WorldWideScience

Sample records for rehabilitation robot armin

  1. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases

    Directory of Open Access Journals (Sweden)

    Nef Tobias

    2009-12-01

    Full Text Available Abstract Background Robot-assisted therapy offers a promising approach to neurorehabilitation, particularly for severely to moderately impaired stroke patients. The objective of this study was to investigate the effects of intensive arm training on motor performance in four chronic stroke patients using the robot ARMin II. Methods ARMin II is an exoskeleton robot with six degrees of freedom (DOF moving shoulder, elbow and wrist joints. Four volunteers with chronic (≥ 12 months post-stroke left side hemi-paresis and different levels of motor severity were enrolled in the study. They received robot-assisted therapy over a period of eight weeks, three to four therapy sessions per week, each session of one hour. Patients 1 and 4 had four one-hour training sessions per week and patients 2 and 3 had three one-hour training sessions per week. Primary outcome variable was the Fugl-Meyer Score of the upper extremity Assessment (FMA, secondary outcomes were the Wolf Motor Function Test (WMFT, the Catherine Bergego Scale (CBS, the Maximal Voluntary Torques (MVTs and a questionnaire about ADL-tasks, progress, changes, motivation etc. Results Three out of four patients showed significant improvements (p Conclusion Data clearly indicate that intensive arm therapy with the robot ARMin II can significantly improve motor function of the paretic arm in some stroke patients, even those in a chronic state. The findings of the study provide a basis for a subsequent controlled randomized clinical trial.

  2. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. ARMin III – Arm Therapy Exoskeleton with an Ergonomic Shoulder Actuation

    Directory of Open Access Journals (Sweden)

    Tobias Nef

    2009-01-01

    Full Text Available Rehabilitation robots have become important tools in stroke rehabilitation. Compared to manual arm training, robot-supported training can be more intensive, of longer duration and more repetitive. Therefore, robots have the potential to improve the rehabilitation process in stroke patients. Whereas a majority of previous work in upper limb rehabilitation robotics has focused on end-effector-based robots, a shift towards exoskeleton robots is taking place because they offer a better guidance of the human arm, especially for movements with a large range of motion. However, the implementation of an exoskeleton device introduces the challenge of reproducing the motion of the human shoulder, which is one of the most complex joints of the body. Thus, this paper starts with describing a simplified model of the human shoulder. On the basis of that model, a new ergonomic shoulder actuation principle that provides motion of the humerus head is proposed, and its implementation in the ARMin III arm therapy robot is described. The focus lies on the mechanics and actuation principle. The ARMin III robot provides three actuated degrees of freedom for the shoulder and one for the elbow joint. An additional module provides actuated lower arm pro/supination and wrist flexion/extension. Five ARMin III devices have been manufactured and they are currently undergoing clinical evaluation in hospitals in Switzerland and in the United States.

  4. Recent Development of Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Zhiqin Qian

    2015-02-01

    Full Text Available We have conducted a critical review on the development of rehabilitation robots to identify the limitations of existing studies and clarify some promising research directions in this field. This paper is presented to summarize our findings and understanding. The demands for assistive technologies for elderly and disabled population have been discussed, the advantages and disadvantages of rehabilitation robots as assistive technologies have been explored, the issues involved in the development of rehabilitation robots are investigated, some representative robots in this field by leading research institutes have been introduced, and a few of critical challenges in developing advanced rehabilitation robots have been identified. Finally to meet the challenges of developing practical rehabilitation robots, reconfigurable and modular systems have been proposed to meet the identified challenges, and a few of critical areas leading to the potential success of rehabilitation robots have been discussed.

  5. Assistive and Rehabilitation Robotic System

    Directory of Open Access Journals (Sweden)

    Adrian Abrudean

    2015-06-01

    Full Text Available A short introduction concerning the content of Assistive Technology and Rehabilitation Engineering is followed by a study of robotic systems which combine two or more assistive functions. Based on biomechanical aspects, a complex robotic system is presented, starting with the study of functionality and ending with the practical aspects of the prototype development.

  6. Compliant actuation of rehabilitation robots

    NARCIS (Netherlands)

    Vallery, Heike; Veneman, J.F.; van Asseldonk, Edwin H.F.; Ekkelenkamp, R.; Buss, Martin; van der Kooij, Herman

    2008-01-01

    This article discusses the pros and cons of compliant actuation for rehabilitation robots on the example of LOPES, focusing on the cons. After illustrating the bandwidth limitations, a new result has been derived: if stability in terms of passivity of the haptic device is desired, the renderable

  7. Biofeedback for robotic gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Colombo Gery

    2007-01-01

    Full Text Available Abstract Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback

  8. Hand Rehabilitation Robotics on Poststroke Motor Recovery

    Science.gov (United States)

    2017-01-01

    The recovery of hand function is one of the most challenging topics in stroke rehabilitation. Although the robot-assisted therapy has got some good results in the latest decades, the development of hand rehabilitation robotics is left behind. Existing reviews of hand rehabilitation robotics focus either on the mechanical design on designers' view or on the training paradigms on the clinicians' view, while these two parts are interconnected and both important for designers and clinicians. In this review, we explore the current literature surrounding hand rehabilitation robots, to help designers make better choices among varied components and thus promoting the application of hand rehabilitation robots. An overview of hand rehabilitation robotics is provided in this paper firstly, to give a general view of the relationship between subjects, rehabilitation theories, hand rehabilitation robots, and its evaluation. Secondly, the state of the art hand rehabilitation robotics is introduced in detail according to the classification of the hardware system and the training paradigm. As a result, the discussion gives available arguments behind the classification and comprehensive overview of hand rehabilitation robotics. PMID:29230081

  9. Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    NARCIS (Netherlands)

    Stuyt, Floran H.A.; Römer, GertWillem R.B.E.; Stuyt, Harry .J.A.

    2007-01-01

    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm

  10. Rehabilitation Robots: Concepts and Applications in Stroke Rehabilitation

    OpenAIRE

    Mohammad Ali Ahmadi-Pajouh

    2017-01-01

    Robotics is a tool to assist human in different applications from industry to medicine. There are many reasons that human tends to use these machines. They are very reliable in repetitive, high precision, preprogrammed and high risk jobs in which human is not too good enough. In medicine, robotic applications are evolving so fast that in near future nobody can imagine a surgery without a robot involved. In Rehabilitation we have the same scenario; there are commercialized robots to assist dis...

  11. [Robot-aided training in rehabilitation].

    Science.gov (United States)

    Hachisuka, Kenji

    2010-02-01

    Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.

  12. Rehabilitation Robots: Concepts and Applications in Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi-Pajouh

    2017-02-01

    Full Text Available Robotics is a tool to assist human in different applications from industry to medicine. There are many reasons that human tends to use these machines. They are very reliable in repetitive, high precision, preprogrammed and high risk jobs in which human is not too good enough. In medicine, robotic applications are evolving so fast that in near future nobody can imagine a surgery without a robot involved. In Rehabilitation we have the same scenario; there are commercialized robots to assist disable people to eat and perform daily activities. There are also clinical rehabilitation robots which can train handicaps. They can help subjects as a passive tool that improves low level impairments such as rigidity. On the other hand robots can train brain as an active tool to have a better movement again. We will see how robots can help therapist to apply repetitive passive movements in quadriplegic subject (i.e. in Brunnstrom stages 1 to 3. On the other hand they can teach subjects how to complete a task in an active manner (i.e. in stages 5 and 6 which can facilitate neuroplasticity. There are different robots designed for different organs; for example rehabilitation of upper extremities (e.g. Gloreha or lower extremities (e.g. Lokomat. There are also exoskeleton robots to help subjects to grip objects and perform ADLs easily (e.g. Bioservo or help paraplegic patient to walk again (e.g. Rewalk. In this talk, we will also discuss about how robots are helping rehab specialist to improve standard protocols. For example we will show how action observation therapy, bimanual therapy, assistive active therapy, proprioceptive facilitation and passive mobilization therapy are realized using an upper extremity rehabilitation robot. Robotics is the future of technology and rehabilitation needs this technology. Be part of this technology!

  13. Robotics in rehabilitation: technology as destiny.

    Science.gov (United States)

    Stein, Joel

    2012-11-01

    Robotic aids for rehabilitation hold considerable promise but have not yet achieved widespread clinical adoption. Barriers to adoption include the limited data on efficacy, the single-purpose design of existing robots, financial considerations, and clinician lack of familiarity with this technology. Although the path forward to clinical adoption may be slow and have several false starts, the labor-saving aspect of robotic technology will ultimately ensure its adoption.

  14. Armin Karu : "Vakhanalija azarta - tolko v ljubimoi rabote!" / Armin Karu ; interv. Aleksandr Ikonnikov

    Index Scriptorium Estoniae

    Karu, Armin, 1965-

    2008-01-01

    ASi Olympic Entertainment Group juhatuse esimees oma sport- ja hasartmängude eelistustest, edukusest, jõukusest, tulevikuplaanidest, kasiinode riigistamisest. Lisad: Armin Karu; Bill Gates on Armin Karust "vaesem"; Armin Karu teatas majanduskonverentsil "Äriplaan 2008": Pokkeriturism kasvab hoogsalt

  15. Parallel Robot for Lower Limb Rehabilitation Exercises

    Directory of Open Access Journals (Sweden)

    Alireza Rastegarpanah

    2016-01-01

    Full Text Available The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators’ forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators’ forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg’s model placed on the robot. The results demonstrate the robot’s capability to perform a full range of various rehabilitation exercises.

  16. The Middlesex University rehabilitation robot.

    Science.gov (United States)

    Parsons, B; White, A; Prior, S; Warner, P

    2005-01-01

    This paper describes the development of an electrically powered wheelchair-mounted manipulator for use by severely disabled persons. A detailed review is given explaining the specification. It describes the construction of the device and its control architecture. The prototype robot used several gesture recognition and other input systems. The system has been tested on disabled and non-disabled users. They observed that it was easy to use but about 50% slower than comparable systems before design modifications were incorporated. The robot has a payload of greater than 1 kg with a maximum reach of 0.7-0.9 m.

  17. Armin Karu on Baltian kasinokeisari / Sami Lotila

    Index Scriptorium Estoniae

    Lotila, Sami

    2008-01-01

    Kasiinokultuuri Eestisse toonud Olympic Casino omanik ja juht Armin Karu, kasiinoäri algusaastad ja areng Eestis. Hasartmängukorraldajate õigused ja võimalused Eestis ja Soomes. Edetabel: Eesti kasiinoäride top

  18. Myoelectric Control Techniques for a Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Alan Smith

    2011-01-01

    Full Text Available This work examines two different types of myoelectric control schemes for the purpose of rehabilitation robot applications. The first is a commonly used technique based on a Gaussian classifier. It is implemented in real time for healthy subjects in addition to a subject with Central Cord Syndrome (CCS. The myoelectric control scheme is used to control three degrees of freedom (DOF on a robot manipulator which corresponded to the robot's elbow joint, wrist joint, and gripper. The classes of motion controlled include elbow flexion and extension, wrist pronation and supination, hand grasping and releasing, and rest. Healthy subjects were able to achieve 90% accuracy. Single DOF controllers were first tested on the subject with CCS and he achieved 100%, 96%, and 85% accuracy for the elbow, gripper, and wrist controllers respectively. Secondly, he was able to control the three DOF controller at 68% accuracy. The potential applications for this scheme are rehabilitation and teleoperation. To overcome limitations in the pattern recognition based scheme, a second myoelectric control scheme is also presented which is trained using electromyographic (EMG data derived from natural reaching motions in the sagittal plane. This second scheme is based on a time delayed neural network (TDNN which has the ability to control multiple DOF at once. The controller tracked a subject's elbow and shoulder joints in the sagittal plane. Results showed an average error of 19° for the two joints. This myoelectric control scheme has the potential of being used in the development of exoskeleton and orthotic rehabilitation applications.

  19. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  20. Robot - a member of (re)habilitation team

    OpenAIRE

    Komazec Zoran; Lemajić-Komazec Slobodanka; Golubović Špela; Mikov Aleksandra; Krasnik Rastislava

    2012-01-01

    Introduction. The rehabilitation process involves a whole team of experts who participate in it over a long period of time. Development of Robotics and its Application in Medicine. The Intensive development of science and technology has made it possible to design a number of robots which are used for therapeutic purposes and participate in the rehabilitation process. Robotics in Medical Rehabilitation. During the long history of technological development of mankind, a number of conceptu...

  1. Rehabilitation robotics: an academic engineer perspective.

    Science.gov (United States)

    Krebs, Hermano I

    2011-01-01

    In this paper, we present a retrospective review of our efforts to revolutionize the way physical medicine is practiced by developing and deploying rehabilitation robots. We present a sample of our clinical results with well over 600 stroke patients, both inpatients and outpatients. We discuss the different robots developed at our laboratory over the past 20 years and their unique characteristics. All are configured both to deliver reproducible interactive therapy and also to measure outcomes with minimal encumbrance, thus providing critical measurement tools to help unravel the key remaining question: what constitutes "best practice"? While success to date indicates that this therapeutic application of robots has opened an emerging new frontier in physical medicine and rehabilitation, the barrier to further progress lies not in developing new hardware but rather in finding the most effective way to enhance neuro-recovery. We close this manuscript discussing some of the tools required for advancing the effort beyond the present state to what we believe will be the central feature of research during the next 10 years.

  2. Review on design and control aspects of ankle rehabilitation robots.

    Science.gov (United States)

    Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q

    2015-03-01

    Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.

  3. Robotics in Lower-Limb Rehabilitation after Stroke.

    Science.gov (United States)

    Zhang, Xue; Yue, Zan; Wang, Jing

    2017-01-01

    With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm, and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb rehabilitation robots.

  4. Maintaining trust while fixated to a rehabilitative robot

    DEFF Research Database (Denmark)

    Jensen, Laura U.; Winther, Trine Straarup; Jørgensen, Rasmus

    2016-01-01

    This paper investigates the trust relationship between humans and a rehabilitation robot, the RoboTrainer. We present a study in which participants let the robot guide their arms through a series of preset coordinates in a 3D space. Each participant interact with the robot twice, one time where...

  5. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.

    Science.gov (United States)

    Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin

    2017-07-01

    Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.

  6. Development of an Upper Limb Motorized Assistive-Rehabilitative Robot

    Science.gov (United States)

    Amiri, Masoud; Casolo, Federico

    While the number of people requiring help for the activities of daily living are increasing, several studies have been shown the effectiveness of robot training for upper limb functionality recovery. The robotic system described in this paper is an active end-effector based robot which can be used for assisting and rehabilitating of human upper limb. The robot is able to take into account desire of the patient for the support that patient needs to complete the task.

  7. Rehabilitation exoskeletal robotics. The promise of an emerging field.

    Science.gov (United States)

    Pons, José L

    2010-01-01

    Exoskeletons are wearable robots exhibiting a close cognitive and physical interaction with the human user. These are rigid robotic exoskeletal structures that typically operate alongside human limbs. Scientific and technological work on exoskeletons began in the early 1960s but have only recently been applied to rehabilitation and functional substitution in patients suffering from motor disorders. Key topics for further development of exoskeletons in rehabilitation scenarios include the need for robust human-robot multimodal cognitive interaction, safe and dependable physical interaction, true wearability and portability, and user aspects such as acceptance and usability. This discussion provides an overview of these aspects and draws conclusions regarding potential future research directions in robotic exoskeletons.

  8. Considerations for designing robotic upper limb rehabilitation devices

    Science.gov (United States)

    Nadas, I.; Vaida, C.; Gherman, B.; Pisla, D.; Carbone, G.

    2017-12-01

    The present study highlights the advantages of robotic systems for post-stroke rehabilitation of the upper limb. The latest demographic studies illustrate a continuous increase of the average life span, which leads to a continuous increase of stroke incidents and patients requiring rehabilitation. Some studies estimate that by 2030 the number of physical therapists will be insufficient for the patients requiring physical rehabilitation, imposing a shift in the current methodologies. A viable option is the implementation of robotic systems that assist the patient in performing rehabilitation exercises, the physical therapist role being to establish the therapeutic program for each patient and monitor their individual progress. Using a set of clinical measurements for the upper limb motions, the analysis of rehabilitation robotic systems provides a comparative study between the motions required by clinicians and the ones that robotic systems perform for different therapeutic exercises. A critical analysis of existing robots is performed using several classifications: mechanical design, assistance type, actuation and power transmission, control systems and human robot interaction (HRI) strategies. This classification will determine a set of pre-requirements for the definition of new concepts and efficient solutions for robotic assisted rehabilitation therapy.

  9. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung

    2018-03-05

    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  10. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Aitziber Mancisidor

    2018-03-01

    Full Text Available In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error. Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  11. Recent trends for practical rehabilitation robotics, current challenges and the future.

    Science.gov (United States)

    Yakub, Fitri; Md Khudzari, Ahmad Zahran; Mori, Yasuchika

    2014-03-01

    This paper presents and studies various selected literature primarily from conference proceedings, journals and clinical tests of the robotic, mechatronics, neurology and biomedical engineering of rehabilitation robotic systems. The present paper focuses of three main categories: types of rehabilitation robots, key technologies with current issues and future challenges. Literature on fundamental research with some examples from commercialized robots and new robot development projects related to rehabilitation are introduced. Most of the commercialized robots presented in this paper are well known especially to robotics engineers and scholars in the robotic field, but are less known to humanities scholars. The field of rehabilitation robot research is expanding; in light of this, some of the current issues and future challenges in rehabilitation robot engineering are recalled, examined and clarified with future directions. This paper is concluded with some recommendations with respect to rehabilitation robots.

  12. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.

    Science.gov (United States)

    Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q

    2018-01-01

    This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.

  13. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  14. ROBOT-ASSISTED SURGERY AND ROBOTS EXOSKELETONS FOR REHABILITATION: WORLD TECHNOLOGICAL LEADERS AND PERSPECTIVES OF RUSSIA

    Directory of Open Access Journals (Sweden)

    O. V. Cherchenko

    2015-01-01

    Full Text Available There was analysed the publication and patent activity with regard to two actively developing areas in the field of medical robototronics: robots-exoskeletons for rehabilitation of people with muscoloskeletal disorders and robot-assisted surgery. There was identified discrepancy in the structure of global and national publication and patent flows. There were revealed disadvantages of foreign innovations on robot-assisted surgery, which create prerequisites for promoting import-substituting innovations of domestic engineers. 

  15. 3D stroke rehabilitation using electrical stimulation and robotics

    OpenAIRE

    Tong, Daisy; Cai, Zhonglun; Meadmore, Katie; Hughes, Anne-Marie; Freeman, Christopher; Burridge, Jane; Rogers, E

    2011-01-01

    Stroke is the third leading cause of death and foremost cause of adult disability in the UK. A third of the surviving patients suffer from some degree of motor disability and depend on others to undertake daily activities. Conventional rehabilitation can mitigate this disability, but only 5% of the severely paralysed patients regain full upper limb function. Past studies have shown evidence of more effective technologies such as rehabilitation robotics and functional electrical stimulation (F...

  16. Advanced robotics for medical rehabilitation current state of the art and recent advances

    CERN Document Server

    Xie, Shane

    2016-01-01

    Focussing on the key technologies in developing robots for a wide range of medical rehabilitation activities – which will include robotics basics, modelling and control, biomechanics modelling, rehabilitation strategies, robot assistance, clinical setup/implementation as well as neural and muscular interfaces for rehabilitation robot control – this book is split into two parts; a review of the current state of the art, and recent advances in robotics for medical rehabilitation. Both parts will include five sections for the five key areas in rehabilitation robotics: (i) the upper limb; (ii) lower limb for gait rehabilitation (iii) hand, finger and wrist; (iv) ankle for strains and sprains; and (v) the use of EEG and EMG to create interfaces between the neurological and muscular functions of the patients and the rehabilitation robots. Each chapter provides a description of the design of the device, the control system used, and the implementation and testing to show how it fulfils the needs of that specific ...

  17. A Finger Exoskeleton Robot for Finger Movement Rehabilitation

    Directory of Open Access Journals (Sweden)

    Tzu-Heng Hsu

    2017-07-01

    Full Text Available In this study, a finger exoskeleton robot has been designed and presented. The prototype device was designed to be worn on the dorsal side of the hand to assist in the movement and rehabilitation of the fingers. The finger exoskeleton is 3D-printed to be low-cost and has a transmission mechanism consisting of rigid serial links which is actuated by a stepper motor. The actuation of the robotic finger is by a sliding motion and mimics the movement of the human finger. To make it possible for the patient to use the rehabilitation device anywhere and anytime, an Arduino™ control board and a speech recognition board were used to allow voice control. As the robotic finger follows the patients voice commands the actual motion is analyzed by Tracker image analysis software. The finger exoskeleton is designed to flex and extend the fingers, and has a rotation range of motion (ROM of 44.2°.

  18. External force/velocity control for an autonomous rehabilitation robot

    Science.gov (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  19. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    Science.gov (United States)

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  20. Current status of robotic stroke rehabilitation and opportunities for a cyber-physically assisted upper limb stroke rehabilitation

    NARCIS (Netherlands)

    Li, C.; Rusak, Z.; Horvath, I.; Ji, L.; Hou, Y.

    2014-01-01

    In the last two decades, robotics-assisted stroke reha-bilitation has been wide-spread, in particular for movement rehabilitation of upper limbs. Several studies have reported on the clinical effectiveness of this kind of therapy. The results of these studies show that robot assisted therapy can be

  1. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.

    Science.gov (United States)

    Michmizos, Konstantinos P; Rossi, Stefano; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo

    2015-11-01

    This paper presents the pediAnklebot, an impedance-controlled low-friction, backdriveable robotic device developed at the Massachusetts Institute of Technology that trains the ankle of neurologically impaired children of ages 6-10 years old. The design attempts to overcome the known limitations of the lower extremity robotics and the unknown difficulties of what constitutes an appropriate therapeutic interaction with children. The robot's pilot clinical evaluation is on-going and it incorporates our recent findings on the ankle sensorimotor control in neurologically intact subjects, namely the speed-accuracy tradeoff, the deviation from an ideally smooth ankle trajectory, and the reaction time. We used these concepts to develop the kinematic and kinetic performance metrics that guided the ankle therapy in a similar fashion that we have done for our upper extremity devices. Here we report on the use of the device in at least nine training sessions for three neurologically impaired children. Results demonstrated a statistically significant improvement in the performance metrics assessing explicit and implicit motor learning. Based on these initial results, we are confident that the device will become an effective tool that harnesses plasticity to guide habilitation during childhood.

  2. [Human-robot global Simulink modeling and analysis for an end-effector upper limb rehabilitation robot].

    Science.gov (United States)

    Liu, Yali; Ji, Linhong

    2018-02-01

    Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant's functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists' experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients' movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.

  3. Clinical effects of using HEXORR (Hand Exoskeleton Rehabilitation Robot) for movement therapy in stroke rehabilitation.

    Science.gov (United States)

    Godfrey, Sasha Blue; Holley, Rahsaan J; Lum, Peter S

    2013-11-01

    The goals of this pilot study were to quantify the clinical benefits of using the Hand Exoskeleton Rehabilitation Robot for hand rehabilitation after stroke and to determine the population best served by this intervention. Nine subjects with chronic stroke (one excluded from analysis) completed 18 sessions of training with the Hand Exoskeleton Rehabilitation Robot and a preevaluation, a postevaluation, and a 90-day clinical evaluation. Overall, the subjects improved in both range of motion and clinical measures. Compared with the preevaluation, the subjects showed significant improvements in range of motion, grip strength, and the hand component of the Fugl-Meyer (mean changes, 6.60 degrees, 8.84 percentage points, and 1.86 points, respectively). A subgroup of six subjects exhibited lower tone and received a higher dosage of training. These subjects had significant gains in grip strength, the hand component of the Fugl-Meyer, and the Action Research Arm Test (mean changes, 8.42 percentage points, 2.17 points, and 2.33 points, respectively). Future work is needed to better manage higher levels of hypertonia and provide more support to subjects with higher impairment levels; however, the current results support further study into the Hand Exoskeleton Rehabilitation Robot treatment.

  4. Automatic Detection of Compensation During Robotic Stroke Rehabilitation Therapy.

    Science.gov (United States)

    Zhi, Ying Xuan; Lukasik, Michelle; Li, Michael H; Dolatabadi, Elham; Wang, Rosalie H; Taati, Babak

    2018-01-01

    Robotic stroke rehabilitation therapy can greatly increase the efficiency of therapy delivery. However, when left unsupervised, users often compensate for limitations in affected muscles and joints by recruiting unaffected muscles and joints, leading to undesirable rehabilitation outcomes. This paper aims to develop a computer vision system that augments robotic stroke rehabilitation therapy by automatically detecting such compensatory motions. Nine stroke survivors and ten healthy adults participated in this study. All participants completed scripted motions using a table-top rehabilitation robot. The healthy participants also simulated three types of compensatory motions. The 3-D trajectories of upper body joint positions tracked over time were used for multiclass classification of postures. A support vector machine (SVM) classifier detected lean-forward compensation from healthy participants with excellent accuracy (AUC = 0.98, F1 = 0.82), followed by trunk-rotation compensation (AUC = 0.77, F1 = 0.57). Shoulder-elevation compensation was not well detected (AUC = 0.66, F1 = 0.07). A recurrent neural network (RNN) classifier, which encodes the temporal dependency of video frames, obtained similar results. In contrast, F1-scores in stroke survivors were low for all three compensations while using RNN: lean-forward compensation (AUC = 0.77, F1 = 0.17), trunk-rotation compensation (AUC = 0.81, F1 = 0.27), and shoulder-elevation compensation (AUC = 0.27, F1 = 0.07). The result was similar while using SVM. To improve detection accuracy for stroke survivors, future work should focus on predefining the range of motion, direct camera placement, delivering exercise intensity tantamount to that of real stroke therapies, adjusting seat height, and recording full therapy sessions.

  5. Armin Karu põrutab täiskäigul edasi / Koit Brinkmann

    Index Scriptorium Estoniae

    Brinkmann, Koit

    2006-01-01

    AS-i Olympic Casino Group juhatuse esimees Armin Karu edukast aktsiaemissioonist, kasiinoärist, õpingutest ja eraelust. Lisa: Armin Karu. Kommenteerivad: Tõnis Rüütel, Liina Linsi, Jaan Karu, Marje Braunbrück ja Jaan Korpusov

  6. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.

    Science.gov (United States)

    Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos

    2017-06-05

    Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.

  7. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects.

    Science.gov (United States)

    Lo, Ho Shing; Xie, Sheng Quan

    2012-04-01

    Current health services are struggling to provide optimal rehabilitation therapy to victims of stroke. This has motivated researchers to explore the use of robotic devices to provide rehabilitation therapy for strokepatients. This paper reviews the recent progress of upper limb exoskeleton robots for rehabilitation treatment of patients with neuromuscular disorders. Firstly, a brief introduction to rehabilitation robots will be given along with examples of existing commercial devices. The advancements in upper limb exoskeleton technology and the fundamental challenges in developing these devices are described. Potential areas for future research are discussed. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Kuidas tehti filmi "Arminägu" / Timo Diener

    Index Scriptorium Estoniae

    Diener, Timo

    2003-01-01

    Mängufilm "Arminägu" ("Scarface") : stsenarist Oliver Stone : režissöör Brian De Palma : peaosas Al Pacino : produtsent Martin Bregman : Ameerika Ühendriigid 1983. Järgneb 20. ja 27. okt. 2003, lk. 38

  9. Computational Architecture of a Robot Coach for Physical Exercises in Kinesthetic Rehabilitation

    OpenAIRE

    Nguyen , Sao Mai; Tanguy , Philippe; Rémy-Néris , Olivier

    2016-01-01

    International audience; The rising number of the elderly incurs growing concern about healthcare, and in particular rehabilitation healthcare. Assistive technology and and assistive robotics in particular may help to improve this process. We develop a robot coach capable of demonstrating rehabilitation exercises to patients, watch a patient carry out the exercises and give him feedback so as to improve his performance and encourage him. We propose a general software architecture for our robot...

  10. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Philipp Beckerle

    2017-05-01

    Full Text Available Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  11. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D.; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions. PMID:28588473

  12. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    Science.gov (United States)

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  13. Hand Robotics Rehabilitation: Feasibility and Preliminary Results of a Robotic Treatment in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Patrizio Sale

    2012-01-01

    Full Text Available Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria. Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week. Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes, passive/plus modality (5 minutes, assisted therapy (10 minutes, and balloon (10 minutes. The following impairment and functional evaluations, Fugl-Meyer Scale (FM, Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles (MRC, Motricity Index (MI, and modified Ashworth Scale for wrist and hand muscles (AS, were performed at the beginning (T0, after 10 sessions (T1, and at the end of the treatment (T2. The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P<0.0123. Evidence of an improvement was demonstrated for AS, FM, and MI. Conclusions. This original rehabilitation treatment could contribute to increase the hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this

  14. Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device.

    Science.gov (United States)

    Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D

    2011-01-01

    We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.

  15. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.

    Science.gov (United States)

    Cao, Jinghui; Xie, Sheng Quan; Das, Raj; Zhu, Guo L

    2014-12-01

    A large number of gait rehabilitation robots, together with a variety of control strategies, have been developed and evaluated during the last decade. Initially, control strategies applied to rehabilitation robots were adapted from those applied to traditional industrial robots. However, these strategies cannot optimise effectiveness of gait rehabilitation. As a result, researchers have been investigating control strategies tailored for the needs of rehabilitation. Among these control strategies, assisted-as-needed (AAN) control is one of the most popular research topics in this field. AAN training strategies have gained the theoretical and practical evidence based backup from motor learning principles and clinical studies. Various approaches to AAN training have been proposed and investigated by research groups all around the world. This article presents a review on control algorithms of gait rehabilitation robots to summarise related knowledge and investigate potential trends of development. There are existing review papers on control strategies of rehabilitation robots. The review by Marchal-Crespo and Reinkensmeyer (2009) had a broad cover of control strategies of all kinds of rehabilitation robots. Hussain et al. (2011) had specifically focused on treadmill gait training robots and covered a limited number of control implementations on them. This review article encompasses more detailed information on control strategies for robot assisted gait rehabilitation, but is not limited to treadmill based training. It also investigates the potential to further develop assist-as-needed gait training based on assessments of patients' ability. In this paper, control strategies are generally divided into the trajectory tracking control and AAN control. The review covers these two basic categories, as well as other control algorithm and technologies derived from them, such as biofeedback control. Assessments on human gait ability are also included to investigate how to

  16. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2011-09-01

    Full Text Available Stroke is a leading cause of disability worldwide. In this paper, a novel robot-assisted rehabilitation system based on motor imagery electroencephalography (EEG is developed for regular training of neurological rehabilitation for upper limb stroke patients. Firstly, three-dimensional animation was used to guide the patient image the upper limb movement and EEG signals were acquired by EEG amplifier. Secondly, eigenvectors were extracted by harmonic wavelet transform (HWT and linear discriminant analysis (LDA classifier was utilized to classify the pattern of the left and right upper limb motor imagery EEG signals. Finally, PC triggered the upper limb rehabilitation robot to perform motor therapy and gave the virtual feedback. Using this robot-assisted upper limb rehabilitation system, the patient's EEG of upper limb movement imagination is translated to control rehabilitation robot directly. Consequently, the proposed rehabilitation system can fully explore the patient's motivation and attention and directly facilitate upper limb post-stroke rehabilitation therapy. Experimental results on unimpaired participants were presented to demonstrate the feasibility of the rehabilitation system. Combining robot-assisted training with motor imagery-based BCI will make future rehabilitation therapy more effective. Clinical testing is still required for further proving this assumption.

  17. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis.

    Science.gov (United States)

    Sale, Patrizio; Lombardi, Valentina; Franceschini, Marco

    2012-01-01

    Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria). Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week). Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes), passive/plus modality (5 minutes), assisted therapy (10 minutes), and balloon (10 minutes). The following impairment and functional evaluations, Fugl-Meyer Scale (FM), Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles) (MRC), Motricity Index (MI), and modified Ashworth Scale for wrist and hand muscles (AS), were performed at the beginning (T0), after 10 sessions (T1), and at the end of the treatment (T2). The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale) were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this treatment, in association with physiotherapy and/or occupational therapy.

  18. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  19. Home-based tele-assisted robotic rehabilitation of joint impairments in children with cerebral palsy.

    Science.gov (United States)

    Chen, Kai; Ren, Yupeng; Gaebler-Spira, Deborah; Zhang, Li-Qun

    2014-01-01

    A portable rehabilitation robot incorporating intelligent stretching, robot-guided voluntary movement training with motivating games and tele-rehabilitation was developed to provide convenient and cost-effective rehabilitation to children with cerebral palsy (CP) and extend rehabilitation care beyond hospital. Clinicians interact with the patients remotely for periodic evaluations and updated guidance. The tele-assisted stretching and active movement training was done over 6-week 18 sessions on the impaired ankle of 23 children with CP in their home setting. Treatment effectiveness was evaluated using biomechanical measures and clinical outcome measures. After the tele-assisted home robotic rehabilitation intervention, there were significant increases in the ankle passive and active range of motion, muscle strength, a decrease in spasticity, and increases in balance and selective control assessment of lower-extremity.

  20. E2Rebot: A robotic platform for upper limb rehabilitation in patients with neuromotor disability

    Directory of Open Access Journals (Sweden)

    Juan C Fraile

    2016-08-01

    Full Text Available The use of robotic platforms for neuro-rehabilitation may boost the neural plasticity process and improve motor recovery in patients with upper limb mobility impairment as a consequence of an acquired brain injury. A robotic platform for this aim must provide ergonomic and friendly design, human safety, intensive task-oriented therapy, and assistive forces. Its implementation is a complex process that involves new developments in the mechanical, electronics, and control fields. This article presents the end-effector rehabilitation robot, a 2-degree-of-freedom planar robotic platform for upper limb rehabilitation in patients with neuromotor disability after a stroke. We describe the ergonomic mechanical design, the system control architecture, and the rehabilitation therapies that can be performed. The impedance-based haptic controller implemented in end-effector rehabilitation robot uses the information provided by a JR3 force sensor to achieve an efficient and friendly patient–robot interaction. Two task-oriented therapy modes have been implemented based on the “assist as needed” paradigm. As a result, the amount of support provided by the robot adapts to the patient’s requirements, maintaining the therapy as intensive as possible without compromising the patient’s health and safety and promoting engagement.

  1. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.

    Science.gov (United States)

    Eiammanussakul, Trinnachoke; Sangveraphunsiri, Viboon

    2018-01-01

    Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.

  2. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities

    Directory of Open Access Journals (Sweden)

    Trinnachoke Eiammanussakul

    2018-01-01

    Full Text Available Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.

  3. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Godfrey Sasha B

    2010-07-01

    Full Text Available Abstract Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR. This device has been designed to provide full range of motion (ROM for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05 between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05. Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P Conclusions Our pilot study shows that this device is capable of moving the hand's digits through

  4. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot

    Science.gov (United States)

    2010-01-01

    Background Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased. Methods This paper introduces a newly developed Hand Exoskeleton Rehabilitation Robot (HEXORR). This device has been designed to provide full range of motion (ROM) for all of the hand's digits. The thumb actuator allows for variable thumb plane of motion to incorporate different degrees of extension/flexion and abduction/adduction. Compensation algorithms have been developed to improve the exoskeleton's backdrivability by counteracting gravity, stiction and kinetic friction. We have also designed a force assistance mode that provides extension assistance based on each individual's needs. A pilot study was conducted on 9 unimpaired and 5 chronic stroke subjects to investigate the device's ability to allow physiologically accurate hand movements throughout the full ROM. The study also tested the efficacy of the force assistance mode with the goal of increasing stroke subjects' active ROM while still requiring active extension torque on the part of the subject. Results For 12 of the hand digits'15 joints in neurologically normal subjects, there were no significant ROM differences (P > 0.05) between active movements performed inside and outside of HEXORR. Interjoint coordination was examined in the 1st and 3rd digits, and no differences were found between inside and outside of the device (P > 0.05). Stroke subjects were capable of performing free hand movements inside of the exoskeleton and the force assistance mode was successful in increasing active ROM by 43 ± 5% (P < 0.001) and 24 ± 6% (P = 0.041) for the fingers and thumb, respectively. Conclusions Our pilot study shows that this device

  5. Design and Development of a Hand Exoskeleton Robot for Active and Passive Rehabilitation

    Directory of Open Access Journals (Sweden)

    Oscar Sandoval-Gonzalez

    2016-04-01

    Full Text Available The present work, which describes the mechatronic design and development of a novel rehabilitation robotic exoskeleton hand, aims to present a solution for neuromusculoskeletal rehabilitation. It presents a full range of motion for all hand phalanges and was specifically designed to carry out position and force-position control for passive and active rehabilitation routines. System integration and preliminary clinical tests are also presented.

  6. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.

    Science.gov (United States)

    Niu, Jie; Yang, Qianqian; Chen, Guangtao; Song, Rong

    2017-07-01

    This paper introduces a cable-driven robot for upper-limb rehabilitation. Kinematic and dynamic of this rehabilitation robot is analyzed. A sliding mode controller combined with a nonlinear disturbance observer is proposed to control this robot in the presence of disturbances. Simulation is carried out to prove the effectiveness of the proposed control scheme, and the results of the proposed controller is compared with a PID controller and a traditional sliding mode controller. Results show that the proposed controller can effectively improve the tracking performance as compared with the other two controllers and cause lower chattering as compared with a traditional sliding mode controller.

  7. Design and Implementation of an Assistive Controller for Rehabilitation Robotic Systems

    Directory of Open Access Journals (Sweden)

    Duygun Erol

    2007-09-01

    Full Text Available The goal of our research is to develop an assistive controller for robotic rehabilitation of the upper extremity after stroke. The controller is used to provide robotic assistance to participants to help them to track a desired motion trajectory required for the rehabilitation task in an accurate and concentrated manner. This rehabilitation task is designed to ensure concentrated repetitive motion that requires cognitive processing. Experimental results on unimpaired participants are presented to demonstrate the effectiveness and feasibility of the proposed controller.

  8. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.

    Science.gov (United States)

    Nycz, Christopher J; Delph, Michael A; Fischer, Gregory S

    2015-01-01

    Robotic technology has recently been explored as a means to rehabilitate and assist individuals suffering from hemiparesis of their upper limbs. Robotic approaches allow for targeted rehabilitation routines which are more personalized and adaptable while providing quantitative measurements of patient outcomes. Development of these technologies into inherently safe and portable devices has the potential to extend the therapy outside of the clinical setting and into the patient's home with benefits to the cost and accessibility of care. To this end, a soft, cable actuated robotic glove and sleeve was designed, modeled, and constructed to provide assistance of finger and elbow movements in a way that mimics the biological function of the tendons. The resulting design increases safety through greater compliance as well as greater tolerance for misalignment with the user's skeletal frame over traditional rigid exoskeletons. Overall this design provides a platform to expand and study the concepts around soft robotic rehabilitation.

  9. A review on the mechanical design elements of ankle rehabilitation robot.

    Science.gov (United States)

    Khalid, Yusuf M; Gouwanda, Darwin; Parasuraman, Subramanian

    2015-06-01

    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings. © IMechE 2015.

  10. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study.

    Science.gov (United States)

    Fukuda, Hiroyuki; Morishita, Takashi; Ogata, Toshiyasu; Saita, Kazuya; Hyakutake, Koichi; Watanabe, Junko; Shiota, Etsuji; Inoue, Tooru

    2016-01-01

    This article investigated the feasibility of a tailor-made neurorehabilitation approach using multiple types of hybrid assistive limb (HAL) robots for acute stroke patients. We investigated the clinical outcomes of patients who underwent rehabilitation using the HAL robots. The Brunnstrom stage, Barthel index (BI), and functional independence measure (FIM) were evaluated at baseline and when patients were transferred to a rehabilitation facility. Scores were compared between the multiple-robot rehabilitation and single-robot rehabilitation groups. Nine hemiplegic acute stroke patients (five men and four women; mean age 59.4 ± 12.5 years; four hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using multiple types of HAL robots for 19.4 ± 12.5 days, and 14 patients (six men and eight women; mean age 63.2 ± 13.9 years; nine hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using a single type of HAL robot for 14.9 ± 8.9 days. The multiple-robot rehabilitation group showed significantly better outcomes in the Brunnstrom stage of the upper extremity, BI, and FIM scores. To the best of the authors' knowledge, this is the first pilot study demonstrating the feasibility of rehabilitation using multiple exoskeleton robots. The tailor-made rehabilitation approach may be useful for the treatment of acute stroke.

  11. A Novel Passive Path Following Controller for a Rehabilitation Robot

    National Research Council Canada - National Science Library

    Zhang, X; Behal, A; Dawson, D. M; Chen, J

    2004-01-01

    .... Motivated by a nonholonomic kinematic constraint, a dynamic path generator is designed to trace a desired contour in the robot's workspace when an interaction force is applied at the robot's end-effector...

  12. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.

    Science.gov (United States)

    Hu, Xiao-Ling; Tong, Raymond Kai-yu; Ho, Newmen S K; Xue, Jing-jing; Rong, Wei; Li, Leonard S W

    2015-09-01

    Augmented physical training with assistance from robot and neuromuscular electrical stimulation (NMES) may introduce intensive motor improvement in chronic stroke. To compare the rehabilitation effectiveness achieved by NMES robot-assisted wrist training and that by robot-assisted training. This study was a single-blinded randomized controlled trial with a 3-month follow-up. Twenty-six hemiplegic subjects with chronic stroke were randomly assigned to receive 20-session wrist training with an electromyography (EMG)-driven NMES robot (NMES robot group, n = 11) and with an EMG-driven robot (robot group, n = 15), completed within 7 consecutive weeks. Clinical scores, Fugl-Meyer Assessment (FMA), Modified Ashworth Score (MAS), and Action Research Arm Test (ARAT) were used to evaluate the training effects before and after the training, as well as 3 months later. An EMG parameter, muscle co-contraction index, was also applied to investigate the session-by-session variation in muscular coordination patterns during the training. The improvement in FMA (shoulder/elbow, wrist/hand) obtained in the NMES robot group was more significant than the robot group (P rehabilitation progress. © The Author(s) 2014.

  13. Safety Supervisory Strategy for an Upper-Limb Rehabilitation Robot Based on Impedance Control

    Directory of Open Access Journals (Sweden)

    Lizheng Pan

    2013-02-01

    Full Text Available User security is an important consideration for robots that interact with humans, especially for upper-limb rehabilitation robots, during the use of which stroke patients are often more susceptible to injury. In this paper, a novel safety supervisory control method incorporating fuzzy logic is proposed so as to guarantee the impaired limb's safety should an emergency situation occur and the robustness of the upper-limb rehabilitation robot control system. Firstly, a safety supervisory fuzzy controller (SSFC was designed based on the impaired-limb's real-time physical state by extracting and recognizing the impaired-limb's tracking movement features. Then, the proposed SSFC was used to automatically regulate the desired force either to account for reasonable disturbance resulting from pose or position changes or to respond in adequate time to an emergency based on an evaluation of the impaired-limb's physical condition. Finally, a position-based impedance controller was implemented to achieve compliance between the robotic end-effector and the impaired limb during the robot-assisted rehabilitation training. The experimental results show the effectiveness and potential of the proposed method for achieving safety and robustness for the rehabilitation robot.

  14. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.

    Science.gov (United States)

    Hakim, Renée M; Tunis, Brandon G; Ross, Michael D

    2017-11-01

    The focus of research using technological innovations such as robotic devices has been on interventions to improve upper extremity function in neurologic populations, particularly patients with stroke. There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on this evidence, we describe application and feasibility of virtual reality-enhanced robotics integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with upper extremity disorders, specifically emphasizing the wrist and hand. The purpose of this paper is to describe virtual reality-enhanced rehabilitation robotic devices, review evidence of application in patients with upper extremity deficits related to neurologic disorders, and suggest how this technology and task-oriented rehabilitation approach can also benefit patients with orthopaedic disorders of the wrist and hand. We will also discuss areas for further research and development using a task-oriented approach and a commercially available haptic robotic device to focus on training of grasp and manipulation tasks. Implications for Rehabilitation There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches using rehabilitation robotics are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on the evidence in neurologic populations, virtual reality-enhanced robotics

  15. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2011-09-01

    Full Text Available Stroke is a leading cause of disability worldwide. In this paper, a novel robot‐assisted rehabilitation system based on motor imagery electroencephalography (EEG is developed for regular training of neurological rehabilitation for upper limb stroke patients. Firstly, three‐dimensional animation was used to guide the patient image the upper limb movement and EEG signals were acquired by EEG amplifier. Secondly, eigenvectors were extracted by harmonic wavelet transform (HWT and linear discriminant analysis (LDA classifier was utilized to classify the pattern of the left and right upper limb motor imagery EEG signals. Finally, PC triggered the upper limb rehabilitation robot to perform motor therapy and gave the virtual feedback. Using this robot‐assisted upper limb rehabilitation system, the patientʹs EEG of upper limb movement imagination is translated to control rehabilitation robot directly. Consequently, the proposed rehabilitation system can fully explore the patientʹs motivation and attention and directly facilitate upper limb post‐stroke rehabilitation therapy. Experimental results on unimpaired participants were presented to demonstrate the feasibility of the rehabilitation system. Combining robot‐assisted training with motor imagery‐ based BCI will make future rehabilitation therapy more effective. Clinical testing is still required for further proving this assumption.

  16. Adaptive Inverse Optimal Control for Rehabilitation Robot Systems Using Actor-Critic Algorithm

    Directory of Open Access Journals (Sweden)

    Fancheng Meng

    2014-01-01

    Full Text Available The higher goal of rehabilitation robot is to aid a person to achieve a desired functional task (e.g., tracking trajectory based on assisted-as-needed principle. To this goal, a new adaptive inverse optimal hybrid control (AHC combining inverse optimal control and actor-critic learning is proposed. Specifically, an uncertain nonlinear rehabilitation robot model is firstly developed that includes human motor behavior dynamics. Then, based on this model, an open-loop error system is formed; thereafter, an inverse optimal control input is designed to minimize the cost functional and a NN-based actor-critic feedforward signal is responsible for the nonlinear dynamic part contaminated by uncertainties. Finally, the AHC controller is proven (through a Lyapunov-based stability analysis to yield a global uniformly ultimately bounded stability result, and the resulting cost functional is meaningful. Simulation and experiment on rehabilitation robot demonstrate the effectiveness of the proposed control scheme.

  17. Torque Control of a Rehabilitation Teaching Robot Using Magneto-Rheological Fluid Clutches

    Science.gov (United States)

    Hakogi, Hokuto; Ohaba, Motoyoshi; Kuramochi, Naimu; Yano, Hidenori

    A new robot that makes use of MR-fluid clutches for simulating torque is proposed to provide an appropriate device for training physical therapy students in knee-joint rehabilitation. The feeling of torque provided by the robot is expected to correspond to the torque performance obtained by physical therapy experts in a clinical setting. The torque required for knee-joint rehabilitation, which is a function of the rotational angle and the rotational angular velocity of a knee movement, is modeled using a mechanical system composed of typical spring-mass-damper elements. The robot consists of two MR-fluid clutches, two induction motors, and a feedback control system. In the torque experiments, output torque is controlled using the spring and damper coefficients separately. The values of these coefficients are determined experimentally. The experimental results show that the robot would be suitable for training physical therapy students to experience similar torque feelings as needed in a clinical situation.

  18. Upper-Extremity Rehabilitation Robot RehabRoby: Methodology, Design, Usability and Validation

    Directory of Open Access Journals (Sweden)

    Fatih Ozkul

    2013-12-01

    Full Text Available In this study, an exoskeleton type robot-assisted rehabilitation system, called RehabRoby, is developed for rehabilitation purposes. A control architecture, which contains a high-level controller and a low-level controller, is designed so that RehabRoby can complete the given rehabilitation task in a desired and safe manner. A hybrid system modelling technique is used for the high-level controller. An admittance control with an inner robust position control loop is used for the low-level control of the RehabRoby. Real-time experiments are performed to evaluate the control architecture of the robot-assisted rehabilitation system, RehabRoby. Furthermore, the usability of RehabRoby is evaluated.

  19. Robotic approaches for rehabilitation of hand function after stroke.

    Science.gov (United States)

    Lum, Peter S; Godfrey, Sasha B; Brokaw, Elizabeth B; Holley, Rahsaan J; Nichols, Diane

    2012-11-01

    The goal of this review was to discuss the impairments in hand function after stroke and present previous work on robot-assisted approaches to movement neurorehabilitation. Robotic devices offer a unique training environment that may enhance outcomes beyond what is possible with conventional means. Robots apply forces to the hand, allowing completion of movements while preventing inappropriate movement patterns. Evidence from the literature is emerging that certain characteristics of the human-robot interaction are preferable. In light of this evidence, the robotic hand devices that have undergone clinical testing are reviewed, highlighting the authors' work in this area. Finally, suggestions for future work are offered. The ability to deliver therapy doses far higher than what has been previously tested is a potentially key advantage of robotic devices that needs further exploration. In particular, more efforts are needed to develop highly motivating home-based devices, which can increase access to high doses of assisted movement therapy.

  20. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study.

    Science.gov (United States)

    Chang, Pyung-Hun; Lee, Seung-Hee; Gu, Gwang Min; Lee, Seung-Hyun; Jin, Sang-Hyun; Yeo, Sang Seok; Seo, Jeong Pyo; Jang, Sung Ho

    2014-01-01

    Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS), we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1), hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor cortex (PMC), and prefrontal cortex (PFC). HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p < 0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic area of the left SM1 (uncorrected, p < 0.01). Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  1. The cortical activation pattern by a rehabilitation robotic hand : A functional NIRS study

    Directory of Open Access Journals (Sweden)

    Pyung Hun eChang

    2014-02-01

    Full Text Available Introduction: Clarification of the relationship between external stimuli and brain response has been an important topic in neuroscience and brain rehabilitation. In the current study, using functional near infrared spectroscopy (fNIRS, we attempted to investigate cortical activation patterns generated during execution of a rehabilitation robotic hand. Methods: Ten normal subjects were recruited for this study. Passive movements of the right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5 Hz. We measured values of oxy-hemoglobin(HbO, deoxy-hemoglobin(HbR and total-hemoglobin(HbT in five regions of interest: the primary sensory-motor cortex (SM1, hand somatotopy of the contralateral SM1, supplementary motor area (SMA, premotor cortex (PMC, and prefrontal cortex (PFC. Results: HbO and HbT values indicated significant activation in the left SM1, left SMA, left PMC, and left PFC during execution of the rehabilitation robotic hand(uncorrected, pConclusions: Our results appear to indicate that execution of the rehabilitation robotic hand could induce cortical activation.

  2. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke

    OpenAIRE

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-01-01

    OBJECTIVE: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation.METHODS: The development progression of ro...

  4. Design, implementation and control of rehabilitation robots for upper and lower limbs

    OpenAIRE

    Ergin, Alper Mehmet

    2011-01-01

    We present two novel rehabilitation robots for stroke patients. For lower limb stroke rehabilitation, we present a novel self-aligning exoskeleton for the knee joint. The primal novelty of the design originates from its kinematic structure that allows translational movements of the knee joint on the sagittal plane along with the knee rotation. Automatically adjusting its joint axes, the exoskeleton enables a perfect match between human joint axes and the device axes. Thanks to this feature, t...

  5. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  6. Individualised and adaptive upper limb rehabilitation with industrial robot using dynamic movement primitives

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Sørensen, Anders Stengaard; Christensen, Thomas Søndergaard

    Stroke is a leading cause of serious long-term disability. Post-stroke rehabilitation is a demanding task for the patient and a costly challenge for both society and healthcare systems. We present a novel approach for training of upper extremities after a stroke by utilising an industrial robotic...

  7. Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients

    Science.gov (United States)

    Jarrassé, Nathanaël; Proietti, Tommaso; Crocher, Vincent; Robertson, Johanna; Sahbani, Anis; Morel, Guillaume; Roby-Brami, Agnès

    2014-01-01

    Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity-dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed. PMID:25520638

  8. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects

    Directory of Open Access Journals (Sweden)

    Qing Miao

    2018-01-01

    Full Text Available This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”. The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.

  9. Develop a wearable ankle robot for in-bed acute stroke rehabilitation.

    Science.gov (United States)

    Ren, Yupeng; Xu, Tao; Wang, Liang; Yang, Chung Yong; Guo, Xin; Harvey, Richard L; Zhang, Li-Qun

    2011-01-01

    Movement training is important in motor recovery post stroke and early intervention is critical to stroke rehabilitation. However, acute stroke survivors are actively trained with activities helpful for recovery of mobility in only 13% of the time in the acute phase. Considering the first few months post stroke is critical in stroke recovery (neuroplasticity), there is a strong need for movement therapy and manipulate/mobilize the joints. There is a lack of in-bed robotic rehabilitation in acute stroke. This study seeks to meet the clinic need and deliver intensive passive and active movement therapy using a wearable robot to enhance motor function in acute stroke. Passively, the wearable robot stretches the joint to its extreme positions safely and forcefully. Actively, movement training is conducted and game playing is used to guide and motivate the patient in movement training.

  10. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.

    Science.gov (United States)

    Bharadwaj, Kartik; Sugar, Thomas G; Koeneman, James B; Koeneman, Edward J

    2005-11-01

    Repetitive task training is an effective form of rehabilitation for people suffering from debilitating injuries of stroke. We present the design and working concept of a robotic gait trainer (RGT), an ankle rehabilitation device for assisting stroke patients during gait. Structurally based on a tripod mechanism, the device is a parallel robot that incorporates two pneumatically powered, double-acting, compliant, spring over muscle actuators as actuation links which move the ankle in dorsiflex ion/plantarflexion and inversion/eversion. A unique feature in the tripod design is that the human anatomy is part of the robot, the first fixed link being the patient's leg. The kinematics and workspace of the tripod device have been analyzed determining its range of motion. Experimental gait data from an able-bodied person wearing the working RGT prototype are presented.

  11. [Kinematics Modeling and Analysis of Central-driven Robot for Upper Limb Rehabilitation after Stroke].

    Science.gov (United States)

    Yi, Jinhua; Yu, Hongliu; Zhang, Ying; Hu, Xin; Shi, Ping

    2015-12-01

    The present paper proposed a central-driven structure of upper limb rehabilitation robot in order to reduce the volume of the robotic arm in the structure, and also to reduce the influence of motor noise, radiation and other adverse factors on upper limb dysfunction patient. The forward and inverse kinematics equations have been obtained with using the Denavit-Hartenberg (D-H) parameter method. The motion simulation has been done to obtain the angle-time curve of each joint and the position-time curve of handle under setting rehabilitation path by using Solid Works software. Experimental results showed that the rationality with the central-driven structure design had been verified by the fact that the handle could move under setting rehabilitation path. The effectiveness of kinematics equations had been proved, and the error was less than 3° by comparing the angle-time curves obtained from calculation with those from motion simulation.

  12. Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control

    Science.gov (United States)

    Zhou, Jiawang; Zhou, Zude; Ai, Qingsong

    As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.

  13. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study.

    Directory of Open Access Journals (Sweden)

    Urs Keller

    Full Text Available Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness. For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the "Graded and Redefined Assessment of Strength, Sensibility and Prehension" (GRASSP and the Van Lieshout Test (VLT for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can

  14. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles.

    Science.gov (United States)

    Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q

    2017-01-01

    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient's active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant's assessment. The robot reduces its assistance output when participants contribute more and vice versa , thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.

  15. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2017-12-01

    Full Text Available Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.

  16. Caregiver and social assistant robot for rehabilitation and coaching for the elderly.

    Science.gov (United States)

    Pérez, P J; Garcia-Zapirain, B; Mendez-Zorrilla, A

    2015-01-01

    Socially assistive robotics (SAR) has been a major field of investigation during the last decade and, as it develops, the groups the technology can be applied to and all ways in which these can be assisted are rapidly increasing. The main objective is to design and develop a complete robotic agent, so that it performs physical and mental activities for elderly people to maintain their healthy life habits and, as a final result, improve their quality of life. LEGO Mindstorms NXT® robot's unique capacity for adaptability and engaging its users to develop coaching activities and assistive rehabilitation for the elderly. Such activities will aim to enhance healthy habits and provide training in physical and mental rehabilitation. The robot is attached to an iPod Touch that acts as its interface. The robot has been tested by a voluntary group of residents, also from that retirement home. Results in the variables of the questionnaire show scores above 4 points out of 5 for all the categories. Based on the tests, an easy to use Robot is prepared to deliver basic coaching for physical activities as proposed by the client, the staff of La Misericordia, who confirmed their satisfaction regarding this aspect.

  17. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Qingsong Ai

    2017-12-01

    Full Text Available A rehabilitation robot plays an important role in relieving the therapists’ burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs. To solve the PM’s nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.

  18. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    Science.gov (United States)

    Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Meng, Wei; Liu, Quan; Xie, Sheng Q; Yang, Ming

    2017-12-28

    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.

  19. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  20. A Systematic Review on Existing Measures for the Subjective Assessment of Rehabilitation and Assistive Robot Devices

    Directory of Open Access Journals (Sweden)

    Yiannis Koumpouros

    2016-01-01

    Full Text Available The objective of the current study is to identify and classify outcome measures currently used for the assessment of rehabilitation or assistive robot devices. We conducted a systematic review of the literature using PubMed, MEDLINE, CIRRIE, and Scopus databases for studies that assessed rehabilitation or assistive robot devices from 1980 through January 2016. In all, 31 articles met all inclusion criteria. Tailor-made questionnaires were the most commonly used tool at 66.7%, while the great majority (93.9% of the studies used nonvalidated instruments. The study reveals the absence of a standard scale which makes it difficult to compare the results from different researchers. There is a great need, therefore, for a valid and reliable instrument to be available for use by the intended end users for the subjective assessment of robot devices. The study concludes by identifying two scales that have been validated in general assistive technology devices and could support the scope of subjective assessment in rehabilitation or assistive robots (however, with limited coverage and a new one called PYTHEIA, recently published. The latter intends to close the gap and help researchers and developers to evaluate, assess, and produce products that satisfy the real needs of the end users.

  1. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force feedback rehabilitation method

    Directory of Open Access Journals (Sweden)

    Gil eHerrnstadt

    2015-03-01

    Full Text Available Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance.Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper limb rehabilitation research suggests potential in enhancing functional recovery. Moreover studies suggest limb coordination and synchronization can improve treatment efficacy.In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A Bimanual Wearable Robotic Device (BWRD with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three one-hour sessions per participant, delivered in a week. Participants underwent pre and post training functional assessments along with proprioceptive measures. The post assessment was performed at the end of the last training session.The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force feedback movements, force feedback positioning, and force matching tasks with same and opposite direction movements. We are able to

  2. Towards more effective robotic gait training for stroke rehabilitation: a review

    Directory of Open Access Journals (Sweden)

    Pennycott Andrew

    2012-09-01

    Full Text Available Abstract Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated.

  3. A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zeng

    2017-01-01

    Full Text Available Objective. This study aims to establish a steady-state visual evoked potential- (SSVEP- based passive training protocol on an ankle rehabilitation robot and validate its feasibility. Method. This paper combines SSVEP signals and the virtual reality circumstance through constructing information transmission loops between brains and ankle robots. The robot can judge motion intentions of subjects and trigger the training when subjects pay their attention on one of the four flickering circles. The virtual reality training circumstance provides real-time visual feedback of ankle rotation. Result. All five subjects succeeded in conducting ankle training based on the SSVEP-triggered training strategy following their motion intentions. The lowest success rate is 80%, and the highest one is 100%. The lowest information transfer rate (ITR is 11.5 bits/min when the biggest one of the robots for this proposed training is set as 24 bits/min. Conclusion. The proposed training strategy is feasible and promising to be combined with a robot for ankle rehabilitation. Future work will focus on adopting more advanced data process techniques to improve the reliability of intention detection and investigating how patients respond to such a training strategy.

  4. Design strategies to improve patient motivation during robot-aided rehabilitation

    Directory of Open Access Journals (Sweden)

    Carrozza M Chiara

    2007-02-01

    Full Text Available Abstract Background Motivation is an important factor in rehabilitation and frequently used as a determinant of rehabilitation outcome. Several factors can influence patient motivation and so improve exercise adherence. This paper presents the design of two robot devices for use in the rehabilitation of upper limb movements, that can motivate patients during the execution of the assigned motor tasks by enhancing the gaming aspects of rehabilitation. In addition, a regular review of the obtained performance can reinforce in patients' minds the importance of exercising and encourage them to continue, so improving their motivation and consequently adherence to the program. In view of this, we also developed an evaluation metric that could characterize the rate of improvement and quantify the changes in the obtained performance. Methods Two groups (G1, n = 8 and G2, n = 12 of patients with chronic stroke were enrolled in a 3-week rehabilitation program including standard physical therapy (45 min. daily plus treatment by means of robot devices (40 min., twice daily respectively for wrist (G1 and elbow-shoulder movements (G2. Both groups were evaluated by means of standard clinical assessment scales and the new robot measured evaluation metric. Patients' motivation was assessed in 9/12 G2 patients by means of the Intrinsic Motivation Inventory (IMI questionnaire. Results Both groups reduced their motor deficit and showed a significant improvement in clinical scales and the robot measured parameters. The IMI assessed in G2 patients showed high scores for interest, usefulness and importance subscales and low values for tension and pain subscales. Conclusion Thanks to the design features of the two robot devices the therapist could easily adapt training to the individual by selecting different difficulty levels of the motor task tailored to each patient's disability. The gaming aspects incorporated in the two rehabilitation robots helped maintain

  5. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.

    Science.gov (United States)

    Chemuturi, Radhika; Amirabdollahian, Farshid; Dautenhahn, Kerstin

    2013-09-28

    Rehabilitation robotics is progressing towards developing robots that can be used as advanced tools to augment the role of a therapist. These robots are capable of not only offering more frequent and more accessible therapies but also providing new insights into treatment effectiveness based on their ability to measure interaction parameters. A requirement for having more advanced therapies is to identify how robots can 'adapt' to each individual's needs at different stages of recovery. Hence, our research focused on developing an adaptive interface for the GENTLE/A rehabilitation system. The interface was based on a lead-lag performance model utilising the interaction between the human and the robot. The goal of the present study was to test the adaptability of the GENTLE/A system to the performance of the user. Point-to-point movements were executed using the HapticMaster (HM) robotic arm, the main component of the GENTLE/A rehabilitation system. The points were displayed as balls on the screen and some of the points also had a real object, providing a test-bed for the human-robot interaction (HRI) experiment. The HM was operated in various modes to test the adaptability of the GENTLE/A system based on the leading/lagging performance of the user. Thirty-two healthy participants took part in the experiment comprising of a training phase followed by the actual-performance phase. The leading or lagging role of the participant could be used successfully to adjust the duration required by that participant to execute point-to-point movements, in various modes of robot operation and under various conditions. The adaptability of the GENTLE/A system was clearly evident from the durations recorded. The regression results showed that the participants required lower execution times with the help from a real object when compared to just a virtual object. The 'reaching away' movements were longer to execute when compared to the 'returning towards' movements irrespective of the

  6. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.

    Science.gov (United States)

    Ma, Zhou; Ben-Tzvi, Pinhas; Danoff, Jerome

    2016-12-01

    This paper presents a hand rehabilitation learning system, the SAFE Glove, a device that can be utilized to enhance the rehabilitation of subjects with disabilities. This system is able to learn fingertip motion and force for grasping different objects and then record and analyze the common movements of hand function including grip and release patterns. The glove is then able to reproduce these movement patterns in playback fashion to assist a weakened hand to accomplish these movements, or to modulate the assistive level based on the user's or therapist's intent for the purpose of hand rehabilitation therapy. Preliminary data have been collected from healthy hands. To demonstrate the glove's ability to manipulate the hand, the glove has been fitted on a wooden hand and the grasping of various objects was performed. To further prove that hands can be safely driven by this haptic mechanism, force sensor readings placed between each finger and the mechanism are plotted. These experimental results demonstrate the potential of the proposed system in rehabilitation therapy.

  7. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    OpenAIRE

    Oza, Chintan S.; Giszter, Simon F.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we e...

  8. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges

    Directory of Open Access Journals (Sweden)

    Stefano Mazzoleni

    2017-01-01

    Full Text Available A better understanding of the neural substrates that underlie motor recovery after stroke has led to the development of innovative rehabilitation strategies and tools that incorporate key elements of motor skill relearning, that is, intensive motor training involving goal-oriented repeated movements. Robotic devices for the upper limb are increasingly used in rehabilitation. Studies have demonstrated the effectiveness of these devices in reducing motor impairments, but less so for the improvement of upper limb function. Other studies have begun to investigate the benefits of combined approaches that target muscle function (functional electrical stimulation and botulinum toxin injections, modulate neural activity (noninvasive brain stimulation, and enhance motivation (virtual reality in an attempt to potentialize the benefits of robot-mediated training. The aim of this paper is to overview the current status of such combined treatments and to analyze the rationale behind them.

  9. Soft robotic devices for hand rehabilitation and assistance: a narrative review.

    Science.gov (United States)

    Chu, Chia-Ye; Patterson, Rita M

    2018-02-17

    The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design's therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction. A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation. In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted. The past 3 years has seen a rapid increase in the development of soft robotic

  10. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis

    OpenAIRE

    Davidow Amy; Lafond Ian; Saleh Soha; Qiu Qinyin; Fluet Gerard G; Merians Alma S; Adamovich Sergei V

    2011-01-01

    Abstract Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective me...

  11. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    OpenAIRE

    Lixun Zhang; Yupeng Zou; Lan Wang; Xinping Pei

    2012-01-01

    A novel Astronaut Rehabilitative Training Robot (ART) based on a cable‐driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut’s active movements. Based on the dynamics modelling of the cable‐driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC) is presented...

  12. Dynamic Characterization and Interaction Control of the CBM-Motus Robot for Upper-Limb Rehabilitation

    Directory of Open Access Journals (Sweden)

    Loredana Zollo

    2013-10-01

    Full Text Available This paper presents dynamic characterization and control of an upper-limb rehabilitation machine aimed at improving robot performance in the interaction with the patient. An integrated approach between mechanics and control is the key issue of the paper for the development of a robotic machine with desirable dynamic properties. Robot inertial and acceleration properties are studied in the workspace via a graphical representation based on ellipses. Robot friction is experimentally retrieved by means of a parametric identification procedure. A current-based impedance control is developed in order to compensate for friction and enhance control performance in the interaction with the patient by means of force feedback, without increasing system inertia. To this end, servo-amplifier motor currents are monitored to provide force feedback in the interaction, thus avoiding the need for force sensors mounted at the robot end-effector. Current-based impedance control is implemented on the robot; experimental results in free space as well as in constrained space are provided.

  13. Animal Robot Assisted-therapy for Rehabilitation of Patient with Post-Stroke Depression

    Science.gov (United States)

    Zikril Zulkifli, Winal; Shamsuddin, Syamimi; Hwee, Lim Thiam

    2017-06-01

    Recently, the utilization of therapeutic animal robots has expanded. This research aims to explore robotics application for mental healthcare in Malaysia through human-robot interaction (HRI). PARO, the robotic seal PARO was developed to give psychological effects on humans. Major Depressive Disorder (MDD) is a common but severe mood disorder. This study focuses on the interaction protocol between PARO and patients with MDD. Initially, twelve rehabilitation patients gave subjective evaluation on their first interaction with PARO. Next, therapeutic interaction environment was set-up with PARO in it to act as an augmentation strategy with other psychological interventions for post-stroke depression. Patient was exposed to PARO for 20 minutes. The results of behavioural analysis complemented with information from HRI survey question. The analysis also observed that the individual interactors engaged with the robot in diverse ways based on their needs Results show positive reaction toward the acceptance of an animal robot. Next, therapeutic interaction is set-up for PARO to contribute as an augmentation strategy with other psychological interventions for post-stroke depression. The outcome is to reduce the stress level among patients through facilitated therapy session with PARO

  14. Early Poststroke Rehabilitation Using a Robotic Tilt-Table Stepper and Functional Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Alexey N. Kuznetsov

    2013-01-01

    Full Text Available Background. Stroke frequently leaves survivors with hemiparesis. To prevent persistent deficits, rehabilitation may be more effective if started early. Early training is often limited because of orthostatic reactions. Tilt-table stepping robots and functional electrical stimulation (FES may prevent these reactions. Objective. This controlled convenience sample study compares safety and feasibility of robotic tilt-table training plus FES (ROBO-FES and robotic tilt-table training (ROBO against tilt-table training alone (control. A preliminary assessment of efficacy is performed. Methods. Hemiparetic ischemic stroke survivors (age years, days after stroke were assigned to 30 days of ROBO-FES (, ROBO (, or control ( in addition to conventional physical therapy. Impedance cardiography and transcranial doppler sonography were performed before, during, and after training. Hemiparesis was assessed using the British Medical Research Council (MRC strength scale. Results. No serious adverse events occurred; 8 patients in the tilt-table group prematurely quit the study because of orthostatic reactions. Blood pressure and CBFV dipped % during robot training. In 52% of controls mean arterial pressure decreased by %. ROBO-FES increased leg strength by points, ROBO by more than control (, . CBFV increased in both robotic groups more than in controls (. Conclusions. Robotic tilt-table exercise with or without FES is safe and may be more effective in improving leg strength and cerebral blood flow than tilt table alone.

  15. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke.

    Science.gov (United States)

    Allington, James; Spencer, Steven J; Klein, Julius; Buell, Meghan; Reinkensmeyer, David J; Bobrow, James

    2011-01-01

    The robot described in this paper, SUE (Supinator Extender), adds forearm/wrist rehabilitation functionality to the UCI BONES exoskeleton robot and to the ArmeoSpring rehabilitation device. SUE is a 2-DOF serial chain that can measure and assist forearm supination-pronation and wrist flexion-extension. The large power to weight ratio of pneumatic actuators allows SUE to achieve the forces needed for rehabilitation therapy while remaining lightweight enough to be carried by BONES and ArmeoSpring. Each degree of freedom has a range of 90 degrees, and a nominal torque of 2 ft-lbs. The cylinders are mounted away from the patient's body on the lateral aspect of the arm. This is to prevent the danger of a collision and maximize the workspace of the arm robot. The rotation axis used for supination-pronation is a small bearing just below the subject's wrist. The flexion-extension motion is actuated by a cantilevered pneumatic cylinder, which allows the palm of the hand to remain open. Data are presented that demonstrate the ability of SUE to measure and cancel forearm/wrist passive tone, thereby extending the active range of motion for people with stroke.

  16. Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit.

    Science.gov (United States)

    Abdullah, Hussein A; Tarry, Cole; Lambert, Cynthia; Barreca, Susan; Allen, Brian O

    2011-08-26

    Physical rehabilitation is an area where robotics could contribute significantly to improved motor return for individuals following a stroke. This paper presents the results of a preliminary randomized controlled trial (RCT) of a robot system used in the rehabilitation of the paretic arm following a stroke. The study's objectives were to explore the efficacy of this new type of robotic therapy as compared to standard physiotherapy treatment in treating the post-stroke arm; to evaluate client satisfaction with the proposed robotic system; and to provide data for sample size calculations for a proposed larger multicenter RCT. Twenty clients admitted to an inpatient stroke rehabilitation unit were randomly allocated to one of two groups, an experimental (robotic arm therapy) group or a control group (conventional therapy). An occupational therapist blinded to patient allocation administered two reliable measures, the Chedoke Arm and Hand Activity Inventory (CAHAI-7) and the Chedoke McMaster Stroke Assessment of the Arm and Hand (CMSA) at admission and discharge. For both groups, at admission, the CMSA motor impairment stage of the affected arm was between 1 and 3. Data were compared to determine the effectiveness of robot-assisted versus conventional therapy treatments. At the functional level, both groups performed well, with improvement in scores on the CAHAI-7 showing clinical and statistical significance. The CAHAI-7 (range7-49) is a measure of motor performance using functional items. Individuals in the robotic therapy group, on average, improved by 62% (95% CI: 26% to 107%) while those in the conventional therapy group changed by 30% (95% CI: 4% to 61%). Although performance on this measure is influenced by hand recovery, our results showed that both groups had similar stages of motor impairment in the hand. Furthermore, the degree of shoulder pain, as measured by the CMSA pain inventory scale, did not worsen for either group over the course of treatment. Our

  17. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.

    Science.gov (United States)

    del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-03-04

    Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical

  18. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.

    Science.gov (United States)

    He, Yongtian; Nathan, Kevin; Venkatakrishnan, Anusha; Rovekamp, Roger; Beck, Christopher; Ozdemir, Recep; Francisco, Gerard E; Contreras-Vidal, Jose L

    2014-01-01

    Stroke remains a leading cause of disability, limiting independent ambulation in survivors, and consequently affecting quality of life (QOL). Recent technological advances in neural interfacing with robotic rehabilitation devices are promising in the context of gait rehabilitation. Here, the X1, NASA's powered robotic lower limb exoskeleton, is introduced as a potential diagnostic, assistive, and therapeutic tool for stroke rehabilitation. Additionally, the feasibility of decoding lower limb joint kinematics and kinetics during walking with the X1 from scalp electroencephalographic (EEG) signals--the first step towards the development of a brain-machine interface (BMI) system to the X1 exoskeleton--is demonstrated.

  19. Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Jie Niu

    2017-12-01

    Full Text Available Robot-aided rehabilitation has become an important technology to restore and reinforce motor functions of patients with extremity impairment, whereas it can be extremely challenging to achieve satisfactory tracking performance due to uncertainties and disturbances during rehabilitation training. In this paper, a wire-driven rehabilitation robot that can work over a three-dimensional space is designed for upper-limb rehabilitation, and sliding mode control with nonlinear disturbance observer is designed for the robot to deal with the problem of unpredictable disturbances during robot-assisted training. Then, simulation and experiments of trajectory tracking are carried out to evaluate the performance of the system, the position errors, and the output forces of the designed control scheme are compared with those of the traditional sliding mode control (SMC scheme. The results show that the designed control scheme can effectively reduce the tracking errors and chattering of the output forces as compared with the traditional SMC scheme, which indicates that the nonlinear disturbance observer can reduce the effect of unpredictable disturbances. The designed control scheme for the wire-driven rehabilitation robot has potential to assist patients with stroke in performing repetitive rehabilitation training.

  20. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    Science.gov (United States)

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  1. Robot-Assisted Rehabilitation of Ankle Plantar Flexors Spasticity: A Three-Month Study with Proprioceptive Neuromuscular Facilitation

    Directory of Open Access Journals (Sweden)

    Zhihao Zhou

    2016-11-01

    Full Text Available In this paper, we aim to investigate the effect of Proprioceptive Neuromuscular Facilitation (PNF based rehabilitation for ankle plantar flexors spasticity by using a Robotic Ankle-foot Rehabilitation System (RARS. A modified robot-assisted system was proposed and seven post-stroke patients with hemiplegic spastic ankles participated a three-month of robotic PNF training. Their impaired sides were used as the experimental group while their unimpaired sides as the control group. A robotic intervention for the experimental group generally started from a two minutes passive stretching to warm-up or relax the soleus and gastrocnemius muscle and also ended with the same one. Then a PNF training session included 30 trails was activated between them. The rehabilitation trainings were carried out three times a week as an addition of their regular rehabilitation exercise. Passive ankle joint range of motion, resistance torque and stiffness were measured in both ankles before and after the intervention. The changes in Achilles' tendon length, walking speed, and lower limb function were also evaluated by the same physician or physiotherapist for each participant. Biomechanical measurements before interventions showed significant difference between the experimental group and the control group due to ankle spasticity. For the control group, there was no significant difference in the three months with no robotic intervention. But for the experimental group, passive dorsiflexion range of motion increased ( p0.05 . The robotic rehabilitation also improved the muscle strength ( p0.05 and fast walking speed ( p<0.05 . These results indicated that PNF based robotic intervention could significantly alleviate lower limb spasticity and improve the motor function in chronic stroke participant. The robotic system could potentially be used as an effective tool in post-stroke rehabilitation training.

  2. Evolution of upper limb kinematics four years after subacute robot-assisted rehabilitation in stroke patients.

    Science.gov (United States)

    Pila, Ophélie; Duret, Christophe; Gracies, Jean-Michel; Francisco, Gerard E; Bayle, Nicolas; Hutin, Émilie

    2018-04-25

    To assess functional status and robot-based kinematic measures four years after subacute robot-assisted rehabilitation in hemiparesis. Twenty-two patients with stroke-induced hemiparesis underwent a ≥3-month upper limb combined program of robot-assisted and occupational therapy from two months post-stroke, and received community-based therapy after discharge. Four years later, 19 (86%) participated in this follow-up study. Assessments 2, 5 and 54 months post-stroke included Fugl-Meyer (FM), Modified Frenchay Scale (MFS, at Month 54) and robot-based kinematic measures of targeting tasks in three directions, north, paretic and non-paretic: distance covered, velocity, accuracy (root mean square (RMS) error from straight line) and smoothness (number of velocity peaks; upward changes in accuracy and smoothness represent worsening). Analysis was stratified by FM score at two months: ≥17 (Group 1) or Kinematic changes (three directions pooled) were: distance -1[-17;2]% (ns); velocity, -8[-32;28]% (ns); accuracy, +6[-13;98]% (ns); smoothness, +44[-6;126]% (p robot-assisted upper limb training during subacute post-stroke phase, movement kinematics deteriorated despite community-based therapy, especially in more severely impaired patients. EudraCT 2016-005121-36. Registration: 2016-12-20. Date of enrolment of the first participant to the trial: 2009-11-24.

  3. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    Directory of Open Access Journals (Sweden)

    Bolliger Marc

    2008-10-01

    Full Text Available Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Methods Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Conclusion Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  4. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Directory of Open Access Journals (Sweden)

    Camilo Cortés

    2014-01-01

    Full Text Available New motor rehabilitation therapies include virtual reality (VR and robotic technologies. In limb rehabilitation, limb posture is required to (1 provide a limb realistic representation in VR games and (2 assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a the mathematical formulation and solution to the problem, (b the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c its integration into a rehabilitation VR game platform, and (d the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i animate avatars that represent the patient in VR games and (ii obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.

  5. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    Science.gov (United States)

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  6. Rehabilitation robotics in robotics for healthcare ; a roadmap study for the European Commission

    NARCIS (Netherlands)

    Gelderblom, G.J.; Wilt, M.de; Cremers, G.; Rensma, A.R.

    2009-01-01

    To gain understanding in the current status of Robotics in healthcare the European Commission issued a roadmap study into this domain. This paper reports on the main characteristics and results of this study. The study covered the wide domain of Healthcare and in this paper the domains relevant for

  7. Modeling and Simulation to Muscle Strength Training of Lower Limbs Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Ke-Yi Wang

    2015-01-01

    Full Text Available Considering the issues of lower limb rehabilitation robots with single control strategies and poor training types, a training method for improving muscle strength was put forward in this paper. Patients’ muscle strength could be achieved by targeted exercises at the end of rehabilitation. This approach could be realized through programming wires’ force. On the one hand, each wires force was measured by tension sensor and force closed loop control was established to control the value of wires’ force which was acted on trainees. On the other hand, the direction of output force was changed by detecting the trainees’ state of motion and the way of putting load to patient was achieved. Finally, the target of enhancing patients’ muscle strength was realized. Dynamic model was built by means of mechanism and training types of robots. Force closed loop control strategy was established based on training pattern. In view of the characteristics of the redundance and economy of wire control, the process for simple wire's load changes was discussed. In order to confirm the characteristics of robot control system, the controller was simulated in Matlab/Simulink. It was verified that command signal could be traced by control system availably and the load during muscle training would be provided effectively.

  8. A Sit-to-Stand Training Robot and Its Performance Evaluation: Dynamic Analysis in Lower Limb Rehabilitation Activities

    Science.gov (United States)

    Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko

    In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.

  9. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation.

    Science.gov (United States)

    Delph, Michael A; Fischer, Sarah A; Gauthier, Phillip W; Luna, Carlos H Martinez; Clancy, Edward A; Fischer, Gregory S

    2013-06-01

    Stroke affects 750,000 people annually, and 80% of stroke survivors are left with weakened limbs and hands. Repetitive hand movement is often used as a rehabilitation technique in order to regain hand movement and strength. In order to facilitate this rehabilitation, a robotic glove was designed to aid in the movement and coordination of gripping exercises. This glove utilizes a cable system to open and close a patients hand. The cables are actuated by servomotors, mounted in a backpack weighing 13.2 lbs including battery power sources. The glove can be controlled in terms of finger position and grip force through switch interface, software program, or surface myoelectric (sEMG) signal. The primary control modes of the system provide: active assistance, active resistance and a preprogrammed mode. This project developed a working prototype of the rehabilitative robotic glove which actuates the fingers over a full range of motion across one degree-of-freedom, and is capable of generating a maximum 15N grip force.

  10. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    Science.gov (United States)

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  11. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  12. Olympic tõotab jätkuvat tõusu / Armin Karu

    Index Scriptorium Estoniae

    Karu, Armin, 1965-

    2006-01-01

    Olympic Casino suuromanik Armin Karu vastab aripaev.ee lugejate küsimustele. Vt. samas: Raivo Sormunen. Olympicust võib saada kalleim börsifirma. Diagramm: Olympic liigub turuväärtuselt juba Tallinna börsi kalliduselt teise firma kannul

  13. Optimal design of an alignment-free two-DOF rehabilitation robot for the shoulder complex.

    Science.gov (United States)

    Galinski, Daniel; Sapin, Julien; Dehez, Bruno

    2013-06-01

    This paper presents the optimal design of an alignment-free exoskeleton for the rehabilitation of the shoulder complex. This robot structure is constituted of two actuated joints and is linked to the arm through passive degrees of freedom (DOFs) to drive the flexion-extension and abduction-adduction movements of the upper arm. The optimal design of this structure is performed through two steps. The first step is a multi-objective optimization process aiming to find the best parameters characterizing the robot and its position relative to the patient. The second step is a comparison process aiming to select the best solution from the optimization results on the basis of several criteria related to practical considerations. The optimal design process leads to a solution outperforming an existing solution on aspects as kinematics or ergonomics while being more simple.

  14. FUZZY CONTROLLER FOR THE CONTROL OF THE MOBILE PLATFORM OF THE CORBYS ROBOTIC GAIT REHABILITATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Maria Kyrarini

    2014-12-01

    Full Text Available In this paper, an inverse kinematics based control algorithm for the joystick control of the mobile platform of the novel mobile robot-assisted gait rehabilitation system CORBYS is presented. The mobile platform has four independently steered and driven wheels. Given the linear and angular velocities of the mobile platform, the inverse kinematics algorithm gives as its output the steering angle and the driving angular velocity of each of the four wheels. The paper is focused on the steering control of the platform for which a fuzzy logic controller is developed and implemented. The experimental results of the real-world steering of the platform are presented in the paper.

  15. A bio-inspired design of a hand robotic exoskeleton for rehabilitation

    Science.gov (United States)

    Ong, Aira Patrice R.; Bugtai, Nilo T.

    2018-02-01

    This paper presents the methodology for the design of a five-degree of freedom wearable robotic exoskeleton for hand rehabilitation. The design is inspired by the biological structure and mechanism of the human hand. One of the distinct features of the device is the cable-driven actuation, which provides the flexion and extension motion. A prototype of the orthotic device has been developed to prove the model of the system and has been tested in a 3D printed mechanical hand. The result showed that the proposed device was consistent with the requirements of bionics and was able to demonstrate the flexion and extension of the system.

  16. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.

    Science.gov (United States)

    Louie, Dennis R; Eng, Janice J

    2016-06-08

    Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as a gait training intervention for adult stroke survivors and reported walking outcome measures. Of 441 records identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria. The study designs ranged from pre-post clinical studies (n = 7) to controlled trials (n = 4); five of the studies utilized a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute (6 months) stroke. Training periods ranged from single-session to 8-week interventions. Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional Ambulation Category. Meaningful improvement with exoskeleton-based gait training was more apparent in sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in any walking outcomes compared to a control group in chronic stroke. In conclusion, clinical trials demonstrate that powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke

  17. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.

    Science.gov (United States)

    Bortole, Magdo; Venkatakrishnan, Anusha; Zhu, Fangshi; Moreno, Juan C; Francisco, Gerard E; Pons, Jose L; Contreras-Vidal, Jose L

    2015-06-17

    Stroke significantly affects thousands of individuals annually, leading to considerable physical impairment and functional disability. Gait is one of the most important activities of daily living affected in stroke survivors. Recent technological developments in powered robotics exoskeletons can create powerful adjunctive tools for rehabilitation and potentially accelerate functional recovery. Here, we present the development and evaluation of a novel lower limb robotic exoskeleton, namely H2 (Technaid S.L., Spain), for gait rehabilitation in stroke survivors. H2 has six actuated joints and is designed to allow intensive overground gait training. An assistive gait control algorithm was developed to create a force field along a desired trajectory, only applying torque when patients deviate from the prescribed movement pattern. The device was evaluated in 3 hemiparetic stroke patients across 4 weeks of training per individual (approximately 12 sessions). The study was approved by the Institutional Review Board at the University of Houston. The main objective of this initial pre-clinical study was to evaluate the safety and usability of the exoskeleton. A Likert scale was used to measure patient's perception about the easy of use of the device. Three stroke patients completed the study. The training was well tolerated and no adverse events occurred. Early findings demonstrate that H2 appears to be safe and easy to use in the participants of this study. The overground training environment employed as a means to enhance active patient engagement proved to be challenging and exciting for patients. These results are promising and encourage future rehabilitation training with a larger cohort of patients. The developed exoskeleton enables longitudinal overground training of walking in hemiparetic patients after stroke. The system is robust and safe when applied to assist a stroke patient performing an overground walking task. Such device opens the opportunity to study means

  18. Dokazi o učinkovitosti uporabe robota in navidezne resničnosti v rehabilitaciji: Evidence on efficacy of rehabilitation robotics and virtual environment supported movement in rehabilitation:

    OpenAIRE

    Matjačić, Zlatko

    2011-01-01

    Background: Rehabilitation robotics and virtual environments are being gradually used in clinical rehabilitation environments as they enable higher number of specific movement (mobility or upper limb) repetitions while at the same time relieving physiotherapists from strenuous labor. However, as rehabilitation robotics require relatively high initial investment evidences on its efficacy are crucial for their further wide-spreading. Methods: We reviewed literature reporting on randomized clini...

  19. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis

    Directory of Open Access Journals (Sweden)

    Davidow Amy

    2011-05-01

    Full Text Available Abstract Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Methods Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. Results The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Conclusions Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training.

  20. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis.

    Science.gov (United States)

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Saleh, Soha; Lafond, Ian; Davidow, Amy; Adamovich, Sergei V

    2011-05-16

    Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training.

  1. Haptic-based neurorehabilitation in poststroke patients: a feasibility prospective multicentre trial for robotics hand rehabilitation.

    Science.gov (United States)

    Turolla, Andrea; Daud Albasini, Omar A; Oboe, Roberto; Agostini, Michela; Tonin, Paolo; Paolucci, Stefano; Sandrini, Giorgio; Venneri, Annalena; Piron, Lamberto

    2013-01-01

    Background. Haptic robots allow the exploitation of known motor learning mechanisms, representing a valuable option for motor treatment after stroke. The aim of this feasibility multicentre study was to test the clinical efficacy of a haptic prototype, for the recovery of hand function after stroke. Methods. A prospective pilot clinical trial was planned on 15 consecutive patients enrolled in 3 rehabilitation centre in Italy. All the framework features of the haptic robot (e.g., control loop, external communication, and graphic rendering for virtual reality) were implemented into a real-time MATLAB/Simulink environment, controlling a five-bar linkage able to provide forces up to 20 [N] at the end effector, used for finger and hand rehabilitation therapies. Clinical (i.e., Fugl-Meyer upper extremity scale; nine hold pegboard test) and kinematics (i.e., time; velocity; jerk metric; normalized jerk of standard movements) outcomes were assessed before and after treatment to detect changes in patients' motor performance. Reorganization of cortical activation was detected in one patient by fMRI. Results and Conclusions. All patients showed significant improvements in both clinical and kinematic outcomes. Additionally, fMRI results suggest that the proposed approach may promote a better cortical activation in the brain.

  2. Haptic-Based Neurorehabilitation in Poststroke Patients: A Feasibility Prospective Multicentre Trial for Robotics Hand Rehabilitation

    Directory of Open Access Journals (Sweden)

    Andrea Turolla

    2013-01-01

    Full Text Available Background. Haptic robots allow the exploitation of known motorlearning mechanisms, representing a valuable option for motor treatment after stroke. The aim of this feasibility multicentre study was to test the clinical efficacy of a haptic prototype, for the recovery of hand function after stroke. Methods. A prospective pilot clinical trial was planned on 15 consecutive patients enrolled in 3 rehabilitation centre in Italy. All the framework features of the haptic robot (e.g., control loop, external communication, and graphic rendering for virtual reality were implemented into a real-time MATLAB/Simulink environment, controlling a five-bar linkage able to provide forces up to 20 [N] at the end effector, used for finger and hand rehabilitation therapies. Clinical (i.e., Fugl-Meyer upper extremity scale; nine hold pegboard test and kinematics (i.e., time; velocity; jerk metric; normalized jerk of standard movements outcomes were assessed before and after treatment to detect changes in patients' motor performance. Reorganization of cortical activation was detected in one patient by fMRI. Results and Conclusions. All patients showed significant improvements in both clinical and kinematic outcomes. Additionally, fMRI results suggest that the proposed approach may promote a better cortical activation in the brain.

  3. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.

    Science.gov (United States)

    Gui, Kai; Liu, Honghai; Zhang, Dingguo

    2017-11-01

    Robotic exoskeletons for physical rehabilitation have been utilized for retraining patients suffering from paraplegia and enhancing motor recovery in recent years. However, users are not voluntarily involved in most systems. This paper aims to develop a locomotion trainer with multiple gait patterns, which can be controlled by the active motion intention of users. A multimodal human-robot interaction (HRI) system is established to enhance subject's active participation during gait rehabilitation, which includes cognitive HRI (cHRI) and physical HRI (pHRI). The cHRI adopts brain-computer interface based on steady-state visual evoked potential. The pHRI is realized via admittance control based on electromyography. A central pattern generator is utilized to produce rhythmic and continuous lower joint trajectories, and its state variables are regulated by cHRI and pHRI. A custom-made leg exoskeleton prototype with the proposed multimodal HRI is tested on healthy subjects and stroke patients. The results show that voluntary and active participation can be effectively involved to achieve various assistive gait patterns.

  4. Reviewing Clinical Effectiveness of Active Training Strategies of Platform-Based Ankle Rehabilitation Robots

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zeng

    2018-01-01

    Full Text Available Objective. This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in platform-based ankle robots. Method. English-language studies published from Jan 1980 to Aug 2017 were searched from four databases using key words of “Ankle∗” AND “Robot∗” AND “Effect∗ OR Improv∗ OR Increas∗.” Following an initial screening, three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. Result. A total of 21 studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used different groups for comparison to verify the therapeutic effect. Virtual-reality (VR game training was applied in 19 studies, while two studies used proprioceptive neuromuscular facilitation (PNF training. Conclusion. Active training techniques delivered by platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy.

  5. Robot ZORA in rehabilitation and special education for children with severe physical disabilities: a pilot study.

    Science.gov (United States)

    van den Heuvel, Renée J F; Lexis, Monique A S; de Witte, Luc P

    2017-12-01

    The aim of this study was to explore the potential of ZORA robot-based interventions in rehabilitation and special education for children with severe physical disabilities. A two-centre explorative pilot study was carried out over a 2.5-month period involving children with severe physical disabilities with a developmental age ranging from 2 to 8 years. Children participated in six sessions with the ZORA robot in individual or in group sessions. Qualitative and quantitative methods were used to collect data on aspects of feasibility, usability, barriers and facilitators for the child as well as for the therapist and to obtain an indication of the effects on playfulness and the achievement of goals. In total, 17 children and seven professionals participated in the study. The results of this study show a positive contribution of ZORA in achieving therapy and educational goals. Moreover, sessions with ZORA were indicated as playful. Three main domains were indicated to be the most promising for the application of ZORA: movement skills, communication skills and cognitive skills. Furthermore, ZORA can contribute towards eliciting motivation, concentration, taking initiative and improving attention span of the children. On the basis of the results of the study, it can be concluded that ZORA has potential in therapy and education for children with severe physical disabilities. More research is needed to gain insight into how ZORA can be applied best in rehabilitation and special education.

  6. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training

    Directory of Open Access Journals (Sweden)

    Yali Liu

    2017-01-01

    Full Text Available Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient’s functional ability by training the normal movement pattern.

  7. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.

    Science.gov (United States)

    Suarez-Escobar, Marian; Rendon-Velez, Elizabeth

    2018-01-15

    This article aims to clarify the current state-of-the-art of robotic/mechanical devices for post-stroke thumb rehabilitation as well as the anatomical characteristics and motions of the thumb that are crucial for the development of any device that aims to support its motion. A systematic literature search was conducted to identify robotic/mechanical devices for post-stroke thumb rehabilitation. Specific electronic databases and well-defined search terms and inclusion/exclusion criteria were used for such purpose. A reasoning model was devised to support the structured abstraction of relevant data from the literature of interest. Following the main search and after removing duplicated and other non-relevant studies, 68 articles (corresponding to 32 devices) were left for further examination. These articles were analyzed to extract data relative to (i) the motions assisted/permitted - either actively or passively - by the device per anatomical joint of the thumb and (ii) mechanical-related aspects (i.e., architecture, connections to thumb, other fingers supported, adjustability to different hand sizes, actuators - type, quantity, location, power transmission and motion trajectory). Most articles describe preliminary design and testing of prototypes, rather than the thorough evaluation of commercially ready devices. Defining appropriate kinematic models of the thumb upon which to design such devices still remains a challenging and unresolved task. Further research is needed before these devices can actually be implemented in clinical environments to serve their intended purpose of complementing the labour of therapists by facilitating intensive treatment with precise and repeatable exercises. Implications for Rehabilitation Post-stroke functional disability of the hand, and particularly of the thumb, significantly affects the capability to perform activities of daily living, threatening the independence and quality of life of the stroke survivors. The latest studies

  8. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement

    Directory of Open Access Journals (Sweden)

    Marco Caimmi

    2016-01-01

    Full Text Available Although rehabilitation robotics seems to be a promising therapy in the rehabilitation of the upper limb in stroke patients, consensus is still lacking on its additive effects. Therefore, there is a need for determining the possible success of robotic interventions on selected patients, which in turn determine the necessity for new investigating instruments supporting the treatment decision-making process and customization. The objective of the work presented in this preliminary study was to verify that fully robot assistance would not affect the physiological oscillatory cortical activity related to a functional movement in healthy subjects. Further, the clinical results following the robotic treatment of a chronic stroke patient, who positively reacted to the robotic intervention, were analyzed and discussed. First results show that there is no difference in EEG activation pattern between assisted and no-assisted movement in healthy subjects. Even more importantly, the patient’s pretreatment EEG activation pattern in no-assisted movement was completely altered, while it recovered to a quasi-physiological one in robot-assisted movement. The functional improvement following treatment was large. Using pretreatment EEG recording during robot-assisted movement might be a valid approach to assess the potential ability of the patient for recovering.

  9. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement

    Science.gov (United States)

    Gramigna, Cristina; Franceschetti, Silvana

    2016-01-01

    Although rehabilitation robotics seems to be a promising therapy in the rehabilitation of the upper limb in stroke patients, consensus is still lacking on its additive effects. Therefore, there is a need for determining the possible success of robotic interventions on selected patients, which in turn determine the necessity for new investigating instruments supporting the treatment decision-making process and customization. The objective of the work presented in this preliminary study was to verify that fully robot assistance would not affect the physiological oscillatory cortical activity related to a functional movement in healthy subjects. Further, the clinical results following the robotic treatment of a chronic stroke patient, who positively reacted to the robotic intervention, were analyzed and discussed. First results show that there is no difference in EEG activation pattern between assisted and no-assisted movement in healthy subjects. Even more importantly, the patient's pretreatment EEG activation pattern in no-assisted movement was completely altered, while it recovered to a quasi-physiological one in robot-assisted movement. The functional improvement following treatment was large. Using pretreatment EEG recording during robot-assisted movement might be a valid approach to assess the potential ability of the patient for recovering. PMID:27057546

  10. The HAAPI (Home Arm Assistance Progression Initiative) Trial: A Novel Robotics Delivery Approach in Stroke Rehabilitation.

    Science.gov (United States)

    Wolf, Steven L; Sahu, Komal; Bay, R Curtis; Buchanan, Sharon; Reiss, Aimee; Linder, Susan; Rosenfeldt, Anson; Alberts, Jay

    2015-01-01

    Geographical location, socioeconomic status, and logistics surrounding transportation impede access of poststroke individuals to comprehensive rehabilitative services. Robotic therapy may enhance telerehabilitation by delivering consistent and state-of-the art therapy while allowing remote monitoring and adjusting therapy for underserved populations. The Hand Mentor Pro (HMP) was incorporated within a home exercise program (HEP) to improve upper-extremity (UE) functional capabilities poststroke. To determine the efficacy of a home-based telemonitored robotic-assisted therapy as part of a HEP compared with a dose-matched HEP-only intervention among individuals less than 6 months poststroke and characterized as underserved. In this prospective, single-blinded, multisite, randomized controlled trial, 99 hemiparetic participants with limited access to UE rehabilitation were randomized to either (1) the experimental group, which received combined HEP and HMP for 3 h/d ×5 days ×8 weeks, or (2) the control group, which received HEP only at an identical dosage. Weekly communication between the supervising therapist and participant promoted compliance and progression of the HEP and HMP prescription. The Action Research Arm Test and Wolf Motor Function Test along with the Fugl-Meyer Assessment (UE) were primary and secondary outcome measures, respectively, undertaken before and after the interventions. Both groups demonstrated improvement across all UE outcomes. Robotic + HEP and HEP only were both effectively delivered remotely. There was no difference between groups in change in motor function over time. Additional research is necessary to determine the appropriate dosage of HMP and HEP. © The Author(s) 2015.

  11. Quantifying Age-Related Differences in Human Reaching while Interacting with a Rehabilitation Robotic Device

    Directory of Open Access Journals (Sweden)

    Vivek Yadav

    2010-01-01

    Full Text Available New movement assessment and data analysis methods are developed to quantify human arm motion patterns during physical interaction with robotic devices for rehabilitation. These methods provide metrics for future use in diagnosis, assessment and rehabilitation of subjects with affected arm movements. Specifically, the current study uses existing pattern recognition methods to evaluate the effect of age on performance of a specific motion, reaching to a target by moving the end-effector of a robot (an X-Y table. Differences in the arm motion patterns of younger and older subjects are evaluated using two measures: the principal component analysis similarity factor (SPCA to compare path shape and the number of Fourier modes representing 98% of the path ‘energy’ to compare the smoothness of movement, a particularly important variable for assessment of pathologic movement. Both measures are less sensitive to noise than others previously reported in the literature and preserve information that is often lost through other analysis techniques. Data from the SPCA analysis indicate that age is a significant factor affecting the shapes of target reaching paths, followed by reaching movement type (crossing body midline/not crossing and reaching side (left/right; hand dominance and trial repetition are not significant factors. Data from the Fourier-based analysis likewise indicate that age is a significant factor affecting smoothness of movement, and movements become smoother with increasing trial number in both younger and older subjects, although more rapidly so in younger subjects. These results using the proposed data analysis methods confirm current practice that age-matched subjects should be used for comparison to quantify recovery of arm movement during rehabilitation. The results also highlight the advantages that these methods offer relative to other reported measures.

  12. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy.

    Science.gov (United States)

    Brokaw, Elizabeth B; Nichols, Diane; Holley, Rahsaan J; Lum, Peter S

    2014-05-01

    Individuals with chronic stroke often have long-lasting upper extremity impairments that impede function during activities of daily living. Rehabilitation robotics have shown promise in improving arm function, but current systems do not allow realistic training of activities of daily living. We have incorporated the ARMin III and HandSOME device into a novel robotic therapy modality that provides functional training of reach and grasp tasks. To compare the effects of equal doses of robotic and conventional therapy in individuals with chronic stroke. Subjects were randomized to 12 hours of robotic or conventional therapy and then crossed over to the other therapy type after a 1-month washout period. Twelve moderate to severely impaired individuals with chronic stroke were enrolled, and 10 completed the study. Across the 3-month study period, subjects showed significant improvements in the Fugl-Meyer (P = .013) and Box and Blocks tests (P = .028). The robotic intervention produced significantly greater improvements in the Action Research Arm Test than conventional therapy (P = .033). Gains in the Box and Blocks test from conventional therapy were larger than from robotic therapy in subjects who received conventional therapy after robotic therapy (P = .044). Data suggest that robotic therapy can elicit improvements in arm function that are distinct from conventional therapy and supplements conventional methods to improve outcomes. Results from this pilot study should be confirmed in a larger study.

  13. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients.

    Science.gov (United States)

    Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping

    2017-07-01

    Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive rehabilitation training in restoring motor skills after a stroke. This study focuses on the rehabilitation of fine hand motion skills due to their vital role in performing delicate activities of daily living (ADL) tasks. The proposed rehabilitation system combines an adaptive assist-as-needed (AAN) control algorithm and a Virtual Reality (VR) based rehabilitation gaming system (RGS). The developed system is described and its effectiveness is validated through clinical trials on a group of eight subacute stroke patients for a period of six weeks. The impact of the training is verified through standard clinical evaluation methods and measuring key kinematic parameters. A comparison of the pre- and post-training results indicates that the method proposed in this study can improve fine hand motion rehabilitation training effectiveness.

  14. Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Quy-Thinh Dao

    2018-03-01

    Full Text Available Rehabilitation robots are designed to help patients improve their recovery from injury by supporting them to perform repetitive and systematic training sessions. These robots are not only able to guide the subjects’ lower-limb to a designate trajectory, but also estimate their disability and adapt the compliance accordingly. In this research, a new control strategy for a high compliant lower-limb rehabilitation orthosis system named AIRGAIT is developed. The AIRGAIT orthosis is powered by pneumatic artificial muscle actuators. The trajectory tracking controller based on a modified computed torque control which employs a fractional derivative is proposed for the tracking purpose. In addition, a new method is proposed for compliance control of the robotic orthosis which results in the successful implementation of the assist-as-needed training strategy. Finally, various subject-based experiments are carried out to verify the effectiveness of the developed control system.

  15. The development of an adaptive upper-limb stroke rehabilitation robotic system

    Science.gov (United States)

    2011-01-01

    Background Stroke is the primary cause of adult disability. To support this large population in recovery, robotic technologies are being developed to assist in the delivery of rehabilitation. This paper presents an automated system for a rehabilitation robotic device that guides stroke patients through an upper-limb reaching task. The system uses a decision theoretic model (a partially observable Markov decision process, or POMDP) as its primary engine for decision making. The POMDP allows the system to automatically modify exercise parameters to account for the specific needs and abilities of different individuals, and to use these parameters to take appropriate decisions about stroke rehabilitation exercises. Methods The performance of the system was evaluated by comparing the decisions made by the system with those of a human therapist. A single patient participant was paired up with a therapist participant for the duration of the study, for a total of six sessions. Each session was an hour long and occurred three times a week for two weeks. During each session, three steps were followed: (A) after the system made a decision, the therapist either agreed or disagreed with the decision made; (B) the researcher had the device execute the decision made by the therapist; (C) the patient then performed the reaching exercise. These parts were repeated in the order of A-B-C until the end of the session. Qualitative and quantitative question were asked at the end of each session and at the completion of the study for both participants. Results Overall, the therapist agreed with the system decisions approximately 65% of the time. In general, the therapist thought the system decisions were believable and could envision this system being used in both a clinical and home setting. The patient was satisfied with the system and would use this system as his/her primary method of rehabilitation. Conclusions The data collected in this study can only be used to provide insight into

  16. A Robot-Based Tool for Physical and Cognitive Rehabilitation of Elderly People Using Biofeedback

    Science.gov (United States)

    Lopez-Samaniego, Leire; Garcia-Zapirain, Begonya

    2016-01-01

    This publication presents a complete description of a technological solution system for the physical and cognitive rehabilitation of elderly people through a biofeedback system, which is combined with a Lego robot. The technology used was the iOS’s (iPhone Operating System) Objective-C programming language and its XCode programming environment; and SQLite in order to create the database. The biofeedback system is implemented by the use of two biosensors which are, in fact, a Microsoft band 2 in order to register the user’s heart rate and a MYO sensor to detect the user’s arm movement. Finally, the system was tested with seven elderly people from La Santa y Real Casa de la Misericordia nursing home in Bilbao. The statistical assessment has shown that the users are satisfied with the usability of the system, with a mean score of 79.29 on the System Usability Scale (SUS) questionnaire. PMID:27886146

  17. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.

    Science.gov (United States)

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei

    2016-09-02

    Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  18. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons

    Directory of Open Access Journals (Sweden)

    Yi Long

    2016-09-01

    Full Text Available Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM optimized by particle swarm optimization (PSO to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz, a three-layer wavelet packet analysis (WPA is used for feature extraction, after which, the kernel principal component analysis (kPCA is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  19. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.

    Science.gov (United States)

    Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos

    2007-01-01

    The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.

  20. Design and development of an upper extremity motion capture system for a rehabilitation robot.

    Science.gov (United States)

    Nanda, Pooja; Smith, Alan; Gebregiorgis, Adey; Brown, Edward E

    2009-01-01

    Human robot interaction is a new and rapidly growing field and its application in the realm of rehabilitation and physical care is a major focus area of research worldwide. This paper discusses the development and implementation of a wireless motion capture system for the human arm which can be used for physical therapy or real-time control of a robotic arm, among many other potential applications. The system is comprised of a mechanical brace with rotary potentiometers inserted at the different joints to capture position data. It also contains surface electrodes which acquire electromyographic signals through the CleveMed BioRadio device. The brace interfaces with a software subsystem which displays real time data signals. The software includes a 3D arm model which imitates the actual movement of a subject's arm under testing. This project began as part of the Rochester Institute of Technology's Undergraduate Multidisciplinary Senior Design curriculum and has been integrated into the overall research objectives of the Biomechatronic Learning Laboratory.

  1. A multichannel-near-infrared-spectroscopy-triggered robotic hand rehabilitation system for stroke patients.

    Science.gov (United States)

    Lee, Jongseung; Mukae, Nobutaka; Arata, Jumpei; Iwata, Hiroyuki; Iramina, Keiji; Iihara, Koji; Hashizume, Makoto

    2017-07-01

    There is a demand for a new neurorehabilitation modality with a brain-computer interface for stroke patients with insufficient or no remaining hand motor function. We previously developed a robotic hand rehabilitation system triggered by multichannel near-infrared spectroscopy (NIRS) to address this demand. In a preliminary prototype system, a robotic hand orthosis, providing one degree-of-freedom motion for a hand's closing and opening, is triggered by a wireless command from a NIRS system, capturing a subject's motor cortex activation. To examine the feasibility of the prototype, we conducted a preliminary test involving six neurologically intact participants. The test comprised a series of evaluations for two aspects of neurorehabilitation training in a real-time manner: classification accuracy and execution time. The effects of classification-related factors, namely the algorithm, signal type, and number of NIRS channels, were investigated. In the comparison of algorithms, linear discrimination analysis performed better than the support vector machine in terms of both accuracy and training time. The oxyhemoglobin versus deoxyhemoglobin comparison revealed that the two concentrations almost equally contribute to the hand motion estimation. The relationship between the number of NIRS channels and accuracy indicated that a certain number of channels are needed and suggested a need for a method of selecting informative channels. The computation time of 5.84 ms was acceptable for our purpose. Overall, the preliminary prototype showed sufficient feasibility for further development and clinical testing with stroke patients.

  2. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    Directory of Open Access Journals (Sweden)

    Dingguo Zhang

    2017-12-01

    Full Text Available Functional electrical stimulation (FES and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton. Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  3. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    Science.gov (United States)

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  4. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings

    Science.gov (United States)

    Su, Chen; Jiang, Xiaobo

    2017-01-01

    The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated by pneumatic artificial muscles (PAMs). In order to expand the useful range of RUPERT especially for patients with flaccid paralysis, functional electrical stimulation (FES) is taken to activate paralyzed arm muscles. As both the exoskeleton robot driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, iterative learning control (ILC) is studied and is taken to control this newly designed hybrid rehabilitation system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG) technique, the subject's active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES arrays to realize active reach-to-grasp trainings, which was verified through experiments. PMID:29065566

  5. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings

    Directory of Open Access Journals (Sweden)

    Xikai Tu

    2017-01-01

    Full Text Available The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated by pneumatic artificial muscles (PAMs. In order to expand the useful range of RUPERT especially for patients with flaccid paralysis, functional electrical stimulation (FES is taken to activate paralyzed arm muscles. As both the exoskeleton robot driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, iterative learning control (ILC is studied and is taken to control this newly designed hybrid rehabilitation system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG technique, the subject’s active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES arrays to realize active reach-to-grasp trainings, which was verified through experiments.

  6. Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: Control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers

    Directory of Open Access Journals (Sweden)

    Mohd Azuwan Mat Dzahir

    2014-04-01

    Full Text Available It is a general assumption that pneumatic muscle-type actuators will play an important role in the development of an assistive rehabilitation robotics system. In the last decade, the development of a pneumatic muscle actuated lower-limb leg orthosis has been rather slow compared to other types of actuated leg orthoses that use AC motors, DC motors, pneumatic cylinders, linear actuators, series elastic actuators (SEA and brushless servomotors. However, recent years have shown that the interest in this field has grown exponentially, mainly due to the demand for a more compliant and interactive human-robotics system. This paper presents a survey of existing lower-limb leg orthoses for rehabilitation, which implement pneumatic muscle-type actuators, such as McKibben artificial muscles, rubbertuators, air muscles, pneumatic artificial muscles (PAM or pneumatic muscle actuators (PMA. It reviews all the currently existing lower-limb rehabilitation orthosis systems in terms of comparison and evaluation of the design, as well as the control scheme and strategy, with the aim of clarifying the current and on-going research in the lower-limb robotic rehabilitation field.

  7. Effects of robotic-aided rehabilitation on recovery of upper extremity function in chronic stroke: a single case study.

    Science.gov (United States)

    Flinn, Nancy A; Smith, Jennifer L; Tripp, Christopher J; White, Matthew W

    2009-01-01

    The objective of the study was to examine the results of robotic therapy in a single client. A 48-year-old female client 15 months post-stroke, with right hemiparesis, received robotic therapy as an outpatient in a large Midwestern rehabilitation hospital. Robotic therapy was provided three times a week for 6 weeks. Robotic therapy consisted of goal-directed, robotic-aided reaching tasks to exercise the hemiparetic shoulder and elbow. No other therapeutic intervention for the affected upper extremity was provided during the study or 3 months follow-up period. The outcome measures included the Fugl-Meyer, graded Wolf motor function test (GWMFT), motor activity log, active range of motion and Canadian occupational performance measure. The participant made gains in active movement; performance; and satisfaction of functional tasks, GWMFT and functional use. Limitations involved in this study relate to the generalizability of the sample size, effect of medications, expense of robotic technologies and the impact of aphasia. Future research should incorporate functional use training along with robotic therapy.

  8. Brain-state dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation

    Directory of Open Access Journals (Sweden)

    Daniel eBrauchle

    2015-10-01

    Full Text Available While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input.We tested the feasibility of three-dimensional robotic assistance for reach-to-grasp movements with a multi-joint exoskeleton during motor imagery-related desynchronization of sensorimotor oscillations in the β-band only. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function.Healthy subjects and stroke survivors showed similar patterns – but different aptitudes – of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e. when the orthosis was actually attached to the subject’s arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task.Brain-robot interfaces may successfully link three-dimensional robotic training to the participants’ efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration.

  9. An Evaluation of the Design and Usability of a Novel Robotic Bilateral Arm Rehabilitation Device for Patients with Stroke

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Pei

    2017-07-01

    Full Text Available Study designCase series.Evidence levelIV (case series.IntroductionRobot-assisted therapy for upper limb rehabilitation is an emerging research topic and its design process must integrate engineering, neurological pathophysiology, and clinical needs.Purpose of the studyThis study developed/evaluated the usefulness of a novel rehabilitation device, the MirrorPath, designed for the upper limb rehabilitation of patients with hemiplegic stroke.MethodsThe process follows Tseng’s methodology for innovative product design and development, namely two stages, device development and usability assessment. During the development process, the design was guided by patients’ rehabilitation needs as defined by patients and their therapists. The design applied synchronic movement of the bilateral upper limbs, an approach that is compatible with the bilateral movement therapy and proprioceptive neuromuscular facilitation theories. MirrorPath consists of a robotic device that guides upper limb movement linked to a control module containing software controlling the robotic movement.ResultsFive healthy subjects were recruited in the pretest, and 4 patients, 4 caregivers, and 4 therapists were recruited in the formal test for usability. All recruited subjects were allocated to the test group, completed the evaluation, and their data were all analyzed. The total system usability scale score obtained from the patients, caregivers, and therapists was 71.8 ± 11.9, indicating a high level of usability and product acceptance.Discussion and conclusionFollowing a standard development process, we could yield a design that meets clinical needs. This low-cost device provides a feasible platform for carrying out robot-assisted bilateral movement therapy of patients with hemiplegic stroke.Clinical Trial Registrationidentifier NCT02698605.

  10. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients.

    Science.gov (United States)

    Daunoraviciene, Kristina; Adomaviciene, Ausra; Grigonyte, Agne; Griškevičius, Julius; Juocevicius, Alvydas

    2018-05-18

    The study aims to determine the effectiveness of robot-assisted training in the recovery of stroke-affected arms using an exoskeleton robot Armeo Spring. To identify the effect of robot training on functional recovery of the arm. A total of 34 stroke patients were divided into either an experimental group (EG; n= 17) or a control group (n= 17). EG was also trained to use the Armeo Spring during occupational therapy. Both groups were clinically assessed before and after treatment. Statistical comparison methods (i.e. one-tailed t-tests for differences between two independent means and the simplest test) were conducted to compare motor recovery using robot-assisted training or conventional therapy. Patients assigned to the EG showed a statistically significant improvement in upper extremity motor function when compared to the CG by FIM (Peffect in the EG and CG was meaningful for shoulder and elbow kinematic parameters. The findings show the benefits of robot therapy in two areas of functional recovery. Task-oriented robotic training in rehabilitation setting facilitates recovery not only of the motor function of the paretic arm but also of the cognitive abilities in stroke patients.

  11. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation

    Directory of Open Access Journals (Sweden)

    Francisco Resquín

    2016-07-01

    Full Text Available Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.

  12. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis.

    Science.gov (United States)

    Bruni, Maria Federica; Melegari, Corrado; De Cola, Maria Cristina; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore

    2018-02-01

    Studies about electromechanical-assisted devices proved the validity and effectiveness of these tools in gait rehabilitation, especially if used in association with conventional physiotherapy in stroke patients. The aim of this study was to compare the effects of different robotic devices in improving post-stroke gait abnormalities. A computerized literature research of articles was conducted in the databases MEDLINE, PEDro, COCHRANE, besides a search for the same items in the Library System of the University of Parma (Italy). We selected 13 randomized controlled trials, and the results were divided into sub-acute stroke patients and chronic stroke patients. We selected studies including at least one of the following test: 10-Meter Walking Test, 6-Minute Walk Test, Timed-Up-and-Go, 5-Meter Walk Test, and Functional Ambulation Categories. Stroke patients who received physiotherapy treatment in combination with robotic devices, such as Lokomat or Gait Trainer, were more likely to reach better results, compared to patients who receive conventional gait training alone. Moreover, electromechanical-assisted gait training in association with Functional Electrical Stimulations produced more benefits than the only robotic treatment (-0.80 [-1.14; -0.46], p > .05). The evaluation of the results confirm that the use of robotics can positively affect the outcome of a gait rehabilitation in patients with stroke. The effects of different devices seems to be similar on the most commonly outcome evaluated by this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy.

    Science.gov (United States)

    Hwang, Chang Ho; Seong, Jin Wan; Son, Dae-Sik

    2012-08-01

    To evaluate individual finger synchronized robot-assisted hand rehabilitation in stroke patients. Prospective parallel group randomized controlled clinical trial. The study recruited patients who were ≥18 years old, more than three months post stroke, showed limited index finger movement and had weakened and impaired hand function. Patients with severe sensory loss, spasticity, apraxia, aphasia, disabling hand disease, impaired consciousness or depression were excluded. Patients received either four weeks (20 sessions) of active robot-assisted intervention (the FTI (full-term intervention) group, 9 patients) or two weeks (10 sessions) of early passive therapy followed by two weeks (10 sessions) of active robot-assisted intervention (the HTI (half-term intervention) group, 8 patients). Patients underwent arm function assessments prior to therapy (baseline), and at 2, 4 and 8 weeks after starting therapy. Compared to baseline, both the FTI and HTI groups showed improved results for the Jebsen Taylor test, the wrist and hand subportion of the Fugl-Meyer arm motor scale, active movement of the 2nd metacarpophalangeal joint, grasping, and pinching power (P vs. 46.4 ± 37.4) and wrist and hand subportion of the Fugl-Meyer arm motor scale (4.3 ± 1.9 vs. 3.4 ± 2.5) after eight weeks. A four-week rehabilitation using a novel robot that provides individual finger synchronization resulted in a dose-dependent improvement in hand function in subacute to chronic stroke patients.

  14. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial

    Science.gov (United States)

    Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano

    2016-01-01

    Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928

  15. Using visual feedback distortion to alter coordinated pinching patterns for robotic rehabilitation

    Directory of Open Access Journals (Sweden)

    Brewer Bambi R

    2007-05-01

    Full Text Available Abstract Background It is common for individuals with chronic disabilities to continue using the compensatory movement coordination due to entrenched habits, increased perception of task difficulty, or personality variables such as low self-efficacy or a fear of failure. Following our previous work using feedback distortion in a virtual rehabilitation environment to increase strength and range of motion, we address the use of visual feedback distortion environment to alter movement coordination patterns. Methods Fifty-one able-bodied subjects participated in the study. During the experiment, each subject learned to move their index finger and thumb in a particular target pattern while receiving visual feedback. Visual distortion was implemented as a magnification of the error between the thumb and/or index finger position and the desired position. The error reduction profile and the effect of distortion were analyzed by comparing the mean total absolute error and a normalized error that measured performance improvement for each subject as a proportion of the baseline error. Results The results of the study showed that (1 different coordination pattern could be trained with visual feedback and have the new pattern transferred to trials without visual feedback, (2 distorting individual finger at a time allowed different error reduction profile from the controls, and (3 overall learning was not sped up by distorting individual fingers. Conclusion It is important that robotic rehabilitation incorporates multi-limb or finger coordination tasks that are important for activities of daily life in the near future. This study marks the first investigation on multi-finger coordination tasks under visual feedback manipulation.

  16. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review.

    Science.gov (United States)

    Swinnen, Eva; Beckwée, David; Meeusen, Romain; Baeyens, Jean-Pierre; Kerckhofs, Eric

    2014-01-01

    The aim of this systematic review was to summarize the improvements in balance after robot-assisted gait training (RAGT) in stroke patients. Two databases were searched: PubMed and Web of Knowledge. The most important key words are "stroke," "RAGT," "balance," "Lokomat," and "gait trainer." Studies were included if stroke patients were involved in RAGT protocols, and balance was determined as an outcome measurement. The articles were checked for methodological quality by 2 reviewers (Cohen's κ = 0.72). Nine studies were included (7 true experimental and 2 pre-experimental studies; methodological quality score, 56%-81%). In total, 229 subacute or chronic stroke patients (70.5% male) were involved in RAGT (3 to 5 times per week, 3 to 10 weeks, 12 to 25 sessions). In 5 studies, the gait trainer was used; in 2, the Lokomat was used; in 1 study, a single-joint wearable knee orthosis was used; and in 1 study, the AutoAmbulator was used. Eight studies compared RAGT with other gait rehabilitation methods. Significant improvements (no to large effect sizes, Cohen's d = 0.01 to 3.01) in balance scores measured with the Berg Balance Scale, the Tinetti test, postural sway tests, and the Timed Up and Go test were found after RAGT. No significant differences in balance between the intervention and control groups were reported. RAGT can lead to improvements in balance in stroke patients; however, it is not clear whether the improvements are greater compared with those associated with other gait rehabilitation methods. Because a limited number of studies are available, more specific research (eg, randomized controlled trials with larger, specific populations) is necessary to draw stronger conclusions.

  17. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  18. Ärimees Armin Karult raha nõudnud "rullnokad" toimetasid politsei nina all / Rasmus Kagge, Risto Berendson

    Index Scriptorium Estoniae

    Kagge, Rasmus, 1977-

    2008-01-01

    Ilmunud ka: Postimees : na russkom jazõke 17. jaan. 2008, lk. 2-3. Raplamaa noorukeid Ardot ja Viljarit kahtlustatakse kasiinoärimehe Armin Karu tütre Inese pantvangi võtmise kava sepistamises, nad lootsid Olympic Casino keti suuromanikult saada 235 miljonit krooni lunaraha. Politsei tööst kuriteo avastamisel ja nurjamisel. Lisa: Inimröövid. Vt. samas: Armin Karu: kahju, et selliseid tegelasi leidub. Ilmunud ka: samal teemal:Risto Berendsoni art. 18. jaan. Postimees lk. 6; 19. jaan. Postimees ja Postimees : na russkom jazõke lk. 5 ja lk. 3

  19. Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function

    Directory of Open Access Journals (Sweden)

    Frederick Sebastian

    2017-12-01

    Full Text Available The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using

  20. Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks

    Directory of Open Access Journals (Sweden)

    Arturo Bertomeu-Motos

    2015-12-01

    Full Text Available This paper presents a novel kinematic reconstruction of the human arm chain with five degrees of freedom and the estimation of the shoulder location during rehabilitation therapy assisted by end-effector robotic devices. This algorithm is based on the pseudoinverse of the Jacobian through the acceleration of the upper arm, measured using an accelerometer, and the orientation of the shoulder, estimated with a magnetic angular rate and gravity (MARG device. The results show a high accuracy in terms of arm joints and shoulder movement with respect to the real arm measured through an optoelectronic system. Furthermore, the range of motion (ROM of 50 healthy subjects is studied from two different trials, one trying to avoid shoulder movements and the second one forcing them. Moreover, the shoulder movement in the second trial is also estimated accurately. Besides the fact that the posture of the patient can be corrected during the exercise, the therapist could use the presented algorithm as an objective assessment tool. In conclusion, the joints’ estimation enables a better adjustment of the therapy, taking into account the needs of the patient, and consequently, the arm motion improves faster.

  1. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    Directory of Open Access Journals (Sweden)

    Lixun Zhang

    2012-08-01

    Full Text Available A novel Astronaut Rehabilitative Training Robot (ART based on a cable-driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut's active movements. Based on the dynamics modelling of the cable-driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC is presented. A planning method for the cable tension is proposed so that the dynamic load produced by the ART can realistically simulate the gravity and inertial force of the barbell in a gravity environment. Finally, MATLAB simulation results of the man-machine cooperation system are provided in order to verify the effectiveness of the proposed control strategy. The simulation results show that the hybrid control method based on the structure invariance principle can inhibit the surplus force and that ICMAC can improve the dynamic performance of the passive force servo system. Furthermore, the hybrid force controller based on ICMAC can ensure the stability of the system.

  2. Motor and psychosocial impact of robot-assisted gait training in a real-world rehabilitation setting: A pilot study.

    Directory of Open Access Journals (Sweden)

    Cira Fundarò

    Full Text Available In the last decade robotic devices have been applied in rehabilitation to overcome walking disability in neurologic diseases with promising results. Robot assisted gait training (RAGT using the Lokomat seems not only to improve gait parameters but also the perception of well-being. Data on the psychosocial patient-robot impact are limited, in particular in the real-world of RAGT, in the rehabilitation setting. During rehabilitation training, the Lokomat can be considered an "assistive device for movement". This allowed the use of the Psychosocial Impact of Assistive Device Scale- PIADS to describe patient interaction with the Lokomat. The primary aim of this pilot study was to evaluate the psychosocial impact of the Lokomat in an in-patient rehabilitation setting using the PIADS; secondary aims were to assess whether the psychosocial impact of RAGT is different between pathological sub-groups and if the Lokomat influenced functional variables (Functional Independence Measure scale-FIM and parameters provided by the Lokomat itself. Thirty-nine consecutive patients (69% males, 54.0±18.0 years eligible for Lokomat training, with etiologically heterogeneous walking disabilities (Parkinson's Disease, n = 10; Spinal Cord Injury, n = 21; Ictus Event, n = 8 were enrolled. Patients were assessed with the FIM before and after rehabilitation with Lokomat, and the PIADS was administered after the rehabilitative period with Lokomat. Overall the PIADS score was positive (35.8±21.6, as well as the three sub-scales, pertaining to "ability", "adaptability" and "self-esteem" (17.2±10.4, 8.9±5.5 and 10.1±6.6 respectively with no between-group differences. All patients significantly improved in gait measure and motor FIM scale (difference after-before treatment values: 11.7±9.8 and 11.2±10.3 respectively, increased treadmill speed (0.4 ± 0.2m/s, reduced body weight support (-14.0±9.5% and guidance force (-13.1 ± 10.7%. This pilot study indicates that

  3. The first step in using a robot in brain injury rehabilitation: patients' and health-care professionals' perspective.

    Science.gov (United States)

    Boman, Inga-Lill; Bartfai, Aniko

    2015-01-01

    To evaluate the usability of a mobile telepresence robot (MTR) in a hospital training apartment (HTA). The MTR was manoeuvred remotely and was used for communication when assessing independent living skills, and for security monitoring of cognitively impaired patients. Occupational therapists (OTs) and nurses received training in how to use the MTR. The nurses completed a questionnaire regarding their expectations of using the MTR. OTs and patients staying in the HTA were interviewed about their experiences of the MTR. Interviews and questionnaires were analysed qualitatively. The HTA patients were very satisfied with the MTR. The OTs and nurses reported generally positive experiences. The OT's found that assessment via the MTR was more neutral than being physically present. However, the use of the MTR implied considerable difficulties for health-care professionals. The main obstacle for the nurses was the need for fast and easy access in emergency situations while protecting the patients' integrity. The results indicate that the MTR could be a useful tool to support daily living skills and safety monitoring of HTA patients. However, when designing technology for multiple users, such as health-care professionals, the needs of all users, their routines and support services involved, should also be considered. Implications for Rehabilitation A mobile telepresence robot (MTR) can be a useful tool for assessments and communication in rehabilitation. The design of the robot has to allow easy use by remote users, particularly in emergency situations. When designing MTRs the needs of ALL users have to be taken into consideration.

  4. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation.

    Science.gov (United States)

    Pezent, Evan; Rose, Chad G; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic devices have been clinically verified for use in long duration and high intensity rehabilitation needed for motor recovery after neurological injury. Targeted and coordinated hand and wrist therapy, often overlooked in rehabilitation robotics, is required to regain the ability to perform activities of daily living. To this end, a new coupled hand-wrist exoskeleton has been designed. This paper details the design of the wrist module and several human-related considerations made to maximize its potential as a coordinated hand-wrist device. The serial wrist mechanism has been engineered to facilitate donning and doffing for impaired subjects and to insure compatibility with the hand module in virtual and assisted grasping tasks. Several other practical requirements have also been addressed, including device ergonomics, clinician-friendliness, and ambidextrous reconfigurability. The wrist module's capabilities as a rehabilitation device are quantified experimentally in terms of functional workspace and dynamic properties. Specifically, the device possesses favorable performance in terms of range of motion, torque output, friction, and closed-loop position bandwidth when compared with existing devices. The presented wrist module's performance and operational considerations support its use in a wide range of future clinical investigations.

  5. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists.

    Science.gov (United States)

    Lu, Elaine C; Wang, Rosalie H; Hebert, Debbie; Boger, Jennifer; Galea, Mary P; Mihailidis, Alex

    2011-01-01

    PURPOSE. Timely and adequate rehabilitation after a stroke is crucial to maximising recovery. A way of increasing treatment access could be through robots, which would aid therapists in providing post-stroke rehabilitation. This research sought to discover the needs and preferences of therapists with respect to a robot that focuses on upper limb rehabilitation. Understanding requirements for devices could help to increase integration into clinical practice. METHODS. An international online survey was distributed through professional organisations and e-mail list services to therapists. The survey contained 85 items covering topics such as therapist background and treatment approach, rehabilitation aims and robotic rehabilitation device attributes. RESULTS. Data were analysed for 233 respondents, most of whom were physiotherapists and occupational therapists from Australia, Canada and USA. Top attributes included: facilitating a variety of arm movements, being usable while seated, giving biofeedback to clients, having virtual activities specific to daily living, being useful in-home and having resistance adjustable to client needs. In addition, the device should cost under 6000 USD. CONCLUSIONS. Findings from this survey provide guidance for technology developers regarding therapists' specifications for a robotic device for upper limb rehabilitation. In addition, findings offer a better understanding of how acceptance of such devices may be facilitated.

  6. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.

    Science.gov (United States)

    Mazzoleni, S; Battini, E; Rustici, A; Stampacchia, G

    2017-07-01

    The aim of this study is to investigate the effects of an integrated gait rehabilitation training based on Functional Electrical Stimulation (FES)-cycling and overground robotic exoskeleton in a group of seven complete spinal cord injury patients on spasticity and patient-robot interaction. They underwent a robot-assisted rehabilitation training based on two phases: n=20 sessions of FES-cycling followed by n= 20 sessions of robot-assisted gait training based on an overground robotic exoskeleton. The following clinical outcome measures were used: Modified Ashworth Scale (MAS), Numerical Rating Scale (NRS) on spasticity, Penn Spasm Frequency Scale (PSFS), Spinal Cord Independence Measure Scale (SCIM), NRS on pain and International Spinal Cord Injury Pain Data Set (ISCI). Clinical outcome measures were assessed before (T0) after (T1) the FES-cycling training and after (T2) the powered overground gait training. The ability to walk when using exoskeleton was assessed by means of 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Timed Up and Go test (TUG), standing time, walking time and number of steps. Statistically significant changes were found on the MAS score, NRS-spasticity, 6MWT, TUG, standing time and number of steps. The preliminary results of this study show that an integrated gait rehabilitation training based on FES-cycling and overground robotic exoskeleton in complete SCI patients can provide a significant reduction of spasticity and improvements in terms of patient-robot interaction.

  7. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    Science.gov (United States)

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  8. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.

    Science.gov (United States)

    Rong, Wei; Li, Waiming; Pang, Mankit; Hu, Junyan; Wei, Xijun; Yang, Bibo; Wai, Honwah; Zheng, Xiaoxiang; Hu, Xiaoling

    2017-04-26

    It is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs. In this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training. In the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT). The EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers. ClinicalTrials.gov. NCT02117089 ; date of registration: April 10, 2014.

  9. Stroke Rehabilitation in Frail Elderly with the Robotic Training Device ACRE: A Randomized Controlled Trial and Cost-Effectiveness Study

    Directory of Open Access Journals (Sweden)

    M. Schoone

    2011-01-01

    Full Text Available The ACRE (ACtive REhabilitation robotic device is developed to enhance therapeutic treatment of upper limbs after stroke. The aim of this study is to assess effects and costs of ACRE training for frail elderly patients and to establish if ACRE can be a valuable addition to standard therapy in nursing home rehabilitation. The study was designed as randomized controlled trial, one group receiving therapy as usual and the other receiving additional ACRE training. Changes in motor abilities, stroke impact, quality of life and emotional well-being were assessed. In total, 24 patients were included. In this small number no significant effects of the ACRE training were found. A large number of 136 patients were excluded. Main reasons for exclusion were lack of physiological or cognitive abilities. Further improvement of the ACRE can best be focused on making the system suitable for self-training and development of training software for activities of daily living.

  10. Early Stroke Rehabilitation of the Upper Limb Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation-Robotic Arm

    Directory of Open Access Journals (Sweden)

    Qiuyang Qian

    2017-09-01

    Full Text Available BackgroundEffective poststroke motor rehabilitation depends on repeated limb practice with voluntary efforts. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES-robot arm was designed for the multi-joint physical training on the elbow, the wrist, and the fingers.ObjectivesTo investigate the training effects of the device-assisted approach on subacute stroke patients and to compare the effects with those achieved by the traditional physical treatments.MethodThis study was a pilot randomized controlled trial with a 3-month follow-up. Subacute stroke participants were randomly assigned into two groups, and then received 20-session upper limb training with the EMG-driven NMES-robotic arm (NMES-robot group, n = 14 or the time-matched traditional therapy (the control, n = 10. For the evaluation of the training effects, clinical assessments including Fugl-Meyer Assessment (FMA, Modified Ashworth Score (MAS, Action Research Arm Test (ARAT, and Function Independence Measurement (FIM were conducted before, after the rehabilitation training, and 3 months later. Session-by-session EMG parameters in the NMES-robot group, including normalized co-contraction Indexes (CI and EMG activation level of target muscles, were used to monitor the progress in muscular coordination patterns.ResultsSignificant improvements were obtained in FMA (full score and shoulder/elbow, ARAT, and FIM [P < 0.001, effect sizes (EFs > 0.279] for both groups. Significant improvement in FMA wrist/hand was only observed in the NMES-robot group (P < 0.001, EFs = 0.435 after the treatments. Significant reduction in MAS wrist was observed in the NMES-robot group after the training (P < 0.05, EFs = 0.145 and the effects were maintained for 3 months. MAS scores in the control group were elevated following training (P < 0.05, EFs > 0.24, and remained at an elevated level when assessed 3 months later. The EMG parameters

  11. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.

    Science.gov (United States)

    Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo

    2014-09-01

    Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study.

    Science.gov (United States)

    Vanoglio, Fabio; Bernocchi, Palmira; Mulè, Chiara; Garofali, Francesca; Mora, Chiara; Taveggia, Giovanni; Scalvini, Simonetta; Luisa, Alberto

    2017-03-01

    The purpose of the study was to evaluate the feasibility and efficacy of robot-assisted hand rehabilitation in improving arm function abilities in sub-acute hemiplegic patients. Randomized controlled pilot study. Inpatient rehabilitation centers. Thirty hemiplegic stroke patients (Ashworth spasticity index hand training with Gloreha, a hand rehabilitation glove that provides computer-controlled, repetitive, passive mobilization of the fingers, with multisensory feedback. Patients in the CG received the same amount of time in terms of conventional hand rehabilitation. Hand motor function (Motricity Index, MI), fine manual dexterity (Nine Hole Peg Test, NHPT) and strength (Grip and Pinch test) were measured at baseline and after rehabilitation, and the differences, (Δ) mean(standard deviation), compared between groups. Results Twenty-seven patients concluded the program: 14 in the TG and 13 in the CG. None of the patients refused the device and only one adverse event of rheumatoid arthritis reactivation was reported. Baseline data did not differ significantly between the two groups. In TG, ΔMI 23(16.4), ΔNHPT 0.16(0.16), ΔGRIP 0.27(0.23) and ΔPINCH 0.07(0.07) were significantly greater than in CG, ΔMI 5.2(9.2), ΔNHPT 0.02(0.07), ΔGRIP 0.03(0.06) and ΔPINCH 0.02(0.03)] ( p=0.002, p=0.009, p=0.003 and p=0.038, respectively). Gloreha Professional is feasible and effective in recovering fine manual dexterity and strength and reducing arm disability in sub-acute hemiplegic patients.

  13. Emerging directions in lower limb externally wearable robots for gait rehabilitation and augmentation : A review

    NARCIS (Netherlands)

    Veneman, Jan F.; Burdet, Etienne; Van Der Kooij, Herman; Lefeber, Dirk; Tokhi, Mohammad O.; Virk, Gurvinder S.

    2016-01-01

    Wearable Robots, including those connected externally over the Lower Limbs (LLEWRs) is a growing field of research and development that promises robotic systems to support and augment locomotor functions. The current State of the Art of such products can be seen as a first generation of devices that

  14. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.

    Science.gov (United States)

    Li, Chong; Rusák, Zoltán; Horváth, Imre; Ji, Linhong

    2014-12-01

    Efficacious stroke rehabilitation depends not only on patients' medical treatment but also on their motivation and engagement during rehabilitation exercises. Although traditional rehabilitation exercises are often mundane, technology-assisted upper-limb robotic training can provide engaging and task-oriented training in a natural environment. The factors that influence engagement, however, are not fully understood. This paper therefore studies the relationship between engagement and muscle activities as well as the influencing factors of engagement. To this end, an experiment was conducted using a robotic upper limb rehabilitation system with healthy individuals in three training exercises: (a) a traditional exercise, which is typically used for training the grasping function, (b) a tracking exercise, currently used in robot-assisted stroke patient rehabilitation for fine motor movement, and (c) a video game exercise, which is a proliferating approach of robot-assisted rehabilitation enabling high-level active engagement of stroke patients. These exercises differ not only in the characteristics of the motion that they use but also in their method of triggering engagement. To measure the level of engagement, we used facial expressions, motion analysis of the arm movements, and electromyography. The results show that (a) the video game exercise could engage the participants for a longer period than the other two exercises, (b) the engagement level decreased when the participants became too familiar with the exercises, and (c) analysis of normalized root mean square in electromyographic data indicated that muscle activities were more intense when the participants are engaged. This study shows that several sub-factors on engagement, such as versatility of feedback, cognitive tasks, and competitiveness, may influence engagement more than the others. To maintain a high level of engagement, the rehabilitation system needs to be adaptive, providing different exercises to

  15. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  16. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.

    Science.gov (United States)

    van Dijk, W; van der Kooij, H; Koopman, B; van Asseldonk, E H F; van der Kooij, H

    2013-06-01

    To promote active participation of neurological patients during robotic gait training, controllers, such as "assist as needed" or "cooperative control", are suggested. Apart from providing support, these controllers also require that the robot should be capable of resembling natural, unsupported, walking. This means that they should have a transparent mode, where the interaction forces between the human and the robot are minimal. Traditional feedback-control algorithms do not exploit the cyclic nature of walking to improve the transparency of the robot. The purpose of this study was to improve the transparent mode of robotic devices, by developing two controllers that use the rhythmic behavior of gait. Both controllers use adaptive frequency oscillators and kernel-based non-linear filters. Kernelbased non-linear filters can be used to estimate signals and their time derivatives, as a function of the gait phase. The first controller learns the motor angle, associated with a certain joint angle pattern, and acts as a feed-forward controller to improve the torque tracking (including the zero-torque mode). The second controller learns the state of the mechanical system and compensates for the dynamical effects (e.g. the acceleration of robot masses). Both controllers have been tested separately and in combination on a small subject population. Using the feedforward controller resulted in an improved torque tracking of at least 52 percent at the hip joint, and 61 percent at the knee joint. When both controllers were active simultaneously, the interaction power between the robot and the human leg was reduced by at least 40 percent at the thigh, and 43 percent at the shank. These results indicate that: if a robotic task is cyclic, the torque tracking and transparency can be improved by exploiting the predictions of adaptive frequency oscillator and kernel-based nonlinear filters.

  17. Home-based hand rehabilitation with a robotic glove in hemiplegic patients after stroke: a pilot feasibility study.

    Science.gov (United States)

    Bernocchi, Palmira; Mulè, Chiara; Vanoglio, Fabio; Taveggia, Giovanni; Luisa, Alberto; Scalvini, Simonetta

    2018-03-01

    To evaluate the feasibility and safety of home rehabilitation of the hand using a robotic glove, and, in addition, its effectiveness, in hemiplegic patients after stroke. In this non-randomized pilot study, 21 hemiplegic stroke patients (Ashworth spasticity index ≤ 3) were prescribed, after in-hospital rehabilitation, a 2-month home-program of intensive hand training using the Gloreha Lite glove that provides computer-controlled passive mobilization of the fingers. Feasibility was measured by: number of patients who completed the home-program, minutes of exercise and number of sessions/patient performed. Safety was assessed by: hand pain with a visual analog scale (VAS), Ashworth spasticity index for finger flexors, opponents of the thumb and wrist flexors, and hand edema (circumference of forearm, wrist and fingers), measured at start (T0) and end (T1) of rehabilitation. Hand motor function (Motricity Index, MI), fine manual dexterity (Nine Hole Peg Test, NHPT) and strength (Grip test) were also measured at T0 and T1. Patients performed, over a mean period 56 (49-63) days, a total of 1699 (1353-2045) min/patient of exercise with Gloreha Lite, 5.1 (4.3-5.8) days/week. Seventeen patients (81%) completed the full program. The mean VAS score of hand pain, Ashworth spasticity index and hand edema did not change significantly at T1 compared to T0. The MI, NHPT and Grip test improved significantly (p = 0.0020, 0.0156 and 0.0024, respectively) compared to baseline. Gloreha Lite is feasible and safe for use in home rehabilitation. The efficacy data show a therapeutic effect which need to be confirmed by a randomized controlled study.

  18. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  19. Rehabilitering

    DEFF Research Database (Denmark)

    Caswell, Dorte; Høybye-Mortensen, Matilde; Dall, Tanja

    2013-01-01

    Rehabilitering som både begreb og indsats har været genstand for stigende fokus i de seneste år, på både politisk, organisatorisk og praksis-niveau. Fra januar 2013 træder en større reform af førtidspension og fleksjob i kraft, og med reformen etableres ’rehabilitering’ som både mål og middel i...

  20. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus

    Directory of Open Access Journals (Sweden)

    Krebs Hermano

    2004-10-01

    Full Text Available Abstract Background Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation. This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions. Results Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. Conclusion Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on

  1. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation

    NARCIS (Netherlands)

    Veneman, J.F.; Kruidhof, R.; Hekman, Edsko E.G.; Ekkelenkamp, R.; van Asseldonk, Edwin H.F.; van der Kooij, Herman

    2007-01-01

    This paper introduces a newly developed gait rehabilitation device. The device, called LOPES, combines a freely translatable and 2-D-actuated pelvis segment with a leg exoskeleton containing three actuated rotational joints: two at the hip and one at the knee. The joints are impedance controlled to

  2. A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance.

    Science.gov (United States)

    Patanè, Fabrizio; Cappa, Paolo

    2011-04-01

    In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.

  3. Design of a robotic device for assessment and rehabilitation of hand sensory function.

    Science.gov (United States)

    Lambercy, Olivier; Robles, Alejandro Juárez; Kim, Yeongmi; Gassert, Roger

    2011-01-01

    This paper presents the design and implementation of the Robotic Sensory Trainer, a robotic interface for assessment and therapy of hand sensory function. The device can provide three types of well controlled stimuli: (i) angular displacement at the metacarpophalangeal (MCP) joint using a remote-center-of-motion double-parallelogram structure, (ii) vibration stimuli at the fingertip, proximal phalange and palm, and (iii) pressure at the fingertip, while recording position, interaction force and feedback from the user over a touch screen. These stimuli offer a novel platform to investigate sensory perception in healthy subjects and patients with sensory impairments, with the potential to assess deficits and actively train detection of specific sensory cues in a standardized manner. A preliminary study with eight healthy subjects demonstrates the feasibility of using the Robotic Sensory Trainer to assess the sensory perception threshold in MCP angular position. An average just noticeable difference (JND) in the MCP joint angle of 2.46° (14.47%) was found, which is in agreement with previous perception studies. © 2011 IEEE

  4. Virtual reality and robotics for stroke rehabilitation: where do we go from here?

    Science.gov (United States)

    Wade, Eric; Winstein, Carolee J

    2011-01-01

    Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.

  5. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    Science.gov (United States)

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  6. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial.

    Science.gov (United States)

    Masiero, Stefano; Armani, Mario; Rosati, Giulio

    2011-01-01

    The successful motor rehabilitation of stroke patients requires early intensive and task-specific therapy. A recent Cochrane Review, although based on a limited number of randomized controlled trials (RCTs), showed that early robotic training of the upper limb (i.e., during acute or subacute phase) can enhance motor learning and improve functional abilities more than chronic-phase training. In this article, a new subacute-phase RCT with the Neuro-Rehabilitation-roBot (NeReBot) is presented. While in our first study we used the NeReBot in addition to conventional therapy, in this new trial we used the same device in substitution of standard proximal upper-limb rehabilitation. With this protocol, robot patients achieved similar reductions in motor impairment and enhancements in paretic upper-limb function to those gained by patients in a control group. By analyzing these results and those of previous studies, we hypothesize a new robotic protocol for acute and subacute stroke patients based on both treatment modalities (in addition and in substitution).

  7. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.

    Science.gov (United States)

    Kim, Sangjoon J; Kim, Yeongjin; Lee, Hyosang; Ghasemlou, Pouya; Kim, Jung

    2018-02-01

    Following advances in robotic rehabilitation, there have been many efforts to investigate the recovery process and effectiveness of robotic rehabilitation procedures through monitoring the activation status of the brain. This work presents the development of a two degree-of-freedom (DoF) magnetic resonance (MR)-compatible hand device that can perform robotic rehabilitation procedures inside an fMRI scanner. The device is capable of providing real-time monitoring of the joint angle, angular velocity, and joint force produced by the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of four fingers. For force measurement, a custom reflective optical force sensor was developed and characterized in terms of accuracy error, hysteresis, and repeatability in the MR environment. The proposed device consists of two non-magnetic ultrasonic motors to provide assistive and resistive forces to the MCP and PIP joints. With actuation and sensing capabilities, both non-voluntary-passive movements and active-voluntary movements can be implemented. The MR compatibility of the device was verified via the analysis of the signal-to-noise ratio (SNR) of MR images of phantoms. SNR drops of 0.25, 2.94, and 11.82% were observed when the device was present but not activated, when only the custom force sensor was activated, and when both the custom force sensor and actuators were activated, respectively.

  8. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.

    Science.gov (United States)

    Taheri, Hossein; Rowe, Justin B; Gardner, David; Chan, Vicki; Gray, Kyle; Bower, Curtis; Reinkensmeyer, David J; Wolbrecht, Eric T

    2014-02-04

    This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero. The goal was to make FINGER capable of assisting with motions where precise timing is important. FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero while connected to FINGER. Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (-3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject's success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects' effort and finger individuation while playing the game. Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke.

  9. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Feng Xin

    2007-03-01

    Full Text Available Abstract Background There is a need to improve semi-autonomous stroke therapy in home environments often characterized by low supervision of clinical experts and low extrinsic motivation. Our distributed device approach to this problem consists of an integrated suite of low-cost robotic/computer-assistive technologies driven by a novel universal access software framework called UniTherapy. Our design strategy for personalizing the therapy, providing extrinsic motivation and outcome assessment is presented and evaluated. Methods Three studies were conducted to evaluate the potential of the suite. A conventional force-reflecting joystick, a modified joystick therapy platform (TheraJoy, and a steering wheel platform (TheraDrive were tested separately with the UniTherapy software. Stroke subjects with hemiparesis and able-bodied subjects completed tracking activities with the devices in different positions. We quantify motor performance across subject groups and across device platforms and muscle activation across devices at two positions in the arm workspace. Results Trends in the assessment metrics were consistent across devices with able-bodied and high functioning strokes subjects being significantly more accurate and quicker in their motor performance than low functioning subjects. Muscle activation patterns were different for shoulder and elbow across different devices and locations. Conclusion The Robot/CAMR suite has potential for stroke rehabilitation. By manipulating hardware and software variables, we can create personalized therapy environments that engage patients, address their therapy need, and track their progress. A larger longitudinal study is still needed to evaluate these systems in under-supervised environments such as the home.

  10. Exploratory study on the effects of a robotic hand rehabilitation device on changes in grip strength and brain activity after stroke.

    Science.gov (United States)

    Pinter, Daniela; Pegritz, Sandra; Pargfrieder, Christa; Reiter, Gudrun; Wurm, Walter; Gattringer, Thomas; Linderl-Madrutter, Regina; Neuper, Claudia; Fazekas, Franz; Grieshofer, Peter; Enzinger, Christian

    2013-01-01

    The brain mechanisms underlying successful recovery of hand fuenction after stroke are still not fully understood, although functional MRI (fMRI) studies underline the importance of neuronal plasticity. We explored potential changes in brain activity in 7 patients with subacute to chronic stroke (69 ± 8 years) with moderate- to high-grade distal paresis of the upper limb (Motricity Index: 59.4) after standardized robotic finger-hand rehabilitation training, in addition to conventional rehabilitation therapy for 3 weeks. Behavioral and fMRI assessments were carried out before and after training to characterize changes in brain activity and behavior. The Motricity Index (pre: 59.4, post: 67.2, P hand increased significantly after rehabilitation. On fMRI, active movement of the affected (left) hand resulted in contralesional (ie, ipsilateral) activation of the primary sensorimotor cortex prior to rehabilitation. After rehabilitation, activation appeared "normalized," including the ipsilesional primary sensorimotor cortex and supplementary motor area (SMA). No changes and no abnormalities of activation maps were seen during movement of the unaffected hand. Subsequent region-of-interest analyses showed no significant ipsilesional activation increases after rehabilitation. Despite behavioral improvements, we failed to identify consistent patterns of functional reorganization in our sample. This warrants caution in the use of fMRI as a tool to explore neural plasticity in heterogeneous samples lacking sufficient statistical power.

  11. Design on the Control System of a Gait Rehabilitation Training Robot Based on Brain-Computer Interface and Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2012-10-01

    Full Text Available In this paper a control system of a gait rehabilitation training robot based on Brain-Computer Interface (BCI and virtual reality technology is proposed, which makes the patients' rehabilitation training process more interesting. A technique for measuring the mental states of the human and associated applications based on normal brain signals are examined and evaluated firstly. Secondly, the virtual game starts with the information from the BCI and then it runs in the form of a thread, with the singleton design pattern as the main mode. Thirdly, through the synergistic cooperation with the main software, the virtual game can achieve quick and effective access to blood oxygen, heart rate and other physiological information of the patients. At the same time, by means of the hardware control system, the start-up of the gait rehabilitation training robot could be controlled accurately and effectively. Therefore, the plantar pressure information and the velocity information, together with the physiological information of the patients, would be properly reflected in the game lastly and the physical condition of the patients participating in rehabilitation training would also be reflected to a great extent.

  12. Robotics

    Indian Academy of Sciences (India)

    netic induction to detect an object. The development of ... end effector, inclination of object, magnetic and electric fields, etc. The sensors described ... In the case of a robot, the various actuators and motors have to be modelled. The major ...

  13. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation

    International Nuclear Information System (INIS)

    Park, Yong-Lae; Chen, Bor-rong; Pérez-Arancibia, Néstor O; Young, Diana; Wood, Robert J; Nagpal, Radhika; Stirling, Leia; Goldfield, Eugene C

    2014-01-01

    We describe the design and control of a wearable robotic device powered by pneumatic artificial muscle actuators for use in ankle–foot rehabilitation. The design is inspired by the biological musculoskeletal system of the human foot and lower leg, mimicking the morphology and the functionality of the biological muscle–tendon–ligament structure. A key feature of the device is its soft structure that provides active assistance without restricting natural degrees of freedom at the ankle joint. Four pneumatic artificial muscles assist dorsiflexion and plantarflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait pattern analysis. For the subject tested, the prototype is capable of generating an ankle range of motion of 27° (14° dorsiflexion and 13° plantarflexion). The controllability of the system is experimentally demonstrated using a linear time-invariant (LTI) controller. The controller is found using an identified LTI model of the system, resulting from the interaction of the soft orthotic device with a human leg, and model-based classical control design techniques. The suitability of the proposed control strategy is demonstrated with several angle-reference following experiments. (paper)

  14. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym.

    Science.gov (United States)

    Bustamante Valles, Karla; Montes, Sandra; Madrigal, Maria de Jesus; Burciaga, Adan; Martínez, María Elena; Johnson, Michelle J

    2016-09-15

    Stroke rehabilitation in low- and middle-income countries, such as Mexico, is often hampered by lack of clinical resources and funding. To provide a cost-effective solution for comprehensive post-stroke rehabilitation that can alleviate the need for one-on-one physical or occupational therapy, in lower and upper extremities, we proposed and implemented a technology-assisted rehabilitation gymnasium in Chihuahua, Mexico. The Gymnasium for Robotic Rehabilitation (Robot Gym) consisted of low- and high-tech systems for upper and lower limb rehabilitation. Our hypothesis is that the Robot Gym can provide a cost- and labor-efficient alternative for post-stroke rehabilitation, while being more or as effective as traditional physical and occupational therapy approaches. A typical group of stroke patients was randomly allocated to an intervention (n = 10) or a control group (n = 10). The intervention group received rehabilitation using the devices in the Robot Gym, whereas the control group (n = 10) received time-matched standard care. All of the study subjects were subjected to 24 two-hour therapy sessions over a period of 6 to 8 weeks. Several clinical assessments tests for upper and lower extremities were used to evaluate motor function pre- and post-intervention. A cost analysis was done to compare the cost effectiveness for both therapies. No significant differences were observed when comparing the results of the pre-intervention Mini-mental, Brunnstrom Test, and Geriatric Depression Scale Test, showing that both groups were functionally similar prior to the intervention. Although, both training groups were functionally equivalent, they had a significant age difference. The results of all of the upper extremity tests showed an improvement in function in both groups with no statistically significant differences between the groups. The Fugl-Meyer and the 10 Meters Walk lower extremity tests showed greater improvement in the intervention group compared to the

  15. Validation of a mechanism to balance exercise difficulty in robot-assisted upper-extremity rehabilitation after stroke

    Directory of Open Access Journals (Sweden)

    Zimmerli Lukas

    2012-02-01

    Full Text Available Abstract Background The motivation of patients during robot-assisted rehabilitation after neurological disorders that lead to impairments of motor functions is of great importance. Due to the increasing number of patients, increasing medical costs and limited therapeutic resources, clinicians in the future may want patients to practice their movements at home or with reduced supervision during their stay in the clinic. Since people only engage in an activity and are motivated to practice if the outcome matches the effort at which they perform, an augmented feedback application for rehabilitation should take the cognitive and physical deficits of patients into account and incorporate a mechanism that is capable of balancing i.e. adjusting the difficulty of an exercise in an augmented feedback application to the patient's capabilities. Methods We propose a computational mechanism based on Fitts' Law that balances i.e. adjusts the difficulty of an exercise for upper-extremity rehabilitation. The proposed mechanism was implemented into an augmented feedback application consisting of three difficulty conditions (easy, balanced, hard. The task of the exercise was to reach random targets on the screen from a starting point within a specified time window. The available time was decreased with increasing condition difficulty. Ten subacute stroke patients were recruited to validate the mechanism through a study. Cognitive and motor functions of patients were assessed using the upper extremity section of the Fugl-Meyer Assessment, the modified Ashworth scale as well as the Addenbrookes cognitive examination-revised. Handedness of patients was obtained using the Edinburgh handedness inventory. Patients' performance during the execution of the exercises was measured twice, once for the paretic and once for the non-paretic arm. Results were compared using a two-way ANOVA. Post hoc analysis was performed using a Tukey HSD with a significance level of p Results

  16. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR system for children with cerebral palsy: a feasibility study

    Directory of Open Access Journals (Sweden)

    Kelly Donna

    2009-11-01

    Full Text Available Abstract Background We hypothesize that the integration of virtual reality (VR with robot assisted rehabilitation could be successful if applied to children with hemiparetic CP. The combined benefits of increased attention provided by VR and the larger training stimulus afforded by adaptive robotics may increase the beneficial effects of these two approaches synergistically. This paper will describe the NJIT-RAVR system, which combines adaptive robotics with complex VR simulations for the rehabilitation of upper extremity impairments and function in children with CP and examine the feasibility of this system in the context of a two subject training study. Methods The NJIT-RAVR system consists of the Haptic Master, a 6 degrees of freedom, admittance controlled robot and a suite of rehabilitation simulations that provide adaptive algorithms for the Haptic Master, allowing the user to interact with rich virtual environments. Two children, a ten year old boy and a seven year old girl, both with spastic hemiplegia secondary to Cerebral Palsy were recruited from the outpatient center of a comprehensive pediatric rehabilitation facility. Subjects performed a battery of clinical testing and kinematic measurements of reaching collected by the NJIT-RAVR system. Subjects trained with the NJIT-RAVR System for one hour, 3 days a week for three weeks. The subjects played a combination of four or five simulations depending on their therapeutic goals, tolerances and preferences. Games were modified to increase difficulty in order to challenge the subjects as their performance improved. The testing battery was repeated following the training period. Results Both participants completed 9 hours of training in 3 weeks. No untoward events occurred and no adverse responses to treatment or complaints of cyber sickness were reported. One participant showed improvements in overall performance on the functional aspects of the testing battery. The second subject made

  17. Robotic gait assistive technology as means to aggressive mobilization strategy in acute rehabilitation following severe diffuse axonal injury: a case study.

    Science.gov (United States)

    Stam, Daniel; Fernandez, Jennifer

    2017-07-01

    Diffuse axonal injury is a prominent cause of disablement post-traumatic brain injury. Utilization of the rapid expansion of our current scientific knowledge base combined with greater access to neurological and assistive technology as adjuncts to providing sensorimotor experience may yield innovative new approaches to rehabilitation based upon a dynamic model of brain response following injury. A 24-year-old female who sustained a traumatic brain injury, bilateral subdural hemorrhage, subarachnoid hemorrhage and severe diffuse axonal injury secondary to a motor vehicle collision. Evidence-based appraisal of present literature suggests a link between graded intensity of aerobic activity to facilitation of neuro-plastic change and up-regulation of neurotrophins essential to functional recovery post-diffuse axonal injury. Following resolution of paroxysmal autonomic instability with dystonia, aggressive early mobilization techniques were progressed utilizing robotic assistive gait technology in combination with conventional therapy. This approach allowed for arguably greater repetition and cardiovascular demands across a six-month inpatient rehabilitation stay. Outcomes in this case suggest that the use of assistive technology to adjunct higher level and intensity rehabilitation strategies may be a safe and effective means towards reduction of disablement following severe traumatic brain and neurological injury. Implications for Rehabilitation Functional recovery and neuroplasticity following diffuse neurological injury involves a complex process determined by the sensorimotor experience provided by rehabilitation clinicians. This process is in part modulated by intrinsic brain biochemical processes correlated to cardiovascular intensity of the activity provided. It is important that rehabilitation professionals monitor physiological response to higher intensity activities to provide an adaptive versus maladaptive response of central nervous system plasticity with

  18. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.

    Science.gov (United States)

    Biggar, Stuart; Yao, Wei

    2016-10-01

    In the modern world, due to an increased aging population, hand disability is becoming increasingly common. The prevalence of conditions such as stroke is placing an ever-growing burden on the limited fiscal resources of health care providers and the capacity of their physical therapy staff. As a solution, this paper presents a novel design for a wearable and adaptive glove for patients so that they can practice rehabilitative activities at home, reducing the workload for therapists and increasing the patient's independence. As an initial evaluation of the design's feasibility the prototype was subjected to motion analysis to compare its performance with the hand in an assessment of grasping patterns of a selection of blocks and spheres. The outcomes of this paper suggest that the theory of design has validity and may lead to a system that could be successful in the treatment of stroke patients to guide them through finger flexion and extension, which could enable them to gain more control and confidence in interacting with the world around them.

  19. The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study.

    Science.gov (United States)

    Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping; Todd, Catherine

    2018-01-01

    Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive training that is needed to trigger neuroplasticity following a stroke. However, the lack of fully adaptive assist-as-needed control of the robotic devices and an inadequate immersive virtual environment that can promote active participation during training are obstacles hindering the achievement of better training results with fewer training sessions required. This study thus focuses on these research gaps by combining these 2 key components into a rehabilitation system, with special attention on the rehabilitation of fine hand motion skills. The effectiveness of the proposed system is tested by conducting clinical trials on a chronic stroke patient and verified through clinical evaluation methods by measuring the key kinematic features such as active range of motion (ROM), finger strength, and velocity. By comparing the pretraining and post-training results, the study demonstrates that the proposed method can further enhance the effectiveness of fine hand motion rehabilitation training by improving finger ROM, strength, and coordination. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Stroke rehabilitation.

    Science.gov (United States)

    Langhorne, Peter; Bernhardt, Julie; Kwakkel, Gert

    2011-05-14

    Stroke is a common, serious, and disabling global health-care problem, and rehabilitation is a major part of patient care. There is evidence to support rehabilitation in well coordinated multidisciplinary stroke units or through provision of early supported provision of discharge teams. Potentially beneficial treatment options for motor recovery of the arm include constraint-induced movement therapy and robotics. Promising interventions that could be beneficial to improve aspects of gait include fitness training, high-intensity therapy, and repetitive-task training. Repetitive-task training might also improve transfer functions. Occupational therapy can improve activities of daily living; however, information about the clinical effect of various strategies of cognitive rehabilitation and strategies for aphasia and dysarthria is scarce. Several large trials of rehabilitation practice and of novel therapies (eg, stem-cell therapy, repetitive transcranial magnetic stimulation, virtual reality, robotic therapies, and drug augmentation) are underway to inform future practice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review

    NARCIS (Netherlands)

    Basteris, A.; Nijenhuis, S.M.; Stienen, Arno; Buurke, Jaap; Prange, Grada Berendina; Amirabdollahian, F

    2014-01-01

    Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not

  2. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial.

    Science.gov (United States)

    Stoller, Oliver; de Bruin, Eling D; Schuster-Amft, Corina; Schindelholz, Matthias; de Bie, Rob A; Hunt, Kenneth J

    2013-09-22

    After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject's inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics

  3. Haptic/graphic rehabilitation: integrating a robot into a virtual environment library and applying it to stroke therapy.

    Science.gov (United States)

    Sharp, Ian; Patton, James; Listenberger, Molly; Case, Emily

    2011-08-08

    Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.

  4. Arm-eye coordination test to objectively quantify motor performance and muscles activation in persons after stroke undergoing robot-aided rehabilitation training: a pilot study.

    Science.gov (United States)

    Song, Rong; Tong, Kai-Yu; Hu, Xiaoling; Li, Le; Sun, Rui

    2013-09-01

    This study designed an arm-eye coordination test to investigate the effectiveness of the robot-aided rehabilitation for persons after stroke. Six chronic poststroke subjects were recruited to attend a 20-session robot-aided rehabilitation training of elbow joint. Before and after the training program, subjects were asked to perform voluntary movements of elbow flection and extension by following sinusoidal trajectories at different velocities with visual feedback on their joint positions. The elbow angle and the electromyographic signal of biceps and triceps as well as clinical scores were evaluated together with the parameters. Performance was objectively quantified by root mean square error (RMSE), root mean square jerk (RMSJ), range of motion (ROM), and co-contraction index (CI). After 20 sessions, RMSE and ROM improved significantly in both the affected and the unaffected side based on two-way ANOVA (P quantitative parameters and clinical scales could enable the exploration of effects of different types of treatment and design progress-based training method to accelerate the processes of recovery.

  5. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    Science.gov (United States)

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference. © 2011 IEEE

  6. Feasibility of school-based computer-assisted robotic gaming technology for upper limb rehabilitation of children with cerebral palsy.

    Science.gov (United States)

    Preston, Nick; Weightman, Andrew; Gallagher, Justin; Holt, Raymond; Clarke, Michael; Mon-Williams, Mark; Levesley, Martin; Bhakta, Bipinchandra

    2016-01-01

    We investigated the feasibility of using computer-assisted arm rehabilitation (CAAR) computer games in schools. Outcomes were children's preference for single player or dual player mode, and changes in arm activity and kinematics. Nine boys and two girls with cerebral palsy (6-12 years, mean 9 years) played assistive technology computer games in single-user mode or with school friends in an AB-BA design. Preference was determined by recording the time spent playing each mode and by qualitative feedback. We used the ABILHAND-kids and Canadian Occupational Performance Measure to evaluate activity limitation, and a portable laptop-based device to capture arm kinematics. No difference was recorded between single-user and dual-user modes (median daily use 9.27 versus 11.2 min, p = 0.214). Children reported dual-user mode was preferable. There were no changes in activity limitation (ABILHAND-kids, p = 0.424; COPM, p = 0.484) but we found significant improvements in hand speed (p = 0.028), smoothness (p = 0.005) and accuracy (p = 0.007). School timetables prohibit extensive use of rehabilitation technology but there is potential for its short-term use to supplement a rehabilitation program. The restricted access to the rehabilitation games was sufficient to improve arm kinematics but not arm activity. Implications for Rehabilitation School premises and teaching staff present no obstacles to the installation of rehabilitation gaming technology. Twelve minutes per day is the average amount of time that the school time table permits children to use rehabilitation gaming equipment (without disruption to academic attendance). The use of rehabilitation gaming technology for an average of 12 minutes daily does not appear to benefit children's functional performance, but there are improvements in the kinematics of children's upper limb.

  7. Potential clinical application of masseter and temporal muscle massage treatment using an oral rehabilitation robot in temporomandibular disorder patients with myofascial pain.

    Science.gov (United States)

    Ariji, Yoshiko; Nakayama, Miwa; Nishiyama, Wataru; Ogi, Nobumi; Sakuma, Shigemitsu; Katsumata, Akitoshi; Kurita, Kenichi; Ariji, Eiichiro

    2015-10-01

    To investigate the safety, suitable treatment regimen, and efficacy of masseter and temporal muscle massage treatment using an oral rehabilitation robot. Forty-one temporomandibular disorder (TMD) patients with myofascial pain (8 men, 33 women, median age: 46 years) were enrolled. The safety, suitable massage regimen, and efficacy of this treatment were investigated. Changes in masseter muscle thickness were evaluated on sonograms. No adverse events occurred with any of the treatment sessions. Suitable massage was at pressure of 10 N for 16 minutes. Five sessions were performed every 2 weeks. Total duration of treatment was 9·5 weeks in median. Massage treatment was effective in 70·3% of patients. Masseter muscle thickness decreased with treatment in the therapy-effective group. This study confirmed the safety of massage treatment, and established a suitable regimen. Massage was effective in 70·3% of patients and appeared to have a potential as one of the effective treatments for myofascial pain.

  8. FY1995 development of rehabilitation system for promoting social integration of people with disabilities. Development of a robotic orthosis assisting motion capabilities; 1995 nendo shogaino aru hito no shakai shinshutsu wo sokushinsuru rehabilitation system no kaihatsu. Rehabilitation kino wo yusuru doryoku sogu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    People with slight disabilities on motion. capability can be active in daily life using properly designed motion-assisting devices. Using these device in various cases would help the disabled participate in production activities, and would promote social integration of the disabled as rehabilitation in a broad sense. This research aims at developing such a device capable to help human motion by forearm based on technology and science in robotics. Two different methods are discussed in this research in order to develop robotic orthosis with good performance for assisting human motion by forearm. The first method is constructing a robotic orthosis with electronic motors and force sensors to produce a desired mechanical impedance. This orthosis was carefully designed such that mechanical safety for human is realized. The validity of the mechanism is illustrated by several experiments. The second method is constructing a low cost robotic orthosis with pneumatic actuators. A new type of pneumatic actuator is developed to realize this orthosis. Experimental results show that physical therapy can be performed effectively using this orthosis operated by direct teaching. (NEDO)

  9. Robot-mediated ACtive REhabilitation (ACRE2) for the hemiplegic upper limb after a stroke: A pilot study

    NARCIS (Netherlands)

    Doornebosch, A.J.; Cools, H.J.M.; Slee-Turkenburg, M.E.C.; Elk, M.G. van; Schoone-Harmsen, M.

    2007-01-01

    Although scientific evidence shows that therapy improves movement recovery following a stroke, the duration of the reimbursed therapy available to patients is decreasing. To compensate for the reduction in personal therapy self-training procedures using robotic arms have been developed for

  10. Next generation light robotic

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2017-01-01

    -assisted surgery imbibes surgeons with superhuman abilities and gives the expression “surgical precision” a whole new meaning. Still in its infancy, much remains to be done to improve human-robot collaboration both in realizing robots that can operate safely with humans and in training personnel that can work......Conventional robotics provides machines and robots that can replace and surpass human performance in repetitive, difficult, and even dangerous tasks at industrial assembly lines, hazardous environments, or even at remote planets. A new class of robotic systems no longer aims to replace humans...... with so-called automatons but, rather, to create robots that can work alongside human operators. These new robots are intended to collaborate with humans—extending their abilities—from assisting workers on the factory floor to rehabilitating patients in their homes. In medical robotics, robot...

  11. Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial.

    Science.gov (United States)

    Page, Stephen J; Hill, Valerie; White, Susan

    2013-06-01

    To compare the efficacy of a repetitive task-specific practice regimen integrating a portable, electromyography-controlled brace called the 'Myomo' versus usual care repetitive task-specific practice in subjects with chronic, moderate upper extremity impairment. Sixteen subjects (7 males; mean age 57.0 ± 11.02 years; mean time post stroke 75.0 ± 87.63 months; 5 left-sided strokes) exhibiting chronic, stable, moderate upper extremity impairment. Subjects were administered repetitive task-specific practice in which they participated in valued, functional tasks using their paretic upper extremities. Both groups were supervised by a therapist and were administered therapy targeting their paretic upper extremities that was 30 minutes in duration, occurring 3 days/week for eight weeks. One group participated in repetitive task-specific practice entirely while wearing the portable robotic, while the other performed the same activity regimen manually. The upper extremity Fugl-Meyer, Canadian Occupational Performance Measure and Stroke Impact Scale were administered on two occasions before intervention and once after intervention. After intervention, groups exhibited nearly identical Fugl-Meyer score increases of ≈2.1 points; the group using robotics exhibited larger score changes on all but one of the Canadian Occupational Performance Measure and Stroke Impact Scale subscales, including a 12.5-point increase on the Stroke Impact Scale recovery subscale. Findings suggest that therapist-supervised repetitive task-specific practice integrating robotics is as efficacious as manual practice in subjects with moderate upper extremity impairment.

  12. Advances in rehabilitation medicine.

    Science.gov (United States)

    Ng, Yee Sien; Chew, Effie; Samuel, Geoffrey S; Tan, Yeow Leng; Kong, Keng He

    2013-10-01

    Rehabilitation medicine is the medical specialty that integrates rehabilitation as its core therapeutic modality in disability management. More than a billion people worldwide are disabled, and the World Health Organization has developed the International Classification of Functioning, Disability and Health as a framework through which disability is addressed. Herein, we explore paradigm shifts in neurorehabilitation, with a focus on restoration, and provide overviews on developments in neuropharmacology, rehabilitation robotics, virtual reality, constraint-induced therapy and brain stimulation. We also discuss important issues in rehabilitation systems of care, including integrated care pathways, very early rehabilitation, early supported discharge and telerehabilitation. Finally, we highlight major new fields of rehabilitation such as spasticity management, frailty and geriatric rehabilitation, intensive care and cancer rehabilitation.

  13. Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control.

    Science.gov (United States)

    Ueki, Satoshi; Nishimoto, Yutaka; Abe, Motoyuki; Kawasaki, Haruhisa; Ito, Satoshi; Ishigure, Yasuhiko; Mizumoto, Jun; Ojika, Takeo

    2008-01-01

    This paper presents a virtual reality-enhanced hand rehabilitation support system with a symmetric master-slave motion assistant for independent rehabilitation therapies. Our aim is to provide fine motion exercise for a hand and fingers, which allows the impaired hand of a patient to be driven by his or her healthy hand on the opposite side. Since most disabilities caused by cerebral vascular accidents or bone fractures are hemiplegic, we adopted a symmetric master-slave motion assistant system in which the impaired hand is driven by the healthy hand on the opposite side. A VR environment displaying an effective exercise was created in consideration of system's characteristic. To verify the effectiveness of this system, a clinical test was executed by applying to six patients.

  14. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  15. National Rehabilitation Hospital Assistive Technology Research Center

    Science.gov (United States)

    1995-10-01

    Shoulder-Arm Orthoses Several years ago, the Rehabilitation Engineering Research Center (RERC) on Rehabilitation Robotics in Delaware1 identified a... exoskeletal applications for persons with disabilities. 2. Create a center of expertise in rehabilitation technology transfer that benefits persons with...AD COOPERATIVE AGREEMENT NUMBER: DAMD17-94-V-4036 TITLE: National Rehabilitation Hospital Assistive Technology- Research Center PRINCIPAL

  16. tDCS and Robotics on Upper Limb Stroke Rehabilitation: Effect Modification by Stroke Duration and Type of Stroke.

    Science.gov (United States)

    Straudi, Sofia; Fregni, Felipe; Martinuzzi, Carlotta; Pavarelli, Claudia; Salvioli, Stefano; Basaglia, Nino

    2016-01-01

    Objective. The aim of this exploratory pilot study is to test the effects of bilateral tDCS combined with upper extremity robot-assisted therapy (RAT) on stroke survivors. Methods. We enrolled 23 subjects who were allocated to 2 groups: RAT + real tDCS and RAT + sham-tDCS. Each patient underwent 10 sessions (5 sessions/week) over two weeks. Outcome measures were collected before and after treatment: (i) Fugl-Meyer Assessment-Upper Extremity (FMA-UE), (ii) Box and Block Test (BBT), and (iii) Motor Activity Log (MAL). Results. Both groups reported a significant improvement in FMA-UE score after treatment (p robotics on motor function. Patients with chronic and subcortical stroke benefited more from the treatments than patients with acute and cortical stroke, who presented very small changes. Conclusion. The additional use of bilateral tDCS to RAT seems to have a significant beneficial effect depending on the duration and type of stroke. These results should be verified by additional confirmatory studies.

  17. Adaptive Hierarchical Control for the Muscle Strength Training of Stroke Survivors in Robot-Aided Upper-Limb Rehabilitation

    Directory of Open Access Journals (Sweden)

    Guozheng Xu

    2012-10-01

    Full Text Available Muscle strength training for stroke patients is of vital importance for helping survivors to progressively restore muscle strength and improve the performance of their activities in daily living (ADL. An adaptive hierarchical therapy control framework which integrates the patient's real biomechanical state estimation with task-performance quantitative evaluation is proposed. Firstly, a high-level progressive resistive supervisory controller is designed to determine the resistive force base for each training session based on the patient's online task-performance evaluation. Then, a low-level adaptive resistive force triggered controller is presented to further regulate the interactive resistive force corresponding to the patient's real-time biomechanical state – characterized by the patient's bio-damping and bio-stiffness in the course of one training session, so that the patient is challenged in a moderate but engaging and motivating way. Finally, a therapeutic robot system using a Barrett WAM™ compliant manipulator is set up. We recruited eighteen inpatient and outpatient stroke participants who were randomly allocated in experimental (robot-aided and control (conventional physical therapy groups and enrolled for sixteen weeks of progressive resistance training. The preliminary results show that the proposed therapy control strategies can enhance the recovery of strength and motor control ability.

  18. Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial.

    Science.gov (United States)

    Hsieh, Yu-Wei; Wu, Ching-Yi; Wang, Wei-En; Lin, Keh-Chung; Chang, Ku-Chou; Chen, Chih-Chi; Liu, Chien-Ting

    2017-02-01

    To investigate the treatment effects of bilateral robotic priming combined with the task-oriented approach on motor impairment, disability, daily function, and quality of life in patients with subacute stroke. A randomized controlled trial. Occupational therapy clinics in medical centers. Thirty-one subacute stroke patients were recruited. Participants were randomly assigned to receive bilateral priming combined with the task-oriented approach (i.e., primed group) or to the task-oriented approach alone (i.e., unprimed group) for 90 minutes/day, 5 days/week for 4 weeks. The primed group began with the bilateral priming technique by using a bimanual robot-aided device. Motor impairments were assessed by the Fugal-Meyer Assessment, grip strength, and the Box and Block Test. Disability and daily function were measured by the modified Rankin Scale, the Functional Independence Measure, and actigraphy. Quality of life was examined by the Stroke Impact Scale. The primed and unprimed groups improved significantly on most outcomes over time. The primed group demonstrated significantly better improvement on the Stroke Impact Scale strength subscale ( p = 0.012) and a trend for greater improvement on the modified Rankin Scale ( p = 0.065) than the unprimed group. Bilateral priming combined with the task-oriented approach elicited more improvements in self-reported strength and disability degrees than the task-oriented approach by itself. Further large-scale research with at least 31 participants in each intervention group is suggested to confirm the study findings.

  19. The future of Robotics Technology

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2017-01-01

    In the last decade the robotics industry has created millions of additional jobs led by consumer electronics and the electric vehicle industry, and by 2020, robotics will be a $100 billion worth industry, as big as the tourism industry.. For example, the rehabilitation robot market has grown 10...

  20. Humanoid assessing rehabilitative exercises.

    Science.gov (United States)

    Simonov, M; Delconte, G

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "New Methodologies for Patients Rehabilitation". The article presents the approach in which the rehabilitative exercise prepared by healthcare professional is encoded as formal knowledge and used by humanoid robot to assist patients without involving other care actors. The main objective is the use of humanoids in rehabilitative care. An example is pulmonary rehabilitation in COPD patients. Another goal is the automated judgment functionality to determine how the rehabilitation exercise matches the pre-programmed correct sequence. We use the Aldebaran Robotics' NAO humanoid to set up artificial cognitive application. Pre-programmed NAO induces elderly patient to undertake humanoid-driven rehabilitation exercise, but needs to evaluate the human actions against the correct template. Patient is observed using NAO's eyes. We use the Microsoft Kinect SDK to extract motion path from the humanoid's recorded video. We compare human- and humanoid-operated process sequences by using the Dynamic Time Warping (DTW) and test the prototype. This artificial cognitive software showcases the use of DTW algorithm to enable humanoids to judge in near real-time about the correctness of rehabilitative exercises performed by patients following the robot's indications. One could enable better sustainable rehabilitative care services in remote residential settings by combining intelligent applications piloting humanoids with the DTW pattern matching algorithm applied at run time to compare humanoid- and human-operated process sequences. In turn, it will lower the need of human care.

  1. [The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders].

    Science.gov (United States)

    Schwartz, Isabella; Meiner, Zeev

    2013-03-01

    Regaining one's ability to walk is of great importance for neurological patients and is a major goal of all rehabilitation programs. Treating neurological patients in the acute phase after the event is technically difficult because of their motor weakness and balance disturbances. Based on studies in spinalized animals, a novel locomotor training that incorporates high repetitions of task-oriented practice by the use of body weight-supported treadmill training (BWSTT) was developed to overcome these obstacles. The use of BWSTT enables early initiation of gait training, integration of weightbearing activities, stepping and balance by the use of a task-specific approach, and a symmetrical gait pattern. However, despite the theoretical potential of BWSTT to become an invaluable therapeutic tool, its effect on walking outcomes was disappointing when compared with conventional training of the same duration. To facilitate the deLivery of BWSTT, a motorized robotic driven gait orthosis (RBWSTT) was recently developed. It has many advantages over the conventional method, including less effort for the physiotherapists, longer session duration, more physiological and reproducible gait patterns, and the possibility of measuring a patient's performances. Several studies have been conducted using RBWSTT in patients after stroke, spinal cord injury, multiple sclerosis and other neurological diseases. Although some of the results were encouraging, there is still uncertainty regarding proper patient selection, timing and protocol for RBWTT treatment following neurological diseases. More large randomized controlled studies are needed in order to answer these questions.

  2. Memory and accurate processing brain rehabilitation for the elderly: LEGO robot and iPad case study.

    Science.gov (United States)

    Lopez-Samaniego, Leire; Garcia-Zapirain, Begonya; Mendez-Zorrilla, Amaia

    2014-01-01

    This paper presents the results of research that applies cognitive therapies associated with memory and mathematical problem-solving in elderly people. The exercises are programmed in an iPad and can be performed both from the Tablet and in an interactive format with a LEGO robot. The system has been tested with 2 men and 7 women over the age of 65 who have slight physical and cognitive impairment. Evaluation with the SUS resulted in a mean of 48.45 with a standard deviation of 5.82. The score of overall satisfaction was 84.37 with a standard deviation of 18.6. Interaction with the touch screen caused some usability problems due to the elderly people's visual difficulties and clicking accuracy. Future versions will include visualization with more color contrast and less use of the keyboard.

  3. Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control and functions post stroke: a randomized controlled trial.

    Science.gov (United States)

    Wu, Ching-Yi; Yang, Chieh-Ling; Chen, Ming-de; Lin, Keh-Chung; Wu, Li-Ling

    2013-04-12

    Although the effects of robot-assisted arm training after stroke are promising, the relative effects of unilateral (URT) vs. bilateral (BRT) robot-assisted arm training remain uncertain. This study compared the effects of URT vs. BRT on upper extremity (UE) control, trunk compensation, and function in patients with chronic stroke. This was a single-blinded, randomized controlled trial. The intervention was implemented at 4 hospitals. Fifty-three patients with stroke were randomly assigned to URT, BRT, or control treatment (CT). Each group received UE training for 90 to 105 min/day, 5 days/week, for 4 weeks. The kinematic variables for arm motor control and trunk compensation included normalized movement time, normalized movement units, and the arm-trunk contribution slope in unilateral and bilateral tasks. Motor function and daily function were measured by the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and ABILHAND Questionnaire. The BRT and CT groups elicited significantly larger slope values (i.e., less trunk compensation) at the start of bilateral reaching than the URT group. URT led to significantly better effects on WMFT-Time than BRT. Differences in arm control kinematics and performance on the MAL and ABILHAND among the 3 groups were not significant. BRT and URT resulted in differential improvements in specific UE/trunk performance in patients with stroke. BRT elicited larger benefits than URT on reducing compensatory trunk movements at the beginning of reaching. In contrast, URT produced better improvements in UE temporal efficiency. These relative effects on movement kinematics, however, did not translate into differential benefits in daily functions. ClinicalTrials.gov: NCT00917605.

  4. Brain-Computer Interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke

    Directory of Open Access Journals (Sweden)

    Kai Keng eAng

    2014-07-01

    Full Text Available The objective of this study was to investigate the efficacy of an Electroencephalography (EEG-based Motor Imagery (MI Brain-Computer Interface (BCI coupled with a Haptic Knob (HK robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA score 10-50, recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 minutes per session. The BCI-HK group received 1 hour of BCI coupled with HK intervention, and the HK group received 1 hour of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 minutes of therapist-assisted arm mobilization. The SAT group received 1.5 hours of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper-extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12 and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.

  5. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke.

    Science.gov (United States)

    Ang, Kai Keng; Guan, Cuntai; Phua, Kok Soon; Wang, Chuanchu; Zhou, Longjiang; Tang, Ka Yin; Ephraim Joseph, Gopal J; Kuah, Christopher Wee Keong; Chua, Karen Sui Geok

    2014-01-01

    The objective of this study was to investigate the efficacy of an Electroencephalography (EEG)-based Motor Imagery (MI) Brain-Computer Interface (BCI) coupled with a Haptic Knob (HK) robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA) score 10-50), recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT) groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 min per session. The BCI-HK group received 1 h of BCI coupled with HK intervention, and the HK group received 1 h of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 min of therapist-assisted arm mobilization. The SAT group received 1.5 h of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12, and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.

  6. Modular robotics for playful physiotherapy

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2009-01-01

    We developed modular robotic tiles to be used for playful physiotherapy, which is supposed to motivate patients to engage in and perform physical rehabilitation exercises. We tested the modular robotic tiles for an extensive period of time (3 years) in daily use in a hospital rehabilitation unit e.......g. for cardiac patients. Also, the tiles were tested for performing physical rehabilitation of stroke patients in their private home. In all pilot test cases qualitative feedback indicate that the patients find the playful use of modular robotic tiles engaging and motivating for them to perform...

  7. Robot Games for Elderly

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg

    2011-01-01

    improve a person’s overall health, and this thesis investigates how games based on an autonomous, mobile robot platform, can be used to motivate elderly to move physically while playing. The focus of the investigation is on the development of games for an autonomous, mobile robot based on algorithms using...... spatio-temporal information about player behaviour - more specifically, I investigate three types of games each using a different control strategy. The first game is based on basic robot control which allows the robot to detect and follow a person. A field study in a rehabilitation centre and a nursing....... The robot facilitates interaction, and the study suggests that robot based games potentially can be used for training balance and orientation. The second game consists in an adaptive game algorithm which gradually adjusts the game challenge to the mobility skills of the player based on spatio...

  8. Rehabilitation after stroke.

    Science.gov (United States)

    Knecht, Stefan; Hesse, Stefan; Oster, Peter

    2011-09-01

    Stroke is becoming more common in Germany as the population ages. Its long-term sequelae can be alleviated by early reperfusion in stroke units and by complication management and functional restoration in early-rehabilitation and rehabilitation centers. Selective review of the literature. Successful rehabilitation depends on systematic treatment by an interdisciplinary team of experienced specialists. In the area of functional restoration, there has been major progress in our understanding of the physiology of learning, relearning, training, and neuroenhancement. There have also been advances in supportive pharmacotherapy and robot technology. Well-organized acute and intermediate rehabilitation after stroke can provide patients with the best functional results attainable on the basis of our current scientific understanding. Further experimental and clinical studies will be needed to expand our knowledge and improve the efficacy of rehabilitation.

  9. Rehabilitation and multiple sclerosis

    DEFF Research Database (Denmark)

    Dalgas, Ulrik

    2011-01-01

    In a chronic and disabling disease like multiple sclerosis, rehabilitation becomes of major importance in the preservation of physical, psychological and social functioning. Approximately 80% of patients have multiple sclerosis for more than 35 years and most will develop disability at some point......, a paradigm shift is taking place and it is now increasingly acknowledged that exercise therapy is both safe and beneficial. Robot-assisted training is also attracting attention in multiple sclerosis rehabilitation. Several sophisticated commercial robots exist, but so far the number of scientific studies...... promising. This drug has been shown to improve walking ability in some patients with multiple sclerosis, associated with a reduction of patients' self-reported ambulatory disability. Rehabilitation strategies involving these different approaches, or combinations of them, may be of great use in improving...

  10. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  11. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A

    2016-01-01

    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  12. New trends in medical and service robots human centered analysis, control and design

    CERN Document Server

    Chevallereau, Christine; Pisla, Doina; Bleuler, Hannes; Rodić, Aleksandar

    2016-01-01

    Medical and service robotics integrates several disciplines and technologies such as mechanisms, mechatronics, biomechanics, humanoid robotics, exoskeletons, and anthropomorphic hands. This book presents the most recent advances in medical and service robotics, with a stress on human aspects. It collects the selected peer-reviewed papers of the Fourth International Workshop on Medical and Service Robots, held in Nantes, France in 2015, covering topics on: exoskeletons, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, BMI and BCI, haptic devices and design for medical and assistive robotics. This book offers a valuable addition to existing literature.

  13. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  14. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  15. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics.

    Science.gov (United States)

    Morone, Giovanni; Paolucci, Stefano; Cherubini, Andrea; De Angelis, Domenico; Venturiero, Vincenzo; Coiro, Paola; Iosa, Marco

    2017-01-01

    In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems) and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented.

  16. SEFRE: Semiexoskeleton Rehabilitation System

    Directory of Open Access Journals (Sweden)

    Winai Chonnaparamutt

    2016-01-01

    Full Text Available SEFRE (Shoulder-Elbow-Forearm Robotics Economic rehabilitation system is presented in this paper. SEFRE Rehab System is composed of a robotic manipulator and an exoskeleton, so-called Forearm Supportive Mechanism (FSM. The controller of the system is developed as the Master PC consisting of five modules, that is, Intelligent Control (IC, Patient Communication (PC, Training with Game (TG, Progress Monitoring (PM, and Patient Supervision (PS. These modules support a patient to exercise with SEFRE in six modes, that is, Passive, Passive Stretching, Passive Guiding, Initiating Active, Active Assisted, and Active Resisted. To validate the advantages of the system, the preclinical trial was carried out at a national rehabilitation center. Here, the implement of the system and the preclinical results are presented as the verifications of SEFRE.

  17. The Responsiveness and Correlation between Fugl-Meyer Assessment, Motor Status Scale, and the Action Research Arm Test in Chronic Stroke with Upper-Extremity Rehabilitation Robotic Training

    Science.gov (United States)

    Wei, Xi-Jun; Tong, Kai-yu; Hu, Xiao-ling

    2011-01-01

    Responsiveness of clinical assessments is an important element in the report of clinical effectiveness after rehabilitation. The correlation could reflect the validity of assessments as an indication of clinical performance before and after interventions. This study investigated the correlation and responsiveness of Fugl-Meyer Assessment (FMA),…

  18. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  19. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  20. Validation of the efficiency of a robotic rehabilitation training system for recovery of severe plegie hand motor function after a stroke.

    Science.gov (United States)

    Tanabe, Hirofumi; Ikuta, Munehiro; Morita, Yoshifumi

    2017-07-01

    We have developed a rehabilitation training system called the Useful and Ultimate Rehabilitation System PARKO (UR System PARKO) to promote the recovery of motor function of the severe chronic plegic hand of stroke patients. This system was equipped with two functions to realize two conditions: (1) fixing of all fingers to a hyperextended position and (2) extending the elbow joint while applying resistance load to the fingertips. A clinical test was conducted with two patients to determine the therapeutic effect of the UR System PARKO for severe plegic hand. In both patients, the active ranges of motion of finger extension improved after training with the UR System PARKO. Moreover, the Modified Ashworth scale scores of finger extension increased. Thus, training reduced the spastic paralysis. These results suggest the effectiveness of training with the UR System PARKO for recovery of motor function as reflected in the finger extension of the severe plegic hand.

  1. International Workshop and Summer School on Medical and Service Robotics

    CERN Document Server

    Bouri, Mohamed; Mondada, Francesco; Pisla, Doina; Rodic, Aleksandar; Helmer, Patrick

    2016-01-01

    Medical and Service Robotics integrate the most recent achievements in mechanics, mechatronics, computer science, haptic and teleoperation devices together with adaptive control algorithms. The book  includes topics such as surgery robotics, assist devices, rehabilitation technology, surgical instrumentation and Brain-Machine Interface (BMI) as examples for medical robotics. Autonomous cleaning, tending, logistics, surveying and rescue robots, and elderly and healthcare robots are typical examples of topics from service robotics. This is the Proceedings of the Third International Workshop on Medical and Service Robots, held in Lausanne, Switzerland in 2014. It presents an overview of current research directions and fields of interest. It is divided into three sections, namely 1) assistive and rehabilitation devices; 2) surgical robotics; and 3) educational and service robotics. Most contributions are strongly anchored on collaborations between technical and medical actors, engineers, surgeons and clinicians....

  2. Trust me, I am Robot!

    DEFF Research Database (Denmark)

    Stoyanova, Angelina; Drefeld, Jonas; Tanev, Stoyan

    of the emerging trust relationship is a key component of the use value of the robotic system and of the value proposition of the robotic system producers. The study is based on a qualitative research approach combining the phenomenological research paradigm with a grounded theory building approach based......The aim of this paper is to discuss some of the issues regarding the emergence of trust within the context of the interaction between human patients and medical rehabilitation technology based on robot system solutions. The starting assumption of the analysis is that the articulation...

  3. Right-Arm Robotic-Aided-Therapy with the Light-Exoskeleton: A General Overview

    OpenAIRE

    Lugo-Villeda , Luis I.; Frisoli , Antonio; Sotgiu , Edoardo; Greco , Giovanni; Bergamasco , Massimo; Lugo-Villeda , Luis ,

    2010-01-01

    Part 7: Robots and Manipulation; International audience; Rehabilitation robotics applications and their developments have been spreading out as consequences of the actual needs in the human activities of daily living (ADL). Exoskeletons for rehabilitation are one of them, whose intrinsic characteristics are quite useful for applications where repetitive, robustness and accurate performance are a must. As a part of robotic-mediated-rehabilitation programme into the worldwide, the exoskeletons ...

  4. Stroke rehabilitation: recent advances and future therapies.

    LENUS (Irish Health Repository)

    Brewer, L

    2012-09-27

    Despite advances in the acute management of stroke, a large proportion of stroke patients are left with significant impairments. Over the coming decades the prevalence of stroke-related disability is expected to increase worldwide and this will impact greatly on families, healthcare systems and economies. Effective neuro-rehabilitation is a key factor in reducing disability after stroke. In this review, we discuss the effects of stroke, principles of stroke rehabilitative care and predictors of recovery. We also discuss novel therapies in stroke rehabilitation, including non-invasive brain stimulation, robotics and pharmacological augmentation. Many trials are currently underway, which, in time, may impact on future rehabilitative practice.

  5. [Application of advanced engineering technologies to medical and rehabilitation fields].

    Science.gov (United States)

    Fujie, Masakatsu

    2012-07-01

    The words "Japan syndrome" can now be heard increasingly through the media. Facing the approach of an elderly-dominated society, Robot Technology(RT)is expected to play an important role in Japan's medical, rehabilitation, and daily support fields. The industrial robot, which has already spread through the world with a great success in certain isolated environments by doing the work which is specialized for the thing with the hard known characteristic. By comparison, in the medical and rehabilitation fields, environments always change intricately, and individual characteristics differ from person to person. Furthermore, there are many times when a robot will be asked to directly interact with people. Moreover, the relation between a robot and a person turns into a relation which should involve contact flexibly according to a situation, and also turns into a relation which should avoid contact. In our group, we have so far developed practical rehabilitation and medical robots which can respond to difficulties such as environmental change and individual specificity. In developing rehabilitation robots, it is especially important to consider intuitive operability and individual differences. In addition, in developing medical robots, it is important to replace the experimental knowledge of surgeons to the mechanical quantitative properties. In this article, we introduce some practical examples of rehabilitation and medical robots interweaving several detailed technologies we have so far developed.

  6. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  7. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  8. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  9. New trends in medical and service robots challenges and solutions

    CERN Document Server

    Pisla, Doina; Bleuler, Hannes

    2014-01-01

    This volume describes new frontiers in medical and service robotics in the light of recent developments in technology to advance robot design and implementation. In particular, the work looks at advances in design, development and implementation of contemporary surgical, rehabilitation and biorobots. Surgical robots allow surgeons greater access to areas under operation using more precise and less invasive methods. Rehabilitation robots facilitate and support the lives of the infirm, elderly people, or those with dysfunction of body parts affecting movement. These robots are also used for rehabilitation and related procedures, such as training and therapy. Biorobots are designed to imitate the cognition of humans and animals. The need to substitute humans working on delicate, tiresome and monotonous tasks, or working with potentially health-damaging toxic materials, requires intelligent, high-performance service robots with the ability to cooperate, advanced communication and sophisticated perception and cogn...

  10. Modular Robotics in an African Context

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2011-01-01

    In this paper, we review the concept, development and use of modular robotic devices for education, health improvements, and business in Africa. The modular robotics inspired technology has the advantage of allowing any user easy access to a physical construction of new and advanced technology. We...... conceptualized several educational tools inspired by modular robotics for contextualized IT education in Tanzania, leading to a novel IT degree program and the development of East Africa’s first science and business park in Iringa, Tanzania. The prototypes inspired by modular robotics were developed in the local......, rural context and tested by local users in hospitals and rehabilitation centres. In this paper, we review the development of both modular building blocks for education and modular robotic tiles for rehabilitation in Tanzania....

  11. Biomechatronics in medical rehabilitation biomodelling, interface, and control

    CERN Document Server

    Xie, Shane (S Q )

    2017-01-01

    This book focuses on the key technologies in developing biomechatronic systems for medical rehabilitation purposes. It includes a detailed analysis of biosignal processing, biomechanics modelling, neural and muscular interfaces, artificial actuators, robot-assisted training, clinical setup/implementation and rehabilitation robot control. Encompassing highly multidisciplinary themes in the engineering and medical fields, it presents researchers’ insights into the emerging technologies and developments that are being utilized in biomechatronics for medical purposes. Presenting a detailed analysis of five key areas in rehabilitation robotics: (i) biosignal processing; (ii) biomechanics modelling; (iii) neural and muscular interfaces; (iv) artificial actuators and devices; and (v) the use of neurological and muscular interfaces in rehabilitation robots control, the book describes the design of biomechatronic systems, the methods and control systems used and the implementation and testing in order to show how th...

  12. A remote assessment system with a vision robot and wearable sensors.

    Science.gov (United States)

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  13. Studying social robots in practiced places

    DEFF Research Database (Denmark)

    Hasse, Cathrine; Bruun, Maja Hojer; Hanghøj, Signe

    2015-01-01

    values, social relations and materialities. Though substantial funding has been invested in developing health service robots, few studies have been undertaken that explore human-robot interactions as they play out in everyday practice. We argue that the complex learning processes involve not only so...... of technologies in use, e.g., technologies as multistable ontologies. The argument builds on an empirical study of robots at a Danish rehabilitation centre. Ethnographic methods combined with anthropological learning processes open up new way for exploring how robots enter into professional practices and change...

  14. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics

    Directory of Open Access Journals (Sweden)

    Morone G

    2017-05-01

    Full Text Available Giovanni Morone,1,2 Stefano Paolucci,1,2 Andrea Cherubini,3 Domenico De Angelis,1 Vincenzo Venturiero,1 Paola Coiro,1 Marco Iosa1,2 1Private Inpatient Unit, 2Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy; 3Department of Robotics, LIRMM UM-CNRS, Montpellier, France Abstract: In this review, we give a brief outline of robot-mediated gait training for stroke patients, as an important emerging field in rehabilitation. Technological innovations are allowing rehabilitation to move toward more integrated processes, with improved efficiency and less long-term impairments. In particular, robot-mediated neurorehabilitation is a rapidly advancing field, which uses robotic systems to define new methods for treating neurological injuries, especially stroke. The use of robots in gait training can enhance rehabilitation, but it needs to be used according to well-defined neuroscientific principles. The field of robot-mediated neurorehabilitation brings challenges to both bioengineering and clinical practice. This article reviews the state of the art (including commercially available systems and perspectives of robotics in poststroke rehabilitation for walking recovery. A critical revision, including the problems at stake regarding robotic clinical use, is also presented. Keywords: exoskeleton, neurorehabilitation, robot-assisted walking training, wearable robot, activities of daily living, motor learning, plasticity

  15. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  16. LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients

    NARCIS (Netherlands)

    Ekkelenkamp, R.; Veneman, J.F.; van der Kooij, Herman

    2005-01-01

    LOPES aims for an active role of the patient by selective and partial support of gait functions during robotic treadmill training sessions. Virtual model control (VMC) was applied to the robot as an intuitive method for translating current treadmill gait rehabilitation therapy programs into robotic

  17. Healthcare Robotics

    OpenAIRE

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  18. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  19. Soft robots for healthcare applications design, modeling, and control

    CERN Document Server

    Xie, Shane; Meng, Wei

    2017-01-01

    This book presents novel applications of mechatronics to provide better clinical rehabilitation services and new insights into emerging technologies utilized in soft robots for healthcare, and is essential reading for researchers and students working in these and related fields.

  20. Robot-supported assessment of balance in standing and walking

    NARCIS (Netherlands)

    Shirota, Camila; van Asseldonk, Edwin; Matjacic, Zlatko; Vallery, H.; Barralon, Pierre; Maggioni, Serena; Buurke, Jaap H.; Veneman, Jan F.

    2017-01-01

    Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance

  1. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  2. Smart portable rehabilitation devices

    Directory of Open Access Journals (Sweden)

    Leahey Matt

    2005-07-01

    Full Text Available Abstract Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s. Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices

  3. Smart portable rehabilitation devices.

    Science.gov (United States)

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-07-12

    The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design

  4. Design, modelling and simulation aspects of an ankle rehabilitation device

    Science.gov (United States)

    Racu, C. M.; Doroftei, I.

    2016-08-01

    Ankle injuries are amongst the most common injuries of the lower limb. Besides initial treatment, rehabilitation of the patients plays a crucial role for future activities and proper functionality of the foot. Traditionally, ankle injuries are rehabilitated via physiotherapy, using simple equipment like elastic bands and rollers, requiring intensive efforts of therapists and patients. Thus, the need of robotic devices emerges. In this paper, the design concept and some modelling and simulation aspects of a novel ankle rehabilitation device are presented.

  5. Current trend of robotics application in medical

    International Nuclear Information System (INIS)

    Olanrewaju, O A; Faieza, A A; Syakirah, K

    2013-01-01

    The applications of robotics in recent years has emerged beyond the field of manufacturing or industrial robots itself. Robotics applications are now widely used in medical, transport, underwater, entertainment and military sector. In medical field, these applications should be emphasized in view of the increasing challenges due to the variety of findings in the field of medicine which requires new inventions to ease work process. The objective of this review paper is to study and presents the past and on-going research in medical robotics with emphasis on rehabilitation (assistive care) and surgery robotics which are certainly the two main practical fields where robots application are commonly used presently. The study found that, rehabilitation and surgery robotics applications grow extensively with the finding of new invention, as well as research that is being undertaken and to be undertaken. The importance of medical robot in medical industry is intended to offer positive outcomes to assist human business through a complicated task that involves a long period, accuracy, focus and other routines that cannot be accomplished by human ability alone.

  6. How robots challenge institutional practices

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2018-01-01

    to perceive it in relation their own activity settings and local institutional practices. In this article, I draw on a recent study of the introduction of a robot helper into the activity setting of a Danish rehabilitation centre to examine this split and to identify the processes by which material artefacts...... of the centre. The analyses of the processes in play during attempts at accommodating and then rejecting the robot were informed by Hedegaard's seminal framing of the relationships between activity settings with their histories and motives and the institutional practices within which they are located. The study...

  7. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  8. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  9. Right-Arm Robotic-Aided-Therapy with the Light-Exoskeleton: A General Overview

    Science.gov (United States)

    Lugo-Villeda, Luis I.; Frisoli, Antonio; Sotgiu, Edoardo; Greco, Giovanni; Bergamasco, Massimo

    Rehabilitation robotics applications and their developments have been spreading out as consequences of the actual needs in the human activities of daily living (ADL). Exoskeletons for rehabilitation are one of them, whose intrinsic characteristics are quite useful for applications where repetitive, robustness and accurate performance are a must. As a part of robotic-mediated-rehabilitation programme into the worldwide, the exoskeletons are trying to improve the ADL of disable people through the fusion of several disciplines that lets to expand the capabilities of wearing a powered robotic exoskeletal device for rehabilitation tasks. This fact deserves to present this contribution from a general scope point of view, i.e., the technologies integration and its associated knowledge. So far, the Light-Exoskeleton which is intended for human arm rehabilitation in post-stroke patients is introduced. Preliminary experimental results as well as the involved stages about the system show the capabilities of using a robotic-constrained-rehabilitation for human arm.

  10. HUMAN HAND STUDY FOR ROBOTIC EXOSKELETON DELVELOPMENT

    Directory of Open Access Journals (Sweden)

    BIROUAS Flaviu Ionut

    2016-11-01

    Full Text Available This paper will be presenting research with application in the rehabilitation of hand motor functions by the aid of robotics. The focus will be on the dimensional parameters of the biological human hand from which the robotic system will be developed. The term used for such measurements is known as anthropometrics. The anthropometric parameters studied and presented in this paper are mainly related to the angular limitations of the finger joints of the human hand.

  11. HUMAN HAND STUDY FOR ROBOTIC EXOSKELETON DELVELOPMENT

    OpenAIRE

    BIROUAS Flaviu Ionut; NILGESZ Arnold

    2016-01-01

    This paper will be presenting research with application in the rehabilitation of hand motor functions by the aid of robotics. The focus will be on the dimensional parameters of the biological human hand from which the robotic system will be developed. The term used for such measurements is known as anthropometrics. The anthropometric parameters studied and presented in this paper are mainly related to the angular limitations of the finger joints of the human hand.

  12. People-Centered Development of a Smart Learning Ecosystem of Adaptive Robots

    DEFF Research Database (Denmark)

    Fischer, Daniel Kjær Bonde; Kristiansen, Jakob; Mariager, Casper

    2019-01-01

    Robots are currently moving out of the laboratory and company floor into more human and social contexts including care, rehabilitation and education. While those robots are usually envisioned as a kind of social interaction partner, we suggest a different approach, where robots become adaptive...

  13. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  14. Stroke Rehabilitation.

    Science.gov (United States)

    Belagaje, Samir R

    2017-02-01

    Rehabilitation is an important aspect of the continuum of care in stroke. With advances in the acute treatment of stroke, more patients will survive stroke with varying degrees of disability. Research in the past decade has expanded our understanding of the mechanisms underlying stroke recovery and has led to the development of new treatment modalities. This article reviews and summarizes the key concepts related to poststroke recovery. Good data now exist by which one can predict recovery, especially motor recovery, very soon after stroke onset. Recent trials have not demonstrated a clear benefit associated with very early initiation of rehabilitative therapy after stroke in terms of improvement in poststroke outcomes. However, growing evidence suggests that shorter and more frequent sessions of therapy can be safely started in the first 24 to 48 hours after a stroke. The optimal amount or dose of therapy for stroke remains undetermined, as more intensive treatments have not been associated with better outcomes compared to standard intensities of therapy. Poststroke depression adversely affects recovery across a variety of measures and is an important target for therapy. Additionally, the use of selective serotonin reuptake inhibitors (SSRIs) appears to benefit motor recovery through pleiotropic mechanisms beyond their antidepressant effect. Other pharmacologic approaches also appear to have a benefit in stroke rehabilitation. A comprehensive rehabilitation program is essential to optimize poststroke outcomes. Rehabilitation is a process that uses three major principles of recovery: adaptation, restitution, and neuroplasticity. Based on these principles, multiple different approaches, both pharmacologic and nonpharmacologic, exist to enhance rehabilitation. In addition to neurologists, a variety of health care professionals are involved in stroke rehabilitation. Successful rehabilitation involves understanding the natural history of stroke recovery and a

  15. Upper limb robotics applied to neurorehabilitation: An overview of clinical practice.

    Science.gov (United States)

    Duret, Christophe; Mazzoleni, Stefano

    2017-01-01

    During the last two decades, extensive interaction between clinicians and engineers has led to the development of systems that stimulate neural plasticity to optimize motor recovery after neurological lesions. This has resulted in the expansion of the field of robotics for rehabilitation. Studies in patients with stroke-related upper-limb paresis have shown that robotic rehabilitation can improve motor capacity. However, few other applications have been evaluated (e.g. tremor, peripheral nerve injuries or other neurological diseases). This paper presents an overview of the current use of upper limb robotic systems for neurorehabilitation, and highlights the rationale behind their use for the assessment and treatment of common neurological disorders. Rehabilitation robots are little integrated in clinical practice, except after stroke. Although few studies have been carried out to evaluate their effectiveness, evidence from the neurosciences and indications from pilot studies suggests that upper limb robotic rehabilitation can be applied safely in various other neurological conditions. Rehabilitation robots provide an intensity, quality and dose of treatment that exceeds therapist-mediated rehabilitation. Moreover, the use of force fields, multi-sensory environments, feedback etc. renders such rehabilitation engaging and motivating. Future studies should evaluate the effectiveness of rehabilitation robots in neurological pathologies other than stroke.

  16. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  17. Current trends in rehabilitation engineering in Japan.

    Science.gov (United States)

    Ohnabe, Hisaichi

    2006-01-01

    In 2005, the elderly generation comprised 20% of the Japanese population. This percentage will grow to approximately 30% in 2030, meaning that nearly one in three people in Japan will be 65 years of age or older. Japan is the first nation in the world to face this situation. This article uses the context of Japanese society to give an overview of the elderly and people with disabilities; the International Classification of Functioning, Disability, and Health model; rehabilitation engineering-related policy; and education. In addition, we examine how governmental programs and Japanese law regarding technical aids may evolve by 2030. Partner robots, intelligent powered wheelchairs, nursing robots, and other technologies are introduced as examples of rehabilitation engineering and assistive technology. We also discuss the volunteer activities of the Rehabilitation Engineering Society of Japan (RESJA) in response to the Asian tsunami disaster and the achievements of a group of students from a Japanese senior high school of industry.

  18. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Human-Robot Interaction: Status and Challenges.

    Science.gov (United States)

    Sheridan, Thomas B

    2016-06-01

    The current status of human-robot interaction (HRI) is reviewed, and key current research challenges for the human factors community are described. Robots have evolved from continuous human-controlled master-slave servomechanisms for handling nuclear waste to a broad range of robots incorporating artificial intelligence for many applications and under human supervisory control. This mini-review describes HRI developments in four application areas and what are the challenges for human factors research. In addition to a plethora of research papers, evidence of success is manifest in live demonstrations of robot capability under various forms of human control. HRI is a rapidly evolving field. Specialized robots under human teleoperation have proven successful in hazardous environments and medical application, as have specialized telerobots under human supervisory control for space and repetitive industrial tasks. Research in areas of self-driving cars, intimate collaboration with humans in manipulation tasks, human control of humanoid robots for hazardous environments, and social interaction with robots is at initial stages. The efficacy of humanoid general-purpose robots has yet to be proven. HRI is now applied in almost all robot tasks, including manufacturing, space, aviation, undersea, surgery, rehabilitation, agriculture, education, package fetch and delivery, policing, and military operations. © 2016, Human Factors and Ergonomics Society.

  20. Research progress of new technologies in stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Lin MENG

    2017-03-01

    Full Text Available Survivors of stroke commonly experience a different range of dysfunction, and recovery can be slow and incomplete, which lead to a serious and long-term impact on patients themselves and their families. Although the treatment of stroke patients relies mainly on rehabilitation intervention, but the rehabilitation needs of discharged patients are not fully met due to lots of restrictions, such as the lack of professional rehabilitation services, the difficulty and inconvenience in transportation from home to hospital, therefore their prognosis of rehabilitation are affected. At present a number of new rehabilitation technologies, including telerehabilitation (TR, virtual reality (VR, robotics, electronic textiles (E-textiles, etc., are coming into being and may solve these problems. This article tries to discuss the research progress of these new rehabilitation technologies, and provide a new perspective for the rehabilitation intervention of stroke patients. DOI: 10.3969/j.issn.1672-6731.2017.03.003

  1. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  2. Vitruvian Robot

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2017-01-01

    future. A real version of Ava would not last long in a human world because she is basically a solipsist, who does not really care about humans. She cannot co-create the line humans walk along. The robots created as ‘perfect women’ (sex robots) today are very far from the ideal image of Ava...

  3. Robot Teachers

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Ess, Charles Melvin; Bhroin, Niamh Ni

    The world's first robot teacher, Saya, was introduced to a classroom in Japan in 2009. Saya, had the appearance of a young female teacher. She could express six basic emotions, take the register and shout orders like 'be quiet' (The Guardian, 2009). Since 2009, humanoid robot technologies have...... developed. It is now suggested that robot teachers may become regular features in educational settings, and may even 'take over' from human teachers in ten to fifteen years (cf. Amundsen, 2017 online; Gohd, 2017 online). Designed to look and act like a particular kind of human; robot teachers mediate human...... existence and roles, while also aiming to support education through sophisticated, automated, human-like interaction. Our paper explores the design and existential implications of ARTIE, a robot teacher at Oxford Brookes University (2017, online). Drawing on an initial empirical exploration we propose...

  4. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  5. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us as indiv......Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  6. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  7. Strategies for stroke rehabilitation.

    Science.gov (United States)

    Dobkin, Bruce H

    2004-09-01

    Rehabilitation after hemiplegic stroke has typically relied on the training of patients in compensatory strategies. The translation of neuroscientific research into care has led to new approaches and renewed promise for better outcomes. Improved motor control can progress with task-specific training incorporating increased use of proximal and distal movements during intensive practice of real-world activities. Functional gains are incorrectly said to plateau by 3-6 months. Many patients retain latent sensorimotor function that can be realised any time after stroke with a pulse of goal-directed therapy. The amount of practice probably best determines gains for a given level of residual movement ability. Clinicians should encourage patients to build greater strength, speed, endurance, and precision of multijoint movements on tasks that increase independence and enrich daily activity. Imaging tools may help clinicians determine the capacity of residual networks to respond to a therapeutic approach and help establish optimal dose-response curves for training. Promising adjunct approaches include practice with robotic devices or in a virtual environment, electrical stimulation to increase cortical excitability during training, and drugs to optimise molecular mechanisms for learning. Biological strategies for neural repair may augment rehabilitation in the next decade.

  8. Update on rehabilitation in multiple sclerosis.

    Science.gov (United States)

    Donzé, Cécile

    2015-04-01

    Given that mobility impairment is a hallmark of multiple sclerosis, people with this disease are likely to benefit from rehabilitation therapy throughout the course of their illness. The review provides an update on rehabilitation focused on balance and walking impairment. Classical rehabilitation focusing on muscle rehabilitation, neurotherapeutic facilitation is effective and recommended. Other techniques did not prove their superiority: transcutaneal neurostimulation, repetitive magnetic stimulation, electromagnetic therapy, whole body vibration and robot-assisted gait rehabilitation and need more studies to conclude. Cooling therapy, hydrotherapy, orthoses and textured insoles could represent a complementary service to other techniques in specific conditions. Multidisciplinary rehabilitation program provides positive effects and high satisfaction for patients with multiple sclerosis but needs more evaluation. New technologies using serious game and telerehabilitation seem to be an interesting technique to promote physical activity, self-management and quality of life. Rehabilitation like other therapy needs regular clinical evaluation to adapt the program and propose appropriate techniques. Moreover, the objective of rehabilitation needs to be decided with the patient with realistic expectation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  10. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  11. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  12. Rehabilitative Soft Exoskeleton for Rodents.

    Science.gov (United States)

    Florez, Juan Manuel; Shah, Manan; Moraud, Eduardo Martin; Wurth, Sophie; Baud, Laetitia; Von Zitzewitz, Joachim; van den Brand, Rubia; Micera, Silvestro; Courtine, Gregoire; Paik, Jamie

    2017-02-01

    Robotic exoskeletons provide programmable, consistent and controllable active therapeutic assistance to patients with neurological disorders. Here we introduce a prototype and preliminary experimental evaluation of a rehabilitative gait exoskeleton that enables compliant yet effective manipulation of the fragile limbs of rats. To assist the displacements of the lower limbs without impeding natural gait movements, we designed and fabricated soft pneumatic actuators (SPAs). The exoskeleton integrates two customizable SPAs that are attached to a limb. This configuration enables a 1 N force load, a range of motion exceeding 80 mm in the major axis, and speed of actuation reaching two gait cycles/s. Preliminary experiments in rats with spinal cord injury validated the basic features of the exoskeleton. We propose strategies to improve the performance of the robot and discuss the potential of SPAs for the design of other wearable interfaces.

  13. Rehabilitation costs

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Arthur S [BDM Corp., VA (United States); [Bikini Atoll Rehabilitation Committee, Berkeley, CA (United States)

    1986-07-01

    The costs of radioactivity contamination control and other matters relating to the resettlement of Bikin atoll were reviewed for Bikini Atoll Rehabilitation Committee by a panel of engineers which met in Berkeley, California on January 22-24, 1986. This Appendix presents the cost estimates.

  14. Rehabilitation costs

    International Nuclear Information System (INIS)

    Kubo, Arthur S.

    1986-01-01

    The costs of radioactivity contamination control and other matters relating to the resettlement of Bikin atoll were reviewed for Bikini Atoll Rehabilitation Committee by a panel of engineers which met in Berkeley, California on January 22-24, 1986. This Appendix presents the cost estimates

  15. Predicting the long-term effects of human-robot interaction: a reflection on responsibility in medical robotics.

    Science.gov (United States)

    Datteri, Edoardo

    2013-03-01

    This article addresses prospective and retrospective responsibility issues connected with medical robotics. It will be suggested that extant conceptual and legal frameworks are sufficient to address and properly settle most retrospective responsibility problems arising in connection with injuries caused by robot behaviours (which will be exemplified here by reference to harms occurred in surgical interventions supported by the Da Vinci robot, reported in the scientific literature and in the press). In addition, it will be pointed out that many prospective responsibility issues connected with medical robotics are nothing but well-known robotics engineering problems in disguise, which are routinely addressed by roboticists as part of their research and development activities: for this reason they do not raise particularly novel ethical issues. In contrast with this, it will be pointed out that novel and challenging prospective responsibility issues may emerge in connection with harmful events caused by normal robot behaviours. This point will be illustrated here in connection with the rehabilitation robot Lokomat.

  16. Attitudinal Change in Elderly Citizens Toward Social Robots: The Role of Personality Traits and Beliefs About Robot Functionality.

    Science.gov (United States)

    Damholdt, Malene F; Nørskov, Marco; Yamazaki, Ryuji; Hakli, Raul; Hansen, Catharina Vesterager; Vestergaard, Christina; Seibt, Johanna

    2015-01-01

    Attitudes toward robots influence the tendency to accept or reject robotic devices. Thus it is important to investigate whether and how attitudes toward robots can change. In this pilot study we investigate attitudinal changes in elderly citizens toward a tele-operated robot in relation to three parameters: (i) the information provided about robot functionality, (ii) the number of encounters, (iii) personality type. Fourteen elderly residents at a rehabilitation center participated. Pre-encounter attitudes toward robots, anthropomorphic thinking, and personality were assessed. Thereafter the participants interacted with a tele-operated robot (Telenoid) during their lunch (c. 30 min.) for up to 3 days. Half of the participants were informed that the robot was tele-operated (IC) whilst the other half were naïve to its functioning (UC). Post-encounter assessments of attitudes toward robots and anthropomorphic thinking were undertaken to assess change. Attitudes toward robots were assessed with a new generic 35-items questionnaire (attitudes toward social robots scale: ASOR-5), offering a differentiated conceptualization of the conditions for social interaction. There was no significant difference between the IC and UC groups in attitude change toward robots though trends were observed. Personality was correlated with some tendencies for attitude changes; Extraversion correlated with positive attitude changes to intimate-personal relatedness with the robot (r = 0.619) and to psychological relatedness (r = 0.581) whilst Neuroticism correlated negatively (r = -0.582) with mental relatedness with the robot. The results tentatively suggest that neither information about functionality nor direct repeated encounters are pivotal in changing attitudes toward robots in elderly citizens. This may reflect a cognitive congruence bias where the robot is experienced in congruence with initial attitudes, or it may support action-based explanations of cognitive dissonance reductions

  17. Attitudinal change in elderly citizens towards social robots: the role of personality traits and beliefs about robot functionality.

    Directory of Open Access Journals (Sweden)

    Malene Flensborg Damholdt

    2015-11-01

    Full Text Available Attitudes towards robots influence the tendency to accept or reject robotic devices. Thus it is important to investigate whether and how attitudes towards robots can change. In this pilot study we investigate attitudinal changes in elderly citizens toward a tele-operated robot in relation to three parameters: (i the information provided about robot functionality, (ii the number of encounters, (iii personality type. Fourteen elderly residents at a rehabilitation centre participated. Pre-encounter attitudes towards robots, anthropomorphic thinking, and personality were assessed. Thereafter the participants interacted with a tele-operated robot (Telenoid during their lunch (c. 30 min. for up to three days. Half of the participants were informed that the robot was tele-operated (IC whilst the other half were naïve to its functioning (UC. Post-encounter assessments of attitudes towards robots and anthropomorphic thinking were undertaken to assess change. Attitudes towards robots were assessed with a new generic 35-item questionnaire (Attitudes towards social robots scale: ASOR-5, offering a differentiated conceptualization of the conditions for social interaction.There was no significant difference between the IC and UC groups in attitude change towards robots though trends were observed. Personality was correlated with some tendencies for attitude changes; Extraversion correlated with positive attitude changes to intimate-personal relatedness with the robot (r=.619 and to psychological relatedness (r=.581 whilst Neuroticism correlated negatively (r=-.582 with mental relatedness with the robot. The results tentatively suggest that neither information about functionality nor direct repeated encounters are pivotal in changing attitudes towards robots in elderly citizens. This may reflect a cognitive congruence bias where the robot is experienced in congruence with initial attitudes, or it may support action-based explanations of cognitive dissonance

  18. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  19. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  20. Robotic surgery

    Science.gov (United States)

    ... with this type of surgery give it some advantages over standard endoscopic techniques. The surgeon can make ... Elsevier Saunders; 2015:chap 87. Muller CL, Fried GM. Emerging technology in surgery: Informatics, electronics, robotics. In: ...

  1. Robotic parathyroidectomy.

    Science.gov (United States)

    Okoh, Alexis Kofi; Sound, Sara; Berber, Eren

    2015-09-01

    Robotic parathyroidectomy has recently been described. Although the procedure eliminates the neck scar, it is technically more demanding than the conventional approaches. This report is a review of the patients' selection criteria, technique, and outcomes. © 2015 Wiley Periodicals, Inc.

  2. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  3. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  4. Recent advances in robotics

    International Nuclear Information System (INIS)

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  5. Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation

    Science.gov (United States)

    Francisco, Gerard E.; Contreras-Vidal, Jose L.

    2014-01-01

    Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation. PMID:25110624

  6. Optimal Design of a Bio-Inspired Anthropocentric Shoulder Rehabilitator

    Directory of Open Access Journals (Sweden)

    S. K. Mustafa

    2006-01-01

    Full Text Available This paper presents the design of a bio-inspired anthropocentric 7-DOF wearable robotic arm for the purpose of stroke rehabilitation. The proposed arm rehabilitator synergistically utilizes the human arm structure with non-invasive kinematically under-deterministic cable-driven mechanisms to form a completely deterministic structure. It offers the advantages of being lightweight and having high dexterity. Adopting an anthropocentric design concept also allows it to conform to the human anatomical structure. The focus of this paper is on the analysis and design of the 3-DOF-shoulder module, called the shoulder rehabilitator. The design methodology is divided into three main steps: (1 performance evaluation of the cable-driven shoulder rehabilitator, (2 performance requirements of the shoulder joint based on its physiological characteristics and (3 design optimization of the shoulder rehabilitator based on shoulder joint physiological limitations. The aim is to determine a suitable configuration for the development of a shoulder rehabilitator prototype.

  7. Compensating for telecommunication delays during robotic telerehabilitation.

    Science.gov (United States)

    Consoni, Leonardo J; Siqueira, Adriano A G; Krebs, Hermano I

    2017-07-01

    Rehabilitation robotic systems may afford better care and telerehabilitation may extend the use and benefits of robotic therapy to the home. Data transmissions over distance are bound by intrinsic communication delays which can be significant enough to deem the activity unfeasible. Here we describe an approach that combines unilateral robotic telerehabilitation and serious games. This approach has a modular and distributed design that permits different types of robots to interact without substantial code changes. We demonstrate the approach through an online multiplayer game. Two users can remotely interact with each other with no force exchanges, while a smoothing and prediction algorithm compensates motions for the delay in the Internet connection. We demonstrate that this approach can successfully compensate for data transmission delays, even when testing between the United States and Brazil. This paper presents the initial experimental results, which highlight the performance degradation with increasing delays as well as improvements provided by the proposed algorithm, and discusses planned future developments.

  8. Rehabilitation and older people.

    OpenAIRE

    Young, J.

    1996-01-01

    Rehabilitation is concerned with lessening the impact of disabling conditions. These are particularly common in older people and considerable health gain can be achieved by successful rehabilitation. Hospital doctors and general practitioners should be aware of the core principles of rehabilitation, be able to recognise rehabilitation need in their patients, and have sufficient knowledge of their local rehabilitation services to trigger the referral process.

  9. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  10. Modular robotic tiles: experiments for children with autism

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Dam Pedersen, Martin; Beck, Richard

    2009-01-01

    rehabilitation), and with the proper radio communication mechanism they may give unique possibilities for documentation of the physical activity (e.g., therapeutic treatment). A major point of concern in modular robotics is the connection mechanism, so we investigated different solutions for the connection......We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment. The modular robotic tiles motivate the user...... to perform physical activities by providing immediate feedback based upon their physical interaction with the system. With the modular robotic tiles, the user is able to make new physical set-ups within less than a minute. The tiles are applicable for different forms of physical activities (e.g., therapeutic...

  11. Passive reach and grasp with functional electrical stimulation and robotic arm support

    NARCIS (Netherlands)

    Westerveld, Ard J.; Schouten, Alfred C.; Veltink, Peter H.; van der Kooij, Herman

    2014-01-01

    Rehabilitation of arm and hand function is crucial to increase functional independence of stroke subjects. Here, we investigate the technical feasibility of an integrated training system combining robotics and functional electrical stimulation (FES) to support reach and grasp during functional

  12. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders

    NARCIS (Netherlands)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and

  13. Rehabilitative bodywork

    DEFF Research Database (Denmark)

    Hansen, Agnete Meldgaard

    2016-01-01

    Care work for elderly people has been characterised as dirty work, owing to its proximity to the (dys)functions and discharges of aged bodies and the notions of disease, decay and death associated with the idea of ‘old age’. However, a wave of reform programmes in Danish municipalities promoting...... units, this article analyses how rehabilitative care practices, drawing on a narrative of the third age, provide an optimistic and anti-ageist framing of homecare work that informs the development of new occupational identities for care workers as coaches rather than carers in relation to citizens...

  14. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  15. Performance Evaluation Methods for Assistive Robotic Technology

    Science.gov (United States)

    Tsui, Katherine M.; Feil-Seifer, David J.; Matarić, Maja J.; Yanco, Holly A.

    Robots have been developed for several assistive technology domains, including intervention for Autism Spectrum Disorders, eldercare, and post-stroke rehabilitation. Assistive robots have also been used to promote independent living through the use of devices such as intelligent wheelchairs, assistive robotic arms, and external limb prostheses. Work in the broad field of assistive robotic technology can be divided into two major research phases: technology development, in which new devices, software, and interfaces are created; and clinical, in which assistive technology is applied to a given end-user population. Moving from technology development towards clinical applications is a significant challenge. Developing performance metrics for assistive robots poses a related set of challenges. In this paper, we survey several areas of assistive robotic technology in order to derive and demonstrate domain-specific means for evaluating the performance of such systems. We also present two case studies of applied performance measures and a discussion regarding the ubiquity of functional performance measures across the sampled domains. Finally, we present guidelines for incorporating human performance metrics into end-user evaluations of assistive robotic technologies.

  16. 'Filigree Robotics'

    DEFF Research Database (Denmark)

    2016-01-01

    -scale 3D printed ceramics accompanied by prints, videos and ceramic probes, which introduce the material and design processes of the project.'Filigree Robotics' experiments with a combination of the traditional ceramic technique of ‘Overforming’ with 3d Laserscan and Robotic extrusion technique...... application of reflectivity after an initial 3d print. The consideration and integration of this material practice into a digital workflow took place in an interdisciplinary collaboration of Ceramicist Flemming Tvede Hansen from KADK Superformlab and architectural researchers from CITA (Martin Tamke, Henrik...... to the creation of the form and invites for experimentation. In Filigree Robotics we combine the crafting of the mold with a parallel running generative algorithm, which is fed by a constant laserscan of the 3d surface. This algorithm, analyses the topology of the mold, identifies high and low points and uses...

  17. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  18. Design of an exercise glove for hand rehabilitation using spring mechanism

    NARCIS (Netherlands)

    Serbest, K.; Ates, Sedar; Stienen, Arno; Isler, Y.

    2017-01-01

    Hand muscles do not perform their functions because of different reasons such as disease, injury and trauma. It is implemented some treatments for the hand therapy at hospitals and rehabilitation centers. One of these is using orthotic or robotic devices for rehabilitation. One of the important

  19. Medical robotics

    CERN Document Server

    Troccaz, Jocelyne

    2013-01-01

    In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and

  20. Service Robots

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Nielsen, Jeppe Agger; Andersen, Kim Normann

    The position presented in this paper is that in order to understand how service robots shape, and are being shaped by, the physical and social contexts in which they are used, we need to consider both work/organizational analysis and interaction design. We illustrate this with qualitative data...... and personal experiences to generate discussion about how to link these two traditions. This paper presents selected results from a case study that investigated the implementation and use of robot vacuum cleaners in Danish eldercare. The study demonstrates interpretive flexibility with variation...

  1. Robot Choreography

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Heath, Damith

    2016-01-01

    We propose a robust framework for combining performance paradigms with human robot interaction (HRI) research. Following an analysis of several case studies that combine the performing arts with HRI experiments, we propose a methodology and “best practices” for implementing choreography and other...... performance paradigms in HRI experiments. Case studies include experiments conducted in laboratory settings, “in the wild”, and live performance settings. We consider the technical and artistic challenges of designing and staging robots alongside humans in these various settings, and discuss how to combine...

  2. Kinematics of a Novel Ankle Rehabilitation Device with Two Degrees of Freedom

    Directory of Open Access Journals (Sweden)

    Ioan Doroftei

    2015-06-01

    Full Text Available The human ankle joint is the most common injured in sports and daily life in general. Traditionally, ankle injuries are rehabilitated via physiotherapy. However, the experiences suggest that without sufficient rehabilitation many people will have future problems. Furthermore, during a rehabilitation treatment, cooperative and intensive efforts of therapists and patients are required over prolonged sessions. Thus, robotic devices have been developed for human ankle rehabilitation. This paper discusses kinematic aspects of a novel ankle rehabilitation device, which can facilitate the recovery of the ankle joint

  3. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.

    Science.gov (United States)

    Zhang, Fuhai; Fu, Yili; Zhang, Qinchao; Wang, Shuguo

    2015-01-01

    Aiming at the hand rehabilitation of stroke patients, a wearable hand exoskeleton with circuitous joint is proposed. The circuitous joint adopts the symmetric pinion and rack mechanism (SPRM) with the parallel mechanism. The exoskeleton finger is a serial mechanism composed of three closed-chain SPRM joints in series. The kinematic equations of the open chain of the finger and the closed chains of the SPRM joints were built to analyze the kinematics of the hand rehabilitation exoskeleton. The experimental setup of the hand rehabilitation exoskeleton was built and the continuous passive motion (CPM) rehabilitation experiment and the test of human-robot interaction force measurement were conducted. Experiment results show that the mechanical design of the hand rehabilitation robot is reasonable and that the kinematic analysis is correct, thus the exoskeleton can be used for the hand rehabilitation of stroke patients.

  4. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  5. Robot-supported assessment of balance in standing and walking.

    Science.gov (United States)

    Shirota, Camila; van Asseldonk, Edwin; Matjačić, Zlatko; Vallery, Heike; Barralon, Pierre; Maggioni, Serena; Buurke, Jaap H; Veneman, Jan F

    2017-08-14

    Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for assessment are their ability to assess 'severely affected' patients by providing assistance-as-needed, as well as to provide consistent perturbations during standing and walking while measuring the patient's reactions. We provide a classification of robotic devices on three aspects relevant to their potential application for balance assessment: 1) how the device interacts with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks when using the device. As examples, nine types of robotic devices are described, classified and evaluated for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations during walking are presented. We conclude that robotic devices are promising and can become useful and relevant tools for assessment of balance in patients with neurological disorders, both in research and in clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows to individually tailor rehabilitation training, which may eventually improve training effectiveness.

  6. Armin Tuulse ja kirikute uurimine / Kersti Markus

    Index Scriptorium Estoniae

    Markus, Kersti, 1962-

    2008-01-01

    Arhitektuuri- ja kunstiajaloolase tegevusest 1930. aastate Eestis ja Teise maailmasõja järgses Rootsis. Saksa ja rootsi teadlaste vahelistest kultuuriregiooni vaidlustest. Eesti kunsti omapära otsingutest. Keskaegse sakraalkunsti uurimise meetoditest

  7. Armin Karu muutus Eesti rikkaimaks / Lauri Matsulevitsh

    Index Scriptorium Estoniae

    Matsulevitsh, Lauri

    2006-01-01

    Olympic Casino aktsiaid oli müügis 1,124 miljardi krooni eest, märgiti neid aga 7,5 miljardi krooni eest. Diagrammid: Viimaste börsiletulijate aktsia hinna liikumine kroonides esimesel kümnel päeval; Olympic tõi juurde uusi investoreid; Uute väärtpaberikontode arv; Aktsiaid märkinud jaeinvestorite arv viimastel IPOdel. Kommenteerivad Rainer Jürgenson, Peeter Koppel, Riho Talumaa ja Rainer Änilane

  8. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  9. Robotic Surgery

    Science.gov (United States)

    Childress, Vincent W.

    2007-01-01

    The medical field has many uses for automated and remote-controlled technology. For example, if a tissue sample is only handled in the laboratory by a robotic handling system, then it will never come into contact with a human. Such a system not only helps to automate the medical testing process, but it also helps to reduce the chances of…

  10. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    OpenAIRE

    Raj, Anil K.; Neuhaus, Peter D.; Moucheboeuf, Adrien M.; Noorden, Jerryll H.; Lecoutre, David V.

    2011-01-01

    While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC) has developed the Mina, a prototype sensorimotor robotic ort...

  11. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  12. User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke

    Directory of Open Access Journals (Sweden)

    Ivanova Ekaterina

    2017-03-01

    Full Text Available Robotic therapy devices have been an important part of clinical neurological rehabilitation for several years. Until now such devices are only available for patients receiving therapy inside rehabilitation hospitals. Since patients should continue rehabilitation training after hospital discharge at home, intelligent robotic rehab devices could help to achieve this goal. This paper presents therapeutic requirements and early phases of the user-centered design process of the patient’s work station as part of a novel robot-based system for motor telerehabilitation.

  13. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb

    Science.gov (United States)

    Sánchez-Herrera, P.; Balaguer, C.; Jardón, A.

    2018-01-01

    Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed. PMID:29707189

  14. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb.

    Science.gov (United States)

    Oña, E D; Cano-de la Cuerda, R; Sánchez-Herrera, P; Balaguer, C; Jardón, A

    2018-01-01

    Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed.

  15. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb

    Directory of Open Access Journals (Sweden)

    E. D. Oña

    2018-01-01

    Full Text Available Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed.

  16. Rehabilitation-triggered cortical plasticity after stroke: in vivo imaging at multiple scales (Conference Presentation)

    Science.gov (United States)

    Allegra Mascaro, Anna Letizia; Conti, Emilia; Lai, Stefano; Spalletti, Cristina; Di Giovanna, Antonino Paolo; Alia, Claudia; Panarese, Alessandro; Sacconi, Leonardo; Micera, Silvestro; Caleo, Matteo; Pavone, Francesco S.

    2017-02-01

    Neurorehabilitation protocols based on the use of robotic devices provide a highly repeatable therapy and have recently shown promising clinical results. Little is known about how rehabilitation molds the brain to promote motor recovery of the affected limb. We used a custom-made robotic platform that provides quantitative assessment of forelimb function in a retraction test. Complementary imaging techniques allowed us to access to the multiple facets of robotic rehabilitation-induced cortical plasticity after unilateral photothrombotic stroke in mice Primary Motor Cortex (Caudal Forelimb Area - CFA). First, we analyzed structural features of vasculature and dendritic reshaping in the peri-infarct area with two-photon fluorescence microscopy. Longitudinal analysis of dendritic branches and spines of pyramidal neurons suggests that robotic rehabilitation promotes the stabilization of peri-infarct cortical excitatory circuits, which is not accompanied by consistent vascular reorganization towards pre-stroke conditions. To investigate if this structural stabilization was linked to functional remapping, we performed mesoscale wide-field imaging on GCaMP6 mice while performing the motor task on the robotic platform. We revealed temporal and spatial features of the motor-triggered cortical activation, shining new light on rehabilitation-induced functional remapping of the ipsilesional cortex. Finally, by using an all-optical approach that combines optogenetic activation of the contralesional hemisphere and wide-field functional imaging of peri-infarct area, we dissected the effect of robotic rehabilitation on inter-hemispheric cortico-cortical connectivity.

  17. Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials

    Science.gov (United States)

    Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan

    2011-01-01

    Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots…

  18. Field Study of a Physical Game for Older Adults Based on an Autonomous, Mobile Robot

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Rasmussen, Dorte Malig; Bak, Thomas

    2012-01-01

    an open, exploratory approach. An analysis of the interaction is made based on video recordings, observations and qualitative interviews focusing on the potential of the robot as a rehabilitative application. The primary goal of the study is to observe seniors’ acceptance of the robot, to obtain knowledge...... about their game play patterns and get ideas about future improvements of the game....

  19. Application of Robotic and Mechatronic Systems to Neurorehabilitation

    OpenAIRE

    Mazzoleni, Stefano; Dario, Paolo; Carrozza, Maria Chiara; Guglielmelli, Eugenio

    2010-01-01

    Robotic and mechatronic systems presented in this chapter are increasingly used in hospitals and rehabilitation centres as technological tools for the clinical practice. These systems are used to administer intensive and prolonged treatments aimed at achieving the functional recovery of people affected by neurological impairments, in sub-acute and chronic stage, with a potential improvement of the cost/effectiveness ratio. They can evaluate the effects of rehabilitation treatments in a quanti...

  20. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients

    Science.gov (United States)

    Chen, Jia-Ching; Shaw, Fu-Zen

    2014-01-01

    Impaired motor and functional activity following stroke often has negative impacts on the patient, the family and society. The available rehabilitation programs for stroke patients are reviewed. Conventional rehabilitation strategies (Bobath, Brunnstrom, proprioception neuromuscular facilitation, motor relearning and function-based principles) are the mainstream tactics in clinical practices. Numerous advanced strategies for sensory-motor functional enhancement, including electrical stimulation, electromyographic biofeedback, constraint-induced movement therapy, robotics-aided systems, virtual reality, intermittent compression, partial body weight supported treadmill training and thermal stimulation, are being developed and incorporated into conventional rehabilitation programs. The concept of combining valuable rehabilitative procedures into “a training package”, based on the patient’s functional status during different recovery phases after stroke is proposed. Integrated sensorimotor rehabilitation programs with appropriate temporal arrangements might provide great functional benefits for stroke patients. PMID:25133141

  1. Robotic neurorehabilitation system design for stroke patients

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2015-03-01

    Full Text Available In this article, a neurorehabilitation system combining robot-aided rehabilitation with motor imagery–based brain–computer interface is presented. Feature extraction and classification algorithm for the motor imagery electroencephalography is implemented under our brain–computer interface research platform. The main hardware platform for functional recovery therapy is the Barrett Whole-Arm Manipulator. The mental imagination of upper limb movements is translated to trigger the Barrett Whole-Arm Manipulator Arm to stretch the affected upper limb to move along the predefined trajectory. A fuzzy proportional–derivative position controller is proposed to control the Whole-Arm Manipulator Arm to perform passive rehabilitation training effectively. A preliminary experiment aimed at testing the proposed system and gaining insight into the potential of motor imagery electroencephalography-triggered robotic therapy is reported.

  2. Micro Robotics Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Our research is focused on the challenges of engineering robotic systems down to sub-millimeter size scales. We work both on small mobile robots (robotic insects for...

  3. Robots of the Future

    Indian Academy of Sciences (India)

    two main types of robots: industrial robots, and autonomous robots. .... position); it also has a virtual CPU with two stacks and three registers that hold 32-bit strings. Each item ..... just like we can aggregate images, text, and information from.

  4. Presentation robot Advee

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, Stanislav; Hrbáček, J.; Ripel, T.; Ondroušek, V.; Hrbáček, R.; Schreiber, P.

    2012-01-01

    Roč. 18, 5/6 (2012), s. 307-322 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : mobile robot * human - robot interface * localization Subject RIV: JD - Computer Applications, Robot ics

  5. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  6. Haptic Systems for Post-Stroke Rehabilitation: from Virtual Reality to Remote Rehabilitation

    OpenAIRE

    Daud, Omar Andres

    2011-01-01

    Haptic devices are becoming a common and significant tool in the perspective of robotic neurorehabilitation for motor learning, particularly in post-stroke patients. As a standard approach, this kind of devices are used in a local environment, where the patient interacts with a virtual environment recreated in the computer's screen. In this sense, a general framework for virtual reality based rehabilitation was developed. All the features of the framework, such as the control loop and the ext...

  7. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  8. Robot Programming.

    Science.gov (United States)

    1982-12-01

    Paris, France, June, 1982, 519-530. Latoinbe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d’avancement des recherches," Laboratoire...8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS ,. 545 Technology Square Cambridge

  9. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.

    Science.gov (United States)

    Kadivar, Z; Sullivan, J L; Eng, D P; Pehlivan, A U; O'Malley, M K; Yozbatiran, N; Francisco, G E

    2011-01-01

    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be catalyzed by repetitive movement training such as that available with robotic devices, it is probable that robotic upper-extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device for the upper extremity (RiceWrist) and to evaluate robotic rehabilitation using the RiceWrist in a tetraplegic person with incomplete SCI. A 24-year-old male with incomplete SCI participated in 10 sessions of robot-assisted therapy involving intensive upper limb training. The subject successfully completed all training sessions and showed improvements in movement smoothness, as well as in the hand function. Results from this study provide valuable information for further developments of robotic devices for upper limb rehabilitation in persons with SCI. © 2011 IEEE

  10. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  11. Advances in Robotic-Assisted Radical Prostatectomy over Time

    Directory of Open Access Journals (Sweden)

    Emma F. P. Jacobs

    2013-01-01

    Full Text Available Since the introduction of robot-assisted radical prostatectomy (RALP, robotics has become increasingly more commonplace in the armamentarium of the urologic surgeon. Robotic utilization has exploded across surgical disciplines well beyond the fields of urology and prostate surgery. The literature detailing technical steps, comparison of large surgical series, and even robotically focused randomized control trials are available for review. RALP, the first robot-assisted surgical procedure to achieve widespread use, has recently become the primary approach for the surgical management of localized prostate cancer. As a result, surgeons are constantly trying to refine and improve upon current technical aspects of the operation. Recent areas of published modifications include bladder neck anastomosis and reconstruction, bladder drainage, nerve sparing approaches and techniques, and perioperative and postoperative management including penile rehabilitation. In this review, we summarize recent advances in perioperative management and surgical technique for RALP.

  12. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  13. Brain computer interface for operating a robot

    Science.gov (United States)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  14. Advances in Reconfigurable Mechanisms and Robots I

    CERN Document Server

    Zoppi, Matteo; Kong, Xianwen

    2012-01-01

    Advances in Reconfigurable Mechanisms and Robots I provides a selection of key papers presented in The Second ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2012) held on 9th -11th  July 2012 in Tianjin, China. This ongoing series of conferences will be covered in this ongoing collection of books.   A total of seventy-eight papers are divided into seven parts to cover the topology, kinematics and design of reconfigurable mechanisms with the reconfiguration theory, analysis and synthesis, and present the current research and development in the field of reconfigurable mechanisms including reconfigurable parallel mechanisms. In this aspect, the recent study and development of reconfigurable robots are further presented with the analysis and design and with their control and development. The bio-inspired mechanisms and subsequent reconfiguration are explored in the challenging fields of rehabilitation and minimally invasive surgery. Advances in Reconfigurable Mechanisms and ...

  15. Smooth leader or sharp follower? Playing the mirror game with a robot.

    Science.gov (United States)

    Kashi, Shir; Levy-Tzedek, Shelly

    2018-01-01

    The increasing number of opportunities for human-robot interactions in various settings, from industry through home use to rehabilitation, creates a need to understand how to best personalize human-robot interactions to fit both the user and the task at hand. In the current experiment, we explored a human-robot collaborative task of joint movement, in the context of an interactive game. We set out to test people's preferences when interacting with a robotic arm, playing a leader-follower imitation game (the mirror game). Twenty two young participants played the mirror game with the robotic arm, where one player (person or robot) followed the movements of the other. Each partner (person and robot) was leading part of the time, and following part of the time. When the robotic arm was leading the joint movement, it performed movements that were either sharp or smooth, which participants were later asked to rate. The greatest preference was given to smooth movements. Half of the participants preferred to lead, and half preferred to follow. Importantly, we found that the movements of the robotic arm primed the subsequent movements performed by the participants. The priming effect by the robot on the movements of the human should be considered when designing interactions with robots. Our results demonstrate individual differences in preferences regarding the role of the human and the joint motion path of the robot and the human when performing the mirror game collaborative task, and highlight the importance of personalized human-robot interactions.

  16. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  17. How robots challenge institutional practices

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2018-01-01

    In a globalized world, tools are not what they used to be. Artefacts are material and ideal, but they are often used by people other than those who made them, creating a culture-culture split. The person who creates an artefact perceives it in one way; whereas the people who use it learn how to p...... ultimately concluded that overarching motives of the everyday work of the staff determined whether they included the material artefact, the robot, in their activities as meaningful, or excluded it as meaningless....... to perceive it in relation their own activity settings and local institutional practices. In this article, I draw on a recent study of the introduction of a robot helper into the activity setting of a Danish rehabilitation centre to examine this split and to identify the processes by which material artefacts...... may or may not become embedded within cultures. The study traced how the staff at the centre made efforts to find uses for the robot, but ultimately recognised that they needed to reject it, as the demands made by the technology prevented their pursuing what they saw as the primary purposes...

  18. The ORT Open Tech Robotics and Automation Literacy Course.

    Science.gov (United States)

    Sharon, Dan; And Others

    1987-01-01

    Presents an overview of a course on robotics and automation developed by the Organization for Rehabilitation through Training (ORT) to be offered through an open learning environment in the United Kingdom. Highlights include hardware and software requirements, an educational model, design principles, and future developments. (LRW)

  19. Educational Robotics as Mindtools

    Science.gov (United States)

    Mikropoulos, Tassos A.; Bellou, Ioanna

    2013-01-01

    Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…

  20. ROILA : RObot Interaction LAnguage

    NARCIS (Netherlands)

    Mubin, O.

    2011-01-01

    The number of robots in our society is increasing rapidly. The number of service robots that interact with everyday people already outnumbers industrial robots. The easiest way to communicate with these service robots, such as Roomba or Nao, would be natural speech. However, the limitations

  1. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  2. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.

    Science.gov (United States)

    O'Malley, Marcia K; Ro, Tony; Levin, Harvey S

    2006-12-01

    To describe 2 new ways of assessing and inducing neuroplasticity in the human brain--transcranial magnetic stimulation (TMS) and robotics--and to investigate and promote the recovery of motor function after brain damage. We identified recent articles and books directly bearing on TMS and robotics. Articles using these tools for purposes other than rehabilitation were excluded. From these studies, we emphasize the methodologic and technical details of these tools as applicable for assessing and inducing plasticity. Because both tools have only recently been used for rehabilitation, the majority of the articles selected for this review have been published only within the last 10 years. We used the PubMed and Compendex databases to find relevant peer-reviewed studies for this review. The studies were required to be relevant to rehabilitation and to use TMS or robotics methodologies. Guidelines were applied via independent extraction by multiple observers. Despite the limited amount of research using these procedures for assessing and inducing neuroplasticity, there is growing evidence that both TMS and robotics can be very effective, inexpensive, and convenient ways for assessing and inducing rehabilitation. Although TMS has primarily been used as an assessment tool for motor function, an increasing number of studies are using TMS as a tool to directly induce plasticity and improve motor function. Similarly, robotic devices have been used for rehabilitation because of their suitability for delivery of highly repeatable training. New directions in robotics-assisted rehabilitation are taking advantage of novel measurements that can be acquired via the devices, enabling unique methods of assessment of motor recovery. As refinements in technology and advances in our knowledge continue, TMS and robotics should play an increasing role in assessing and promoting the recovery of function. Ongoing and future studies combining TMS and robotics within the same populations may

  3. Virtual Rehabilitation with Children: Challenges for Clinical Adoption [From the Field].

    Science.gov (United States)

    Glegg, Stephanie

    2017-01-01

    Virtual, augmented, and mixed reality environments are increasingly being developed and used to address functional rehabilitation goals related to physical, cognitive, social, and psychological impairments. For example, a child with an acquired brain injury may participate in virtual rehabilitation to address impairments in balance, attention, turn taking, and engagement in therapy. The trend toward virtual rehabilitation first gained momentum with the adoption of commercial off-the-shelf active video gaming consoles (e.g., Nintendo Wii and XBox). Now, we are seeing the rapid emergence of customized rehabilitation-specific systems that integrate technological advances in virtual reality, visual effects, motion tracking, physiological monitoring, and robotics.

  4. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  5. Pipeline rehabilitation planning

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil; Eyre, David [PENSPEN (United Kingdom)

    2005-07-01

    An operator faced with an onshore pipeline that has extensive damage must consider the need for rehabilitation, the sort of rehabilitation to be used, and the rehabilitation schedule. This paper will consider pipeline rehabilitation based on the authors' experiences from recent projects, and recommend a simple strategy for planning pipeline rehabilitation. It will also consider rehabilitation options: external re-coating; internal lining; internal painting; programmed repairs. The main focus will be external re-coating. Consideration will be given to rehabilitation coating types, including tape wraps, epoxy, and polyurethane. Finally it will discuss different options for scheduling the rehabilitation of corrosion damage including: the statistical comparison of signals from inspection pigs; statistical comparison of selected measurements from inspection pigs and other inspections; the use of corrosion rates estimated for the mechanisms and conditions; expert judgement. (author)

  6. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ...

  7. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  8. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  9. Armenia - Rural Road Rehabilitation

    Data.gov (United States)

    Millennium Challenge Corporation — The key research questions guiding our design of the RRRP evaluation are: • Did rehabilitating roads affect the quality of roads? • Did rehabilitating roads improve...

  10. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  11. Rehabilitation of disturbed land

    Energy Technology Data Exchange (ETDEWEB)

    Bell, L.C. [Australian Centre for Minesite Rehabilitation Research, Kenmore, Qld. (Australia)

    1996-12-31

    This chapter discusses the objectives of rehabilitation of lands in Australian disturbed by mining. It gives advice on rehabilitation planning and outlines the factors influencing post-mining land use and rehabilitation strategies, including climate, topography, hydrology, properties of soils, overburden and mineral processing wastes, flora and fauna and social considerations. Finally, the key elements of a rehabilitation plan are discussed, namely: landscape reconstruction; selective handling of overburden; and establishment and maintenance of a vegetative cover. 12 figs., 1 tab.

  12. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders.

    Science.gov (United States)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    2012-07-01

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.

  13. Hexapod Robot

    Science.gov (United States)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  14. Rehabilitation of pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia......-designed and controlled studies of rehabilitation of pure alexia....

  15. Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project

    OpenAIRE

    Amirabdollahian, F; Ates, Sedar; Basteris, A.; Cesario, A.; Buurke, Jaap; Hermens, Hermanus J.; Hofs, D.; Johansson, E.; Mountain, G.; Nasr, N.; Nijenhuis, S.M.; Prange, Grada Berendina; Rahman, N.; Sale, P.; Schätzlein, F.

    2014-01-01

    Objective: this manuscript introduces the Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) project. The main goal is to demonstrate design and development steps involved in a complex intervention, while examining feasibility of using an instrumented orthotic device for home-based rehabilitation after stroke. Methods: the project uses a user-centred design methodology to develop a hand/wrist rehabilitation device for home-based therapy after stroke. The patient bene...

  16. Design of active feedback for rehabilitation device

    Directory of Open Access Journals (Sweden)

    Liska Ondrej

    2016-01-01

    Full Text Available Sensor systems are an essential part of automated equipment. They are even more important in machines that come in contact with people, because they have a significant impact on safety. This paper describes the design of active feedback for rehabilitation device driven by pneumatic artificial muscles. Here are presented three methods for measuring the load of the robot. The first is a system composed of Force Sensitive Resistors (FSR placed in the handle of the device. Two other methods are intended to measure the load of the actuator composed of artificial muscles. The principle of one method is to measure the difference in filling pressures of the muscles, second is based on strain measurement in the drive cables. The paper describes advantages and disadvantages of using each of these methods in a rehabilitation device

  17. Simulations Results of an Ankle Rehabilitation Device

    Directory of Open Access Journals (Sweden)

    Ioan Doroftei

    2015-12-01

    Full Text Available The ankle structure is one of the most important structures of the human body. Due to its important role in human’s activities, this joint is the most injured part of the lower limb. For a complete recovery of the range of motion, recovery exercises are mandatory. The introduction of robotic physical recovery systems represents a modern alternative to traditional recovery. In this paper we present the development of a new ankle rehabilitation device, that aims to fully recover the range of motion required for daily activities.

  18. Cancer rehabilitation in Denmark

    DEFF Research Database (Denmark)

    Hansen, Helle Ploug; Tjørnhøj-Thomsen, Tine

    2008-01-01

    A fundamental assumption behind cancer rehabilitation in many Western societies is that cancer survivors can return to normal life by learning to deal with the consequences of their illness and their treatment. This assumption is supported by increasing political attention to cancer rehabilitation...... and a growth in residential cancer-rehabilitation initiatives in Denmark (Danish Cancer Society 1999; Government of Denmark 2003). On the basis of their ethnographic fieldwork in residential-cancer rehabilitation courses, the authors examine the new rehabilitation discourse. They argue that this discourse has...

  19. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  20. An Adaptive Robot Game

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Svenstrup, Mikael; Dalgaard, Lars

    2010-01-01

    The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal is to im......The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal...... is to improve the mental and physical state of the user by playing a physical game with the robot. Ideally, a robot game should be simple to learn but difficult to master, providing an appropriate degree of challenge for players with different skills. In order to achieve that, the robot should be able to adapt...

  1. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  2. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    The relationship between digital and analogue is often constructed as one of opposition. The perception that the world is permeated with underlying patterns of data, describing events and matter alike, suggests that information can be understood apart from the substance to which it is associated......, and that its encoded logic can be constructed and reconfigured as an isolated entity. This disembodiment of information from materiality implies that an event like a thunderstorm, or a material like a body, can be described equally by data, in other words it can be read or written. The following prototypes......, Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  3. Robotics Potential Fields

    Directory of Open Access Journals (Sweden)

    Jordi Lucero

    2009-01-01

    Full Text Available This problem was to calculate the path a robot would take to navigate an obstacle field and get to its goal. Three obstacles were given as negative potential fields which the robot avoided, and a goal was given a positive potential field that attracted the robot. The robot decided each step based on its distance, angle, and influence from every object. After each step, the robot recalculated and determined its next step until it reached its goal. The robot's calculations and steps were simulated with Microsoft Excel.

  4. Designing Emotionally Expressive Robots

    DEFF Research Database (Denmark)

    Tsiourti, Christiana; Weiss, Astrid; Wac, Katarzyna

    2017-01-01

    Socially assistive agents, be it virtual avatars or robots, need to engage in social interactions with humans and express their internal emotional states, goals, and desires. In this work, we conducted a comparative study to investigate how humans perceive emotional cues expressed by humanoid...... robots through five communication modalities (face, head, body, voice, locomotion) and examined whether the degree of a robot's human-like embodiment affects this perception. In an online survey, we asked people to identify emotions communicated by Pepper -a highly human-like robot and Hobbit – a robot...... for robots....

  5. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  6. Seven Capital Devices for the Future of Stroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    M. Iosa

    2012-01-01

    Full Text Available Stroke is the leading cause of long-term disability for adults in industrialized societies. Rehabilitation’s efforts are tended to avoid long-term impairments, but, actually, the rehabilitative outcomes are still poor. Novel tools based on new technologies have been developed to improve the motor recovery. In this paper, we have taken into account seven promising technologies that can improve rehabilitation of patients with stroke in the early future: (1 robotic devices for lower and upper limb recovery, (2 brain computer interfaces, (3 noninvasive brain stimulators, (4 neuroprostheses, (5 wearable devices for quantitative human movement analysis, (6 virtual reality, and (7 tablet-pc used for neurorehabilitation.

  7. Rehabilitation Engineering: What is Rehabilitation Engineering?

    Science.gov (United States)

    ... Corner Strategic Plan Budget Advisory Council Staff Directory Careers History Visitor Information You are here Home » Science Education » Science Topics » Rehabilitation Engineering SCIENCE EDUCATION SCIENCE EDUCATION Science Topics Resource Links ...

  8. Robotics_MobileRobot Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  9. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  10. Social Robotics in Therapy of Apraxia of Speech

    Directory of Open Access Journals (Sweden)

    José Carlos Castillo

    2018-01-01

    Full Text Available Apraxia of speech is a motor speech disorder in which messages from the brain to the mouth are disrupted, resulting in an inability for moving lips or tongue to the right place to pronounce sounds correctly. Current therapies for this condition involve a therapist that in one-on-one sessions conducts the exercises. Our aim is to work in the line of robotic therapies in which a robot is able to perform partially or autonomously a therapy session, endowing a social robot with the ability of assisting therapists in apraxia of speech rehabilitation exercises. Therefore, we integrate computer vision and machine learning techniques to detect the mouth pose of the user and, on top of that, our social robot performs autonomously the different steps of the therapy using multimodal interaction.

  11. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.

    Science.gov (United States)

    Thangavel, Pavithra; Vidhya, S; Li, Junhua; Chew, Effie; Bezerianos, Anastasios; Yu, Haoyong

    2017-07-01

    Since manual rehabilitation therapy can be taxing for both the patient and the physiotherapist, a gait rehabilitation robot has been built to reduce the physical strain and increase the efficacy of the rehabilitation therapy. The prototype of the gait rehabilitation robot is designed to provide assistance while walking for patients with abnormal gait pattern and it can also be used for rehabilitation therapy to restore an individual's normal gait pattern by aiding motor recovery. The Gait Rehabilitation Robot uses gait event based synchronization, which enables the exoskeleton to provide synchronous assistance during walking that aims to reduce the lower-limb muscle activation. This study emphasizes on the biomechanical effects of assisted walking on the lower limb by analyzing the EMG signal, knee joint kinematics data that was collected from the right leg during the various experimental conditions. The analysis of the measured data shows an improved knee joint trajectory and reduction in muscle activity with assistance. The result of this study does not only assess the functionality of the exoskeleton but also provides a profound understanding of the human-robot interaction by studying the effects of assistance on the lower limb.

  12. HISTORY OF NEUROPSYCHOLOGICAL REHABILITATION

    Directory of Open Access Journals (Sweden)

    N. A. Varako

    2014-01-01

    Full Text Available ABSTRACT. The article reviews the history of neuropsychological rehabilitation. It begins with the description of first rehabilitation programs developed by Paul Broca and Shepherd Franz. Franz’s experimental work for motor recovery in monkeys and correlation between active movement or affected limb immobilization and rehabilitation outcomes are described in further details. Special focus is given on ideas of famous German neurologist and psychiatrist Kurt Goldstein, who laid the foundation for modern approach in rehabilitation. Goldstein developed the idea of connection between rehabilitation and patient’s daily life. He also pointed out the necessity of psychological care of patients with brain damage.Russian neuropsychological approach is presented by its founders L.S. Vygotskiy and A.R. Luriya. Aspects of higher mental processes structure and options of its correction such as “cognitive prosthesis” are described in the sense of the approach.Y. Ben-Yishay, G. Prigatano, B. Wilson represent neuropsychological rehabilitation of the second half of the 20th century. The idea of a holistic approach for rehabilitation consists of such important principles as patient’s active involvement in a process of rehabilitation, work of a special team of rehabilitation professionals, inclusion of patient’s family members. The short review of a new rehabilitation approach for patients in coma, vegetative states and critical patients under resuscitation is given. 

  13. Springer handbook of robotics

    CERN Document Server

    Khatib, Oussama

    2016-01-01

    The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition o...

  14. Project ROBOTICS 2008

    DEFF Research Database (Denmark)

    Conrad, Finn

    Mathematical modelling of Alto Robot, direct- and inverse kinematic transformation,simulation and path control applying MATLAB/SIMULINK.......Mathematical modelling of Alto Robot, direct- and inverse kinematic transformation,simulation and path control applying MATLAB/SIMULINK....

  15. Project Tasks in Robotics

    DEFF Research Database (Denmark)

    Sørensen, Torben; Hansen, Poul Erik

    1998-01-01

    Description of the compulsary project tasks to be carried out as a part of DTU course 72238 Robotics......Description of the compulsary project tasks to be carried out as a part of DTU course 72238 Robotics...

  16. CMS cavern inspection robot

    CERN Document Server

    Ibrahim, Ibrahim

    2017-01-01

    Robots which are immune to the CMS cavern environment, wirelessly controlled: -One actuated by smart materials (Ionic Polymer-Metal Composites and Macro Fiber Composites) -One regular brushed DC rover -One servo-driven rover -Stair-climbing robot

  17. Inducing self-selected human engagement in robotic locomotion training.

    Science.gov (United States)

    Collins, Steven H; Jackson, Rachel W

    2013-06-01

    Stroke leads to severe mobility impairments for millions of individuals each year. Functional outcomes can be improved through manual treadmill therapy, but high costs limit patient exposure and, thereby, outcomes. Robotic gait training could increase the viable duration and frequency of training sessions, but robotic approaches employed thus far have been less effective than manual therapy. These shortcomings may relate to subconscious energy-minimizing drives, which might cause patients to engage less actively in therapy when provided with corrective robotic assistance. We have devised a new method for gait rehabilitation that harnesses, rather than fights, least-effort tendencies. Therapeutic goals, such as increased use of the paretic limb, are made easier than the patient's nominal gait through selective assistance from a robotic platform. We performed a pilot test on a healthy subject (N = 1) in which altered self-selected stride length was induced using a tethered robotic ankle-foot orthosis. The subject first walked on a treadmill while wearing the orthosis with and without assistance at unaltered and voluntarily altered stride length. Voluntarily increasing stride length by 5% increased metabolic energy cost by 4%. Robotic assistance decreased energy cost at both unaltered and voluntarily increased stride lengths, by 6% and 8% respectively. We then performed a test in which the robotic system continually monitored stride length and provided more assistance if the subject's stride length approached a target increase. This adaptive assistance protocol caused the subject to slowly adjust their gait patterns towards the target, leading to a 4% increase in stride length. Metabolic energy consumption was simultaneously reduced by 5%. These results suggest that selective-assistance protocols based on targets relevant to rehabilitation might lead patients to self-select desirable gait patterns during robotic gait training sessions, possibly facilitating better

  18. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.

    Science.gov (United States)

    Alexandrov, Alexei V; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A; Hettich, Georg; Husek, Dusan

    2017-01-01

    Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free , scalar equations. This paper investigates whether the EM alternative shows "real-world robustness" against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive ("voluntary") movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  19. RHOBOT: Radiation hardened robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.; Posey, L.D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  20. Micro robot bible

    International Nuclear Information System (INIS)

    Yoon, Jin Yeong

    2000-08-01

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  1. RHOBOT: Radiation hardened robotics

    International Nuclear Information System (INIS)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program

  2. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  3. Micro robot bible

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin Yeong

    2000-08-15

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  4. Robots at Work

    OpenAIRE

    Graetz, Georg; Michaels, Guy

    2015-01-01

    Despite ubiquitous discussions of robots' potential impact, there is almost no systematic empirical evidence on their economic effects. In this paper we analyze for the first time the economic impact of industrial robots, using new data on a panel of industries in 17 countries from 1993-2007. We find that industrial robots increased both labor productivity and value added. Our panel identification is robust to numerous controls, and we find similar results instrumenting increased robot use wi...

  5. Robots in the Roses

    OpenAIRE

    2014-01-01

    2014-04 Robots in the Roses A CRUSER Sponsored Event. The 4th Annual Robots in the Roses provides a venue for Faculty & NPS Students to showcase unmanned systems research (current or completed) and recruit NPS Students to join in researching on your project. Posters, robots, vehicles, videos, and even just plain humans welcome! Families are welcome to attend Robots in the Roses as we'll have a STEM activity for children to participate in.

  6. Bimanual elbow exoskeleton: Force based protocol and rehabilitation quantification.

    Science.gov (United States)

    Alavi, N; Herrnstadt, G; Randhawa, B K; Boyd, L A; Menon, C

    2015-08-01

    An aging population, along with the increase in cardiovascular disease incidence that accompanies this demographic shift, is likely to increase both the economic and medical burden associated with stroke in western societies. Rehabilitation, the standard treatment for stroke, can be expanded and augmented with state of the art technologies, such as robotic therapy. This paper expands upon a recent work involving a force-feedback master-slave bimanual exoskeleton for elbow rehabilitation, named a Bimanual Wearable Robotic Device (BWRD). Elbow force data acquired during the execution of custom tasks is analyzed to demonstrate the feasibility of tracking patient progress. Two training tasks that focus on applied forces are examined. The first is called "slave arm follow", which uses the absolute angular impulse as a metric; the second is called "conditional arm static", which uses the rise time to target as a metric, both presented here. The outcomes of these metrics are observed over three days.

  7. Iterative learning control for electrical stimulation and stroke rehabilitation

    CERN Document Server

    Freeman, Chris T; Burridge, Jane H; Hughes, Ann-Marie; Meadmore, Katie L

    2015-01-01

    Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ mus...

  8. Modular robot

    International Nuclear Information System (INIS)

    Ferrante, T.A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs

  9. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  10. Building a Better Robot

    Science.gov (United States)

    Navah, Jan

    2012-01-01

    Kids love to build robots, letting their imaginations run wild with thoughts of what they might look like and what they could be programmed to do. Yet when students use cereal boxes and found objects to make robots, often the projects look too similar and tend to fall apart. This alternative allows students to "build" robots in a different way,…

  11. Open middleware for robotics

    CSIR Research Space (South Africa)

    Namoshe, M

    2008-12-01

    Full Text Available and their technologies within the field of multi-robot systems to ease the difficulty of realizing robot applications. And lastly, an example of algorithm development for multi-robot co-operation using one of the discussed software architecture is presented...

  12. Learning robotics using Python

    CERN Document Server

    Joseph, Lentin

    2015-01-01

    If you are an engineer, a researcher, or a hobbyist, and you are interested in robotics and want to build your own robot, this book is for you. Readers are assumed to be new to robotics but should have experience with Python.

  13. Robots de servicio

    Directory of Open Access Journals (Sweden)

    Rafael Aracil

    2008-04-01

    Full Text Available Resumen: El término Robots de Servicio apareció a finales de los años 80 como una necesidad de desarrollar máquinas y sistemas capaces de trabajar en entornos diferentes a los fabriles. Los Robots de Servicio tenían que poder trabajar en entornos noestructurados, en condiciones ambientales cambiantes y con una estrecha interacción con los humanos. En 1995 fue creado por la IEEE Robotics and Automation Society, el Technical Committee on Service Robots, y este comité definió en el año 2000 las áreas de aplicación de los Robots de Servicios, que se pueden dividir en dos grandes grupos: 1 sectores productivos no manufactureros tales como edificación, agricultura, naval, minería, medicina, etc. y 2 sectores de servicios propiamente dichos: asistencia personal, limpieza, vigilancia, educación, entretenimiento, etc. En este trabajo se hace una breve revisión de los principales conceptos y aplicaciones de los robots de servicio. Palabras clave: Robots de servicio, robots autónomos, robots de exteriores, robots de educación y entretenimiento, robots caminantes y escaladores, robots humanoides

  14. Beyond Speculative Robot Ethics

    NARCIS (Netherlands)

    Smits, M.; Van der Plas, A.

    2010-01-01

    In this article we develop a dialogue model for robot technology experts and designated users to discuss visions on the future of robotics in long-term care. Our vision assessment study aims for more distinguished and more informed visions on future robots. Surprisingly, our experiment also lead to

  15. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  16. Improving the education in the field of patient autonomy in rehabilitation doctors working with engineers

    Directory of Open Access Journals (Sweden)

    Bliuc Roxana Elena

    2017-01-01

    Full Text Available The present study analyzes the use of bioethical expertise of Romanian rehabilitation doctors working in a hospital for engineering professionals, the Romanian Railways Clinical Hospital Iasi. The knowledge of the specific legislation by the medical personnel, proper communication, shared decision making and the use of informed consent are essential for effective healthcare provided to engineers, a group of professionals with a great contribution to the development of rehabilitation robotics and medical technology.

  17. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.

    Science.gov (United States)

    Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario

    2016-01-01

    Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.

  18. Georgia - Energy Rehabilitation

    Data.gov (United States)

    Millennium Challenge Corporation — Gustavson Associates was retained by Millennium Challenge Georgia (MCG) to prepare a model to calculate the economic rate of return (ERR) for rehabilitation work...

  19. Human computer confluence applied in healthcare and rehabilitation.

    Science.gov (United States)

    Viaud-Delmon, Isabelle; Gaggioli, Andrea; Ferscha, Alois; Dunne, Stephen

    2012-01-01

    Human computer confluence (HCC) is an ambitious research program studying how the emerging symbiotic relation between humans and computing devices can enable radically new forms of sensing, perception, interaction, and understanding. It is an interdisciplinary field, bringing together researches from horizons as various as pervasive computing, bio-signals processing, neuroscience, electronics, robotics, virtual & augmented reality, and provides an amazing potential for applications in medicine and rehabilitation.

  20. An Exoskeleton Robot for Human Forearm and Wrist Motion Assist

    Science.gov (United States)

    Ranathunga Arachchilage Ruwan Chandra Gopura; Kiguchi, Kazuo

    The exoskeleton robot is worn by the human operator as an orthotic device. Its joints and links correspond to those of the human body. The same system operated in different modes can be used for different fundamental applications; a human-amplifier, haptic interface, rehabilitation device and assistive device sharing a portion of the external load with the operator. We have been developing exoskeleton robots for assisting the motion of physically weak individuals such as elderly or slightly disabled in daily life. In this paper, we propose a three degree of freedom (3DOF) exoskeleton robot (W-EXOS) for the forearm pronation/ supination motion, wrist flexion/extension motion and ulnar/radial deviation. The paper describes the wrist anatomy toward the development of the exoskeleton robot, the hardware design of the exoskeleton robot and EMG-based control method. The skin surface electromyographic (EMG) signals of muscles in forearm of the exoskeletons' user and the hand force/forearm torque are used as input information for the controller. By applying the skin surface EMG signals as main input signals to the controller, automatic control of the robot can be realized without manipulating any other equipment. Fuzzy control method has been applied to realize the natural and flexible motion assist. Experiments have been performed to evaluate the proposed exoskeleton robot and its control method.

  1. A human-oriented framework for developing assistive service robots.

    Science.gov (United States)

    McGinn, Conor; Cullinan, Michael F; Culleton, Mark; Kelly, Kevin

    2018-04-01

    Multipurpose robots that can perform a range of useful tasks have the potential to increase the quality of life for many people living with disabilities. Owing to factors such as high system complexity, as-yet unresolved research questions and current technology limitations, there is a need for effective strategies to coordinate the development process. Integrating established methodologies based on human-centred design and universal design, a framework was formulated to coordinate the robot design process over successive iterations of prototype development. An account is given of how the framework was practically applied to the problem of developing a personal service robot. Application of the framework led to the formation of several design goals which addressed a wide range of identified user needs. The resultant prototype solution, which consisted of several component elements, succeeded in demonstrating the performance stipulated by all of the proposed metrics. Application of the framework resulted in the development of a complex prototype that addressed many aspects of the functional and usability requirements of a personal service robot. Following the process led to several important insights which directly benefit the development of subsequent prototypes. Implications for Rehabilitation This research shows how universal design might be used to formulate usability requirements for assistive service robots. A framework is presented that guides the process of designing service robots in a human-centred way. Through practical application of the framework, a prototype robot system that addressed a range of identified user needs was developed.

  2. What does the literature say about using robots on children with disabilities?

    Science.gov (United States)

    Miguel Cruz, Antonio; Ríos Rincón, Adriana María; Rodríguez Dueñas, William Ricardo; Quiroga Torres, Daniel Alejandro; Bohórquez-Heredia, Andrés Felipe

    2017-07-01

    The purpose of this study is to examine the extent and type of robots used for the rehabilitation and education of children and young people with CP and ASD and the associated outcomes. The scholarly literature was systematically searched and analyzed. Articles were included if they reported the results of robots used or intended to be used for the rehabilitation and education of children and young people with CP and ASD during play and educative and social interaction activities. We found 15 robotic systems reported in 34 studies that provided a low level of evidence. The outcomes were mainly for children with ASD interaction and who had a reduction in autistic behaviour, and for CP cognitive development, learning, and play. More research is needed in this area using designs that provide higher validity. A centred design approach is needed for developing new low-cost robots for this population. Implications for rehabilitation In spite of the potential of robots to promote development in children with ASD and CP, the limited available evidence requires researchers to conduct studies with higher validity. The low level of evidence plus the need for specialized technical support should be considered critical factors before making the decision to purchase robots for use in treatment for children with CP and ASD. A user-entered design approach would increase the chances of success for robots to improve functional, learning, and educative outcomes in children with ASD and CP. We recommend that developers use this approach. The participation of interdisciplinary teams in the design, development, and implementation of new robotic systems is of extra value. We recommend the design and development of low-cost robotic systems to make robots more affordable.

  3. Novel compliant actuator for wearable robotics applications.

    Science.gov (United States)

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.

  4. [Robotics in pediatric surgery].

    Science.gov (United States)

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  5. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  6. Advances in robot kinematics

    CERN Document Server

    Khatib, Oussama

    2014-01-01

    The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to overconstrained.  The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.

  7. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  8. Feasibility of using a humanoid robot to elicit communicational response in children with mild autism

    Science.gov (United States)

    Malik, Norjasween Abdul; Shamsuddin, Syamimi; Yussof, Hanafiah; Azfar Miskam, Mohd; Che Hamid, Aminullah

    2013-12-01

    Research evidences are accumulating with regards to the potential use of robots for the rehabilitation of children with autism. The purpose of this paper is to elaborate on the results of communicational response in two children with autism during interaction with the humanoid robot NAO. Both autistic subjects in this study have been diagnosed with mild autism. Following the outcome from our first pilot study; the aim of this current experiment is to explore the application of NAO robot to engage with a child and further teach about emotions through a game-centered and song-based approach. The experiment procedure involved interaction between humanoid robot NAO with each child through a series of four different modules. The observation items are based on ten items selected and referenced to GARS-2 (Gilliam Autism Rating Scale-second edition) and also input from clinicians and therapists. The results clearly indicated that both of the children showed optimistic response through the interaction. Negative responses such as feeling scared or shying away from the robot were not detected. Two-way communication between the child and robot in real time significantly gives positive impact in the responses towards the robot. To conclude, it is feasible to include robot-based interaction specifically to elicit communicational response as a part of the rehabilitation intervention of children with autism.

  9. Redefining robot based technologies for elderly people assistance: a survey

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2016-01-01

    , learning-speed, efficiency, short and long-term effect, active vs. passive, etc. We do so by showing the most important existing examples, and by taking into account all the possible factors that might help researchers when thinking of developing appropriate technologies for elderly care, as well as......, for their relative assistance personnel. Indeed, while in rehabilitation robotics, a major role is played by the human-machine interface (HMI) used to gather the patient's intent from biological signals, and convert them into control signals for the robotic artefacts, surprisingly, decades of research have not yet...

  10. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  11. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Luis Manuel Vaca Benitez

    2013-01-01

    Full Text Available The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG signals are used.

  12. Rehabilitating torture survivors

    DEFF Research Database (Denmark)

    Sjölund, Bengt H; Kastrup, Marianne; Montgomery, Edith

    2009-01-01

    survivors can be addressed from an evidence base generated both from traumatized and non-traumatized patient populations. Thus, trauma-focused cognitive behavioural therapy and/or eye movement desensitization and reprocessing, as well as interdisciplinary pain rehabilitation, should be components......, in December 2008. The main topics were: the context of torture; mental problems including psychotherapy; internet-based therapy and pharmaco-therapy; chronic pain; social integration and family; and functioning and rehabilitation. Available evidence highlights the importance of an interdisciplinary approach......, "Rehabilitating Torture Survivors", was organized by the Rehabilitation and Research Centre for Torture Victims (a rehabilitation clinic and global knowledge and research centre with government support) in collaboration with the Centre for Transcultural Psychiatry at Rigshospitalet in Copenhagen, Denmark...

  13. Ambivalence in rehabilitation

    DEFF Research Database (Denmark)

    Christensen, Jan; Langberg, Henning; Doherty, Patrick

    2017-01-01

    BACKGROUND: Knowledge about the organization and factors of importance to rehabilitation of veterans with lower limb amputation is sparse. The aim of this study was, therefore, to improve understanding of the influences of "military identity" on the organization of rehabilitation services...... and to investigate those factors influential in achieving successful rehabilitation, including interprofessional collaboration between different sectors involved in the rehabilitation of veterans with lower limb amputations. METHODS: We used a qualitative exploratory design, triangulating interviews and participant...... observation. Data were generated using in-depth semi-structured interviews (n = 6) exploring in-hospital and post-hospital rehabilitation in Danish veterans after unilateral lower limb amputation due to trauma. We conducted four sessions of participant observation, during weekly post...

  14. [Rehabilitation in rheumatology].

    Science.gov (United States)

    Luttosch, F; Baerwald, C

    2010-10-01

    Rehabilitation in rheumatology focuses on prevention of functional disorders of the musculoskeletal system, maintenance of working ability and prevention of care dependency. Drug treatment alone rarely results in long-term remission, therefore rehabilitative measures must be integrated into rheumatic care. Rehabilitative therapy in rheumatology includes physiotherapy, patient education and occupational therapy. Positive effects of physical therapy methods have been proven by various studies. Patient education and occupational therapy are important tools for stabilizing the course of the disease. To maintain positive rehabilitative results patients have to be involved in the selection of treatment measures and should take an active part in the long-term treatment process. Despite proven efficacy of physical measures there is evidence for a lack of utilization of rehabilitative therapy due to increasing cost pressure in the health care system which will further increase over time.

  15. Long-term interventions effects of robotic training on patients after anterior cruciate ligament reconstruction

    OpenAIRE

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Zhou, Yue; Gu, Rui; Ye, Miao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng

    2016-01-01

    [Purpose] The aim of this study was to examine the long-term interventions effects of robot-assisted therapy rehabilitation on functional activity levels after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 8 patients (6 males and 2 females) who received anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy lasting for one month. The Timed Up-and-Go test, 10-Meter Walk test, Functional Reach Test, surface electromyo...

  16. Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke

    Science.gov (United States)

    Masia, L.; Krebs, Hermano Igo; Cappa, P.; Hogan, N.

    2009-01-01

    In 1991, a novel robot named MIT-MANUS was introduced as a test bed to study the potential of using robots to assist in and quantify the neurorehabilitation of motor function. It introduced a new modality of therapy, offering a highly backdrivable experience with a soft and stable feel for the user. MIT-MANUS proved an excellent fit for shoulder and elbow rehabilitation in stroke patients, showing a reduction of impairment in clinical trials with well over 300 stroke patients. The greatest impairment reduction was observed in the group of muscles exercised. This suggests a need for additional robots to rehabilitate other target areas of the body. Previous work has expanded the planar MIT-MANUS to include an antigravity robot for shoulder and elbow, and a wrist robot. In this paper we present the “missing link”: a hand robot. It consists of a single-degree-of-freedom (DOF) mechanism in a novel statorless configuration, which enables rehabilitation of grasping. The system uses the kinematic configuration of a double crank and slider where the members are linked to stator and rotor; a free base motor, i.e., a motor having two rotors that are free to rotate instead of a fixed stator and a single rotatable rotor (dual-rotor statorless motor). A cylindrical structure, made of six panels and driven by the relative rotation of the rotors, is able to increase its radius linearly, moving or guiding the hand of the patients during grasping. This module completes our development of robots for the upper extremity, yielding for the first time a whole-arm rehabilitation experience. In this paper, we will discuss in detail the design and characterization of the device. PMID:20228969

  17. ANDERS: future of concrete bridge deck evaluation and rehabilitation

    Science.gov (United States)

    Gucunski, Nenad; Moon, Franklin

    2011-04-01

    The Automated Nondestructive Evaluation and Rehabilitation System (ANDERS) aims to provide a uniquely comprehensive tool that will transform the manner in which bridge decks are assessed and rehabilitated. It is going to be achieved through: 1) much higher evaluation detail and comprehensiveness of detection at an early stage deterioration, 2) comprehensive condition and structural assessment at all stages of deterioration, and 3) integrated assessment and rehabilitation that will be minimally invasive, rapid and cost effective. ANDERS is composed of four systems. that merge novel imaging and NDE techniques, together with novel intervention approaches to arrest the deterioration processes. These technologies are incorporated within a series of human-operated and robotic vehicles. To perform assessments, ANDERS will be equipped with two complimentary nondestructive approaches. The first, Multi-Modal Nondestructive Evaluation (MM-NDE) System aims to identify and characterize localized deterioration with a high degree of resolution. The second, Global Structural Assessment (GSA) System aims to capture global structural characteristics and identify any appreciable effects of deterioration on a bridge structure. Output from these two approaches will be merged through a novel Automated Structural Identification (Auto St-Id) approach that will construct, calibrate, and utilize simulation models to assess overall structural vulnerability and capacity. These three systems comprise the assessment suite of ANDERS and will directly inform the Nondestructive Rehabilitation (NDR) System. The NDR System leverages robotics for the precision and rapid delivery of novel materials capable of halting the early-stage deterioration identified.

  18. Robots with a gentle touch: advances in assistive robotics and prosthetics.

    Science.gov (United States)

    Harwin, W S

    1999-01-01

    As healthcare costs rise and an aging population makes an increased demand on services, so new techniques must be introduced to promote an individuals independence and provide these services. Robots can now be designed so they can alter their dynamic properties changing from stiff to flaccid, or from giving no resistance to movement, to damping any large and sudden movements. This has some strong implications in health care in particular for rehabilitation where a robot must work in conjunction with an individual, and might guiding or assist a persons arm movements, or might be commanded to perform some set of autonomous actions. This paper presents the state-of-the-art of rehabilitation robots with examples from prosthetics, aids for daily living and physiotherapy. In all these situations there is the potential for the interaction to be non-passive with a resulting potential for the human/machine/environment combination to become unstable. To understand this instability we must develop better models of the human motor system and fit these models with realistic parameters. This paper concludes with a discussion of this problem and overviews some human models that can be used to facilitate the design of the human/machine interfaces.

  19. Functional evaluation and rehabilitation engineering.

    Science.gov (United States)

    Aliverti, Andrea; Frigo, C; Andreoni, G; Baroni, G; Bonarini, A; Cerveri, P; Crivellini, M; Dellaca, R; Ferrigno, G; Galli, M; Pedrocchi, A; Rodano, R; Santambrogio, G C; Tognola, G; Pedotti, A

    2011-01-01

    Life is complex and all about movement, which allows us to interact with the environment and communicate with each other. The human nervous system is capable of performing a simultaneous and integrated control of 100-150 mechanical degrees of freedom of movement in the body via tensions generated by about 700 muscles. In its widest context, movement is carried out by a sensory motor system comprising multiple sensors (visual,auditory, and proprioceptive),multiple actuators (muscles acting on the skeletal system),and an intermediary processor that can be summarized as a multiple-input–multiple-output nonlinear dynamic time-varying control system. This grand control system is capable of responding with remarkable accuracy,speed, appropriateness,versatility, and adaptability to a wide spectrum of continuous and discrete stimuli and conditions and is certainly orders of magnitude more complex and sophisticated than the most advanced robotic systems currently available. In the last decades,a great deal of research has been carried out in the fields of functional evaluation of human performance and rehabilitation engineering. These fields combine knowledge, concepts, and methods from across many disciplines (e.g., biomechanics,neuroscience, and physiology), with the aim of developing apparatuses and methods fort he measurement and analysis of complex sensory motor performance and the ultimate goal of enhancing the execution of different tasks in both healthy people and persons with reduced capabilities from different causes (injury, disease, amputation,and neural degeneration).

  20. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke : Preliminary results on feasibility and potential clinical impact

    NARCIS (Netherlands)

    Prange, G.B.; Radder, Bob; Kottink, Anke I.R.; Melendez-Calderon, Alejandro; Buurke, Jaap H.; Rietman, Johan S.

    2017-01-01

    Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a

  1. Non-manufacturing applications of robotics

    International Nuclear Information System (INIS)

    Dauchez, P.

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  2. Evolution of robotic arms.

    Science.gov (United States)

    Moran, Michael E

    2007-01-01

    The foundation of surgical robotics is in the development of the robotic arm. This is a thorough review of the literature on the nature and development of this device with emphasis on surgical applications. We have reviewed the published literature and classified robotic arms by their application: show, industrial application, medical application, etc. There is a definite trend in the manufacture of robotic arms toward more dextrous devices, more degrees-of-freedom, and capabilities beyond the human arm. da Vinci designed the first sophisticated robotic arm in 1495 with four degrees-of-freedom and an analog on-board controller supplying power and programmability. von Kemplen's chess-playing automaton left arm was quite sophisticated. Unimate introduced the first industrial robotic arm in 1961, it has subsequently evolved into the PUMA arm. In 1963 the Rancho arm was designed; Minsky's Tentacle arm appeared in 1968, Scheinman's Stanford arm in 1969, and MIT's Silver arm in 1974. Aird became the first cyborg human with a robotic arm in 1993. In 2000 Miguel Nicolalis redefined possible man-machine capacity in his work on cerebral implantation in owl-monkeys directly interfacing with robotic arms both locally and at a distance. The robotic arm is the end-effector of robotic systems and currently is the hallmark feature of the da Vinci Surgical System making its entrance into surgical application. But, despite the potential advantages of this computer-controlled master-slave system, robotic arms have definite limitations. Ongoing work in robotics has many potential solutions to the drawbacks of current robotic surgical systems.

  3. Is Ethics of Robotics about Robots? Philosophy of Robotics Beyond Realism and Individualilsm.

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2011-01-01

    If we are doing ethics of robotics, what exactly is the object of our inquiry? This paper challenges 'individualist' robot ontology and 'individualist' social philosophy of robots. It is argued that ethics of robotics should not study and evaluate robotics exclusively in terms of individual

  4. Humanlike Robots - The Upcoming Revolution in Robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  5. Humanlike robots: the upcoming revolution in robotics

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2009-08-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  6. The ARAMIS project: a concept robot and technical design.

    Science.gov (United States)

    Colizzi, Lucio; Lidonnici, Antonio; Pignolo, Loris

    2009-11-01

    To describe the ARAMIS (Automatic Recovery Arm Motility Integrated System) project, a concept robot applicable in the neuro-rehabilitation of the paretic upper limb after stroke. Methods, results and conclusion: The rationale and engineering of a state-of-the-art, hardware/software integrated robot system, its mechanics, ergonomics, electric/electronics features providing control, safety and suitability of use are described. An ARAMIS prototype has been built and is now available for clinical tests. It allows the therapist to design neuro-rehabilitative (synchronous or asynchronous) training protocols in which sample exercises are generated by a single exoskeleton (operated by the patient's unaffected arm or by the therapist's arm) and mirrored in real-time or offline by the exoskeleton supporting the paretic arm.

  7. Robotic devices for nuclear plant

    Energy Technology Data Exchange (ETDEWEB)

    Abel, E

    1986-05-01

    The article surveys the background of nuclear remote handling and its associated technology, robotics. Manipulators, robots, robot applications, extending the range of applications, and future developments, are all discussed.

  8. Evolutionary robotics – A review

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    a need for a technique by which the robot is able to acquire new behaviours automatically .... Evolutionary robotics is a comparatively new field of robotics research, which seems to ..... Technical Report: PCIA-94-04, Institute of Psychology,.

  9. 77 FR 21547 - Proposed Priorities; Disability and Rehabilitation Research Projects and Centers Program

    Science.gov (United States)

    2012-04-10

    ... recreational technologies that need to be tested for use by individuals with disabilities. For example, virtual reality (VR) and body movement tracking video-game technologies offer an emerging and highly promising...). Currently, therapy robots are found only in large medical and rehabilitation centers. There is a need to...

  10. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  11. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  12. Robot-laser system

    International Nuclear Information System (INIS)

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  13. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  14. Robotic surgery update.

    Science.gov (United States)

    Jacobsen, G; Elli, F; Horgan, S

    2004-08-01

    Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.

  15. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  16. Fundamentals of soft robot locomotion

    OpenAIRE

    Calisti, M.; Picardi, G.; Laschi, C.

    2017-01-01

    Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human���robot interaction and locomotion. Although field applications have emerged for soft manipulation and human���robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This p...

  17. Robotic liver surgery

    Science.gov (United States)

    Leung, Universe

    2014-01-01

    Robotic surgery is an evolving technology that has been successfully applied to a number of surgical specialties, but its use in liver surgery has so far been limited. In this review article we discuss the challenges of minimally invasive liver surgery, the pros and cons of robotics, the evolution of medical robots, and the potentials in applying this technology to liver surgery. The current data in the literature are also presented. PMID:25392840

  18. Robotized transcranial magnetic stimulation

    CERN Document Server

    Richter, Lars

    2014-01-01

    Presents new, cutting-edge algorithms for robot/camera calibration, sensor fusion and sensor calibration Explores the main challenges for accurate coil positioning, such as head motion, and outlines how active robotic motion compensation can outperform hand-held solutions Analyzes how a robotized system in medicine can alleviate concerns with a patient's safety, and presents a novel fault-tolerant algorithm (FTA) sensor for system safety

  19. Raspberry Pi robotics projects

    CERN Document Server

    Grimmett, Richard

    2015-01-01

    This book is for enthusiasts who want to use the Raspberry Pi to build complex robotics projects. With the aid of the step-by-step instructions in this book, you can construct complex robotics projects that can move, talk, listen, see, swim, or fly. No previous Raspberry Pi robotics experience is assumed, but even experts will find unexpected and interesting information in this invaluable guide.

  20. Robots as Confederates

    DEFF Research Database (Denmark)

    Fischer, Kerstin

    2016-01-01

    This paper addresses the use of robots in experimental research for the study of human language, human interaction, and human nature. It is argued that robots make excellent confederates that can be completely controlled, yet which engage human participants in interactions that allow us to study...... numerous linguistic and psychological variables in isolation in an ecologically valid way. Robots thus combine the advantages of observational studies and of controlled experimentation....

  1. Robotics in General Surgery

    OpenAIRE

    Wall, James; Chandra, Venita; Krummel, Thomas

    2008-01-01

    In summary, robotics has made a significant contribution to General Surgery in the past 20 years. In its infancy, surgical robotics has seen a shift from early systems that assisted the surgeon to current teleoperator systems that can enhance surgical skills. Telepresence and augmented reality surgery are being realized, while research and development into miniaturization and automation is rapidly moving forward. The future of surgical robotics is bright. Researchers are working to address th...

  2. Application requirements for Robotic Nursing Assistants in hospital environments

    Science.gov (United States)

    Cremer, Sven; Doelling, Kris; Lundberg, Cody L.; McNair, Mike; Shin, Jeongsik; Popa, Dan

    2016-05-01

    In this paper we report on analysis toward identifying design requirements for an Adaptive Robotic Nursing Assistant (ARNA). Specifically, the paper focuses on application requirements for ARNA, envisioned as a mobile assistive robot that can navigate hospital environments to perform chores in roles such as patient sitter and patient walker. The role of a sitter is primarily related to patient observation from a distance, and fetching objects at the patient's request, while a walker provides physical assistance for ambulation and rehabilitation. The robot will be expected to not only understand nurse and patient intent but also close the decision loop by automating several routine tasks. As a result, the robot will be equipped with sensors such as distributed pressure sensitive skins, 3D range sensors, and so on. Modular sensor and actuator hardware configured in the form of several multi-degree-of-freedom manipulators, and a mobile base are expected to be deployed in reconfigurable platforms for physical assistance tasks. Furthermore, adaptive human-machine interfaces are expected to play a key role, as they directly impact the ability of robots to assist nurses in a dynamic and unstructured environment. This paper discusses required tasks for the ARNA robot, as well as sensors and software infrastructure to carry out those tasks in the aspects of technical resource availability, gaps, and needed experimental studies.

  3. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  4. Perspectives of construction robots

    Science.gov (United States)

    Stepanov, M. A.; Gridchin, A. M.

    2018-03-01

    This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.

  5. Robots de servicio

    OpenAIRE

    Aracil, Rafael; Balaguer, Carlos; Armada, Manuel

    2008-01-01

    8 págs, 9 figs. El término Robots de Servicio apareció a finales de los años 80 como una necesidad de desarrollar máquinas y sistemas capaces de trabajar en entornos diferentes a los fabriles. Los Robots de Servicio tenían que poder trabajar en entornos noestructurados, en condiciones ambientales cambiantes y con una estrecha interacción con los humanos. En 1995 fue creado por la IEEE Robotics and Automation Society, el Technical Committee on Service Robots, y este comité definió en el año...

  6. Human-Robot Interaction

    Science.gov (United States)

    Sandor, Aniko; Cross, E. Vincent, II; Chang, Mai Lee

    2015-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces affect the human's ability to perform tasks effectively and efficiently when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. For efficient and effective remote navigation of a rover, a human operator needs to be aware of the robot's environment. However, during teleoperation, operators may get information about the environment only through a robot's front-mounted camera causing a keyhole effect. The keyhole effect reduces situation awareness which may manifest in navigation issues such as higher number of collisions, missing critical aspects of the environment, or reduced speed. One way to compensate for the keyhole effect and the ambiguities operators experience when they teleoperate a robot is adding multiple cameras and including the robot chassis in the camera view. Augmented reality, such as overlays, can also enhance the way a person sees objects in the environment or in camera views by making them more visible. Scenes can be augmented with integrated telemetry, procedures, or map information. Furthermore, the addition of an exocentric (i.e., third-person) field of view from a camera placed in the robot's environment may provide operators with the additional information needed to gain spatial awareness of the robot. Two research studies investigated possible mitigation approaches to address the keyhole effect: 1) combining the inclusion of the robot chassis in the camera view with augmented reality overlays, and 2) modifying the camera

  7. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  8. Robotic assisted laparoscopic colectomy.

    LENUS (Irish Health Repository)

    Pandalai, S

    2010-06-01

    Robotic surgery has evolved over the last decade to compensate for limitations in human dexterity. It avoids the need for a trained assistant while decreasing error rates such as perforations. The nature of the robotic assistance varies from voice activated camera control to more elaborate telerobotic systems such as the Zeus and the Da Vinci where the surgeon controls the robotic arms using a console. Herein, we report the first series of robotic assisted colectomies in Ireland using a voice activated camera control system.

  9. Autonomous military robotics

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This SpringerBrief reveals the latest techniques in computer vision and machine learning on robots that are designed as accurate and efficient military snipers. Militaries around the world are investigating this technology to simplify the time, cost and safety measures necessary for training human snipers. These robots are developed by combining crucial aspects of computer science research areas including image processing, robotic kinematics and learning algorithms. The authors explain how a new humanoid robot, the iCub, uses high-speed cameras and computer vision algorithms to track the objec

  10. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  11. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  12. Increasing Robotic Science Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal objectives are to demonstrate robotic-based scientific investigations and resource prospecting, and develop and demonstrate modular science instrument...

  13. DSLs in robotics

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Bordignon, Mirko; Stoy, Kasper

    2017-01-01

    Robotic systems blend hardware and software in a holistic way that intrinsically raises many crosscutting concerns such as concurrency, uncertainty, and time constraints. These concerns make programming robotic systems challenging as expertise from multiple domains needs to be integrated...... conceptually and technically. Programming languages play a central role in providing a higher level of abstraction. This briefing presents a case study on the evolution of domain-specific languages based on modular robotics. The case study on the evolution of domain-specific languages is based on a series...... of DSL prototypes developed over five years for the domain of modular, self-reconfigurable robots....

  14. Rehabilitation of gait after stroke: a review towards a top-down approach

    Science.gov (United States)

    2011-01-01

    This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity. The methods reviewed comprise classical gait rehabilitation techniques (neurophysiological and motor learning approaches), functional electrical stimulation (FES), robotic devices, and brain-computer interfaces (BCI). From the analysis of these approaches, we can draw the following conclusions. Regarding classical rehabilitation techniques, there is insufficient evidence to state that a particular approach is more effective in promoting gait recovery than other. Combination of different rehabilitation strategies seems to be more effective than over-ground gait training alone. Robotic devices need further research to show their suitability for walking training and their effects on over-ground gait. The use of FES combined with different walking retraining strategies has shown to result in improvements in hemiplegic gait. Reports on non-invasive BCIs for stroke recovery are limited to the rehabilitation of upper limbs; however, some works suggest that there might be a common mechanism which influences upper and lower limb recovery simultaneously, independently of the limb chosen for the rehabilitation therapy. Functional near infrared spectroscopy (fNIRS) enables researchers to detect signals from specific regions of the cortex during performance of motor activities for the development of future BCIs. Future research would make possible to analyze the impact of rehabilitation on brain plasticity, in order to adapt treatment resources to meet the needs of each patient and to optimize the recovery process. PMID:22165907

  15. Rehabilitation of gait after stroke: a review towards a top-down approach

    Directory of Open Access Journals (Sweden)

    Belda-Lois Juan-Manuel

    2011-12-01

    Full Text Available Abstract This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity. The methods reviewed comprise classical gait rehabilitation techniques (neurophysiological and motor learning approaches, functional electrical stimulation (FES, robotic devices, and brain-computer interfaces (BCI. From the analysis of these approaches, we can draw the following conclusions. Regarding classical rehabilitation techniques, there is insufficient evidence to state that a particular approach is more effective in promoting gait recovery than other. Combination of different rehabilitation strategies seems to be more effective than over-ground gait training alone. Robotic devices need further research to show their suitability for walking training and their effects on over-ground gait. The use of FES combined with different walking retraining strategies has shown to result in improvements in hemiplegic gait. Reports on non-invasive BCIs for stroke recovery are limited to the rehabilitation of upper limbs; however, some works suggest that there might be a common mechanism which influences upper and lower limb recovery simultaneously, independently of the limb chosen for the rehabilitation therapy. Functional near infrared spectroscopy (fNIRS enables researchers to detect signals from specific regions of the cortex during performance of motor activities for the development of future BCIs. Future research would make possible to analyze the impact of rehabilitation on brain plasticity, in order to adapt treatment resources to meet the needs of each patient and to optimize the recovery process.

  16. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... of Spinal Cord Injury Rehabilitation Kristine Cichowski, MS Occupational Therapy after Spinal Cord Injury Katie Powell, OT ... does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  17. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children ...

  18. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Rehabilitation Institute of Chicago play_arrow What's the most important thing for families to know right away? ... a spinal cord injury? play_arrow How do most patients learn the nature of their spinal cord ...

  19. Rehabilitation in Managing MS

    Science.gov (United States)

    ... at home and in the office. They recommend strategic modifications to the home and workplace to ensure accessibility, safety and convenience. Occupational therapists also evaluate and treat problems with thinking and memory . Cognitive rehabilitation Neuropsychologists — as well as ...

  20. Post-Stroke Rehabilitation

    Science.gov (United States)

    ... language has been compromised. There is a strong consensus among rehabilitation experts that the most important element ... the brain are damaged, causing the transmission of false signals that result in the sensation of pain ...