WorldWideScience

Sample records for regulations combustible liquids

  1. 75 FR 17111 - Hazardous Materials Regulations: Combustible Liquids

    Science.gov (United States)

    2010-04-05

    ... materials, and require a shipper to communicate the material's hazards through use of shipping papers... reclassification of materials that meet the definition of a hazardous substance or hazardous waste and, thus, meet... which the liquid will continue to burn after ignition) greater than 100 C (212 F); and liquids with a...

  2. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  3. Regulation possibilities of biomass combustion

    Science.gov (United States)

    Suzdalenko, Vera; Gedrovics, Martins; Zake, Maija; Barmina, Inesa

    2012-11-01

    The focus of the recent experimental research is to analyze the regulation possibilities of biomass combustion. Three possibilities were chosen as part of this research: a) biomass cofiring with propane, b) swirling flow with re-circulation zone, and c) use of a permanent magnet. The aim of the research is to provide stable, controllable and effective biomass combustion with minimum emissions. The special pilot device was created where biomass can be combusted separately and co-fired with propane. Wood pellets were used during the experiments.

  4. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  5. Liquid Metal Fuel Combustion Mechanics

    Science.gov (United States)

    1990-12-01

    Mechanics. No such analysis seem to have been done todate . The other way is to calculate the fluid Finally the location of the liquid particles within the...3601, July about 10 axial locations before peaking up . At about y=25, the 1987. 5 3. L.P.Cook and E.R.Plante: Survey of alternate Stored Chemical

  6. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  7. 30 CFR 57.4462 - Storage of combustible liquids underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage of combustible liquids underground. 57... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES... combustible liquids underground. The requirements of this standard apply to underground areas only. (a...

  8. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  9. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  10. Fluidized bed combustion of pesticide-manufacture liquid wastes

    Directory of Open Access Journals (Sweden)

    SAŠA MILETIĆ

    2010-04-01

    Full Text Available Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63–1.25 mm in diameter and 2610 kg/m3 in density at 800–950 °C. To ensure complete combustion of liquid waste and additional fuel, the combustion chamber was supplied with excess air and the U/UmF (at ambient temperature was in between 1.1 and 2.3. In the fluidized bed chamber, liquid waste, additional liquid fuel and air can be brought into intense contact sufficient to permit combustion in bed without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The results of the combustion tests showed that degradation of liquid wastes can be successfully realized in a fluidized bed with no harmful gaseous emissions by ensuring that the temperatures of both the bed and the freeboard are not lower than 900 °C.

  11. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    Science.gov (United States)

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  12. Experimental Study of Liquid Fuel Spray Combustion

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree

    from cavitating and non-cavitating large bore injectors. The injectors have been specifically machined to isolate the effects of in-nozzle cavitation on the resulting spray and combusting characteristics. Experiments were carried out in an optically accessible constant volume combustion vessel......This PhD dissertation was carried out at the Technical University of Denmark in the Department of Mechanical Engineering and has been supervised by Associate Professor Anders Ivarsson and co-supervised by Professor Jesper Schramm. The project has been a part of the RADIADE project funded...... for camera non-idealities and postprocessing methods have been developed and refined in this work to measure the optical thickness of the soot in the transient spray flames as accurately as possible. The soot cloud from these wide bore injectors was so optically thick that it appeared opaque to the camera...

  13. Liquidity regulation and bank behavior

    NARCIS (Netherlands)

    Bonner, C.

    2014-01-01

    In response to the 2007-08 financial crisis, the Basel Committee on Banking Supervision proposed two liquidity standards to reinforce banks’ resilience to liquidity risks. The purpose of this thesis is to analyze the impact of liquidity regulation on bank behavior. The first of four main chapters

  14. Liquidity regulation and bank behavior

    NARCIS (Netherlands)

    Bonner, C.

    2014-01-01

    In response to the 2007-08 financial crisis, the Basel Committee on Banking Supervision proposed two liquidity standards to reinforce banks’ resilience to liquidity risks. The purpose of this thesis is to analyze the impact of liquidity regulation on bank behavior. The first of four main chapters an

  15. Liquid butane fuel injection for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, R.L.; Brunges, V.E.; Bisel, H.I.

    1991-07-30

    This patent describes an internal combustion engine powered by a fuel of liquefied petroleum gas. It comprises at least one cylinder head which includes an intake port region communicating with a combustion chamber through an intake valve; a fuel injection rail including at least one fuel injector, all injectors operably connected to all intake port regions with one intake region connected to one injector whereby fuel may be injected into the intake regions; a conduit connecting the container to the injection rail; means for pumping the fuel from the injection rail and maintaining the fuel at a temperature below a temperature value and pressure above a pressure value required to sustain the fuel in a liquid state whereby the fuel in the liquid state is transferred from the storage container to the rail.

  16. Combustion of liquid fuels floating on water

    Directory of Open Access Journals (Sweden)

    Garo Jean-Pierre

    2007-01-01

    Full Text Available The research presented consists of a study of the burning characteristics of a liquid fuel floating on water with emphasis in the phenomena known as boilover. The problem is of technical interest in the petro-chemical industry, particularly from the point of view of pollution and fires resulting from accidental liquid fuel spills in open water. Testing with multicomponent fuels gives information's about events that can occur in a practical situation, while testing with single component fuels permits obtaining fundamental information about the problem. It evidences the major effects caused by the transfer of heat from the fuel to the water underneath. One of these effects is the disruptive burning of the fuel known as boilover, that is caused by the water boiling and splashing, and results in a sharp increase in burning rate and often in the explosive burning of the fuel. It is shown that this event is caused by the onset of water boiling nucleation at the fuel/water interface and that it occurs at an approximate constant temperature that is above the saturation temperature of the water (water is superheated. These measurements conducted in two laboratories, address the major issues of the process by analyzing the effect of the variation of the parameters of the problem (initial fuel-layer thickness, pool diameter, and fuel type, on the burning rate, time to start of boilover, pre-boilover mass ratio, and boilover intensity. Finally, two types of modeling are proposed to describe the heat transfer in fuel and water phases: one simple for practical purposes, the other, more elaborated and transient, taking particularly into consideration the radiation in depth.

  17. Liquid rocket combustion instability analysis by CFD methods

    Science.gov (United States)

    Grenda, J. M.; Venkateswaran, S.; Merkle, C. L.

    1991-01-01

    Combustion instability in liquid rocket engines is simulated computationally by using a simple two-parameter model for the combustion response function. The objectives of the study are to assess the capabilities of CFD algorithms for instability studies and to investigate the response to parametric effects such as bombs and distributed combustion. Results indicate that numerical solutions of high accuracy can be obtained if a sufficient number of grid points are used per wavelength of the disturbance. The short-term response to bombs or pulses triggers a large number of modes in the combustor whose faithful resolution requires highly dense grids, although there is evidence that correct long-term solutions can be obtained even if all the short-term frequencies are not resolved. Long-term responses to pulses are shown to decay to the most unstable mode in small amplitude cases, and to exhibit limit cycles in large amplitude cases. Comparison of distributed with concentrated heat release indicates the former is more stable for given values of the combustion response parameters, and that the distributed heat release gives rise to higher frequency disturbances. Wave steepening is observed in the solutions, but its effect is less pronounced in multidimensional waves than in one-dimensional waves.

  18. Combustion and Performance Analyses of Coaxial Element Injectors with Liquid Oxygen/Liquid Methane Propellants

    Science.gov (United States)

    Hulka, J. R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations. This paper summarizes the analyses of combustion and performance as a follow-up to a paper published in the 2008 JANNAF/LPS meeting. Combustion stability analyses are presented in a separate paper. The current paper includes test and analysis results of coaxial element injectors using liquid oxygen and liquid methane or gaseous methane propellants. Several thrust chamber configurations have been modeled, including thrust chambers with multi-element swirl coax element injectors tested at the NASA MSFC, and a uni-element chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods

  19. Combustion of animal or vegetable based liquid waste products; Foerbraenning av flytande animaliska/vegetabiliska restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energikonsult AB, Stockholm (Sweden)

    2002-04-01

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  20. Combustion and environment. A regulation in full evolution; Combustion et environnement. Une reglementation en pleine evolution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper is a reprint of an article published in `Energie Plus` magazine which gives a synthesis of the different topics discussed during the conference. Two aspects are discussed: the energy regulations and the environmental regulations. The energy regulations concern the energy efficiency required for central heating plants of small (40 kW < P < 400 kW), medium and large (400 kW < P < 50 MW) size and the periodical control of these installations. The environmental regulations concern the combustion systems with a power comprised between 2 and 20 MW (design and siting, operation and maintenance, water effluents, atmospheric effluents), the turbines and engines with a power of 20 to 50 MW, and the big installations of combustion (P > 50 MW). The principal motivation of these regulations is the abatement of ecosystems acidification. (J.S.)

  1. Chemical Looping Combustion with Different Types of Liquid Fuels Combustion en boucle chimique avec différentes charges liquides

    Directory of Open Access Journals (Sweden)

    Hoteit A.

    2011-02-01

    Full Text Available CLC is a new promising combustion process for CO2 capture with less or even no energy penalty compared to other processes. Up to now, most of the work performed on CLC was conducted with gaseous or solid fuels, using methane and coal and/or pet coke. Liquid fuels such as heavy fuels resulting from oil distillation or conversion may also be interesting feedstocks to consider. However, liquid fuels are challenging feedstock to deal with in fluidized beds. The objective of the present work is therefore to investigate the feasibility of liquid feed injection and contact with oxygen carrier in CLC conditions in order to conduct partial or complete combustion of hydrocarbons. A batch experimental fluidized bed set-up was developed to contact alternatively oxygen carrier with liquid fuels or air. The 20 mm i.d. fluidized bed reactor was filled up with 45 g of NiAl0.44O1.67 and pulses of 1-2 g of liquid were injected in the bed at high temperatures up to 950˚C. Different feedstocks have been injected, from dodecane to heavy fuel oils No.2. Results show that, during the reduction period, it is possible to convert all the fuel injected and there is no coke remaining on particles at the end of the reduction step. Depending upon oxygen available in the bed, either full combustion or partial combustion can be achieved. Similar results were found with different liquid feeds, despite their different composition and properties. Le CLC est un nouveau concept prometteur appliqué à la combustion qui permet le captage de CO en minimisant la pénalité énergétique liée au captage. Jusqu’à présent, l’essentiel des travaux de recherche dans le domaine du CLC concerne les charges gazeuses (méthane et solides (charbon et coke. Les charges liquides, et particulièrement les résidus pétroliers, sont des charges également intéressantes à considérer a priori. La mise en oeuvre de ces charges en lit fluidisé est cependant délicate. L’objet de ce

  2. Procedure Development to Determine the Heat of Combustion of an Energetic Liquid by Bomb Calorimetry

    Science.gov (United States)

    2015-01-01

    ENERGETIC LIQUID BY BOMB CALORIMETRY Peggy Sanchez Kimberly Griswold January 2015 Approved for public...2014 4. TITLE AND SUBTITLE PROCEDURE DEVELOPMENT TO DETERMINE THE HEAT OF COMBUSTION OF AN ENERGETIC LIQUID BY BOMB CALORIMETRY 5a. CONTRACT...experimentally determining the heat of formation of a liquid by bomb calorimetry can be challenging. Running the liquid pooled in the sample well leads to

  3. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    Science.gov (United States)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  4. Research of Boiler Combustion Regulation for Reducing Nox Emission and its Effect on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-dong; LUAN Tao; CHENG Lin; XIAO Kun

    2007-01-01

    The effect of boiler combustion regulation on Nox emission of two 1025t/h boilers has been studied. The researches show that Nox emission is influenced by coal species, operation conditions, etc, and can be reduced by regulating the combustion conditions. The effect of combustion regulation on boiler efficiency has also been checked.

  5. Combustion Stability Analyses of Coaxial Element Injectors with Liquid Oxygen/Liquid Methane Propellants

    Science.gov (United States)

    Hulka, J. R.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion stability analyses of several of the configurations. This paper presents test data and analyses of combustion stability from the recent PCAD-funded test programs at the NASA MSFC. These test programs used swirl coaxial element injectors with liquid oxygen and liquid methane propellants. Oxygen was injected conventionally in the center of the coaxial element, and swirl was provided by tangential entry slots. Injectors with 28-element and 40-element patterns were tested with several configurations of combustion chambers, including ablative and calorimeter spool sections, and several configurations of fuel injection design. Low frequency combustion instability (chug) occurred with both injectors, and high-frequency combustion instability occurred at the first tangential (1T) transverse mode with the 40-element injector. In most tests, a transition between high-amplitude chug with gaseous methane flow and low-amplitude chug with liquid methane flow was readily observed. Chug analyses of both conditions were conducted using techniques from Wenzel and Szuch and from the Rocket Combustor Interactive Design and Analysis (ROCCID) code. The 1T mode instability occurred in several tests and was apparent by high-frequency pressure measurements as well as dramatic increases in calorimeter-measured heat flux

  6. Radiative and combustion properties of nanoparticle-laden liquids

    Science.gov (United States)

    Tyagi, Himanshu

    Key processes in energy conversion systems are radiative transport and combustion. The general objective of this dissertation is to improve energy conversion efficiency by a fundamental investigation of how nanoparticle-laden liquid suspensions, generally termed nanofluids, can be used to either enhance radiative absorption in solar thermal energy systems, or to improve the combustion properties of liquid fuels. The present study theoretically investigates the feasibility of using a non-concentrating direct absorption solar collector (DAC) and compares its performance with that of a typical flat-plate collector. Here a nanofluid - a mixture of water and aluminum nanoparticles - is used as the absorbing medium. It was observed that the presence of nanoparticles increases the absorption of incident radiation by more than 9 times over that of pure water. Under similar operating conditions, the efficiency of a DAC using nanofluid as the working fluid is found to be up to 10 percent higher (on an absolute basis) than that of a flat-plate collector. This study also attempts to improve the ignition properties of diesel fuel by investigating the influence of adding aluminum and aluminum-oxide nanoparticles to diesel. As part of this study, droplet ignition experiments were carried out atop a heated hot plate over the range of 688 to 768 degrees centigrade. Different types of fuel mixtures were used; both particle size (15 nm and 50 nm) as well as the volume fraction (0, 0.1 and 0.5 percent) of nanoparticles added to diesel were varied. It was observed that the ignition probability for the fuel mixtures which contained nanoparticles was significantly higher than that of pure diesel. Finally, the concept of using solar energy for converting biomass into useful product-gases was explored. A molten salt mixture (containing nanoparticles) was used to absorb and transfer solar energy to the biomass. Under the highest amount of solar radiation (60 times the normal solar radiation

  7. New combustion, environment regulations: the answers for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France)

    1997-12-31

    This paper reports on the point of view from Gaz de France (GdF) company concerning the potential consequences of the use of natural gas in combustion systems with respect to the new regulations about combustion and environment. Details concerning the measures relative to the limitation of pollutants in small combustion installations (2 - 20 MW) are given (chimney height, SO{sub x}, NO{sub x} and dusts content in exhaust gases). (J.S.)

  8. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground transformer stations, combustible... and Control Firefighting Equipment § 57.4262 Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. Transformer stations,...

  9. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  10. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  11. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    Science.gov (United States)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  12. Simulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion

    Directory of Open Access Journals (Sweden)

    G.B. Arivazhagan

    2015-03-01

    Full Text Available With latest improvements in MEMS, combustion based Micro-Power generation devices are seen as alternatives for conventional batteries because of the high energy densities of Hydrogen and other hydrocarbon fuels. An important feature of micro-power system is to utilize the combustion of fuel or propellant in the micro-burner to produce the gas with high temperature and high pressure to drive turbines or other power units, which convert chemical into energy directly or indirectly other forms of energy, for example heat or power. We have concentrated on the usage of Micro combustion as a substitute for conventional batteries .In our study, a Micro Combustor of 1mm x 10mm is taken for Numerical Study. Combustion characteristics of N Pentane-Air mixture in a planar micro-channel is studied numerically. We have performed the liquid fuel combustion of n-Pentane and air to study the effects of liquid fuel combustion in a micro channel. The effect of axial velocity inlet, on exhaust gas temperature and Hydrogen Peroxide addition on exhaust gas concentration was analyzed respectively. We also investigated numerically the combustion characteristics under different conditions such as by varying the DPM, Number of Fuel Streams, and Spray Angle and so on. For this numerical analysis, an experimental model is considered as reference, and the geometry and the boundary conditions are taken from it for the purpose of simulation. In this study, n-Pentane is introduced as liquid droplets at the centerline and the liquid combustion is simulated numerically.

  13. Formation of Liquid Products at the Filtration Combustion of Solid Fuels

    Directory of Open Access Journals (Sweden)

    E. A. Salgansky

    2016-01-01

    Full Text Available Yields of liquid and gaseous products of the filtration combustion of cellulose, wood, peat, coal, and rubber have been investigated. Experiments have shown that the gasification of solid fuels in the regime with superadiabatic heating yields liquid hydrocarbons with quantity and quality, which are close to those produced using other methods, for example, by pyrolysis. But in this case no additional energy supply is needed to carry out the gasification process. The low calorific combustible gas, which forms in this process, contains a substantial quantity of carbon monoxide and hydrogen, which are components of syngas.

  14. Progress in the development of combustion kinetics databases for liquid fuels

    Directory of Open Access Journals (Sweden)

    Wing Tsang

    2006-01-01

    Full Text Available This paper describes the present situation regarding chemical kinetic databases for the simulation of the combustion of liquid fuels. Past work in the area is summarized. Much is known about the reactions of the smaller fragments from combustion processes. In order to describe real liquid fuels there is the need for an understanding of how the larger organic fuels are broken down to these fragments. The type of reactions that need to be considered are described and the breakdown of heptane is used as an example.

  15. Means of regulating combustible materials and products in external walls

    Directory of Open Access Journals (Sweden)

    Mikkola Esko

    2016-01-01

    Full Text Available This report presents proposals for defining means of regulating the use of combustible materials and products in external walls. Required protections are based on the quantities of fire loads and their contribution to fire development. The study is based on life safety and protection of property priorities taking into account reaction to fire classes related to different types of fire loads and fire compartmentation requirements of the adjacent spaces of concern. The proposals include the following main principles in relation to fire-separation requirements: In case of internal fire exposure the protective structure for combustible building parts needs to meet at least half of the fire-separating requirement for the compartment of concern. In case of external fire exposure the protection time requirement can be 15 minutes less than for the internal protection. The proposals are applicable for residential buildings and offices. In case of buildings with longer evacuation times more stringent requirement levels may be considered. For verification of protection performance of fire loads it is proposed to use existing standardized test methods (fire protection ability (K classes and fire-separating function (EI classes validated methods of calculation and/or large scale fire testing.

  16. New regulations, combustion, environment: responses for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France). Direction Commerciale

    1997-12-31

    The impacts of the new French regulations concerning low- to medium-power combustion equipment with regards to their energy sources, energy efficiency and pollution control, on natural gas fired boilers, are discussed: lower pollutant emission limits are set for SO{sub 2}, NO{sub x} and ashes. The decree gives new regulations concerning plant location, combustion control systems, plant monitoring and maintenance, and air pollution control measures such as chimney stack height and emission limits. The French national gas utility promotes environmental high performance boilers

  17. Visualization of Gas-to-Liquid (GTL) Fuel Liquid Length and Soot Formation in the Constant Volume Combustion Chamber

    Science.gov (United States)

    Azimov, Ulugbek; Kim, Ki-Seong

    In this research, GTL spray combustion was visualized in an optically accessible quiescent constant-volume combustion chamber. The results were compared with the spray combustion of diesel fuel. Fast-speed photography with direct laser sheet illumination was used to determine the fuel liquid-phase length, and shadowgraph photography was used to determine the distribution of the sooting area in the fuel jet. The results showed that the fuel liquid-phase length of GTL fuel jets stabilized at about 20-22mm from the injector orifice and mainly depended on the ambient gas temperature and fuel volatility. GTL had a slightly shorter liquid length than that of the diesel fuel. This tendency was also maintained when multiple injection strategy was applied. The penetration of the tip of the liquid-phase fuel during pilot injection was a little shorter than the penetration during main injection. The liquid lengths during single and main injections were identical. In the case of soot formation, the results showed that soot formation was mainly affected by air-fuel mixing, and had very weak dependence on fuel volatility.

  18. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    Science.gov (United States)

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  19. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    Science.gov (United States)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  20. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    Science.gov (United States)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  1. Singularity of a combustion wave profile: a clue to the multi-component theory for liquid-gas filtration combustion

    CERN Document Server

    Kokubun, Max Endo

    2016-01-01

    We study a nonlinear wave for a system of balance laws in one space dimension, which describes combustion for two-phase (gas and liquid) flow in porous medium. The problem is formulated for a general $N$-component liquid for modeling the strong multi-component effects reported recently for an application to light oil recovery by air injection. Despite the immense complexity of the model, the problem allows analytic solution. The clue to this solution is a special form of a folding singularity, which occurs at an internal point of the wave profile. Analysis of this singularity provides a missing determining relation for wave parameters. This result is not only interesting for the application under consideration, but also motivates a deeper mathematical study of such singularities for general systems of balance laws.

  2. Precision Adjustable Liquid Regulator (ALR)

    Science.gov (United States)

    Meinhold, R.; Parker, M.

    2004-10-01

    A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi

  3. Analysis of Hydrodynamic (Landau) Instability in Liquid-Propellant Combustion at Normal and Reduced Gravity

    Science.gov (United States)

    Margolis, Stephen B.

    1997-01-01

    The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, the gas flame occurs under near-breakaway conditions, exerting little thermal or hydrodynamic influence on the burning propellant. In another such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Finally, the liquid propellant may simply undergo exothermic decomposition at the surface without any significant distributed combustion, such as appears to occur in some types of HydroxylAmmonium Nitrate (HAN)-based liquid propellants at low pressures. Such limiting models have recently been formulated,thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. Indeed, the inverse Froude number, representing the ratio of buoyant to inertial forces, appears explicitly in all of these models, and consequently, in the dispersion relation that determines the neutral stability boundaries beyond

  4. Domestic wood combustion - practices, attitudes and regulation; Braendefyring i hjemmet - praksis, holdninger og regulering

    Energy Technology Data Exchange (ETDEWEB)

    Kjerulf Petersen, L.; Martinsen, L.

    2008-06-15

    Use of wood burning stoves for domestic heating is the subject of this report which is based on results from an interview study and a survey. The report is concerned with why people have and use stoves, how they use them and which functions the stoves serve in their homes. Of equal interest are the attitudes of users as well as non-users to environmental consequences of wood combustion and to different forms of regulation. There can be several reasons for having and using a wood burning stove for domestic heating. The main reason seems to be the sense of homeliness and cosiness and calm that it gives to the home, and the second most important reason is the economic advantages it implies in terms of reducing heating expenses. Enjoyment of the particular quality of warmth that stoves can provide and a desire to obtain higher indoor temperature are important additional motivations, while self determination in household heating supply runs through all these motivations as an underlying incentive. Potential environmental problems from domestic wood combustion depend on the properties of the stove, on the quality of the fuel, and on air intake and other aspects of the combustion process; and practices of stove users play an important role in all this. For stove users there are both sensuous experiences and social norms - e.g. regarding use of damp wood or any other type of fuel than pure wood - that support an environmentally appropriate practice. However, this study shows that even though users are inclined to follow environmentally sound practices for wood combustion other considerations in everyday life may be more important; considerations regarding what kind of effort one has time and energy for, what is practically feasible, what one can be bothered to consider, and what level of thermal comfort one wants. Almost half of the respondents, users and non-users alike, are to some extend - from slightly to extremely - bothered by smoke from wood combustion, and around

  5. Euler-Euler granular flow model of liquid fuels combustion in a fluidized reactor

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2015-01-01

    Full Text Available The paper deals with the numerical simulation of liquid fuel combustion in a fluidized reactor using a two-fluid Eulerian-Eulerian fluidized bed modeling incorporating the kinetic theory of granular flow (KTGF to gas and solid phase flow prediction. The comprehensive model of the complex processes in fluidized combustion chamber incorporates, besides gas and particular phase velocity fields’ prediction, also the energy equations for gas and solid phase and the transport equations of chemical species conservation with the source terms due to the conversion of chemical components. Numerical experiments show that the coefficients in the model of inter-phase interaction drag force have a significant effect, and they have to be adjusted for each regime of fluidization. A series of numerical experiments was performed with combustion of the liquid fuels in fluidized bed (FB, with and without significant water content. The given estimations are related to the unsteady state, and the modeled time period corresponds to flow passing time throw reactor column. The numerical experiments were conducted to examine the impact of the water content in a liquid fuel on global FB combustion kinetics.

  6. Sprinkler and water spray techniques in fires of combustible liquids. Sprinkleritekniikka nestepaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.

    1986-08-15

    The purpose of this review is to find out what is known scientifically about extinguishment and control of fires in combustible liquids by sprinkler and water spray techniques. Because no review on combustion is available in Finnish, the first part of the study deals extensively with principles and the most important parameters of combustion of liquids in different geometries. The theory of flames based on diffusion equations is outlined both for laminar and turbulent flow. Then the application of these theories on pool fire and droplet burning are described. The theoretical extinction criteria were studied to find out the essential factors controlling the extinguishment process. The movement of water droplets in and interactions with flames is approached theoretically and experimentally. The latter part of the study presents the most important sprinkler test series since the fifties. It gives a simple theory on sprinkler actuation time and describes test series designed to find out practical answers to the required water flux density. Most of the tests deal with pool fire of combustible liquids. The extinguishment of a gas blow out fire and a number of tests using solid fuels are also included. The fires and the protection by water spray cooling of the storage tanks and pressure vessels are reviewed. Finally, the development of early-suppression, fast-response (ESFR) and intelligent sprinkler systems is described briefly.

  7. High temperature corrosion by combustion gases produced by burning liquid fuels containing sulphur, sodium and vanadium.

    OpenAIRE

    Khan, Fazlur Rahman

    1980-01-01

    High temperature corrosion, at 730° C, by combustion gases produced by burning liquid fuels in a laboratory combustor has been investigated. A selected range of steels and alloys (mild steel, stainless steel type 347, Nimonic N90, N105, and IN657) have been tested in the combustion gases using fuels containing varying amounts of impurities in the range of 0 - 6% sulphur, 0 - 60 ppm sodium, and 0 - 300 ppm vanadium. On the basis of the comprehensive results a computer programme was written t...

  8. Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion

    Science.gov (United States)

    Shaw, Benjamin D.

    2004-01-01

    Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

  9. A pigovian approach to liquidity regulation

    NARCIS (Netherlands)

    Perotti, E.C.; Suarez, J.

    2011-01-01

    This paper discusses liquidity regulation when short-term funding enables credit growth but generates negative systemic risk externalities. It focuses on the relative merit of price versus quantity rules, showing how they target different incentives for risk creation. When banks differ in credit opp

  10. Laser Spectrometric Measurement System for Local Express Diagnostics of Flame at Combustion of Liquid Hydrocarbon Fuels

    Science.gov (United States)

    Kobtsev, V. D.; Kozlov, D. N.; Kostritsa, S. A.; Smirnov, V. V.; Stel'makh, O. M.; Tumanov, A. A.

    2016-03-01

    A laboratory laser spectrometric measurement system for investigation of spatial distributions of local temperatures in a flame at combustion of vapors of various liquid hydrocarbon fuels in oxygen or air at atmospheric pressure is presented. The system incorporates a coherent anti-Stokes Raman spectrometer with high spatial resolution for local thermometry of nitrogen-containing gas mixtures in a single laser shot and a continuous operation burner with a laminar diffusion flame. The system test results are presented for measurements of spatial distributions of local temperatures in various flame zones at combustion of vapor—gas n-decane/nitrogen mixtures in air. Its applicability for accomplishing practical tasks in comparative laboratory investigation of characteristics of various fuels and for research on combustion in turbulent flames is discussed.

  11. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response

  12. 29 CFR 1926.152 - Flammable and combustible liquids.

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fire Protection and Prevention... necessary to effect these requirements. (vii) Earthquake areas. In areas subject to earthquakes, the tank...

  13. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    Science.gov (United States)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  14. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Schwartz, Zeland; An, Yan; Konstantynova, Kateryna I; Jackson, Glen P

    2013-12-10

    The continuing rise in home and vehicular arson cases involving the use of ignitable liquids continues to be an area of concern for criminal and civil investigators. In this study, the compound-specific δ(13)C values of various components of four flammable household chemicals were measured using a single quadrupole mass spectrometer and an isotope ratio mass spectrometer as simultaneous detectors for a gas chromatograph. Whereas compound-specific carbon isotope ratios were able to discriminate between different sources of neat (pre-combustion) ignitable liquids, analyses of the post-combustion residues were problematic. Weathering caused by combustion resulted in a significant increase in the (13)C content of specific peaks relative to the neat liquids (i.e. less negative delta values) such that the isotopic comparison of pre- and post-combustion residues resulted in fractionation ranging from 0 to +10‰. Because of the current lack of understanding of isotopic fractionation during combustion, and because of problems encountered with co-elution in the more complex samples, compound-specific IRMS does not appear to be suitable for fire debris analysis. The comparison of non-combusted or non-weathered ignitable liquids is much more reliable, especially for relatively simple mixtures, and is best suited for exclusionary purposes until such time as a comprehensive database of samples is developed. Without a measure of the population variance, one cannot presently predict the false positive identification rate for the comparison of two ignitable liquids; i.e. the probability that two random ignitable liquid samples have indistinguishable isotope ratios.

  15. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  16. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  17. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p nitrate (HAN)-based liquid propellants, which often exhibit negative pressure sensitivities. While nonsteady combustion may correspond to secondary and higher-order bifurcations above the cellular boundary, it may also be a manifestation of this pulsating type of hydrodynamic instability. In the present work, a nonzero temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a

  18. 3-D modeling of parietal liquid films in internal combustion engines; Modelisation tridimensionnelle des films liquides parietaux dans les moteurs a combustion interne

    Energy Technology Data Exchange (ETDEWEB)

    Foucart, H.

    1998-12-11

    To simulate the air-fuel mixing in the intake ports and cylinder of an internal combustion engines, a wall fuel liquid film model has been developed for integration in 3D CFD codes. Phenomena taken into account include wall film formation by an impinging spray without splashing effect, film transport such as governed by mass and momentum equations with hot wall effects, and evaporation considering energy equation with an analytical mass transfer formulation developed here. A continuous-fluid method is used to describe the wall film over a three dimensional complex surface. The basic approximation is that of a laminar incompressible boundary layer; the liquid film equations are written in an integral form and solved by a first-order ALE finite volume scheme; the equation system is closed without coefficient fitting requirements. The model has been implemented in a Multi-Block version of KIVA-II (KMB) and tested against problems having theoretical solutions. Then in a first step, it has been compared to the measurements obtained in a cylindrical pipe reproducing the main characteristics of SI engine intake pipe flow and in a second step, it has been compared to the Xiong experiment concerning the film evaporation on a hot wall. The film behaviour is satisfactory reproduced by the computations for a set of operating conditions. Finally, engine calculations were conducted showing the importance of including a liquid film model for the simulations. (author) 54 refs.

  19. Combustion performance of an aluminum melting furnace operating with liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nieckele, Angela Ourivio; Naccache, Monica Feijo; Gomes, Marcos Sebastiao de P. [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica], E-mails: nieckele@puc-rio.br, naccache@puc-rio.br, mspgomes@puc-rio.br

    2010-10-15

    The characteristics associated with the delivery of the fuel to be used as the energy source in any industrial combustion equipment are of extreme importance, as for example, in improving the performance of the combustion process and in the preservation of the equipment. A clean and efficient combustion may be achieved by carefully selecting the fuel and oxidant, as well as the operational conditions of the delivery system for both. In the present work, numerical simulations were carried out using the commercial code FLUENT for analyzing some of the relevant operational conditions inside an aluminum reverb furnace employing liquid fuel and air as the oxidant. Different fuel droplets sizes as well as inlet droplet stream configurations were examined. These characteristics, associated with the burner geometry and the fuel dispersion and delivery system may affect the flame shape, and consequently the temperature and the heat flux distribution within the furnace. Among the results obtained in the simulations, it was shown the possible damages to the equipment, which may occur as a result of the combustion process, if the flame is too long or too intense and concentrated. (author)

  20. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  1. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION...-IGNITION ENGINES General Pt. 89, Subpt. A, App. A Appendix A to Subpart A of Part 89—State Regulation...

  2. Determination of liquid-fuel prevaporization and premixing in gas-turbine combustion chambers

    Science.gov (United States)

    Mrugalla, J.

    A semiempirical mathematical model of the evaporation and distribution of liquid fuel in the prevaporization-premixing zone of a stationary gas turbine is developed, and the predictions obtained are compared with published experimental data and with the results of photographic, suction-probe, two-focus-laser-velocimeter, and light-scattering measurements on water sprays from 65-deg hollow-cone nozzles in a wind tunnel operating at 64 m/s. Good agreement is obtained, and the applicability of the model to the design of turbine combustion chambers giving lower NO(x) and CO emissions is indicated.

  3. 77 FR 31815 - Hazardous Materials Regulations: Combustible Liquids

    Science.gov (United States)

    2012-05-30

    .... DGAC estimates that export shipments are delayed for an average of three days awaiting removal of HMR... states that the most widely-used commercial explosive product in the U.S. is ammonium nitrate/fuel oil... nitrate/fuel oil materials (``ANFO''), of blends of the two directly into boreholes, which are equipped...

  4. On pulsating and cellular forms of hydrodynamic instability in liquid-propellant combustion

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, S.B. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1997-11-01

    An extended Landau/Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid/gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau, but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio {rho}, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of {rho} in each of three distinguished wavenumber regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A{sub p}(k), where A{sub p} is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A{sub p}, which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects, but is more sensitive to the effects of liquid viscosity since, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A{sub p} as k increases through O(1) values.

  5. Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber

    Institute of Scientific and Technical Information of China (English)

    薛晓春; 余永刚; 张琦

    2013-01-01

    To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure in a liquid medium is studied in the cylindrical filling liquid chamber. A series of the jet expansion shapes is obtained by using a high-speed photographic system. The influences of the jet pressure on the jet expansion shape are discussed. Based on the experiments, the three-dimensional mathematical model is established. The expansion processes of the twin gas jets in the liquid medium are simulated by means of fluent to get the pressure, density, temperature, velocity contours and evolutionary process of vortices. Results show that the jet external outline and tops are all irregular. The Kelvin-Helmholtz instability is shown in the whole expansion process. The numerical simulation results of the axial displacement of the twin gas jets in liquid agree well with the experiment.

  6. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  7. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, JS; Hillesheim, PC; Huang, DK; Lively, RP; Oh, KH; Dai, S; Koros, WJ

    2012-11-30

    A proof of concept study for a new type of carbon capture system is considered for post-combustion CO2 capture based on porous hollow fiber sorbents with ionic liquids sorbed in the cell walls of the fiber. This study proves that delicate morphological features in the open-celled porous wall can be maintained during the infusion process. Mixtures of task specific ionic liquid (i.e. [BMIM][Tf2N]) and superbase (i.e. DBU) were loaded into polyamide-imide (PAI) fibers by a so-called two-step non-solvent infusion protocol. In the protocol, methanol carries ionic liquids into the pore cell walls of hollow fibers and then hexane carries superbase to create an efficient CO2 sorbent. Our ionic liquid/superbase impregnation technique overcomes a serious increase in mass transfer resistance upon reaction with CO2, thereby allowing its large scale utilization for post-combustion CO2 capture. The investigation on the effect of different pore former additives (different molecular weights of polyvinylpyrrolidone, lithium nitrate, and their mixtures) suggested that a large molecular weight of PVP (M-w; 1300k) including dope composition produces highly interconnected open cell pore structures of PAI hollow fibers. Lastly, a lumen side barrier layer was successfully formed on the bore side of neat PAI fibers by using a mixture of Neoprene (R) with crosslinking agents (TSR-633) via a post-treatment process. The lumen layer will enable heat removal from the fiber sorbents during their application in rapid thermal swing cycling processes. (C) 2012 Elsevier Ltd. All rights reserved.

  9. Rollover risk, liquidity and macroprudential regulation

    OpenAIRE

    Ahnert, Toni

    2014-01-01

    I study rollover risk in the wholesale funding market when intermediaries can hold liquidity ex ante and are subject to fire sales ex post. Precautionary liquidity restores multiple equilibria in a global rollover game. An intermediate liquidity level supports both the usual run equilibrium and an efficient equilibrium. I provide a uniqueness refinement to characterize the privately optimal liquidity choice. Because of fire sales, liquidity holdings are strategic substitutes. Intermediaries f...

  10. Experimental study of acoustic damping induced by gas-liquid scheme injectors in a combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak Soon; Sohn, Chae Hoon [Chosun University, Gwangju (Korea, Republic of)

    2007-01-15

    In a liquid rocket engine, acoustic damping induced by gas-liquid scheme injectors is studied experimentally for combustion stability by adopting linear acoustic test. In the previous work, it has been found that gas-liquid scheme injector can play a significant role in acoustic damping or absorption when it is tuned finely. Based on this finding, acoustic-damping characteristics of multi-injectors are intensively investigated. From the experimental data, it is found that acoustic oscillations are almost damped out by multi-injectors when they have the tuning length proposed in the previous study. The length corresponds to a half wavelength of the first longitudinal overtone mode traveling inside the injector with the acoustic frequency intended for damping in the chamber. But, new injector-coupled acoustic modes show up in the chamber with the injectors of the tuning length although the target mode is nearly damped out. And, appreciable frequency shift is always observed except for the case of the worst tuned injector. Accordingly, it is proposed that the tuning length is adjusted to have the shorter length than a half wavelength when these phenomena are considered

  11. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan; Degnan, Thomas; McCready, Mark; Stadtherr, Mark; Stolaroff, Joshuah; Ye, Congwang

    2016-09-30

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.

  12. 介绍一种可燃液态危废燃烧补热装置%Describes a Kind of Combustion Heating Device for Combustible Liquid Hazardous Waste

    Institute of Scientific and Technical Information of China (English)

    朱飞; 林恩玉; 沈维民

    2016-01-01

    Describes a kind of combustion heating device for combustible liquid hazardous waste. With regard to analysis of combustion heating device requirement for combustible liquid hazardous waste, explains several design characteristics of the combustion heating device. The application of the combustion heating decice to some projects for one year proves that it can fully meet demand and replace similar products from abroad.%介绍了一种用于处理可燃液态危险废弃物的燃烧装置.对可燃液态危废燃烧装置的要求的分析,说明了该装置的几个设计特点.该装置在某危废液体项目的一年多实际应用,完全满足需要,可以替代国外同类产品.

  13. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, Johan Leonard Hendrik Pieter

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to conventiona

  14. Nonlinear theory of combustion stability in liquid rocket engine based on chemistry dynamics

    Institute of Scientific and Technical Information of China (English)

    黄玉辉; 王振国; 周进

    2002-01-01

    Detailed models of combustion instability based on chemistry dynamics are developed. The results show that large activation energy goes against the combustion stability. The heat transfer coefficient between the wall and the combust gas is an important bifurcation parameter for the combustion instability. The acoustics modes of the chamber are in competition and cooperation with each other for limited vibration energy. Thermodynamics criterion of combustion stability can be deduced from the nonlinear thermodynamics. Correlations of the theoretical results and historical experiments indicate that chemical kinetics play a critical role in the combustion instability.

  15. Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules

    Science.gov (United States)

    Ishikawa, Atsushi; Nakai, Hiromi

    2015-03-01

    The harmonic solvation model (HSM), which was recently developed for evaluating condensed-phase thermodynamics by quantum chemical calculations (Nakai and Ishikawa, 2014), was applied to formation and combustion reactions of simple organic molecules. The conventional ideal gas model (IGM) considerably overestimated the entropies of the liquid molecules. The HSM could significantly improve this overestimation; mean absolute deviations for the Gibbs energies of the formation and combustion reactions were (49.6, 26.7) for the IGM and (9.7, 5.4) for the HSM in kJ/mol.

  16. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Maginn, Edward

    2012-09-30

    This is the final report for DE-FC26-07NT43091 Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to and potentially slightly better than - the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

  17. Liquid oxygen/hydrogen testing of a single swirl coaxial injector element in a windowed combustion chamber

    Science.gov (United States)

    Hulka, J.; Makel, D.

    1993-06-01

    A modular, high pressure, liquid rocket single element combustion chamber was developed at Aerojet for use with nonintrusive combustion diagnostics. The hardware is able to accommodate full-size injection elements and includes a recessed annular injector around the single element to provide a source for hot gas background flow, which reduces recirculation in the chamber and provides additional injection mass to elevate chamber pressure. Experiments are being conducted to develop the diagnostics required to characterize a single-element combustion spray field for combustion modeling, benchmark data for CFD model validation, and development of the transfer functions between single element cold flow and multielement hot fire. The latter task is being pursued using an injector element identical to elements that had been previously cold-flow tested in single element tests to ambient backpressure and hot fire tested in a multielement injector. Preliminary tests conducted to date without hydrogen flowing through the annular coaxial orifice of the single element show the general flow characteristics of a reacting, unconfined, liquid oxygen hollow cone swirl spray.

  18. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  19. Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    Science.gov (United States)

    Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  20. Three phase Eulerian-granular model applied on numerical simulation of non-conventional liquid fuels combustion in a bubbling fluidized bed

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan Đ.

    2016-01-01

    Full Text Available The paper presents a two-dimensional CFD model of liquid fuel combustion in bubbling fluidized bed. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The model is taking into account also the third - liquid phase, as well as its interaction with the solid and gas phase. The proposed numerical model comprise energy equations for all three phases, as well as the transport equations of chemical components with source terms originated from the component conversion. In the frame of the proposed model, user sub-models were developed for heterogenic fluidized bed combustion of liquid fuels, with or without water. The results of the calculation were compared with experiments on a pilot-facility (power up to 100 kW, combusting, among other fuels, oil. The temperature profiles along the combustion chamber were compared for the two basic cases: combustion with or without water. On the basis of numerical experiments, influence of the fluid-dynamic characteristics of the fluidized bed on the combustion efficiency was analyzed, as well as the influence of the fuel characteristics (reactivity, water content on the intensive combustion zone. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed

  1. Computational Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  2. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  3. Pollutant Formation during the Occurrence of Flame Instabilities under Very-Lean Combustion Conditions in a Liquid-Fuel Burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Recent advances in gas turbine combustor design are aimed at achieving low exhaust emissions, hence modern aircraft jet engines are designed with lean-burn combustion systems. In the present work, we report an experimental study on lean combustion in a liquid fuel burner, operated under a non-premixed (single point injection regime that mimics the combustion in a modern aircraft engine. The flame behavior was investigated in proximity of the blow-out limit by an intensified high rate Charge-Coupled Device (CCD camera equipped with different optical filters to selectively record single species chemiluminescence emissions (e.g., OH*, CH*. Analogous filters were also used in combination with photomultiplier (PMT tubes. Furthermore this work investigates well-mixed lean low NOx combustion where mixing is good and generation of solid carbon particulate emissions should be very low. An analysis of pollutants such as fine particles and gaseous emissions was also performed. Particle number concentrations and size distributions were measured at the exhaust of the combustion chamber by two different particle size measuring instruments: a scanning mobility particle sizer (SMPS and an Electrical Low Pressure Impactor (ELPI. NOx concentration measurements were performed by using a cross-flow modulation chemiluminescence detection system; CO concentration emissions were acquired with a Cross-flow modulation Non-dispersive infrared (NDIR absorption method. All the measurements were completed by diagnostics of the fundamental combustor parameters. The results herein presented show that at very-lean conditions the emissions of both particulate matter and CO was found to increase most likely due to the occurrence of flame instabilities while the NOx were observed to reduce.

  4. Liquid propellant rocket engine combustion simulation with a time-accurate CFD method

    Science.gov (United States)

    Chen, Y. S.; Shang, H. M.; Liaw, Paul; Hutt, J.

    1993-01-01

    Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm.

  5. Investigation of the liquid/vapor composition of compressed liquid CO2 with N2 and O2 in integrated pollutant removal systems for coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.; Penner, Larry R.; Gerdemann, Stephen J.

    2005-01-01

    Accurate prediction of the processes in Integrated Pollutant Removal (IPR) using compression and condensation of coal combustion products requires an understanding of the liquid/vapor ternary CO2/O2/N2 system. At conditions close to the critical point of CO2 the existing equations of state deviate from the sparse measured results available in the literature. Building on existing data and procedures, the USDOE/Albany Research Center has designed an apparatus for examining compositions in this region. The design of the apparatus and planned initial experiments are presented.

  6. Uncertainty Quantification of Non-linear Oscillation Triggering in a Multi-injector Liquid-propellant Rocket Combustion Chamber

    Science.gov (United States)

    Popov, Pavel; Sideris, Athanasios; Sirignano, William

    2014-11-01

    We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.

  7. Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels

    Science.gov (United States)

    Bok, Agnieszka; Guziałowska-Tic, Joanna; Tic, Wilhelm Jan

    2014-12-01

    The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides). The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

  8. Analysis of Combustion Instability in Liquid Fuel Rocket Motors. Ph.D. Thesis

    Science.gov (United States)

    Wong, K. W.; Ventrice, M.

    1979-01-01

    The development of a technique to be used in the solution of nonlinear velocity-sensitive combustion instability problems is described. The orthogonal collocation method was investigated. It found that the results are heavily dependent on the location of the collocation points and characteristics of the equations, so the method was rejected as unreliabile. The Galerkin method, which has proved to be very successful in analysis of the pressure sensitive combustion instability was found to work very well. It was found that the pressure wave forms exhibit a strong second harmonic distortion and a variety of behaviors are possible depending on the nature of the combustion process and the parametric values involved. A one-dimensional model provides further insight into the problem by allowing a comparison of Galerkin solutions with more exact finite-difference computations.

  9. Mechano-regulated surface for manipulating liquid droplets

    Science.gov (United States)

    Tang, Xin; Zhu, Pingan; Tian, Ye; Zhou, Xuechang; Kong, Tiantian; Wang, Liqiu

    2017-04-01

    The effective transfer of tiny liquid droplets is vital for a number of processes such as chemical and biological microassays. Inspired by the tarsi of meniscus-climbing insects, which can climb menisci by deforming the water/air interface, we developed a mechano-regulated surface consisting of a background mesh and a movable microfibre array with contrastive wettability. The adhesion of this mechano-regulated surface to liquid droplets can be reversibly switched through mechanical reconfiguration of the microfibre array. The adhesive force can be tuned by varying the number and surface chemistry of the microfibres. The in situ adhesion of the mechano-regulated surface can be used to manoeuvre micro-/nanolitre liquid droplets in a nearly loss-free manner. The mechano-regulated surface can be scaled up to handle multiple droplets in parallel. Our approach offers a miniaturized mechano-device with switchable adhesion for handling micro-/nanolitre droplets, either in air or in a fluid that is immiscible with the droplets.

  10. Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Modak, A. U.; Naik, C. V.; Puduppakkam, K. V.; Westbrook, C.; Egolfopoulos, F. N.; Tsotsis, T.; Roby, S. H.

    2009-07-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of biodiesel fuels and appropriately associated model fuels that may represent biodiesels in automotive engineering simulation. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were BQ-9000 certified biodiesel fuels that are certified for use in automotive engine applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multi-dimensional simulation of the combustion characteristics of such fuels in reciprocating engines. Such reliable kinetics models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal engines, engine operation and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics. During this project, we completed a major and thorough validation of a set of biodiesel surrogate components, allowing us to begin to evaluate the fundamental combustion characteristics for B100 fuels.

  11. Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Modak, A. U.; Naik, C. V.; Puduppakkam, K. V.; Westbrook, C.; Egolfopoulos, F. N.; Tsotsis, T.; Roby, S. H.

    2009-07-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of biodiesel fuels and appropriately associated model fuels that may represent biodiesels in automotive engineering simulation. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were BQ-9000 certified biodiesel fuels that are certified for use in automotive engine applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multi-dimensional simulation of the combustion characteristics of such fuels in reciprocating engines. Such reliable kinetics models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal engines, engine operation and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics. During this project, we completed a major and thorough validation of a set of biodiesel surrogate components, allowing us to begin to evaluate the fundamental combustion characteristics for B100 fuels.

  12. Combustion Enhancement of Liquid Fuels via Nanoparticle Additions: Screening, Dispersion, and Characterization

    Science.gov (United States)

    2015-06-04

    heat of combustion of mixtures of nano-sized aluminum (n-Al) and nano-sized aluminum oxide (n-Al2O3) in ethanol with a bomb calorimeter. Stable...made at 20 °C, provided by partially immersing the pycnometer in a Forma Scientific Model 2095 circulator bath . The following steps were taken: 1

  13. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    Science.gov (United States)

    Bennewitz, John William

    model-predicted mode stability transition was consistent with experimental observations, supporting the premise that inlet acoustic modulation is a means to control high-frequency combustion instabilities. From the modal analysis, it may be deduced that the inlet impedance provides a damping mechanism for instability suppression. Combined, this work demonstrates the strategic application of acoustic modulation within an injector as a potential method to control high-frequency combustion instabilities for liquid rocket engine applications.

  14. On the TFNS Subgrid Models for Liquid-Fueled Turbulent Combustion

    Science.gov (United States)

    Liu, Nan-Suey; Wey, Thomas

    2014-01-01

    This paper describes the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models used to emulate the major processes occurring in the turbulence-chemistry interaction. These two subgrid models are termed as LEM-like model and EUPDF-like model (Eulerian probability density function), respectively. Two-phase turbulent combustion in a single-element lean-direct-injection (LDI) combustor is calculated by employing the TFNS/LEM-like approach as well as the TFNS/EUPDF-like approach. Results obtained from the TFNS approach employing these two different subgrid models are compared with each other, along with the experimental data, followed by more detailed comparison between the results of an updated calculation using the TFNS/LEM-like model and the experimental data.

  15. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  16. Making highly flammable liquid wastes of petrochemical works safe by combustion without burners

    Energy Technology Data Exchange (ETDEWEB)

    Shelygin, B.L.; Bakhirev, V.I.; Gudzyuk, V.L.

    1983-11-01

    At the V.I. Lenin Energy Institute in Ivanov a technological program was implementd for combustion of highly flammable bulk wastes (for example, piperylene fractions) of petrochemical enterprises, with a moisture content of under 10% and mechanical admixtures (particles of catalyst dust) of up to 5%, without the use of burners. In devising the program, the results of mathematical theoretical analysis of pre-igniting preparation of substances to make them safe were utilized as well as the experience acquired in burning petroleum sludge in furnaces with bubbling equipment.

  17. The features of heterogeneous water droplet evaporation in high-temperature combustion products of typical flammable liquids

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2017-01-01

    Full Text Available This paper presents the experimental results on heating and evaporation features of heterogeneous (with opaque solid particles – the size of 0.05-0.5 mm, relative mass concentration 0-1% water droplets (the initial size – radius 1-3 mm during their motion through high-temperature (500-1800 K gases. A significant increase in the integral characteristics of evaporation by introducing opaque inclusions into droplets was observed. The influence of energy accumulation on the conditions of droplet evaporation at the internal solid/liquid interfaces was established. For proportioned inclusions, the conditions of intensive vaporization (leading to the explosive disintegration of droplets at internal inclusion/liquid interfaces was set. To summarize research results, experiments were conducted with the combustion products of kerosene, gasoline, industrial alcohol, acetone, and oil. The particles of graphite, carbon, and aluminum as solid inclusions were used. The investigation compared integral characteristics of heterogeneous droplet evaporation under the conditions of non-stationary (gas temperature varied from 1800 K to 500 K over the length of channel and nearly stationary (gas temperature was maintained at about 1100 K heating.

  18. Applied combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  19. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    OpenAIRE

    Norwazan Abdul Rahim; Mohammad Nazri Mohd Jaafar; Syazwan Sapee; Hazir Farouk Elraheem

    2016-01-01

    This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25) and coconut oil methyl ester blend 25 (COME B25) blended at 25% by volume in diesel fuel produced lower c...

  20. Combustion efficiency and altitude operational limits of three liquid hydrocarbon fuels having high volumetric energy content in a J33 single combustor

    Science.gov (United States)

    Stricker, Edward G

    1950-01-01

    Combustion efficiency and altitude operational limits were determined in a J33 single combustor for AN-F-58 fuel and three liquid hydrocarbon fuels having high volumetric energy content (decalin, tetralin, and monomethylnaphthalene) at simulated altitude and combustor inlet-air conditions. At the conditions investigated, the combustion efficiency for the four fuels generally decreased with an increase in volumetric energy content. The altitude operational limits for decalin and tetralin fuels were higher than for AN-F-58 fuel; monomethylnaphthalene fuel gave the lowest altitude operational limit.

  1. Working of spontaneously combustible coal seams with automatic air pressure regulation in the excavation field

    Energy Technology Data Exchange (ETDEWEB)

    Golik, A.S.; Churikov, Yu.V.; Troyan, N.P.

    1980-01-01

    A demonstration is made of the effectiveness of using an automatic air pressure control system during the working of spontaneously combustible coal seams in order to control endogenic fires and gas. 2 figures.

  2. Analysis of the Effect of the Swirl Flow Intensity on Combustion Characteristics in Liquid Fuel Powered Confined Swirling Flames

    Directory of Open Access Journals (Sweden)

    Marko Klancisar

    2016-01-01

    Full Text Available This article examines the implementation of CFD technology in the design of the industrial liquid fuel powered swirl flame burner. The coupling between the flow field and the combustion model is based on the eddy dissipation model. The choice of the LES (Large Eddy Simulation turbulence model over standard RANS (Reynolds Averaged Navier-Stokes offers a possibility to improve the quality of the combustion-flow field interaction. The Wall Adapting Local Eddy-Viscosity (WALE sub-grid model was used. The reaction chemistry is a simple infinitely fast one step global irreversible reaction. The computational model was setup with the Ansys-CFX software. Through the detailed measurements of industrial size burner, it was possible to determine the natural operational state of the burner according to the type of fuel used. For the inlet conditions, axial and radial velocity components were calculated from known physical characteristics of both the fuel and air input, with the initial tangential velocity of the fuel assumed as18% of the initial axial fuel velocity. Different swirl number (S values were studied. Addition of a surplus (in comparison to conventional flame stabilization of tangential air velocity component (W, the rotational component increases itself with a considerably high magnitude, contributing to the overall flame stabilization. The level of S especially influences the turbulent energy, its dissipation rate and turbulent (Reynolds stresses. In the case of high swirl number values (S > 0,65 it is possible to divide the flow field in three principle areas: mixing area (fuel-air, where exothermal reactions are taking place, central recirculation area and outer recirculation area, which primarily contains the flow of burnt flue gases. The described model was used to determine the flow and chemical behavior, whereas the liquid atomization was accounted for by LISA (Linear Instability Sheet Atomization model incorporating also the cavitation

  3. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    Science.gov (United States)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  4. Experimental chemical thermodynamics. Volume I. Combustion calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sunner, S.; Mansson, M. (eds.)

    1979-01-01

    This book contains 18 chapters. The information included is: units and physical constants; basic principles of combustion calorimetry; calibration of combustion calorimeters; test and auxiliary substances in combustion calorimetry; strategies in the calculation of standard-state energies of combustion from the experimentally determined quantities; assignments of uncertainties; presentation of combustion calorimetric data in the primary literature; general techniques for combustion of liquid/solid organic compounds by oxygen bomb calorimetry; combustion of liquid/solid organic compounds with non-metallic hetero-atoms; combustion calorimetry of metals and simple metallic compounds; combustion calorimetry of organometallic compounds; combustion in fluorine and other halogens; bomb combustion of gaseous compounds in oxygen; oxygen flame calorimetry; fluorine flame calorimetry; combustion calorimetry as a technological service; trends in combustion calorimetry; and from the history of combustion calorimetry. (DP)

  5. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  6. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  7. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    Directory of Open Access Journals (Sweden)

    Norwazan Abdul Rahim

    2016-08-01

    Full Text Available This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25 and coconut oil methyl ester blend 25 (COME B25 blended at 25% by volume in diesel fuel produced lower carbon monoxide (CO and unburned hydrocarbon (UHC emissions due to more complete combustion. Overall, JOME B25 had the highest CO emission reduction, at about 42.25%, followed by COME B25 at 26.44% emission reduction relative to pure diesel fuel. By contrast, the palm oil methyl ester blend 25 (POME B25 showed a 48.44% increase in these emissions. The results showed that the nitrogen oxides (NOx emissions were slightly higher for all biodiesel blend fuels compared with pure diesel fuel combustion. In case of sulphur dioxide (SO2 and UHC emissions, all biodiesel blends fuels have significantly reduced emissions. In the case of SO2 emission, the POME B25, JOME B25 and COME B25 emissions were reduced 14.62%, 14.45% and 21.39%, respectively, relative to SO2 emission from combusting pure diesel fuel. UHC emissions of POME B25, JOME B25 and COME B25 showed 51%, 71% and 70% reductions, respectively, compared to diesel fuel. The conclusion from the results is that all the biodiesel blend fuels are suitable and can be recommended for use in liquid fuel burners in order to get better and ‘greener’ environmental outcomes.

  8. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    Science.gov (United States)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  9. The impact of liquidity regulation on bank intermediation

    NARCIS (Netherlands)

    Bonner, Clemens; Eijffinger, Sylvester C. W.

    2016-01-01

    We analyze the impact of a requirement similar to the Basel III Liquidity Coverage Ratio on the bank intermediation applying Regression Discontinuity Designs. Using a unique dataset on Dutch banks, we show that a liquidity requirement causes long-term borrowing and lending rates as well as demand fo

  10. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion -- I. Inviscid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis; Forman A. Williams

    1999-03-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  11. Up the Technology Readiness Level (TRL) Scale to Demonstrate a Robust, Long Life, Liquid Rocket Engine Combustion Chamber, or...Up the Downstairs

    Science.gov (United States)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Power, Christopher

    2008-01-01

    Advanced vacuum plasma spray (VPS) technology, utilized to successfully apply thermal barrier coatings to space shuttle main engine turbine blades, was further refined as a functional gradient material (FGM) process for space furnace cartridge experiments at 1600 C and for robust, long life combustion chambers for liquid rocket engines. A VPS/FGM 5K (5,000 lb. thrust) thruster has undergone 220 hot firing tests, in pristine condition, showing no wear, blanching or cooling channel cracks. Most recently, this technology has been applied to a 40K thruster, with scale up planned for a 194K Ares I, J-2X engine.

  12. Up the Technology Readiness Level (TRL) Scale to Demonstrate a Robust, Long Life, Liquid Rocket Engine Combustion Chamber, or...Up the Downstairs

    Science.gov (United States)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Power, Christopher

    2008-01-01

    Advanced vacuum plasma spray (VPS) technology, utilized to successfully apply thermal barrier coatings to space shuttle main engine turbine blades, was further refined as a functional gradient material (FGM) process for space furnace cartridge experiments at 1600 C and for robust, long life combustion chambers for liquid rocket engines. A VPS/FGM 5K (5,000 lb. thrust) thruster has undergone 220 hot firing tests, in pristine condition, showing no wear, blanching or cooling channel cracks. Most recently, this technology has been applied to a 40K thruster, with scale up planned for a 194K Ares I, J-2X engine.

  13. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  14. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight, a

  15. Capital Regulation, Liquidity Requirements and Taxation in a Dynamic Model of Banking

    NARCIS (Netherlands)

    Di Nicolo, G.; Gamba, A.; Lucchetta, M.

    2011-01-01

    This paper formulates a dynamic model of a bank exposed to both credit and liquidity risk, which can resolve financial distress in three costly forms: fire sales, bond issuance ad equity issuance. We use the model to analyze the impact of capital regulation, liquidity requirements and taxation on ba

  16. Capital Regulation, Liquidity Requirements and Taxation in a Dynamic Model of Banking

    NARCIS (Netherlands)

    Di Nicolo, G.; Gamba, A.; Lucchetta, M.

    2011-01-01

    This paper formulates a dynamic model of a bank exposed to both credit and liquidity risk, which can resolve financial distress in three costly forms: fire sales, bond issuance and equity issuance. We use the model to analyze the impact of capital regulation, liquidity requirements and taxation on b

  17. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    Science.gov (United States)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  18. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles

    Directory of Open Access Journals (Sweden)

    Weiss Carsten

    2011-08-01

    Full Text Available Abstract Background Acute exposure to elevated levels of environmental particulate matter (PM is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS, oxidative stress and inflammatory responses is of particular interest. In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA cascade. Incinerator fly ash particles (MAF02 were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. Results The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2, and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC prevented the MAF02

  19. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  20. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  1. Pulsating hydrodynamic instability and thermal coupling in an extended Landau/Levich model of liquid-propellant combustion. 2. Viscous analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  2. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  3. 30 CFR 56.4104 - Combustible waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 56.4104 Section 56.4104... Control Prohibitions/precautions/housekeeping § 56.4104 Combustible waste. (a) Waste materials, including... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall...

  4. 75 FR 1704 - Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a...

    Science.gov (United States)

    2010-01-13

    ... Permitting an Election To Treat a Liquidation of a Target, Followed by a Recontribution to a New Target, as a... amendment. Summary: This document contains a correction to temporary regulations (TD 9458), which were... return regulation permitting an election to treat a liquidation of a target, followed by a recontribution...

  5. A Comprehensive Model for Liquid Film Boiling in Internal Combustion Engines Un modèle complet pour l’ébullition de film liquide dans les moteurs à combustion interne

    Directory of Open Access Journals (Sweden)

    Habchi C.

    2010-04-01

    Full Text Available In this paper, the main physical processes governing the nucleate and transition regimes of the boiling of a liquid film were reviewed from the available experimental observations in the literature. The physical tendencies observed in most experiments have been used to develop a comprehensive phenomenological Liquid Film Boiling (LFB model which allows the calculation of the vaporization of liquid films in the nucleate boiling regime as well as in the transition boiling regime. These regimes are identified by the temperatures of saturation, Nukiyama and Leidenfrost. A particular attention has been made concerning the estimation of Leidenfrost and Nukiyama temperatures as a function of the ambient gas pressure. Several curves of lifetime of rather bulky droplets deposited on a hot surface under various conditions and chosen among those which are available in the recent literature have been used for the validation of the LFB model. The numerical results show that the orders of magnitude and the tendencies observed experimentally are well respected. Particularly, the LFB model reproduces well the progressive disappearance of the Leidenfrost regime observed in experiments with sufficiently high gas pressures. In addition, the gradual increase of the vaporization rate with wall roughness which was previously observed experimentally near the Leidenfrost point has been correctly predicted by the LFB model. Dans cet article, les principaux processus physiques, régissant les régimes d’ébullition nuclééeet de transition d’un film liquide, ont été examinés à partir des observations expérimentales disponiblesdans la littérature. Les tendances physiques observées, ont été utilisées, pour développer un modèle phénoménologique complet pour l’ébullition de film liquide (LFB. Celui-ci permet le calcul de sa vaporisation, dans le régime d’ébullition nucléée, ainsi que, dans le régime d’ébullition de transition. Cesrégimes sont

  6. Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br10 heterojunctions with exceptional visible-light photocatalytic performances

    Science.gov (United States)

    Li, Fa-Tang; Wang, Qing; Ran, Jingrun; Hao, Ying-Juan; Wang, Xiao-Jing; Zhao, Dishun; Qiao, Shi Zhang

    2014-12-01

    Heterostructured BiOBr/Bi24O31Br10 nanocomposites with surface oxygen vacancies are constructed by a facile in situ route of one-step self-combustion of ionic liquids. The compositions can be easily controlled by simply adjusting the fuel ratio of urea and 2-bromoethylamine hydrobromide (BTH). BTH serves not only as a fuel, but also as a complexing agent for ionic liquids and a reactant to supply the Br element. The heterojunctions show remarkable adsorptive ability for both the cationic dye of rhodamine B (RhB) and the anionic dye of methylene orange (MO) at high concentrations, which is attributed to the abundant surface oxygen vacancies. The sample containing 75.2% BiOBr and 24.8% Bi24O31Br10 exhibits the highest photocatalytic activity. Its reaction rate constant is 4.0 and 9.0 times that of pure BiOBr in degrading 50 mg L-1 of RhB and 30 mg L-1 of MO under visible-light (λ > 400 nm) irradiation, respectively, which is attributed to the narrow band gap and highly efficient transfer efficiency of charge carriers. Different photocatalytic reaction processes and mechanisms over pure BiOBr and heterojunctions are proposed.Heterostructured BiOBr/Bi24O31Br10 nanocomposites with surface oxygen vacancies are constructed by a facile in situ route of one-step self-combustion of ionic liquids. The compositions can be easily controlled by simply adjusting the fuel ratio of urea and 2-bromoethylamine hydrobromide (BTH). BTH serves not only as a fuel, but also as a complexing agent for ionic liquids and a reactant to supply the Br element. The heterojunctions show remarkable adsorptive ability for both the cationic dye of rhodamine B (RhB) and the anionic dye of methylene orange (MO) at high concentrations, which is attributed to the abundant surface oxygen vacancies. The sample containing 75.2% BiOBr and 24.8% Bi24O31Br10 exhibits the highest photocatalytic activity. Its reaction rate constant is 4.0 and 9.0 times that of pure BiOBr in degrading 50 mg L-1 of RhB and 30 mg

  7. Combustion Instabilities in Liquid-Fuelled Propulsion Systems: Conference Proceedings of the Propulsion and Energetics Panel (72nd) B specialists Meeting Held in Bath (England) on 6-7 October 1988

    Science.gov (United States)

    1989-04-01

    Vol. 3, pp. 714-757. Dipprey, D.F. (1972) "Liquid Propellant Rockets," in Chemistry in Space Research (R.F. Landel and A. Rem- baum, Ed.), Amnrican...Priemtlanga avec un Tourbillon, La Recherche A~rospatiale, n𔃽, pp. 13,28, 1988. 92 ]HUGHES. W. F., BRIGHTON, J. A. -Fluid Dynamics, Schaums ’ Outlines...Approaches to controlling the combustion instability as well as additional parametric studies of the effects of chemistry are currently being petsued. In

  8. 77 FR 36914 - Modification to Consolidated Return Regulation Permitting an Election To Treat a Liquidation of a...

    Science.gov (United States)

    2012-06-20

    ... the Federal Register (74 FR 45757 and 74 FR 45789, respectively). The regulations modify the election... final regulations in the Federal Register (TD 9515, 76 FR 11956), which republished the 2009 temporary... Regulation Permitting an Election To Treat a Liquidation of a Target, Followed by a Recontribution to a...

  9. Regulation and Functional Significance of Airway Surface Liquid pH

    Directory of Open Access Journals (Sweden)

    Coakley RD

    2001-07-01

    Full Text Available In gastrointestinal tissues, cumulative evidence from both in vivo and in vitro studies suggests a role for the cystic fibrosis transmembrane conductance regulator (CFTR in apical epithelial bicarbonate conductance. Abnormal lumenal acidification is thus hypothesized to play a role in the genesis of cystic fibrosis (CF pancreatic disease. However, consensus regarding CFTR's participation in pH regulation of airway surface liquid (ASL and thus the contribution of ASL pH to the etiology of CF lung disease, is lacking. The absence of data reflects difficulties in both sampling ASL in vivo and modeling ASL biology in vitro. Here we evaluate the evidence in support of a lumenal acidification hypothesis in the CF lung, summarize current knowledge of pH regulation in the normal airway and illustrate how hyper-acidified airway secretions could contribute to the pathogenesis of CF lung disease.

  10. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  11. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    OpenAIRE

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion chamber. It destroys the thermal boundary layer wall increasing heat transfer and could lead to compromised performance, and ultimately to destruction of the engine and mission loss. The main object...

  12. Mining seams liable to spontaneous combustion using a system of automatic regulation of air pressure in a ventilation section

    Energy Technology Data Exchange (ETDEWEB)

    Golik, A.S.; Churikov, Yu.V.; Troyan, N.P.

    1980-01-01

    In mining coal seams liable to spontaneous combustion, the possibility of underground fire increases with growing depth of mining, as air depression in lower seams can suck the air from the goaf of upper levels through cracks and fissures in the roof. To preclude this possibility a system of automatic control of air pressure in a ventilated section of a coal mine has been worked out. The system, called SReDA-1, consists in complete isolation of the ventilated section from other workings by conventional means and in exact maintenance of air pressure equal to atmospheric pressure. Technical specifications of ventilating machines used in the SReDA-1 system are given. Scheme of ventilated section using the system is also shown. (In Russian)

  13. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  14. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  15. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  16. Combustion and regulations. Impacts of new regulations on medium-power thermal equipment (boilers, engines, turbines, dryers and furnaces); Combustion et reglementation. Incidences des nouvelles reglementations sur les equipements thermiques de moyenne puissance (chaudieres, moteurs, turbines, secheurs et fours)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference is composed of 20 papers on the influence of French and European new pollution regulations on medium size thermal equipment such as boilers, engines, turbines, dryers and furnaces. It is discussed what is going to change with new regulations, how they will apply to existing plants, what will be the impact on future equipment costs. The evolution of energy suppliers and equipment manufacturers facing these new regulations is also examined: fuel substitution, improvements in turbines and engines with water injection and special chambers, diesel engine control, lean mixtures and electronic control for gas engines... Means for reducing SOx, NOx and ash emission levels in boilers are also examined

  17. Combustion Process Modelling and Control

    Directory of Open Access Journals (Sweden)

    Vladimír Maduda

    2007-10-01

    Full Text Available This paper deals with realization of combustion control system on programmable logic controllers. Control system design is based on analysis of the current state of combustion control systems in technological device of raw material processing area. Control system design is composed of two subsystems. First subsystem is represented by software system for measured data processing and for data processing from simulation of the combustion mathematical model. Outputs are parameters for setting of controller algorithms. Second subsystem consists from programme modules. The programme module is presented by specific control algorithm, for example proportional regulation, programmed proportional regulation, proportional regulation with correction on the oxygen in waste gas, and so on. According to the specific combustion control requirements it is possible built-up concrete control system by programme modules. The programme modules were programmed by Automation studio that is used for development, debugging and testing software for B&R controllers.

  18. 30 CFR 57.4104 - Combustible waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 57.4104 Section 57.4104... Control Prohibitions/precautions/housekeeping § 57.4104 Combustible waste. (a) Waste materials, including liquids, shall not accumulate in quantities that could create a fire hazard. (b) Waste or rags containing...

  19. A method of determining combustion gas flow

    Science.gov (United States)

    Bon Tempi, P. J.

    1968-01-01

    Zirconium oxide coating enables the determination of hot gas flow patterns on liquid rocket injector face and baffle surfaces to indicate modifications that will increase performance and improve combustion stability. The coating withstands combustion temperatures and due to the coarse surface and coloring of the coating, shows the hot gas patterns.

  20. Evaluation of the Decree on Emission Regulations for Medium-sized Combustion Installations; Evaluatie Besluit emissie-eisen middelgrote stookinstallaties

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P.; Plomp, A.J. [ECN Beleidsstudies, Petten (Netherlands); Van Berkel, L.; Burgers, W.; Hermans, L.; Groot, M.; Simonse, W. [Kenniscentrum InfoMil, Rijkswaterstaat Water, Verkeer en Leefomgeving, Den Haag (Netherlands); Kruithof, P.; Taal, M.; Van Bergen, J.; Walthaus, H. [Ministerie van Infrastructuur en Milieu IenM, Den Haag (Netherlands)

    2013-05-15

    In April 2010 the Dutch decree on emission limit values (ELVs) on medium-sized combustion installations entered into force. Bems sets ELVs for NOx, SO2, PM and CxHy. In 2013 the Bems legislation was transferred to the Activities Decree (In Dutch: Ab - Activiteitenbesluit). At the same time the Industrial Emissions Directive (IED) was implemented in the Ab. At the time Bems entered into force, it was decided to evaluate this legislation in 2014. Due to incorporation of Bems and the implementation of the IED in the Ab, it was decided to perform this evaluation a year earlier, thereby enabling the consideration of several stakeholders' comments on these implementations. This report presents the main conclusions of this evaluation. In Bems, combustion installations smaller than 50 MWth have to comply with ELVs based on Best Available Technology (BAT). Five possible ELVs have been discussed but not implemented in Bems, due to a lack of knowledge. These ELVs have been included in this evaluation. For gas engines < 2.5 MWth the NOx ELV could be more stringent, namely 140 mg/Nm{sup 3} instead of 340 mg/Nm{sup 3}; all ELVs are set at dry conditions in the flue gas and 3% O2. For biogas engines, introduction of the same ELV might be postponed until a comparable ELV enters into force in 2016 in a Californian region. Both the Californian ELV and this ELV need a gas cleaning technology. For (bio)diesel engines the dust ELV could be more stringent, namely 15 mg PM/Nm{sup 3} instead of 50 mg PM/Nm{sup 3}, while for NOx the ELV can be tightened from 450 mg/Nm{sup 3} to 250 mg/Nm{sup 3}. Both ELVs may be postponed until Tier 4 limits in the USA enter into force in the period 2014-2017. The Netherlands is one of the very few countries with CxHy ELVs for gas engines. The current CxHy ELV of 1500 mg C/Nm{sup 3} may be tightened to 1200 mg C/Nm{sup 3}. Other issues and changes, directly related to the Dutch legislation, have been discussed as well. These include exemption rules

  1. Three-dimensional Numerical Simulation of Combustion Field in the Combustion Chamber

    Institute of Scientific and Technical Information of China (English)

    YAN Ping; QIAN Zhi-bo; YANG Jie; ZHANG Jin-jun

    2006-01-01

    In order to study the effect of rotation on the combustion in the underwater vehicle, a two-phase turbulent combustion process is described with Reynolds stress turbulence model, eddy-dissipation turbulent combustion model, P-1 radiation model and particle tracking model of liquid. The flow in the rotating combustion chamber is simulated at two different working speeds, 0 r/min and 1 000 r/min by Fluent software. The temperature, gas velocity, static pressure of wall and fuel concentration are computed and compared. The results show that the combustion in rotating combustor is faster and more effective.

  2. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  3. Fast Pyrolysis of Biomass in a Spout-fluidized Bed Reactor--Analysis of Composition and Combustion Characteristics of Liquid Product from Biomass

    Institute of Scientific and Technical Information of China (English)

    陈明强; 王君; 王新运; 张学才; 张素平; 任铮伟; 颜涌捷

    2006-01-01

    In order to gain insight into the fast pyrolysis mechanism of biomass and the relationship between bio-oil composition and pyrolysis reaction conditions, to assess the possibility for the raw bio-oil to be used as fuel, and to evaluate the concept of spout-fluidized bed reactor as the reactor for fast pyrolysis of biomass to prepare fuel oil, the composition and combustion characteristics of bio-oil prepared in a spout-fluidized bed reactor with a designed maximum capacity 5 kg/h of sawdust as feeding material, were investigated by GC-MS and thermogravimetry. 14 aromatic series chemicals were identified. The thermogravimetric analysis indicated that the bio-oil was liable to combustion, the combustion temperature increased with the heating rate, and only minute ash was generated when it burned. The kinetics of the combustion reaction was studied and the kinetic parameters were calculated by both Ozawa-Flynn-Wall and Popsecu methods. The results agree well with each other. The most probable combustion mechanism functions determined by Popescu method are f(α)=k(1-α)2(400~406 ℃), f(α)=1/2k(1-α)3 (406~416 ℃) and f( α)=2k(1-α)3/2 (416~430 ℃) respectively.

  4. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity.

    Science.gov (United States)

    Timmen, H; Patton, S

    1988-07-01

    Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, -5.9%, less stearic acid, -22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.

  5. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  6. Recovery of combustible vapors, by liquid refrigerated centrifugation, on distribution bases of loading islands; Recuperacao de vapores de combustiveis, por centrifugacao liquida refrigerada, em ilhas de carregamento das bases de distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Capulli, Domenico; Saraceno, Alessandra S.P. [Capmetal Tecnologia Ambiental, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The distribution of petroleum derivates organic combustibles represents, in volume, the second liquid fluid of the planet, with distribution basis, the loading operations of trucks, railroad coaches and vessels provokes the unfastening of volatile organic compounds - VOC, in Brazil the combustible vaporized fraction is estimated 313.308 liters daily, provoking health damages in operators and environmental impacts at aerial basin, determining the obligatory disposal of organic vapors capitation and depuration systems, with use of technologies, such as thermal oxidation, activated carbon adsorption, fluids absorptions and cryogenic condensation for treatment of the emanated vapors at loading operations, so the high aggregated value of the investment, the intensive consume of energy and the high sizes, that residue treatment units have postponed the investments in function of the missing of regularization in Brazil, counter pointing the regularization of the Clean Air Act and the United States Cost Guard that introduced the evolution and the availability of the BDT - Best Demonstrated Technologies - the technological innovation of the Hydrodynamic Precipitator operating by multi venturi liquid centrifugation married with refrigeration cycles that permit the recovery of the vapors and technologies BADCT - Best Demonstrated Control Technology - to viability the large extension of the compact control units required of smaller investment and one stage operation. (author)

  7. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  8. Combustion synthesis of advanced composite materials

    Science.gov (United States)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  9. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  10. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  11. Extended lattice Boltzmann scheme for droplet combustion

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n -butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  12. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  13. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 1: A One-Dimensional Analysis of Low Frequency Combustion Instability in the Fuel Preburner of the Space Shuttle Main Engine. Final Report M.S. Thesis - Aug. 1986

    Science.gov (United States)

    Lim, Kair Chuan

    1986-01-01

    Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.

  14. KOMPOSISI DAN AKTIVITAS ANTIBAKTERI ASAP CAIR SABUT KELAPA YANG DIBUAT DENGAN TEKNIK PEMBAKARAN NON PIROLISIS Composition and Antibacterial Activity of Liquid Smoke of Coconut Fiber Made by NonPirolisis Combusting Technique

    Directory of Open Access Journals (Sweden)

    Feti Fatimah

    2012-05-01

    Full Text Available Food preservation by liquid smoke was one of the food conservation techniques that was easy to be conducted.Nonetheless, it was difficult in reality for people to product liquid smoke because of the complicated process in making pirolisis tools. This study was conducted to learn how to make liquid smoke by non pirolisis technique using the basic material of coconut fiber. And then, it must be performed in the liquid smoke, the redistilation and the adsorption process using active carbon. The quality of liquid smoke was examined by observing the components using Gas chromatography-Mass Spectrophotometry (GC-MS and performing test of antibacterial activity to three kinds of bacterias: Salmonella choleraeaeus, Bacillus subtilus, and Staphylococcus aureus using technic of well in the PCA media of 108/ml in population. Based on the study results, it was found that the original liquid smoke (without redistilation and adsorption process using active carbon consisted at least of 21 components, redistilated liquid smoke consist at least of 31 components, and adsorpted liquid smoke using active carbon consisted at least of 5 components. From the result of test of antibacterial activity, it was found that the redistilated liquid smoke showed better bacterial activity than in the original liquid smoke, whereas the absorpted liquid smoke using active carbon had the smallest activity among them. It was because of the content of the 2-methoxiphenol compound in the redistilated liquid smoke was the highest among them. And based on this phenomena, it was found that redistilation technique could increase the quality of liquid smoke of coconut fiber made by non pirolisis combusting method. ABSTRAK Pengawetan menggunakan asap cair merupakan salah satu teknik pengawetan bahan pangan yang mudah diaplikasikan.Meskipun demikian, pada kenyataannya, masyarakat kesulitan memproduksi asap cair dikarenakan sulitnya membuat peralatan pirolisis. Penelitian ini dilakukan guna

  15. Hybrid Approach for Modeling Chemical Kinetics and Turbulence Effects on Combustion-Instability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Combustion instabilities pose a significant technical risk in the development of liquid and solid rocket motors. Much of the effort in modeling combustion...

  16. Filtration Combustion in Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    2001-01-01

    media, melting often occurs ahead of the propagating combustion wave. In certain cases there is so much melting that the porous solid structure is destroyed, e.g., by melting and a suspension arises, consisting of a liquid bath containing solid particles and/or gas bubbles. The resulting combustion wave is referred to as a liquid flame. We have considered a number of problems involving filtration combustion. Here, we describe four such studies: (A) rapid buoyant filtration combustion waves; (B) diffusion driven combustion waves; (C) rapidly propagating liquid flames in gravitational fields; and (D) gas-phase influence on liquid flames in gravitational fields.

  17. Experimental and theoretical study of metal combustion in oxygen flows

    CERN Document Server

    El-Rabii, Hazem; Muller, Maryse

    2016-01-01

    The effects of oxygen flow speed and pressure on the iron and mild steel combustion are investigated experimentally and theoretically. The studied specimens are vertical cylindrical rods subjected to an axial oxygen flow and ignited at the upper end by laser irradiation. Three main stages of the combustion process have been identified experimentally: (1) Induction period, during which the rod is heated until an intensive metal oxidation begins at its upper end; (2) Static combustion, during which a laminar liquid "cap" slowly grows on the upper rod end; and, after the liquid cap detachment from the sample, (3) Dynamic combustion, which is characterized by a rapid metal consumption and turbulent liquid motions. An analytical description of these stages is given. In particular, a model of the dynamic combustion is constructed based on the turbulent oxygen transport through the liquid metal-oxide flow. This model yields a simple expression for the fraction of metal burned in the process, and allows one to calcul...

  18. CO2 as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids.

    Science.gov (United States)

    Xue, Zhimin; Sun, Xiaofu; Li, Zhonghao; Mu, Tiancheng

    2015-07-11

    A controllable synthetic route has been developed for the preparation of chitosan supported Pd catalysts in an ionic liquid, 1-butyl-3-methylimidazolium acetate ([Bmim]OAc), by using compressed CO2 as the anti-solvent and regulator. It was found that the dispersion of Pd particles on chitosan and the catalytic activity of the as-prepared catalysts for the hydrogenation of styrene could be tuned by changing the pressure of CO2.

  19. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-06-13

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  1. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  2. Commercial Demonstration of Oxy-Coal Combustion Clean Power Technology

    Energy Technology Data Exchange (ETDEWEB)

    K.J. McCauley; K.C. Alexander; D.K. McDonald; N. Perrin; J.-P. Tranier [Babcock & Wilcox Power Generation Group (United Kingdom)

    2009-07-01

    Oxy-Coal Combustion is an advanced clean coal-based power generation technology with carbon capture and storage that will be Near Zero Emissions (NZEP), will capture and safely store CO{sub 2} in a geologic formation, and generate clean power for sale. This sustainable technology will utilize natural resources and support energy security goals. The unique benefits of oxy-coal combustion allow for near zero emissions of coal combustion products. The emissions of particulate matter, sulfur dioxide, nitrogen oxides and mercury will not only be below regulated levels, but all will be within the uncertainty of current industry measurement methods, essentially zero. This advanced technology will demonstrate all these reduced levels and will lead to commercially available NZEP plants for power generation. Since 1991, with the support of the US-DOE, Babcock & Wilcox Power Generation Group, Inc. (B&W PGG) and Air Liquide (AL) have worked to bring an advanced technology to the market for Carbon Capture and Storage (CCS) for coal-fired electric power generation plants. Oxy-coal combustion is now ready for at-scale demonstration leading directly to full scale commercialization and availability in the power generation marketplace. This paper will discuss the follow up of the results of the 30 MWth large pilot test program completed in December, 2008. This oxy-coal combustion technology has been through small lab pilot testing, large pilot testing, and a rigorous bottom-up integration and optimization analysis. Our paper will describe incorporating the best technological thinking for the integration of a modern PC-fired boiler, environmental control equipment, air separation unit (ASU) and compression purification unit (CPU). 5 refs., 3 figs.

  3. 液体乙醇微尺度层流扩散燃烧的数值模拟%Numerical Simulation of Microscale Laminar-Flow Diffusion Combustion of Liquid Ethanol

    Institute of Scientific and Technical Information of China (English)

    徐涛; 杨泽亮; 甘云华

    2011-01-01

    结合微尺度条件下液体乙醇的流动和燃烧特性,通过理论分析选择合理的模型来对液体乙醇的微尺度层流扩散燃烧进行数值模拟,然后采用数值模拟软件Fluent来分析液滴辐射传热与边界层滑移因素对数值模拟的影响,将数值模拟结果与测量值进行对比分析.研究结果表明:将液滴辐射传热和边界层滑移因素结合起来考虑能使数值模拟值与测量值更接近.%By taking into consideration the flow and combustion characteristics of liquid ethanol in microscale flow,a reasonable simulation model is selected based on theoretical analysis for the numerical simulation of microscale laminar-flow diffusion cumbustion of liquid ethanol, and the effects of droplet radiation heat transfer and boundary slip on the simulation are analyzed with Fluent. The simulated results are then compared with the measured ones finding that the numerical simulation considering both the droplet radiation heat transfer and the boundary slip is more accurate.

  4. Advanced bioreactor concepts for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.; Selvaraj, P.T.

    1997-10-01

    The purpose of the proposed research program was the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from coal combustion flue gas. This study addressed the further investigation of optimal bacterial strains, growth media and kinetics for the biocatalytic conversion of coal synthesis gas to liquid fuel such as ethanol and the reduction of gaseous flue gas constituents. The primary emphasis was on the development of advanced bioreactor systems coupled with innovative biocatalytic systems that will provide increased productivity under controlled conditions. It was hoped that this would result in bioprocessing options that have both technical and economic feasibility, thus, ensuring early industrial use. Predictive mathematical models were formulated to accommodate hydrodynamics, mass transport, and conversion kinetics, and provide the data base for design and scale-up. The program was separated into four tasks: (1) Optimization of Biocatalytic Kinetics; (2) Development of Well-mixed and Columnar Reactors; (3) Development of Predictive Mathematical Models; and (4) Industrial Demonstration. Research activities addressing both synthesis gas conversion and flue gas removal were conducted in parallel by BRI and ORNL respectively.

  5. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  6. Radiation/Catalytic Augmented Combustion.

    Science.gov (United States)

    1980-09-01

    NATIO& NAk H(fJI At tl TANUAHTOb 19 A ~omm.81-0287 LVL RADIATION/CATALYTIC AUGMENTED COMBUST ION MOSHE LAVID CORPORATE RESEARCH-TECHNOLOGY FEASIBILITY...refinements as necessary. i. Perform cannular combustor experiments to Investigate ignition and flame attachment in flowing, liquid -fuel, unpremixed...stabilizer, with a sintered metal disk on the downstream side through which hot gases or products of partial fuel oxidation can be passed. Experimental

  7. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  8. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method.

    Science.gov (United States)

    Gupta, Vishal; Kumar, Manoj; Brahmbhatt, Harshad; Reddy, C R K; Seth, Abhiram; Jha, Bhavanath

    2011-11-01

    A simple and rapid HPLC-based method was developed for simultaneous determination of major classes of plant growth regulators (PGRs) in Monostroma and different species of Ulva. The plant growth regulators determined included gibberellic acid (GA(3)), indole-3-acetic acid (IAA), abscisic acid (ABA), indole-3-butyric acid (IBA), salicylic acid and kinetin riboside (KR) and their respective elution time was 2.75, 3.3, 3.91, 4.95, 5.39 and 6.59 min. The parameters optimized for distinct separation of PGRs were mobile phase (60:40 methanol and 0.6% acetic acid in water), column temperature (35°C) and flow rate (1ml/min). This method presented an excellent linearity (0.2-100μg/ml) with limit of detection (LOD) as 0.2μg/ml for ABA, 0.5μg/ml for KR and salicylic acid, and 1μg/ml for IAA, IBA and GA(3). The precision and accuracy of the method was evaluated after inter and intra day analysis in triplicates. The effect of plant matrix was compensated after spiking and the resultant recoveries estimated were in the range of 80-120%. Each PGR thereby detected were further characterized by ESI-MS analysis. The method optimized in this study determined IBA along with IAA for the first time in the seaweed species investigated except Ulva linza where the former was not detected. In all the species studied, ABA level was detected to be the highest while kinetin riboside was the lowest. In comparison to earlier methods of PGR analysis, sample preparation and analysis time were substantially reduced while allowing determination of more classes of PGRs simultaneously.

  9. Combustion and flow modelling applied to the OMV VTE

    Science.gov (United States)

    Larosiliere, Louis M.; Jeng, San-Mou

    1990-01-01

    A predictive tool for hypergolic bipropellant spray combustion and flow evolution in the OMV VTE (orbital maneuvering vehicle variable thrust engine) is described. It encompasses a computational technique for the gas phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging liquid hypergolic stream interactions. Emphasis is placed on the phenomenological modelling of the hypergolic liquid bipropellant gasification processes. An application to the OMV VTE combustion chamber is given in order to show some of the capabilities and inadequacies of this tool.

  10. 易燃液体在不同环境下成分变化特征的研究%The component change of combustible liquid in different circumstance

    Institute of Scientific and Technical Information of China (English)

    梁国福; 鲁志宝; 王鑫; 范子琳; 田桂花; 邓震宇

    2011-01-01

    The characteristic's rule of target compound in physical evidence assay of fire was summarized with the examples of gas oline, diesel and paint thinner to determine whether the scene of fire has liquid combustion improver. The component change of combustion improver was detected by GC/MS after placed for different time in certain circumstance. The low- boiling matter lost and the high- boiling matter left after placed at certain temperature and the spectrogram varied obviously. The spec trogram from fire identification must be compared with different spectrogram according to the extract time and temperature to judge accurately.%为判定火灾现场中是否存在液体助燃剂,选择汽油、柴油以及油漆稀释剂等液体助燃物,总结在火灾物证鉴定过程中寻找各助燃剂目标化合物的特征规律.将液体助燃物在一定环境下分别放置不同的时间,使用GC/MS分析检测各助燃剂成分变化.各类易燃液体在经过放置和温度的作用后,低沸点的物质流失,高沸点的物质显露出来,谱图发生明显变化.鉴定过程中要根据样品的提取时间及受温情况等与不同的谱图进行对比,做出准确判断.

  11. Ignition and combustion phenomena on a moving grate: with application to the thermal conversion of biomass and municipal solid waste

    NARCIS (Netherlands)

    Blijderveen, M.

    2012-01-01

    Combustion can be defined as a fast oxidation process of a solid, gaseous or liquid fuel at elevated temperatures. In any combustion process, ignition plays an essential role. Not only to initiate the combustion process, but also to maintain it. Especially in solid fuel combustion on a grate, where

  12. Combustive management of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  13. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    Science.gov (United States)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  14. Analysis of rocket engine injection combustion processes

    Science.gov (United States)

    Salmon, J. W.

    1976-01-01

    A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.

  15. A techno-economic & environmental analysis of a novel technology utilizing an internal combustion engine as a compact, inexpensive micro-reformer for a distributed gas-to-liquids system

    Science.gov (United States)

    Browne, Joshua B.

    converts natural gas to synthesis gas (syngas) in a reciprocating internal combustion engine and then converts the syngas into methanol in a small-scale reactor. With methanol as the product, this research aims to show that such a system can not only address current and future natural gas flaring regulation, but eventually can compete economically with historically large-scale, centralized methanol production infrastructure. If successful, such systems could contribute to a shift away from large, multi-billion dollar capital cost chemical plants towards smaller systems with shorter lifetimes that may decrease the time to transition to more sustainable forms of energy and chemical conversion technologies. This research also quantifies the potential for such a system to contribute to mitigating GHG emissions, not only by addressing flared gas in the near-term, but also supporting future natural gas infrastructure ideas that may help to redefine the way the current natural gas pipeline system is used. The introduction of new, small-scale, distributed energy and chemical conversion systems located closer to the point of extraction may contribute to reducing methane leakage throughout the natural gas distribution system by reducing the reliance and risks associated with the aging natural gas pipeline infrastructure. The outcome of this thesis will result in several areas for future work. From an economic perspective, factors that contribute to overall system cost, such as operation and maintenance (O&M) and capital cost multiplier (referred to as the Lang Factor for large-scale petro-chemical plants), are not yet known for novel systems such as the technology presented here. From a technical perspective, commercialization of small-scale, distributed chemical conversion systems may create a demand for economical compression and air-separation technologies at this scale that do not currently exist. Further, new business cases may arise aimed at utilizing small, remote sources of

  16. MHD-, ships-, jet engine unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquefier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. MHD-Schiffs-Strahltriebwerks-Aggregat bestehend aus Wasserstoff-produzierenden elektrochemischen Solarzellen, magnetokalorischem Wasserstoffverfluessiger, Fluessigwasserstoff gekuehltem Hochtemperatur-Supraleiter-MHD-Strahltriebwerk, Fluessigwasserstoff-Verbrennungsmotor als Hochtemperatur-Supraleiter-Generator-Antrieb, Hochtemperatur-Supraleiter-Spule und permanentmagnetischem Supraleiter-Hohlzylinder als Akku

    Energy Technology Data Exchange (ETDEWEB)

    Berling, E.

    1991-05-02

    MHD-, ships-, jet engine-unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquifier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. Ships water jet engines with magneto hydrodynamic (MHD) low temperature superconductor drive are known. The invention of the ceramic high temperature superconductor MHD drive, which is cooled with liquid hydrogen. The hydrogen is obtained electro-chemically directly from seawater, and is liquified magneto-calorically. The high temperature superconductor elements of the engine, liquifier, generator, storage coil, permanent magnet hollow cylinder store are coupled by a common liquid hydrogen cooling circuit. The internal combustion engine driving the generator is fuelled by the same liquid hydrogen by which the high temperature superconductor elements are cooled.

  17. Modelling and research on the combustion processes in the gas plus liquid fluxes; Modelagem e pesquisa dos processos de combustao nos fluxos gas + liquido

    Energy Technology Data Exchange (ETDEWEB)

    Krioukov, V.G. [Universidade Regional de Ijui (UNIJUI), RS (Brazil); Abduline, A.L. [Universidade Estatal Tecnica de Kazan (Russian Federation). Dept. de Termotecnica

    1995-07-01

    A complex mathematical model for reacting multiphase currents that are formed as a consequence of the injection of any disperse fluid on a high-temperature gas flow is described. Factors that are taken into account the chemical transformations (using the kinetic chemistry framework); the aerodynamic interaction between the liquid drops and the current (for subcritical and supercritical pressures); a polydisperse pulverization; the possibility of appearance of condenses substances. Some results of the numerical research for the kinds of reacting currents are shown. (author)

  18. Analysis of liquid and gaseous oxygen influence on the combustion flow field of air heater%液氧与气氧对空气加热器燃烧流场的影响分析

    Institute of Scientific and Technical Information of China (English)

    冯军红; 沈赤兵; 赵芳

    2012-01-01

    The evaluation index, such as spray combustion, gas mixing and nozzle non-uniformity of air heater based on the combustor of liquid rocket engine, was studied with numerical simulation. The difference between the injectors with ethanol/liquid oxygen/air and the injectors with ethanol/gaseous oxygen/air in the combustion flow field was discussed and analyzed. Two cases were designed by changing the characteristic length of combustor, and the performance of air heaters were investigated by numerical simulation. The results show that, the flame structure is affected obviously by the phase of oxygen. The length of flame with liquid oxygen is larger than that of gaseous oxygen. More hot gas fills in the recirculation zone in the forepart of combustor with gaseous oxygen case, which increases the gas temperature near the faceplate, and worsens the thermal environment on the faceplate. The high quality flow field on the nozzle exit is obtained with the designed air heater. The characteristic length of air heater with gaseous oxygen is at least a quarter less than that of air heater with liquid oxygen to keep the good uniformity of nozzle exit.%针对一种基于液体火箭发动机燃烧室结构的空气加热器,采用数值仿真技术研究了加热器内部喷雾燃烧、燃气掺混以及出口流场分布等参数.分析对比了采用酒精/液氧/空气与酒精/气氧/空气两种不同氧化剂物态三组元同轴直流式喷嘴所得到的燃烧流场的区别,并通过改变燃烧室特征长度,分析了两种计算工况的加热器的性能差异.结果表明,喷入氧化剂的物态对燃烧流场影响较大,采用液氧喷嘴的火焰较长,气氧喷嘴的火焰分布较宽,且相对于液氧喷嘴,气氧喷嘴的燃烧室前端回流区由于掺混较多的燃气,导致喷注面板附近燃气温度较高,面板承热压力较大.设计的加热器均可保证两种喷嘴的出口流场品质较高,在保证流场出口品质的原则上,气氧喷

  19. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  20. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  1. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1995-06-01

    The purpose of the proposed research program is the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. Coal is thermochemically converted to synthesis gas consisting of carbon monoxide, hydrogen, and carbon dioxide. Conventional catalytic upgrading of coal synthesis gas into alcohols or other oxychemicals is subject to several processing problems such as interference of the other constituents in the synthesis gases, strict CO/H{sub 2} ratios required to maintain a particular product distribution and yield, and high processing cost due to the operation at high temperatures and pressures. Recently isolated and identified bacterial strains capable of utilizing CO as a carbon source and coverting CO and H{sub 2} into mixed alcohols offer the potential of performing synthesis gas conversion using biocatalysts. Biocatalytic conversion, though slower than the conventional process, has several advantages such as decreased interference of the other constituents in the synthesis gases, no requirement for strict CO/H{sub 2} ratios, and decreased capital and oeprating costs as the biocatalytic reactions occur at ambient temperatures and pressures.

  2. Trends in modeling of porous media combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mujeebu, M. Abdul; Abdullah, M. Zulkifly [Porous Media Combustion Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Mohamad, A.A. [College of Engineering, Alfaisal University, Riyadh 11533, P.O. Box 50927 (Saudi Arabia); Bakar, M.Z. Abu [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2010-12-15

    Porous media combustion (PMC) has interesting advantages compared with free flame combustion due to higher burning rates, increased power dynamic range, extension of the lean flammability limits, and low emissions of pollutants. Extensive experimental and numerical works were carried out and are still underway, to explore the feasibility of this interesting technology for practical applications. For this purpose, numerical modeling plays a crucial role in the design and development of promising PMC systems. This article provides an exhaustive review of the fundamental aspects and emerging trends in numerical modeling of gas combustion in porous media. The modeling works published to date are reviewed, classified according to their objectives and presented with general conclusions. Numerical modeling of liquid fuel combustion in porous media is excluded. (author)

  3. Resveratrol enhances airway surface liquid depth in sinonasal epithelium by increasing cystic fibrosis transmembrane conductance regulator open probability.

    Directory of Open Access Journals (Sweden)

    Shaoyan Zhang

    Full Text Available BACKGROUND: Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR. The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease. METHODS: Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR, and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction. RESULTS: Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05. There was no increase CFTR mRNA. CONCLUSION: Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR

  4. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  5. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  6. Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes

    Science.gov (United States)

    This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.

  7. Dynamic analysis of a flameless combustion model combustor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flameless combustion is a new technology with the following advantages:1)Ultra-low emissions of both NOX and CO;2)fuel flexibility,from liquid fuels,natural gas to hydrogen-rich syngas;3)lower possibility of flashback and thermoacoustic oscillations.In this paper,we focus on the dynamic characteristics of a flameless model combustor.Experimental results show that flameless combustion can lower emissions while maintaining combustion stability.However,combining a pilot flame with flameless combustion may excite thermoacoustic instability.

  8. Evaluation and Modeling of Vapor-Liquid Equilibrium and CO2 Absorption Enthalpies of Aqueous Designer Diamines for Post Combustion Capture Processes.

    Science.gov (United States)

    Luo, Weiliang; Yang, Qi; Conway, William; Puxty, Graeme; Feron, Paul; Chen, Jian

    2017-06-20

    Novel absorbents with improved characteristics are required to reduce the existing cost and environmental barriers to deployment of large scale CO2 capture. Recently, bespoke absorbent molecules have been specifically designed for CO2 capture applications, and their fundamental properties and suitability for CO2 capture processes evaluated. From the study, two unique diamine molecules, 4-(2-hydroxyethylamino)piperidine (A4) and 1-(2-hydroxyethyl)-4-aminopiperidine (C4), were selected for further evaluation including thermodynamic characterization. The solubilities of CO2 in two diamine solutions with a mass fraction of 15% and 30% were measured at different temperatures (313.15-393.15 K) and CO2 partial pressures (up to 400 kPa) by thermostatic vapor-liquid equilibrium (VLE) stirred cell. The absorption enthalpies of reactions between diamines and CO2 were evaluated at different temperatures (313.15 and 333.15 K) using a CPA201 reaction calorimeter. The amine protonation constants and associated protonation enthalpies were determined by potentiometric titration. The interaction of CO2 with the diamine solutions was summarized and a simple mathematical model established that could make a preliminary but good prediction of the VLE and thermodynamic properties. Based on the analyses in this work, the two designer diamines A4 and C4 showed superior performance compared to amines typically used for CO2 capture and further research will be completed at larger scale.

  9. ABB Combustion Engineering nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  10. Antifatigue Activity of Liquid Cultured Tricholoma matsutake Mycelium Partially via Regulation of Antioxidant Pathway in Mouse

    Directory of Open Access Journals (Sweden)

    Quan Li

    2015-01-01

    Full Text Available Tricholoma matsutake has been popular as food and biopharmaceutical materials in Asian countries for its various pharmacological activities. The present study aims to analyze the antifatigue effects on enhancing exercise performance of Tricholoma matsutake fruit body (ABM and liquid cultured mycelia (TM in mouse model. Two-week Tricholoma matsutake treatment significantly enhances the exercise performance in weight-loaded swimming, rotating rod, and forced running test. In TM- and ABM-treated mice, some factors were observed at 60 min after swimming compared with nontreated mice, such as the increased levels of adenosine triphosphate (ATP, antioxidative enzymes, and glycogen and the reduced levels of malondialdehyde and reactive oxygen species in muscle, liver, and/or serum. Further data obtained from western blot show that CM and ABM have strongly enhanced the activation of 5′-AMP-activated protein kinase (AMPK, and the expressions of peroxisome proliferator have activated receptor γ coactivator-1α (PGC-1α and phosphofructokinase-1 (PFK-1 in liver. Our data suggest that both Tricholoma matsutake fruit body and liquid cultured mycelia possess antifatigue effects related to AMPK-linked antioxidative pathway. The information uncovered in our study may serve as a valuable resource for further identification and provide experimental evidence for clinical trials of Tricholoma matsutake as an effective agent against fatigue related diseases.

  11. Constant-Pressure Combustion Charts Including Effects of Diluent Addition

    Science.gov (United States)

    Turner, L Richard; Bogart, Donald

    1949-01-01

    Charts are presented for the calculation of (a) the final temperatures and the temperature changes involved in constant-pressure combustion processes of air and in products of combustion of air and hydrocarbon fuels, and (b) the quantity of hydrocarbon fuels required in order to attain a specified combustion temperature when water, alcohol, water-alcohol mixtures, liquid ammonia, liquid carbon dioxide, liquid nitrogen, liquid oxygen, or their mixtures are added to air as diluents or refrigerants. The ideal combustion process and combustion with incomplete heat release from the primary fuel and from combustible diluents are considered. The effect of preheating the mixture of air and diluents and the effect of an initial water-vapor content in the combustion air on the required fuel quantity are also included. The charts are applicable only to processes in which the final mixture is leaner than stoichiometric and at temperatures where dissociation is unimportant. A chart is also included to permit the calculation of the stoichiometric ratio of hydrocarbon fuel to air with diluent addition. The use of the charts is illustrated by numerical examples.

  12. Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism.

    Science.gov (United States)

    Saha, Shambaditya; Weber, Christoph A; Nousch, Marco; Adame-Arana, Omar; Hoege, Carsten; Hein, Marco Y; Osborne-Nishimura, Erin; Mahamid, Julia; Jahnel, Marcus; Jawerth, Louise; Pozniakovski, Andrej; Eckmann, Christian R; Jülicher, Frank; Hyman, Anthony A

    2016-09-08

    P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5. To probe how polarity proteins regulate phase separation, we combined biochemistry and theoretical modeling. We reconstitute P granule-like droplets in vitro using a single protein PGL-3. By combining in vitro reconstitution with measurements of intracellular concentrations, we show that competition between PGL-3 and MEX-5 for mRNA can regulate the formation of PGL-3 droplets. Using theory, we show that, in a MEX-5 gradient, this mRNA competition mechanism can drive a gradient of P granule assembly with similar spatial and temporal characteristics to P granule assembly in vivo. We conclude that gradients of polarity proteins can position RNP granules during development by using RNA competition to regulate local phase separation.

  13. Determination of plant growth regulators in pears by microwave-assisted extraction and liquid chromatography with electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mao, Xuejin; Tang, Lijuan; Tan, Ting; Wan, Yiqun

    2014-06-01

    A new method for the determination of six plant growth regulators, 3-indolylacetic acid, 3-indolepropionic acid, 2-naphthoxyacetic acid, 2,4-dicholrophenoxyacetic acid, 1-naphthlcetic acid, and methyl naphthalene-1-acetate, in pears was established by liquid chromatography with electrospray ionization mass spectrometry. In this study, a microwave-assisted extraction technique was first applied for the determination of plant growth regulators in fruit and three cleanup techniques were, respectively, investigated for the purification of pear samples. The chromatographic separation was performed on a Diamonsil C18 column by using 0.01 mol/L formic acid/ammonium formate buffer solution (pH 3.5)/methanol (35:65, v/v) as the mobile phase with a flow rate of 0.7 mL/min in 1:1 split mode. The LODs ranged from 0.3 to 1.9 μg/kg. Under optimized conditions, the average recoveries (five replicates) for six plant growth regulators (spiked at 0.01, 0.05, and 0.5 mg/kg) ranged from 78.9 to 118.0%, and the RSDs were 1.4-10.3%.

  14. Effects of baffle on combustion acoustic characteristics of liquid rocket engine%隔板对燃烧室声学特性的影响

    Institute of Scientific and Technical Information of China (English)

    李丹琳; 田原; 孙纪国

    2012-01-01

    为了研究液体火箭发动机燃烧室出现的横向一阶切向燃烧不稳定,通过冷态声学试验和理论算例的计算,研究了不同参数的隔板装置对一阶切向声学频率及阻尼特性的影响,结果表明:增加轴向隔板长度和径向隔板数目均会降低一阶切向声学频率,同时增强声阻尼效果;喷嘴式隔板产生的声阻尼效果,比典型直板形状的隔板要好得多,隔板喷嘴最佳间隙在0.1-0.4mm,采用最佳隔板喷嘴间隙能够在较短的轴向隔板长度上得到较高的阻尼能力,从而改善冷却问题.%Cold acoustic tests have been performed to elucidate the effect of baffle on the damping characteristics of the first-tangential acoustic mode in a liquid rocket engine. Differ- ent kinds of baffle parameters were researched by acoustic tests. The results agree well with the theory typical example and show that when increasing the axial baffle length and the ra- dial baffle number, the acoustic frequency of the first-tangential acoustic mode decreases and the acoustic damping capacity increases. Injector-forming baffles have some advantages over the typical straight baffles in acoustic damping capability; an optimal acoustic damping ca- pacitance has been achieved in 0.1-0. 4mm; axial baffle length can be reduced by using the optimal baffle gap, providing a possible solution of thermal cooling problems.

  15. Basic Requirements Of The Basel Committee On Regulating Capital Adequacy And Liquidity Of Commercial Banks

    Directory of Open Access Journals (Sweden)

    Bahriddin Berdiyarov

    2012-03-01

    Full Text Available The current paper highlights theBaselI, Basel II & Basel III requirements on capital adequacy and liquidity of commercial banks.  In the paper, Basel II structure, methods of loan risk assessment, coefficients of loan risk assessment, credit risk measurement for counterparty banks are discussed.  Moreover, assessments of Basel III on bank chances against crisis driven from financial and economic crunches, risk management, performance quality and bank transparency improvement measures are presented.  At the end, the author gives his conclusions on the essence and necessity of new regulatory standards of the Basel Committee on bank’s supervision in the structure of the supervision of credit institutions.

  16. Study of the Combustion Characteristics of Liquid N-heptane in a Tiny Straight Tube Type Burner%液体正庚烷在微细直管燃烧器中的燃烧特性研究

    Institute of Scientific and Technical Information of China (English)

    赵俊英; 李军伟; 黄景怀; 王宁飞

    2013-01-01

    To learn the flame extinction and diffusion characteristics of liquid fuel in a micro space, various sleeve tubes and porous media were used. In a tiny straight tube, the diffused flame of heptane was experimentally studied. The re search results show that with an increase of the flow rate of heptane, the stable location of the flame will gradually move to the outlet of the straight tube type burner,the flammable limits will first become wide at a high speed and then tend to be constant. To increase the number of the sleeve tubes can effectively expand the flammable limits and the structure of the sleeve tubes has a big influence on the flame stability and flammable limits. The more the num ber of the sleeve tubes, the smaller the heat quantity released from the burner. In addition, the location of the porous medium influences greatly the flame stability. When the nozzle of heptane is placed at the upper reaches of the por ous medium or in it, the evaporation and mixing effectiveness of liquid heptane will be the best, thus obtaining a bet ter oxygen-enriched combustion limit.%为了解液体燃料在微小空间中的熄火和火焰传播特性,采用不同的外套管和多孔介质,在微细直管中对庚烷扩散火焰进行了实验研究.研究结果表明:随着庚烷流量的增加,火焰稳定位置逐渐向直管燃烧器出口移动,可燃极限先迅速增大又趋于不变.增加外套管可以有效扩展可燃极限,外套管的结构对火焰稳定性和可燃极限有很大影响.外套管层数越多,燃烧器散热量越小,火焰稳定性越好.此外,多孔介质的位置对火焰稳定性也有很大影响.庚烷喷嘴放置在多孔介质上游及多孔介质中时,液体庚烷的蒸发以及混合效果最好,可以得到更好的富燃极限.

  17. Combustion of Interacting Droplet Arrays Being Studied

    Science.gov (United States)

    Dietrich, Daniel L.

    2002-01-01

    The combustion of liquid fuels is a major source of energy in the world today, and the majority of these fuels are burned in the form of a spray. This droplet combustion project at the NASA Glenn Research Center has the overall goal of providing a better understanding of spray combustion by extending existing studies of single droplets to a regime where droplet interactions are important (as occurs in a practical spray). The Combustion of Interacting Droplet Arrays is a collaborative effort between Glenn and the National Center for Microgravity Research. The group at Glenn also collaborates with scientists at the National Institute of Advanced Industrial Science and Technology in Hokkaido, Japan. The project is studying the combustion of a small number of droplets suspended on small quartz fibers in a 0.1-atm combustion chamber. Data consist primarily of video images of the flames and droplets. The tests are being conducted in Glenn's reduced-gravity facilities (2.2-sec and 5.2-sec drop towers) and in the Japan Microgravity Center's 10-sec drop tower (JAMIC).

  18. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  19. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  20. PROPAGATION OF Portulaca oleracea L. IN LIQUID MEDIUM: IMPLICATIONS OF PLANT GROWTH REGULATORS IN CULTURE

    Directory of Open Access Journals (Sweden)

    Mahipal S. Shekhawat

    2015-02-01

    Full Text Available Portulaca oleracea L. is a medicinal plant, growing in warm and moist regions of north hemisphere of the world. A protocol for in vitro propagation using nodal shoot segments as explants has been outlined. The percent shoot response with shoot induction rate, 6.4 ± 0.7 shoots per explant, was achieved when cultured on agar-gelled Murashige and Skoog (MS medium containing 2.0 mg/L of BAP (6-benzylaminopurine. The cultures were amplified by passages on MS medium with 1.0 mg/L each BAP and kinetin (Kn. The best shoot amplification (37.5±0.9 shoots per vessel was achieved by subculturing of in vitro regenerated shoot clumps on liquid MS medium. Shoots regenerated in vitro by both the processes were rooted on ½ strength of MS medium + 2.0 mg/L of indole-3 butyric acid (IBA. Ninety six percent of the shoots rooted in vitro. The in vitro rooted plantlets were hardened under different regimes of temperature and humidity in the greenhouse. The hardened plantlets were transferred to mixture of soil and manure in polybags.

  1. Regulating the modulus of a chiral liquid crystal polymer network by light.

    Science.gov (United States)

    Kumar, Kamlesh; Schenning, Albertus P H J; Broer, Dirk J; Liu, Danqing

    2016-04-01

    We report a novel way to modulate the elastic modulus of azobenzene containing liquid crystal networks (LCNs) by exposure to light. The elastic modulus can cycle between different levels by controlling the illumination conditions. Exposing the polymer network to UV light near the trans absorption band of azobenzene gives a small reduction of the glass transition temperature thereby lowering the modulus. The addition of blue light addressing the cis absorption band surprisingly amplifies this effect. The continuous oscillatory effects of the trans-to-cis isomerization of the azobenzene overrule the overall net cis conversion. The influence on the chain dynamics of the network is demonstrated by dynamic mechanical thermal analysis which shows a large shift of the glass transition temperature and a modulus decrease by more than two orders of magnitude. The initial high modulus and the glassy state are recovered within a minute in the dark by switching off the light sources, despite the observation that azobenzene is still predominantly in its cis state. Based on these new findings, we are able to create a shape memory polymer LCN film at room temperature using light.

  2. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    Science.gov (United States)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  3. Coal combustion products

    Science.gov (United States)

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  4. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  5. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  6. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  7. 49 CFR 172.547 - SPONTANEOUSLY COMBUSTIBLE placard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false SPONTANEOUSLY COMBUSTIBLE placard. 172.547 Section 172.547 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.547 SPONTANEOUSLY COMBUSTIBLE placard. (a) Except for size...

  8. FY 1994 annual report. Advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Researches on combustion in microgravity were conducted to develop combustion devices for advanced combustion techniques, and thereby to cope with the requirements for diversification of energy sources and abatement of environmental pollution by exhaust gases. This project was implemented under the research cooperation agreement with US's NASA, and the Japanese experts visited NASA's test facilities. NASA's Lewis Research Center has drop test facilities, of which the 2.2-sec drop test facilities are useful for researches by Japan. The cooperative research themes for combustion in microgravity selected include interactions between fuel droplets, high-pressure combustion of binary fuel sprays, and ignition and subsequent flame propagation in microgravity. An ignition test equipment, density field measurement equipment and flame propagation test equipment were constructed in Japan to conduct the combustion tests in microgravity for, e.g., combustion and evaporation of fuel droplets, combustion characteristics of liquid fuels mixed with solid particles, combustion of coal/oil mixture droplets, and estimating flammability limits. (NEDO)

  9. Multiresidue analysis of multiclass plant growth regulators in grapes by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Oulkar, Dasharath P; Banerjee, Kaushik; Ghaste, Manoj S; Ramteke, Sahadeo D; Naik, Dattatraya G; Patil, Shubhangi B; Jadhav, Manjusha R; Adsule, Pandurang G

    2011-01-01

    A selective and rapid multiresidue analysis method is presented for simultaneous estimation of 12 plant growth regulators (PGRs), namely, auxins (indol-3-acetic acid, indol-3-butyric acid, and naphthyl acetic acid), cytokinins (kinetin, zeatin, and 6-benzyladenine), gibberellic acid (GA3), abscisic acid, and synthetic compounds, namely, forchlorfenuron, paclobutrazole, isoprothiolane, and 2,4-dichlorophenoxy acetic acid (2,4-D) in bud sprouts and grape berries at the development stages of 2-3 and 6-8 mm diameters, which are the critical phases when exogenous application of PGRs may be necessary to achieve desired grape quality and yield. The sample preparation method involved extraction of plant material with acidified methanol (50%) by homogenization for 2 min at 15000 rpm. The pH of the extract was enhanced up to 6 by adding ammonium acetate, followed by homogenization and centrifugation. The supernatant extract was cleaned by SPE on an Oasis HLB cartridge (200 mg, 6 cc). The final extract was measured directly by LC/MS/MS with electrospray ionization in positive mode, except for 2,4-D, GA3, and abscisic acid extracts, which required analysis in negative mode. Quantification by multiple reaction monitoring (MRM) was supported with full-scan mass spectrometric confirmation using "information-dependent acquisition" triggered with MRM to "enhanced product ionization" mode of the hybrid quadrupole-ion trap mass analyzer. The LOQ of the test analytes varied between 1 and 10 ng/g with associated recoveries of 80-120% and precision RSD <25% (n = 8). Significant matrix-induced signal suppression was recorded when the responses for pre- and postextraction spikes of analytes were compared; this could be resolved by using matrix-matched calibration standards. The method could successfully be applied in analyzing incurred residue samples and would, therefore, be useful in precisely deciding the necessity and dose of exogenous applications of PGRs on the basis of measured

  10. 微细尺度下液体乙醇层流扩散燃烧的特性仿真%Simulationof Micro Scale Liquid Ethanol Laminar Flow Diffusion Combustion Characteristic

    Institute of Scientific and Technical Information of China (English)

    徐涛; 杨泽亮; 甘云华; 杨帅

    2011-01-01

    Current study is not sufficient on micro scale liquid ethanol laminar flow diffusion combustion characteristic, in order to overcome the limit of micro flame temperature measurement in experimental process, simulation study method was proposed with Fluent6.3 software in this article.The simulation results showed that the applied electric field could enhance the maximum flame temperature, the positive electric field could stretch the flame height,the reverse electric field could condense the flame height when the ethanol flow rate was 2.7ml/h.When ethanol flow rate was low, the flame height of the non-electric field was higher than the applied electric field, with the increasing of ethanol flow rate, the flame height of the applied electric field was the highest, and the flame height of the positive electric field was significantly higher than the reverse electric field at the same volume flow.Proved by the experiment, the simulation values of flame structure and temperature were in good agreement with experimental values, and simulation method for effective micro combustor research had important guiding significance.%在微尺度燃烧器特性的研究中,针对目前对微细尺度液体燃料层流扩散燃烧特性研究,为了克服实验研究过程中微火焰温度的测量限制,通过建模进行仿真分析,外加电场可提高火焰最高温度,正向电场能拉伸火焰高度,而反向电场压缩火焰高度;流量较少时,无电场火焰高度最高;随着流量增加,外加电场火焰高度最高;相同流量下,正向电场火焰高度较反向电场高.以上是采用 Fhent6.3 软件进行仿真,结果表明,火燃结构与实验值吻合良好,仿真方法对高效微型燃烧器研制具有重要指导意义.

  11. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginni

  12. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginni

  13. Lectures on combustion theory

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A. (eds.)

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  14. Fifteenth combustion research conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  15. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  16. Combustion of coffee husks

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, M.; Hartge, E.-U.; Werther, J. [Technical Univ. Hamburg-Harburg, Chemical Engineering 1, Hamburg (Germany); Ogada, T.; Siagi, Z. [Moi Univ., Dept. of Production Engineering, Eldoret (Kenya)

    2001-05-01

    Combustion mechanisms of two types of coffee husks have been studied using single particle combustion techniques as well as combustion in a pilot-scale fluidized bed facility (FBC), 150 mm in diameter and 9 m high. Through measurements of weight-loss and particle temperatures, the processes of drying, devolatilization and combustion of coffee husks were studied. Axial temperature profiles in the FBC were also measured during stationary combustion conditions to analyse the location of volatile release and combustion as a function of fuel feeding mode. Finally the problems of ash sintering were analysed. The results showed that devolatilization of coffee husks (65-72% volatile matter, raw mass) starts at a low temperature range of 170-200degC and takes place rapidly. During fuel feeding using a non water-cooled system, pyrolysis of the husks took place in the feeder tube leading to blockage and non-uniform fuel flow. Measurements of axial temperature profiles showed that during under-bed feeding, the bed and freeboard temperatures were more or less the same, whereas for over-bed feeding, freeboard temperatures were much higher, indicating significant combustion of the volatiles in the freeboard. A major problem observed during the combustion of coffee husks was ash sintering and bed agglomeration. This is due to the low melting temperature of the ash, which is attributed to the high contents of K{sub 2}O (36-38%) of the coffee husks. (Author)

  17. 75 FR 37732 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2010-06-30

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule... internal combustion engines. The amendments inadvertently removed paragraphs from the regulation. EPA is... combustion engines. 40 CFR 63.6590 was amended by revising paragraphs (b)(1) and (3). Inadvertently...

  18. Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Xue, Jiaying; Wang, Suli; You, Xiangwei; Dong, Jiannan; Han, Lijun; Liu, Fengmao

    2011-11-15

    A sensitive and rapid multi-residue analytical method for plant growth regulators (PGRs) (i.e., chlormequat, mepiquat, paclobutrazol, uniconazole, ethephon and flumetralin) in apples and tomatoes was developed using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). A homogenised sample was extracted with a mixture of methanol/water (90:10, v/v) and adjusted to pH <3 with formic acid. Primary secondary amine (PSA) adsorbent was used to clean up the sample. The determination was performed using electrospray ionisation (ESI) and a triple quadrupole (QqQ) analyser. Under the optimised method, the results showed that, except for ethephon, the recoveries were 81.8-98.1% in apples and tomatoes at the spiked concentrations of 0.005 to 2 mg/kg, with relative standard deviations (RSDs) of less than 11.7%. The limits of quantification (LOQs) were lower than their maximum residue limits (MRLs). The procedure was concluded as a practical method to determine the PGR residues in fruit and vegetables and is also suitable for the simultaneous analysis of the amounts of samples for routine monitoring. The analytical method described herein demonstrates a strong potential for its application in the field of PGR multi-residue analysis to help assure food safety.

  19. Regulating Effluents From India’s Textile Sector: New Commands and Compliance Monitoring for Zero Liquid Discharge

    Directory of Open Access Journals (Sweden)

    Jenny Grönwall

    2017-06-01

    Full Text Available In 2016 large parts of India had experienced failing monsoons for two consecutive years. Textiles production was a natural target in the quest for solutions when re-distribution of water between sectors became imperative, and it seemed likely that the zero liquid discharge (ZLD approach would be mainstreamed nationwide. However, when amended standards for discharge of effluents were enacted it was without strict requirements for reuse of water in-house; the legislator chose to make ZLD applicable only to large units and refrained from making it mandatory. The carrying capacity of the environment in sensitive or otherwise critical areas may henceforth be taken into account by the executive, but the textile sector’s wastewater is not yet regarded the resource that a circular economy calls for. This paper examines the command-side of regulation by shedding light on the applicable law, the reform steps taken in 2014–16 and how judicial interventions influenced these. It also seeks to contribute to the understanding of enforcement control by discussing what role court-established committees are playing in implementation and monitoring of compliance, based on an in-depth case study of Tirupur, India’s ‘knit city’.

  20. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Hoagland, M.C.; Hubbard, R.L.; Schaub, F.S.

    1981-12-22

    A method of combusting natural gas fuel in a two cycle, turbocharged internal combustion engine substantially reduces the production of nitrogen-oxygen emissions. An improved turbocharger design provides increased air charging pressure, produces a controlled lean air/fuel mixture and lowers peak combustion temperatures. A jet cell ignition device ensures uniform, reliable ignition of the lean air/fuel mixture under all operating conditions and the lean air/fuel mixture in turn encourages complete fuel combustion and provides excellent combustion characteristics with methane, ethane and heavier paraffinic hydrocarbon fuels. These structural modifications and adjustment of other operating parameters combine to reduce nitric oxide (NO) and nitrogen dioxide (NO/sub 2/) emissions by as much as 75% while effecting only a negligible increase in fuel consumption.

  1. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  2. Supercritical droplet combustion and related transport phenomena

    Science.gov (United States)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  3. Influence of injector technology on injection and combustion development - Part 2: Combustion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    The influence of injection technology on the fuel-air mixing process and the combustion development are analyzed by means of visualization techniques. For this purpose, two injectors (one solenoid and one piezoelectric) are characterized using an optical accessible two stroke engine. Visualization of liquid penetration has allowed the measurement of the stabilized liquid length, which is related with the efficiency of fuel-air mixing process. A theoretical derivation is used in order to relate this liquid length with chamber conditions, as well as to make a temporal analysis of these phenomena. After this, natural flame emission and chemiluminescence techniques are carried out. These results indicate that the piezoelectric system has a more efficient fuel-air mixing and combustion, reducing the characteristic times as well as soot formation. Finally, a correlation for the ignition delay of the two systems is obtained. (author)

  4. Liquid rocket engine injectors

    Science.gov (United States)

    Gill, G. S.; Nurick, W. H.

    1976-01-01

    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  5. Application of hollow fiber liquid phase microextraction for simultaneous determination of regulated and emerging iodinated trihalomethanes in drinking water.

    Science.gov (United States)

    Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, T; Gómez-Ariza, J L

    2015-07-10

    Trihalomethanes (THMs) are regulated disinfection by-products (DBPs) most commonly analyzed in quality control water supply due to their harmful effects on health. However, few data exist about the content of emerging iodo-trihalomethanes (I-THMs) which are present in drinking water at very low concentrations (in the order of ngL(-1)). For this reason a two-phase hollow fiber liquid phase microextraction method for the simultaneous determination of four regulated trihalomethanes and six emerging iodo-trihalomethanes using GC-μECD and GC-MS with detection limits in the range of few ngL(-1) has been developed. A central composite design was used to optimize conditions for simultaneous extraction. The best extraction recovery was obtained with 19.2min at 27.1°C and 900rpm, without salt addition, using a supported hollow fiber membrane of 10.5cm (0.6mm id) and 1-octanol as acceptor phase. The limits of detection for the regulated THMs and I-THMs were 3-44ngL(-1) and 1-3ngL(-1), respectively. The calibration curves showed good linearity (R(2)>0.995) and good repeatibility (3-22%). The relative recoveries in water were between 96.5% and 105.2%. The method was applied for the simultaneous determination of trihalomethanes in supply water samples from seven water distribution systems (WDS) in the Huelva area, located at the southwest Spain, which use different water-treatment processes. The highest concentrations of I-THMs, particularly CHBrClI and CHCl2I, were detected in water treated with advanced treatment process using pre-ozonation, however these compounds were not detected or decreased along distribution system. In the samples of treated water with conventional treatment, using pre-oxidation by permanganate and distribution network, CHCl2I, CHBrClI, CHClI2, CHBrI2 and CHI3 were detected at very low concentrations (1-18ngL(-1)). Finally, in water samples from underground origin without oxidation treatment, in which only disinfection with sodium hypochlorite was

  6. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was

  7. Combustion synthesis of radioactive waste immobilization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruizhu; GUO Zhimeng; LU Xin; JIA Chengchang; LIN Tao

    2005-01-01

    Using chromium oxide (CrO3) as an oxidant, the immobilization of simulating radioactive waste in perovskite (CaTiO3) structure by a combustion synthesis (CS) method was tested. The products were characterized by Archimedes liquid displacement technique, microhardness technique, X-ray diffraction, and scanning electron microscopy. The leaching rate was measured by the method of MCC-1 or MCC-2.The primary results show that the CS method can be used to solidify the immobilizate waste effectively.

  8. Atomically Abrupt Liquid-Oxide Interface Stabilized by Self-Regulated Interfacial Defects: The Case of Al/Al2O3 Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.; Zhu, J. Y.; Curtis, C.; Blake, D.; Glatzmaier, G.; Kim, Y. H.; Wei, S. H.

    2012-06-01

    The atomic and electronic structures of the liquid Al/(0001) {alpha}-Al{sub 2}O{sub 3} interfaces are investigated by first-principles molecular dynamics simulations. Surprisingly, the formed liquid-solid interface is always atomically abrupt and is characterized by a transitional Al layer that contains a fixed concentration of Al vacancies ({approx}10 at.%). We find that the self-regulation of the defect density in the metal layer is due to the fact that the formation energy of the Al vacancies is readjusted in a way that opposes changes in the defect density. The negative-feedback effect stabilizes the defected transitional layer and maintains the atomic abruptness at the interface. The proposed mechanism is generally applicable to other liquid-metal/metal-oxide systems, and thus of significant importance in understanding the interface structures at high temperature.

  9. Structure and Combustion of Magnegases

    CERN Document Server

    Santilli, R M

    2001-01-01

    In this paper, we study the structure and combustion of magnegases$^{TM}$ (Patented and International Patents Pending), new clean fuels developed by one of us (R.M.S.) [1], which are produced as byproducts of recycling nonradioactive liquid feedstock such as antifreeze waste, engine oil waste, town sewage, crude oil, etc., and generally vary with the liquid used for their production. A new technology, called PlasmaArcFlow\\tm, flows the waste through a submerged electric arc between conventional electrodes. The arc decomposes the liquid molecules into their atomic constituents, and forms a plasma in the immediate vicinity of the electrodes at about 10,000$^o$ F. The technology then moves the plasma away from the electrodes, and controls its recombination into environmentally acceptable fuels. The new fuels possess a ew chemical structure first identified by one of us (R.M.S.), which is characterized by clusters of ordinary molecules and atoms under a new bond of electromagnetic nature. These clusters constitut...

  10. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  11. Combustive management of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  12. Improving combustion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bulsari, A.; Wemberg, A.; Multas, A. [Nonlinear Solutions Oy (Finland)

    2009-06-15

    The paper describes how nonlinear models are used to improve the efficiency of coal combustion while keeping NOx and other emissions under desired limits in the Naantali 2 boiler of Fortum Power and Heat Oy. 16 refs., 6 figs.

  13. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  14. Modelling diesel combustion

    CERN Document Server

    Lakshminarayanan, P A; Shi, Yu; Reitz, Rolf D

    2010-01-01

    The underlying principles of combustion phenomena are presented here, providing the basis for quantitative evaluation. These phenomena - ignition delay, fuel air mixing, rate of release, etc. - are then modelled for greater understanding and applicability.

  15. TENORM: Coal Combustion Residuals

    Science.gov (United States)

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  16. Scramjet Combustion Processes

    Science.gov (United States)

    2010-09-01

    plan for these flights is as follows: Scramjet Combustion Processes RTO-EN-AVT-185 11 - 21 HyShot 5 – A Free-Flying Hypersonic Glider HyShot...5 will be a hypersonic glider designed to fly at Mach 8. It will separate from its rocket booster in space and perform controlled manoeuvres as it...RTO-EN-AVT-185 11 - 1 Scramjet Combustion Processes Michael Smart and Ray Stalker Centre for Hypersonics The University of Queensland

  17. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  18. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  19. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  20. Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I

    Science.gov (United States)

    Wey, Thomas Changju; Liu, Nan-suey

    2011-01-01

    This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.

  1. Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion

    Institute of Scientific and Technical Information of China (English)

    王锐; 罗雄麟; 许锋

    2014-01-01

    With CO combustion promoters, the role of combustion air flow rate for concerns of economics and control is important. The combustion air is conceptually divided to three parts:the air consumed by coke burning, the air consumed by CO combustion and the air unreacted. A mathematical model of a fluid catalytic cracking (FCC) unit, which includes a quantitative correlation of CO heterogeneous combustion and the amount of CO combustion promoters, is introduced to investigate the effects of promoters on the three parts of combustion air. The results show that the air consumed by coke burning is almost linear to combustion air flow rate, while the air consumed by CO combustion promoters tends to saturate as combustion air flow rate increases, indicating that higher air flow rate can only be used as a manipulated variable to control the oxygen content for an economic concern.

  2. 40 CFR 60.2020 - What combustion units are exempt from this subpart?

    Science.gov (United States)

    2010-07-01

    ... hydrocarbon liquids or solids to produce hydrogen, carbon monoxide, synthesis gas, or other gases for use in... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart...

  3. 40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?

    Science.gov (United States)

    2010-07-01

    ... Stationary Sources: Small Municipal Waste Combustion Units); subpart BBBB of 40 CFR part 60 (Emission Guidelines for Existing Stationary Sources: Small Municipal Waste Combustion Units); or subpart JJJ of 40 CFR... hydrocarbon liquids or solids to produce hydrogen, carbon monoxide, synthesis gas, or other gases for use...

  4. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.

    1986-06-03

    A variable power internal combustion engine is described which consists of: a separate air compressor for receiving and compressing a flow of air to a given pressure, the compressor having an inlet valve introducing a flow of air into the compressor and an outlet valve for exhausting compressed air out of the compressor into a compressed air storage means, at least one expander having a cylinder, a cylinder head closing an end of the cylinder, a piston reciprocally mounted in the cylinder for movement away from the cylinder head in a power stroke from an initial position defining a combustion chamber within the cylinder between the cylinder head and the piston, the compressed air storage means receiving the pressurized flow of air from the compressor and being of a volume adequate to provide compressed air in the combustion chamber essentially at the given pressure essentially over the power output of the engine, means for introducing an amount of combustible fuel in the compressed charge to be present with compressed air in the combustion chamber and providing combustion of the amount of fuel in the cylinder with the inlet and exhaust valves closed, cam shaft means in contact with the piston for absorbing and storing the energy of the power stroke of the piston and controlling movement of the piston within the cylinder during the exhaust stroke; the means for varying the volume of the combustion chamber being controlled in accordance with power requirements to provide variable power output and improved efficiency of the engine at power outputs reduced relative to a given design power output of the engine by providing a variable expansion ratio of a minimum of at least about 30 to 1 at the given design power output and higher with reduced power output.

  5. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    Science.gov (United States)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  6. An extended multi-zone combustion model for PCI simulation

    Science.gov (United States)

    Kodavasal, Janardhan; Keum, SeungHwan; Babajimopoulos, Aristotelis

    2011-12-01

    Novel combustion modes are becoming an important area of research with emission regulations more stringent than ever before, and with fuel economy being assigned greater importance every day. Homogeneous Charge Compression Ignition (HCCI) and Premixed Compression Ignition (PCI) modes in particular promise better fuel economy and lower emissions in internal combustion engines. Multi-zone combustion models have been popular in modelling HCCI combustion. In this work, an improved multi-zone model is suggested for PCI combustion modelling. A new zoning scheme is suggested based on incorporating the internal energy of formation into an earlier conventional HCCI multi-zone approach, which considers a two-dimensional reaction space defined by equivalence ratio and temperature. It is shown that the added dimension improves zoning by creating more representative zones, and thus reducing errors compared to the conventional zoning approach, when applied to PCI simulation.

  7. Lightweight Ultrahigh Temperature CMC-Lined C/C Combustion Chambers, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and DoD are seeking high-performance, lightweight liquid rocket combustion chambers with future performance goals that cannot be achieved using state-of-the-art...

  8. Low-Cost, High-Performance Combustion Chamber for LOX/CH4 Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultramet will design and fabricate a lightweight, high temperature 5-lbf combustion chamber for use with cryogenic liquid oxygen/methane (LOX/CH4) propellant that...

  9. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D; Swank, William D.

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  10. The effect of fuel pyrolysis on the coal particle combustion: An analytical investigation

    OpenAIRE

    Baghsheikhi Mostafa; Rahbari Alireza; Ashrafizadeh Seyed Mehdi; Bidabadi Mehdi

    2016-01-01

    The aim of this work is to analytically investigate the symmetrical combustion of an isolated coal particle with the fuel pyrolysis effect. The modelling concept of coal particles is similar to that of the liquid droplet combustion but in the case of coal devolatilization, the particles do not shrink like droplet does due to evaporation of liquid fuel. The rate of devolatilization of volatiles can be calculated using the equation that is similar to Arrheniu...

  11. Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames

    OpenAIRE

    Maria Grazia De Giorgi; Aldebara Sciolti; Antonio Ficarella

    2014-01-01

    The present work focuses on the numerical modeling of combustion in liquid-propellant rocket engines. Pressure and temperature are well above thermodynamic critical points of both the propellants and then the reactants show liquid-like characteristics of density and gas-like characteristics for diffusivity. The aim of the work is an efficient numerical description of the phenomena and RANS simulations were performed for this purpose. Hence, in the present work different kinetics, combustion ...

  12. Numerical Simulation of the Gas-liquid Two-phase Flow and Combustion in the Outlet of Venturi Burner%文丘利型油燃烧器出口 气液两相流动与燃烧的数值模拟

    Institute of Scientific and Technical Information of China (English)

    马哲树; 涂淑平; 姚寿广

    2001-01-01

    According to the characteristics of spray combustion in the oil-burned boiler equipped with Ven turi Burner and based on the simulation results of internal and external aerodynamic field under cold condi tion and gas-phase combustion field employed EBU model, the numerical simulation of the gas-liquid two phase flow and combustion in the outlet of venturi burner are presented. Distributions of pressure, velocity, temperature and ingredient concentration in chamber are provided. By theoretical analysis and contrast with the experimental results about Venturi Burner, the models, numerical methods and the numerical results given in this paper are credible. The numerical results can be used to guide the further design and operation of this type oil-burned boiler.%针对选配文丘利型油燃烧器的燃油锅炉中液雾燃烧的特点,在冷态等温流场数值模拟结果及 EBU-Arrhenius模型模拟气相燃烧所得结果的基础上,数值模拟了单只文丘利油燃烧器出口的气液两相 流动与燃烧,给出了流场中的速度场、温度场以及浓度场的分布信息,这些结论可为该型燃油锅炉的进 一步设计和运行以及燃烧室的布置提供有益的依据。

  13. Regulating low-NOx and high-burnout deep-air-staging combustion under real-furnace conditions in a 600 MWe down-fired supercritical boiler by strengthening the staged-air effect.

    Science.gov (United States)

    Kuang, Min; Wang, Zhihua; Zhu, Yanqun; Ling, Zhongqian; Li, Zhengqi

    2014-10-21

    A 600 MW(e) down-fired pulverized-coal supercritical boiler, which was equipped with a deep-air-staging combustion system for reducing the particularly high NOx emissions, suffered from the well-accepted contradiction between low NOx emissions and high carbon in fly ash, in addition to excessively high gas temperatures in the hopper that jeopardized the boiler's safe operations. Previous results uncovered that under low-NOx conditions, strengthening the staged-air effect by decreasing the staged-air angle and simultaneously increasing the staged-air damper opening alleviated the aforementioned problems to some extent. To establish low-NOx and high-burnout circumstances and control the aforementioned hopper temperatures, a further staged-air retrofit with horizontally redirecting staged air through an enlarged staged-air slot area was performed to greatly strengthen the staged-air effect. Full-load industrial-size measurements were performed to confirm the availability of this retrofit. The present data were compared with those published results before the retrofit. High NOx emissions, low carbon in fly ah, and high hopper temperatures (i.e., levels of 1036 mg/m(3) at 6% O2, 3.72%, and about 1300 °C, respectively) appeared under the original conditions with the staged-air angle of 45° and without overfire air (OFA) application. Applying OFA and reducing the angle to 20° achieved an apparent NOx reduction and a moderate hopper temperature decrease while a sharp increase in carbon in fly ash (i.e., levels of 878 mg/m(3) at 6% O2, about 1200 °C, and 9.81%, respectively). Fortunately, the present staged-air retrofit was confirmed to be applicable in regulating low-NOx, high-burnout, and low hopper temperature circumstances (i.e., levels of 867 mg/m(3) at 6% O2, 5.40%, and about 1100 °C, respectively).

  14. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  15. Radiative Augmented Combustion.

    Science.gov (United States)

    1985-08-12

    86-0085 In 00I to RADIATIVE AUGMENTED COMBUSTION MOSHE LAVID M.L. ENERGIA , INC. P.O. BOX 1468 1 PRINCETON, NEW JERSEY 08542 AUGUST 1985 *.. plo...Combustion conducted at M.L. ENERGIA . It is funded by the Air Force Office of Scientific Research under Contract No. F49620-83-C-0133, with Dr. J.M...reported. It covers the second year of the contract, from July 15, 1984 through July 14, 1985. The work was performed at ENERGIA , Princeton, New Jersey

  16. Transition nozzle combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  17. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  18. Clean Air Act Standards and Guidelines for Energy, Engines, and Combustion

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the energy, engines, and combustion industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  19. Heat of Combustion of the Product Formed by the Reaction of Acetylene, Ethylene, and Diborane

    Science.gov (United States)

    Tannenbaum, Stanley

    1957-01-01

    The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.

  20. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  1. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  2. Mechanism of combustion synthesis of silicon carbide

    Science.gov (United States)

    Narayan, J.; Raghunathan, R.; Chowdhury, R.; Jagannadham, K.

    1994-06-01

    The mechanism of self-propagating high-temperature synthesis (SHS) or combustion synthesis of SiC has been investigated using pellets consisting of silicon and carbon powders. The combustion reaction was initiated by rapidly heating the pellet on a graphite strip. The reaction products were analyzed using scanning and transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. The results show that it is possible to produce β-SiC without any residual silicon and carbon. Occasionally, a very small number density of α-SiC precipitates embedded in the β-SiC matrix was observed. Based upon the microstructural features, it is proposed that the formation of SiC involves the dissolution of carbon into liquid silicon, diffusion of C into liquid silicon, and subsequent precipitation of SiC. The size of the SiC crystallites is determined by the diffusion coefficient of carbon in liquid silicon and the time available for SiC precipitation. The activation enthalpy for the SHS process is estimated to be 59±3 kcal/mol.

  3. Combustion of coal residue in a fluidised bed part I - design parameters. Combustion de residuos de carbon en lecho fluidizado - parte I; parametros de diseno

    Energy Technology Data Exchange (ETDEWEB)

    Fuertes, A.B.; Pis, J.J.; Jul, J.J.; Alvarez, F.J.; Canibano, J.G. (Inst. Nacional del Carbon, Oviedo (Spain))

    1988-07-01

    Fluidised bed combustion is a method used to reduce environmental problems caused by deposits of both solid and liquid residue by allowing the energy content of the deposits to be recovered. Fluidised bed combustors are capable of burning solid or liquid residue with up to 85% inert material. 10 refs., 10 figs., 2 tabs.

  4. Oxy combustion with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    An update for oxyfuel-combustion carbon capture in the power industry is provided. The report was developed by the Electric Power Research Institute (EPRI) on behalf of the Global CCS Institute. In the oxyfuel-combustion processes, the bulk nitrogen is removed from the air before combustion. The resulting combustion products will have CO2 content up to about 90 per cent (dry basis). The flue gas impurities (predominantly O2, N2, and Ar) may be removed by reducing the flue gas (at moderate pressure) to a temperature at which the CO2 condenses and the impurities do not. Oxyfuel-combustion may be employed with solid fuels such as coal, petroleum coke, and biomass, as well as liquid and gaseous fuels. Some key points raised in the oxyfuel-combustion carbon capture report are: The oxyfuel-combustion/CO2 capture power plant designs being developed and deployed for service in the next four or five years are based on individual component technologies and arrangements which have demonstrated sufficient maturity, with the greatest remaining technical challenge being integrating the systems into a complete steam-electric power plant; By its nature, an oxyfuel-coal power plant is likely to be a 'near zero' emitter of all criteria pollutants; Existing air-fired power plants might be retrofitted with an air separation unit, oxyfuel-fired burners, flue gas recycle, and a CO2 processing unit, with the large fleet of air-fired power plants in service calling for more study of this option; and, Future efficiency improvements to the oxyfuel-combustion process for power generation point toward an oxyfuel-combustion plant with near zero emissions of conventional pollutants, up to 98 per cent CO2 capture, and efficiency comparable to the best power plants currently being built.

  5. 75 FR 35366 - Pipeline Safety: Applying Safety Regulation to All Rural Onshore Hazardous Liquid Low-Stress Lines

    Science.gov (United States)

    2010-06-22

    ... also need to comply with 49 CFR Part 199, the alcohol and drug testing requirements. Benefits of the... the fuel supply caused by pipeline failures. Any interruption in the fuel supply impacts the U.S... liquid or carbon dioxide: (i) By vessel, aircraft, tank truck, tank car, or other non- pipeline mode...

  6. Experimental combustion an introduction

    CERN Document Server

    Mishra, D P

    2014-01-01

    ""… other books available in this area do not cover the detailed topics covered here. Energy and combustion is a hot issue. It is expected to be even hotter with more demand in this area as we search for cleaner methods of energy conversion from chemical to thermal energy.""-Ashwani K. Gupta, Department of Mechanical Engineering, University of Maryland, College Park, USA

  7. Coal combustion research

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  8. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  9. Combustion Models in Finance

    CERN Document Server

    Tannous, C

    2001-01-01

    Combustion reaction kinetics models are used for the description of a special class of bursty Financial Time Series. The small number of parameters they depend upon enable financial analysts to predict the time as well as the magnitude of the jump of the value of the portfolio. Several Financial Time Series are analysed within this framework and applications are given.

  10. Flameless Combustion Workshop

    Science.gov (United States)

    2005-09-20

    operating hours, to produce low emission levels of NOx, CO and UHC . Gas turbine combustion stability has increasingly become a crucial design issue as...achieved proved: "* Safe and reliable operation ofgas turbine combustors "* Low emissions of NO., CO and UHC These results have clear economically

  11. Combustion calorimetry experimental chemical thermodynamics

    CERN Document Server

    Sunner, Stig

    1979-01-01

    Combustion Calorimetry deals with expertise knowledge concerning the calorimetry of combustion reactions of an element or compound. After defining the use of units and physical constants, the book discusses the basic principles of combustion calorimetry and the various instruments and calorimeters used in the experiments to measure operations concerning temperatures and its time variations. One paper discusses the theory and design criteria of combustion calorimeter calibration. Another paper discusses the results obtained from a combustion calorimeter after it has measured the energy or entha

  12. Modelling of CWS combustion process

    Science.gov (United States)

    Rybenko, I. A.; Ermakova, L. A.

    2016-10-01

    The paper considers the combustion process of coal water slurry (CWS) drops. The physico-chemical process scheme consisting of several independent parallel-sequential stages is offered. This scheme of drops combustion process is proved by the particle size distribution test and research stereomicroscopic analysis of combustion products. The results of mathematical modelling and optimization of stationary regimes of CWS combustion are provided. During modeling the problem of defining possible equilibrium composition of products, which can be obtained as a result of CWS combustion processes at different temperatures, is solved.

  13. Oxy-fuel combustion with integrated pollution control

    Science.gov (United States)

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  14. Time Resolved FTIR Analysis of Combustion of Ethanol and Gasoline Combustion in AN Internal Combustion Engine

    Science.gov (United States)

    White, Allen R.; Sakai, Stephen; Devasher, Rebecca B.

    2011-06-01

    In order to pursue In Situ measurements in an internal combustion engine, a MegaTech Mark III transparent spark ignition engine was modified with a sapphire combustion chamber. This modification will allow the transmission of infrared radiation for time-resolved spectroscopic measurements by an infrared spectrometer. By using a Step-scan equipped Fourier transform spectrometer, temporally resolved infrared spectral data were acquired and compared for combustion in the modified Mark III engine. Measurements performed with the FTIR system provide insight into the energy transfer vectors that precede combustion and also provides an in situ measurement of the progress of combustion. Measurements were performed using ethanol and gasoline.

  15. Practical approaches to field problems of stationary combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.W. [Natural Resources Canada, Ottawa (Canada)

    1997-09-01

    The CANMET Energy Technology Centre (CETC) business plan dictates collaboration with industrial clients and other government agencies to promote energy efficiency, health and safety, pollution reduction and productivity enhancement. The Advanced Combustion Technologies group of CETC provides consultation to numerous organizations in combustion related areas by conducting laboratory and field investigations of fossil fuel-fired combustion equipment. CETC, with its modern research facilities and technical expertise, has taken this practical approach since the seventies and has assisted many organizations in overcoming field problems and in providing cost saving measures and improved profit margins. This paper presents a few selected research projects conducted for industrial clients in north and central America. The combustion systems investigated are mostly liquid fuel fired, with the exception of the utility boiler which was coal-fired. The key areas involved include fuel quality, fuel storage/delivery system contamination, waste derived oils, crude oil combustion, unacceptable pollutant emissions, ambient soot deposition, slagging, fouling, boiler component degradation, and particulate characterization. Some of the practical approaches taken to remedy these field problems on several combustion systems including residential, commercial and industrial scale units are discussed.

  16. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  17. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  18. Combustion, pyrolysis, gasification, and liquefaction of biomas

    Science.gov (United States)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  19. Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals (Postprint)

    Science.gov (United States)

    2014-10-01

    September 2014 4. TITLE AND SUBTITLE COLOR -TUNABLE MIRRORS BASED ON ELECTRICALLY REGULATED BANDWIDTH BROADENING IN POLYMER- STABILIZED CHOLESTERIC...Approved for public release; distribution unlimited. This report contains color . 13. SUPPLEMENTARY NOTES PA Case Number: 88ABW-2014-1978, Clearance...at dx.doi.org/10.1021/ph500259h. 14. ABSTRACT We report on the preparation of color -tunable mirrors based on electrically regulated bandwidth

  20. Chemical Processes Related to Combustion in Fluidised Bed

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Lindqvist, Oliver [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Environmental Inorganic Chemistry

    2002-12-01

    with evaluation of other biomass ash particles and, as an extension, the speciation of Cu and Zn will be studied as well. Ash fractions from combustion of MSW in a BFB boiler have been investigated regarding composition and leaching properties, i.e. environmental impact risks. The release of salts from the cyclone ash fraction can be minimised by the application of a simple washing process, thus securing that the leaching of soluble substances stays within the regulative limits. The MSW ash - water systems contain some interesting chemical issues, such as the interactions between Cr(VI) and reducing substances like Al-metal. The understanding of such chemical processes is important since it gives a possibility to predict effects of a change in ash composition. An even more detailed understanding of interactions between a solution containing ions and particle surfaces can be gained by theoretical modelling. In this project (and with additional unding from Aangpannefoereningens Forskningsstiftelse) a theoretical description of ion-ion interactions and the solid-liquid-interface has been developed. Some related issues are also included in this report. The publication of a paper on the reactions of ammonia in the presence of a calcining limestone surface is one of them. A review paper on the influence of combustion conditions on the properties of fly ash and its applicability as a cement replacement in concrete is another. The licentiate thesis describing the sampling and measurement of Cd in flue gas is also included since it was finalised during the present period. A co-operation project involving the Geology Dept. at Goeteborg Univ. and our group is briefly discussed. This project concerns the utilisation of granules produced from wood ash and dolomite as nutrient source for forest soil. Finally, the plans for our flue gas simulator facility are discussed.

  1. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  2. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  3. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  4. Combustion Characteristics of Sprays

    Science.gov (United States)

    1989-08-01

    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF REPORT...to ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  5. Combustible Cartridge Case Characterization

    Science.gov (United States)

    1984-02-01

    University (NYU) has resulted in the selection of two cross-linked melamine / formaldehyde acrylic styrene resin systems that can be used in the beater additive... melamine resin Akaradit II stabilizer 20. ABSTRACT (con) Test coupons of combustible cartridge case material were fabricated using these recommended...and agitated for 30 min before the pH was slowly lowered to 3 with p-toluene sulfonic acid. In order to maintain this pH in the felting tank, it was

  6. High Gravity (g) Combustion

    Science.gov (United States)

    2006-02-01

    required thrust-to-weight ratio goals. Shorter residence times in the combustion chamber may reduce the NOx emissions, but the CO and UHC emissions then...Emissions analyzing equipment is available to detect CO, CO2, NOx, O2, and total unburned hydrocarbons ( UHC ) at the combustor exit plane. Emissions... UHC ) emissions along with the CO data, as seen in Fig. 24, shows that Configuration 1 had much higher UHC levels. The reactions from hydrocarbons to

  7. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  8. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  9. Internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.

    1977-07-01

    Current worldwide production of internal combustion piston engines includes many diversified types of designs and a very broad range of sizes. Engine sizes range from a few horsepower in small mobile units to over 40,000 brake horsepower in large stationary and marine units. The key characteristics of internal combustion piston engines considered appropriate for use as prime movers in Integrated Community Energy Systems (ICES) are evaluated. The categories of engines considered include spark-ignition gas engines, compression-ignition oil (diesel) engines, and dual-fuel engines. The engines are evaluated with respect to full-load and part-load performance characteristics, reliability, environmental concerns, estimated 1976 cost data, and current and future status of development. The largest internal combustion piston engines manufactured in the United States range up to 13,540 rated brake horsepower. Future development efforts are anticipated to result in a 20 to 25% increase in brake horsepower without increase in or loss of weight, economy, reliability, or life expectancy, predicated on a simple extension of current development trends.

  10. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)

    2003-05-01

    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  11. Liquid fructose down-regulates liver insulin receptor substrate 2 and gluconeogenic enzymes by modifying nutrient sensing factors in rats.

    Science.gov (United States)

    Rebollo, Alba; Roglans, Núria; Baena, Miguel; Padrosa, Anna; Sánchez, Rosa M; Merlos, Manuel; Alegret, Marta; Laguna, Juan C

    2014-02-01

    High consumption of fructose-sweetened beverages has been linked to a high prevalence of chronic metabolic diseases. We have previously shown that a short course of fructose supplementation as a liquid solution induces glucose intolerance in female rats. In the present work, we characterized the fructose-driven changes in the liver and the molecular pathways involved. To this end, female rats were supplemented or not with liquid fructose (10%, w/v) for 7 or 14 days. Glucose and pyruvate tolerance tests were performed, and the expression of genes related to insulin signaling, gluconeogenesis and nutrient sensing pathways was evaluated. Fructose-supplemented rats showed increased plasma glucose excursions in glucose and pyruvate tolerance tests and reduced hepatic expression of several genes related to insulin signaling, including insulin receptor substrate 2 (IRS-2). However, the expression of key gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was reduced. These effects were caused by an inactivation of hepatic forkhead box O1 (FoxO1) due to an increase in its acetylation state driven by a reduced expression and activity of sirtuin 1 (SIRT1). Further contributing to FoxO1 inactivation, fructose consumption elevated liver expression of the spliced form of X-box-binding-protein-1 as a consequence of an increase in the activity of the mammalian target of rapamycin 1 and protein 38-mitogen activated protein kinase (p38-MAPK). Liquid fructose affects both insulin signaling (IRS-2 and FoxO1) and nutrient sensing pathways (p38-MAPK, mTOR and SIRT1), thus disrupting hepatic insulin signaling without increasing the expression of key gluconeogenic enzymes.

  12. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  13. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  14. Combustion characteristics of thermally stressed hydrocarbon fuels

    Science.gov (United States)

    Curtis, Colin William

    Liquid propelled propulsion systems, which range from rocket systems to hypersonic scramjet and ramjet engines, require active cooling in order to prevent additional payload requirements. In these systems, the liquid fuel is used as a coolant and is delivered through micro-channels that surround the combustion chambers, nozzles, as well as the exterior surfaces in order to extract heat from these affected areas. During this process, heat exchange occurs through phase change, sensible heat extraction, and endothermic reactions experienced by the liquid fuel. Previous research has demonstrated the significant modifications in fuel composition and changes to the fuel's physical properties that can result from these endothermic reactions. As a next step, we are experimentally investigating the effect that endothermic reactions have on fundamental flame behavior for real hydrocarbon fuels that are used as rocket and jet propellants. To achieve this goal, we have developed a counter-flow flame burner to measure extinction limits of the thermally stressed fuels. The counter-flow flame system is to be coupled with a high pressure reactor, capable of subjecting the fuel to 170 atm and 873 K, effectively simulating the extreme environment that cause the liquid fuel to experience endothermic reactions. The fundamental flame properties of the reacted fuels will be compared to those of unreacted fuels, allowing us to determine the role of endothermic reactions on the combustion behavior of current hydrocarbon jet and rocket propellants. To quantify the change in transport properties and chemical kinetics of the reacting mixture, simultaneous numerical simulations of the reactor portion of the experiment coupled with a counterflow flame simulation are performed using n-heptane and n-dodecane.

  15. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  16. Synthetic fuel aromaticity and staged combustion

    Energy Technology Data Exchange (ETDEWEB)

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  17. Post combustion in converter steelmaking

    Energy Technology Data Exchange (ETDEWEB)

    Oghbasilasie, H.; Holappa, L.

    1997-12-31

    The purpose of this work is to study the fundamentals of post combustion and the effect of different process parameters on the post combustion ratio (PCR) and heat transfer efficiency (HTE) in converter steelmaking process. The PCR and HTE have been determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE. Based on enthalpy considerations, post combustion of CO gas is regarded as one of the most effective means of increasing the heat supply to the BOP. The thermodynamic study of gas-metal-slag reactions gives the limiting conditions for post combustion inside the converter reactor. Different process parameters influencing both thermodynamic equilibria and kinetic conditions can greatly affect the post combustion ratio. Different features of converter processes as well smelting reduction processes utilizing post combustion have been reviewed. (orig.) SULA 2 Research Programme; 26 refs.

  18. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  19. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  20. The modes of gaseous combustion

    CERN Document Server

    Rubtsov, Nickolai M

    2016-01-01

    This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.

  1. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  2. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  3. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  4. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  5. Basic Aerodynamics of Combustion Chambers,

    Science.gov (United States)

    1981-05-20

    8217, tie imnrulse foree eyuilibr-um c’ the bomd’~ leye - is 173 pv-:irJ p~76vJbK 2sO) IL !-. = Zn pT -- a , bV T. z -,,r y.re C era 3oia * ~~I" onc art-=e...heat by combustion all have very large influences on the capabilities of a combustion chamber. A yellow- colored flame represents diffusion combustion in...the wakes of fuel droplets. Blue- colored flames represent gaseous combustion of evaporated vapors which have already left the fuel droplets. The

  6. Low-Cost, High-Performance Combustion Chamber for LOX/CH4 Propulsion, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project, Ultramet is designing and fabricating a lightweight, high temperature combustion chamber for use with cryogenic liquid oxygen/methane (LOX/CH4)...

  7. Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application

    Science.gov (United States)

    Rafiee, Ezzat; Mirnezami, Fakhrosadat

    2017-02-01

    By combining phosphotungstic acid (PW) and SO3H- functioned zwitterion, heteropoly anion-based Brønsted acidic ionic liquids (HPA-ILs) were successfully obtained. Scanning electron microscopy and energy dispersive X-ray spectroscopy were provided the morphology and composition of the prepared material. Catalytic performance and reusability of the catalysts were evaluated through an esterification reaction between oleic acid and methanol for production of biodiesel. Relationship between catalytic activities and acidity of the catalysts have been discussed by potentiometric titration. The results showed that HPA-ILs had good activity and reusability. HPA-ILs dissolved in the reaction mixture during the reaction process and could be precipitated and separated from products at lower temperature.

  8. Computational investigation on combustion instabilities in a rocket combustor

    Science.gov (United States)

    Yuan, Lei; Shen, Chibing

    2016-10-01

    High frequency combustion instability is viewed as the most challenging task in the development of Liquid Rocket Engines. In this article, results of attempts to capture the self-excited high frequency combustion instability in a rocket combustor are shown. The presence of combustion instability was demonstrated using point measurements, along with Fast Fourier Transform analysis and instantaneous flowfield contours. A baseline case demonstrates a similar wall heat flux profile as the associated experimental case. The acoustic oscillation modes and corresponding frequencies predicted by current simulations are almost the same as the results obtained from classic acoustic analysis. Pressure wave moving back and forth across the combustor was also observed. Then this baseline case was compared against different fuel-oxidizer velocity ratios. It predicts a general trend: the smaller velocity ratio produces larger oscillation amplitudes than the larger one. A possible explanation for the trend was given using the computational results.

  9. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  10. Combustion Branch Website Development

    Science.gov (United States)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  11. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  12. Development of an analytical method for the determination of the misuse in sports of boldenone through the analysis of urine by on-line coupling liquid chromatography-gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Toledano, R M; Díaz-Plaza, E M; Cortes, J M; Aragón, A; Vázquez, A M; Villén, J; Muñoz-Guerra, J

    2014-11-28

    Boldenone (Bo), androsta-1,4-dien-17β-ol-3-one, is an anabolic androgenic steroid not clinically approved for human application. Despite this, many cases are reported every year of athletes testing positive for Bo or its main metabolite 5β-androst-1-en-17β-ol-3-one (BoM). Recently the capability of different human intestinal bacteria to produce enzymes able to modify endogenous steroids in Bo has been demonstrated. When a urinary concentration of Bo and/or BoM between 5 and 30 ng/mL is measured a complementary analysis by gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) must be carried out to discriminate the endogenous or exogenous origin. In the present work, a novel analytical method that couples LC-GC by means of the TOTAD interface with C-IRMS is described. The method is based on a first RPLC separation of unacetyled steroids, followed by acetylation and automated on-line LC-GC-C-IRMS, which includes a second RPLC clean-up of acetyl Bo and BoM, isolation of the two fractions in a fraction collector and their consecutive analysis by GC-C-IRMS. The method has been applied to the analysis of urine samples fortified at 5 and 10 ng/mL, where it has shown a good performance.

  13. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  14. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  15. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  16. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  17. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    Science.gov (United States)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  18. Experimental and theoretical study of iron and mild steel combustion in oxygen flows

    Science.gov (United States)

    El-Rabii, Hazem; Kazakov, Kirill A.; Muller, Maryse

    2017-03-01

    The effects of oxygen flow speed and pressure on the iron and mild steel combustion are investigated experimentally and theoretically. The studied specimens are vertical cylindrical rods subjected to an axial oxygen flow and ignited at the upper end by laser irradiation. Three main stages of the combustion process have been identified experimentally: (1) induction period, during which the rod is heated until an intensive metal oxidation begins at its upper end; (2) static combustion, during which a laminar liquid "cap'' slowly grows on the upper rod end, and, after the liquid cap detachment from the sample; (3) dynamic combustion, which is characterized by a rapid metal consumption and turbulent liquid motions. An analytical description of these stages is given. In particular, a model of the dynamic combustion is constructed based on the turbulent oxygen transport through the liquid metal-oxide flow. This model yields a simple expression for the fraction of metal burned in the process and allows one to calculate the normal propagation speed of the solid metal-liquid interface as a function of the oxygen flow speed and pressure. A comparison of the theory with the experimental results is made, and its potential application is mentioned.

  19. Determination of combustion parameters using engine crankshaft speed

    Science.gov (United States)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  20. Clean coal technologies handbook: fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1999-01-01

    The term fluidisation is used to describe a type or mode of contact between fluids and granular solids, in such a way that solid particles appear as suspended in the moving fluid. The fluid moves vertically upwards through the bed formed by the particles. The reason to use the word fluidisation is that, when a solid particles bed is treated in the above mentioned way, it acquires an aspect very similar to that of a boiling liquid, and it has properties similar to those of a liquid. Thus, a bed in such conditions is called fluidised bed; the name fluidisation is reserved to the operation required to reach such state. This contacting method shows a number of fetaures which make it very useful to carry on many important processes in the fields of Chemical Engineering and Extractive Metallurgy; for that reason it has been studied very deeply in the last year, on the theoretical aspect and on its practical applications as well. Going back in time to the origin of the fluidisation, as it is known at present, we find that is started to develop at the beginning of the 1940's. The first application of fluidisation is described by Agricola in his famous book De re metallica, which must have been written in XVI the century. In this book there is the mention of the concentration of metallic ores by means of an expansion of the bed produced by a vertical upwards water flow which passes through the layer of rough mineral. From the beginning of its development, fluidisation has had many applications, such as water clarification, pulverised coal gasification, catalytic cracking chemical processes, drying of pulverulent materials and incineration of solid residues, among others. Until the end of 1950 the application was not used to coal combustion; it has strongly development after the energy crisis. Starting in the 1970's a great effort at world level is being made to develop the technology of Fluidised Bed Combustion (FBC), pushed on by two main reasons.: 1) Reduction

  1. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    Science.gov (United States)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  2. Wood combustion systems: status of environmental concerns

    Energy Technology Data Exchange (ETDEWEB)

    Dunwoody, J.E.; Takach, H.; Kelley, C.S.; Opalanko, R.; High, C.; Fege, A.

    1980-01-01

    This document addresses the uncertainties about environmental aspects of Wood Combustion Systems that remain to be resolved through research and development. The resolution of these uncertainties may require adjustments in the technology program before it can be commercialized. The impacts and concerns presented in the document are treated generically without reference to specific predetermined sites unless these are known. Hence, site-specific implications are not generally included in the assessment. The report consists of two main sections which describe the energy resource base involved, characteristics of the technology, and introduce the environmental concerns of implementing the technology; and which review the concerns related to wood combustion systems which are of significance for the environment. It also examines the likelihood and consequence of findings which might impede wood commercialization such as problems and uncertainties stemming from current or anticipated environmental regulation, or costs of potential environmental controls. This document is not a formal NEPA document. Appropriate NEPA documentation will be prepared after a formal wood combustion commercialization program is approved by DOE.

  3. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  4. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  5. Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties.

    Science.gov (United States)

    Ji, Mengxia; Xia, Jiexiang; Di, Jun; Wang, Bin; Yin, Sheng; Xu, Li; Zhao, Junze; Li, Huaming

    2016-09-15

    In this study, novel visible-light-driven carbon quantum dots (CQDs)/Bi4O5I2 material has been prepared via a reactable ionic liquid 1-hexyl-3-methylimidazolium iodide ([Hmim]I) assisted bidirectional regulation solvothermal method. This is the first time for the preparation of CQDs/Bi4O5I2 material with halogen and CQDs bidirectional regulation at the same time. With CQDs modified on the surface of Bi4O5I2, fast transfer of photogenerated charges and low recombination of photo-induced electron-hole pairs facilitated the enhancement of photodegradation activity. At the same time, the introduction of CQDs made the electrons occupied in high-energy potential on the conduction band of Bi4O5I2 transfer to the reaction center CQDs and the molecular oxygen can be thus activated. The enhanced mechanisms for the active species (holes, hydroxyl and superoxide radicals) during the photocatalytic reaction under visible irradiation were analyzed using DRS analysis, electron spin resonance (ESR) technique and free radicals trapping experiments.

  6. Measurements in liquid fuel sprays

    Science.gov (United States)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  7. A Study of Thermal Analyses and Fundamental Combustion Characteristics for Thermal Utility with Biomass Volatile Matter

    Science.gov (United States)

    Ida, Tamio; Namba, Kunihiko; Sano, Hiroshi

    Based on un-use biomass utilities, Carbonized technology is noticed as material utilities and solid fuel. Therefore, this technology is tackling by national project as large-scale utilities. But, this technology is dehydrated volatiles matter during carbonized from biomass. Especially, Woody tar into one of volatile matter has vicious handling to get into trouble in carbonized equipment. In this study, we propose to get fundamental knowledge for effective thermal utility through thermal decompositions and fundamental combustion properties on experimental results. Woody tar has high caloric value (approximately 30MJ/kg) and high carbon ration. On the other hand, a woody vinegar liquid has thermal decomposition property close to water property with heat absorption as evaporation latent heat of water. In fundamental combustion experimental result, a woody tar has fl ammable combustion and surface combustion. Especially, a total combustion and ignition time properties has hyperbola relation to environment temperatures in furnace.

  8. Mission Success for Combustion Science

    Science.gov (United States)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  9. Désulfuration : avant, pendant ou après la combustion ? Synthèse bibliographique Desulfurization: Before, During Or After Combustion? Bibliographic Synthesis

    Directory of Open Access Journals (Sweden)

    Benchecroun N.

    2006-11-01

    Full Text Available Les perspectives d'applications de nouvelles normes aux émissions des grandes installations de combustion, tant aux Etats-Unis qu'en Europe de l'Ouest ont suscité de nombreuses recherches. Les diverses publications qui leur sont consacrées traitent le plus souvent de la combustion de charbons et, beaucoup plus rarement, de l'adaptabilité de ces procédés à des combustibles liquides ou de techniques spécifiques. Les principaux points technico-économiques qui se dégagent sur la désulfuration des combustibles liquides sont donnés dans cet article. Enfin, au-delà des aspects techniques, on notera que la désulfuration des combustibles liquides, et plus particulièrement du fuel lourd, est liée à deux aspects plus politiques : - l'application de normes sur les émissions des installations de combustion (ou les dérogations possibles qui concernent non seulement les oxydes de soufre mais aussi les oxydes d'azote et les particules contenues dans les fumées; - l'avenir des fuels lourds tant sur le plan quantitatif (marché que qualitatif (constitution du pool fuel et spécifîcations. The prospects that new emission standards will be applied to large combustion installations, both in the United States and Western Europe, have given rise to extensive research. The different publications devoted to this research usually deal with coal combustion and more rarely with the suitability of such processes for liquid fuels or specific techniques. The leading technico-economic points involved in the desulfurization of liquid fuels are given in this article. Likewise, over and beyond the technical aspects, it can be seen that the desulfurization of liquid fuels, and more particularly of heavy fuel oil, is linked to two more politicalaspects:(a the application of standards on emissions from combustion installations (or possible derogations concerning not only sulfur oxides but also nitrogen oxides and particles contained in fumes;(b the future of

  10. Fuel injection for internal combustion engines. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems` variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Fuel injection for internal combustion engines. (Latest citations from the NTIS Bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems' variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included. (Contains a minimum of 223 citations and includes a subject term index and title list.)

  12. Multidimensional Modeling of Fuel Composition Effects on Combustion and Cold-starting in Diesel Engines

    Science.gov (United States)

    1995-01-01

    equally important for both the gas and liquid phase. For the gas phase, a modified Redlich - Kwong equation of state is used (Prausnitz, [lo]). In the...residual fuel mass (case 9). Ignition started early but the combustion developed at a slower rate. Another application of an altered engine geometry...Power, Vol. 115, pp. 781-789,1993. 17. Kong, S.C., Han, Z., and Reitz, R.D., “The Development and Application of a Diesel Ignition and Combustion

  13. An experimental-analytical method to study steady spray combustion.

    Science.gov (United States)

    Bracco, F. V.

    1973-01-01

    Description of a method for determining the local parameters of the gas mixture resulting from the combustion of sprayed fuel in a gaseous oxidizer. The method is based on the measurement of local static pressures in the gas mixture and does not require the knowledge of the droplet distribution function, drag, and vaporization characteristics. A set of equations with substituted local pressure values is used for calculations. Application of the method is demonstrated on a liquid oxygen-ethanol rocket fuel.

  14. Large-scale retrospective evaluation of regulated liquid chromatography-mass spectrometry bioanalysis projects using different total error approaches.

    Science.gov (United States)

    Tan, Aimin; Saffaj, Taoufiq; Musuku, Adrien; Awaiye, Kayode; Ihssane, Bouchaib; Jhilal, Fayçal; Sosse, Saad Alaoui; Trabelsi, Fethi

    2015-03-01

    The current approach in regulated LC-MS bioanalysis, which evaluates the precision and trueness of an assay separately, has long been criticized for inadequate balancing of lab-customer risks. Accordingly, different total error approaches have been proposed. The aims of this research were to evaluate the aforementioned risks in reality and the difference among four common total error approaches (β-expectation, β-content, uncertainty, and risk profile) through retrospective analysis of regulated LC-MS projects. Twenty-eight projects (14 validations and 14 productions) were randomly selected from two GLP bioanalytical laboratories, which represent a wide variety of assays. The results show that the risk of accepting unacceptable batches did exist with the current approach (9% and 4% of the evaluated QC levels failed for validation and production, respectively). The fact that the risk was not wide-spread was only because the precision and bias of modern LC-MS assays are usually much better than the minimum regulatory requirements. Despite minor differences in magnitude, very similar accuracy profiles and/or conclusions were obtained from the four different total error approaches. High correlation was even observed in the width of bias intervals. For example, the mean width of SFSTP's β-expectation is 1.10-fold (CV=7.6%) of that of Saffaj-Ihssane's uncertainty approach, while the latter is 1.13-fold (CV=6.0%) of that of Hoffman-Kringle's β-content approach. To conclude, the risk of accepting unacceptable batches was real with the current approach, suggesting that total error approaches should be used instead. Moreover, any of the four total error approaches may be used because of their overall similarity. Lastly, the difficulties/obstacles associated with the application of total error approaches in routine analysis and their desirable future improvements are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals.

    Science.gov (United States)

    Dmitrienko, Margarita A; Nyashina, Galina S; Strizhak, Pavel A

    2017-09-15

    Negative environmental impact of coal combustion has been known to humankind for a fairly long time. Sulfur and nitrogen oxides are considered the most dangerous anthropogenic emissions. A possible solution to this problem is replacing coal dust combustion with that of coal water slurry containing petrochemicals (CWSP). Coal processing wastes and used combustible liquids (oils, sludge, resins) are promising in terms of their economic and energy yield characteristics. However, no research has yet been conducted on the environmental indicators of fuels based on CWSP. The present work contains the findings of the research of CO, CO2, NOx, SOx emissions from the combustion of coals and CWSPs produced from coal processing waste (filter cakes). It is demonstrated for the first time that the concentrations of dangerous emissions from the combustion of CWSPs (carbon oxide and dioxide), even when combustible heavy liquid fractions are added, are not worse than those of coal. As for the concentration of sulfur and nitrogen oxides, it is significantly lower for CWSPs combustion as compared to coals. The presented research findings illustrate the prospects of the wide use of CWSPs as a fuel that is cheap and beneficial, in terms of both energy output and ecology, as compared to coal. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Increase oil recovery of heavy oil in combustion tube using a new catalyst based nickel ionic solution

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Garnica, M.A.; Hernandez-Perez, J.R.; Cabrera-Reves, M.C.; Schacht-Hernandez, P. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    An ionic liquid-based nickel catalyst was used in conjunction with a combustion tube as an in situ process for heavy oil. The experimental system was comprised of a fluid injection system; a combustion tube; a fluid production system; a gas chromatograph; and a data recording system. Injected nitrogen and air was controlled by a mass flow controller. Nitrogen was used to pressurize the combustion tube and flush the system. Air was injected at a rate of 3 L per minute throughout the combustion run. Liquids leaving the combustion tube passed through a 2-stage separation process. Gases passing through the condenser were kept at low temperatures. Fractions of produced gas were analyzed by the chromatograph. Data loggers were used to obtain data at 30 second intervals. Two combustion experiments were conducted to obtain production times, temperature profiles, and the quality of the oil produced by the catalyst. Combustion tests were conducted with and without the catalyst. An analysis of the experimental data showed that use of the nickel catalyst resulted in increases in oil production as well as higher combustion efficiencies. Use of the catalyst also resulted in a faster combustion front and accelerated oil production. It was concluded that the produced oil contained fewer impurities than oil produced during the control experiment. 23 refs., 3 tabs., 9 figs.

  17. The first turbulent combustion

    CERN Document Server

    Gibson, C H

    2005-01-01

    The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydr...

  18. 液体火箭发动机液氧箱与预冷回路的耦合计算模型%Numerical Investigation of Transpiration Cooling Coupled With Combustion in the Thrust Chamber of Liquid Rocket

    Institute of Scientific and Technical Information of China (English)

    祝银海; 姜培学; 杨炜平; 徐珊姝

    2012-01-01

    建立了液体火箭发动机的液氧贮箱与底部预冷回路的数值计算耦合模型,模拟了地面停放过程中贮箱与底部预冷回路的三维非稳态两相流动与传热过程,分析了自然循环预冷条件下液氧贮箱和底部预冷回路中的三维物理场分布及随时间变化规律。结果表明:随着停放时间的增加,液氧的蒸发量增加,停放中后期贮箱内的热传递基本趋于稳定。回流管内的气化导致回流口处的温度一直呈现波动。%A 3D CFD model of the liquid oxygen tank with a natural recirculation cooling loop was established.The unsteady two-phase flow and heat transfer in the tank and bottom loop was numerically investigated.The mass fraction,pressure and temperature fields in the tank were analyzed under different natural recirculation cooling conditions.Results showed that the evaporation of liquid oxygen increased with the test time.The heat transfer process became steady at the end of test time.The fluid temperature at the loop exit fluctuated due to the evaporation in the bottom loop.

  19. Filtration combustion: Smoldering and SHS

    Science.gov (United States)

    Matkowsky, Bernard J.

    1995-01-01

    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  20. Combustion Properties of Straw Briquettes

    Directory of Open Access Journals (Sweden)

    Zhao Qing-ling

    2013-05-01

    Full Text Available The low bulk density of straw is one of the major barriers, which blocks the collection, handling, transportation and storage. Densification of biomass into briquettes/pellets is a suitable method of increasing the bulk density of biomass. Yet in the process, a tremendous amount of air is ejected from biomass grind, which brings substantial specific variation including combustion property. Among them, combustion property is critical for proper design and operation of burning facilities. Therefore, a series of tests about combustion properties of 75mm diameter corn briquettes were done. First, the combustion process (ignition, full flaming and glowing phases., precipitation of tar were investigated by a heating stove, then, Some ash sample from the muffle burner was subjected to an ash melting characteristic test. The results show the combustion of briquettes takes more time than that of raw straw from ignition to complete combustion; in order to meet complete combustion in a short time, the raw straw needs more supply air volume than briquettes under the same α value; the temperature of furnace chamber should been controlled under 900°C, which help to reduce the dark smoke, tar and slag.

  1. Quantitative Measurement of Oxygen in Microgravity Combustion

    Science.gov (United States)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  2. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  3. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU

    2014-06-01

    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  4. Combustion-gas recirculation system

    Science.gov (United States)

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  5. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  6. THE COMBUSTION ACTION VERIFICATION AND ESTIMATE OF COMBUSTION EFFICIENCY IN AVIATION GAS#TURBINE ENGINE COMBUSTION CHAMBERS

    OpenAIRE

    2011-01-01

    Verification results of combustion action simulating and estimate of calculation combustion efficiency that was given by simulating were shown. Mathematical model and its assumption are described. Execution calculations method was shown. Results of simulating are shown; their comparative analyses with results of experiment were executed. Accuracy of combustion action mathematical modeling by combustion efficiency in model with oneand two-stage reactions of combustion was estimated. The infere...

  7. Putting combustion optimization to work

    Energy Technology Data Exchange (ETDEWEB)

    Spring, N.

    2009-05-15

    New plants and plants that are retrofitting can benefit from combustion optimization. Boiler tuning and optimization can complement each other. The continuous emissions monitoring system CEMS, and tunable diode laser absorption spectroscopy TDLAS can be used for optimisation. NeuCO's CombustionOpt neural network software can determine optimal fuel and air set points. Babcock and Wilcox Power Generation Group Inc's Flame Doctor can be used in conjunction with other systems to diagnose and correct coal-fired burner performance. The four units of the Colstrip power plant in Colstrips, Montana were recently fitted with combustion optimization systems based on advanced model predictive multi variable controls (MPCs), ABB's Predict & Control tool. Unit 4 of Tampa Electric's Big Bend plant in Florida is fitted with Emerson's SmartProcess fuzzy neural model based combustion optimisation system. 1 photo.

  8. Flameless Combustion for Gas Turbines

    Science.gov (United States)

    Gutmark, Ephraim; Li, Guoqiang; Overman, Nick; Cornwell, Michael; Stankovic, Dragan; Fuchs, Laszlo; Milosavljevic, Vladimir

    2006-11-01

    An experimental study of a novel flameless combustor for gas turbine engines is presented. Flameless combustion is characterized by distributed flame and even temperature distribution for high preheat air temperature and large amount of recirculating low oxygen exhaust gases. Extremely low emissions of NOx, CO, and UHC are reported. Measurements of the flame chemiluminescence, CO and NOx emissions, acoustic pressure, temperature and velocity fields as a function of the preheat temperature, inlet air mass flow rate, exhaust nozzle contraction ratio, and combustor chamber diameter are described. The data indicate that larger pressure drop promotes flameless combustion and low NOx emissions at the same flame temperature. High preheated temperature and flow rates also help in forming stable combustion and therefore are favorable for flameless combustion.

  9. Characterization of combustion synthesized zirconia powder by UV-vis, IR and other techniques

    Indian Academy of Sciences (India)

    H Ranjan Sahu; G Ranga Rao

    2000-10-01

    Fine powders of zirconia were prepared by employing combustion method with varying fuel to precursor molar ratios. The zirconia powders contained more amount of monoclinic phase as the fuel content was increased. This aspect was studied using XRD, IR and UV-vis diffuse reflectance techniques. The surface acidbase properties of these samples were also investigated by indicator titration method. The catalytic activity was probed with transfer hydrogenation reaction in liquid phase. It was found that combustion synthesized zirconia did not provide required active sites for transfer hydrogenation reactions in liquid phase unlike hydrous zirconia.

  10. The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites

    Science.gov (United States)

    Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.

    1997-01-01

    Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different

  11. Combustion chamber analysis code

    Science.gov (United States)

    Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.

    1993-05-01

    A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.

  12. Combustion of boron containing compositions

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Y.; Pivkina, A. [Institute of Chemical Physics, Russian Academy of Science, Moscow (Russian Federation)

    1996-12-31

    Boron is one of the most energetic components for explosives, propellants and for heterogeneous condensed systems in common. The combustion process of mixtures of boron with different oxidizers was studied. The burning rate, concentration combustion limits, the agglomeration and dispersion processes during reaction wave propagation were analysed in the respect of the percolation theory. The linear dependence of the burning rate on the contact surface value was demonstrated. The percolative model for the experimental results explanation is proposed. (authors) 5 refs.

  13. Smoldering Combustion Experiments in Microgravity

    Science.gov (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  14. Rotary internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, J.

    1989-12-05

    This patent describes an internal combustion engine assembly. It includes: a central rotor means formed with at least one peripheral fuel cavity. The cavity having a first surface defining a thrust surface and a second surface defining a contoured surface; a housing means enclosing the rotor and having an internal wall encircling the rotor. The internal wall being intercepted by at least two recesses defining cylinder means. The housing means and the rotor means being relatively rotatable; piston means individual to each the cylinder means and reciprocable therein; each piton means having a working face complementary to aid contoured surface; and power means for urging the working face into intimate areal contact with the contoured surface to create a first seal means. The housing means having at lest one fuel inlet port, at least one fuel ignition means and at least one exhaust port whereby during the course of a revolution of the rotor means relative to the housing means, the first seal means, the power means, the respective ports, the ignition means and the fuel cavity cooperate to develop fuel compression, fuel ignition and exhaust functions.

  15. Internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Laskaris, M.A.; Broitman, K.; Natale, S.E.

    1991-08-27

    This patent describes improvement in a two-stroke internal combustion engine adapted to run on a diesel or a kerosene type of fuel, and including a piston connected to the crankshaft of the engine to move within a cylinder through a first stroke from a top dead center position to a bottom dead center position and through a second stroke from the bottom dead center position back to the top dead center position. The improvement comprises: means providing a cylinder head at the top end of the engine cylinder in the shape of an open bowl having a generally cup-shaped configuration including a sidewall portion, a spark plug positioned centrally within the bowl at the top end of the cylinder, and means for injecting fuel into the top end of the engine cylinder at a location between the spark plug and the sidewall portion, the fuel injecting means including an injection nozzle having a plurality of nozzle openings therein, the nozzle openings being constructed and arranged to discharge a plurality of plume-like sprays into the top end of the cylinder at a location within the bowl, two of the sprays being directed from the nozzle to diverge and pass along opposite sides of the spark plug, and additional sprays being directed from the nozzle against the sidewall portion or the cylinder head to be deflected therefrom back toward the piston and the spark plug to thereby form a cloud of fuel over the spark plug for good ignition.

  16. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  17. Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis

    Science.gov (United States)

    Eberhart, C. J.; Casiano, M. J.

    2015-01-01

    Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.

  18. Liquid fuel injection elements for rocket engines

    Science.gov (United States)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  19. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at

  20. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at

  1. Twenty-second symposium (international) on combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The following research areas were discussed at the symposium: coal combustion: carbon burnout, pyrolysis, furnaces, laboratory-scale combustion, and fluidized bed combustion; combustion-generated particulates: soot inception, growth, and soot formation in diffusion flames; engine combustion; turbulent combustion: flames in vortices, fractals and cellular automations, nonpremixed flames, premixed flames, premixed flame structure, and lifted flames; reaction kinetics: hydrocarbon oxidation, free radical chemistry, unsaturated species, aromatics, and nitrogen compounds/pollutant formation; combustion generated NO/sub x/ and SO/sub x/; fires: flame spread, radiation, characterization, and unsteady flames; Laminar flames: structure, opposed-flow combustion, shape, propagation/extinction, and inhibition, oscillations, microgravity; ignition; detonations; dusts; propellants; diagnostics; combustion of drops, sprays, and dispersions, and slurries. Individual projects are processed separately for the data bases. (CBS)

  2. Combustion iron distribution and deposition

    Science.gov (United States)

    Luo, Chao; Mahowald, N.; Bond, T.; Chuang, P. Y.; Artaxo, P.; Siefert, R.; Chen, Y.; Schauer, J.

    2008-03-01

    Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble (Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble (Fe(II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.

  3. Scaling study of the combustion performance of gas-gas rocket injectors

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Wei; Cai Guo-Biao; Jin Ping

    2011-01-01

    To obtain the key subelements that may influence the scaling of gas-gas injector combustor performance,the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas-gas combustion flowfield.Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance.The similarity conditions of the inner wall friction loss and heat-flux loss in a gas-gas combustion chamber are obtained by theoretical analyses.Then the theoretical scaling criterion was obtained for the combustion performance,but it proved to be impractical.The criterion conditions,the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance.The results indicate that when the inner flowfields in the combustors are similar,the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc08dt-0.2 quantitatively.In addition,the combustion peformance will remain unchanged.Furthermore,multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other.A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests.The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries,with the criterion applied.

  4. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    Science.gov (United States)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  5. Turbulent Combustion in SDF Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  6. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  7. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    Science.gov (United States)

    2012-11-01

    Tasks 8 and 9: Kinetic model validation) Today’s Presentation 2. Multispecies diagnostics in a flow reactor with Mid-IR and molecular beam mass...S-Curve Competition between low T RO2 kinetics high T chain branching reactions 0.00 0.02 0.04 0.06 0.08 0.10 0.12 1x10 5 2x10 5 3x10 5 4x10...in Plasma assisted combustion • LTC in turbulent combustion at engine time scales 0-D modeling of DME /O2/He (0.03/0.1/0.896) ignition, P = 72

  8. Tailoring next-generation biofuels and their combustion in next-generation engines.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O' Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  9. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function.

    Science.gov (United States)

    Clapp, Phillip W; Pawlak, Erica A; Lackey, Justin T; Keating, James E; Reeber, Steven L; Glish, Gary L; Jaspers, Ilona

    2017-08-01

    Innate immune cells of the respiratory tract are the first line of defense against pathogenic and environmental insults. Failure of these cells to perform their immune functions leaves the host susceptible to infection and may contribute to impaired resolution of inflammation. While combustible tobacco cigarettes have been shown to suppress respiratory immune cell function, the effects of flavored electronic cigarette liquids (e-liquids) and individual flavoring agents on respiratory immune cell responses are unknown. We investigated the effects of seven flavored nicotine-free e-liquids on primary human alveolar macrophages, neutrophils, and natural killer (NK) cells. Cells were challenged with a range of e-liquid dilutions and assayed for their functional responses to pathogenic stimuli. End points included phagocytic capacity (neutrophils and macrophages), neutrophil extracellular trap formation, proinflammatory cytokine production, and cell-mediated cytotoxic response (NK cells). E-liquids were then analyzed via mass spectrometry to identify individual flavoring components. Three cinnamaldehyde-containing e-liquids exhibited dose-dependent broadly immunosuppressive effects. Quantitative mass spectrometry was used to determine concentrations of cinnamaldehyde in each of the three e-liquids, and cells were subsequently challenged with a range of cinnamaldehyde concentrations. Cinnamaldehyde alone recapitulated the impaired function observed with e-liquid exposures, and cinnamaldehyde-induced suppression of macrophage phagocytosis was reversed by addition of the small-molecule reducing agent 1,4-dithiothreitol. We conclude that cinnamaldehyde has the potential to impair respiratory immune cell function, illustrating an immediate need for further toxicological evaluation of chemical flavoring agents to inform regulation governing their use in e-liquid formulations. Copyright © 2017 the American Physiological Society.

  10. Case history review--demilitarization combustion permits.

    Science.gov (United States)

    Gaborek, B J

    2000-02-01

    In May 1993, Administrative Browner of the U.S. Environmental Protection Agency (USEPA) announced that an indirect exposure health risk assessment was required for all hazardous waste combustion facilities seeking a Resource Conservation and Recovery Act permit. These types of risk assessments evaluate the health and environmental effects from inhalation of emissions (direct exposure) and from contact with environmental media and consumption of food products impacted by the emissions (indirect exposure). Completion of an indirect exposure risk assessment is often complicated by the various methodologies available for generating results and by the requirements of the regulating community. To minimize this complexity and to maximize consistency between risk assessments, the USEPA developed a number of detailed guidance documents. Site-specific conditions and toxicological data gaps, however, continue to present challenges not addressed by these guidance documents. This paper presents some of the specific challenges encountered by the U.S. Army Center for Health Promotion and Preventive Medicine when performing indirect exposure health risk assessments for several demilitarization combustion facilities.

  11. A comprehensive fractal char combustion model☆

    Institute of Scientific and Technical Information of China (English)

    Yuting Liu; Rong He

    2016-01-01

    The char combustion mechanisms were analyzed and a comprehensive fractal char combustion model was developed to give a better understanding and better predictions of the char combustion characteristics. Most of the complex factors affecting the char combustion were included, such as the coupling effects between the pore diffusion and the chemical reactions, the evolution of the char pore structures and the variation of the apparent reaction order during combustion, the CO/CO2 ratio in the combustion products and the correction for oxy-char combustion. Eleven different chars were then combusted in two drop tube furnaces with the conversions of the partly burned char samples measured by thermogravimetric analysis. The combustion processes of these chars were simulated with the predicted char conversions matching very well with the measured data which shows that this char combustion model has good accuracy. The apparent reaction order of the char combustion decreases, stabilizes and then increases during the combustion process. The combustion rates in the oxy-mode are general y slower than in the air-mode and the effect of the char-CO2 gasification reac-tion becomes obvious only when the temperature is relatively high and the O2 concentration is relatively low.

  12. Dioxin emissions from small-scale combustion of bio-fuel and household waste

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, Bjoern

    2005-09-01

    This thesis deals with emissions of persistent organic pollutants, primarily dioxins, from the combustion of solid biofuels and dry combustible household waste in relatively small facilities, 5-600 kW, without advanced air pollution controls. Co-combustion of waste and biofuel in effective small boilers was tested as an alternative to prevailing large-scale management and combustion strategies for handling municipal solid waste. This approach includes no advanced air pollution control systems, but offers two advantages: limiting transport and providing scope to use local biofuel resources. Source-sorted, dry, combustible household waste was collected from households in a sparsely populated area and co-combusted as briquettes together with reed canary-grass in 150-600 kW biofuel boilers. Most trials showed difficulties to meet regulative limits for the emissions of dioxins valid for incineration of MSW and the regulated limits for emissions of hydrochloric acid were exceeded manifold. It was concluded that additional flue-gas cleaning will be needed to ensure that emissions are sufficiently low. Dioxins were also found in the waste, especially in the textile fraction. The mass of dioxins in the flue-gas emissions was generally lower than the mass in the fuel input. Intermittent combustion of wood pellets in a residential boiler resulted in an unexpectedly high dioxin emissions factor of 28 ng (WHO-TEQ)/kg fuel. Combustion of wood in a modern environmentally certified boiler yielded considerably lower dioxin emissions than combustion in an old boiler, and combustion with a full air supply, i.e. with use of heat storage tank, resulted in up to 90% reductions in dioxin emission factors compared to combustion with reduced air supply. Combustion of plastic waste in a residential wood boiler resulted in high emissions of dioxins. Tests of uncontrolled combustion of garden and household waste in barrels or open fires, 'backyard burnings', resulted in emissions

  13. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  14. Combustion Front Dynamics in the Combustion Synthesis of Refractory Metal Carbides and Di-borides using Time-Resolved X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wong,J.; Larson, E.; Waide, P.; Frahm, R.

    2006-01-01

    A compact diffraction-reaction chamber, using a 2-inch photodiode array detector, has been employed to investigate the chemical dynamics at the combustion front of a selected series of refractory metal carbides and di-borides from their constituent element reactants as well as binary products from B4C as a reactant. These systems are denoted as (i) M + C {yields} MC; (ii) M + 2B {yields} MB{sub 2}; and (iii) 3M + B{sub 4}C {yields} 2MB{sub 2} + MC, where M = Ti, Zr, Nb, Hf or Ta. Time-resolved X-ray diffraction using intense synchrotron radiation at frame rates up to 10 frames s{sup -1} (or 100 ms frame{sup -1}) was employed. The combustion reactions were found to complete within 200-400 ms. In contrast to the Ta + C {yields} TaC combustion system studied earlier, in which a discernible intermediate sub-carbide phase was first formed, reacted further and disappeared to yield the final TaC product, no intermediate sub-carbide or sub-boride was detected in the current systems. Combustion for the Ti, Zr and Hf systems involved a liquid phase, in which the adiabatic temperatures T{sub ad} are well above the melting points of the respective reactant metals and have a typical combustion front velocity of 5-6 mm s{sup -1}. The Nb and Ta systems have lower T{sub ad}, involving no liquid phase. These are truly solid combustion systems and have a lower combustion front velocity of 1-2 mm s{sup -1}. The current study opens up a new avenue to chemical dynamics and macrokinetic investigations of high-temperature solid-state reactions.

  15. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  16. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    Science.gov (United States)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  17. NUMERICAL STUDIES ON HYDROGEN COMBUSTION IN A FILM COOLED CRYOGENIC ROCKET ENGINE

    Directory of Open Access Journals (Sweden)

    ARSHAD A.

    2012-07-01

    Full Text Available Liquid rocket engines have variety of propellant combinations which produces very high specific impulses. It is due to this fact; very high heat fluxes are incident on the combustion chamber and the nozzle walls. In order to deal with these heat fluxes, a wide range of cooling techniques have been employed, out of which a combination of film cooling and regenerative cooling promises to be the most effective one. The present study involves the numerical analysis of combustion in a typical film cooled cryogenic rocket engine thrust chamber considering the combustion of the fuel, heat transfer through the chamber walls and the fluid flow simultaneously. Analysis was done for a typical rocket engine thrust chamber with a single coaxial injector which uses gaseous hydrogen as the fuel and liquid oxygen as the oxidizer.

  18. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  19. Potential environmental regulations for coal liquefaction facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dauzvardis, P.; Gasper, J.; Surles, T.

    1979-12-01

    Although this report deals with potential regulatory constraints only on development of coal liquids, it should be noted that every basic industry in the national economy is constrained by a myriad of state, local, and federal laws, and many of these existing laws may eventually affect coal liquids development. The American Petroleum Institute has prepared a list of the 12 most generally applicable environmental laws; these are summarized. For the present study, the most comprehensive constraining regulations likely to apply to coal liquefaction were chosen from this list. The choices depended in part upon which laws could be complied with by appropriate facility design. Therefore, for this study, the regulations examined were those covering solid and hazardous wastes and emissions of air and water pollutants. It should be noted that there are at present no emission regulations pertaining specifically to coal liquefaction. A survey of such analogous industries was conducted to identify regulations on air and water pollutants and solid waste disposal that might pertain to coal synfuel plants. The Federal New Source Performance Standards (NSPS) for air and water pollutants were specified where applicable. Wherever federal standards for a particular emission source or pollutant did not exist but appeared necessary, appropriate standards were specified on the basis of state regulations.Estimates of emission and effluent standards that may be applicable to coal liquefaction facilities are presented. Emission standards are defined for coal driers, boilers, process, and combustion equipment and for Claus sulfur plants. Effluent standards are provided for process, boiler, and miscellaneous waste streams. Sources of solid wastes from coal liquefaction and proposed disposal regulations for hazardous wastes are also described.

  20. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance

  1. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  2. Combustion synthesis method and products

    Science.gov (United States)

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  3. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  4. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei

    2012-01-01

    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  5. Autodesk Combustion 4 fundamentals courseware

    CERN Document Server

    Autodesk,

    2005-01-01

    Whether this is your first experience with Combustion software or you're upgrading to take advantage of the many new features and tools, this guide will serve as your ultimate resource to this all-in-one professional compositing application. Much more than a point-and-click manual, this guide explains the principles behind the software, serving as an overview of the package and associated techniques. Written by certified Autodesk training specialists for motion graphic designers, animators, and visual effects artists, Combustion 4 Fundamentals Courseware provides expert advice for all skill le

  6. Nitrosamine degradation by UV light in post-combustion CO2 capture: effect of solvent matrix

    NARCIS (Netherlands)

    Miguel Mercader, F. de; Voice, A.K.; Trap, H.C.; Goetheer, E.L.V.

    2013-01-01

    Potential production and emission of nitrosamines during post-combustion CO2 capture has drawn some attention due to their toxicity and potential carcinogenicity. One of the possible ways to reduce the concentration of nitrosamines is irradiation of the liquid streams of the capture plant with UV li

  7. Nitrosamine degradation by UV light in post-combustion CO2 capture: effect of solvent matrix

    NARCIS (Netherlands)

    Miguel Mercader, F. de; Voice, A.K.; Trap, H.C.; Goetheer, E.L.V.

    2013-01-01

    Potential production and emission of nitrosamines during post-combustion CO2 capture has drawn some attention due to their toxicity and potential carcinogenicity. One of the possible ways to reduce the concentration of nitrosamines is irradiation of the liquid streams of the capture plant with UV

  8. Free Energy and Internal Combustion Engine Cycles

    CERN Document Server

    Harris, William D

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  9. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  10. Scramjet Combustion Stability Behavior Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  11. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  12. Combustion and Plasma Synthesis of High-Temperature Materials

    Science.gov (United States)

    Munir, Z. A.; Holt, J. B.

    1997-04-01

    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  13. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  14. X光摄影技术探测高速液体射流核结构的研究%Investigation of Structure of High-speed Liquid Jet Nucleus by X-ray Photography

    Institute of Scientific and Technical Information of China (English)

    金志明; 张玉荣; 余永刚

    1998-01-01

    In this paper a new type of experimental device that can be used to visualize liquid injection process, whose power source is burned gas produced by combustion of solid propellant is presented. This system uses flash X-rays to study the divergence structure of high-speed liquid jet nucleus. The effects of back pressure, nozzle structure, etc. on liquid jet breakup are studied in the confined space. The results are important to adjust combustion chamber geometry and control combustion stability.

  15. Combustion Chemistry Diagnostics for Cleaner Processes.

    Science.gov (United States)

    Kohse-Höinghaus, Katharina

    2016-09-12

    Climate change, environmental problems, urban pollution, and the dependence on fossil fuels demand cleaner, renewable energy strategies. However, they also ask for urgent advances in combustion science to reduce emissions. For alternative fuels and new combustion regimes, crucial information about the chemical reactions from fuel to exhaust remains lacking. Understanding such relations between combustion process, fuel, and emissions needs reliable experimental data from a wide range of conditions to provide a firm basis for predictive modeling of practical combustion processes.

  16. Simulation study on combustion of biomass

    Science.gov (United States)

    Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.

    2017-01-01

    Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.

  17. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  18. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  19. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  20. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  1. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  2. Generalized Liquid Film Atomization Theory

    Institute of Scientific and Technical Information of China (English)

    HeraldoS.Couto; DemetrioBastos-Netto

    2000-01-01

    The increase of the fuel burning area required by most practical combustion processes in order to guarantee the minimum energy density rate release for their start up and operation is normally achieved by the proper choice among several existing types of atomizers.For instance.impinging and multi-impinging jets atomizers are used in rocket combustion chambers.while splash-plate atomizers find their use when wall film cooling is required.Pressure swirl atomizers,either of simplex or duplex kind,along with Y-jet or SPider Jet atomizers are used in industrial applications and in turbine combustion chambers.Notice.however,that all the types of atomizing devices listed above have one point in common:they are of pre-filming kind.i.e.,befor the droplet spray is generated,a liquid film is formed.This liquid film is broken into unstable ligaments which contract under the action of surface tension forming the droplets.Once the film thickness is estimated.the droplets'SMD(Sauter Mean Diameter)can be calculated.yielding a crucial prameter for the combustion chamber design.However,although this mechanism of droplet fromation has been under study for several decades.most of the available results.are based upon experimental data.valid for a special type of atomizer under the given sepcific conditions only.This work offers a generalized theory for theoretically estimating the SMD of sprays generated by liquid pre-filming atomizers in gereral.

  3. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology for ...

  4. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  5. 30 CFR 57.4160 - Underground electric substations and liquid storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground electric substations and liquid... Underground electric substations and liquid storage facilities. The requirements of this standard apply to...) Electric substations. (2) Unburied, combustible liquid storage tanks. (3) Any group of containers used for...

  6. The role of Cl- in the regulation of ion and liquid transport in the intact alveolus during β-adrenergic stimulation.

    Science.gov (United States)

    Alexandrou, Dionysios; Walters, Dafydd V

    2013-02-01

    The epithelium of the developing lung displays an evolving liquid transport phenotype, in which Cl(-) secretion during fetal life is rapidly switched to Na(+) absorption perinatally. However, the mechanisms underlying the homeostasis of the thin layer of liquid lining the postnatal pulmonary epithelium remain elusive. In particular, it remains unclear whether the stimulated clearance of excess alveolar liquid is mediated via transepithelial Cl(-) transport. Our study is a pharmacological analysis with the aim of addressing this issue, which is of major physiological significance in cases of pulmonary oedema from any cause. We measured the rate of transepithelial liquid movement (J(v)) with (125)I-albumin, in the in situ perfused adult rat lung. Transepithelial Cl(-) transport was studied with the use of the Cl(-) channel inhibitor NPPB in the resting state and during stimulation with the β(2)-adrenergic agonist terbutaline. The study of J(v) in these conditions revealed the following findings: (1) there is net absorption of excess of alveolar liquid in the resting, unstimulated state, which is predominantly amiloride sensitive; (2) inhibition of Cl(-) transport with NPPB in the resting state results in a 1.6-fold increase in net absorption of alveolar liquid; and (3) the terbutaline-stimulated net absorption of the excess liquid is enhanced by 2.8-fold in the presence of NPPB. Our results are suggestive of the functional presence of secretory, but not absorptive, Cl(-) mechanisms and show that transepithelial Cl(-) transport is not part of the mechanism underlying lung liquid clearance in response to β-adrenergic stimulation.

  7. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  8. Fluidized-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Kudjoi, A.; Heinolainen, A.; Hippinen, I.; Lu, Y. [Helsinki University of Technology, Espoo (Finland). Lab. of Energy Economics and Power Plant Engineering

    1998-12-31

    Hybrid combined cycle processes have been presented as possibilities for power generation in the future. In the processes based on partial gasification of coal, the solid materials removed from a gasifier (i.e. fly ash and bed char) contain unburned fuel, which is burned either in an atmospheric or a pressurised fluidised-bed. Pressurised fluidised-bed (PFB) combustion of gasification residues were studied experimentally by Helsinki University of Technology. The gasification residues, i.e. cyclone fines and bed chars, came from pilot scale PFB gasification tests of bituminous coals. The combustion efficiency was high in cyclone fines combustion. The calcium sulphide oxidised effectively to calcium sulphate in the combustion of cyclone fines. In bed char combustion the residual sulphide contents in solids after combustion were still relatively high. In general, sulphur dioxide emissions in residue combustion were low. The recarbonation of calcium oxide was observed in bed char combustion. Fuel-N conversion to NO{sub x} during bed char combustion and in most of the test runs with cyclone fines was higher than in bituminous coal combustion. In bed char combustion the conversion was significantly higher than in cyclone fines combustion. NO{sub x} emissions increased with increasing excess air for both residues, as was expected. In bed char combustion the highest NO{sub x} emissions were measured at higher pressure. Calculated mass reactivity values of equal particle size of all bed chars studied had similar trends with burnout. The biggest particles had the lowest reactivity values throughout the combustion, while reactivity for finer particles was at considerably higher level and sharply increases with burnout. In the constant combustion conditions used in the tests, no significant differences were observed in rate-controlling mechanisms for bed char fractions studied. 25 refs., 13 figs., 15 tab.

  9. COMPUTATIONALLY INTELLIGENT MODELLING AND CONTROL OF FLUIDIZED BED COMBUSTION PROCESS

    Directory of Open Access Journals (Sweden)

    Ivan T Ćirić

    2011-01-01

    Full Text Available In this paper modelling and control approaches for fluidized bed combustion process have been considered, that are based on the use of computational intelligence. Proposed adaptive neuro-fuzzy-genetic modelling and intelligent control strategies provide for efficient combining of available expert knowledge with experimental data. Firstly, based on the qualitative information on the desulphurization process, models of the SO2 emission in fluidized bed combustion have been developed, which provides for economical and efficient reduction of SO2 in FBC by estimation of optimal process parameters and by design of intelligent control systems based on defined emission models. Also, efficient fuzzy nonlinear FBC process modelling strategy by combining several linearized combustion models has been presented. Finally, fuzzy and conventional process control systems for fuel flow and primary air flow regulation based on developed models and optimized by genetic algorithms have also been developed. Obtained results indicate that computationally intelligent approach can be successfully applied for modelling and control of complex fluidized bed combustion process.

  10. 汽化效应对燃气蒸汽式弹射气液两相流场的影响%Influence of vaporization effect on gas-liquid two-phase flow field of ejection in combustion gas and vapor mode

    Institute of Scientific and Technical Information of China (English)

    刘伯伟; 姜毅

    2014-01-01

    为研究汽化效应对燃气蒸汽式弹射发射过程的影响,建立了某型集中注水式弹射装置的二维轴对称模型,利用耦合Mixture多相流模型与组分输运模型求解发射过程中的气液两相冻结流场,通过向守恒方程添加源项的方式引入液态水的汽化模型,利用Soave-Redlich-Kwong真实气体模型模拟水蒸汽的状态变化,得到了发射过程中液态水的流型及汽化过程,通过两种工况与试验结果的比较,验证了仿真结果的可靠性。结果表明,与不考虑汽化效应相比,考虑汽化效应使仿真流场的最大平均温度降低524 K,弹托底部最大平均温度降低223 K,考虑汽化效应得到的内弹道过程与试验结果更加一致,对该类问题的仿真与改进具有指导意义。%To study the influence of vaporization effect on launching process of ejection in combustion gas and vapor mode,2D axisymmetric model of an ejection device with water injection in block was established. The coupling of mixture multiphase model and species transport model was used to solve gas-liquid two-phase frozen flow field. A vaporization model of water was introduced by adding source terms to conservation equations. Soave-Redlich-Kwong real gas model was used to simulate the state change of va-por. The flow pattern and vaporization process of water were obtained. By comparison of two conditions and experimental results,the reliability of simulation results was verified. The research shows,compared with the condition without considering vaporization effect, the maximum average temperature of flow field with considering vaporization effect reduces 524 K,and the maximum average temper-ature nearing sabot reduces 223 K. Interior ballistic process with vaporization effect is more identical to the experimental results, which has guiding significance to the simulation and improvement of this kind of problems.

  11. Influence of bio-additives on combustion of liquid fuels

    Science.gov (United States)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  12. Combustion Characteristics of Nanoaluminum, Liquid Water, and Hydrogen Peroxide Mixtures

    Science.gov (United States)

    2008-01-01

    test peroxide ( HTP , 85% H2O2) as the oxidizer [22– 26]. Problems with the use of H2O2 systems include its sensitivity to shock and its tendency to...reported that the mix- ture would not self-deflagrate without the addition of the thickening agent into the mixture. At their maximum test pressure, 7...A pycnometer test determined particle density to be 3.205 g/cm3, which is inclusive of the oxide passiva- tion layer (∼3.97 g/cm3), which explains

  13. Combustion of liquid fuel in rectangular mini and microchannels

    Directory of Open Access Journals (Sweden)

    Zamashchikov Valery V.

    2016-01-01

    Full Text Available It is shown that flame spread rate can be high and comparable with velocities of flame propagation in the stoichiometric homogeneous gas mixture. The flame spread rate depends on velocity of oxidizer. It can either increase or decrease with arise of oxidizer velocity, depending on the oxygen content. The flame surface is significantly distorted with increase in average flame spread rate. It is shown that the flame spread rate can be significant and comparable with the laminar burning velocity of the stoichiometric homogeneous gaseous mixture.

  14. 29 CFR 1910.106 - Flammable and combustible liquids.

    Science.gov (United States)

    2010-07-01

    ..., which undergo autoaccelerating thermal decomposition, are excluded from any of the flashpoint... apartment hotels. (16) Institutional occupancy shall mean the occupancy or use of a building or structure...

  15. Supercritical Combustion of Liquid Oxygen and Hydrocarbon for Staged-Combustion Cycle Engine Technology Development

    Science.gov (United States)

    2009-06-30

    Flows," J. Comput. Phys. 101, 104(1992). P.K. Kundu and I.M. Cohen, Fluid Mechanics , 2nd ed. (San Diego, California, 2001). S. Wang and V. Yang...various underlying mechanisms dictating the fluid atomization and energy-transfer behaviors; and 3) to identify and prioritize key injector design...present numerical analysis is able to capture many unique mechanisms dictating supercritical fluid injection and mixing dynamics, including thermodynamic

  16. Secondary combustion device for woodburning stove

    Energy Technology Data Exchange (ETDEWEB)

    Craver, R.D.

    1989-08-08

    This patent describes in a wood burning stove including an exhaust flue opening, a combustion chamber for primary combustion having an access door, a support for wood to be burned and a primary air inlet means for supplying air to support primary combustion of the wood to produce flue gases containing combustible particulate material, plenum means for directing the flue gases in a direction from the combustion chamber to the flue opening in a preselected path, and secondary combustion means for burning the particulate material in the flue gases before flue gases through the exhaust flue opening. The improvement comprising: the combustion chamber having a flue gas exit opening extending laterally across the top of the combustion chamber and communicating the combustion chamber with the plenum means, an elongated manifold extending laterally across and above the combustion chamber substantially coextensively with the flue gas exit opening, a number of air opening spaced longitudinally along the manifold and facing opposite the direction of the flue gases closely adjacent the flue gas exit opening, and an air inlet means for supplying ambient, secondary combustion air to the manifold for counterflow thereof from the openings into the path of the flue gases in a plurality of distinct jets.

  17. Application and Comparison of Different Combustion Models of High Pressure LOX/CH4 Jet Flames

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2014-01-01

    Full Text Available The present work focuses on the numerical modeling of combustion in liquid-propellant rocket engines. Pressure and temperature are well above thermodynamic critical points of both the propellants and then the reactants show liquid-like characteristics of density and gas-like characteristics for diffusivity. The aim of the work is an efficient numerical description of the phenomena and RANS simulations were performed for this purpose. Hence, in the present work different kinetics, combustion models and thermodynamic approaches were used for combustion modeling first in a trans-critical environment, then in the sub-critical state. For phases treatment the pure Eulerian single phase approach was compared with the Lagrangian/Eulerian description. For modeling combustion, the Probability Density Function (PDF equilibrium and flamelet approaches and the Eddy Dissipation approach, with two different chemical kinetic mechanisms (the Jones-Lindstedt and the Skeletal model, were used. Real Gas (Soave-Redlich-Kwong and Peng-Robinson equations were applied. To estimate the suitability of different strategies in phenomenon description, a comparison with experimental data from the literature was performed, using the results for different operative conditions of the Mascotte test bench: trans-critical and subcritical condition for oxygen injection. The main result of this study is the individuation of the DPM approach of the most versatile methods to reproduce cryogenic combustion adapted for different operating conditions and producing good results.

  18. Measurement and simulation of swirling coal combustion

    Institute of Scientific and Technical Information of China (English)

    Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

    2013-01-01

    Particle image velocimetry (PIV),thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios.Eulerian-Lagrangian large-eddy simulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model,presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models,particle devolatilization and particle combustion models,are simultaneously used to simulate swirling coal combustion.Statistical LES results are validated by measurement results.Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion.Particles are shown to concentrate along the periphery of the coherent structures.Combustion flame is located in the high vorticity and high particle concentration zones.Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

  19. Combustion diagnostic for active engine feedback control

    Science.gov (United States)

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  20. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    OpenAIRE

    2016-01-01

    The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration...

  1. Toxic substances from coal combustion -- A comprehensive assessment

    Energy Technology Data Exchange (ETDEWEB)

    Senior, C.L.; Panagiotou, T.; Huggins, F.E.; Huffman, G.P.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.A.; Mroczkowsky, S.J.; Helble, J.J.; Mamani-Paco, R.

    1999-07-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the period from 1 April 1999 to 30 June 1999. During this quarter low temperature ashing and elemental analysis of the three Phase II coals were completed. Results from MIT and USGS are comparable. Plans were made for measurements of loss of trace elements during devolatilization and for single particle combustion studies at the University of Utah. The iodated charcoal trap was tested on coal combustion flue gas and was shown to collect both Hg and Se in from the vapor phase with 100% efficiency. Data from the University of Arizona self-sustained combustor were analyzed from the combustion of three coals: Ohio, Wyodak and Illinois No. 6. Ash size distributions and enrichment factors for selected trace elements were calculated. The correlation between the concentration of the more volatile trace elements in the ash and the

  2. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    Excellent optical access for laser- based diagnostic measurements ; (ii) Accurate experimental control of boundary conditions; (iii) Aerodynamic flame...potential to extend methods based on bimodal approximations, such as the BML [21] framework , by permitting inter- mediate fluid states, which is of...identify the impact of the major chemical pathways on combustion mode transitions. The conceptual multifluid approach of Spalding can be used to avoid

  3. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-06-21

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines.'' The EPA... Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines...

  4. Vacuum plasma spray applications on liquid fuel rocket engines

    Science.gov (United States)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  5. Ignition of a Liquid Fuel under High Intensity Radiation.

    Science.gov (United States)

    1980-01-01

    outward motion of the liquid, probably caused by a surface * DD I OR 1473 EDITION or INov as IS OB1SOL9?UCASFE ti ~ ~ ~ 7 SECURITY CLASSIFICATION Of...to adequately describe materials and experimental procedures it was occasionally necessary to identify commercial products by manufacturer’sa name or...34Radiative Ignition of Polymeric Materials in Oxygen/Nitrogen Mixtures", Thirteenth Symposium (International) on Combustion, Combustion Institute, 1971

  6. Computational simulation of liquid rocket injector anomalies

    Science.gov (United States)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.; Davidian, K.

    1986-01-01

    A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polidisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines.

  7. Periodic Partial Extinction Regime in Acoustically Coupled Fuel Droplet Combustion

    Science.gov (United States)

    Plascencia Quiroz, Miguel; Bennewitz, John; Vargas, Andres; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2016-11-01

    This experimental study investigates the response of burning liquid fuel droplets exposed to standing acoustic waves, extending prior studies quantifying mean and temporal flame response to moderate acoustic excitation. This investigation explores alternative fuels exposed to a range of acoustic forcing conditions (frequencies and amplitudes), with a focus on ethanol and JP-8. Three fundamental flame regimes are observed: sustained oscillatory combustion, periodic partial extinction and reignition (PPER), and full extinction. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allow quantification of the combustion-acoustic coupling through the local Rayleigh index G. As expected, PPER produces negative G values, despite having clear flame oscillations. PPER is observed to occur at low-frequency, high amplitude excitation, where the acoustic time scales are large compared with kinetic/reaction times scales for diffusion-limited combustion processes. These quantitative differences in behavior are determined to depend on localized fluid mechanical strain created by the acoustic excitation as well as reaction kinetics. Supported by AFOSR Grant FA9550-15-1-0339.

  8. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  9. LES/FMDF of High Speed Spray Combustion

    Science.gov (United States)

    Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    High speed evaporating and combusting sprays are computed with the hybrid two-phase large eddy simulation (LES)/filtered mass density function (FMDF) methodology. In this methodology, the resolved fluid velocity is obtained by solving the filtered form of the compressible Navier-Stokes equations with high-order finite difference schemes. The scalar (temperature and species mass fractions) field is obtained by solving the FMDF transport equation with a Lagrangian stochastic method. The spray is simulated with the Lagrangian droplets together with stochastic breakup and finite rate heat and mass transfer models. The liquid volume fraction is included in the LES/FMDF for denser spray regions. Simulations of high speed evaporating sprays with and without combustion for a range of gas and spray conditions indicate that the two-phase LES/FMDF results are consistent and compare well with the experimental results for global spray variables such as the spray penetration and flame lift-off lengths. The gas velocity and turbulence generated by the spray are found to be very significant in all simulated cases. A broad spectrum of droplet sizes is also found to be generated by the complex and coupled effects of the gas flow turbulence, droplet breakup, evaporation and combustion.

  10. Lean premixed combustion stabilized by radiation feedback and heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dibble, R.W.; Jyh-Yuan Chen; Sawyer, R.F. [Univ. of California, Berkeley, CA (United States)

    1995-10-01

    Gas-turbine based systems are becoming the preferred approach to electric power generation from gaseous and liquid fossil-fuels and from biomass. As coal gasification becomes, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines will also become important in the generation of electricity from coal. In smaller, distributed installations, gas turbines offer the prospect of cogeneration of electricity and heat, with increased efficiency and reduced pollutant emissions. One of the most important problems facing combustion-based power generation is the control of air pollutants, primarily nitrogen oxides (NO{sub x}, consisting of NO and NO{sub 2}) and carbon monoxide (CO). Nitric oxide (NO) is formed during gas-phase combustion and is the precursor of nitrogen dioxide (NO{sub 2}), the principal component of photochemical smog. Recent research into the mechanisms and control of NO{sub x} formation has been spurred by increasingly stringent emission standards. The principal objective of this research project is the development of effective models for the simulation of catalytic combustion applications.

  11. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    Science.gov (United States)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  12. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  13. Large-eddy simulation of supercritical fluid flow and combustion

    Science.gov (United States)

    Huo, Hongfa

    The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The

  14. Combustion dynamics of low vapour pressure nanofuel droplets

    Science.gov (United States)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is

  15. NATO Workshop on Soot in Combustion Systems

    CERN Document Server

    Prado, G

    1983-01-01

    Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scie...

  16. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  17. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  18. Fundamental studies of spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C.; Libby, P.A.; Williams, F.A. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  19. SPECIFIC EMISSIONS FROM BIOMASS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2014-02-01

    Full Text Available This paper deals with determining the specific emissions from the combustion of two kinds of biomass fuels in a small-scale boiler. The tested fuels were pellets made of wood and pellets made of rape plant straw. In order to evaluate the specific emissions, several combustion experiments were carried out using a commercial 25 kW pellet-fired boiler. The specific emissions of CO, SO2 and NOx were evaluated in relation to a unit of burned fuel, a unit of calorific value and a unit of produced heat. The specific emissions were compared with some data acquired from the reference literature, with relatively different results. The differences depend mainly on the procedure used for determining the values, and references provide no information about this. Although some of our experimental results may fit with one of the reference sources, they do not fit with the other. The reliability of the references is therefore disputable.

  20. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  1. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    Science.gov (United States)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  2. Combustion of Han-Based Monopropellant Droplets in Reduced Gravity

    Science.gov (United States)

    Shaw, B. D.

    1999-01-01

    The objective of this research is to study combustion of monopropellant droplets and monopropellant droplet components in reduced-gravity environments so that spherical symmetry is strongly promoted. The experiments will use hydroxylammonium nitrate (HAN, chemical formula NH3OHNO3) based monopropellants. This class of monopropellant is selected for study because of its current relevance and also because it is relatively benign and safe to work with. The experimental studies will allow for accurate determination of fundamental data on deflagration rates, gas-phase temperature profiles, transient gas-phase flame behaviors, the onset of bubbling in droplets at lower pressures, and the low-pressure deflagration limit. The theoretical studies will provide rational models of deflagration mechanisms of HAN-based liquid propellants. Besides advancing fundamental knowledge, the proposed research should aid in applications (e.g., spacecraft thrusters and liquid propellant guns) of this unique class of monopropellants.

  3. CSIR helps prevent spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vuuren, M. van (CSIR Energy Technology (South Africa))

    1992-03-01

    Heaps of stockpiled coal could present a fire hazard due to the risk of spontaneous combustion. Regular monitoring of stockpiles and bunker testing of coals help to prevent stockpile fires. This brief article describes the recent upgrading of the CSIR's bunker test facility that enables coal producers, users and exporters to test their products under simulated conditions that duplicate the actual conditions under which coal is stored. 2 photos.

  4. Laser Optics/Combustion Diagnostics.

    Science.gov (United States)

    1986-07-01

    been demonstrated. CARS measurements of axial and 0.12 radial temperature profiles in a highly sooting flame compared favorably with profiles...of Number-Density Equation ’Eckbreth. A.C. and Hatt. R.., "CARS Thermomrry in a The third-order susceptibility can be rewritten to show its Sooting ... Flame ." Combustion and Homie, Vol. 36. 1979, pp. 87-98. explcitdepndece ponthenumer ensty Roh. %W.B.. "Coherent Anti-Stokcs Raman Scattering ofexpici

  5. Vortex Simulation of Turbulent Combustion

    Science.gov (United States)

    1992-11-19

    TURBULENT COMBUSTION (AFOSR Grant No. 89-0491) Principal Investigator: Ahmed F. Ghoniem Department of Mechanical Engineering Massachusetts Institute of...Heavy Industries, Nagoya, Japan.(talk and discussion). 17. 1990, Mazda Motor Co., Yokohama, Japan, (talk and discussion). 18. 1990, American Math Society...VORTICITY LAYERS UNDER NON-SYMMETRIC CONDITIONS Omar M. Kniot and Ahmed F. Ghoniem Department of Mechanical Engineering Massachusetts Institute of

  6. Nitrogen release during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  7. Combustion char characterisation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Ingermann Petersen, H.; Sund Soerensen, H.; Thomsen, E.; Guvad, C.

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  8. Demonstration of Active Combustion Control

    Science.gov (United States)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  9. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  10. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  11. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    OpenAIRE

    2010-01-01

    Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion...

  12. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  13. Experimental investigations of cryogenic sprays in combustion; Travaux experimentaux d'analyse granulometrique des ecoulements cryogeniques en combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, B.; Vingert, L.; Gicquel, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Onofri, F. [Universite de Provence, IUSTI, Aix-Marseille 1, 13 (France)

    2001-07-01

    Three test runs have been performed since 1995 with the cryogenic bench 'Mascotte' of the Onera center of Palaiseau (France) which aimed at characterizing the granulometry of the burning liquid oxygen spray. Experimental qualitative information about the atomization process and the behaviour of the spray at 0.1, 1, 3, and 6 MPa has been obtained using different visualization techniques. A quantitative characterization of the liquid oxygen spray has been obtained for 0.1 and 1 MPa using the phases method (PDPA). This characterization has led to the mapping of the size and velocity of burning droplets for the two pressure values considered. The influence of the momentum ratio on the primary atomization has been demonstrated. More recently, a 2-D laser velocimetry campaign has been performed for the determination of the local Weber number inside the combustion chamber. (J.S.)

  14. Combustion distribution control using the extremum seeking algorithm

    Science.gov (United States)

    Marjanovic, A.; Krstic, M.; Djurovic, Z.; Kvascev, G.; Papic, V.

    2014-12-01

    Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia.

  15. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  16. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2016-07-01

    Increased sewage sludge production and disposal, as well as the properties of sewage sludge, are currently affecting the environment, which has resulted in legislation changes in Poland. Based on the Economy Minister Regulation of 16 July 2015 (Regulation of the Economy Minister, 2015) regarding the criteria and procedures for releasing wastes for landfilling, the thermal disposal of sewage sludge is important due to its gross calorific value, which is greater than 6MJ/kg, and the problems that result from its use and application. Consequently, increasingly restrictive legislation that began on 1 January 2016 was introduced for sewage sludge storage in Poland. Sewage sludge thermal utilisation is an attractive option because it minimizes odours, significantly reduces the volume of starting material and thermally destroys the organic and toxic components of the off pads. Additionally, it is possible that the ash produced could be used in different ways. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies of the mechanisms and kinetics of sewage sludge, coal and biomass combustion and their co-combustion in spherical-pellet form. Compared with biomass, a higher temperature is required to ignite sewage sludge by flame. The properties of biomass and sewage sludge result in the intensification of the combustion process (by fast ignition of volatile matter). In contrast to coal, a combustion of sewage sludge is determined not only burning the char, but also the combustion of volatiles. The addition of sewage sludge to hard coal and lignite shortens combustion times compared with coal, and the addition of sewage sludge to willow Salix viminalis produces an increase in combustion time compared with willow alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  18. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  19. Experimental research on combustion fluorine retention using calcium-based sorbets during coal combustion (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    QI Qing-jie; LIN Zhi-yan; LIU Jian-zhong; WU Xian; ZHOU Jun-hu; CEN Ke-fa

    2008-01-01

    In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combustion fluorine retention technology. Feasibility of fluorine retention reaction with calcium-based fluorine retention agent was analyzed through thermo-dynamic calculation during coal combustion. By simulating the restraining and retention effects and influential factors of calcium-based sorbets on vaporized fluoride during experimental combustion using fixed bed tube furnace, the paper systematically explored the influential law of such factors as combustion temperature, retention time, and added quantities of calcium-based sorbets on effects of fluorine retention. The research result shows that adding calcium-based fluorine retention agent in coal combustion has double effects of fluorine retention and sulfur retention, it lays an experimental foundation for commercial test of combustion fluorine retention.

  20. Fuel combustion test in constant volume combustion chamber with built-in adaptor

    Institute of Scientific and Technical Information of China (English)

    JEONG; DongSoo; CHO; GyuBack; CHOI; SuJin; LEE; JinSoo

    2010-01-01

    Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperature,intake pressure of pre-mixture of methane and air,equivalence ratio and location of the built-in adaptor have been investigated.The whole combustion chamber can be divided into two parts,i.e.the upper combustion chamber and the lower combustion chamber,by the built-in adaptor with through hole.Owing to the built-in adaptor with through hole,jet ignition or compression ignition(auto-ignition) phenomena may occur in the lower combustion chamber,which is helpful to getting higher flame propagation velocity,higher combustion peak pressure,low cycle-to-cycle variation and more stable combustion process.

  1. Combustion Behavior of Free Boron Slurry Droplets,

    Science.gov (United States)

    2014-09-26

    weak disruptive behavior while pure JP-1t burn quiescently, except for a flash extinction which occurs at the termination of combustion. The...I AD-R158 628 COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS(U) i/i I PRINCETON UNIV NJ DEPT OF MECHANICAL AND AEROSPACE ENINEERIN., F TAKAHASHI...COMBUSTION BEHAVIOR OF FREE BORON SLURRY DROPLETS TAM by F. Takahashi, F.L. Dryer, and F.A. Williams Department of M~echanical and keyosase Engineering

  2. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  3. The combustion of solid fuels and wastes

    CERN Document Server

    Tillman, David

    1991-01-01

    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  4. Basic theory research of coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-ren; SUN Yan-qiu; ZHAO Qing-fu; DENG Cun-bao; DENG Han-zhong

    2008-01-01

    Discussed latest research results of basic theory research of coal spontaneous combustion in detail, with quantum chemical theory and method and experiment systematically studied chemical structure of coal molecule, adsorption mechanism of coal surface to oxygen molecule and chemical reaction mechanism and process of spontaneous combustion of organic macromolecule and low molecular weight compound in coal from microcosmic view, and established complete theoretical system of the mechanism of coal spontaneous combustion.

  5. Combustion en lit fluidisé Fluidized-Bed Combustion

    Directory of Open Access Journals (Sweden)

    Chrysostome G.

    2006-11-01

    Full Text Available Après quelques rappels généraux sur la fluidisation où seront présentés en par-ticulier les avantages qu'elle offre en combustion, on exposera l'état actuel du développement des générateurs à lit fluidisé opérant avec les combustibles suivants : charbon, combustibles pétroliers, résidus divers ; il sera fait mention de la contribution de l'Institut Français du Pétrole (IFP dans les deux derniers domaines.On présentera ensuite les installations les plus récentes en traitement de minerais (grillage des sulfures, calcination de calcaires. En raison de son importance on examinera encore les possibilités de désulfuration au sein de lits fluidisés, de même que seront commentés les travaux de régénération des absorbants.On terminera enfin en mentionnant les développements des lits circulants ou rapides, considérés comme les réacteurs de la seconde génération. After a general review of fluidization including in particular the advantages it offers for combustion, this article describes the present state of the development of fluidized-bed gcnerators operating with the following fuels : cool, petroleum fuels, different residues. Mention is made of Institut Français du Pétrole (IFP contribution in the last two fields. Then the most recent ore-treating installations are described (roasting of sulfides, calcination of limestones. Because of its importance, the possibilities of desulfurizoticn inside fluidized beds is examined, and research on the regeneration of absorbants is commented on. The article ends by mentioning the development of circulating or fast beds which are considered as second generation reactors.

  6. Combustion of Solid Propellants (La Combustion des Propergols Solides)

    Science.gov (United States)

    1991-07-01

    on peut s’interroger sur l’adquation des moyens engages ausceptiblea do se manifester naturellement au cours du A Ia complexit6 du probl~me... capteur d’Helmoltz; de pression lorsque Ia fr~quence vanet. Calcul num~rique et mithode expdrimentale donnent des irdsultats en bon accord, c’cst-i... naturellement , avec des niveaux stabilis~s moddr~s. mod~le de combustion (r~f. 30) et des limites de L’opinion est r~pandue que la segmentation peut l’approche

  7. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    Science.gov (United States)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  8. Fuel gas combustion research at METC

    Energy Technology Data Exchange (ETDEWEB)

    Norton, T.S.

    1995-06-01

    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  9. Secondary combustion device for woodburning stove

    Energy Technology Data Exchange (ETDEWEB)

    Craver, R.D.

    1987-06-16

    This patent describes a wood burning stove including an exhaust flue opening, a combustion chamber for primary combustion having an access door, a support for wood to be burnt and a primary air inlet means for supplying air to support primary combustion of the wood to produce flue gases containing combustible particulate material. A conduit means for directing the flue gases is included from the combustion chamber to the flue opening in a preselected path. Also included is a secondary combustion means for burning particulate material in flue gases before flue gases pass through the exhaust flue opening. The improvement comprises: secondary combustion means including an elongated manifold extending laterally across and above the combustion chamber at a preselected position on the preselected path; a number of air openings spaced longitudinally along the manifold and facing the path of the flue gases and an air inlet means for supplying ambient; secondary combustion air to the manifold for flow from openings into the path of the flue gases in distinct jets; and a laterally elongated passageway above the manifold with upper and lower portions and defined at its upper portion by a sheet metal wall, and a layer of extremely low heat conducting insulation in the passageway. On the sheet metal wall the layer of insulation prevents appreciable conduction of heat from the passageway into the sheet metal wall and flue gases flow through the passageway and from passageway in a generally wide thin flow pattern.

  10. Determining Heats of Combustion of Gaseous Hydrocarbons

    Science.gov (United States)

    Singh, Jag J.; Sprinkle, Danny R.; Puster, Richard L.

    1987-01-01

    Enrichment-oxygen flow rate-ratio related to heat of combustion. Technique developed for determining heats of combustion of natural-gas samples. Based on measuring ratio m/n, where m is (volmetric) flow rate of oxygen required to enrich carrier air in which test gas flowing at rate n is burned, such that mole fraction of oxygen in combustion-product gases equals that in carrier air. The m/n ratio directly related to heats of combustion of saturated hydrocarbons present in natural gas.

  11. Theoretical analysis of the backdraft phenomena induced by liquid fuel

    Institute of Scientific and Technical Information of China (English)

    GONG Jian; YANG Lizhong; CHEN Xiaojun; GUO Zaifu

    2006-01-01

    A dynamical model of temperature of hot smoke layer is quantitatively established based on the whole backdraft procedure induced by liquid fuel. The whole procedure consists of the preburn fire (the first period), the secondary fuel injection (the second period) and backdraft development (the third period). The model considers enthalpy loss of liquid fuel volatilization and hot smoke layer mass gain. In this paper, simulative results of the model are well compared with experimental results, and simulative results of the model are analyzed. Furthermore, combustion efficiency under limited ventilation and practical combustion reaction rate are worth investigating.

  12. Market Liquidity and Funding Liquidity

    OpenAIRE

    Brunnermeier, Markus K; Lasse Heje Pedersen

    2007-01-01

    We provide a model that links an asset's market liquidity - i.e., the ease with which it is traded - and traders' funding liquidity - i.e., the ease with which they can obtain funding. Traders provide market liquidity, and their ability to do so depends on their availability of funding. Conversely, traders' funding, i.e., their capital and the margins they are charged, depend on the assets' market liquidity. We show that, under certain conditions, margins are destabilizing and market liquidit...

  13. Market Liquidity and Funding Liquidity

    OpenAIRE

    Markus K. Brunnermeier; Lasse Heje Pedersen

    2007-01-01

    We provide a model that links an asset's market liquidity - i.e., the ease with which it is traded - and traders' funding liquidity - i.e., the ease with which they can obtain funding. Traders provide market liquidity, and their ability to do so depends on their availability of funding. Conversely, traders' funding, i.e., their capital and the margins they are charged, depend on the assets' market liquidity. We show that, under certain conditions, margins are destabilizing and market liquidit...

  14. Evaluation of Electronic Cigarette Use (Vaping Topography and Estimation of Liquid Consumption: Implications for Research Protocol Standards Definition and for Public Health Authorities’ Regulation

    Directory of Open Access Journals (Sweden)

    Stamatis Kyrzopoulos

    2013-06-01

    Full Text Available Background: Although millions of people are using electronic cigarettes (ECs and research on this topic has intensified in recent years, the pattern of EC use has not been systematically studied. Additionally, no comparative measure of exposure and nicotine delivery between EC and tobacco cigarette or nicotine replacement therapy (NRTs has been established. This is important, especially in the context of the proposal for a new Tobacco Product Directive issued by the European Commission. Methods: A second generation EC device, consisting of a higher capacity battery and tank atomiser design compared to smaller cigarette-like batteries and cartomizers, and a 9 mg/mL nicotine-concentration liquid were used in this study. Eighty subjects were recruited; 45 experienced EC users and 35 smokers. EC users were video-recorded when using the device (ECIG group, while smokers were recorded when smoking (SM-S group and when using the EC (SM-E group in a randomized cross-over design. Puff, inhalation and exhalation duration were measured. Additionally, the amount of EC liquid consumed by experienced EC users was measured at 5 min (similar to the time needed to smoke one tobacco cigarette and at 20 min (similar to the time needed for a nicotine inhaler to deliver 4 mg nicotine. Results: Puff duration was significantly higher in ECIG (4.2 ± 0.7 s compared to SM-S (2.1 ± 0.4 s and SM-E (2.3 ± 0.5 s, while inhalation time was lower (1.3 ± 0.4, 2.1 ± 0.4 and 2.1 ± 0.4 respectively. No difference was observed in exhalation duration. EC users took 13 puffs and consumed 62 ± 16 mg liquid in 5 min; they took 43 puffs and consumed 219 ± 56 mg liquid in 20 min. Nicotine delivery was estimated at 0.46 ± 0.12 mg after 5 min and 1.63 ± 0.41 mg after 20 min of use. Therefore, 20.8 mg/mL and 23.8 mg/mL nicotine-containing liquids would deliver 1 mg of nicotine in 5 min and 4 mg nicotine in 20 min, respectively. Since the ISO method significantly underestimates

  15. Polymer Combustion as a Basis for Hybrid Propulsion: A Comprehensive Review and New Numerical Approaches

    Directory of Open Access Journals (Sweden)

    Vasily Novozhilov

    2011-10-01

    Full Text Available Hybrid Propulsion is an attractive alternative to conventional liquid and solid rocket motors. This is an active area of research and technological developments. Potential wide application of Hybrid Engines opens the possibility for safer and more flexible space vehicle launching and manoeuvring. The present paper discusses fundamental combustion issues related to further development of Hybrid Rockets. The emphasis is made on the two aspects: (1 properties of potential polymeric fuels, and their modification, and (2 implementation of comprehensive CFD models for combustion in Hybrid Engines. Fundamentals of polymeric fuel combustion are discussed. Further, steps necessary to accurately describe their burning behaviour by means of CFD models are investigated. Final part of the paper presents results of preliminary CFD simulations of fuel burning process in Hybrid Engine using a simplified set-up.

  16. Injector for liquid fueled rocket engine

    Science.gov (United States)

    Cornelius, Charles S. (Inventor); Myers, W. Neill (Inventor); Shadoan, Michael David (Inventor); Sparks, David L. (Inventor)

    2000-01-01

    An injector for liquid fueled rocket engines wherein a generally flat core having a frustoconical dome attached to one side of the core to serve as a manifold for a first liquid, with the core having a generally circular configuration having an axis. The other side of the core has a plurality of concentric annular first slots and a plurality of annular concentric second slots alternating with the first slots, the second slots having a greater depth than said first slots. A bore extends through the core for inletting a second liquid into said core, the bore intersecting the second slots to feed the second liquid into the second slots. The core also has a plurality of first passageways leading from the manifold to the first annular slots for feeding the first liquid into said first slots. A faceplate brazed to said other side of the core is provided with apertures extending from the first and second slots through said face plate, these apertures being positioned to direct fuel and liquid oxygen into contact with each other in the combustion chamber. The first liquid may be liquid oxygen and the second liquid may be kerosene or liquid hydrogen.

  17. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  18. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  19. Combustion char morphology related to combustion temperature and coal petrography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Petersen, H.I.; Thomsen, E. [Geological Survey of Denmark, Copenhagen (Denmark)

    1996-07-01

    Chars produced from different reactors were found to lack consistency of morphological charactersitics. Therefore, the morphology of chars sampled from various laboratory-scale reactors operating at temperatures from 800 to {gt} 1400{degree}C, together with chars collected directly in the flame zone in a full-scale pulverised fuel combustion experiment, was examined. A coal and coal blend dominated by vitrinite-rich microlithotypes together with four coals dominated by inertinite-rich microlithotypes were used to produce the combustion chars. Char samples produced at temperatures above {approximately} 1300{degree}C have a morphotype composition very similar to the composition of the full-scale char samples, whereas the morphotype compositions of those produced at {approximately} 1550{degree}C or lower are significantly different. Correlation between coal petrography and char morphology and determination of char reactivity should thus be attempted only using chars produced at temperatures comparable with those for the intended use of the coal. A clear distinction between the high-temperature char samples (burnout 50-60wt% daf) emerges which is related mainly to the parent coal petrography and probably secondarily to the rank. Vitrite, clarite and vitrinertie V may be correlated with the porous tenuisphere and crassisphere morphotypes, whereas inertite, durite, vitrinertite I, duroclarite and charodurite may be correlated with the crassinetwork-mixed-network-mixed morphotype group. 29 refs., 7 figs., 7 tabs.

  20. Combustion and environment. The answers from the energy and equipment suppliers; Combustion et environnement. Les reponses des fournisseurs d`energie et d`equipements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper is a reprint of an article published in `Energie Plus` magazine which questions the capability of commercial fuels and combustion equipments (central heating plants, burners, turbines and engines) available today of respecting the limit values of pollutant emissions (SO{sub x}, NO{sub x}, CO, dusts) of forthcoming regulations. An analysis of the situation is given separately for the fuels (natural gas, coal, heavy fuels) with a stress on the competition aspects, and for the combustion systems (turbines, diesel and gas engines, central heating plants). (J.S.)

  1. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  2. COMBUSTION PROPERTIES OF EUCALYPTUS WOOD

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available In this study, the combustion properties of some impregnation materials (abiotic and biotic factors used for eucalyptus wood in interior or exterior environments were investigated. The experimental samples were prepared from Eucalyptus wood based on ASTM-D-1413-76 Tanalith-CBC, boric acid, borax, vacsol-WR, immersol-WR, polyethylen glycole-400 and ammonium sulphate were used as an impregnation material. The results indicated that, vacuum treatment on Eucalyptus gave the lowest retention value of salts. Compounds containing boron+salt increased fire resistance however water repellents decreased the wood flammability.

  3. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of

  4. Particle emissions from biomass combustion

    Science.gov (United States)

    Chabadová, Jana; Papučík, Štefan; Nosek, Radovan

    2014-08-01

    The paper presents an analysis of the impact of fuel feed to power and emissions parameters of the automatic domestic boiler for combustion of wood pellets. For the analysis has been proposed an experimental methodology of boiler measuring. The investigated boiler is designed for operation in domestic heating system. It has heat power equal to 18 kW. Concentrations of flue gas species were registered at the exit the boiler and based on the measured parameters was carried out evaluation of the impact of the fuel feed to heat power and production of emissions.

  5. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    Science.gov (United States)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  6. Numerical Modeling of Spray Combustion with an Unstructured-Grid Method

    Science.gov (United States)

    Shang, H. M.; Chen, Y. S.; Liaw, P.; Shih, M. H.; Wang, T. S.

    1996-01-01

    The present unstructured-grid method follows strictly the basic finite volume forms of the conservation laws of the governing equations for the entire flow domain. High-order spatially accurate formulation has been employed for the numerical solutions of the Navier-Stokes equations. A two-equation k-epsilon turbulence model is also incorporated in the unstructured-grid solver. The convergence of the resulted linear algebraic equation is accelerated with preconditioned Conjugate Gradient method. A statistical spray combustion model has been incorporated into the present unstructured-grid solver. In this model, spray is represented by discrete particles, rather than by continuous distributions. A finite number of computational particles are used to predict a sample of total population of particles. Particle trajectories are integrated using their momentum and motion equations and particles exchange mass, momentum and energy with the gas within the computational cell in which they are located. The interaction calculations are performed simultaneously and eliminate global iteration for the two-phase momentum exchange. A transient spray flame in a high pressure combustion chamber is predicted and then the solution of liquid-fuel combusting flow with a rotating cup atomizer is presented and compared with the experimental data. The major conclusion of this investigation is that the unstructured-grid method can be employed to study very complicated flow fields of turbulent spray combustion. Grid adaptation can be easily achieved in any flow domain such as droplet evaporation and combustion zone. Future applications of the present model can be found in the full three-dimensional study of flow fields of gas turbine and liquid propulsion engine combustion chambers with multi-injectors.

  7. Investigation of Ignition of Liquid Propellant in Reservoir in Regenerative Liquid Propellant Gun Trials

    Directory of Open Access Journals (Sweden)

    D. K. Kharat

    1997-04-01

    Full Text Available It is important to understand the internal ballistic processes for the development of regenerative liquid propellant guns (RLPGs. A 30 mm RLPG test fixture was developed and firing trials were conducted to study the performance of the gun. During the trials, sometimes, combustion ignition in the reservoir took place resulting in substantial damage to the injection piston. This paper highlights the possible causes of this combustion and offers suggestions. regarding improvement in the design. An elaborate instrumentation set-up which could pinpoint the specific conditions leading to failures is suggested.

  8. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  9. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  10. Hydrogen Internal Combustion Stirling Engine

    Science.gov (United States)

    Takahashi, Sanyo; Morita, Hiroyuki; Kurata, Osamu; Yamashita, Iwao

    The hydrogen combustion Stirling engine utilizes internal combustion of a stoichiometric H2 and O2 mixture injected into the working gas as thermal input, and the cyclic operation is completed with the removal of water from the engine after condensation at the cooler. In the prototype engine, a catalytic combustor is substituted for the conventional heater, and the H2-O2 mixture is injected at a constant flow rate from the boundary between the regenerator and the cooler. The engine internal heating characteristics were compared to those on external heating to clarify the internal heating effect on the engine performance. The internal heating performance showed almost the same characteristics as those of external heating, except for the increase of expansion work due to the direct thermal input. The increase of expansion work improved the engine performance, particularly in the region of high engine speed. Furthermore, it was found that the steady injection method was able to suppress the mixture strength to a relatively low level.

  11. Large-Eddy Simulation of Diesel Spray Combustion with Exhaust Gas Recirculation

    Directory of Open Access Journals (Sweden)

    Tillou J.

    2013-11-01

    Full Text Available A Large-Eddy Simulation (LES study of the transient combustion in the spray H experiment investigated in the frame of the Engine Combustion Network (ECN is presented. Combustion is modeled using a LES formulation of the ADF-PCM approach, the principle of which is to tabulate approximated diffusion flames based on the flamelet equation to account for complex chemical effects. The liquid phase is resolved with an Eulerian mesoscopic approach coupled with the DITurBC model for the injection. The structure of the combustion resulting from the n-heptane liquid fuel jet is investigated and compared to the literature. A very good reproduction of experimental findings by the presented LES approach is reported for small EGR rates. Albeit the qualitative effect of increasing the EGR rate is captured, the quantitative quality of the LES predictions deteriorates with increasing EGR rate. One possible explanation for this poor reproduction of EGR effects might be related to the fact that the used semi-detailed scheme was not validated for high EGR rates.

  12. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    Science.gov (United States)

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  13. Low-NO{sub x}, wood chip combustion

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Oravainen, H.; Haemaelaeinen, J.; Paakkinen, K. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    The regulations for nitrogen oxide emissions vary in different countries, but the general trend in the future will probably be that the emissions limits will be lowered also for wood combustion plants, which are small or medium size units. Thus, the development of wood chip burning furnaces (grate furnaces, fluidized bed combustors, stoker furnaces) with lower nitrogen oxide emissions, is important. The wood used in the combustor, its particle size, moisture and fuel properties (nitrogen content) affect the nitrogen emissions. The nitrogen oxide release is also much affected by the design and operation of the combustor (air staging, fuel air preheat, flue gas circulation, air to fuel mass ratio). The fate of nitrogen compounds originally in the virgin wood depends much on the design of the combustor system and by proper planning it is possible to reduce the emission of nitrogen oxides. Basic knowledge of the release of nitrogen compounds from single wood particles is attained. The release of gaseous nitrogen compounds from wood particles during pyrolysis and combustion is studied experimentally and by modelling. Nitrogen release is studied experimentally by two ways, by analysing the gas and by quenching the particle and analysing the char residue. Formation of nitrogen oxide emissions in a fuel bed is studied by modelling and by combustion experiments with a pot furnace. This research gives general information of nitrogen oxide formation in wood bunting especially in fixed beds. The development of a horizontal stoker burner for wood chips with low emissions is the practical aim of the research. (orig.)

  14. FLARE FLAME INSTABILITY AND BURNER COMBUSTION CONTROL

    OpenAIRE

    БОНДАРЕНКО А.В.; В. Э. Волков; Максимов, М. В.

    2014-01-01

    Research of the flare instability development and the laminar-to-turbulent transition for the flares was executed. It was proved that the effects of viscosity and compressibility have the stabilizing influence on the gas flame. The study of the individual flare stability makes the theoretical basis of the fuel burning technology in combustion chambers and for the burner combustion control.

  15. Combustion Limits and Efficiency of Turbojet Engines

    Science.gov (United States)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  16. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  17. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  18. Oxy Coal Combustion at the US EPA

    Science.gov (United States)

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  19. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  20. Acousto-elastic interaction in combustion chambers

    OpenAIRE

    Huls, Rob Alexander

    2006-01-01

    This thesis deals with the interaction between combustion, acoustics and vibrations with emphasis on frequencies below 500 Hz. Extensive literature is available on the interaction between combustion and acoustics and much work is also available on the interaction between acoustics and vibration. The work presented in this thesis attempts to combine these fields in order to calculate the vibrations of the liner.