)

    Bowles, Kenneth J.

    1988-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assesseed on the basis of loading capability, energy absorption, and extent of damage.

  19. Radio frequency shielding behaviour of silane treated Fe2O3/E-glass fibre reinforced epoxy hybrid composite

    Science.gov (United States)

    Arun prakash, V. R.; Rajadurai, A.

    2016-10-01

    In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.

  20. Matrix-reinforcement reactivity in P/M titanium matrix composites

    International Nuclear Information System (INIS)

    Amigo, V.; Romero, F.; Salvador, M. D.; Busquets, D.

    2007-01-01

    The high reactivity of titanium and the facility of the same one to form intermetallics makes difficult obtaining composites with this material and brings the need in any case of covering the principal fibres used as reinforcement. To obtain composites of titanium reinforced with ceramic particles ins proposed in this paper, for this reason it turns out to be fundamental to evaluate the reactivity between the matrix and reinforcement. Both titanium nitride and carbide (TiN and TiC) are investigated as materials of low reactivity whereas titanium silicide (TiSi 2 ) is also studied as materials of major reactivity, already stated by the scientific community. This reactivity will be analysed by means of scanning electron microscopy (SEM) there being obtained distribution maps of the elements that allow to establish the possible influence of the sintering temperature and time. Hereby the matrix-reinforcement interactions are optimized to obtain suitable mechanical properties. (Author) 39 refs

  1. A study regarding friction behaviour of lysine and isoleucine modified epoxy matrix

    Science.gov (United States)

    Bălan, I.; Bosoancă, R.; Căpăţină, A.; Graur, I.; Bria, V.; Ungureanu, C.

    2017-02-01

    The aim of this study is to point out the effect of L-lysine and L-isoleucine used as modifying agents for epoxy resins. The amino acids are largely used to turn the usual polymers in bio-compatible materials but they effect also other significant proprieties of formed materials. The general study developed in Polymer Composite Laboratory is focused on analysis of 14 amino acids used as modifying agents but the two above mentioned showed a special behaviour namely they re-crystalized during the polymerization of the matrix. The coefficient of friction was obtained through the calculation of friction torque measured with a loaded cell sensor. As far as we know, there is no report on the friction proprieties of amino acids modified epoxy resins.

  2. Monitoring and simulations of hydrolysis in epoxy matrix composites during hygrothermal aging

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Traidia, Abderrazak; Verdu, Jacques

    2015-01-01

    In this paper, we studied the water transport in thermoset matrices. We used Fourier Transform Infrared analysis (FTIR) during sorption/desorption experiments to investigate the interaction between sorbed water and the epoxy network. Our results demonstrated that the polymer matrix undergoes hydrolysis. We found that the chemical species involved in the reaction process was the residual anhydride groups. These results support the physical basis of the three-dimensional (3D) diffusion/reaction model. We finally showed that this model is able to reproduce multi-cycle sorption/desorption experiment, as well as water uptake in hybrid metal/epoxy samples. We simulated the 3D distributions of the diffusing water and the reacted water.

  3. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  4. Obtaining nanofibers from sisal to reinforce nanocomposites biodegradable matrixes

    International Nuclear Information System (INIS)

    Oliveira, Francieli B. de; Teixeira, Eliangela de M.; Marconcini, Jose M.; Mattoso, Luiz H.C.; Teodoro, Kelcilene B.R.

    2009-01-01

    Cellulose nanofibers have been extracted by acid hydrolysis from sisal fibers. They are seen a good source material due to availability and low cost. The nanofibers was evaluated by thermal degradation behavior using thermogravimetry (TG), crystallinity by X-ray diffraction and morphological structure was investigated by atomic force microscopy (AFM) experiments. The resulting nanofibers was shown high crystallinity and a network of rodlike cellulose elements. The nanofibers will be incorporated as reinforcement in a biodegradable matrix and evaluated. (author)

  5. Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk

    2005-01-01

    Roč. 290, - (2005), s. 167-174 ISSN 1013-9826. [Fractography of Advanced Ceramic s /2./. Stará Lesná, 03.10.2004-06.10.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  6. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  7. Development of radioactive standards in epoxy matrix for the control of quality of activimeters; Desenvolvimento de padroes radioativos em matriz epoxi para controle da qualidade de ativimetros

    Energy Technology Data Exchange (ETDEWEB)

    Fragoso, Maria da Conceicao de Farias; Monteiro, Luciane Carollyne de Oliveira Reis; Oliveira, Marcia Liane de, E-mail: mcfragoso@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE), Recife, PE (Brazil)

    2016-07-01

    In the present study, a new approach for development of the standards for positron emitting radionuclides in epoxy matrix is presented. Different formulations were prepared using epoxy resin (bisphenol A diglycidyl ether - DGEBA) and curing agents, to immobilize the radioactive material. The efficiency curve and standard sample methods were applied for activity determination of a long-lived positron emitter ({sup 22}Na). Satisfactory results were obtained in the 3{sup rd} combination. Thus, these radioactive standards can be used to evaluate the metrological behavior of the systems used for the measurement of the radiopharmaceuticals (activimeters) in the production centers and in nuclear medicine services. (author)

  8. Mechanical Properties Analysis Of Composite Magnetic Base On hexa ferrite And Polyester Or Epoxy Matrix With Silane Additive Addition

    International Nuclear Information System (INIS)

    Sudirman; Ridwan; Mujamilah; K K, Aloma; Rembulan, Marisa; Fitriyanti

    2003-01-01

    Application of composite magnetic especially hexa ferrite magnet for industry and home industry in Indonesia has been used. Research purposes were making composite magnetic by mixing hexa ferrite powder with polyester or epoxy and studying the effect of coupling agent 3-aminopropyltriethoxysilane (3-APE) addition on mechanical properties of composite magnetic. The coupling agent may increase bonding properties between magnetic powder and matrix polymer, so that tensile strength of magnetic composite will increase without decreasing the magnetic properties. Magnetic powder (SrM or BaM) wich be coated by coupling agent were added to matrix polyester and mekpo or epoxy and versamid, mixed until homogen then pressing into to the dumbbell form molding. For epoxy matrix, pressing was done in hot press at 70 deg. C and 150 kg/cm 2 following by cooling in cold press, while for polyester matrix pressing was done in hydraulic press and following by curing at 70 deg. C in an oven for 1 hour. The composition of magnetic powder were varied to 30, 40 and 50% volume fraction and coupling agent were varied to 5, 10 and 15 ml for every volume fraction. The result showed that 10 ml added of coupling agent was give best mechanical properties both polyester and epoxy matrix. However generally, increasing of magnetic powder content decreased the tensile strength of magnetic composite. The properties of magnetic composite SrM was better than BaM either in polyester or epoxy matrix

  9. Exposure Assessment of Particulate Matter from Abrasive Treatment of Carbon and Glass Fibre-Reinforced Epoxy-Composites

    DEFF Research Database (Denmark)

    Jensen, Alexander C. Ø.; Levin, Marcus; Koivisto, Antti J.

    2015-01-01

    The use of composites is ever increasing due to their important structural and chemical features. The composite component production often involves high energy grinding and sanding processes to which emissions workers are potentially exposed. In this study we investigated the machining of carbon...... and glass fibre-reinforced epoxy composite materials at two facilities. We measured particle number concentrations and size distributions of the released material in near field and far field during sanding of glass-and carbon fibre-reinforced composites. We assessed the means of reducing exposure during...

  10. The effect of fiber treatment on abrasive wear properties of palm fiber reinforced epoxy composite

    Science.gov (United States)

    Razak, Muhammad Firdaus Abdul; Bakar, Mimi Azlina Abu; Kasolang, Salmiah; Ahmad, Mohamad Ali

    2017-12-01

    Oil palm industries generate at least 30 million tons of lignocellulosic biomass annually in the form of oil palm trunks (OPT), empty fruit bunches (EFB), oil palm fronds (OPF) and palm pressed fibres (PPF). The palm fiber is one of the natural fibers used as reinforcement in composite materials in order to decrease environmental issues and promotes utilization of renewable resources. This paper presents a study on the effect of alkaline treatment on wear properties of palm fiber reinforced epoxy resin composite. Abrasive wear testing was deployed to investigate the wear profile of the composite surfaces. Testing was carried out which focused on the effect of alkaline treatment to the palm fiber under different amounts of fiber loading i.e. 1 wt%, 3 wt%, 5 wt% and 7 wt%. The palm fibers were soaked into 6 % of alkaline solution or natrium hydroxide (NaOH) for 12 hours. The fiber was treated in order to remove amorphous materials such as hemicelluloses, lignins and pectins of the fiber. The wear test samples were fabricated using hand lay-up technique and cured at room temperature for 24 hours. Surface roughness of the composite material was also measured using the surface measuring instrument. Dry sliding wear test was performed at room temperature at a constant velocity of 1.4 m/s with a constant load of 10 N by using the Abrasion Test Machine. Result shows that 5 wt% and 7 wt% treated palm fiber loadings have better specific wear rate compared to lower fiber loadings. The finding of this study contributes towards material development and utilization in promoting `waste into wealth' which is in line with national aspiration.

  11. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    Science.gov (United States)

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  12. The Effect of Thermooxidative Aging on the Durability of Glass Fiber-Reinforced Epoxy

    Directory of Open Access Journals (Sweden)

    Amin Khajeh

    2015-01-01

    Full Text Available Thin-skinned organic matrix composites within aeronautical structures are subjected to thermooxidative aging during their service life, leading to reductions in their durability. In this paper, a durability evaluation of fiberglass epoxy prepreg is performed on the original composite thickness before and after 800 h isothermal aging at 82°C. The characterization of both aged and unaged composites comprised tensile tests, DMA, FTIR, weight loss measurements, SEM, and DSC. The tensile strength and modulus of the composites increased after being exposed to pronounced aging conditions, whereas a decrease was observed in the toughness. DMA results revealed that the glass transition temperature and rubbery state modulus increased as a result of the thermooxidative aging. FTIR spectroscopy demonstrated the formation of carbonyl compounds due to oxidation of the chemical structure of the resin. SEM observations indicated the existence of minor superficial cracking and poor fiber-matrix adhesion after aging. In addition, a minor mass change was observed from mass loss monitoring methods. The overall findings suggest that postcuring and physical aging enhanced the brittleness of the resin, leading to a significant decline in the useful structural life of the thin-skinned composite.

  13. Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Giuseppe Pitarresi

    2015-11-01

    Full Text Available The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.

  14. Physico-Chemical Studies Involving Incorporation of Radioactive and Industrial Waste In Cement-Epoxy Resin Matrix

    International Nuclear Information System (INIS)

    Sayed, M.S.; Hafez, N.

    1999-01-01

    Cement and epoxy resin as chemical additives are proposed to incorporate different types of wastes. The study was extended to prepare different mixtures of cement and epoxy resin in presence of some toxic ions. The studied ions were Cd II, Ni II, Cu II, Fe III, Ce IV, 154+152 Eu, phenol and toluene. The physical, mechanical and leaching properties of the mixtures were studied. The thermal analysis and infrared spectra were also investigated. It was observed that all the studied properties of the epoxy modified cement as a disposal matrix was improved

  15. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); School of Mechanical and Electronic Engineering, Ningbo Dahongying University, Ningbo 315175 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Haibing, E-mail: xuhaibing@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Liu, Dong; Yan, Chun [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhu, Yingdan, E-mail: y.zhu@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2017-07-15

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  16. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    International Nuclear Information System (INIS)

    Chen, Xiang; Xu, Haibing; Liu, Dong; Yan, Chun; Zhu, Yingdan

    2017-01-01

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  17. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

    OpenAIRE

    Naveh, Naum; Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called “stacked” graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, ...

  18. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  19. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Andrey E. Krauklis

    2018-04-01

    Full Text Available Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  20. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    Science.gov (United States)

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  1. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    OpenAIRE

    Nitai Chandra Adak; Suman Chhetri; Naresh Chandra Murmu; Pranab Samanta; Tapas Kuila

    2018-01-01

    Thermally reduced graphene oxide (TRGO) was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF)/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spe...

  2. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Braga, R.A., E-mail: roney.braga@fiat.com.br [FIAT Automóveis S.A., Teardown, CEP 32530-000 Betim, MG (Brazil); Magalhaes, P.A.A., E-mail: pamerico@pucminas.br [PUC—MINAS, Instituto Politécnico, CEP 30535-610 Belo Horizonte, MG (Brazil)

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. - Highlights: • The work is the study of the mechanical of raw jute and glass fiber with epoxy resin. • The mechanical properties increased with more proportions of glass fibers. • The density of E69-J31-V0 was the lower. • The flexural strength did not have a significant increase. • The water absorption of E69-J31-V0 was the best.

  3. Effect of fiber content on the thermal conductivity and dielectric constant of hair fiber reinforced epoxy composite

    Science.gov (United States)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2018-03-01

    This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.

  4. The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites

    International Nuclear Information System (INIS)

    Shadlou, Shahin; Ahmadi-Moghadam, Babak; Taheri, Farid

    2014-01-01

    Highlights: • The epoxy/graphene nanocomposites were studied at various strain rates. • The variations in constitutive stress–strain response were scrutinized. • Positive reinforcing attributes of graphene diminished at higher strain rates. • Graphene particles have higher efficiency under compression loading than tension. • A new modification factor for Halpin–Tsai model was proposed. - Abstract: The effect of strain rate on the mechanical behavior of epoxy reinforced with graphene nanoplatelets (GNPs) is investigated. Nanocomposites containing various amounts of GNP are prepared and tested at four different strain rates (0.01, 0.1, 1 and 10/s) under compressive and tensile loading regimes. The results show that incorporation of GNP highly affects the behavior of epoxy. The fracture surfaces of tensile specimens are also investigated using scanning electron microscopy (SEM) to discern the surface features and dispersion state of GNP. Finally, the predictive capability of some of the available models for evaluating the strength of nanocomposites are assessed and compared against the experimental results. Moreover, a modification factor to the widely used Halpin–Tsai model is proposed to improve the accuracy of the model when evaluating the Young’s modulus of nanocomposites at various strain rates

  5. Enhanced durability of carbon nanotube grafted hierarchical ceramic microfiber-reinforced epoxy composites.

    Science.gov (United States)

    Krishnamurthy, Ajay; Hunston, Donald L; Forster, Amanda L; Natarajan, Bharath; Liotta, Andrew H; Wicks, Sunny S; Stutzman, Paul E; Wardle, Brian L; Liddle, J Alexander; Forster, Aaron M

    2017-12-01

    As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.

  6. Effect of Coconut Fillers on Hybrid Coconut Kevlar Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S. P. Jani

    2015-12-01

    Full Text Available This project focuses on the conversion of naturally available coconut fibers and shells into a useful composite. In addition to it, some mechanical properties of the resultant composite is determined and also the effect of coconut shell fillers on the composite is also investigated. The few portion of the composite is incorporated with synthetic Kevlar fiber, thus the coconut fiber is hybridized to enhance the mechanical properties of coconut. In this work two types of composite is fabricate, kevelar coconut fibre (kc composite and kevelarcoco nut fibre coconut shell filler (kccsf composite. Coconut fibers have low weight and considerable properties among the natural fibers, while coconut fillers have a good ductile and impact property. The natural fibers and fillers are treated with Na-OH to make it free of organic impurities. Epoxy resin is used as the polymer matrix. Two composite are produced one with fillers and the other without the fillers using compression molding method. Mechanical properties like tensile strength, flexural strength and water absorption tests are done with ASTM standard. It is observed that that the addition of filler materials improves the adhesiveness of the fibers leading to the increase in the above mentioned properties. The density of the composite is also low hence the strength to weight ratio is very high. The water absorption test also showed that the resultant composite had a small adhesion to water and absorption of water.

  7. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  8. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Ümit Tayfun

    2017-09-01

    Full Text Available Short carbon fibers (CF with different surface sized (epoxy (EP and polyurethane (PU were used as reinforcing agent in thermoplastic polyurethane (TPU based composites. Composites containing 5, 10, 15, and 20 weight % sized and desized CFs were prepared by using melt-mixing method. The surface characteristics of CFs were examined by energy dispersive X-ray spectroscopy (EDX and Fourier transform infrared spectroscopy (FTIR. Tensile testing, shore hardness test, dynamic mechanical analysis (DMA and melt flow index (MFI test were performed for determining final composite properties. The dispersion of CFs in TPU matrix was examined by scanning electron microscopy (SEM. Tensile strength, Youngs’ modulus and Shore hardness of TPU were enhanced by the addition of sized CFs. About two-fold improvement for tensile strength and ten-fold improvement for Youngs’ modulus were observed with the incorporation of 20 wt% EP-CF and PU-CF in TPU. The storage modulus of PU-CF containing composites was higher than those of TPU and other composites. No remarkable change was observed in MFI value of TPU after CF loadings. Processing conditions in this work was suitable for composite production. Sized CFs exhibited better dispersion with regard to desized CF due to the stronger adhesion of TPU matrix to fiber surface.

  9. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  10. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    Science.gov (United States)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  11. Study on mechanical properties and damage behaviors of Kevlar fiber reinforced epoxy composites by digital image correlation technique under optical microscope

    Science.gov (United States)

    Gao, Xiang; Shao, Wenquan; Ji, Hongwei

    2010-10-01

    Kevlar fiber-reinforced epoxy (KFRE) composites are widely used in the fields of aerospace, weapon, shipping, and civil industry, due to their outstanding capabilities. In this paper, mechanical properties and damage behaviors of KFRE laminate (02/902) were tested and studied under tension condition. To precisely measure the tensile mechanical properties of the material and investigate its micro-scale damage evolution, a micro-image measuring system with in-situ tensile device was designed. The measuring system, by which the in-situ tensile test can be carried out and surface morphology evolution of the tensile specimen can be visually monitored and recorded during the process of loading, includes an ultra-long working distance zoom microscope and a in-situ tensile loading device. In this study, a digital image correlation method (DICM) was used to calculate the deformation of the tensile specimen under different load levels according to the temporal series images captured by an optical microscope and CCD camera. Then, the elastic modulus and Poisson's ratio of the KFRE was obtained accordingly. The damage progresses of the KFRE laminates were analyzed. Experimental results indicated that: (1) the KFRE laminate (02/902) is almost elastic, its failure mode is brittle tensile fracture.(2) Mechanical properties parameters of the material are as follows: elastic modulus is 14- 16GPa, and tensile ultimate stress is 450-480 Mpa respectively. (3) The damage evolution of the material is that cracks appear in epoxy matrix firstly, then, with the increasing of the tensile loading, matrix cracks add up and extend along a 45° angle direction with tensile load. Furthermore, decohesion between matrix and fibers as well as delamination occurs. Eventually, fibers break and the material is damaged.

  12. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  13. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, Anand; Duruvasalu, Rajesh; Iyyanar, Saranraj; Velumayil, Ramesh, E-mail: p.anand@ymail.com [Mechanical Engineering, Vel Tech Dr RR. & Dr. SR University, Avadi, Chennai, Tamilnadu (India); Veerabathiran, Anbumalar [Mechanical Engineering, Velammal College of Engineering & Technology, Madurai, TN (India)

    2017-07-01

    The Dynamic mechanical behavior of chemically treated and untreated hemp fiber reinforced composites was investigated. The morphology of the composites was studied to understand the interaction between the filler and polymer. A series of dynamic mechanical tests were performed by varying the fiber loading and test frequencies over a range of testing temperatures. It was found that the storage modulus (E') recorded above the glass transition temperature (Tg) decrease with increasing temperature. The loss modulus (E”) and damping peaks (Tan δ) values were found to be reduced with increasing matrix loading and temperature. Morphological changes and crystallinity of Composites were investigated using scanning electron microscope (SEM) and XRD techniques. The composites with Alkali and Benzoyl treated fibers has attributed enhanced DMA Results. In case of XRD studies, the composites with treated fibers with higher filler content show enhanced crystallinity. (author)

  14. Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite

    Directory of Open Access Journals (Sweden)

    Anand Palanivel

    Full Text Available Abstract The Dynamic mechanical behavior of chemically treated and untreated hemp fiber reinforced composites was investigated. The morphology of the composites was studied to understand the interaction between the filler and polymer. A series of dynamic mechanical tests were performed by varying the fiber loading and test frequencies over a range of testing temperatures. It was found that the storage modulus (E’ recorded above the glass transition temperature (Tg decrease with increasing temperature. The loss modulus (E” and damping peaks (Tan δ values were found to be reduced with increasing matrix loading and temperature. Morphological changes and crystallinity of Composites were investigated using scanning electron microscope (SEM and XRD techniques. The composites with Alkali and Benzoyl treated fibers has attributed enhanced DMA Results. In case of XRD studies, the composites with treated fibers with higher filler content show enhanced crystallinity.

  15. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    Science.gov (United States)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  16. Three-dimensional contraction and mechanical properties of glass-cloth-reinforced epoxy materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Hamelin, J.

    1979-01-01

    In this paper three-dimensional thermal contraction and mechanical properties of glass-cloth reinforced epoxy laminates are reported. The results are shown to depend on the material density (and thus on the glass content). They cover both commercially available products and other materials of higher density recently developed with the aim of getting a thermal contraction of same amplitude as that of the superconductor, specially in the direction orthogonal to the plane of laminations. The feasibility of this last type of structural material was investigated along a R and D programme involved with the 'TORE II' project, a tokamak machine proposed for plasma physics experiments by the Euratom-CEA Association

  17. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    Science.gov (United States)

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  18. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  19. Measurement of angular scattering function and degree of linear polarization of bentonite clay particles embedded in cylindrical epoxy matrix

    Directory of Open Access Journals (Sweden)

    A. Gogoi

    2011-09-01

    Full Text Available Scattering properties of bentonite clay particles were investigated at 543.5 nm incident laser wavelength by using a designed and fabricated light scattering setup. The scattering samples were held in front of a laser beam by using a transparent cylindrical thermosetting epoxy matrix.

  20. Scattering of Lamb waves by cracks in a composite graphite fiber-reinforced epoxy plate

    Science.gov (United States)

    Bratton, Robert; Datta, Subhendu K.; Shah, Arvind

    1990-01-01

    Recent investigations of space construction techniques have explored the used of composite materials in the construction of space stations and platforms. These composites offer superior strength to weight ratio and are thermally stable. For example, a composite material being considered is laminates of graphite fibers in an epoxy matrix. The overall effective elastic constants of such a medium can be calculated from fiber and matrix properties by using an effective modulus theory as shown in Datta, el. al. The investigation of propagation and scattering of elastic waves in composite materials is necessary in order to develop an ability to characterize cracks and predict the reliability of composite structures. The objective of this investigation is the characterization of a surface breaking crack by ultrasonic techniques. In particular, the use of Lamb waves for this purpose is studied here. The Lamb waves travel through the plate, encountering a crack, and scatter. Of interest is the modeling of the scattered wave in terms of the Lamb wave modes. The direct problem of propagation and scattering of Lamb waves by a surface breaking crack has been analyzed. This would permit an experimentalist to characterize the crack by comparing the measured response to the analytical model. The plate is assumed to be infinite in the x and y directions with a constant thickness in the z direction. The top and bottom surfaces are traction free. Solving the governing wave equations and using the stress-free boundary conditions results in the dispersion equation. This equation yields the guided modes in the homogeneous plate. The theoretical model is a hybrid method that combines analytical and finite elements techniques to describe the scattered displacements. A finite region containing the defects is discretized by finite elements. Outside the local region, the far field solution is expressed as a Fourier summation of the guided modes obtained from the dispersion equation

  1. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    Science.gov (United States)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  2. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  3. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    John H. Cantrell

    2015-03-01

    Full Text Available The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 – 4.67 ×1017 N m−3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043 × 1010 m−1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy.

  4. Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials

    International Nuclear Information System (INIS)

    Lama, G. C.; Nasti, G.; Cerruti, P.; Gentile, G.; Carfagna, C.; Ambrogi, V.

    2014-01-01

    In this work, the incorporation of multiwalled carbon nanotubes (MWCNT) into epoxy-based elastomers was carried out in order to obtain nanocomposite systems with shape memory effect. For the preparation of elastomeric matrices, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was cured with sebacic acid. DOMS was synthesized in our laboratory and it is characterized by a rigid-rod, potentially liquid crystalline structure. A lightly cross-linked liquid crystalline elastomer was obtained. As for nanocomposites, variable amounts (0.75, 1.50, 3.0, 6.0, 12.0 wt.%) of COOH-MWCNTs were employed. In order to improve the nanotubes dispersibility and the interfacial adhesion with the epoxy matrix, an optimized two-step procedure was developed, which consisted in grafting the epoxy monomer onto the nanotube surface and then curing it in presence of crosslinking agent. DOMS-functionalized MWCNT were characterized through solvent dispersion experiments, FTIR spectroscopy and TGA analysis, which demonstrated the occurred covalent functionalization of the nanotubes with the epoxy monomers. The morphological analysis through electron microscopy demonstrated that this was an efficient strategy to improve the dispersion of nanotubes within the matrix. The second part of the work was devoted to the structural, thermal, mechanical and electric characterization of elastomeric nanocomposites. The results indicated a general improvement of properties of nanocomposites. Also, independently of the nanotube content, a smectic phase formed. Shape memory features of LC systems were also evaluated. It was demonstrated the shape could be recovered through heating, solvent immersion, as well as upon the application of an electrical field

  5. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  6. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    International Nuclear Information System (INIS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-01-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  7. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites

    International Nuclear Information System (INIS)

    Da Silva, Nelson Marques

    2001-01-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  8. Characterization of the matrix glass transition in carbon-epoxy laminates using the CSD test geometry. [centro-symmetric deformation

    Science.gov (United States)

    Sternstein, S. S.; Yang, P.

    1983-01-01

    A new test geometry, referred to as centro-symmetric deformation (CSD), is proposed for characterizing the viscoelastic behavior of the matrix of carbon-epoxy laminates. The sample consists of a thin disk, typically 6-14 plies thick, having a nominal diameter of 30 mm. The disk is freely supported on a circular anvil; the load is applied to the center of the disk using an 8-mm-diameter ball bearing nosepiece. The CSD test geometry provides viscoelastic dispersion data which are independent of the angular orientation of the sample. The test geometry is sufficiently sensitive to matrix changes to allow its use for postcuring, humidity, crosslink density, and other matrix change studies. Test results are presented for a carbon-epoxy laminate.

  9. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  10. Experimental Study on Fibre-reinforced Cementitious Matrix Confined Concrete Columns under Axial Compression

    Directory of Open Access Journals (Sweden)

    Lan Zeng

    2017-03-01

    Full Text Available Poor fire resistance of fibre-reinforced polymer (FRP restricts its further application in construction structures. In this paper, a novel fibre-reinforced cementitious matrix confined concrete column (FRCMCC using fireproof grout as the fibre matrix was developed, and experiments were conducted to establish its performance and analyse the mechanical properties under axial compression. The test results show that its failure mode was more moderate compared to the traditional fibre-reinforced resinous matrix confined concrete column (FRRMCC, and the concrete columns confined with multi-layer fibres and end reinforcement could provide both good strength and ductility.

  11. Ballistic Performance of Mallow and Jute Natural Fabrics Reinforced Epoxy Composites in Multilayered Armor

    OpenAIRE

    Nascimento, Lucio Fabio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Marçal, Rubens Lincoln Santana Blazutti; Lima Júnior, Édio Pereira; Margem, Jean Igor

    2017-01-01

    Natural fiber reinforced polymer composites have recently been investigated as a component of multilayered armor system (MAS). These composites were found to present advantages when replacing conventional high strength synthetic aramid fabric laminate composite (KevlarTM, with same thickness, as MAS second layer. Continuous and loose natural fibers were up to now mostly used to reinforce these ballistic composites. Only two natural fabrics reinforced polymer composite were so far used with sa...

  12. Discontinuously reinforced titanium matrix composites for fusion applications

    International Nuclear Information System (INIS)

    Castro, V.; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M.

    2002-01-01

    We have reinforced α-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  13. Discontinuously reinforced titanium matrix composites for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. E-mail: mvcastro@fis.uc3m.es; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M

    2002-12-01

    We have reinforced {alpha}-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  14. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  15. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    Science.gov (United States)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  16. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). 1. Structure and morphology

    Czech Academy of Sciences Publication Activity Database

    Matějka, Libor; Strachota, Adam; Pleštil, Josef; Whelan, P.; Steinhart, Miloš; Šlouf, Miroslav

    2004-01-01

    Roč. 37, č. 25 (2004), s. 9449-9456 ISSN 0024-9297 R&D Projects: GA AV ČR IAA4050008 Grant - others:European Community's Human Potential Programme(XE) HPRN/CT-2002-00306 Institutional research plan: CEZ:AV0Z4050913 Keywords : POSS * epoxy network * structure of nanocomposites Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.898, year: 2004

  17. Testing temperature on interfacial shear strength measurements of epoxy resins at different mixing ratios

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Thomason, James L.; Minty, Ross

    2015-01-01

    The interfacial properties as Interfacial Shear Stress (IFSS) in fibre reinforced polymers are essential for further understanding of the mechanical properties of the composite. In this work a single fibre testing method is used in combination with an epoxy matrix made from Araldite 506 epoxy res...

  18. The LHC Cryomagnet Supports in Glass-Fiber Reinforced Epoxy A Large Scale Industrial Production with High Reproducibility in Performance

    CERN Document Server

    Poncet, A; Trigo, J; Parma, V

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production. The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004. This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.

  19. THE LHC CRYOMAGNET SUPPORTS IN GLASS-FIBER REINFORCED EPOXY: A LARGE SCALE INDUSTRIAL PRODUCTION WITH HIGH REPRODUCIBILITY IN PERFORMANCE

    International Nuclear Information System (INIS)

    Poncet, A.; Struik, M.; Parma, V.; Trigo, J.

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production.The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004.This paper describes the development and the production of the supports, and presents the production experience and the achieved performance

  20. Optimization of the rheological properties of epoxy resins for glass and carbon reinforced plastics

    Science.gov (United States)

    Phyo Maung, Pyi; Malysheva, G.; Romanova, I.

    2016-10-01

    Vacuum assisted resin transfer moulding (VARTM) offers advantages such as simplicity, low cost of consumables, and the ability to carry out the impregnation process and curing without using expensive equipment and tooling. In the VARTM process, rheological properties of resin have a critical impact on the impregnation and curing process. In this article, the experimental results of viscosity are presented, including the glass transition temperature, and the tensile and bending strength of the epoxy binders with the amine hardener, which depend on the quantity of its active solvent composition. The active solvent used is diethylene glycol. It shows that for an increase in the content of the active solvent, a reduction in the viscosity and a reduction of the glass transition temperature and strength occurs. The optimum composition of the binder is selected by using the Pareto optimization criteria and the Cayley - Smorodinskaya method. By using the epoxy binder, the active solvent should not exceed 10-15% by weight. This approach helps to optimize the amount of active solvent added to the epoxy resins for the criterion of viscosity, strength, and heat resistance.

  1. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    Science.gov (United States)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  2. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  3. A study on the damping capacity of BaTiO3-reinforced Al-matrix ...

    Indian Academy of Sciences (India)

    the results showed that the damping capacity of Al-matrix composites can increase greatly [3–5]. Therefore, reinforcing. Al alloy matrix with higher damping particles could be an efficient way to obtain Al-matrix composites with both high strength and high damping capacity. Ferroelectric and piezoelectric ceramics can exhibit ...

  4. Feasibility of externally activated self-repairing concrete with epoxy injection network and Cu-Al-Mn superelastic alloy reinforcing bars

    International Nuclear Information System (INIS)

    Pareek, Sanjay; Shrestha, Kshitij C; Araki, Yoshikazu; Suzuki, Yusuke; Omori, Toshihiro; Kainuma, Ryosuke

    2014-01-01

    This paper studies the effectiveness of an externally activated self-repairing technique for concrete members with epoxy injection network and Cu-Al-Mn superelastic alloy (SEA) reinforcing bars (rebars). Compared to existing crack self-repairing and self-healing techniques, the epoxy injection network has the following strengths: (1) Different from the self-repairing methods using brittle containers or tubes for adhesives, the proposed self-repair process can be performed repeatedly and is feasible for onsite concrete casting. (2) Different from the autogenic self-healing techniques, full strength recovery can be achieved in a shorter time period without the necessity of water. This paper attempts to enhance the self-repairing capability of the epoxy injection network by reducing residual cracks by using cost-effective Cu-based SEA bars. The effectiveness of the present technique is examined using concrete beam specimens reinforced by 3 types of bars. The first specimen is reinforced by steel deformed bars, the second by steel threaded bars, and finally by SEA threaded rebars. The tests were performed with a 3 point cyclic loading with increasing amplitude. From the test results, effective self-repairing was confirmed for small deformation levels irrespective of the reinforcement types. Effective self-repairing was observed in the SEA reinforced specimen even under much larger deformations. Nonlinear finite element analysis was performed to confirm the experimental findings. (paper)

  5. Tempering Behavior of TiC-Reinforced SKD11 Steel Matrix Composite

    Science.gov (United States)

    Hwang, Ji-In; Kim, Seong Hoon; Heo, Yoon-Uk; Kim, Dae Ha; Hwang, Keum-Cheol; Suh, Dong-Woo

    2018-03-01

    TiC-reinforced SKD11 steel matrix composite, fabricated by a pressure infiltration casting, undergoes monotonic decrease in hardness as tempering temperature increases. Element mappings by TEM-EDS and thermodynamic calculation indicate that remarkable redistribution of V between the reinforcement and the steel matrix occurs by partial dissolution and re-precipitation of MC carbides upon casting process. The absence of secondary hardening is led by the enrichment of V in the reinforcement that reduces the V content in the steel matrix; this reduction in V content makes the precipitation of fine VC sluggish during the tempering.

  6. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    Science.gov (United States)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  7. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  8. Mechanical performance optimization of neutron shielding material based on short carbon fiber reinforced B4C/epoxy resin

    International Nuclear Information System (INIS)

    Wang Peng; Tang Xiaobin; Chen Feida; Chen Da

    2013-01-01

    To satisfy engineering requirements for mechanics performance of neutron shielding material, short carbon fiber was used to reinforce the traditional containing B 4 C neutron shielding material and effects of fiber content, length and surface treatment to mechanics performance of material was discussed. Based on Americium-Beryllium neutron source, material's neutron shielding performance was tested. The result of experiment prove that tensile strength of material which the quality ratio of resin and fiber is 5:1 is comparatively excellent for 10wt% B 4 C of carbon fiber reinforced epoxy resin. The tensile properties of material change little with the fiber length ranged from 3-10 mm The treatment of fiber surface with silane coupling agent KH-550 can increase the tensile properties of materials by 20% compared with the untreated of that. A result of shielding experiment that the novel neutron shielding material can satisfy the neutron shielding requirements can be obtained by comparing with B 4 C/polypropylene materials. The material has good mechanical properties and wide application prospect. (authors)

  9. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites

    OpenAIRE

    Meng Jiangyan; Wang Yunying

    2016-01-01

    As is known, factors in climate environment such as hygrothermal effect and UV may have a negative effect on the mechanical properties of fiber reinforced polymer-matrix composites, resulting in their strength and stiffness degraded. In this review, we summarize all the recent studies on the artificial climate aging, hygrothermal aging, and thermal-oxidation aging of fiber reinforced polymer-matrix composites, as well as their artificial accelerated aging and natural aging. In addition, studi...

  10. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  11. Failure of wooden sandwich beam reinforced with glass/epoxy faces

    Energy Technology Data Exchange (ETDEWEB)

    Papakaliatakis, G. E.; Zacharopoulos, D. A. [Department of Civil Engineering, Democritus University of Thrace, Xanthi, 67100, Greece gpapakal@civil.duth.gr, dzachar@civil.duth.gr (Greece)

    2015-12-31

    The mechanical properties and the failure of wooden beam strengthened with two faces from glass/epoxy composite and a wooden beam without strengthening was studied. Stresses and deflections on both beams, which are imposed in three point bending loading. On the idealized geometry of the specimens with detailed nonlinear orthotropic analysis was performed with a finite elements program. The failure study of the wooden beams was performed, applying the criterion of Tsai-Hill. The shear strength of the adhesive was taken into account. All the specimens were tested with three point bending loading and the experimental results were compared to those of the theoretical approach with the finite elements analysis. Comparing the results, the advantage of strengthened wooden beam against the simple wooden beam becomes obvious. Theoretical predictions were in good agreement with experimental results.

  12. Effects of ultraviolet and electron radiations on graphite-reinforced polysulfone and epoxy resins

    International Nuclear Information System (INIS)

    Giori, C.; Yamauchi, T.

    1984-01-01

    Degradation mechanisms have been investigated for graphite/polysulfone and graphite/epoxy laminates exposed to ultraviolet and high-energy electron radiations in vacuum up to 960 equivalent sun hours and 10 9 rads, respectively. Based on GC and combined GC/MS analysis of volatile by-products evolved during irradiation, several free radical mechanisms of composite degradation have been identified. All the composite materials evaluated have shown high electron radiation stability and relatively low ultraviolet stability as indicated by low G values and high quantum yields for gas formation. Mechanical property measurements of irradiated samples did not reveal significant changes, with the possible exception of UV exposed polysulfone laminates. Hydrogen and methane have been identified as the main byproducts of irradiation, along with unexpectedly high levels of CO and CO 2 . Initial G values for methane relative to hydrogen formation are higher in the presence of isopropylidene linkages, which occur in bisphenol-A resins

  13. Polarization Behavior of Squeeze Cast Al2O3 Fiber Reinforced Aluminum Matrix Composites

    International Nuclear Information System (INIS)

    Ham, S. H.; Kang, Y. C.; Cho, K. M.; Park, I. M.

    1992-01-01

    Electrochemical polarization behavior of squeeze cast Al 2 O 3 short fiber reinforced Al alloy matrix composites was investigated for the basic understanding of the corrosion properties of the composites. The composites were fabricated with variations of fiber volume fraction and matrix alloys. It was found that the reinforced composites are more susceptible to corrosion attack than the unreinforced matrix alloys in general. Corrosion resistance shows decreasing tendency with increasing Al 2 O 3 fiber volume fraction in AC8A matrix. Effect of the matrix alloys revealed that the AC8A Al matrix composite is less susceptible to corrosion attack than the 2024 and 7075 Al matrix composites. Effect of plastic deformation on electrochemical polarization behavior of the squeeze cast Al/Al 2 O 3 composites was examined after extrusion of AC8A-10v/o Al 2 O 3 . Result shows that corrosion resistance is deteriorated after plastic deformation

  14. Characterisation of Microstructure of We43 Magnesium Matrix Composites Reinforced with Carbon Fibres

    Directory of Open Access Journals (Sweden)

    Gryc A.

    2016-06-01

    Full Text Available In the paper the microstructures of WE43 matrix composites reinforced with carbon fibres have been characterised. The influence of reinforcement type and T6 heat treatment (a solution treatment at 525°C for 8 h, a hot water quench and a subsequent ageing treatment at 250°C for 16 h on microstructure have been evaluated. The light microscope and scanning electron microscope investigations have been carried out. No significant differences in samples reinforced with non-coated textiles have been reported. The substantial changes in sample reinforced with nickel-coated textile have been observed. The segregation of alloying elements to the matrix-reinforcement layer has been identified. The T6 heat treatment caused the appearance of disperse precipitates of β phase, but the process cannot be considered as satisfactory (irregular distribution, low volume fraction, relatively large size.

  15. Evaluating the integrity of the reinforced concrete structure repaired by epoxy injection using simulated transfer function of impact-echo response

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chia-Chi; Yu, Chih-peng; Wu, Jiunn-Hong; Hsu, Keng-Tsan; Ke, Ying-Tsu [Chaoyang University of Technology, Department of Construction Engineering, Taichung, Taiwan (China)

    2014-02-18

    Cracks and honeycombs are often found inside reinforced concrete (RC) structure caused by excessive external force, or improper casting of concrete. The repairing method usually involves epoxy injection. The impact-echo method, which is a sensitive for detecting of the interior voids, may not be applicable to assess the integrity of the repaired member as both air and epoxy are less in acoustic impedances. In this study, the repaired RC structure was evaluated by the simulated transfer function of the IE displacement waveform where the R-wave displacement waveform is used as a base of a simulated force-time function. The effect of different thickness of the epoxy layer to the amplitude corresponding to the interface is studied by testing on specimen containing repaired naturally delaminated cracks with crack widths about 1 mm, 3 mm and 5 mm. The impact-echo responses were compared with the drilling cores at the test positions. The results showed the cracks were not fully filled with epoxy when the peak amplitude corresponding to the interface dropped less than 20%. The peak corresponding to the thicker epoxy layer tends to be larger in amplitude. A field study was also performed on a column damaged by earthquake before and after repairing.

  16. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    Science.gov (United States)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  17. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...... to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes...

  18. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  19. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    Science.gov (United States)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  20. Morphological and electrical properties of epoxy-based composites reinforced with exfoliated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Lamberti, Patrizia; Spinelli, Giovanni, E-mail: gspinelli@unisa.it; Tucci, Vincenzo [Department of Information and Electrical Engineering and Applied Mathematics University of Salerno, Via Giovanni Paolo II, Fisciano (Italy); Guadagno, Liberata; Raimondo, Marialuigia; Vertuccio, Luigi [Department of Industrial Engineering University of Salerno, Via Giovanni Paolo II, Fisciano (Italy)

    2016-05-18

    An experimental study has been carried out to prepare and characterize epoxy/amine-based composites filled with different percentages of partially exfoliated graphite (i.e. pEG) particles having an exfoliation degree of 56% in order to analyze the effect of the filler amounts on the electrical properties of the resulting nanocomposites. Moreover, in order to fully investigate the direct relationship between the physical properties of the employed filler and the results of the electrical characterization, a structural and morphological characterization of the pEG samples is carried out by means of various type of analysis such as X-ray diffraction patterns, micro-Raman and Scanning Electron Microscopy (SEM) images. The DC electrical characterization reveals a percolation thresholds (EPT) that falls in the range [2–3] wt% and an electrical conductivity of about 0.66 S/m at the highest filler loading (6.5 wt%). From the analysis of the percolative curve it is possible to derive the percolation law parameters and in particular the critical exponent t, whose value (i.e. 1.2) reflects an effective 2D organization of the percolating structure consistent with the type of filler used (2-dimensional). Finally, an extensive analysis concerning the electrical properties in the frequency domain has been carried out in order to evaluate the effectiveness of pEG-loaded composites in terms of electromagnetic interference compatibility (EMC) and their applicability as radar absorbers materials (RAMs).

  1. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  2. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  3. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    Science.gov (United States)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  4. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Jin-woo Lee

    2018-06-01

    Full Text Available The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper. Keywords: Carbon Nanotube (CNT, Carbon Fiber Reinforcement Plastic (CFRP, Heater, Exothermic characteristics

  5. Moisture Absorption of Epoxy Matrix Composites Immersed in Liquids and in Humid Air.

    Science.gov (United States)

    1979-10-01

    Eq. 4). -34- TEMPERATURE, T (K) 165 40 350 300 Neat ResinA / Fit to Data 0\\ 0 o Composite Calculated 0- Data Delasi and Whiteside (1977) 168 AS/3501...moisture ab - sorption characteristics of T300/1034, AS/3501-5 and T300/5208 graphite-epoxy composites. 1) Material immersed in liquid at temperatures 300 to

  6. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  7. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    International Nuclear Information System (INIS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-01-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments. (paper)

  8. Preparation of Ti-aluminide reinforced in situ aluminium matrix composites by reactive hot pressing

    International Nuclear Information System (INIS)

    Roy, D.; Ghosh, S.; Basumallick, A.; Basu, B.

    2007-01-01

    Aluminium based metal matrix composites reinforced with in situ Ti-aluminide and alumina particles were prepared by reactive hot pressing a powder mix of aluminium and nanosized TiO 2 powders. The reinforcements were formed in situ by exothermal reaction between the TiO 2 nano crystalline powder and aluminium. The thermal characteristics of the in situ reaction were studied with the aid of Differential scanning calorimetry (DSC). X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and Scanning electron microscopy (SEM) techniques were employed to study the microstructural architecture of the composites as a function of hot pressing temperature and volume percent reinforcement. Microhardness measurements on the as prepared in situ aluminium matrix composites exhibit significant increase in hardness with increase in hot pressing temperature and volume fraction of reinforcement

  9. Characterization of the flexural behavior of a reactive graphitic nanofibers reinforced epoxy using a non-linear damage model

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Soumen [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105 (United States); Zhong Weihong [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105 (United States)]. E-mail: Katie.zhong@ndsu.edu; Gan, Yong X. [Department of Mechanical Engineering, Albert Nerken School of Engineering, Cooper Union for the Advancement of Science and Art, 51 Astor Place, New York City, NY 10003 (United States)

    2007-02-15

    In our previous work, a nano-epoxy was developed based on the preparation of reactive graphitic nanofibers (r-GNFs). The objective of this work is to study the effect of the r-GNFs in an epoxy resin on the mechanical properties of the resulting nano-epoxy composites. Three-point bending tests were carried out for the pure epoxy and nano-epoxy materials with 0.15, 0.2, 0.3, 0.5 wt% r-GNFs to obtain the flexural behaviors. The nano-epoxy composite containing 0.3 wt% of r-GNFs showed the best flexural properties including highest flexural strength, modules and ductility values among all the tested materials. Non-linear fracture mechanics (NLFM) was applied to analyze the phenomena occurred during the bending tests. A non-linear damage model was used to interpret the flexural stress-strain relationships of the tested materials, which showed agreement with the testing results. The fracture surfaces of the nano-epoxy composites were examined with scanning electron microscopy (SEM), and the morphological features on the SEM images also reveals that the nano-epoxy composites are tougher than the pure epoxy resin.

  10. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  11. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    Science.gov (United States)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  12. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    Science.gov (United States)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  13. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  14. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    Science.gov (United States)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly

  15. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Energy Technology Data Exchange (ETDEWEB)

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  16. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  17. Design of carbon nanofiber embedded conducting epoxy resin

    International Nuclear Information System (INIS)

    Gantayat, Subhra; Sarkar, Niladri; Rout, Dibyaranjan; Swain, Sarat K.

    2017-01-01

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  18. Design of carbon nanofiber embedded conducting epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Gantayat, Subhra [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Sarkar, Niladri [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India); Rout, Dibyaranjan [School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Swain, Sarat K., E-mail: swainsk2@yahoo.co.in [Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha (India)

    2017-01-15

    Acid treated carbon nanofiber (t-CNF) reinforced epoxy nanocomposites were fabricated by hand lay-up method with various wt % of t-CNF loadings. Pristine or unmodified carbon nano fibers (u-CNFs) were made compatible with epoxy matrix by means of mixed acid treatment. Fabricated nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) study, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Mechanical and thermal properties of the nanocomposites were measured as a function of t-CNF content. Effect of acid treated CNFs on to the mechanical properties of epoxy nanocomposites was justified by comparing the mechanical properties of epoxy/t-CNF and epoxy/u-CNF nanocomposites with same loading level. The electrical conductivity was achieved by epoxy resin with a threshold at 1 wt % of t-CNF. Substantial improvement in thermal, mechanical and electrical properties of the synthesized epoxy/t-CNF nanocomposites may be suitable for fabricating electronic devices. - Highlights: • Epoxy/t-CNF nanocomposites are characterized by XRD, FTIR, SEM, AFM and TEM. • Electrical conductivity was achieved by epoxy with a threshold at 1 wt% of t-CNF. • Tensile strength is enhanced by 40% due to dispersion of t-CNF. • Synthesized nanocomposites are suitable for fabricating electronic devises.

  19. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Nitai Chandra Adak

    2018-02-01

    Full Text Available Thermally reduced graphene oxide (TRGO was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spectroscopy and field emission scanning electron microscopy (FE-SEM techniques. It was observed that the wrinkled structure of synthesized TRGO may be helpful to interlock with the epoxy resin and CF.The inter-laminar shear strength, in-plane fracture toughness and impact strength increased by ~67%, 62% and 93% at 0.2 wt % of TRGO loading in the CF/epoxy composites as compared to the CF reinforced epoxy. The mechanical properties of the hybrid composites decreased beyond the 0.2 wt % of TRGO incorporation in the epoxy resin. The fracture surfaces of the hybrid composites were studied by FE-SEM image analysis to investigate the synergistic effect of TRGO in the CF/epoxy composite. This study suggested that TRGO could be used asgood nanofiller to resist the matrix and fiber fracture.

  20. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Directory of Open Access Journals (Sweden)

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  1. Fundamental studies of low velocity impact resistance of graphite fiber reinforced polymer matrix composites

    International Nuclear Information System (INIS)

    Bowles, K.J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T/sub G/ and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. Linear polymers, which contain no active groups for cross-linking, do not toughen composites because the fiber-matrix interfacial bond is not of sufficient strength to prevent interfacial failure from occurring. Toughness must be built into the basic polymer backbone and cross-linking structure

  2. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  3. Overall mechanical properties of fiber-reinforced metal matrix composites for fusion applications

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2002-01-01

    The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel 'Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed

  4. Flexural Behavior of RC Slabs Strengthened in Flexure with Basalt Fabric-Reinforced Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Sugyu Lee

    2018-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC slabs strengthened in flexure with basalt fabric-reinforced cementitious matrix (FRCM. A total of 13 specimens were fabricated to evaluate the flexural behavior of RC slabs strengthened with basalt FRCM composite and were tested under four-point loading. The fiber type, tensile reinforcement ratio, and the number of fabric layers were chosen as experimental variables. The maximum load of FRCM-strengthened specimens increased from 11.2% to 98.2% relative to the reference specimens. The energy ratio and ductility of the FRCM-strengthened specimens decreased with the higher amount of fabric and tensile reinforcement. The effective stress level of FRCM fabric can be accurately predicted by a bond strength of ACI 549 and Jung’s model.

  5. Microcapsules Filled with a Palm Oil-Based Alkyd as Healing Agent for Epoxy Matrix

    Directory of Open Access Journals (Sweden)

    Nurshafiza Shahabudin

    2016-04-01

    Full Text Available One of the approaches to prolong the service lifespan of polymeric material is the development of self-healing ability by means of embedded microcapsules containing a healing agent. In this work, poly(melamine-urea-formaldehyde (PMUF microcapsules containing a palm oil-based alkyd were produced by polymerization of melamine resin, urea and formaldehyde that encapsulated droplets of the suspended alkyd particles. A series of spherical and free-flowing microcapsules were obtained. The chemical properties of core and shell materials were characterized by Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR and proton nuclear magnetic resonance spectroscopy (1H-NMR. Differential scanning calorimetry (DSC analysis showed a glass transition around −15 °C due to the alkyd, and a melting temperature at around 200 °C due to the shell. Thermogravimetric analysis (TGA results showed that the core and shell thermally degraded within the temperature range of 200–600 °C. Field emission scanning electron microscope (FESEM examination of the ruptured microcapsule showed smooth inner and rough outer surfaces of the shell. Flexural strength and microhardness (Vickers of the cured epoxy compound were not affected with the incorporation of 1%–3% of the microcapsules. The viability of the healing reactions was demonstrated by blending small amounts of alkyd with epoxy and hardener at different ratios. The blends could readily cure to non-sticky hard solids at room temperature and the reactions could be verified by ATR-FTIR.

  6. Research Progress on Carbon Nanotubes Reinforced Cu-matrix Composites

    Directory of Open Access Journals (Sweden)

    TAO Jing-mei

    2017-04-01

    Full Text Available The critical issues of CNTs/Cu composites were reviewed. The preparation techniques of the composites were classified, and the research progress on powder metallurgic methods, electrochemical methods and other methods was summarized, with an emphasis on the relationship between preparation methods and properties. The interfacial characteristic of the CNTs/Cu composites was analyzed, and the research progress and existing problems of mechanical properties, electrical properties, thermal properties and wear and friction properties of the composites were also summarized. It was pointed out that the key to increase the comprehensive properties of the composites is to obtain the homogeneous distribution of CNTs and good interfacial bonding between CNTs and the Cu matrix by improving the preparation methods.

  7. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  8. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  9. Surface Modification of Indium Tin Oxide Nanoparticles to Improve Its Distribution in Epoxy-Silica Polymer Matrix

    Directory of Open Access Journals (Sweden)

    Mostafa Jafari

    2014-10-01

    Full Text Available A semiconducting nanoparticle indium tin oxide (ITO was modified with silane groups and for this purpose trimethoxysilane (TMOS precursor was used under specific experimental conditions for surface modification of ITO nanoparticles. It is found that the modification of ITO nanoparticles increases the interactions between the filler and the matrix and subsequently improves the distibution of indium tin oxide nanoparticles in the polymer matrix. The epoxisilica polymer matrix was produced using trimethoxysilane and 3-glycidyloxypropyl trimethoxysilane precursors and ethylenediamine (EDA as curing agent at low temperature by sol-gel process. The sol-gel process was very useful due to its easily controllable process, solution concentration and homogeneity without using expensive and complicated equipments in comparison with other methods. Then, Fourier transform infrared (FTIR spectroscopy was employed to study the formation of Si-O-Si and Si-OH groups on ITO nanoparticles. X-Ray diffraction (XRD technique and thermal gravimetric analysis (TGA were employed to investigate the modification and weight loss of the modified ITO, respectively, as an indication of the presence of organic groups on these nanoparticles. The separation analyzer tests were performed to check the stability of the nanoparticles suspension and it revealed that due to better interaction of nanoparticles with the polymer matrix the stability of modified ITO suspention is higher than the unmodified sample. The morphology and particle distribution were determined by scanning electron microscopy (SEM. It was found that the distibution of modified indium tin oxide in epoxy-silica polymer matrix was improved in comparison with pure ITO.

  10. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, GH.A., E-mail: Gh.a.bagheri65@gmail.com

    2016-08-15

    In this research, copper matrix composites reinforced with different amounts of titanium carbide particles were produced by mechanical milling and in-situ formation of reinforcements. Morphology and size of milled powders were inspected by scanning electron microscopy (SEM) several times during milling process. Changes in lattice parameter, crystallite size, lattice strain, dislocation density and Gibbs free energy changes (due to increasing in dislocation densities and grain boundaries) in different samples (with different TiC particles contents) were studied by X-Ray Diffraction technique with Cu-kα radiation and using Nelson–Riley method and Williamson–Hall equation. Microstructure of samples after sintering was investigated by FESEM. Finally, densitometry, hardness, determination of electrical resistance and pin on disk wear test were performed and effect of reinforcement percentages on the physical and mechanical properties of composites was studied. Results show incredible improvement in mechanical properties with increasing in TiC value, even though, electrical conductivity dropped off considerably. - Highlights: • Microstructures, mechanical and physical properties of composites have been studied. • Stored Gibbs free energy of dislocations and grain boundaries has been calculated. • Gibbs free energy increased with increasing in titanium percent. • Higher TiC percentage led to better mechanical and unfavorable physical properties.

  11. Weathering effects on tensile and stress rupture strength of glass fiber reinforced vinylester and epoxy thermoset pipes

    Science.gov (United States)

    Nizamuddin, Syed

    Glass fiber reinforced vinylester (GFRE) and epoxy (GFRE) pipes have been used for more than three decades to mitigate corrosion problems in oil fields, chemical and industrial plants. In these services, both GFRV and GFRE pipes are exposed to various environmental conditions. Long-term mechanical durability of these pipes after exposure to environmental conditions, which include natural weathering exposure to seasonal temperature variation, sea water, humidity and other corrosive fluids like crude oil, should be well known. Although extensive research has been undertaken, several major issues pertaining to the performance of these pipes under a number of environmental conditions still remain unresolved. The main objective of this study is to investigate the effects of natural weathering, combined natural weathering with seawater and crude oil exposure, for time periods ranging from 3 to 36 months respectively, on the tensile and stress rupture behavior of GFRV and GFRE pipes. Ring specimens are machined from GFRV and GFRE pipes and tested before and after exposure to different weathering conditions prevalent in the eastern region (Dhahran) of Saudi Arabia and present under service conditions. The natural weathering and combined natural weathering with crude oil exposure of GFRV specimens revealed increased tensile strength even after 36 months of exposure when compared with that of the as received samples. However, the combined natural weathering with seawater exposure of GFRV samples revealed better tensile behavior till 24 months of exposure, and after 36 months their tensile strength was seen to be below that of the as received GFRV samples. The stress rupture behavior of natural weather exposed GFRV samples showed an improvement after 12 months of exposure and it decreased after 24 and 36 months of exposure when compared with the as received GFRV samples. The combined natural weathering with crude oil and seawater exposure of GFRV sample revealed improved

  12. Post-impact fatigue of cross-plied, through-the-thickness reinforced carbon/epoxy composites. M.S. Thesis - Clemson Univ.

    Science.gov (United States)

    Serdinak, Thomas E.

    1994-01-01

    An experimental investigation of the post-impact fatigue response of integrally woven carbon/epoxy composites was conducted. Five different through-the-thickness (TTT) reinforcing fibers were used in an experimental textile process that produced an integrally woven (0/90/0/90/0/90/0/90/0)(sub T) ply layup with 21K AS4 carbon tow fiber. The resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to study the post-impact fatigue response of these material systems and to identify the optimum TTT fiber. Samples were impacted with one half inch diameter aluminum balls with an average velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-compression fatigue tests were conducted. Fatigue tests were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-radiographic and sectioning techniques and by examining the stress-strain response (across the impact site) throughout the fatigue tests. The static compressive stress versus far-field strain response was nearly linear for all material groups. All the samples had a transverse shear failure mode. The average compressive modulus (from far-field strain) was about 10 Msi. The average post-impact static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of over 40 Ksi, more than 16 percent stronger than average. There was considerable scatter in the S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The response of the other materials, while worse than IM6 carbon, could not be ranked definitively. The initial damage zones caused by the impact loading and damage growth from fatigue loading were similar for all five TTT reinforcing materials. The initial damage zones were circular and consisted of delaminations, matrix cracks and ply cracks. Post-impact fatigue loading caused delamination growth

  13. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  14. The failure mode of natural silk epoxy triggered composite tubes

    International Nuclear Information System (INIS)

    Eshkour, R A; Ariffin, A K; Zulkifli, R; Sulong, A B; Azhari, C H

    2012-01-01

    In this study the quasi static compression test over natural silk epoxy triggered composite tubes has been carried out, the natural silk epoxy composite tubes consist of 24 layer of woven natural silk as reinforcement and thermoset epoxy resin as matrix which both of them i e natural silk and epoxy have excellent mechanical properties More over the natural silk have better moisture resistance in comparison with other natural reinforcements, the length of tubes are 50, 80 and 120 mm The natural silk epoxy composite tubes are associated with an external trigger which includes 4 steel pieces welded on downside flat plate fixture The hand lay up fabrication method has been used to make the natural silk epoxy composite tubes Instron universal testing machine with 250 KN load capacity has been employed to accomplish this investigation The failure modes of natural silk epoxy triggered composite tubes has been investigated by representative photographs which has been taken by a high resolution camera(12 2 Mp) during the quasi static compression test, from the photographs is observed the failure modes is progressive local buckling

  15. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    International Nuclear Information System (INIS)

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  16. Fabrication of BN Nanosheet Reinforced ZrO{sub 2} Composite Pellets for Inert Matrix Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shukeir, Malik; Umer, Malik; Lee, Bin; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Plutonium also can be resulted from the dismantlement of nuclear weapons. This will result in the increase of the stockpile of plutonium. For that purpose many organizations are focusing their R-D work on the concept of Inert Matrix Fuel IMF, where a U-free matrix is used to eliminate the U-Pu conversion. R-D work was standardized around Zirconiabased IMF as a result of many screening and ranking studies performed on various candidates. Regardless of its outstanding radiation resistance, chemical stability and its high melting point, it has a very low thermal conductivity, which could be detrimental for the fuel matrix especially in case of accidents. A reinforcement phase could be used for the enhancement of the thermomechanical properties. Among many possible reinforcements, 2D structured nanosheets have emerged as an excellent candidate to enhance the thermal properties and mechanical properties simultaneously. In this approach Boron Nitride Nanosheets BNNS are used for that purpose. BNNS have a very low density, very high thermal conductivity, very high mechanical properties and high neutron absorption cross-section for Boron which is used frequently as a burnable poison. They have properties similar to graphene but they exhibit superior thermal stability in the oxide structure. Despite all the studies on other reinforcements, BNNS reinforced ZrO{sub 2} has not yet been reported. In this study, pure ZrO{sub 2} and partially stabilized Zirconia PSZ (using Yttria) ceramics are mixed with different volume fractions of BNNS.

  17. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  18. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle

    2014-01-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  19. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  20. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    International Nuclear Information System (INIS)

    Beg, M.D.H.; Pickering, K.L.; Weal, S.J.

    2005-01-01

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre

  1. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  2. Production of NbC reinforced aluminum matrix composites by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marina Judice; Cardoso, Katia Regina; Travessa, Dilermando Nagle, E-mail: dilermando.travessa@unifesp.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    Aluminum and their alloys are key materials for the automotive and aerospace industries. The dispersion of hard ceramic particles in the Al soft matrix produces lightweight composites with interesting properties, as environmental resistance, high specific strength and stiffness, high thermal and electrical conductivity, and good wear resistance, encouraging their technological use. Powder metallurgy techniques like mechanical alloying (MA) are very attractive to design metal matrix composites, as they are able to achieve a homogeneous distribution of well dispersed particles inside the metal matrix. In this work, pure aluminum has been reinforced with particles of Niobium carbide (NbC), an extremely hard and stable refractory ceramic. NbC is frequently used as a grain growth inhibitor in micro-alloyed steel due to their low solubility in austenite. In the present work, NbC is expected to act as a reinforcing phase by its fine dispersion into the aluminum matrix, produced by MA. Composite powders produced after different milling times (up to 50h), with 10 and 20% (volume) of NbC were characterized by diffraction laser particle size analysis, scanning electron microscopy (SEM) and by X-ray diffraction (DRX), in order to establish a relationship between the milling time and the characteristics of the powder produced, as size and morphology, crystallite size and reinforcement distribution. This characterization is important in defining the MA process for production of composites for further consolidation by hot extrusion process. (author)

  3. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    Science.gov (United States)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  4. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    International Nuclear Information System (INIS)

    Bang, Hyejin; Cho, Chongdu

    2017-01-01

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  5. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)

    2017-08-15

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  6. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    Science.gov (United States)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  7. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  8. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  9. Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites

    Directory of Open Access Journals (Sweden)

    A. S. Singha

    2008-01-01

    Full Text Available Synthesis and characterization of pine needles reinforced thermosetting resin (Resorcinol-Formaldehyde which is most suitable as composite matrix has been reported. The polycondensation reaction between resorcinol and formaldehyde (RF in different molar ratios has been applied to the synthesis of RF polymer matrix. A thermosetting resin based composite, containing approximately 10, 20, 30 and 40% of natural fiber by weight, has been obtained by adding pine needles to the Resorcinol-Formaldehyde (RF resin. The mechanical properties of randomly oriented intimately mixed particle reinforced (Pine needles composites were determined. Effect of fiber loading in terms of weight % on mechanical properties such as tensile, compressive, and flexural and wear properties have also been evaluated. The reinforcing of the resin with Pine needles was accomplished in particle size of 200 micron by employing optimized resin. Present work reveals that mechanical properties of the RF resin increases to extensive extent when reinforced with Pine needles. Thermal (TGA/DTA and morphological studies (SEM of the resin, fiber and polymer composites thus synthesized have also been carried out.

  10. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  11. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.

    Science.gov (United States)

    Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-04-16

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  12. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-04-01

    Full Text Available Biomaterial composites made of titanium and hydroxyapatite (HA powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD, back scattered electron imaging (BSE, scanning electron microscope (SEM equipped with energy dispersive spectrometer (EDS, electron probe microanalyzer (EPMA, and transmission electron microscope (TEM. The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO42, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  13. ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement

    Directory of Open Access Journals (Sweden)

    Mateja Šnajdar Musa

    2013-06-01

    Full Text Available Aluminium based metal matrix composites are rapidly developing group of materials due to their unique combination of properties that include low weight, elevated strength, improved wear and corrosion resistance and relatively good ductility. This combination of properties is a result of mixing two groups of materials with rather different properties with aluminium as ductile matrix and different oxides and carbides added as reinforcement. Al2O3, SiC and ZrO2 are the most popular choices of reinforcement material. One of the most common methods for producing this type of metal matrix composites is powder metallurgy since it has many variations and also is relatively low-cost method. Many different techniques of compacting aluminium and ceramic powders have been previously investigated. Among those techniques equal channel angular pressing (ECAP stands out due to its beneficial influence on the main problem that arises during powder compaction and that is a non-uniform distribution of reinforcement particles. This paper gives an overview on ECAP method principles, advantages and produced powder composite properties.

  14. Full incorporation of Strattice™ Reconstructive Tissue Matrix in a reinforced hiatal hernia repair: a case report

    Directory of Open Access Journals (Sweden)

    Freedman Bruce E

    2012-08-01

    Full Text Available Abstract Introduction A non-cross-linked porcine acellular dermal matrix was used to reinforce an esophageal hiatal hernia repair. A second surgery was required 11 months later to repair a slipped Nissen; this allowed for examination of the hiatal hernia repair and showed the graft to be well vascularized and fully incorporated. Case presentation A 71-year-old Caucasian woman presented with substernal burning and significant dysphagia. An upper gastrointestinal series revealed a type III complex paraesophageal hiatal hernia. She underwent laparoscopic surgery to repair a hiatal hernia that was reinforced with a xenograft (Strattice™ Reconstructive Tissue Matrix, LifeCell, Branchburg, NJ, USA along with a Nissen fundoplication. A second surgery was required to repair a slipped Nissen; this allowed for examination of the hiatal repair and graft incorporation 11 months after the initial surgery. Conclusion In this case, a porcine acellular dermal matrix was an effective tool to reinforce the crural hiatal hernia repair. The placement of the mesh and method of fixation are believed to be crucial to the success of the graft. It was found to be well vascularized 11 months after the original placement with no signs of erosion, stricture, or infection. Further studies and long-term follow-up are required to support the findings of this case report.

  15. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  16. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  17. Correlation of microstructure and compressive properties of amorphous matrix composites reinforced with tungsten continuous fibers or porous foams

    International Nuclear Information System (INIS)

    Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Choongnyun Paul; Lee, Sunghak

    2010-01-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten continuous fibers or porous foams were fabricated without pores or defects by liquid pressing process, and their microstructures and compressive properties were investigated. About 65-70 vol.% of tungsten reinforcements were homogeneously distributed inside the amorphous matrix. The compressive test results indicated that the tungsten-reinforced composites showed considerable plastic strain as the compressive load was sustained by fibers or foams. Particularly in the tungsten porous foam-reinforced composite, the compressive stress continued to increase according to the work hardening after the yielding, thereby leading to the maximum strength of 2764 MPa and the plastic strain of 39.4%. This dramatic increase in strength and ductility was attributed to the simultaneous and homogeneous deformation at tungsten foams and amorphous matrix since tungsten foams did not show anisotropy and tungsten/matrix interfaces were excellent.

  18. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-06-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  19. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-03-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  20. Stereological observations of platelet-reinforced mullite- and zirconia-matrix composites

    International Nuclear Information System (INIS)

    Cherian, I.K.; Kriven, W.M.; Lehigh, M.D.; Nettleship, I.

    1996-01-01

    Recently, the effect of solid inclusions on the sintering of ceramic powders has been explained in terms of a back-stress that opposes densification. Several analyses have been proposed to describe this problem. However, little quantitative information exists concerning the effect of reinforcement on microstructural evolution. This study compares the microstructural development of zirconia and mullite matrices in the presence of alumina platelets. The effect of platelet loading on density is similar for both composites. Quantitative stereological examinations reveal that the average grain size and pore size are finer for the zirconia-matrix composite. The platelet loading does not have any noticeable effect on the average grain size of the matrix in either composite. However, the average pore size increases as the volume fraction of platelets increases for both materials. Contiguity measurements have detected some aggregation of platelets in the zirconia-matrix composite

  1. Microstructure and Strengthening Mechanisms of Carbon Nanotube Reinforced Magnesium Matrix Composites Fabricated by Accumulative Roll Bonding

    International Nuclear Information System (INIS)

    Yoo, Seong Jin; Kim, Woo Jin

    2014-01-01

    A combination of accumulative roll bonding (ARB) and high-energy ball milling was used to fabricate carbon nano tube (CNT)-reinforced Mg composites in sheet form. CNT-Al composite powders synthesized using the high-energy ball-milling process, were coated on the surface of Mg sheets using either spraying or dipping methods. The coated sheets were stacked and then subjected to ARB. Formation of CNT-intermetallic compounds through inter-diffusion between Al and Mg, fragmentation of the CNTintermetallic compounds, and their dispersion into the matrix by plastic flow; as well as dissolution of the intermetallic compound particles into the matrix while leaving CNTs in the matrix, occurred in sequence during the ARB process. This eventually resulted in the uniform distribution of nano-sized CNT particles in the Mg matrix. As the thickness of the Mg sheet and of the coating layer of Al-CNT powder on the surface of the Mg sheet were similar, the dispersion of CNTs into the Mg matrix occurred more uniformly and the strengthening effect of adding CNTs was greater. The strengthening gained by adding CNTs was attributed to Orowan strengthening and dislocation-density increase due to a thermal mismatch between the matrix and the CNTs.

  2. The effect of the matrix superplastic deformation on interface reaction in fiber-reinforced composites

    International Nuclear Information System (INIS)

    Astanin, V.V.; Imayeva, L.A.

    1995-01-01

    It is known that superplastic deformation affects the processes o solid phases bonding. In particular, the effect of a character of matrix flow upon nucleation and growth of the reaction products at the fiber/matrix interface should be expected during consolidation of the fiber-reinforced composites under superplastic conditions. The matrix material flow in thin clearance (about 20μm) between strengthening fibers is a special feature of composite consolidation. In previous papers, it was shown that the character of the flow in thin specimens, when the specimen thickness is equal to several grain sizes, is very different from that in thick specimens. In this manner the question of the effect of the deformation on the fiber/matrix interface formation is complicated and one should consider the peculiarities of matrix deformation during the composite fabrication and the effect of localization of the deformation on the fiber/matrix interface reaction. In this paper, the authors shall focus on these two problems

  3. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  4. Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites

    Science.gov (United States)

    Özgün, Özgür; Dinler, İlyas

    2018-05-01

    Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.

  5. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  6. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  7. The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites.

    Science.gov (United States)

    Kandola, Baljinder K; Luangtriratana, Piyanuch; Duquesne, Sophie; Bourbigot, Serge

    2015-08-11

    Intumescent coatings are commonly used as passive fire protection systems for steel structures. The purpose of this work is to explore whether these can also be used effectively on glass fibre-reinforced epoxy (GRE) composites, considering the flammability of the composites compared to non-flammable steel substrate. The thermal barrier and reaction-to-fire properties of three commercial intumescent coatings on GRE composites have been studied using a cone calorimeter. Their thermophysical properties in terms of heating rate and/or temperature dependent char expansion ratios and thermal conductivities have been measured and correlated. It has been suggested that these two parameters can be used to design coatings to protect composite laminates of defined thicknesses for specified periods of time. The durability of the coatings to water absorption, peeling, impact, and flexural loading were also studied. A strong adhesion between all types of coatings and the substrate was observed. Water soaking had a little effect on the fire performance of epoxy based coatings. All types of 1 mm thick coatings on GRE helped in retaining ~90% of the flexural property after 2 min exposure to 50 kW/m² heat flux whereas the uncoated laminate underwent severe delamination and loss in structural integrity after 1 min.

  8. The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Baljinder K. Kandola

    2015-08-01

    Full Text Available Intumescent coatings are commonly used as passive fire protection systems for steel structures. The purpose of this work is to explore whether these can also be used effectively on glass fibre-reinforced epoxy (GRE composites, considering the flammability of the composites compared to non-flammable steel substrate. The thermal barrier and reaction-to-fire properties of three commercial intumescent coatings on GRE composites have been studied using a cone calorimeter. Their thermophysical properties in terms of heating rate and/or temperature dependent char expansion ratios and thermal conductivities have been measured and correlated. It has been suggested that these two parameters can be used to design coatings to protect composite laminates of defined thicknesses for specified periods of time. The durability of the coatings to water absorption, peeling, impact, and flexural loading were also studied. A strong adhesion between all types of coatings and the substrate was observed. Water soaking had a little effect on the fire performance of epoxy based coatings. All types of 1 mm thick coatings on GRE helped in retaining ~90% of the flexural property after 2 min exposure to 50 kW/m2 heat flux whereas the uncoated laminate underwent severe delamination and loss in structural integrity after 1 min.

  9. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  10. Enhanced impact properties of cementitious composites reinforced with pultruded flax/polymeric matrix fabric

    Directory of Open Access Journals (Sweden)

    Magdi El-Messiry

    2017-09-01

    Full Text Available Fiber reinforced concrete (FRC has become increasingly applied in civil engineering in the last decades. Natural fiber fabric reinforced cement composites are considered to prevent damage resulting from an impact loading on the cementite plate. Flax woven fabric that has a high energy absorption capability was chosen. To increase the interfacial shear properties, the fabric was pultruded with different matrix properties that affect the strength and toughness of the pultruded fabric. In this study, three fabric structures are used to increase the anchoring of the cement in the fabric. The compressive strength and the impact energy were measured. The results revealed that pultruded fabric reinforced cement composite (PFRC absorbs much more impact energy. PFRC under impact loading has more micro cracks, while plain cement specimen shows brittle failure. The compressive test results of PFRC indicate that flax fiber fabric polymer enhanced compressive strength remarkably. Fiber reinforcement is a very effective in improving the impact resistance of PFRC. The study defines the influence factors that control the energy dissipation of the composite, which are the hardness of the polymer and the fabric cover factor. Significant correlation between impact energy and compressive strength was proved.

  11. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  12. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  13. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  14. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  15. Short and long carbon fibre reinforced Cu-matrix composites: microstructural results and structural origin of properties

    International Nuclear Information System (INIS)

    Buchgraber, W.

    1997-01-01

    Carbon fibre reinforced copper matrix composites possess properties of copper, i.e. excellent thermal and electrical conductivities, and properties of carbon fibre, i.e. a small thermal expansion coefficient. Since the desirable properties of the composite can be obtained by selecting the amount, type and orientation of the carbon fibres, it is considered to be suitable for use as electric and electronic materials. This lecture focuses on two-dimensional isotropic carbon fibre reinforced copper matrix composites with long or short carbon fibres. Short carbon fibre reinforced copper matrix composites have been produced by hot-pressing of copper coated short carbon fibres. During hot-pressing, the carbon fibres take on a preferred orientation in a plane perpendicular to the hot pressing direction. Within this plane the fibre orientation is random. Long carbon fibre reinforced copper matrix composites have been made by hot pressing of monolayers consisting of copper coated long carbon fibres. Different orientations of the monolayers will be compared. Both the physical and mechanical properties of the discussed composites are strongly influenced not only by the properties of its individual constituents, but also by the microstructure and properties of the fibre matrix interface. The problem of poor wettability of the carbon fibre by the copper matrix will be discussed. The microstructure of several types of carbon fibre reinforced copper matrix composites will be discussed. Their thermophysical properties will be compared with microstructural results. (author)

  16. Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix

    Science.gov (United States)

    Zacharda, V.; Němeček, J.; Štemberk, P.

    2017-09-01

    The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.

  17. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  18. Parametric study for graphene reinforced aluminum matrix composites production using Box Behnken design

    Science.gov (United States)

    Dasari, Bhagya Lakshmi; Nouri, Jamshid M.; Brabazon, Dermot; Naher, Sumsun

    2017-10-01

    The production of graphene reinforced aluminum matrix composite through powder metallurgical route requires optimization of process parameters to obtain better performance characteristics. One of the advanced method available for statistical analysis of parameters is Response Surface Methodology (RSM). The statistical analysis was carried out with three parameters, weight percentage of graphene reinforcement Wg (0.05%, 0.1% and 0.2%), stirring time ST(1h, 2h and 3h) and compaction pressure Pc(16T, 17T and 19T) while sintering temperature T kept constant. The performance of the Box Behnken design was analyzed and optimized using Design Expert software for the effective production of composites. From the results obtained from the analysis, the best set of parameters were considered for the future production of composites.

  19. Microstructure and wear characteristics on Al alloy matrix composite reinforced with Ni perform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Jo; Park, Cheol Hong; Kim, Hyung Jin; Huh, Sun Chul [Gyeongsang National University, Tongyeong, (Korea, Republic of)

    2012-06-15

    Al based composite reinforced with Nickel is used for diesel engine piston, because the thermal properties, strength and corrosion resistant are for better than Al alloy alone. For processing, the intermetallic compounds of Ni and Al improves wear resistance due to its high hardness. Existing process methods for MMC (metal matrix composite) using preform were manufactured under high-pressure. However, this causes deformation of the preform or weaknesses in the completed MMC. Low-pressure infiltration can prevent these problems, and there is an advantage of cost reduction in of production with small-scale of production equipment. In this study, the microstructure and wear characteristics of Al-based composite with Ni preform as reinforcement with low-pressure infiltration was analyzed.

  20. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  1. Mechanical properties of Nextel trademark 312 fiber-reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Vaidyanathan, K.R.; Sankar, J.; Kelkar, A.D.; Weaver, B.

    1995-01-01

    Vapor phase synthesis is emerging as a method for the preparation of near final-shape, ceramic matrix composites for advanced structural applications. Oxide fiber-reinforced silicon carbide matrix composites are currently being developed for these applications. The mechanical properties of Nextel trademark 312 fiber reinforced SiC matrix composites fabricated employing the forced-flow, thermal gradient chemical vapor infiltration process (FCVI) were evaluated at room temperature in pure tension. The composites were fabricated with a 0.15 μm pyrolytic carbon interface layer for improving the toughness of the composite system. Because of the available FCVI apparatus, only short length specimens (7--8 cm) could be fabricated. Room temperature tensile strengths were measured and compared to room temperature flexure strength results for the composite. Excellent toughness and composite behavior was obtained for the composite system. Fractography as well as possible factors responsible for the differences in tensile and flexural strengths for the composite system is presented in this paper

  2. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    International Nuclear Information System (INIS)

    Bonneville, J; Laplanche, G; Joulain, A; Gauthier-Brunet, V; Dubois, S

    2010-01-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al0 0.70 Cu 0.20 Fe 0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particular in yield stress values. In the low temperature regime (T ≤ 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  3. High-energy ion implantation of polymeric fibers for modification of reinforcement-matrix adhesion

    International Nuclear Information System (INIS)

    Grummon, D.S.; Schalek, R.; Ozzello, A.; Kalantar, J.; Drzal, L.T.

    1991-01-01

    We have previously reported on the effect of high-energy ion irradiation of ultrahigh molecular weight polyethylene (UHMW-PE), and Kevlar-49 polyaramid fibers, on fiber-matrix adhesion and interfacial shear strength (ISS) in epoxy matrix composites. Irradiation of UHMW-PE fibers produced large improvements in interfacial shear strength, without degrading fiber tensile strength. ISS was not generally affected in irradiated Kevlar-49, and fiber tensile strength decreased. The divergence in response between polyaramid and polyethylene relates both to differences in the mesoscopic structure of the individual fibers, and to the different forms of beam induced structural modification favored by the individual polymer chemistries. Here we report results of surface energy measurements, infrared spectroscopy analysis, and X-ray photoelectron spectroscopy studies on UHMW-PE and polyaramid fibers, irradiated to fluences between 2x10 12 and 5x10 15 cm -2 with N + , Ar + , Ti + , Na + , and He + at energies between 30 and 400 keV. UHMW-PE fibers showed a pronounced increase in the polar component of surface energy which could be associated with carbonyl, hydroxyl and hydroperoxide groups at the surface. Kevlar, on the other hand, tended toward carbonization and showed a decrease in nitrogen and oxygen concentrations and a sharp drop in polar surface energy. (orig.)

  4. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  5. Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments

    Directory of Open Access Journals (Sweden)

    Yuan Zhanwei

    2014-04-01

    Full Text Available By using instrumental micro-indentation technique, the microhardness and Young’s modulus of SiC particles reinforced aluminum matrix composites were investigated with micro-compression-tester (MCT. The micro-indentation experiments were performed with different maximum loads, and with three loading speeds of 2.231, 4.462 and 19.368 mN/s respectively. During the investigation, matrix, particle and interface were tested by micro-indentation experiments. The results exhibit that the variations of Young’s modulus and microhardness at particle, matrix and interface were highly dependent on the loading conditions (maximum load and loading speed and the locations of indentation. Micro-indentation hardness experiments of matrix show the indentation size effects, i.e. the indentation hardness decreased with the indentation depth increasing. During the analysis, the effect of loading conditions on Young’s modulus and microhardness were explained. Besides, the elastic–plastic properties of matrix were analyzed. The validity of calculated results was identified by finite element simulation. And the simulation results had been preliminarily analyzed from statistical aspect.

  6. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, H., E-mail: hossein.beygi@stu-mail.um.ac.ir; Sajjadi, S.A.; Zebarjad, S.M.

    2014-06-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al{sub 2}O{sub 3} composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles.

  7. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    Science.gov (United States)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  8. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles

    International Nuclear Information System (INIS)

    Beygi, H.; Sajjadi, S.A.; Zebarjad, S.M.

    2014-01-01

    Aluminum matrix composites used in the aerospace, military and automotive industries are typically fabricated by a stir casting method. However, when nanoparticles are used for reinforcement, fabrication of composite materials by this method leads to the formation of a large number of structural defects. In this study, copper coating of alumina reinforcement particles is investigated as a technique for improving the structure of Al-Al 2 O 3 composites. Microstructural investigations by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersion spectroscopy (EDS) and transmission electron microscopy (TEM) showed that the alumina particles were coated uniformly with copper shells. Copper coating of the reinforcing particles significantly increased their wettability in the molten aluminum alloy, strengthened the matrix-particle interfaces and improved the distribution of reinforcing particles within the matrix. Due to these microstructural improvements, the hardness, compressive strength, yield stress, tensile strength and elongation of the composites were enhanced by copper coating of the alumina particles

  9. Micro structural analysis of nanocomposite of metallic matrix of aluminum reinforced by 2% of NTC

    International Nuclear Information System (INIS)

    Dias, Fabio Saldanha; LavaredaCarlos Romulo; Mendes, Luiz Fernando; Queiroz, Jennyson Luz

    2016-01-01

    The study of based on aluminum materials has a high importance level, mainly when is intense wanted in automobile and aerospace industry to transform in light and high perform parts. Aluminum has low specific weight and easiness to join with other materials and these qualities can supply excellent properties and lots of technological applications. Components based on aluminum represents good examples to develop optimized micro structures during the fabrication process that can be basic on properties mechanical performance. As a result this work analyses the micro structure's composites with metallic matrix reinforced by 2% of Multi-Walled Carbon Nanotubes manufactured by aluminum splinters mixed to CNT (author)

  10. Tribo-mechanical behaviour of SiC filled glass-epoxy composites at ...

    African Journals Online (AJOL)

    While glass fibers enhance the toughness of the matrix, silicon carbide shows high hardness, thermal stability and low chemical reactivity, leading to superior friction properties. In this work an attempt was made to evaluate the mechanical properties and tribological behaviour of glass fabric reinforced- epoxy (G-E) ...

  11. Mechanical Properties of Epoxy and Its Carbon Fiber Composites Modified by Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2017-01-01

    Full Text Available Compressive properties are commonly weak parts in structural application of fiber composites. Matrix modification may provide an effective way to improve compressive performance of the composites. In this work, the compressive property of epoxies (usually as matrices of fiber composites modified by different types of nanoparticles was firstly investigated for the following study on the compressive property of carbon fiber reinforced epoxy composites. Carbon fiber/epoxy composites were fabricated by vacuum assisted resin infusion molding (VARIM technique using stitched unidirectional carbon fabrics, with the matrices modified with nanosilica, halloysite, and liquid rubber. Testing results showed that the effect of different particle contents on the compressive property of fiber/epoxy composites was more obvious than that in epoxies. Both the compressive and flexural results showed that rigid nanoparticles (nanosilica and halloysite have evident strengthening effects on the compression and flexural responses of the carbon fiber composite laminates fabricated from fabrics.

  12. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  13. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  14. AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties

    International Nuclear Information System (INIS)

    Liu, Y.Q.; Cong, H.T.; Wang, W.; Sun, C.H.; Cheng, H.M.

    2009-01-01

    To improve the specific strength and stiffness of Al-based composites, AlN/Al nanoparticles were in-situ synthesized by arc plasma evaporation of Al in nitrogen atmosphere and consolidated by hot-pressing to fabricate AlN nanoparticle-reinforced nanocrystalline Al composites (0-39 vol.% AlN). Microstructure characterization shows that AlN nanoparticles homogeneously distribute in the matrix of Al nanocrystalline, which forms atomically bonded interfaces of AlN/Al. The hardness and the elastic modulus of the nanocomposite have been improved dramatically, up to 3.48 GPa and 142 GPa, respectively. Such improvement is believed to result from the grain refinement strengthening and the interface strengthening (load transfer) between the Al matrix and AlN nanoparticles

  15. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  16. Obtainment of silica nanofiber and its preliminary investigation and its effects as reinforcement in polymeric matrix

    International Nuclear Information System (INIS)

    Teixeira, R.S.; Oliveira, G.L.; Silva, F.D.C.; Teofilo, E. T.; Farias, R.C.; Menezes, R.R.

    2016-01-01

    Silica is widely used as fillers in polymers, and may confer flame retardant characteristics and improve mechanical properties. their use usually occurs as spherical nanoparticles or short fibers of. Studies using this reinforce in the form of nanofibers are promising. This analysis proposes to obtain silica nanofibers by blowspinning method in solution (SBS), and investigate its application in polymeric matrix. To synthesize the silica nanofibers it was used a precursor solution that has been subjected to SBS process and calcined for forming the silica layer. The DR-X indicated the obtainment of amorphous silica phase and SEM showed the the fibers are at the nanometer scale. Silica nanofibers were incorporated into filmogenic solution Polyamide 6. Preliminary results showed no improvement in mechanical properties. Future stages propose to verify that the surface chemical modification of silica nanofibers enables interaction charge / matrix. (author)

  17. Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available In this work solution surface treatment was applied for producing basalt fiber reinforced PA6 matrix composites. Beyond scanning electron microscopy, static and dynamic mechanical tests, dynamic mechanical analysis of composites was used for qualifying the interfacial adhesion in a wide temperature range. The loss factor peak height of loss factor is particularly important, because it is in close relationship with the mobility of polymer molecular chain segments and side groups, hence it correlates with the number and strength of primary or secondary bondings established between the matrix and the basalt fibers. It was proven, that the interfacial adhesion between basalt fibers and polyamide can be largely improved by the application of silane coupling agents in the entire usage temperature range of composites. The presence of coupling agents on the surface of basalt fibers was proven by Fourier transform infrared spectroscopy. The best results were obtained by 3-glycidoxypropyltrimethoxysilane coupling agent.

  18. Structural and thermophysical properties characterization of continuously reinforced cast Al matrix composite

    Directory of Open Access Journals (Sweden)

    Brian Gordon

    2010-11-01

    Full Text Available In this work the process of manufacturing a continuously reinforced cast Al matrix composite and its properties are presented. The described technology permits obtaining a structural material of competitive properties compared to either heat treatable aluminum alloys or polymer composites for several types of applications. The examined thermophysical properties and structural characterization, including material anisotropy, coupled with the results of previous measurements of the mechanical properties of both Al2O3 reinforcing filaments and metallic prepregs have proven the high quality of this material and the possibility of its operation under special loading modes and environmental conditions. Microscopic examinations (LM, SEM were carried out to reveal the range of morphological homogeneity of the microstructure, the anisotropy of the filament band distribution, and simultaneously the adhesive behavior of the metal/fiber interface. The 3D morphology of the chosen microstructure components was revealed by computed tomography. The obtained results indicate that special properties of the examined prepreg materials have been strongly influenced, on the one hand, by the geometry of its internal microstructure, i.e. spatial distribution and volume fraction of the Al2O3 reinforcing filaments and, on the other hand, by a very good compatibility obtained between the individual metal prepreg components.

  19. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  20. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  1. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  2. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  3. Synthesis and characterization of ZA-27 alloy matrix composites reinforced with zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    B.O. Fatile

    2017-06-01

    Full Text Available An investigation has been carried out on the synthesis and characterization of ZA-27 alloy composites reinforced with zinc oxide nanoparticles. This was aimed at developing high performance ZA-27 matrix nanocomposite with low density. The particle size and morphology of the zinc oxide (ZnO nanoparticles were investigated by Transmission Electron Microscope (TEM and the elemental composition was obtained from Energy Dispersive Spectroscopy (EDS attached to TEM and X-ray fluorescence spectroscopy (XRF. ZA-27 nanocomposite samples were developed using 0, 1, 2, 3, 4 and 5 wt% of ZnO nanoparticles by double steps stir casting technique. Mechanical properties and Microstructural examination were used to characterize the composite samples produced. The results show that hardness and ultimate tensile strength of the composite samples increased progressively with increase in weight percentage of ZnO nanoparticles. Increase in Ultimate tensile strength (UTS of 10.2%, 21.1%, 22.3%, 35.5%, 33.4% and increase in hardness value of 8.2%, 14.8%, 21.7%, 27.9%, 27.1% were observed for nanocomposites reinforced with 1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt% ZnO nanoparticles respectively in comparison with unreinforced alloy. It was generally observed that composite sample containing 4 wt% of reinforcement has the highest tensile strength and hardness values. However, the fracture toughness and percent elongation of the composites samples slightly decreased with increase in ZnO nanoparticles content. Results obtained from the Microstructural examination using optical microscope and Scanning Electron Microscope (SEM show that the nanoparticles were well dispersed in the ZA-27 alloy matrix.

  4. Impact damage, hardness and tribology characterization of epoxy resin based composites reinforced with basalt fibers in combination with TiO_2, BaSO_4 and SiC

    International Nuclear Information System (INIS)

    Babu, T. Narendiranath; Mangalaraja, R.V.; Saravanan, S.; Prabha, D. Rama

    2016-01-01

    Impact damage, hardness characterization, frictional and wear behavior of epoxy resin based composites reinforced with basalt fibers in combination with TiO_2, BaSO_4 and SiC were investigated using an impact testing machine, a hardness testing machine and a pin on disc machine. The basalt contained different fillers and short fibers whose presence varied in steps of weight percentage from 23 % to 50 %. It was fabricated using the conventional hand-layup technique followed by the light compression moulding technique. The frictional behavior of the composite specimen was determined by testing on a pin on disc test machine under different operating conditions. The present investigation focused on the determination of the friction coefficient of epoxy resin based composites reinforced with basalt fibers in combination with the fillers. The effects of basalt short fibers content and load were examined under dry conditions. The results showed that the friction coefficient decreased with the filler contents increase. The hardness and the impact damage of epoxy resin reinforced with basalt fiber was examined and it was found that its reinforcement with basalt fiber along with fillers such as titanium oxide, silicon carbide, barium sulphate and graphite made it more advantageous than other specimens. Keywords: basalt fiber, impact behavior, hardness, wear resistance.

  5. Aluminium EN AW-2124 alloy matrix composites reinforced with Ti(C,N), BN and Al2O3 particles

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Wlodarczyk, A.; Adamiak, M.

    2003-01-01

    Investigation results of the aluminium alloy EN AW-2124 matrix composite materials with particles of the powders Ti(C,N), BN and Al 2 O 3 (15 wt.%) are presented in the paper. In order to obtain uniform distribution of reinforcement particles in aluminium alloy matrix powders of composite components have been milled in the rotary ball-bearing pulverizer. The composites have been pressed in laboratory vertical press at room temperature under the pressure of 500 kN. Obtained die samplings have been heated to the temperature 520-550 o C and extruded. Bars of diameter 8 mm have been received as a final product. Metallographic examination of the composites materials' structure shows non-uniform distribution of reinforced powders in the aluminium alloy matrix banding of reinforcements particles corresponds to the extrusion direction. Particles of reinforcement distribution in aluminium alloy matrix is irregular, some agglomerations of powder of aluminium oxide and porosity of different size have been noticed. Investigations of hardness and ultimate compressive strength show that the particles of reinforcement improve mechanical properties of composite materials. Investigations of compressive strength, carried out at room temperature, enable to compare mechanical properties of matrix and composite. (author)

  6. Measurement of Mechanical Property and Thermal Expansion Coefficient of Carbon-Nano tube-Reinforced Epoxy Composites

    International Nuclear Information System (INIS)

    Ku, Min Ye; Kim, Jung Hyun; Kang, Hee Yong; Lee, Gyo Woo

    2013-01-01

    By using shear mixing and ultrasonication, we fabricated specimens of well-dispersed multi-walled carbon nano tube composites. To confirm the proper dispersion of the filler, we used scanning electron microscopy images for quantitative evaluation and a tensile test for qualitative assessment. Furthermore, the coefficients of thermal expansion of several specimens having different filler contents were calculated from the measured thermal strains and temperatures of the specimens. Based on the microscopy images of the well-dispersed fillers and the small deviations in the measurements of the tensile strength and stiffness, we confirmed the proper dispersion of absentee in the epoxy. As the filler contents were increased, the values of tensile strength increased from 58.33 to 68.81 MPa, and those of stiffness increased from 2.93 to 3.27 GPa. At the same time, the coefficients of thermal expansion decreased. This implies better thermal stability of the specimen

  7. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  8. The mechanical properties of magnesium matrix composites reinforced with 10 wt.% W14Al86 alloy particles

    International Nuclear Information System (INIS)

    Tang, H.G.; Ma, X.F.; Zhao, W.; Cai, S.G.; Zhao, B.; Qiao, Z.H.

    2007-01-01

    The Mg-based metal matrix composite reinforced by 10 wt.% W 14 Al 86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W 14 Al 86 alloy. Mechanical properties characterization revealed that the reinforcement of W 14 Al 86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91

  9. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  10. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  11. Investigation of the Degradation Mechanisms of Particulate Reinforced Epoxy Coatings and Zinc-Rich Coatings Under an Erosion and Corrosion Environment for Oil and Gas Industry Applications

    Science.gov (United States)

    Wang, Dailin

    During oil and gas production and transportation, the presence of an oil-sand slurry, together with the presence of CO2, H2S, oxygen, and seawater, create an erosive/abrasive and corrosive environment for the interior surfaces of undersea pipelines transporting oil and gas from offshore platforms. Erosion/wear and corrosion are often synergic processes leading to a much greater material loss of pipeline cross-section than that caused by each individual process alone. Both organic coatings and metallic sacrificial coatings have been widely employed to provide protection to the pipeline steels against corrosion through barrier protection and cathodic protection, and these protection mechanisms have been well studied. However, coating performance under the synergic processes of erosion/wear and corrosion have been much less researched and coating degradation mechanisms when erosion/wear and corrosion are both going on has not been well elucidated. In the work presented in this dissertation, steel panels coated with filler reinforced epoxy coatings and carbon nanotubes (CNTs) reinforced zinc-rich coatings have been evaluated under erosion/wear followed by an exposure to a corrosive environment. Electrochemical tests and material characterization methods have been applied to study the degradation mechanisms of the coatings during the tests and coating degradation mechanisms have been proposed. While organic coatings with a lower amount of filler particles provided better protection in a corrosive environment alone and in solid particle impingement erosion testing alone, organic coatings with a higher amount of filler particles showed better performance during wear testing alone. A higher amount of filler particles was also beneficial in providing protection against wear and corrosion environment, and erosion and corrosion environment. Coating thickness played a significant role in the barrier properties of the coatings under both erosion and corrosion tests. When the

  12. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    Science.gov (United States)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  13. Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.; Low, I.M.

    2013-01-01

    . The addition of nanoclay slightly minimized the effect of moisture on the mechanical properties. SEM images showed that water absorption severely damaged the cellulose fibres and the bonding at fibres-matrix interfaces in wet composites. © 2012 Elsevier Ltd

  14. Analysis of Symmetric Reinforcement of Quasi-Isotropic Graphite-Epoxy Plates with a Circular Cutout under Uniaxial Tensile Loading.

    Science.gov (United States)

    1983-12-01

    DISTRIBUTION LIST ............... 111 . •6 a’. . .’. ’’. ’’2"-;’,".".,:’..."-’’:’ .-.-. .-;.: ś " - "." "-" - ,".-",’-’-"...--..’%° -,’:’, LISr OF...Locations anld Szrain a 10,000 psi (Par Field) ... .. ..... . ... 96 W, :- .% .... 7 ".’ , .9. LISr OF FIGURES 2.1 Reinforcement Configuration, Iype 1

  15. A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites

    Directory of Open Access Journals (Sweden)

    Susanta K. Pradhan

    2016-09-01

    Full Text Available This article presents a simple stir casting technique for the development of Fe-aluminides particulate reinforced Al-matrix composites. It has been demonstrated that stirring of super-heated Al-melt by a mild steel plate followed by conventional casting and hot rolled results in uniform dispersion of in situ Al13Fe4 particles in the Al matrix; the amount of reinforcement is found to increase with increasing melt temperature. With reference to base alloy, the developed composite exhibits higher hardness and improved tensile strength without much loss of ductility; since, composite like base alloy undergoes ductile mode of fracture.

  16. Structure, mechanical and magnetic properties of Al4C3 reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Chaudhari, Alok Kumar; Singh, Dhananjay Kumar; Singh, V. B.

    2018-05-01

    A new type of nanocomposite, Ni-Al4C3 was prepared using Al4C3 as reinforcement by cathodic co-deposition at different current densities (1.0 to 5.0 A dm‑2) from a nickel acetate-N-methyl formamide (non-aqueous) bath. Influence of current density and incorporation of Al4C3 particles in nickel matrix on the structure and properties of the composite coatings was investigated. Surface morphology and composition of the deposits were determined by SEM and EDAX. Crystallographic structure and orientation of the electrodeposited Ni-Al4C3 composite were studied by x-ray diffraction. Compared to nickel metal, these nanocomposites exhibited finer grains, higher microhardness, improved corrosion resistance and enhanced soft magnetic properties. Composite deposited at higher current densities (>2 A dm‑2) shows mild texturing along (200) plane. The effect of heat treatment on the microstructure, texture and microhardness of the nanocomposites was also investigated.

  17. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  18. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  19. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Wen-ming Tian; Song-mei Li; Bo Wang; Xin Chen; Jian-hua Liu; Mei Yu

    2016-01-01

    Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sinter-ing (SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide (Al4C3) is not formed during SPS processing. Further addition of graphene (above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.

  20. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    Zou, C.; Li, B.; Zhang, C.; Wang, S.; Marrow, T.J.; Reinhard, C.

    2016-01-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  1. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  2. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  3. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    Directory of Open Access Journals (Sweden)

    Sonia C. Ferreira

    2014-12-01

    Full Text Available Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp produced by powder metallurgy (PM were anodized under voltage control in tartaric-sulfuric acid (TSA. In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050 anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

  4. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    Science.gov (United States)

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  5. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    Science.gov (United States)

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  6. Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kallip, Kaspar, E-mail: kaspar.kallip@empa.ch [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Leparoux, Marc [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); AlOgab, Khaled A. [King Abdulaziz City for Science and Technology (KACST), National Centers for Advanced Materials, P O Box 6086, Riyadh, 11442 (Saudi Arabia); Clerc, Steve; Deguilhem, Guillaume [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Arroyo, Yadira [Empa, Swiss Federal Laboratories for Material Science and Technology, Electron Microscopy Center, Ueberlandstrasse 129, CH-8600 Dübendorf (Switzerland); Kwon, Hansang [Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Pukyong National University, Department of Materials System Engineering, 365 Sinseon-ro, Busan 608-739 (Korea, Republic of)

    2015-10-15

    AlMg5-based metal matrix composites were successfully fabricated using high energy planetary ball-milling and hot pressing. The influence of 6 types of carbon nanotubes (CNTs) with different properties was investigated for reinforcement. Over 3 fold increase in hardness and ultimate tensile strength was achieved with maximum values of 200 HV{sub 20} and 720 MPa respectively by varying CNT content from 0.5 to 5 vol%. The state, the dispersion as well as the reactivity of the different CNTs were investigated by Raman spectroscopy, X-Ray diffraction and microscopy. The CNTs were considered to be dispersed homogeneously, but were shortened due to high energy milling. No significant differences in mechanical performances could be observed depending either on the nature or on the agglomeration initial state of the investigated CNTs. The milling time has to be however adjusted to the CNT content as higher concentrations require a longer milling time for achieving dispersion of the nano-reinforcement. - Highlights: • CNTs sustained the milling process and became homogeneously dispersed. • 3 times strengthening over unreinforced alloy achieved. • Flexible processing route for dispersing wide range of nanoparticulate materials.

  7. Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties

    International Nuclear Information System (INIS)

    González-Domínguez, Jose M; Ansón-Casaos, A; Martínez, M Teresa; Martínez-Rubí, Yadienka; Simard, Benoit; Díez-Pascual, Ana M; Gómez-Fatou, Marian

    2012-01-01

    Composite materials based on epoxy matrix and single-walled carbon nanotubes (SWCNTs) are able to exhibit outstanding improvements in physical properties when using a tailored covalent functionalization with matrix-based moieties containing terminal amines or epoxide rings. The proper choice of grafted moiety and integration protocol makes it feasible to tune the composite physical properties. At 0.5 wt% SWCNT loading, these composites exhibit up to 65% improvement in storage modulus, 91% improvement in tensile strength, and 65% improvement in toughness. A 15 °C increase in the glass transition temperature relative to the parent matrix was also achieved. This suggests that a highly improved interfacial bonding between matrix and filler, coupled to improved dispersion, are achieved. The degradation temperatures show an upshift in the range of 40–60 °C, which indicates superior thermal performance. Electrical conductivity ranges from ∼10 −13 to ∼10 −3 S cm −1 , which also shows the possibility of tuning the insulating or conductive behaviour of the composites. The chemical affinity of the functionalization moieties with the matrix and the unchanged molecular structure at the SWCNT/matrix interface are responsible for such improvements. (paper)

  8. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil

    2012-01-01

    Background. Epoxy resin monomers are strong skin sensitizers that are widely used in industrial sectors. In Denmark, the law stipulates that workers must undergo a course on safe handling of epoxy resins prior to occupational exposure, but the effectiveness of this initiative is largely unknown...... in an educational programme. Conclusion. The 1% prevalence of epoxy resin contact allergy is equivalent to reports from other countries. The high occurrence of epoxy resin exposure at work, and the limited use of protective measures, indicate that reinforcement of the law is required....

  9. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  10. Fabrication and characterization of TiO2-epoxy nanocomposite

    International Nuclear Information System (INIS)

    Chatterjee, Amit; Islam, Muhammad S.

    2008-01-01

    A systematic study has been conducted to investigate the matrix properties by introducing nanosize TiO 2 (5-40 nm, 0.5-2% by weight) fillers into an epoxy resin. Ultrasonic mixing process, via sonic cavitations, was employed to disperse the particles into the resin system. The thermal, mechanical, morphology and the viscoelastic properties of the nanocomposite and the neat resin were measured with TGA, DMA, TEM and Instron. The nano-particles are dispersed evenly throughout the entire volume of the resin. The nanofiller infusion improves the thermal, mechanical and viscoelastic properties of the epoxy resin. The nanocomposite shows increase in storage modulus, glass transition temperature, tensile modulus, flexural modulus and short beam shear strength from neat epoxy resin. The mechanical performance and thermal stability of the epoxy nanocomposites are depending on with the dispersion state of the TiO 2 in the epoxy matrix and are correlated with loading (0.0015-0.006% by volume). In addition, the nanocomposite shows enhanced flexural strength. Several reasons to explain these effects in terms of reinforcing mechanisms were discussed

  11. The Effect of Customized Woven and Stacked Layer Orientation on Tensile and Flexural Properties of Woven Kenaf Fibre Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    A. Hamdan

    2016-01-01

    Full Text Available The synthetic fibres have created some issues including risk of inhalation during fabrication process, renewability, biodegradability, and recyclability in composites industry. The usage of biocomposites as a replacement to synthetic fibres is beginning to be widespread. However, it is noted that lesser attention has been devoted to evaluating the mechanical properties of woven kenaf composites at various woven and stacked layer orientation. Thus, the research objective is to identify the effect of woven and stacked layer orientation on tensile and flexural properties of kenaf composites. Two types of fibre orientation are employed; type A contains a higher yarn density and type B contains a low yarn density. The tensile and flexural tests are conducted to analyze the mechanical properties of woven kenaf fibre composites and compare them to random chopped kenaf composites. The fracture interface between fibre and matrix epoxy is further investigated via scanning electron microscope. Type A kenaf improved up to 199% and 177% as compared to random chopped kenaf for flexural strength and tensile strength, respectively. Scanning electron microscopy analysis shows that resin matrix is properly induced into kenaf fibre gap hence giving additional strength to woven kenaf as compared to random chopped kenaf.

  12. Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2014-01-01

    Full Text Available Functionalized silica sols were obtained by the hydrolytic condensation of (γ-methacryloxypropyltrimethoxysilane (MPMS, (γ-glycidyloxypropyltrimethoxysilane (GPMS and tetraethoxysilane (TEOS. Three different sols were obtained: MPS (derived from MPMS and TEOS, GPS-MPS (derived from GPMS, MPMS and TEOS, and GPSD (derived from GPMS, TEOS and diglycidyl ether of bisphenol A, DGEBA. These silica sols were mixed with a phenolic resin (PR. Ethylenediamine was used as a hardener for epoxy-functionalized sols and benzoyl peroxide was used as an initiator of the free-radical polymerization of methacrylate-functionalized silica sols. Glass fiber-reinforced composites were obtained from the neat PR and MPS-PR, GPS-MPS-PR and GPSD-PR. The resulting composites were evaluated as ablation resistant materials in an acetylene-oxygen flame. A large increase in the ablation resistance was observed when the PR was modified by the functionalized silica sols. The ablation resistance of the composites decreased as follows: GPSD-PR > MPS-PR > GPS-MPS-PR > PR.

  13. Functionalized Multi walled Carbon Nano tubes-Reinforced Viny lester/Epoxy Blend Based Nano composites: Enhanced Mechanical, Thermal, and Electrical Properties

    International Nuclear Information System (INIS)

    Praharaj, A. P.; Behera, D.; Bastia, T. K.; Rout, A. K.

    2015-01-01

    This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nano composites consisting of Vinyl ester resin/epoxy (VER/EP) blend (40:60 w/w) reinforced with amine functionalized multi walled carbon nano tubes (f-MWCNTs). Five different sets of VER/EP nano composites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nano composites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nano composites with nano filler (f-MWCNTs) addition compared to the virgin blend (0 wt. nano filler loading). The properties are best observed in case of 5 wt.% nano filler loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nano filler particles. Thus the above nano composites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  14. Proposal for the award of a contract for the supply of glass-fibre reinforced epoxy support posts for the LHC cryomagnets

    CERN Document Server

    2000-01-01

    This document concerns the award of a contract for the supply of glass-fibre reinforced epoxy support posts for the LHC cryomagnets. Following a market survey carried out among 114 firms in sixteen Member States, a call for tenders (IT-2596/LHC/LHC) was sent on 14 August 2000 to 11 firms and a consortium consisting of two firms, in seven Member States. By the closing date, CERN had received four tenders from three firms and a consortium, in three Member States. The Finance Committee is invited to agree to the negotiation of a contract with EADS CASA ESPACIO (ES), the lowest bidder complying with the specifications, for the supply of 3750 cryodipole and 872 short straight section support posts for a total amount of 6 455 739 euros (9 747 454 Swiss francs), not subject to revision until 1 January 2003, with options for up to 300 support posts of each type, for an additional amount of 637 000 euros (961 800 Swiss francs), not subject to revision until 1 January 2003, bringing the total amount to 7 092 738 euros ...

  15. Flexural Strength of Banana Fibre Reinforced Epoxy Composites Produced through Vacuum Infusion and Hand Lay-Up Techniques - A Comparative Study

    Directory of Open Access Journals (Sweden)

    Mohamed Rahman

    2017-07-01

    Full Text Available Natural fiber such as kenaf, sisal, pineapple leaf and banana are growing popular nowadays due to its favor over traditional glass fiber and inorganic material. It is a renewable resources and abundantly available in the market. The composites made of natural fiber are economical, lightweight and environmental friendly. This study works on producing a composite based on the Banana fiber reinforced epoxy resin by using the method of Vacuum Infusion and Hand Lay-up. Banana fiber will be treated with Sodium Hydroxide (NaOH and water solution for 1 hour and then dried in the oven for 24 hours at 100°C. The composite will be produce based on different fiber volume fraction of 20% and 40% as well as different fiber length of 127mm, and 63mm. In Vacuum Infusion process, a mold made of aluminium have been manufactured according to the size of specimens of 127mm x 12.7mm x 3.2mm in dimension will be used in the preparation of specimens. The specimens of different volume fraction and fiber length produced by vacuum infusion and hand lay-up method will be mechanically tested through flexural test. The highest flexural strength is the specimen made by vacuum infusion process with 40% volume fraction and 63mm fiber length, which is 136.27MPa while for the hand lay-up process, the highest flexural strength is 80.71 with 40% volume fraction and 63mm fiber length.

  16. Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide

    Directory of Open Access Journals (Sweden)

    B. Qi

    2014-07-01

    Full Text Available Graphene oxide (GO sheets were chemically grafted with thermotropic liquid crystalline epoxy (TLCP. Then we fabricated composites using TLCP-g-GO as reinforcing filler. The mechanical properties and thermal properties of composites were systematically investigated. It is found that the thermal and mechanical properties of the composites are enhanced effectively by the addition of fillers. For instance, the composites containing 1.0 wt% of TLCP-g-GO present impact strength of 51.43 kJ/m2, the tensile strength of composites increase from 55.43 to 80.85 MPa, the flexural modulus of the composites increase by more than 48%. Furthermore, the incorporation of fillers is effective to improve the glass transition temperature and thermal stability of the composites. Therefore, the presence of the TLCP-g-GO in the epoxy matrix could make epoxy not only stronger but also tougher.

  17. Studies on the chemical resistance and mechanical properties of natural polyalthia cerasoides woven fabric/glass hybridized epoxy composites

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2015-01-01

    Full Text Available In the present work, natural Polyalthiacerasoide woven fabrics were extracted from the bark of the tree and using these woven fabrics/glass fibre as reinforcements and epoxy as matrix the hybrid composites were prepared by the hand lay-up technique...

  18. Development of quartz particulate reinforced AA6063 aluminum matrix composites via friction stir processing

    Directory of Open Access Journals (Sweden)

    S. Joyson Abraham

    2016-12-01

    Full Text Available Friction stir processing (FSP has been accepted as a potential method to produce aluminum matrix composites (AMCs without the drawbacks of liquid metallurgy methods. The present work focuses on the development of AMCs reinforced with quartz (SiO2 particles using FSP. Grooves with various dimensions were machined on AA6063 plates and compacted with quartz particles. A single pass FSP was carried out using a combination of optimized process parameters. The volume fraction of quartz particles in the AMCs was varied from 0 to 18 vol.% in steps of 6 vol.%. The developed AA6063/Quartz AMCs were characterized using optical, scanning and transmission electron microscopy. The quartz particles were distributed uniformly in the aluminum matrix irrespective of the location within the stir zone. The grains of the AA6063 were extensively refined by the combination of thermomechanical effect of FSP and the pinning effect of quartz particles. The dispersion of the quartz particles improved the microhardness and wear resistance of the AMCs. The role of quartz particles on the worn surface and wear debris is reported.

  19. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  20. Effects of Interface Modification on Mechanical Behavior of Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1997-01-01

    Unidirectional celsian matrix composites having approx. 42 volume percent of uncoated or BN/SiC-coated Hi-Nicalon fibers were tested in three-point bend at room temperature. The uncoated fiber-reinforced composites showed catastrophic failure with strength of 210 +/- 35 MPa and a flat fracture surface. In contrast, composites reinforced with BN/SiC-coated fibers exhibited graceful failure with extensive fiber pullout. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, with ultimate strength as high as 960 MPa. The elastic Young's modulus of the uncoated and BN/SiC-coated fiber-reinforced composites were measured as 184 q 4 GPa and 165 +/- 5 GPa, respectively. Fiber push-through tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interface. The low strength of the uncoated fiber-reinforced composite is probably due to degradation of the fibers from mechanical surface damage during processing. Because both the coated and uncoated fiber reinforced composites exhibited weak interfaces, the beneficial effect of the BN-SiC dual layer is primarily the protection of fibers from mechanical damage during processing.

  1. Obtention and dynamical mechanical behavior of polymer matrix carbon fire reinforced composites; Obtencao e comportamento mecanodinamico de compositos com matriz polimerica reforcada com fibras de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, Nelson Marques

    2001-07-01

    Polymer matrix composites reinforced with carbon fibres have been extensively used in the nuclear, aeronautics, automotive and leisure industry. This is due to their superior performance when compared to conventional materials in terms of specific strength and specific modulus (3 to 4 times higher than that of mild steels). However, these materials are anisotropic, requiring characterisation for each process and particular application. In the present work, the evaluation of epoxy resin reinforced with unidirectional and continuous carbon fibres was carried out. The composites materials were obtained by filament winding, with three different cure cycles, with two types of carbon fibres (6000 and 12000 filaments per strand) and with fibres volumetric fraction around 60 %. The evaluation of the composites was undertaken using following techniques: scanning electron microscopy (SEM); dynamic mechanical analysis (DMA); thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). These techniques allowed the evaluation and comparison of storage modulus, internal energy dissipation, glass transition region and glass transition temperature - Tg, cure cycling. Besides, void volumetric fraction was measured. The results indicate that the DMA is a good alternative technique to DSC and TGA. It provides an indication of the quality of the produced composite, both thermal and mechanical. The technique can assist the quality control of composite components by measuring mechanical and thermal properties - modulus and Tg. The DMA technique was sensitive to cure cycling evaluation. Regarding the obtained composites, the results showed the need for the development of specific cure cycle for each application, establishing a compromise between properties such as storage modulus and internal energy dissipation, and involved costs. The results demonstrated differences between the storage modulus and internal energy dissipation for the two types of used fibres. (author)

  2. Using Goals, Feedback, Reinforcement, and a Performance Matrix to Improve Customer Service in a Large Department Store

    Science.gov (United States)

    Eikenhout, Nelson; Austin, John

    2005-01-01

    This study employed an ABAC and multiple baseline design to evaluate the effects of (B) feedback and (C) a package of feedback, goalsetting, and reinforcement (supervisor praise and an area-wide celebration as managed through a performance matrix, on a total of 14 various customer service behaviors for a total of 115 employees at a large…

  3. Structure-property relations for silicon nitride matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon fibers

    NARCIS (Netherlands)

    Kooi, B.J.; Hosson, J.Th.M. De; Olivier, C.; Veyret, J.B.

    1999-01-01

    Si3N4 matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon (SiC) fibers, were studied using tensile testing and transmission electron microscopy. Three types of samples were evaluated all with a nominal coating thickness of 200 nm. The composites were densified by hot pressing at

  4. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  5. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    International Nuclear Information System (INIS)

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  6. Microstructure and Strain Rate Effects on the Mechanical Behavior of Particle Reinforced Epoxy-Based Reactive Materials

    Science.gov (United States)

    2011-12-01

    particles using positron annihilation lifetime spectroscopy (PALS). They found that the free volume of the matrix was dependent on the volume fraction...mechanical analysis and positron annihilation lifetime spectroscopy ,” Polymer International, vol. 51, pp. 1277–1284, 2002. [35] G. W. Brassell and K. B...use as structural materials in applications at high rates of strain. These types of com- posites are very complex due to their heterogeneous

  7. Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites

    International Nuclear Information System (INIS)

    Kelkar, Ajit D.; Mohan, Ram; Bolick, Ronnie; Shendokar, Sachin

    2010-01-01

    Graphical abstract: Use of alumina nanoparticles and TEOS electrospun nanofibers at the interfaces of glass fiber plies to develop delamination resistant epoxy polymeric composites and compare their Mode I fracture toughness characteristics. - Abstract: In the recent past, the research involving the fabrication and processing of reinforced polymer nanocomposites has increased significantly. These new materials are enabling in the discovery, development and incorporation of improved nanocomposite materials with effective manufacturing methodologies for several defense and industrial applications. These materials eventually will allow the full utilization of nanocomposites in not only reinforcing applications but also in multifunctional applications where sensing and the unique optical, thermal, electrical and magnetic properties of nanoparticles can be combined with mechanical reinforcement to offer the greatest opportunities for significant advances in material design and function. This paper presents two methods and material systems for processing and integration of the nanomaterial constituents, namely: (a) dispersing alumina nanoparticles using high energy mixing (using ultrasonication, high shear mixing and pulverization) and (b) electrospinning technique to manufacture nanofibers. These reinforced polymer nanocomposites and the processing methodologies are likely to provide effective means of improving the interlaminar properties of woven fiber glass composites compared to the traditional methods such as stitching and Z-pinning. The electrospinning technology relies on the creation of nanofibers with improved molecular orientation with reduced concentration of fiber imperfections and crystal defects. Electrospinning process utilizes surface tension effects created by electrostatic forces acting on liquid droplets, creating numerous nanofibers. These nanofibers thus have potential to serve as through-the-thickness reinforcing agents in woven composites. While

  8. Interlaminar shear strength of SiC matrix composites reinforced by continuous fibers at 900 °C in air

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Gou, Jianjie; Qiao, Shengru; Wang, Xuanwei; Zhang, Jun

    2014-01-01

    Highlights: • The application of SiC fiber could improve ILSS of the SiC matrix composites. • The orientation of the warp fibers plays a critical role in determining ILSS of 2.5D-C/SiC. • The failure mechanisms of 2D composites involve matrix cracking, and interfacial debonding. - Abstract: To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers

  9. Determining the fracture resistance of advanced SiC fiber reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Kishimoto, H.

    2007-01-01

    Full text of publication follows: One of the perceived advantages for highly-crystalline and stoichiometric silicon carbide (SiC) and SiC composites, e.g., advanced SiC fiber reinforced chemically-vapor-infiltrated (CVI) SiC matrix composites, is the retention of fast fracture properties after neutron irradiation at high-temperatures (∼1000 deg. C) to intermediate-doses (∼15 dpa). Accordingly, it has been clarified that the maximum allowable stress (or strain) limit seems unaffected in certain irradiation conditions. Meanwhile, understanding the mechanism of crack propagation from flaws, as potential weakest link to cause composite failure, is somehow lacking, despite that determining the strength criterion based on the fracture mechanics will eventually become important considering the nature of composites' fracture. This study aims to evaluate crack propagation behaviors of advanced SiC/SiC and to provide fundamentals on fracture resistance of the composites to define the strength limit for the practical component design. For those purposes, the effects of irreversible energies related to interfacial de-bonding, fiber bridging, and microcrack forming on the fracture resistance were evaluated. Two-dimensional SiC/SiC composites were fabricated by CVI or nano-infiltration and transient-eutectic-phase (NITE ) methods. Hi-Nicalon TM Type-S or Tyranno TM -SA fibers were used as reinforcements. In-plane mode-I fracture resistance was evaluated by the single edge notched bend technique. The key finding is the continuous Load increase with the crack growth for any types of advanced composites, while many studies specified the gradual load decrease for the conventional composites once the crack initiates. This high quasi-ductility appeared due primarily to high friction (>100 MPa) at the fiber/matrix interface using rough SiC fibers. The preliminary analysis based on the linear elastic fracture mechanics, which does not consider the effects of irreversible energy

  10. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  11. Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Syed Nasimul, E-mail: syedn@nitrkl.ac.in; Kumar, Lailesh

    2016-06-14

    In this work Al-matrix composites reinforced by exfoliated graphite nanoplatelets (xGnP) is fabricated by powder metallurgy route and their microstructure, mechanical properties and sliding wear behaviour were investigated. Here, xGnP has been synthesized from the thermally exfoliated graphite produced from a graphite intercalation compound (GIC) through rapid evaporation of the intercalant at an elevated temperature. The xGnP synthesized was characterized using scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), differential scanning calorimetry and thermogravimetric analysis (DSC/TGA), Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The Al and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 550 °C for 2 h in an inert atmosphere. Al-1, 2, 3 and 5 wt% xGnP nanocomposites were developed. Results of the wear test show that there was a significant improvement in the wear resistance of the composites up to the addition of 3 wt% of xGnP in the Al matrix. The hardness of the various Al-xGnP composites also shows improvement upto the addition of 1 wt% xGnP beyond which there was a decrease in the hardness of the composites. The tensile strength of the Al-xGnP composites continuously reduced with the addition of xGnP due to the formation of Al{sub 4}C{sub 3} particles at the interface of the Al and xGnP in the composite.

  12. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Hua [Key Laboratory for Liquid phase chemical oxidation Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Wang Chengguo, E-mail: sduwangchg@gmail.com [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Zhang Shan; Lin Xue [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. Black-Right-Pointing-Pointer Carbon fiber surface functional groups were analyzed by LRS and XPS. Black-Right-Pointing-Pointer Proper treatment of carbon fiber can prove an effective way to increase composite's performance. Black-Right-Pointing-Pointer Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H{sub 2}SO{sub 4}, KClO{sub 3} and silane coupling agent ({gamma}-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor

  13. Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2008-01-01

    The mixture of electrolytic copper powder with 5 wt.% of commercial Al 2 O 3 powder (average particle size: 15 and 0.75 μm, respectively) and the inert gas atomized prealloyed copper powder (average particle size: 30 μm) containing 2.5 wt.% aluminum were separately milled in air up to 20 h in the planetary ball mill. During milling aluminum in the prealloyed copper powders was oxidized in situ by internal oxidation with oxygen from the air forming very fine nano-sized Al 2 O 3 particles. The internal oxidation of 2.5 wt.% aluminum generated 4.7 wt.% of Al 2 O 3 in the copper matrix. Powders and compacts were characterized by light and scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and X-ray diffraction analysis. Microhardness and electrical conductivity were also included in measurements. The microhardness of Cu-2.5 wt.% Al compacts was 3.6 times higher than that of compacts processed from electrolytic copper powder. This increase in microhardness is a consequence of a fine dispersion of Al 2 O 3 particles and refined grain structure. The average values of electrical conductivity of compacts processed from Cu-5 wt.% Al 2 O 3 and Cu-2.5 wt.% Al powders previously milled for 20 h and were 88% and 70% IACS, respectively, which is a rather significant increase if compared with values of 60% and 23% IACS of compacts processed from as-received and non-milled powders. The microhardness of 20-h milled compacts decreases with the heat treatment at 800 deg. C. Due to the effect of nano-sized Al 2 O 3 particles Cu-2.5 wt.% Al compacts show lower decrease in microhardness. The results are discussed in terms of the effect of Al 2 O 3 particle size and fine grain structure on the reinforcing of the copper matrix

  14. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Yuan Hua; Wang Chengguo; Zhang Shan; Lin Xue

    2012-01-01

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H 2 SO 4 , KClO 3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  15. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  16. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    International Nuclear Information System (INIS)

    Schubert, A; Hackert-Oschätzchen, M; Lehnert, N; Götze, U; Herold, F; Schmidt, A; Meichsner, G

    2016-01-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control. (paper)

  17. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach

    Science.gov (United States)

    Fatchurrohman, N.; Chia, S. T.

    2017-10-01

    Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.

  18. Influence of Boron on the Creep Behavior and the Microstructure of Particle Reinforced Aluminum Matrix Composites

    Directory of Open Access Journals (Sweden)

    Steve Siebeck

    2018-02-01

    Full Text Available The reinforcement of aluminum alloys with particles leads to the enhancement of their mechanical properties at room temperature. However, the creep behavior at elevated temperatures is often negatively influenced. This raises the question of how it is possible to influence the creep behavior of this type of material. Within this paper, selected creep and tensile tests demonstrate the beneficial effects of boron on the properties of precipitation-hardenable aluminum matrix composites (AMCs. The focus is on the underlying microstructure behind this effect. For this purpose, boron was added to AMCs by means of mechanical alloying. Comparatively higher boron contents than in steel are investigated in order to be able to record their influence on the microstructure including the formation of potential new phases as well as possible. While the newly formed phase Al3BC can be reliably detected by X-ray diffraction (XRD, it is difficult to obtain information about the phase distribution by means of scanning electron microscopy (SEM and scanning transmission electron microscopy (STEM investigations. An important contribution to this is finally provided by the investigation using Raman microscopy. Thus, the homogeneous distribution of finely scaled Al3BC particles is detectable, which allows conclusions about the microstructure/property relationship.

  19. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  20. Damage Assessment in a SiC-fiber reinforced Ceramic Matrix Composite

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Assessment of the fracture behavior of a SiC-fbre-reinforced barium osumilite (BMAS ceramic matrix composite tested under static and cyclic tension conditions is reported herein. Notched specimens were used in order to limit material damage within a predefined gauge length. Imposition of successive unloading/reloading loops was found to result in an increase by 20% in material strength as compared to pure tension; the observed increase is attributed to energy dissipation from large-scale interfacial debonding phenomena that dominated the post-elastic tensile behaviour of the composite. Cyclic loading also helped establish the axial residual stress state of the fibres in the composite of tensile nature via a well-defined common intersection point of unloading-reloading cycles. A translation vector approach in the stress-strain plane was successful in establishing the residual stress-free properties of the composite and in reconciling the scatter noted in elastic properties of specimens with respect to theoretical expectations.

  1. Aluminium Matrix Composites Reinforced with Co-continuous Interlaced Phases Aluminium-alumina Needles

    Directory of Open Access Journals (Sweden)

    Elvio de Napole Gregolin

    2002-09-01

    Full Text Available An Al-5SiO2 (5 wt% of SiO2 aluminium matrix fiber composite was produced where the reinforcement consists of fossil silica fibers needles. After being heat-treated at 600 °C, the original fiber morphology was retained but its microstructure changed from solid silica to an interconnected (Al-Si/Al2O3 interlaced structure named co-continuous composite. A technique of powder metallurgy, using commercial aluminium powder and the silica fibers as starting materials, followed by hot extrusion, was used to produce the composite. The co-continuous microstructure was obtained partially or totally on the fibers as a result of the reaction, which occurs during the heat treatment, first by solid diffusion and finally by the liquid Al-Si in local equilibrium, formed with the silicon released by reaction. The internal structure of the fibers was characterized using field emission electron microscope (FEG-SEM and optical microscopy on polished and fractured samples.

  2. Numerical Methods Application for Reinforced Concrete Elements-Theoretical Approach for Direct Stiffness Matrix Method

    Directory of Open Access Journals (Sweden)

    Sergiu Ciprian Catinas

    2015-07-01

    Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.

  3. Synthesis and Characterization of a Polyimide-Epoxy Composite for Dental Applications

    Science.gov (United States)

    Yang, An; Xu, Chun

    2018-03-01

    Epoxy (EP) resins have been employed in dentistry for years, but their intrinsic brittleness demands a reinforcement to make them an ideal dental material that combines strength, toughness, and aesthetics. In this study, an EP resin was reinforced with a low-molecular-weight polyimide (PI). The PI/EP composites were subjected to three-point bending tests and examined by the scanning electron microscopy. It was found that blending PI with EP in proper proportions strengthened EP without sacrificing its toughness. The PI/EP composite could be employed in dentistry as the matrix of fiber-reinforced dental root canal posts.

  4. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  5. Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2005-03-01

    Full Text Available Four families of carbon fiber reinforced composites (CFRC used in aeronautical industry were evaluated by flexural and interlaminar shear tests. It is also characterized three families of non-conditioned and conditioned CFRC by compression test. The composites were obtained by hand lay-up process in autoclave by using prepregs based on epoxy matrices (F155 and F584 and carbon fiber fabric reinforcements (PW-"Plain Weave" and 8HS-"Eight Harness Satin". The F155-epoxy matrix was cured at 121 °C and the F584-epoxy type at 177 °C. After molding, the laminates were cut in specimens attending the ASTM D790 for the flexural test, the ASTM D2344 for the interlaminar shear test (ILSS and the ASTM D3410 for the compressive test. The compressive tests were performed for testing the specimens before and after hygrothermal conditioning. The results show that the F584-epoxy matrix laminates present higher mechanical properties when compared to the F155-epoxy ones. The shear-tested samples observed by scanning electron microscopy and that ones tested in flexural, analyzed by stereoscopy, revealed that the fractured surfaces present typical aspects. The compressive results show that the hygrothermal conditioning caused the decrease of the compressive strength in, approximately, 8-20% depending on the laminate type. The failure modes of the tested specimens were evaluated showing good agreement with the literature.

  6. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  7. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Merino, S.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2005-01-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al 2 O 3 . 3H 2 O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration

  8. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2005-07-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al{sub 2}O{sub 3} . 3H{sub 2}O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration.

  9. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Pellizzari, M. [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Zadra, M. [K4Sint, Start-up of the University of Trento, Viale Dante 300, 38057 Pergine Valsugana (Italy); Marin, E. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100 Udine (Italy)

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  10. Corrosion of Continuous Fiber Reinforced Aluminum Metal Matrix Composites (CF-AMCs)

    Science.gov (United States)

    Tiwari, Shruti

    The first objective of this research is to study the atmospheric corrosion behavior of continuous reinforced aluminum matrix composites (CF-AMCs). The materials used for this research were alumina (Al2O3) and nickel (Ni) coated carbon (C) fibers reinforced AMCs. The major focus is to identify the correlation between atmospheric parameters and the corrosion rates of CF-AMCs in the multitude of microclimates and environments in Hawai'i. The micro-structures of CF-AMCs were obtained to correlate the microstructures with their corrosion performances. Also electrochemical polarization experiments were conducted in the laboratory to explain the corrosion mechanism of CF-AMCs. In addition, CF-AMCs were exposed to seven different test sites for three exposure periods. The various climatic conditions like temperature (T), relative humidity (RH), rainfall (RF), time of wetness (TOW), chloride (Cl- ) and sulfate (SO42-) deposition rate, and pH were monitored for three exposure period. Likewise, mass losses of CF-AMCs at each test site for three exposure periods were determined. The microstructure of the CF-AMCS showed that Al/C/50f MMCs contained a Ni-rich phase in the matrix, indicating that the Ni coating on the C fiber dissolved in the matrix. The intermetallic phases obtained in Al-2wt% Cu/Al 2O3/50f-T6 MMC and Al-2wt%-T6 monolith were rich in Cu and Fe. The intermetallic phases obtained in Al 7075/Al2O3/50f-T6 MMC and Al 7075-T6 monolith also contained traces of Mg, Zn, Ni, and Si. Electrochemical polarization experiment indicated that the Al/Al 2O3/50f Al-2wt% Cu/Al2O3/50f-T6 and Al 7075/Al2O3/50f-T6 MMC showed similar corrosion trends as their respective monoliths pure Al, Al-2wt%-T6 and Al 7075-T6 in both aerated and deaerated condition. Al2O3 fiber, being an insulator, did not have a great effect on the polarization behavior of the composites. Al/C/50f MMCs corroded at a much faster rate as compared to pure Al monolith due to the galvanic effect between C and Al

  11. Influence of MWCNTs addition on mechanical and thermal behaviour of epoxy/kenaf multi-scale nanocomposite

    Science.gov (United States)

    Noor, N. A. M.; Razak, J. A.; Ismail, S.; Mohamad, N.; Yaakob, M. Y.; Theng, T. H.

    2017-06-01

    This research was conducted to develop kenaf reinforced epoxy/MWCNTs multi-scale composite using kenaf fibre and MWCNTs as the reinforcement in epoxy as the hosted matrix. The composites were produced by using a combination of hand lay-up and vacuum bagging process. The selection of optimum composition of epoxy-MWCNTs is based on the MWCNTs loading and the resulted mixture viscosity. Lower resin viscosity is required to allow good wetting and interaction between matrix and filler, which will yielded superior final performance of the fabricated composites. Therefore, different loading of MWCNTs (0.0 wt. %, 0.5 wt. %, 1.0 wt. %, 3.0 wt. %, 5.0 wt. %, 7.0 wt. %) were used to investigate the mechanical and thermal properties of the composites. As a result, the epoxy/kenaf/MWCNTs multi-scale composite at 1.0 wt. % of MWCNTs addition had yielded substantial improvement by 15.54 % in tensile strength and 90.54 % in fracture toughness. Besides, the fracture surface morphology of the selected samples were analysed via scanning electron microscopy (SEM) observation to further support the reinforcement characteristic of epoxy/kenaf/MWCNTs multi-scale composite.

  12. Protection of Steel Rebar in Salt-Contaminated Cement Mortar Using Epoxy Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    The Huu Nguyen

    2018-01-01

    Full Text Available Epoxy reinforced with two kinds of nanoparticles dealing with nano-SiO2 and nano-Fe2O3 was coated on steel rebar embedded in a chloride contaminated cement mortar. NaCl was added to the fresh Portland cement paste (at 0.3% and 0.5% by weight of cement to simulate the chloride contamination at the critical level. The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel rebar was investigated by linear potentiodynamic polarization and electrochemical impedance spectroscopy. For the 0.3 wt.% chloride mortars, the electrochemical monitoring of the coated steel rebars during immersion for 56 days in 0.1 M NaOH solutions suggested the beneficial role of nano-Fe2O3 particles in significantly improving the corrosion resistance of the epoxy-coated rebar. After 56 days of immersion, the nano-Fe2O3 reduced the corrosion current of epoxy-coated rebar by a factor of 7.9. When the chloride concentration in the cement mortar was 0.5 wt.%, the incorporation of nanoparticles into the epoxy matrix did not enhance the corrosion resistance of epoxy coating for the rebar. At this critical level, chloride ions initiated rebar corrosion through nanoparticles at the epoxy/rebar interface.

  13. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, S., E-mail: lathaselvam1963@gmail.com [Department of Mechanical Engineering, Nehru Institute of Technology, Coimbatore 641105, Tamil Nadu (India); Department of Mechanical Engineering, Anna University, Chennai 600025, Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Palanivel, R., E-mail: rpalanivelme@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Ganesh Babu, B., E-mail: profbgb@gmail.com [Department of Mechanical Engineering, Roever College of Engineering and Technology, Perambalur 621212, Tamil Nadu (India)

    2017-03-15

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  14. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing

    International Nuclear Information System (INIS)

    Selvakumar, S.; Dinaharan, I.; Palanivel, R.; Ganesh Babu, B.

    2017-01-01

    Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization and pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.

  15. Use of hyghly reactive rice husk ash in the production of cement matrix reinforced with Green coconut fiber

    OpenAIRE

    Pereira, C.L.; Savastano, H. Jr; Paya Bernabeu, Jorge Juan; Santos, S. F.; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Soriano Martinez, Lourdes

    2013-01-01

    This study evaluated the influence of partial replacement of Portland cement by rice husk ash (RHA) to enable the use of green coconut husk fiber as reinforcement for cementitious matrix. The use of highly reactive pozzolanic ash contributes for decreasing the alkaline attack on the vegetable fiber, originated from waste materials. The slurry dewatering technique was used for dispersion of the raw materials in aqueous solution, followed by vacuum drainage of water and pressing for the product...

  16. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite

    International Nuclear Information System (INIS)

    Shirkavand Hadavand, Behzad; Mahdavi Javid, Kimya; Gharagozlou, Mehrnaz

    2013-01-01

    Highlights: ► Preparation of epoxy polysulfide nanocomposite. ► Multi-walled carbon nanotubes have been modified and dispersed in epoxy polysulfide matrix. ► Mechanical properties of MWNT/epoxy polysulfide have been studied. - Abstract: In this research, multi-walled carbon nanotubes (MWCNTs) were modified by acid functionalization (H 2 SO 4 :HNO 3 = 1:3 by volume) and then mechanical properties of reinforced epoxy polysulfide resin by the both pure and treated MWNTs have been evaluated. For achieving this goal, different weight percentages of pure and treated MWCNT (0.1–0.3 wt%) were dispersed in the epoxy polysulfide resin separately and then mixed with curing agent. Experimental results have shown significant difference between acid treated and untreated MWCNTs in mechanical properties of epoxy polysulfide nanocomposites. In nanocomposite with 0.1–0.3% acid treated MWCNTs we observed increase of Young’s modulus from 458 to 723 MPa, tensile strength from 5.29 to 8.83 MPa and fracture strain from 0.16% to 0.25%. For understanding the structure and morphology of nanocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and field emission electron microscopy (FESEM). The results showed better dispersion of modified carbon nanotube than unmodified in polymeric matrix

  17. Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Zari Majidi Mohammadie

    2018-01-01

    Full Text Available ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i decellularized scaffolds, and (ii scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii scaffolds in comparison with group (i. Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i scaffolds did not have significant difference with group (ii scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

  18. Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model.

    Science.gov (United States)

    Nieponice, Alejandro; Gilbert, Thomas W; Badylak, Stephen F

    2006-12-01

    The gastric pull-up procedure, a standard intervention after radical esophagectomy, is associated with high morbidity and mortality due to leaks and stricture. A previous preclinical study showed that an extracellular matrix (ECM) scaffold with autologous muscle tissue could be used to repair a complete circumferential defect in the cervical esophagus. The aim of the present study was to determine if healing of end-to-end anastomoses of the esophagus could be improved by reinforcement with an ECM scaffold. Twelve female mongrel dogs underwent a complete transection of either the cervical esophagus (n = 6) or the gastroesophageal junction (n = 6). A portion of the endomucosa at the anastomotic site was resected and replaced with an ECM scaffold in contact with the subjacent muscle and the muscle was anastomosed. The measured end points included macroscopic and microscopic evaluation and quantification of the esophageal diameter at the anastomotic site. No anastomotic leaks or systemic complications were observed in the ECM-treated animals. Morphologic findings in both groups showed complete mucosal covering of the surgery site. The remodeled esophageal tissue showed angiogenesis and complete epithelialization. Intact, organized layers of muscle tissue were present between the native muscularis externa and the submucosal layer and effectively bridged the transected ends. The ECM scaffold altered the default mechanism of esophageal repair. Scar tissue formation with associated stricture was virtually eliminated, and the esophageal healing response was characterized by the replacement with structurally normal tissue layers. These findings suggest that the high morbidity rate associated with esophagectomy procedures may be reduced by this ECM augmentation procedure at the anastomotic site.

  19. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi; Hussain, Ali; Kim, Myong Ho

    2013-01-01

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%

  20. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  1. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  2. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  3. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  4. Characterization of Al-Cu alloy reinforced fly ash metal matrix ...

    African Journals Online (AJOL)

    The Al-4.5wt%Cu reinforced 3, 6, 9 and 12wt%fly ash composite was squeeze casted with an applied pressure of 120MPa. The results showed that hardness tensile compression and impact values were increased by increasing weight percentage of fly ash reinforcements during squeeze casting. Porosity and other casting ...

  5. Flax fabric reinforced arylated soy protein composites: A brittle-matrix behaviour

    CSIR Research Space (South Africa)

    Kumar, R

    2012-05-01

    Full Text Available Biocomposites were successfully prepared by the reinforcement of soy protein isolate (SPI) with different weight fractions of woven flax fabric. The flax-fabric-reinforced SPI-based composites were then arylated with 2,2-diphenyl-2-hydroxyethanoic...

  6. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    Science.gov (United States)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  7. Effect of Sonification Time on Synthesisi and Corrosion Resistance of Epoxy-Clay Nanocomposite

    Directory of Open Access Journals (Sweden)

    Niloufar Bahrami Panah

    2016-09-01

    Full Text Available In recent years many research works have been carried out on anti-corrosive nanocomposites coatings containing mineral reinforcements. The most important criteria in these attempts are polymerization method and the type of matrix and reinforcement of nanocomposites. In this regard, the physical and mechanical properties of the polymers in which a small amount of filler is used can be improved. In this research, an epoxy-clay nanocomposite was synthesized by in-situ polymerization method using a resin matrix based on bisphenol-A type epoxy and montmorillonite clay (Closite 15A. The treatment was used at different ultrasonic stirring times to disperse 1-4 weight percentages of clay particles into the matrix. The structure of synthesized epoxy-clay nanocomposite was studied by scanning electron microscopy and X-ray diffraction techniques. The average size of clay particles was determined by X-ray diffraction measurement. Then, anti-corrosion properties of epoxy-clay coatings, prepared under different ultrasonic durations and applied on carbon steel panels, were investigated by Tafel and electrochemical impedance spectroscopy techniques. For this purpose, the carbon steel panels coated with these coatings were immersed in 3.5% sodium chloride solution and tested at different immersion times. The results indicated that a nanocomposite containing 1% clay, synthesized, stirred 60 min ultrasonically, produced smaller particle size, lower corrosion current density and higher coating corrosion resistance than the other composite formulations. This nanocomposite provided superior protection against corrosion in sodium chloride solution.

  8. Matrix effect on leaching of Bisphenol A diglycidyl ether (BADGE) from epoxy resin based inner lacquer of aluminium tubes into semi-solid dosage forms.

    Science.gov (United States)

    Lipke, Uwe; Haverkamp, Jan Boris; Zapf, Thomas; Lipperheide, Cornelia

    2016-04-01

    To study the impact of different semi-solid dosage form components on the leaching of Bisphenol A (BPA) and Bisphenol A diglycidyl ether (BADGE) from the epoxy resin-based inner lacquer of aluminium tubes, the tubes were filled with different matrix preparations and stored at an elevated temperature. Despite compliance with the European Standards EN 15348 and EN 15766 on porosity and polymerisation of internal coatings of aluminium tubes, the commercially available tubes used in the study contained an increased amount of polymerisation residues, such as unbound BPA, BADGE and BADGE derivatives in the lacquer, as determined by acetonitrile extraction. Storage of Macrogol ointments in these tubes resulted in an almost quantitative migration of the unbound polymerisation residues from the coating into the ointment. In addition, due to alterations observed in the RP-HPLC chromatograms of the matrix spiked with BADGE and BADGE derivatives it is supposed that the leachates can react with formulation components. The contamination of the medicinal product by BPA, BADGE and BADGE derivatives can be precluded by using aluminium tubes with an internal lacquer with a low degree of unbound polymerisation residues. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    Science.gov (United States)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  10. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.

    Science.gov (United States)

    Her, Shiuh-Chuan; Lin, Kuan-Yu

    2017-06-16

    To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.

  11. Oxidation resistance in air of 1-D SiC (Hi-nicalon) fibre reinforced silicon nitride ceramic matrix composite

    International Nuclear Information System (INIS)

    Dupel, P.; Veyret, J.B.

    1997-01-01

    The oxidation behaviour of a Si 3 N 4 matrix reinforced with SiC fibres (Hi-nicalon) pre-coated with a 400 nm thick pyrolytic carbon layer has been investigated in dry air in the temperature range 800-1500 C. The same study was performed for individual constituents of the composite (fibre and matrix). Two phenomena are observed in the oxidation behaviour of the composite. At low temperature (T<1200 C), the matrix oxidation is negligible, only the carbon interphase was oxidised creating an annular space between the fibres and the matrix throughout the sample. At high temperature (T≥1300 C) the rate of formation of the oxidation products of the matrix is rapid and a sealing effect is observed. While at these temperatures the interphase is protected in the bulk of the material, the time needed to seal the gap between the fibre and the matrix is too long to prevent its oxidation to a significant depth from the surface. Finally, preliminary results are presented where the consumption of the interphase is completely prevented by applying an external coating which gives oxidation protection from low to high temperature. (orig.)

  12. Dynamic tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Chen Xuan; Li Yulong

    2011-01-01

    Graphical abstract: The dynamic tensile behavior of 2D C/SiC composites was experimentally investigated by means of SHTB. Both the fracture surface and bundle fracture surfaces of composites were observed. The strain rate sensitivity of in-bundle interface was concluded as the dominant contributor to the strain rate sensitivity of the tensile strength. Highlights: → The tensile strength increases with strain rate. → The tensile failure strain remains independent of strain rate. → Macro-structural morphology reveals rough fracture surface under dynamic loading. → SEM morphology reveals integrated bundle pull-out under dynamic loading. → Strain rate sensitivity of in-bundle interface leads to that of the tensile strength. - Abstract: An investigation has been undertaken to determine the dynamic and quasi-static tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix (2D-C/SiC) composites by means of the split Hopkinson tension bar and an electronic universal test machine respectively. The results indicate that the tensile strength of 2D C/SiC composites is increased at high strain rate. Furthermore, coated specimens show not only a 15% improvement in tensile strength but heightened strain rate sensitivity compared with uncoated ones. It is also shown that the tensile failure strain is strain rate insensitive and remains around 0.4%. Optical macrograph of failed specimens under dynamic loading revealed jagged fracture surfaces characterized by delamination and crack deviation, together with obvious fiber pull-out/splitting, in contrast with the smooth fracture surfaces under quasi-static loading. Scanning electron microscopy micrograph of fracture surface under dynamic loading clearly displayed integrated bundle pull-out which implies suppressed in-bundle debonding and enhanced in-bundle interfacial strengthening, in contrast with extensive in-bundle debonding under quasi-static loading. Thus we conclude that, with 2D C

  13. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  14. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites.

    Directory of Open Access Journals (Sweden)

    Touchard F.

    2010-06-01

    Full Text Available This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  15. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    Science.gov (United States)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  16. Theoretical and experimental analysis of the toughening behavior of whisker reinforcement in ceramic matrix composites

    International Nuclear Information System (INIS)

    Becher, P.F.; Hsueh, C.H.; Angelini, P.; Tiegs, T.N.

    1988-01-01

    Analytical solutions are presented describing the experimentally verified toughening of whisker reinforced ceramics. Clear insights are provided into the interrelationships of whiskers, matrices, and interfaces in the case of strong interfaces with minimized whisker pullout

  17. Nonequilibrium Alloying of Aluminum for Improving the Corrosion Resistance of Graphite-Reinforced Metal Matrix Composites

    National Research Council Canada - National Science Library

    Shaw, Barbara

    1994-01-01

    .... Unfortunately, MMCs, especially Gr reinforced composites, are extremely susceptible to corrosion with severe attack in chloride-containing environments occurring in as little time as several weeks for Gr/Al composites...

  18. Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has...

  19. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  20. Microstructural, mechanical, and thermal characteristics of recycled cellulose fiber-halloysite-epoxy hybrid nanocomposites

    KAUST Repository

    Alamri, H.

    2012-02-26

    Epoxy hybrid-nanocomposites reinforced with recycled cellulose fibers (RCF) and halloysite nanotubes (HNTs) have been fabricated and investigated. The dispersion of HNTs was studied by synchrotron radiation diffraction (SRD) and transmission electron microscopy (TEM). The influences of RCF/HNTs dispersion on the mechanical properties and thermal properties of these composites have been characterized in terms of flexural strength, flexural modulus, fracture toughness, impact toughness, impact strength, and thermogravimetric analysis. The fracture surface morphology and toughness mechanisms were investigated by SEM. Results indicated that mechanical properties increased because of the addition of HNTs into the epoxy matrix. Flexural strength, flexural modulus, fracture toughness, and impact toughness increased by 20.8, 72.8, 56.5, and 25.0%, respectively, at 1 wt% HNTs load. The presence of RCF dramatically enhanced flexural strength, fracture toughness, impact strength, and impact toughness of the composites by 160%, 350%, 444%, and 263%, respectively. However, adding HNTs to RCF/epoxy showed only slight enhancements in flexural strength and fracture toughness. The inclusion of 5 wt% HNTs into RCF/epoxy ecocomposites increased the impact toughness by 27.6%. The presence of either HNTs or RCF accelerated the thermal degradation of neat epoxy. However, at high temperature, samples reinforced with RCF and HNTs displayed better thermal stability with increased char residue than neat resin. © 2012 Society of Plastics Engineers.

  1. Influence of reinforcement grade and matrix composition on corrosion resistance of cast aluminium matrix composites (A3xx.x/SiCp) in a humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Viejo, F.; Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica Universidad Complutense, 28040, Madrid (Spain); Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica Universidad Complutense, 28040, Madrid (Spain); Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Lopez, M.D. [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28931, Mostoles, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2003-05-01

    A study of the influence of the silicon carbide (SiC{sub p}) proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) exposed to high relative humid environment was carried out under simulation in a climatic chamber. The matrix of A360/SiC/xxp composites was virtually free of copper while the A380/SiC/xxp matrix contained 3.13-3.45wt% Cu and 1.39-1.44wt% Ni. The kinetics of the corrosion process was studied on the basis of gravimetric tests. The nature of corrosion products was analysed by Scanning Electron Microscopy (SEM) and Low Angle X-Ray Diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion damage to Al/SiCp composites was low at 80% Relative Humidity (RH) and increased with temperature, SiCp proportion, relative humidity and Cu matrix concentration. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Eine Studie zum Einfluss des Siliziumkarbidanteils (SiCp) und der Zusammensetzung des Grundwerkstoffs von vier Aluminiummatrixverbundwerkstoffen (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p), die in Umgebungen mit relativ hoher Feuchtigkeit ausgelagert waren, wurde unter simulierten Bedingungen in einer Klimakammer durchgefuehrt. Die Matrix des A360/SiC/xxp-Verbundwerkstoffs war praktisch Kupfer-frei waehrend die A380/SiC/xxp Matrix 3,13-3,45 Gew.-% Cu und 1,39-1,44 Gew.-% Ni enthielt. Die Kinetik des Korrosionsprozesses wurde auf der Basis von gravimetrischen Messungen studiert. Die Beschaffenheit der Korrosionsprodukte wurde mittelt REM-Untersuchungen und

  2. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through

  3. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    Science.gov (United States)

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve

  4. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhou, Weiwei; Yamaguchi, Tatsuya; Kikuchi, Keiko; Nomura, Naoyuki; Kawasaki, Akira

    2017-01-01

    The thermal expansion response of multi-walled carbon nanotube (MWCNT) reinforced Al matrix composites was employed to discuss the improvement of the load transfer at the interface between the MWCNTs and the Al matrix. An aluminum carbide (Al_4C_3) nanostructure at the end of the MWCNTs, incorporated in the Al matrix, was produced by appropriate heat-treatment. The stress contrast around the Al_4C_3 observed in the high-resolution transmission electron microscopy (HRTEM) image revealed the evidence of a trace of friction, which would lead to the enhancement of the anchor effect from the Al matrix. This anchor effect of Al_4C_3 may hinder the local interfacial slippage and constrain the deformation of the Al matrix. As a result, the thermal expansion behavior became linear and reversible under cyclic thermal load. It is concluded that the formation of Al_4C_3 could effectively enhance the load transfer in MWCNT/Al composites. The yield strength of MWCNT/Al composites was substantially increased under the appropriate quantity of Al_4C_3 produced at the MWCNT-Al interface by precisely controlled heat-treatment.

  5. Field assisted sintering of refractory carbide ceramics and fiber reinforced ceramic matrix composites

    Science.gov (United States)

    Gephart, Sean

    materials. While FAST sintered materials showed higher average values, in general they also showed consistently larger variation in the scattered data and consequently larger standard deviation for the resulting material properties. In addition, dynamic impact testing (V50 test) was conducted on the resulting materials and it was determined that there was no discernable correlation between observed mechanical properties of the ceramic materials and the resulting dynamic testing. Another study was conducted on the sintering of SiC and carbon fiber reinforced SiC ceramic matrix composites (CMC) using FAST. There has been much interest recently in fabricating high strength, low porosity SiC CMC.s for high temperature structural applications, but the current methods of production, namely chemical vapor infiltration (CVI), melt infiltration (MI), and polymer infiltration and pyrolysis (PIP), are considered time consuming and involve material related shortcomings associated with their respective methodologies. In this study, SiC CMC.s were produced using the 25 ton laboratory unit with a target sample size of 40 mm diameter and 3 mm thickness, as well as on the larger 250 ton industrial FAST system targeting a sample size of 101.6 x 101.6 x 3 mm3 to investigate issues associated with scaling. Several sintering conditions were explored including: pressure of 35-65 MPa, temperature of 1700-1900°C, and heating rates between 50-400°C/min. The SiC fibers used in this study were coated using chemical vapor deposition (CVD) with boron nitride (BN) and pyrolytic carbon to act as a barrier layer and preserve the integrity of the fibers during sintering. Then the barrier coating was coated by an outer layer of SiC to enhance the bonding between the fibers and the SiC matrix. Microstructures of the sintered samples were examined by FE-SEM. Mechanical properties including flexural strength-deflection and stress-strain were characterized using 4-point bend testing. Tensile testing was

  6. Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2008-11-01

    Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.

  7. Effect of gamma radiation on the magnetic properties of a carbon-fiber-reinforced plastic with a polysulfone matrix

    International Nuclear Information System (INIS)

    Rodin, Yu.P.; Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.

    1994-01-01

    In the present article, the authors report results of a study of the change in the magnetic susceptibility of a carbon-fiber-reinforced plastic based on a thermoplastic matrix -- aromatic polysulfone -- in relation to the absorbed dose of γ-radiation. The study results show that the change in the magnetic susceptibility of specimens which have absorbed different doses of gamma radiation correlates with the change in their mechanical properties, thermal behavior, and structural changes. A method is described for measuring susceptibility which can be used successfully to study the structure and properties of polymer materials and composites based on them. 3 refs., 3 figs

  8. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  9. Mechanical properties and environmental effects of epoxy resins in the neat state and in composites

    International Nuclear Information System (INIS)

    Yang, C.M.P.

    1984-01-01

    The dynamic mechanical properties of graphite fiber reinforced, epoxy matrix composite laminates subjected to loading perpendicular to the plane of lamination and of neat epoxy resin are reported. The centrosymmetric deformation (CSD) test geometry provides an accurate and convenient test mode for the study of the viscoelastic behavior of very stiff graphite-epoxy laminates. It is found that the in-phase and out-of-phase stiffness superpose to form master curves covering a frequency range of 12 decades. By a suitable scaling procedure of the master curves, it is found that the in-phase stiffness has the same shape and the out-of-phase has the same dispersion for all laminates irrespective of the stacking sequence. The dispersion characteristics of in-situ and neat resin epoxy were nearly identical, but with the neat resin having a lower glass-transition temperature. The graphite/epoxy composites and neat resin epoxy have been shown to be sensitive to hygrothermal environment. For postcured specimens the plasticization and inhomogeneous swelling effects due to the moisture absorbed are found to be reversible, in the sense that the initially dry properties of the laminate are recovered after redrying the wet specimen. On the other hand, for as cured specimens, the plasticization and inhomogeneous swelling effects are found to be irreversible under the same hygrothermal environment

  10. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    Science.gov (United States)

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Preparation, Characterization, and Modeling of Carbon Nanofiber/Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lan-Hui Sun

    2011-01-01

    Full Text Available There is a lack of systematic investigations on both mechanical and electrical properties of carbon nanofiber (CNF-reinforced epoxy matrix nanocomposites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nanocomposites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nanocomposites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nanocomposite with a 1.0 wt% CNFs. The alternate-current (AC electrical properties of the CNF/epoxy nanocomposites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt% (0.058 vol% CNFs and by ten orders of magnitude for nanocomposites with CNF volume fractions higher than 1.0 wt% (0.578 vol%. The percolation threshold (i.e., the critical CNF volume fraction is found to be at 0.057 vol%.

  12. Sliding wear behavior of E-glass-epoxy/MWCNT composites: An experimental assessment

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2016-03-01

    Full Text Available This investigation has evaluated the sliding wear properties of E-glass-epoxy/MWCNT (multiwalled carbon nanotube composite and Epoxy/MWCNT composite. Four different reinforcements (0, 0.5,1 and 1.5 wt % of MWCNTs are dispersed into an epoxy resin. Design of experiments (DOE and Analysis of variance (ANOVA are employed to understand the relationship between control factors (Percentage of reinforcement, Sliding distance, Sliding velocity and Normal load and response measures (specific wear rate and friction coefficient. The control variables such as sliding distance (300, 600, 900 and 1200 m and normal loads of 10, 15, 20 and 25 N and at sliding velocities of 1, 2, 3 and 4 m/s are chosen for this study. It is observed that that the specific wear rate and friction coefficient can be reduced by the addition of MWCNTs. Scanning electron microscopy (SEM is used to observe the worn surfaces of the samples. Compared with neat epoxy, the composites with MWCNTs showed a lower mass loss, friction coefficient and wear rate and these parameters decreased with the increase of MWCNT percentage. Microscopic investigation of worn out sample fracture surface has revealed that fiber debonding happens when the stresses at the fiber matrix interface exceeds the interfacial strength, causing the fiber to debond from the matrix. The optimum control variables have been derived to reduce both wear and friction coefficient of composites.

  13. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  14. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    Science.gov (United States)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  15. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2017-01-01

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al 3 Ti and Al 3 Ni. In addition, a small quantity of TiO 2 phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al 3 Ti, Al 3 Ni, and TiO 2 phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  16. Stainless steel fibre reinforced aluminium matrix composites processed by squeeze casting: relationship between processing conditions and interfacial microstructure

    International Nuclear Information System (INIS)

    Colin, C.; Marchal, Y.; Boland, F.; Delannay, F.

    1993-01-01

    This work investigates the influence of some processing parameters on the extent of interfacial reaction in squeeze cast aluminium matrix composites reinforced with 12 μm diameter, continuous stainless steel fibres. The average thickness of the reaction layer at fibre/matrix interfaces was measured by image analysis. When casting was made in a die at room temperature, the thickness of the reaction layer was affected on a distance of several mm from the lateral surface or from the bottom of the preform. The results indicate that the major part of the reaction occurs before solidification of the liquid metal. The control of the extent of interfacial reaction can be achieved through optimization of both infiltration parameters and features of the preform such as the volume fraction of the fibres. (orig.)

  17. Microstructure and mechanical properties of Al-Mg-Si-Cu matrix composites reinforced with AINp. processed by extrusion of powders

    International Nuclear Information System (INIS)

    Ortiz, J. L.; Amigo, V.; Salvador, M. D.; Perz, C. R.

    2000-01-01

    This article presents an experimental investigation on the structure and mechanical properties of an Al-Mg-Si-Cu P/M alloy reinforced with 5%, 10% and 15% aluminum nitride, produced by extrusion of cold compacted powders mixtures. Mechanical properties in as extruded and T6 conditions are compared. Differential Scanning Calorimetry and Dilatometric analysis were conducted to gain further insight into the precipitation process of these materials. Low cost 6061 Al/AINp composites can be produced with rate and small porosity by extrusion of cold compacted shapes without canning. The mechanical properties of the MMCs obtained by this process have limitations for high particles fractions because of clustering effects. All materials are always harder than the matrix and shows a similar behavior during aging processes but kinetics is changed. Potential applications of dilatometric techniques in the aging investigations of aluminum alloys and aluminum matrix composites have been established. (Author) 23 refs

  18. The role of the epoxy resin: Curing agent ratio in composite interfacial strength by single fibre microbond test

    DEFF Research Database (Denmark)

    Minty, Ross; Thomason, James L.; Petersen, Helga Nørgaard

    2015-01-01

    This paper focuses on an investigation into the role of the epoxy resin: curing agent ratio in composite interfacial shear strength of glass fibre composites. The procedure involved changing the percentage of curing agent (Triethylenetetramine [TETA]) used in the mixture with several different...... percentages used, ranging from 4% up to 30%, including the stoichiometric ratio. It was found by using the microbond test, that there may exist a relationship between the epoxy resin to curing agent ratio and the level of adhesion between the reinforcing fibre and the polymer matrix of the composite....

  19. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    Science.gov (United States)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  20. Strain redistribution around holes and notches in fiber-reinforced cross-woven brittle matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, Torben Krogsdal; Brøndsted, Povl

    1997-01-01

    Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...

  1. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  2. Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres

    Science.gov (United States)

    2012-01-01

    predicting the properties of interest listed above. Kiser et al. [12] extended a metal foam model to account for ceramic reinforcement to predict the...Daoud A. J Alloys Compd. 2009; 487:618. 11. Drury WJ, Rickles SA, Sanders Jr TH, Cochran JK. In Light-Weight Alloys for Aerospace Applications, ed. Loe

  3. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites

    Directory of Open Access Journals (Sweden)

    Hyeon-Hye Kim

    2017-08-01

    Full Text Available In this work; the effects of an aluminum nitride (AlN ceramic coating on the thermal conductivity of carbon fiber-reinforced composites were studied. AlN were synthesized by a wet-thermal treatment (WTT method in the presence of copper catalysts. The WTT method was carried out in a horizontal tube furnace at above 1500 °C under an ammonia (NH3 gas atmosphere balanced by a nitrogen using aluminum chloride as a precursor. Copper catalysts pre-doped enhance the interfacial bonding of the AlN with the carbon fiber surfaces. They also help to introduce AlN bonds by interrupting aluminum oxide (Al2O3 formation in combination with oxygen. Scanning electron microscopy (SEM; Transmission electron microscopy (TEM; and X-ray diffraction (XRD were used to analyze the carbon fiber surfaces and structures at each step (copper-coating step and AlN formation step. In conclusion; we have demonstrated a synthesis route for preparing an AlN coating on the carbon fiber surfaces in the presence of a metallic catalyst.

  4. Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping

    Science.gov (United States)

    Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang

    2011-02-01

    A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.

  5. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites

    International Nuclear Information System (INIS)

    Yi, Danqing; Yu, Pengchao; Hu, Bin; Liu, Huiqun; Wang, Bin; Jiang, Yong

    2013-01-01

    Highlights: • Ni-coated TiC composite powders were prepared by electroless plating. • Iron-based composites reinforced by TiC particles was prepared by HIP. • Mechanical and wear properties were improved with the addition of Ni-coated TiC. • The nickel coating promotes the formation and growth of sintering neck. - Abstract: Ni-coated titanium carbide (TiC) composite powders were prepared by electroless plating (EP). Further, using hot isostatic pressing (HIP), iron matrix composites reinforced with 4 wt% Ni-coated TiC particulates with relative density close to 100% were prepared. The microstructure and phase composition of the Ni-coated powders and the composites were analyzed using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the TiC particles were distributed uniformly in the matrix and were free of segregation or coarsening. Compared to the TiC particles without Ni coating, the reinforced iron-based composites containing the Ni-coated particles showed higher relative densities and better mechanical properties. The density, hardness, tensile strength, and elongation were enhanced to 99.98%, 243 HV, 565 MPa, and 11.7%, respectively in composites containing Ni-coated TiC particles from 99.70%, 210 HV, 514 MPa, and 10.3%, respectively in composites that were prepared using particles without Ni coating. In addition, the mass losses in the composites containing the Ni-coated particles were reduced by 32–75% in the abrasive wear test with various vertical loads. We propose that the nickel coatings on the particulates had a beneficial effect on the microstructure and properties of the reinforced iron-based composites is due to promotion of neck formation and growth between TiC and iron powders during sintering, which enhanced the density of the sintered compact and the bonding strength between the TiC particles and the iron matrix

  6. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  7. Electron beam irradiation in natural fibres reinforced polymers (NFRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kechaou, B. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Salvia, M. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Fakhfakh, Z. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Juve, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France); Boufi, S. [LSME-Faculte des Sciences de Sfax, 3018 Sfax (Tunisia); Kallel, A. [LaMaCoP - Faculte des sciences de Sfax, 3018 Sfax (Tunisia); Treheux, D. [LTDS-UMR 5513 - Ecole Centrale de Lyon, B.P 163 69134 Ecully Cedex (France)], E-mail: daniel.treheux@ec-lyon.fr

    2008-11-15

    This study focuses on the electric charge motion in unsatured polyester and epoxy composites reinforced by natural fibres of Alfa type, treated by different coupling agents. The electric charging phenomenon is studied by scanning electron microscopy mirror effect (SEMME) coupled with the induced current method (ICM). Previously, using the same approach, glass fibre reinforced epoxy (GFRE) was studied to correlate mechanical [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Composites Science and Technology 64 (2004) 1467], or tribological [B. Kchaou, C. Turki, M. Salvia, Z. Fakhfakh, D. Treheux, Dielectric and friction behaviour of unidirectionalglass fibre reinforced epoxy (GFRE), Wear, 265 (2008) 763.] properties and dielectric properties. It was shown that the dielectric properties of the fibre-matrix interfaces play a significant role in the optimization of the composite. This result seems to be the same for natural fibre composites: the fibre-matrix interfaces allow a diffusion of the electric charges which can delocalize the polarization energy and consequently delay the damage of the composite. However, a non-suited sizing can lead to a new trapping of electric charges along these same interfaces with, as a consequence, a localization of the polarisation energy. The optimum composite is obtained for one sizing which helps, at the same time, to have a strong fibre-matrix adhesion and an easy flow of the electric charges along the interface.

  8. Fatigue life of fibre reinforced plastics at 295 K after thermal cycling between 295 K and 77 K

    Science.gov (United States)

    Belisario, G.; Caproni, F.; Marchetti, E.

    Results of low cycle three-point end fatigue tests at 295 K are reported. These were obtained from fibre reinforced plastics (FRP) flat specimens made of epoxy matrix reinforced with glass rovings only or glass rovings and Kevlar cloth. It is shown that previous thermal cycles between 295 K and 77 K exert an influence on the fatigue life as well on the acoustic emission results.

  9. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    OpenAIRE

    Ferreira, Sonia C.; Conde, Ana; Arenas, Mar?a A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodi...

  10. Determination of mechanical properties of carbon/epoxy plates by tensile stress test

    Science.gov (United States)

    Bere, Paul; Krolczyk, Jolanta B.

    2017-10-01

    The polymeric composite materials used in aerospace, military, medical or racing cars manufacturing end up being used in our daily life Whether we refer to the performing vehicles, subassemblies or parts for aircrafts, wind, telegraph poles, or medical prostheses they all are present in our lives and they are made of composite materials (CM). This paper presents research regarding three different composite materials, plates by carbon fiber, in epoxy matrix. Starting with materials presentation, manufacturing methodology and determination of mechanical properties at carbon fiber/epoxy were done. Vacuum bag technology to obtain the composite structure offer opportunity to get a very compact and homogeny composite structure. For the moment this technology are adequate for high performances pieces. The mechanical characteristics of plates made of composite materials reinforced presented indicates closed value like metal materials. Based on the results, a comparative study between the reinforced materials typically used to manufacture the plates of CM is carried out.

  11. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  12. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite

    Science.gov (United States)

    Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava

    2018-06-01

    The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.

  13. Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC

    KAUST Repository

    Alamri, H.; Low, I. M.

    2012-01-01

    Three different approaches have been applied and investigated to enhance the thermal and mechanical properties of epoxy resin. Epoxy system reinforced with either recycled cellulose fibers (RCF) or nanosilicon carbide (n-SiC) particles as well

  14. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa); Nelson, R., E-mail: nelson.90.mech@gmail.com [Department of Mechanical Engineering, Karunya University, Coimbatore 641114, Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph.2001@gmail.com [Center for Research in Metallurgy, School of Mechanical Sciences, Karunya University, Coimbatore 641114, Tamil Nadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006 (South Africa)

    2016-08-15

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneously in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.

  15. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    Lin Tiesong; Jia Dechang; He Peigang; Wang Meirong; Liang Defu

    2008-01-01

    A kind of sheet-like carbon fiber preform was developed using short fibers (2, 7 and 12 mm, respectively) as starting materials and used to strengthen a geopolymer. Mechanical properties, fracture behavior, microstructure and toughening mechanisms of the as-prepared composites were investigated by three-point bending test, optical microscope and scanning electron microscopy. The results show that the short carbon fibers disperse uniformly in geopolymer matrix. The C f /geopolymer composites exhibit apparently improved mechanical properties and an obvious noncatastrophic failure behavior. The composite reinforced by the carbon fibers of 7 mm in length shows a maximum flexural strength as well as the highest work of facture, which are nearly 5 times and more than 2 orders higher than that of the geopolymer matrix, respectively. The predominant strengthening and toughening mechanisms are attributed to the apparent fiber bridging and pulling-out effect based on the weak fiber/matrix interface as well as the sheet-like carbon fiber preform

  16. The orientation-enhancing effect of diphenyl aluminium phosphate nanorods in a liquid-crystalline epoxy matrix ordered by magnetic field

    Czech Academy of Sciences Publication Activity Database

    Mossety-Leszczak, B.; Strachota, Beata; Strachota, Adam; Steinhart, Miloš; Šlouf, Miroslav

    2015-01-01

    Roč. 72, November (2015), s. 238-255 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : liquid-crystalline epoxy resins * magnetic field orientation * nanocomposites Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  17. Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Zhang Di; Li Guobin

    2005-01-01

    This paper reports a study on the wear property of powder metallurgy aluminum matrix composites 9Si/Al-Cu-Mg. A on rock wear-testing machine is used to evaluate the wear property of the composites, in which a GCrl5 steel ring is used as the counter face material. The wear behavior of the composites under different conditions is studied. The optical microscope and scanning electron microscope are used to analyze the worn surfaces and the subsurface of the composites in order to research the wear mechanism of the composites. Results indicate that the weight loss of the composite were lower than that of the matrix alloy

  18. X-ray microtomography of damage in particle-reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Mummery, P.M.; Derby, B.; Anderson, P.; Davis, G.; Elliott, J.C.

    1993-01-01

    The damage which occurs on plastic straining of silicon carbide particle-reinforced aluminium alloys has been characterised using x-ray microtomography. The technique is used to provide density measurements as a function of strain in addition to imaging the internal structure with a resolution of ∼15μm. This allows a much more accurate determination of microstructural damage in terms of void growth than is available from measurements of density using buoyancy methods or from elastic modulus decrease. These data can be combined with acoustic emission measurements during straining to allow damage nucleation and growth contributions to be separated. (orig.)

  19. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites

    International Nuclear Information System (INIS)

    Li, V.C.; Wu, H.W.

    1992-01-01

    Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain hardening can be practically designed for both gills of composites by proper tailoring of material structures. 18 refs., 8 figs., 2 tabs

  20. Characterization of Al-Cu alloy reinforced fly ash metal matrix ...

    African Journals Online (AJOL)

    user

    Graphite crucible was used for melting of matrix alloy, and the addition and mixing of particulates were made into ... specimen was cut as per ASTM-E23 by diamond blade using CNC machine. ... there will be no change in the size of the flyash.