WorldWideScience

Sample records for regulating glioblastoma survivorship

  1. Survivorship

    Science.gov (United States)

    ... Content Español ASCO.org Conquer Cancer Foundation ASCO Journals Donate eNews Signup f Cancer.net on Facebook t Cancer.net on Twitter q Cancer.net on YouTube g Cancer.net on Google Menu Home Types of Cancer Navigating Cancer Care Coping With Cancer Research and Advocacy Survivorship About Cancer ...

  2. Modeling microenvironmental regulation of glioblastoma stem cells: a biomaterials perspective

    Science.gov (United States)

    Heffernan, John M.; Sirianni, Rachael W.

    2018-02-01

    Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. It is becoming increasingly recognized that specialized niches within the tumor microenvironment maintain a population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation therapy, suggesting that they may be responsible for the near universal rates of tumor recurrence and associated morbidity in GBM. Thus, disrupting microenvironmental support for GSCs could be critical to developing more effective GBM therapies. Three-dimensional (3D) culture models of the tumor microenvironment are powerful tools for identifying key biochemical and biophysical inputs that impact malignant behaviors. Such systems have been used effectively to identify conditions that regulate GSC proliferation, invasion, stem-specific phenotypes, and treatment resistance. Considering the significant role that GSC microenvironments play in regulating this tumorigenic sub-population, these models may be essential for uncovering mechanisms that limit GSCs malignancy.

  3. Understanding cytoskeleton regulators in glioblastoma multiforme for therapy design

    Directory of Open Access Journals (Sweden)

    Masoumi S

    2016-09-01

    Full Text Available Samaneh Masoumi,1,*, Aditya Harisankar,2,* Aileen Gracias,3 Fabian Bachinger,1 Temesgen Fufa,1,4 Gayathri Chandrasekar,5 Frank Gaunitz,4 Julian Walfridsson,2 Satish S Kitambi1 1Department of Microbiology Tumor and Cell Biology, 2Center for Hematology and Regenerative Medicine, Department of Medicine, 3Department of Neuroscience, Karolinska Institutet, Solna, Sweden; 4Department of Neurosurgery, University Hospital, Leipzig, Germany; 5Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden *These authors contributed equally to this work Abstract: The cellular cytoskeleton forms the primary basis through which a cell governs the changes in size, shape, migration, proliferation, and forms the primary means through which the cells respond to their environment. Indeed, cell and tissue morphologies are used routinely not only to grade tumors but also in various high-content screening methods with an aim to identify new small molecules with therapeutic potential. This study examines the expression of various cytoskeleton regulators in glioblastoma multiforme (GBM. GBM is a very aggressive disease with a low life expectancy even after chemo- and radiotherapy. Cancer cells of GBM are notorious for their invasiveness, ability to develop resistance to chemo- and radiotherapy, and to form secondary site tumors. This study aims to gain insight into cytoskeleton regulators in GBM cells and to understand the effect of various oncology drugs, including temozolomide, on cytoskeleton regulators. We compare the expression of various cytoskeleton regulators in GBM-derived tumor and normal tissue, CD133-postive and -negative cells from GBM and neural cells, and GBM stem-like and differentiated cells. In addition, the correlation between the expression of cytoskeleton regulators with the clinical outcome was examined to identify genes associated with longer patient survival. This was followed by a small molecule screening with US Food and Drug

  4. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis.

    Science.gov (United States)

    Cui, Xin; Morales, Renee-Tyler Tan; Qian, Weiyi; Wang, Haoyu; Gagner, Jean-Pierre; Dolgalev, Igor; Placantonakis, Dimitris; Zagzag, David; Cimmino, Luisa; Snuderl, Matija; Lam, Raymond H W; Chen, Weiqiang

    2018-04-01

    Glioblastoma (GBM) is the most lethal primary adult brain tumor and its pathology is hallmarked by distorted neovascularization, diffuse tumor-associated macrophage infiltration, and potent immunosuppression. Reconstituting organotypic tumor angiogenesis models with biomimetic cell heterogeneity and interactions, pro-/anti-inflammatory milieu and extracellular matrix (ECM) mechanics is critical for preclinical anti-angiogenic therapeutic screening. However, current in vitro systems do not accurately mirror in vivo human brain tumor microenvironment. Here, we engineered a three-dimensional (3D), microfluidic angiogenesis model with controllable and biomimetic immunosuppressive conditions, immune-vascular and cell-matrix interactions. We demonstrate in vitro, GL261 and CT-2A GBM-like tumors steer macrophage polarization towards a M2-like phenotype for fostering an immunosuppressive and proangiogenic niche, which is consistent with human brain tumors. We distinguished that GBM and M2-like immunosuppressive macrophages promote angiogenesis, while M1-like pro-inflammatory macrophages suppress angiogenesis, which we coin "inflammation-driven angiogenesis." We observed soluble immunosuppressive cytokines, predominantly TGF-β1, and surface integrin (α v β 3 ) endothelial-macrophage interactions are required in inflammation-driven angiogenesis. We demonstrated tuning cell-adhesion receptors using an integrin (α v β 3 )-specific collagen hydrogel regulated inflammation-driven angiogenesis through Src-PI3K-YAP signaling, highlighting the importance of altered cell-ECM interactions in inflammation. To validate the preclinical applications of our 3D organoid model and mechanistic findings of inflammation-driven angiogenesis, we screened a novel dual integrin (α v β 3 ) and cytokine receptor (TGFβ-R1) blockade that suppresses GBM tumor neovascularization by simultaneously targeting macrophage-associated immunosuppression, endothelial-macrophage interactions, and

  5. MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation.

    Directory of Open Access Journals (Sweden)

    James R Howe

    Full Text Available Neurogenesis is a highly-regulated process occurring in the dentate gyrus that has been linked to learning, memory, and antidepressant efficacy. MicroRNAs (miRNAs have been previously shown to play an important role in the regulation of neuronal development and neurogenesis in the dentate gyrus via modulation of gene expression. However, this mode of regulation is both incompletely described in the literature thus far and highly multifactorial. In this study, we designed sensors and detected relative levels of expression of 10 different miRNAs and found miR-338-3p was most highly expressed in the dentate gyrus. Comparison of miR-338-3p expression with neuronal markers of maturity indicates miR-338-3p is expressed most highly in the mature neuron. We also designed a viral "sponge" to knock down in vivo expression of miR-338-3p. When miR-338-3p is knocked down, neurons sprout multiple primary dendrites that branch off of the soma in a disorganized manner, cellular proliferation is upregulated, and neoplasms form spontaneously in vivo. Additionally, miR-338-3p overexpression in glioblastoma cell lines slows their proliferation in vitro. Further, low miR-338-3p expression is associated with increased mortality and disease progression in patients with glioblastoma. These data identify miR-338-3p as a clinically relevant tumor suppressor in glioblastoma.

  6. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria); DeVaney, Trevor [Institute of Biophysics, Medical University of Graz (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz (Austria); Raynham, Tony; Ireson, Christopher [Cancer Research Technology Ltd, London (United Kingdom); Sattler, Wolfgang, E-mail: wolfgang.sattler@medunigraz.at [Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz (Austria)

    2013-08-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  7. Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro

    International Nuclear Information System (INIS)

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; DeVaney, Trevor; Zimmer, Andreas; Raynham, Tony; Ireson, Christopher; Sattler, Wolfgang

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoated or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun S73 phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK

  8. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  9. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  10. miR-29b and miR-125a Regulate Podoplanin and Suppress Invasion in Glioblastoma

    Science.gov (United States)

    Cortez, Maria Angelica; Nicoloso, Milena Sabrina; Shimizu, Masayoshi; Rossi, Simona; Gopisetty, Gopal; Molina, Jennifer R.; Carlotti, Carlos; Tirapelli, Daniela; Neder, Luciano; Brassesco, Maria Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; Georgescu, Maria-Magdalena; Zhang, Wei; Puduvalli, Vinay; Calin, George Adrian

    2017-01-01

    Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 3′ untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. PMID:20665731

  11. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  12. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells

    DEFF Research Database (Denmark)

    Junker, Nanna; Johansen, Julia S; Hansen, Lasse T

    2005-01-01

    YKL-40 is a 40 kDa secreted glycoprotein belonging to the family of 'mammalian chitinase-like proteins', but without chitinase activity. YKL-40 has a proliferative effect on fibroblasts, chondrocytes and synoviocytes, and chemotactic effect on endothelium and vascular smooth muscle cells. Elevated...... material from glioblastomas patients. We investigated the expression of YKL-40 in three human malignant glioma cell lines exposed to different types of stress. Whereas a polymerase chain reaction transcript was detectable in all three cell lines, only U87 produced measurable amounts of YKL-40 protein. In U...... is attenuated by p53. In contrast, both basic fibroblast growth factor and tumor necrosing factor-alpha repressed YKL-40. These are the first data on regulation of YKL-40 in cancer cells. Diverse types of stress resulted in YKL-40 elevation, which strongly supports an involvement of YKL-40 in the malignant...

  13. Your cancer survivorship care plan

    Science.gov (United States)

    ... ency/patientinstructions/000822.htm Your cancer survivorship care plan To use the sharing features on this page, ... get one. What Is a Cancer Survivorship Care Plan? A cancer survivorship care plan is a document ...

  14. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells.

    Science.gov (United States)

    Sun, Xin; Johnson, Jacqueline; St John, Justin C

    2018-05-02

    Replication of mitochondrial DNA is strictly regulated during differentiation and development allowing each cell type to acquire its required mtDNA copy number to meet its specific needs for energy. Undifferentiated cells establish the mtDNA set point, which provides low numbers of mtDNA copy but sufficient template for replication once cells commit to specific lineages. However, cancer cells, such as those from the human glioblastoma multiforme cell line, HSR-GBM1, cannot complete differentiation as they fail to enforce the mtDNA set point and are trapped in a 'pseudo-differentiated' state. Global DNA methylation is likely to be a major contributing factor, as DNA demethylation treatments promote differentiation of HSR-GBM1 cells. To determine the relationship between DNA methylation and mtDNA copy number in cancer cells, we applied whole genome MeDIP-Seq and RNA-Seq to HSR-GBM1 cells and following their treatment with the DNA demethylation agents 5-azacytidine and vitamin C. We identified key methylated regions modulated by the DNA demethylation agents that also induced synchronous changes to mtDNA copy number and nuclear gene expression. Our findings highlight the control exerted by DNA methylation on the expression of key genes, the regulation of mtDNA copy number and establishment of the mtDNA set point, which collectively contribute to tumorigenesis.

  15. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation.

    Science.gov (United States)

    Sun, Peng; Xia, Shuli; Lal, Bachchu; Eberhart, Charles G; Quinones-Hinojosa, Alfredo; Maciaczyk, Jarek; Matsui, William; Dimeco, Francesco; Piccirillo, Sara M; Vescovi, Angelo L; Laterra, John

    2009-07-01

    Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.

  16. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Chen, Pin-Yuan

    2018-05-01

    Glioblastoma (GBM) is the most malignant primary brain tumor and contains tumorigenic cancer stem cells (CSCs), which support the progression of tumor growth. The selection of CSCs and facilitation of the brain tumor niches may assist the development of novel therapeutics for GBM. Herein, hydrogel materials composed of agarose and hydroxypropyl methyl cellulose (HMC) in different concentrations were established and compared to emulate brain tumor niches and CSC microenvironments within a label-free system. Human GBM cell line, U-87 MG, was cultured on a series of HMC-agarose based culture system. Cell aggregation and spheroids formation were investigated after 4 days of culture, and 2.5% HMC-agarose based culture system demonstrated the largest spheroids number and size. Moreover, CD133 marker expression of GBM cells after 6 days of culture in 2.5% HMC-agarose based culture system was 60%, relatively higher than the control group at only 15%. Additionally, cells on 2.5% HMC-agarose based culture system show the highest chemoresistance, even at the high dose of 500 µM temozolomide for 72 h, the live cell ratio was still > 80%. Furthermore, the results also indicate that the expression of ABCG2 gene was up-regulated after culture in 2.5% HMC-agarose based culture system. Therefore, our results demonstrated that biomimetic brain tumor microenvironment may regulate GBM cells towards the CSC phenotype and expression of CSC characteristics. The microenvironment selection and spheroids formation in HMC-agarose based culture system may provide a label-free CSC selection strategy and drug testing model for future biomedical applications.

  17. Sox2 Promotes Malignancy in Glioblastoma by Regulating Plasticity and Astrocytic Differentiation

    Directory of Open Access Journals (Sweden)

    Artem D. Berezovsky

    2014-03-01

    Full Text Available The high-mobility group–box transcription factor sex-determining region Y–box 2 (Sox2 is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM, Sox2 is a marker of cancer stemlike cells (CSCs in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype. The expression of genes associated with stem cells and malignancy were commonly downregulated in both CSCs and serum-differentiated cells on Sox2 knockdown. Genes previously shown to be associated with pluripontency and CSCs were only affected in the CSC state, whereas embryonic stem cell self-renewal genes and cytokine signaling were downregulated, and the Wnt pathway activated in differentiated Sox2-deficient cells. Our results indicate that Sox2 regulates the expression of key genes and pathways involved in GBM malignancy, in both cancer stemlike and differentiated cells, and maintains plasticity for bidirectional conversion between the two states, with significant clinical implications.

  18. Connective tissue growth factor (CTGF/CCN2 is negatively regulated during neuron-glioblastoma interaction.

    Directory of Open Access Journals (Sweden)

    Luciana F Romão

    Full Text Available Connective-tissue growth factor (CTGF/CCN2 is a matricellular-secreted protein involved in complex processes such as wound healing, angiogenesis, fibrosis and metastasis, in the regulation of cell proliferation, migration and extracellular matrix remodeling. Glioblastoma (GBM is the major malignant primary brain tumor and its adaptation to the central nervous system microenvironment requires the production and remodeling of the extracellular matrix. Previously, we published an in vitro approach to test if neurons can influence the expression of the GBM extracellular matrix. We demonstrated that neurons remodeled glioma cell laminin. The present study shows that neurons are also able to modulate CTGF expression in GBM. CTGF immnoreactivity and mRNA levels in GBM cells are dramatically decreased when these cells are co-cultured with neonatal neurons. As proof of particular neuron effects, neonatal neurons co-cultured onto GBM cells also inhibit the reporter luciferase activity under control of the CTGF promoter, suggesting inhibition at the transcription level. This inhibition seems to be contact-mediated, since conditioned media from embryonic or neonatal neurons do not affect CTGF expression in GBM cells. Furthermore, the inhibition of CTGF expression in GBM/neuronal co-cultures seems to affect the two main signaling pathways related to CTGF. We observed inhibition of TGFβ luciferase reporter assay; however phopho-SMAD2 levels did not change in these co-cultures. In addition levels of phospho-p44/42 MAPK were decreased in co-cultured GBM cells. Finally, in transwell migration assay, CTGF siRNA transfected GBM cells or GBM cells co-cultured with neurons showed a decrease in the migration rate compared to controls. Previous data regarding laminin and these results demonstrating that CTGF is down-regulated in GBM cells co-cultured with neonatal neurons points out an interesting view in the understanding of the tumor and cerebral microenvironment

  19. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity

    DEFF Research Database (Denmark)

    Rasmussen, Rikke D.; Gajjar, Madhavsai K.; Tuckova, Lucie

    2016-01-01

    Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels. Hi...

  20. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    Directory of Open Access Journals (Sweden)

    Grazia eMaugeri

    2016-05-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP and vasoactive intestinal peptide (VIP through the binding of vasoactive intestinal peptide receptors (VIPRs, perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM. This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs. HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to epidermal growth factor receptor (EGFR overexpression. Previous studies have shown that VIP interferes with the invasive nature of gliomas by regulating cell migration. However, the role of VIP family members in GBM infiltration under low oxygen tension has not been clarified yet. Therefore, in the present study we have investigated, for the first time, the molecular mechanisms involved in the anti-invasive effect of PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with desferrioxamine (DFX. The results suggest that either PACAP or VIP exert an anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR expression, key elements involved in cell migration and angiogenesis. These peptides act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are known to have a crucial role in HIFs regulation. In conclusion, the modulation of hypoxic event and the anti-invasive effect exerted by some VIP family members might open new insights in the therapeutic approach to GBM.

  1. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  2. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  3. NKCC1 Regulates Migration Ability of Glioblastoma Cells by Modulation of Actin Dynamics and Interacting with Cofilin

    Directory of Open Access Journals (Sweden)

    Paula Schiapparelli

    2017-07-01

    Full Text Available Glioblastoma (GBM is the most aggressive primary brain tumor in adults. The mechanisms that confer GBM cells their invasive behavior are poorly understood. The electroneutral Na+-K+-2Cl− co-transporter 1 (NKCC1 is an important cell volume regulator that participates in cell migration. We have shown that inhibition of NKCC1 in GBM cells leads to decreased cell migration, in vitro and in vivo. We now report on the role of NKCC1 on cytoskeletal dynamics. We show that GBM cells display a significant decrease in F-actin content upon NKCC1 knockdown (NKCC1-KD. To determine the potential actin-regulatory mechanisms affected by NKCC1 inhibition, we studied NKCC1 protein interactions. We found that NKCC1 interacts with the actin-regulating protein Cofilin-1 and can regulate its membrane localization. Finally, we analyzed whether NKCC1 could regulate the activity of the small Rho-GTPases RhoA and Rac1. We observed that the active forms of RhoA and Rac1 were decreased in NKCC1-KD cells. In summary, we report that NKCC1 regulates GBM cell migration by modulating the cytoskeleton through multiple targets including F-actin regulation through Cofilin-1 and RhoGTPase activity. Due to its essential role in cell migration NKCC1 may serve as a specific therapeutic target to decrease cell invasion in patients with primary brain cancer.

  4. Tectal glioblastoma Glioblastoma tetal

    Directory of Open Access Journals (Sweden)

    Feres Chaddad Neto

    2007-12-01

    Full Text Available Brain stem gliomas are a heterogeneous group of neoplasms arising mostly in paediatric patients. Tectal plate gliomas represent a particular type of brain stem tumours usually with a benign, indolent clinical course, presenting with signs of raised intracranial hipertension due to supra-tentorialhydrocephalous caused by aqueductal stenosis. Seldom high-grade lesions arise in this location with tremendous therapeutic implications. When a malignant tumour is clinically and radiographically suspected a biopsy should be performed to obtain histhological confirmation. Treatment is then planned in a case-by-case basis. We present the case of a glioblastoma of the tectal plate in a 22 years-old woman operated upon by a supracerebellar-infratentorial approach.Os gliomas do tronco cerebral são um grupo heterogêneo de neoplasias que acometem habitualmente crianças. Os gliomas da placa quadrigeminal representam um tipo particular de tumores do tronco cerebral, habitualmente com um curso benigno e indolente, surgindo com sinais de hipertensão intracraniana devido a hidrocefalia supra-tentorial provocada por compressão do aqueduto cerebral. Raramente surgem lesões de alto grau nesta região, mas as implicações terapêuticas são tremendas. Quando existe suspeita clínica e imagiológica de que se trata de lesão maligna, esta deve ser biopsada para se obter confirmação histológica. O tratamento deve então ser planejado caso a caso. Apresentamos o caso de glioblastoma da placa quadrigeminal em uma paciente de 22 anos intervencionado por via supracerebelar-infratentorial.

  5. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  6. ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor initiating cell state

    Science.gov (United States)

    Chudnovsky, Yakov; Kim, Dohoon; Zheng, Siyuan; Whyte, Warren A.; Bansal, Mukesh; Bray, Mark-Anthony; Gopal, Shuba; Theisen, Matthew A.; Bilodeau, Steve; Thiru, Prathapan; Muffat, Julien; Yilmaz, Omer H.; Mitalipova, Maya; Woolard, Kevin; Lee, Jeongwu; Nishimura, Riko; Sakata, Nobuo; Fine, Howard A.; Carpenter, Anne E.; Silver, Serena J.; Verhaak, Roel G. W.; Califano, Andrea; Young, Richard A.; Ligon, Keith L.; Mellinghoff, Ingo K.; Root, David E.; Sabatini, David M.; Hahn, William C.; Chheda, Milan G.

    2014-01-01

    Summary Glioblastomas (GBM) harbor subpopulations of therapy-resistant tumor initiating cells (TICs) that are self-renewing and multipotent. To understand the regulation of the TIC state, we performed an image-based screen for genes regulating GBM TIC maintenance and identified ZFHX4, a 397-kDa transcription factor. ZFHX4 is required to maintain TIC-associated and normal human neural precursor cell phenotypes in vitro, suggesting that ZFHX4 regulates differentiation, and its suppression increases glioma-free survival in intracranial xenografts. ZFHX4 interacts with CHD4, a core member of the NuRD (nucleosome remodeling and deacetylase) complex. ZFHX4 and CHD4 bind to overlapping sets of genomic loci and control similar gene expression programs. Using expression data derived from GBM patients, we found that ZFHX4 significantly affects CHD4-mediated gene expression perturbations, which defines ZFHX4 as a master regulator of CHD4. These observations define ZFHX4 as a regulatory factor that links the chromatin remodeling NuRD complex and the GBM TIC state. PMID:24440720

  7. Negative control of the HGF/c-MET pathway by TGF-β: a new look at the regulation of stemness in glioblastoma.

    Science.gov (United States)

    Papa, Eleanna; Weller, Michael; Weiss, Tobias; Ventura, Elisa; Burghardt, Isabel; Szabó, Emese

    2017-12-13

    Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-β family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-β pathway in human glioma-initiating cells (GIC), we observed that TGF-β exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-β inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-β and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.

  8. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation.

    Science.gov (United States)

    Huang, M-Y; Xuan, F; Liu, W; Cui, H-J

    2017-01-19

    It is generally known that histone demethylases regulate gene transcription by altering the methylate status on histones, but their roles in cancers and the underlying molecular mechanisms still remain unclear. MYC-induced nuclear antigen (MINA) is reported to be a histone demethylase and highly expressed in many cancers. Here, for the first time, we show that MINA is involved in glioblastoma carcinogenesis and reveal the probable mechanisms of it in cell-cycle control. Kaplan-Meier analysis of progression-free survival showed that high MINA expression was strongly correlated with poor outcome and advancing tumor stage. MINA knockdown significantly repressed the cell proliferation and tumorigenesis abilities of glioblastoma cells in vitro and in vivo that were rescued by overexpressing the full-length MINA afterwards. Microarray analysis after knockdown of MINA revealed that MINA probably regulated glioblastoma carcinogenesis through the predominant cell-cycle pathways. Further investigation showed that MINA deficiency led to a cell-cycle arrest in G1 and G2 phases. And among the downstream genes, we found that cyclins and cyclin-dependent kinases were directly activated by MINA via the demethylation of H3K9me3.

  9. PDE7B is a novel, prognostically significant mediator of glioblastoma growth whose expression is regulated by endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael D Brooks

    Full Text Available Cell-cell interactions between tumor cells and constituents of their microenvironment are critical determinants of tumor tissue biology and therapeutic responses. Interactions between glioblastoma (GBM cells and endothelial cells (ECs establish a purported cancer stem cell niche. We hypothesized that genes regulated by these interactions would be important, particularly as therapeutic targets. Using a computational approach, we deconvoluted expression data from a mixed physical co-culture of GBM cells and ECs and identified a previously undescribed upregulation of the cAMP specific phosphodiesterase PDE7B in GBM cells in response to direct contact with ECs. We further found that elevated PDE7B expression occurs in most GBM cases and has a negative effect on survival. PDE7B overexpression resulted in the expansion of a stem-like cell subpopulation in vitro and increased tumor growth and aggressiveness in an in vivo intracranial GBM model. Collectively these studies illustrate a novel approach for studying cell-cell interactions and identifying new therapeutic targets like PDE7B in GBM.

  10. Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma.

    Directory of Open Access Journals (Sweden)

    Biaoyang Lin

    Full Text Available BACKGROUND: A comprehensive network-based understanding of molecular pathways abnormally altered in glioblastoma multiforme (GBM is essential for developing effective therapeutic approaches for this deadly disease. METHODOLOGY/PRINCIPAL FINDINGS: Applying a next generation sequencing technology, massively parallel signature sequencing (MPSS, we identified a total of 4535 genes that are differentially expressed between normal brain and GBM tissue. The expression changes of three up-regulated genes, CHI3L1, CHI3L2, and FOXM1, and two down-regulated genes, neurogranin and L1CAM, were confirmed by quantitative PCR. Pathway analysis revealed that TGF- beta pathway related genes were significantly up-regulated in GBM tumor samples. An integrative pathway analysis of the TGF beta signaling network identified two alternative TGF-beta signaling pathways mediated by SOX4 (sex determining region Y-box 4 and TGFBI (Transforming growth factor beta induced. Quantitative RT-PCR and immunohistochemistry staining demonstrated that SOX4 and TGFBI expression is elevated in GBM tissues compared with normal brain tissues at both the RNA and protein levels. In vitro functional studies confirmed that TGFBI and SOX4 expression is increased by TGF-beta stimulation and decreased by a specific inhibitor of TGF-beta receptor 1 kinase. CONCLUSIONS/SIGNIFICANCE: Our MPSS database for GBM and normal brain tissues provides a useful resource for the scientific community. The identification of non-SMAD mediated TGF-beta signaling pathways acting through SOX4 and TGFBI (GENE ID:7045 in GBM indicates that these alternative pathways should be considered, in addition to the canonical SMAD mediated pathway, in the development of new therapeutic strategies targeting TGF-beta signaling in GBM. Finally, the construction of an extended TGF-beta signaling network with overlaid gene expression changes between GBM and normal brain extends our understanding of the biology of GBM.

  11. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Aphididae) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Kraiss, Heidi; Cullen, Eileen M

    2008-06-01

    Aphis glycines Matsumura, an invasive insect pest in North American soybeans, is fed upon by a key biological control agent, Harmonia axyridis Pallas. Although biological control is preferentially relied upon to suppress insect pests in organic agriculture, approved insecticides, such as neem, are periodically utilized to reduce damaging pest populations. The authors evaluated direct spray treatments of two neem formulations, azadirachtin and neem seed oil, under controlled conditions for effects on survivorship, development time and fecundity in A. glycines and H. axyridis. Both azadirachtin and neem seed oil significantly increased aphid nymphal mortality (80 and 77% respectively) while significantly increasing development time of those surviving to adulthood. First-instar H. axyridis survival to adulthood was also significantly reduced by both neem formulations, while only azadirachtin reduced third-instar survivorship. Azadirachtin increased H. axyridis development time to adult when applied to both instars, while neem oil only increased time to adult when applied to first instar. Neither neem formulation affected the fecundity of either insect. Results are discussed within the context of future laboratory and field studies aimed at clarifying if neem-derived insecticides can be effectively integrated with biological control for soybean aphid management in organic soybeans. Copyright (c) 2008 Society of Chemical Industry.

  12. MicroRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shouping [Department of Diagnostic Imaging, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Wang, Xianjun [Department of Neurology, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Li, Xiao [Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Cao, Yuandong, E-mail: yuandongcao@sina.com [Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China)

    2015-11-13

    MicroRNA-139-5p was identified to be significantly down-regulated in glioblastoma multiform (GBM) by miRNA array. In this report we aimed to clarify its biological function, molecular mechanisms and direct target gene in GBM. Twelve patients with GBM were analyzed for the expression of miR-139-5p by quantitative RT-PCR. miR-139-5p overexpression was established by transfecting miR-139-5p-mimic into U87MG and T98G cells, and its effects on cell proliferation were studied using MTT assay and colony formation assays. We concluded that ectopic expression of miR-139-5p in GBM cell lines significantly suppressed cell proliferation and inducing apoptosis. Bioinformatics coupled with luciferase and western blot assays also revealed that miR-139-5p suppresses glioma cell proliferation by targeting ELTD1 and regulating cell cycle. - Highlights: • miR-139-5p is downregulated in GBM. • miR-139-5p regulates cell proliferation through inducing apoptosis. • miR-139-5p regulates glioblastoma tumorigenesis by targeting 3′UTR of ELTD1. • miR-139-5p is involved in cell cycle regulation.

  13. MicroRNA-142-3p is involved in regulation of MGMT expression in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Lee YY

    2018-04-01

    Full Text Available Yi-Yen Lee,1,2,* Aliaksandr A Yarmishyn,3,4,* Mong-Lien Wang,3,4 Hsiao-Yun Chen,4,5 Shih-Hwa Chiou,3–5 Yi-Ping Yang,4,5 Chun-Fu Lin,1,2 Pin-I Huang,2,6 Yi-Wei Chen,2,6 Hsin-I Ma,7 Ming-Teh Chen1,2 1Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 2Faculty of Medicine, National Yang-Ming University, 3Institute of Pharmacology, National Yang-Ming University, 4Department of Medical Research, Taipei Veterans General Hospital, 5Institute of Clinical Medicine, National Yang Ming University, 6Cancer Center, Radiation Oncology Division, Taipei Veterans General Hospital, 7Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan *These authors contributed equally to this work Background: Glioblastoma multiforme (GBM is the most malignant brain tumor, and there is no effective treatment strategy. Patients with GBM have a median overall survival of only 14.6 months. Current treatment consists of safe and maximal surgical excision, followed by concurrent chemoradiotherapy and maintenance chemotherapy. There are several obstacles that hinder the effectiveness of this aggressive treatment. Temozolomide (TMZ is an oral alkylating drug that acts through alkylating the O6 position of guanine in DNA that leads to cell death. However, the expression and enzymatic activity of the DNA repair protein MGMT limits the therapeutic benefit from treatment with TMZ. MGMT reduces the efficacy of alkylating drugs by removing the methyl or alkyl group from damaged O6-methylguanine. Expression levels of MGMT play an important role in the outcome of GBM patients. miRNAs are a group of small regulatory RNAs that control target gene expression by binding to mRNAs. miR-142-3p has been found to be an important factor in the development and maintenance of the oncogenic state. Results: In this study, we sought to investigate whether miR-142-3p can regulate MGMT gene expression in GBM cells

  14. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP.

    Science.gov (United States)

    Sander, Philip; Mostafa, Haouraa; Soboh, Ayman; Schneider, Julian M; Pala, Andrej; Baron, Ann-Kathrin; Moepps, Barbara; Wirtz, C Rainer; Georgieff, Michael; Schneider, Marion

    2017-05-23

    Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutic options are urgently needed. A novel drug, Vacquinol-1 (Vac), a quinolone derivative, displays promising properties by inducing rapid cell death in GBM but not in non-transformed tissues. Features of this type of cell death are compatible with a process termed methuosis. Here we tested Vac on a highly malignant glioma cell line observed by long-term video microscopy. Human dental-pulp stem cells (DPSCs) served as controls. A major finding was that an exogenous ATP concentration of as little as 1 μM counter regulated the Vac-induced cell death. Studies using carvacrol, an inhibitor of transient receptor potential cation channel, subfamily M, member 7 (TRPM7), demonstrated that the ATP-inducible inhibitory effect is likely to be via TRPM7. Exogenous ATP is of relevance in GBM with large necrotic areas. Our results support the use of GBM cultures with different grades of malignancy to address their sensitivity to methuosis. The video-microscopy approach presented here allows decoding of signaling pathways as well as mechanisms of chemotherapeutic resistance by long-term observation. Before implementing Vac as a novel therapeutic drug in GBM, cells from each individual patient need to be assessed for their ATP sensitivity. In summary, the current investigation supports the concept of methuosis, described as non-apoptotic cell death and a promising approach for GBM treatment. Tissue-resident ATP/necrosis may interfere with this cell-death pathway but can be overcome by a natural compound, carvacrol that even penetrates the blood-brain barrier.

  15. Melanoma survivorship: research opportunities.

    Science.gov (United States)

    Oliveria, Susan A; Hay, Jennifer L; Geller, Alan C; Heneghan, Maureen K; McCabe, Mary S; Halpern, Allan C

    2007-03-01

    The rising incidence and mortality rates of melanoma, the most fatal form of skin cancer, are among the greatest increases of all preventable cancers over the past decade. However, because of recent advances in early detection, secondary prevention efforts, and treatment, the number of melanoma survivors is increasing. Little research has been conducted on melanoma survivors and important opportunities exist for research in this understudied population. Here, we outline the important research opportunities related to the study of melanoma survivorship and summarize the paucity of literature currently available. A computerized literature search was performed of the MEDLINE database of the National Library of Medicine from 1966-2005. The scope of the search was limited to those studies published in English. The search was conducted using the following MeSH headings: melanoma, neoplasms, skin neoplasms, survival, and survival rate. The reference lists of relevant book chapters and review articles were further reviewed, and printed materials from recent scientific meetings addressing this topic were obtained. Several factors that affect melanoma survivors warrant further study, including: physiologic long-term effects; psychosocial, behavioral, and cognitive factors; demographic characteristics; surveillance practices; recurrences, secondary primaries, and other cancers; family members of survivors; and economic issues, access to health care/life insurance. Understanding recurrence and second primary cancer risk, psychosocial and cognitive characteristics, behaviors, surveillance patterns, economic sequelae, and family issues of melanoma survivors is important from a public health standpoint to promote the health and well-being of this cohort. Melanoma is an understudied cancer, and the incidence and mortality of this disease are increasing. Describing the long term burden of this cancer and identifying factors that contribute to them will facilitate efforts to develop

  16. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  17. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    Science.gov (United States)

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1. Copyright © 2011 Wiley Periodicals, Inc.

  18. Glioblastoma familiar

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1995-06-01

    Full Text Available The authors describe a family with three members affected by glioblastoma. The proband patient, a 7 year-old girl, developed a rare complication, a pulmonary metastasis. Chromosomal analysis of her peripheral blood lymphocytes showed a normal karyotype (46, XX, without structural abnormalities. Cytogenetic study of the tumor cells disclosed several abnormalities: 46, XX, 7q - / 46, XX, -2, 4p-, 7p-, +15/ 46, XX. Some aspects about genetics of glial neoplasms are discussed.

  19. Adenoid glioblastoma

    Directory of Open Access Journals (Sweden)

    Cui-yun SUN

    2018-04-01

    Full Text Available Objective To report the diagnosis and treatment of one case of adenoid glioblastoma and investigate the clinicopathological features, diagnosis and differential diagnosis. Methods and Results A 63-year-old male patient suffered from left-skewed corner of the mouth for more than 10 d. Brain enhanced MRI revealed a cystic mass in left frontotemporal lobe and metastatic tumor was considered. 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET did not detected any sign of malignant neoplasm in the whole body. Under the guide of neuronavigation and ultrasound, the tumor was totally removed under microscope. Histologically, the tumor was located in brain parenchyma and presented a growing pattern of multicentric sheets or nests. Mucus scattered in some regions. Tumor cells were arranged in strip, cribriform, adenoid or papillary patterns. Tumor cells contained few cytoplasm with round or oval uniform hyperchromatic nuclei and occasionally obvious nucleoli. Proliferation of glomeruloid vascular endothelial cells could be seen. Immunohistochemical staining showed the cytoplasm of tumor cells was diffusively positive for glial fibrillary acidic protein (GFAP, vimentin (Vim and phosphatase and tensin homologue (PTEN; nuclei was positive for oligodendrocytes transcription factor-2 (Olig-2 and P53; cytoplasm and nuclei were positive for S-100 protein (S-100; membrane was positive for epidermal growth factor receptor (EGFR. The tumor cells showed a negative reaction for cytokeratin (CK, epithelial membrane antigen (EMA, carcinoembryonic antigen (CEA, thyroid transcription factor-1 (TTF-1, CD31, CD34, CAM5.2 and isocitrate dehydrogenase 1 (IDH1. Ki-67 labeling index was 76.80%. The final pathological diagnosis was adenoid glioblastoma. The patient died of respiratroy failure and circulation function failure 12 d after operation. Conclusions Adenoid glioblastoma was a rare glioblastoma subtype. A clear diagnosis depends on histological findings and immunohistochemical

  20. Improving anxiety regulation in patients with breast cancer at the beginning of the survivorship period: a randomized clinical trial comparing the benefits of single-component and multiple-component group interventions.

    Science.gov (United States)

    Merckaert, Isabelle; Lewis, Florence; Delevallez, France; Herman, Sophie; Caillier, Marie; Delvaux, Nicole; Libert, Yves; Liénard, Aurore; Nogaret, Jean-Marie; Ogez, David; Scalliet, Pierre; Slachmuylder, Jean-Louis; Van Houtte, Paul; Razavi, Darius

    2017-08-01

    To compare in a multicenter randomized controlled trial the benefits in terms of anxiety regulation of a 15-session single-component group intervention (SGI) based on support with those of a 15-session multiple-component structured manualized group intervention (MGI) combining support with cognitive-behavioral and hypnosis components. Patients with nonmetastatic breast cancer were randomly assigned at the beginning of the survivorship period to the SGI (n = 83) or MGI (n = 87). Anxiety regulation was assessed, before and after group interventions, through an anxiety regulation task designed to assess their ability to regulate anxiety psychologically (anxiety levels) and physiologically (heart rates). Questionnaires were used to assess psychological distress, everyday anxiety regulation, and fear of recurrence. Group allocation was computer generated and concealed till baseline completion. Compared with patients in the SGI group (n = 77), patients attending the MGI group (n = 82) showed significantly reduced anxiety after a self-relaxation exercise (P = .006) and after exposure to anxiety triggers (P = .013) and reduced heart rates at different time points throughout the task (P = .001 to P = .047). The MGI participants also reported better everyday anxiety regulation (P = .005), greater use of fear of recurrence-related coping strategies (P = .022), and greater reduction in fear of recurrence-related psychological distress (P = .017) compared with the SGI group. This study shows that an MGI combining support with cognitive-behavioral techniques and hypnosis is more effective than an SGI based only on support in improving anxiety regulation in patients with breast cancer. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP

    OpenAIRE

    Sander, Philip; Mostafa, Haouraa; Soboh, Ayman; Schneider, Julian M.; Pala, Andrej; Baron, Ann-Kathrin; Moepps, Barbara; Wirtz, C. Rainer; Georgieff, Michael; Schneider, Marion

    2017-01-01

    Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutic options are urgently needed. A novel drug, Vacquinol-1 (Vac), a quinolone derivative, displays promising properties by inducing rapid cell death in GBM but not in non-transformed tissues. Features of this type of cell death are compatible with a process termed methuosis. Here we tested Vac on a highly malignant glioma cell line observed by long-term video microscopy. Human dental-...

  2. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    OpenAIRE

    Grazia eMaugeri; Agata Grazia eD'Amico; Agata Grazia eD'Amico; Rita eReitano; Gaetano eMagro; Sebastiano eCavallaro; Salvatore eSalomone; Velia eD'Agata

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) through the binding of vasoactive intestinal peptide receptors (VIPRs), perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM). This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs). HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation...

  3. Family support in cancer survivorship.

    Science.gov (United States)

    Muhamad, Mazanah; Afshari, Mojgan; Kazilan, Fitrisehara

    2011-01-01

    This paper raises issues about the role of family members in providing support for breast cancer survivors. Data were collected from 400 breast cancer survivors in Peninsular Malaysia through a custom-designed questionnaire fielded at hospitals and support group meetings. The data were analyzed using descriptive statistics. The analyses show that all family members could be supportive, especially in decision making and help with emotional issues. The spouse was the main support provider among the family members (others were children, parents, siblings and more distant relatives). The results also indicated that a significant percentage practiced collaborative decision-making. Breast cancer survivors needed their family members' support for information on survivorship strategies such as managing emotions, health, life style and dietary practice. The family members' supportive role may be linked to the Malaysian strong family relationship culture. For family members to contribute more adequately to cancer survivorship, it is suggested that appropriate educational intervention also be provided to them.

  4. Molecular heterogeneity in a patient-derived glioblastoma xenoline is regulated by different cancer stem cell populations.

    Directory of Open Access Journals (Sweden)

    Jo Meagan Garner

    Full Text Available Malignant glioblastoma (GBM is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal, which may arise from different glioblastoma stem-like cell (GSC populations. We previously showed that adherent cultures of GSCs grown on laminin-coated plates (Ad-GSCs and spheroid cultures of GSCs (Sp-GSCs had high expression of stem cell markers (CD133, Sox2 and Nestin, but low expression of differentiation markers (βIII-tubulin and glial fibrillary acid protein. In the present study, we characterized GBM tumors produced by subcutaneous and intracranial injection of Ad-GSCs and Sp-GSCs isolated from a patient-derived xenoline. Although they formed tumors with identical histological features, gene expression analysis revealed that xenografts of Sp-GSCs had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of Ad-GSCs expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression, and enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Therefore, Ad-GSCs and Sp-GSCs produced histologically identical tumors with different gene expression patterns, and a STAT3/ANGPTL4 pathway is identified in glioblastoma that may serve as a target for therapeutic intervention.

  5. Cancer survivorship: challenges and changing paradigms.

    Science.gov (United States)

    Gilbert, Scott M; Miller, David C; Hollenbeck, Brent K; Montie, James E; Wei, John T

    2008-02-01

    We summarize the potential issues faced by cancer survivors, define a conceptual framework for cancer survivorship, describe challenges associated with improving the quality of survivorship care and outline proposed survivorship programs that may be implemented going forward. We performed a nonsystematic review of current cancer survivorship literature. Given the comprehensive scope and high profile, the recent report by the Institute of Medicine, From Cancer Patient to Cancer Survivor: Lost in Transition, served as the principal guide for the review. In recognition of the increasing number of cancer survivors in the United States survivorship has become an important health care concern. The recent report by the Institute of Medicine comprehensively outlined deficits in the care provided to cancer survivors, and proposed mechanisms to improve the coordination and quality of followup care for this increasing number of Americans. Measures to achieve these objectives include improving communication between health care providers through a survivorship care plan, providing evidence based surveillance guidelines and assessing different models of survivorship care. Implementing coordinated survivorship care broadly will require additional health care resources, and commitment from health care providers and payers. Research demonstrating the effectiveness of survivorship care will be important on this front. Potential shortcomings in the recognition and management of ongoing issues faced by cancer survivors may impact the overall quality of long-term care in this increasing population. Although programs to address these issues have been proposed, there is substantial work to be done in this area.

  6. ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state.

    Science.gov (United States)

    Chudnovsky, Yakov; Kim, Dohoon; Zheng, Siyuan; Whyte, Warren A; Bansal, Mukesh; Bray, Mark-Anthony; Gopal, Shuba; Theisen, Matthew A; Bilodeau, Steve; Thiru, Prathapan; Muffat, Julien; Yilmaz, Omer H; Mitalipova, Maya; Woolard, Kevin; Lee, Jeongwu; Nishimura, Riko; Sakata, Nobuo; Fine, Howard A; Carpenter, Anne E; Silver, Serena J; Verhaak, Roel G W; Califano, Andrea; Young, Richard A; Ligon, Keith L; Mellinghoff, Ingo K; Root, David E; Sabatini, David M; Hahn, William C; Chheda, Milan G

    2014-01-30

    Glioblastoma (GBM) harbors subpopulations of therapy-resistant tumor-initiating cells (TICs) that are self-renewing and multipotent. To understand the regulation of the TIC state, we performed an image-based screen for genes regulating GBM TIC maintenance and identified ZFHX4, a 397 kDa transcription factor. ZFHX4 is required to maintain TIC-associated and normal human neural precursor cell phenotypes in vitro, suggesting that ZFHX4 regulates differentiation, and its suppression increases glioma-free survival in intracranial xenografts. ZFHX4 interacts with CHD4, a core member of the nucleosome remodeling and deacetylase (NuRD) complex. ZFHX4 and CHD4 bind to overlapping sets of genomic loci and control similar gene expression programs. Using expression data derived from GBM patients, we found that ZFHX4 significantly affects CHD4-mediated gene expression perturbations, which defines ZFHX4 as a master regulator of CHD4. These observations define ZFHX4 as a regulatory factor that links the chromatin-remodeling NuRD complex and the GBM TIC state. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State

    Directory of Open Access Journals (Sweden)

    Yakov Chudnovsky

    2014-01-01

    Full Text Available Glioblastoma (GBM harbors subpopulations of therapy-resistant tumor-initiating cells (TICs that are self-renewing and multipotent. To understand the regulation of the TIC state, we performed an image-based screen for genes regulating GBM TIC maintenance and identified ZFHX4, a 397 kDa transcription factor. ZFHX4 is required to maintain TIC-associated and normal human neural precursor cell phenotypes in vitro, suggesting that ZFHX4 regulates differentiation, and its suppression increases glioma-free survival in intracranial xenografts. ZFHX4 interacts with CHD4, a core member of the nucleosome remodeling and deacetylase (NuRD complex. ZFHX4 and CHD4 bind to overlapping sets of genomic loci and control similar gene expression programs. Using expression data derived from GBM patients, we found that ZFHX4 significantly affects CHD4-mediated gene expression perturbations, which defines ZFHX4 as a master regulator of CHD4. These observations define ZFHX4 as a regulatory factor that links the chromatin-remodeling NuRD complex and the GBM TIC state.

  8. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide.

    Science.gov (United States)

    Frontiñán-Rubio, Javier; Santiago-Mora, Raquel María; Nieva-Velasco, Consuelo María; Ferrín, Gustavo; Martínez-González, Alicia; Gómez, María Victoria; Moreno, María; Ariza, Julia; Lozano, Eva; Arjona-Gutiérrez, Jacinto; Gil-Agudo, Antonio; De la Mata, Manuel; Pesic, Milica; Peinado, Juan Ramón; Villalba, José M; Pérez-Romasanta, Luis; Pérez-García, Víctor M; Alcaín, Francisco J; Durán-Prado, Mario

    2018-05-18

    To investigate how the modulation of the oxidative balance affects cytotoxic therapies in glioblastoma, in vitro. Human glioblastoma U251 and T98 cells and normal astrocytes C8D1A were loaded with coenzyme Q10 (CoQ). Mitochondrial superoxide ion (O 2 - ) and H 2 O 2 were measured by fluorescence microscopy. OXPHOS performance was assessed in U251 cells with an oxytherm Clark-type electrode. Radio- and chemotherapy cytotoxicity was assessed by immunostaining of γH2AX (24 h), annexin V and nuclei morphology, at short (72 h) and long (15 d) time. Hif-1α, SOD1, SOD2 and NQO1 were determined by immunolabeling. Catalase activity was measured by classic enzymatic assay. Glutathione levels and total antioxidant capacity were quantified using commercial kits. CoQ did not affect oxygen consumption but reduced the level of O 2 - and H 2 O 2 while shifted to a pro-oxidant cell status mainly due to a decrease in catalase activity and SOD2 level. Hif-1α was dampened, echoed by a decrease lactate and several key metabolites involved in glutathione synthesis. CoQ-treated cells were twofold more sensitive than control to radiation-induced DNA damage and apoptosis in short and long-term clonogenic assays, potentiating TMZ-induced cytotoxicity, without affecting non-transformed astrocytes. CoQ acts as sensitizer for cytotoxic therapies, disarming GBM cells, but not normal astrocytes, against further pro-oxidant injuries, being potentially useful in clinical practice for this fatal pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. MicroRNA involvement in glioblastoma pathogenesis

    International Nuclear Information System (INIS)

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-01-01

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  10. Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B.

    Science.gov (United States)

    Sugimoto, Naotoshi; Miwa, Shinji; Hitomi, Yoshiaki; Nakamura, Hiroyuki; Tsuchiya, Hiroyuki; Yachie, Akihiro

    2014-01-01

    Theobromine, a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. We previously showed that methylxanthines, including caffeine and theophylline, have antitumor and antiinflammatory effects, which are in part mediated by their inhibition of phosphodiesterase (PDE). A member of the PDE family, PDE4, is widely expressed in and promotes the growth of glioblastoma, the most common type of brain tumor. The purpose of this study was to determine whether theobromine could exert growth inhibitory effects on U87-MG, a cell line derived from human malignant glioma. We show that theobromine treatment elevates intracellular cAMP levels and increases the activity of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, whereas it attenuates p44/42 extracellular signal-regulated kinase activity and the Akt/mammalian target of rapamycin kinase and nuclear factor-kappa B signal pathways. It also inhibits cell proliferation. These results suggest that foods and beverages containing cocoa bean extracts, including theobromine, might be extremely effective in preventing human glioblastoma.

  11. Lesbian, Gay, Bisexual, and Transgender (LGBT) Survivorship.

    Science.gov (United States)

    Kamen, Charles

    2018-02-01

    To discuss lesbian, gay, bisexual, and transgender (LGBT)-specific survivorship issues including: integrating sexual and gender minority identities with cancer survivor identities; coordinating medical care and disclosing identities to health care providers; dealing with late effects of treatment; and addressing LGBT family and relationship issues. Published articles, quotes from an online survey of 311 LGBT survivors. The transition from active cancer treatment to survivorship presents challenges, and LGBT cancer survivors may face additional challenges as they enter the survivorship phase. Oncology nurses can improve the quality of survivorship care delivered to LGBT survivors and their caregivers by addressing the disparities and gaps in health care. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Survivorship care needs among LGBT cancer survivors.

    Science.gov (United States)

    Seay, Julia; Mitteldorf, Darryl; Yankie, Alena; Pirl, William F; Kobetz, Erin; Schlumbrecht, Matthew

    2018-05-23

    To better understand survivorship care needs among LGBT cancer survivors. We administered an anonymous online survey. LGBT cancer survivors living in the United States. Participants were recruited via the National LGBT Cancer Project. The survey measured sociodemographic characteristics, social support, posttraumatic stress, and survivorship care needs. Approximately 72% of our 114 participants were cisgender male and 87% were white. Almost all participants reported at least some unmet survivorship care needs (73%), with over half of participants reporting unmet psychological and sexuality care needs. Participants who reported their oncologist was not LGBT-competent had greater unmet needs (t(82) = 2.5, p = 0.01) and greater posttraumatic stress (t(91) = 2.1, p = 0.035). LGBT cancer survivors have significant unmet survivorship care needs, and lack of oncologist LGBT-competence is associated with unmet needs. Implications for Psychosocial Providers: Our results suggest the need for LGBT competency training for providers.

  13. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme.

    Science.gov (United States)

    Bien-Möller, Sandra; Lange, Sandra; Holm, Tobias; Böhm, Andreas; Paland, Heiko; Küpper, Johannes; Herzog, Susann; Weitmann, Kerstin; Havemann, Christoph; Vogelgesang, Silke; Marx, Sascha; Hoffmann, Wolfgang; Schroeder, Henry W S; Rauch, Bernhard H

    2016-03-15

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient´s survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient´s survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells.In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation.

  14. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation.

    Science.gov (United States)

    Cui, J G; Zhao, Y; Sethi, P; Li, Y Y; Mahta, A; Culicchia, F; Lukiw, W J

    2010-07-01

    High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.

  15. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  16. Nanotechnology applications for glioblastoma.

    Science.gov (United States)

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Peng Cheng

    2015-05-01

    Full Text Available Glioblastoma is a highly lethal cancer for which novel therapeutics are urgently needed. Two distinct subtypes of glioblastoma stem-like cells (GSCs were recently identified: mesenchymal (MES and proneural (PN. To identify mechanisms to target the more aggressive MES GSCs, we combined transcriptomic expression analysis and kinome-wide short hairpin RNA screening of MES and PN GSCs. In comparison to PN GSCs, we found significant upregulation and phosphorylation of the receptor tyrosine kinase AXL in MES GSCs. Knockdown of AXL significantly decreased MES GSC self-renewal capacity in vitro and inhibited the growth of glioblastoma patient-derived xenografts. Moreover, inhibition of AXL with shRNA or pharmacologic inhibitors also increased cell death significantly more in MES GSCs. Clinically, AXL expression was elevated in the MES GBM subtype and significantly correlated with poor prognosis in multiple cancers. In conclusion, we identified AXL as a potential molecular target for novel approaches to treat glioblastoma and other solid cancers.

  18. pH, Lactate, and Hypoxia: Reciprocity in Regulating High-Affinity Monocarboxylate Transporter Expression in Glioblastoma

    Directory of Open Access Journals (Sweden)

    James P. Caruso

    2017-02-01

    Full Text Available Highly malignant brain tumors harbor the aberrant propensity for aerobic glycolysis, the excessive conversion of glucose to lactic acid even in the presence of ample tissue oxygen. Lactic acid is rapidly effluxed to the tumor microenvironment via a group of plasma-membrane transporters denoted monocarboxylate transporters (MCTs to prevent “self-poisoning.” One isoform, MCT2, has the highest affinity for lactate and thus should have the ability to respond to microenvironment conditions such as hypoxia, lactate, and pH to help maintain high glycolytic flux in the tumor. Yet, MCT2 is considered to not respond to hypoxia, which is counterintuitive. Its response to tumor lactate has not been reported. In this report, we experimentally identify the transcription initiation site/s for MCT2 in astrocytes (normal and glioma (tumor. We then use a BACmid library to isolate a 4.2-kbp MCT2 promoter-exon I region and examine promoter response to glycolysis-mediated stimuli in glioma cells. Reporter analysis of nested-promoter constructs indicated response of MCT2 to hypoxia, pH, lactate, and glucose, the major physiological “players” that facilitate a tumor's growth and proliferation. Immunoblot analysis of native MCT2 expression under altered pH and hypoxia reflected the reporter data. The pH-mediated gene-regulation studies we describe are the first to record H+-based reporter studies for any mammalian system and demonstrate the exquisite response of the MCT2 gene to minute changes in tumor pH. Identical promoter usage also provides the first evidence of astrocytes harnessing the same gene regulatory regions to facilitate astrocyte-neuron lactate shuttling, a metabolic feature of normal brain.

  19. CircSMARCA5 Inhibits Migration of Glioblastoma Multiforme Cells by Regulating a Molecular Axis Involving Splicing Factors SRSF1/SRSF3/PTB

    Directory of Open Access Journals (Sweden)

    Davide Barbagallo

    2018-02-01

    Full Text Available Circular RNAs (circRNAs have recently emerged as a new class of RNAs, highly enriched in the brain and very stable within cells, exosomes and body fluids. To analyze their involvement in glioblastoma multiforme (GBM pathogenesis, we assayed the expression of twelve circRNAs, physiologically enriched in several regions of the brain, through real-time PCR in a cohort of fifty-six GBM patient biopsies and seven normal brain parenchymas. We focused on hsa_circ_0001445 (circSMARCA5: it was significantly downregulated in GBM biopsies as compared to normal brain tissues (p-value < 0.00001, student’s t-test, contrary to its linear isoform counterpart that did not show any differential expression (p-value = 0.694, student’s t-test. Analysis of a public dataset revealed a negative correlation between the expression of circSMARCA5 and glioma’s histological grade, suggesting its potential negative role in the progression to malignancy. Overexpressing circSMARCA5 in U87MG cells significantly decreased their migration, but not their proliferation rate. In silico scanning of circSMARCA5 sequence revealed an enrichment in binding motifs for several RNA binding proteins (RBPs, specifically involved in splicing. Among them, serine and arginine rich splicing factor 1 (SRSF1, a splicing factor known to be a positive controller of cell migration and known to be overexpressed in GBM, was predicted to bind circSMARCA5 by three different prediction tools. Direct interaction between circSMARCA5 and SRSF1 is supported by enhanced UV crosslinking and immunoprecipitation (eCLIP data for SRSF1 in K562 cells from Encyclopedia of DNA Elements (ENCODE. Consistently, U87MG overexpressing circSMARCA5 showed an increased expression of serine and arginine rich splicing factor 3 (SRSF3 RNA isoform containing exon 4, normally skipped in a SRSF1-dependent manner, resulting in a non-productive non-sense mediated decay (NMD substrate. Interestingly, SRSF3 is known to interplay

  20. Issues of Selection in Human Survivorship

    DEFF Research Database (Denmark)

    Hansen, Hans Oluf

    , and Iceland during the past 250 years and in Japan any ten years between 1950 and 1990 is approached appropriately by the model. Reduced natural selection may account for a substantial part of the empirical mortality change in the course of the demographic transition. Survivorship in the late nineteenth......Is variation in empirical mortality across populations consistent with a hypothesis of selec-tion? To examine this proposition an extended frailty mortality model is put forward; incor-porating biological frailty; a common non-parametric hazard, joint for men and women, rep-resenting endogenous...... and the twentieth century ties selection to major medical advances and rapid recent mortality decline, probably with consequences for future health and survivorship....

  1. [Glioblastoma in 2017].

    Science.gov (United States)

    Duffau, Hugues

    2017-02-01

    Glioblastomas are serious tumours of the central nervous system. Recurrence is systematic and prognosis poor. Radiotherapy and chemotherapy follow surgery, when surgery is possible, to lengthen survival, while preserving quality of life as much as possible. In this respect, symptomatic treatments and supportive care are necessary. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuming Jiao

    2015-06-01

    Full Text Available Invasion and metastasis of glioblastoma-initiating cells (GICs are thought to be responsible for the progression and recurrence of glioblastoma multiforme (GBM. A safe drug that can be applied during the rest period of temozolomide (TMZ maintenance cycles would greatly improve the prognosis of GBM patients by inhibiting GIC invasion. Resveratrol (RES is a natural compound that exhibits anti-invasion properties in multiple tumor cell lines. The current study aimed to evaluate whether RES can inhibit GIC invasion in vitro and in vivo. GICs were identified using CD133 and Nestin immunofluorescence staining and tumorigenesis in non-obese diabetic severe combined immunodeficient (NOD/SCID mice. Invasive behaviors, including the adhesion, invasion and migration of GICs, were determined by tumor invasive assays in vitro and in vivo. The activity of matrix metalloproteinases (MMPs was measured by the gelatin zymography assay. Western blotting analysis and immunofluorescence staining were used to determine the expression of signaling effectors in GICs. We demonstrated that RES suppressed the adhesion, invasion and migration of GICs in vitro and in vivo. Moreover, we proved that RES inhibited the invasion of GICs via the inhibition of PI3K/Akt/NF-κB signal transduction and the subsequent suppression of MMP-2 expression.

  3. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    Science.gov (United States)

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  4. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  5. Nanotechnology Applications for Glioblastoma

    Science.gov (United States)

    Nduom, Edjah; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G.

    2012-01-01

    Synopsis Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. While conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting the residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds much promise in the use of multifunctional nanoparticles for the imaging and targeted therapy of GBM.. Nanoparticles have emerged as potential “theranostic” agents that can permit the diagnosis and therapeutic treatment of GBM tumors. A recent human clinical trial with magnetic nanoparticles has provided feasibility and efficacy data for potential treatment of GBM patients with thermotherapy. Here we examine the current state of nanotechnology in the treatment of glioblastoma and interesting directions of further study. PMID:22748656

  6. Immunological Evasion in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Roxana Magaña-Maldonado

    2016-01-01

    Full Text Available Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.

  7. Taking Our Seat at the Table: Community Cancer Survivorship.

    Science.gov (United States)

    Polo, Katie M; Smith, Caitlin

    Cancer survivors are at risk for occupational performance issues related to activities of daily living, instrumental activities of daily living, work, and social and community participation. Occupational therapy practitioners can address these performance issues by offering services within existing community cancer survivorship programs that focus on adaptive and compensatory strategies to facilitate meaningful lifestyles and optimize health and well-being. Occupational therapy services do not currently exist at these community sites, nor are occupational therapy practitioners recognized as providers in existing community cancer survivorship programs. Recognition of practitioners' distinct value in cancer survivorship, advocacy for occupational therapy services in the community, development of supporting documentation for occupational therapy's role in community survivorship, and research on the efficacy of interventions in community cancer survivorship are needed to expand occupational therapy's role with this growing population. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  8. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  9. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200.

    Science.gov (United States)

    Fu, Junsheng; Rodova, Mariana; Nanta, Rajesh; Meeker, Daniel; Van Veldhuizen, Peter J; Srivastava, Rakesh K; Shankar, Sharmila

    2013-06-01

    Glioblastoma multiforme is the most common form of primary brain tumor, often characterized by poor survival. Glioblastoma initiating cells (GICs) regulate self-renewal, differentiation, and tumor initiation properties and are involved in tumor growth, recurrence, and resistance to conventional treatments. The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryonic morphogenesis. The objectives of this study were to examine the molecular mechanisms by which GIC characteristics are regulated by NPV-LDE-225 (Smoothened inhibitor; (2,2'-[[dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N-dimethylbenzenamine). Cell viability and apoptosis were measured by XTT and annexin V-propidium iodide assay, respectively. Gli translocation and transcriptional activities were measured by immunofluorescence and luciferase assay, respectively. Gene and protein expressions were measured by quantitative real-time PCR and Western blot analyses, respectively. NPV-LDE-225 inhibited cell viability, neurosphere formation, and Gli transcriptional activity and induced apoptosis by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. NPV-LDE-225 increased the expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-R1/DR4, TRAIL-R2/DR5, and Fas and decreased the expression of platelet derived growth factor receptor-α and Bcl2, and these effects were abrogated by Gli1 plus Gli2 short hairpin RNAs. NPV-LDE-225 enhanced the therapeutic potential of FasL and TRAIL by upregulating Fas and DR4/5, respectively. Interestingly, NPV-LDE-225 induced expression of programmed cell death 4 and apoptosis and inhibited cell viability by suppressing micro RNA (miR)-21. Furthermore, NPV-LDE-225 inhibited pluripotency-maintaining factors Nanog, Oct4, Sox2, and cMyc. The inhibition of Bmi1 by NPV-LDE-225 was regulated by induction of miR-128. Finally, NPV-LDE-225 suppressed epithelial-mesenchymal transition by

  10. Cancer survivorship: history, quality-of-life issues, and the evolving multidisciplinary approach to implementation of cancer survivorship care plans.

    Science.gov (United States)

    Morgan, Mary Ann

    2009-07-01

    To discuss the history of cancer survivorship, related quality-of-life issues, and cancer survivorship care plans (CSCPs). CINAHL, PubMed, published articles, and Web sites. A cancer survivor is an individual who has been diagnosed with cancer, regardless of when that diagnosis was received, who is still living. Cancer survivorship is complex and involves many aspects of care. Major areas of concern for survivors are recurrence, secondary malignancies, and long-term treatment sequelae that affect quality of life. Four essential components of survivorship care are prevention, surveillance, intervention, and coordination. A CSCP should address the survivor's long-term care, such as type of cancer, treatments received, potential side effects, and recommendations for follow-up. It should include preventive practices, how to maintain health and well-being, information on legal protections regarding employment and health insurance, and psychosocial services in the community. Survivorship care for patients with cancer requires a multidisciplinary effort and team approach. Enhanced knowledge of long-term complications of survivorship is needed for healthcare providers. Further research on evidence-based practice for cancer survivorship care also is necessary. Nurses can review CSCPs with patients, instruct them when to seek treatment, promote recommended surveillance protocols, and encourage behaviors that lead to cancer prevention and promote well-being for cancer survivors.

  11. Micro RNAs as molecular markers of glioblastoma multiform

    Energy Technology Data Exchange (ETDEWEB)

    Farace, M G [Department Experimental Medicine and Biochemical Sciences, University of Tor Vergata, Rome (Italy); Finocchiaro, G [Istituto Neurologico Besta, Milan (Italy); Ricci Vitiani, L [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation.

  12. Micro RNAs as molecular markers of glioblastoma multiform

    International Nuclear Information System (INIS)

    Farace, M.G.; Finocchiaro, G.; Ricci Vitiani, L.

    2009-01-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation

  13. The Role of Protein Kinase CK2 in Glioblastoma Development

    OpenAIRE

    Ji, Haitao; Lu, Zhimin

    2013-01-01

    Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor in adults, and its response to current therapies is limited. Protein kinase CK2 is overexpressed in GBM and regulates GBM cell survival, proliferation, and migration and brain tumorigenesis. Targeting CK2 for GBM treatment may benefit GBM patients.

  14. Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines

    International Nuclear Information System (INIS)

    Amoureux, Marie-Claude; Coulibaly, Béma; Chinot, Olivier; Loundou, Anderson; Metellus, Philippe; Rougon, Geneviève; Figarella-Branger, Dominique

    2010-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. Although patient survival is limited to one year on average, significant variability in outcome is observed. The assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall survival (OS) and disease free survival (DFS). We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the cox regression proportional hazard models. The threshold for statistical significance was p = 0.05. We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription factor required for gliomagenesis. PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients

  15. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  16. A Patient-Centered Perspective on Cancer Survivorship

    Directory of Open Access Journals (Sweden)

    Brad Zebrack

    2015-04-01

    Full Text Available Survivorship is a complicated notion because people often confuse a process of survivorship with a mythic identity of being a cancer survivor. This confusion may be a distraction to addressing the real-life struggles and challenges experienced by all people diagnosed with cancer. A more expansive perspective of survivorship, one that attends to patients’ physical, psychological, social, spiritual, and existential challenges throughout a continuum of care, would be more in line with what is known empirically about people’s experiences with cancer. In an effort to gain a patient-centered perspective on cancer, and one that emphasizes multiple dimensions of cancer survivorship, the author reports findings from a non-scientific social media poll (via Facebook and personal emails in which survivors and colleagues working in the field of cancer survivorship answered the question: What does cancer survivorship mean to you? The comments are enlightening and useful for guiding the development of a patient-centered, and, thus, more comprehensive, approach to caring for people affected by cancer.

  17. A patient-centered perspective on cancer survivorship.

    Science.gov (United States)

    Zebrack, Brad

    2015-04-15

    Survivorship is a complicated notion because people often confuse a process of survivorship with a mythic identity of being a cancer survivor. This confusion may be a distraction to addressing the real-life struggles and challenges experienced by all people diagnosed with cancer. A more expansive perspective of survivorship, one that attends to patients' physical, psychological, social, spiritual, and existential challenges throughout a continuum of care, would be more in line with what is known empirically about people's experiences with cancer. In an effort to gain a patient-centered perspective on cancer, and one that emphasizes multiple dimensions of cancer survivorship, the author reports findings from a non-scientific social media poll (via Facebook and personal emails) in which survivors and colleagues working in the field of cancer survivorship answered the question: What does cancer survivorship mean to you? The comments are enlightening and useful for guiding the development of a patient-centered, and, thus, more comprehensive, approach to caring for people affected by cancer.

  18. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  19. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  20. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    International Nuclear Information System (INIS)

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-01

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  1. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Honghai; Du, Bin [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Jiang, Huili [Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Gao, Jun, E-mail: gaoj1666@126.com [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China)

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  2. Can Immunotherapy Succeed in Glioblastoma?

    Science.gov (United States)

    Researchers are hopeful that, for the deadly brain cancer glioblastoma, immunotherapy might succeed where other therapies have not. As this Cancer Currents post reports, different immunotherapy approaches are being tested in clinical trials.

  3. Key concepts in glioblastoma therapy

    DEFF Research Database (Denmark)

    Bartek, Jiri; Ng, Kimberly; Bartek, Jiri

    2012-01-01

    principles that drive the formulation of therapeutic strategies in glioblastoma. Specifically, the concepts of tumour heterogeneity, oncogene addiction, non-oncogene addiction, tumour initiating cells, tumour microenvironment, non-coding sequences and DNA damage response will be reviewed....

  4. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  5. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  7. Testicular Cancer Survivorship: Research Strategies and Recommendations

    Science.gov (United States)

    Beard, Clair; Allan, James M.; Dahl, Alv A.; Feldman, Darren R.; Oldenburg, Jan; Daugaard, Gedske; Kelly, Jennifer L.; Dolan, M. Eileen; Hannigan, Robyn; Constine, Louis S.; Oeffinger, Kevin C.; Okunieff, Paul; Armstrong, Greg; Wiljer, David; Miller, Robert C.; Gietema, Jourik A.; van Leeuwen, Flora E.; Williams, Jacqueline P.; Nichols, Craig R.; Einhorn, Lawrence H.; Fossa, Sophie D.

    2010-01-01

    Testicular cancer represents the most curable solid tumor, with a 10-year survival rate of more than 95%. Given the young average age at diagnosis, it is estimated that effective treatment approaches, in particular, platinum-based chemotherapy, have resulted in an average gain of several decades of life. This success, however, is offset by the emergence of considerable long-term morbidity, including second malignant neoplasms, cardiovascular disease, neurotoxicity, nephrotoxicity, pulmonary toxicity, hypogonadism, decreased fertility, and psychosocial problems. Data on underlying genetic or molecular factors that might identify those patients at highest risk for late sequelae are sparse. Genome-wide association studies and other translational molecular approaches now provide opportunities to identify testicular cancer survivors at greatest risk for therapy-related complications to develop evidence-based long-term follow-up guidelines and interventional strategies. We review research priorities identified during an international workshop devoted to testicular cancer survivors. Recommendations include 1) institution of lifelong follow-up of testicular cancer survivors within a large cohort setting to ascertain risks of emerging toxicities and the evolution of known late sequelae, 2) development of comprehensive risk prediction models that include treatment factors and genetic modifiers of late sequelae, 3) elucidation of the effect(s) of decades-long exposure to low serum levels of platinum, 4) assessment of the overall burden of medical and psychosocial morbidity, and 5) the eventual formulation of evidence-based long-term follow-up guidelines and interventions. Just as testicular cancer once served as the paradigm of a curable malignancy, comprehensive follow-up studies of testicular cancer survivors can pioneer new methodologies in survivorship research for all adult-onset cancer. PMID:20585105

  8. Concept analysis of cancer survivorship and contributions to oncological nursing.

    Science.gov (United States)

    de Oliveira, Rafaela Azevedo Abrantes; da Conceição, Vander Monteiro; Araujo, Jeferson Santos; Zago, Márcia Maria Fontão

    2018-02-01

    This study aims to analyse the concept of cancer survivorship using Rodgers' evolutionary concept analysis model. The lack of a consensus definition as well as the confusion and debate concerning the definitions of "survivor" and "cancer survivorship" hinder an understanding of the intrinsic needs associated with the latter. Concept analysis. A systematic literature search was performed using the following databases: PubMed, CINAHL, Web of Science, LILACS, and PsycINFO with studies published between 2000 and 2014. The final sample contained 39 studies that were analysed on the basis of Rodgers' model and inductive thematic analysis, discussed through the lens of the medical anthropology concept of culture. Cancer survivorship is a broad concept that can be understood using 8 themes: changes in life plans, positive and negative aspect dualities, life reflections, identity change, individual experiences, symptom control, the need for support, and quality of care. These themes are summarized using 2 attributes: liminality process and culturally congruent care. This article contributes to understanding of cancer survivorship and the processes that are intrinsic to this concept. It calls for future investigations to enhance cancer survivorship across its 2 domains at the personal (patient's life) and clinical (nursing practice) levels. © 2017 John Wiley & Sons Australia, Ltd.

  9. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    International Nuclear Information System (INIS)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-01-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells

  10. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp

    2015-05-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells.

  11. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    International Nuclear Information System (INIS)

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-01-01

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2

  12. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  13. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  14. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  15. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Directory of Open Access Journals (Sweden)

    Wen-Shin Song

    2016-10-01

    Conclusion: SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers.

  16. Strategies of temozolomide in future glioblastoma treatment

    Directory of Open Access Journals (Sweden)

    Lee CY

    2017-01-01

    Full Text Available Chooi Yeng Lee School of Pharmacy, Monash University Malaysia, Selangor, Malaysia Abstract: Glioblastoma multiforme (GBM may be one of the most challenging brain tumors to treat, as patients generally do not live more than 2 years. This review aimed to give a timely review of potential future treatments for GBM by looking at the latest strategies, involving mainly the use of temozolomide (TMZ. Although these studies were carried out either in vitro or in rodents, the findings collectively suggested that we are moving toward developing a more efficacious therapy for GBM patients. Nanoparticles preparation was, by far, the most extensively studied strategy for targeted brain delivery. Therefore, the first section of this review presents a treatment strategy using TMZ-loaded nanocarriers, which encompassed nanoparticles, nanoliposomes, and nanosponges. Besides nanocarriers, new complexes that were formed between TMZ and another chemical agent or molecule have shown increased cytotoxicity and antitumor activity. Another approach was by reducing GBM cell resistance to TMZ, and this was achieved either through the suppression of metabolic change occurring in the cells, inhibition of the DNA repair protein, or up-regulation of the protein that mediates autophagy. Finally, the review collates a list of substances that have demonstrated the ability to suppress tumor cell growth. Keywords: cellular resistance, glioblastoma multiforme, nanoparticles, targeted delivery, temozolomide

  17. Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines

    Science.gov (United States)

    Kast, RE

    2010-01-01

    Glioblastoma treatment as now constituted offers increased survival measured in months over untreated patients. Because glioblastomas are active in synthesizing a bewildering variety of growth factors, a systematic approach to inhibiting these is being undertaken as treatment adjunct. The serotonin 7 receptor is commonly overexpressed in glioblastoma. Research documentation showing agonists at serotonin receptor 7 cause increased extracellular regulated kinase 1/2 activation, increased interleukin-6 synthesis, increased signal transducer and activator of transcription-3 activation, increased resistance to apoptosis and other growth enhancing changes in glioblastoma is reviewed in this paper. Because three drugs in wide use to treat thought disorders – paliperidone, pimozide and risperidone – are also potent and well-tolerated inhibitors at serotonin receptor 7, these drugs should be studied for growth factor deprivation in an adjunctive role in glioblastoma treatment. PMID:20880389

  18. Gompertz' survivorship law as an intrinsic principle of aging

    NARCIS (Netherlands)

    Sas, Arthur A.; Snieder, Harold; Korf, Jakob

    We defend the hypothesis that life-spanning population survivorship curves, as described by Gompertz' law and composed from cross-sectional data (here mortality), reflect an intrinsic aging principle active in each subject of that population. In other words Gompertz' law reflects aging of a

  19. Post-settlement survivorship in two Caribbean broadcasting corals

    Science.gov (United States)

    Miller, Margaret W.

    2014-12-01

    The post-settlement phase of broadcast-spawned coral life histories is poorly known due to its almost complete undetectability and, hence, presumed low abundance in the field. We used lab-cultured settled polyps of two important Caribbean reef-building species with negligible larval recruitment to quantify early post-settlement survivorship (6-9 weeks) over multiple years/cohorts and differing orientation on a reef in the Florida Keys. Orbicella faveolata showed significantly and consistently better survivorship in vertical rather than horizontal orientation, but no discernable growth overall. Meanwhile, Acropora palmata showed no significant difference in survivorship between orientations, but significantly greater growth in the horizontal orientation. Both species showed significant variation in mean survivorship between cohorts of different years; 0-47 % for O. faveolata and 12-49 % for A. palmata over the observed duration. These results demonstrate wide variation in success of cohorts and important differences in the larval recruitment capacities of these two important but imperiled reef-building species.

  20. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  1. Survivorship and functional outcomes of patellofemoral arthroplasty: a systematic review.

    Science.gov (United States)

    van der List, J P; Chawla, H; Zuiderbaan, H A; Pearle, A D

    2017-08-01

    Historically poor results of survivorship and functional outcomes of patellofemoral arthroplasty (PFA) have been reported in the setting of isolated patellofemoral osteoarthritis. More recently, however, fairly good results of PFA were reported, but the current status of PFA outcomes is unknown. Therefore, a systematic review was performed to assess overall PFA survivorship and functional outcomes. A search was performed using PubMed, Embase and Cochrane systems, and the registries were searched. Twenty-three cohort studies and one registry reported survivorship using Kaplan-Meier curve, while 51 cohort studies reported functional outcomes of PFA. Twelve studies were level II studies, while 45 studies were level III or IV studies. Heterogeneity was mainly seen in type of prosthesis and year the cohort started. Nine hundred revisions in 9619 PFAs were reported yielding 5-, 10-, 15- and 20-year PFA survivorships of 91.7, 83.3, 74.9 and 66.6 %, respectively, and an annual revision rate of 2.18. Functional outcomes were reported in 2587 PFAs with an overall score of 82.2 % of the maximum score. KSS and Knee Function Score were 87.5 and 81.6 %, respectively. This systematic review showed that fairly good results of PFA survivorship and functional outcomes were reported at short- and midterm follow-up in the setting of isolated patellofemoral osteoarthritis. Heterogeneity existed mainly in prosthesis design and year the cohort started. These results provide a clear overview of the current status of PFA in the setting of isolated patellofemoral osteoarthritis. IV.

  2. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Andrews

    Full Text Available Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated "MTB" experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific.

  3. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

    Science.gov (United States)

    Chen, Qicheng; Ye, Li; Fan, Jiajun; Zhang, Xuyao; Wang, Huan; Liao, Siyang; Song, Ping; Wang, Ziyu; Wang, Shaofei; Li, Yubin; Luan, Jingyun; Wang, Yichen; Chen, Wei; Zai, Wenjing; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2017-01-01

    Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment. PMID:29207624

  4. Multifaceted role of galectin-3 on human glioblastoma cell motility

    International Nuclear Information System (INIS)

    Debray, Charles; Vereecken, Pierre; Belot, Nathalie; Teillard, Peggy; Brion, Jean-Pierre; Pandolfo, Massimo; Pochet, Roland

    2004-01-01

    Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-α6 and -β1, proteins known to be implicated in the regulation of cell adhesion

  5. Dialogues on cancer survivorship: a new model of international cooperation.

    Science.gov (United States)

    Stein, Kevin; Mattioli, Vittorio

    2013-06-01

    The authors describe the rationale and background of the present supplement to Cancer intended to stimulate a dialogue among researchers from Europe and North America regarding important issues faced by cancer survivors. Through jointly written articles addressing various aspects of cancer survivorship, each manuscript reports on the similarities, disparities, and problems viewed from the point of view of each author's respective continent. The supplement is meant to create a springboard for increased collaboration and aid in the development of a shared care model to improve the quality of cancer care, both during and after the completion of primary treatment. We hope that this effort may represent a new model of international cooperation, which is fruitful not only for the field of scientific research but also for identifying and sharing new approaches to the care and management of cancer survivorship issues, ultimately bringing improvements to quality of life of the growing population of cancer survivors. Copyright © 2013 American Cancer Society.

  6. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  7. Diet and Nutrition in Cancer Survivorship and Palliative Care

    OpenAIRE

    Anthony J. Bazzan; Andrew B. Newberg; William C. Cho; Daniel A. Monti

    2013-01-01

    The primary goal of palliative cancer care is typically to relieve suffering and improve quality of life. Most approaches to diet in this setting have focused only on eating as many calories as possible to avoid cachexia. However, as the concept of palliative care has evolved to include all aspects of cancer survivorship and not just end of life care, there is an increasing need to thoughtfully consider diet and nutrition approaches that can impact not only quality of life but overall health ...

  8. Cancer survivorship: a new challenge in comprehensive cancer control.

    Science.gov (United States)

    Pollack, Lori A; Greer, Greta E; Rowland, Julia H; Miller, Andy; Doneski, Donna; Coughlin, Steven S; Stovall, Ellen; Ulman, Doug

    2005-10-01

    Cancer survivors are a growing population in the United States because of earlier cancer diagnosis, the aging of society, and more effective risk reduction and treatment. Concerns about the long-term physical, psychosocial, and economic effects of cancer treatment on cancer survivors and their families are increasingly being recognized and addressed by public, private, and non-profit organizations. The purpose of this paper is to discuss how survivorship fits within the framework of comprehensive cancer control. We summarize three national reports on cancer survivorship and highlight how various organizations and programs are striving to address the needs of cancer survivors through public health planning, including the challenges these groups face and the gaps in knowledge and available services. As cancer survivorship issues are being recognized, many organizations have objectives and programs to address concerns of those diagnosed with cancer. However, better coordination and dissemination may decrease overlap and increase the reach of efforts and there is limited evidence for the effectiveness and impact of these efforts.

  9. N-(4-Hydroxyphenyl) retinamide potentiated paclitaxel for cell cycle arrest and apoptosis in glioblastoma C6 and RG2 cells

    OpenAIRE

    Janardhanan, Rajiv; Butler, Jonathan T.; Banik, Naren L.; Ray, Swapan K.

    2009-01-01

    Glioblastoma grows aggressively due to its ability to maintain abnormally high potentials for cell proliferation. The present study examines the synergistic actions of N-(4-hdroxyphenyl) retinamide (4-HPR) and paclitaxel (PTX) to control the growth of rat glioblastoma C6 and RG2 cell lines. 4-HPR induced astrocytic differentiation was accompanied by increased expression of the tight junction protein e-cadherin and sustained down regulation of Id2 (member of inhibitor of differentiation family...

  10. A comprehensive profile of recurrent glioblastoma

    DEFF Research Database (Denmark)

    Campos, B.; Olsen, Lars Rønn; Urup, T.

    2016-01-01

    In spite of relentless efforts to devise new treatment strategies, primary glioblastomas invariably recur as aggressive, therapy-resistant relapses and patients rapidly succumb to these tumors. Many therapeutic agents are first tested in clinical trials involving recurrent glioblastomas. Remarkab...... 2016; doi:10.1038/onc.2016.85....

  11. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  12. Fenofibrate induces ketone body production in melanoma and glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Maja M Grabacka

    2016-02-01

    Full Text Available Ketone bodies (beta-hydroxybutyrate, bHB, acetoacetate are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of nontransformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and down-regulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic therapeutic approaches against glioblastoma.

  13. EG-10LONG NON-CODING RNAs IN GLIOBLASTOMA

    Science.gov (United States)

    Pastori, Chiara; Kapranov, Philipp; Penas, Clara; Laurent, Georges St.; Ayad, Nagi; Wahlestedt, Claes

    2014-01-01

    Glioblastoma (GBM) is the most common, aggressive and incurable primary brain tumor in adults. Genome studies have confirmed that GBM is extremely heterogeneous with many genetically different subgroups. Consequently, there is much current interest in epigenetic drugs that may be active across genetically distinct tumors. In support of this, some epigenetic drugs has recently shown efficacy against several cancers including glioblastoma. Much recent interest has also been devoted to long non-coding RNAs (lncRNAs), which can modulate gene expression regulating chromatin architecture, in part through the interaction with epigenetic protein machineries. To date, however, only a few lncRNAs have been studied in human cancer. We therefore embarked on a comprehensive genomic and functional analysis of lncRNAs in GBM. Using the Helicos Single Molecule Sequencing platform glioblastoma samples were sequenced resulting in the identification of hundreds of dysregulated lncRNAs. Among these the lncRNA HOTAIR was found massively increased in GBM. This observation parallels findings in other cancers where HOTAIR's increased expression has been linked to poor prognosis due to metastatic events. Interestingly, here we show that in glioblastoma HOTAIR does not promote metastasis, but instead sustains the ability of these cells to proliferate. In fact, we demonstrate that HOTAIR knockdown in GBM strongly impairs cell proliferation and induces apoptosis in vitro and in vivo. Further, we implicate HOTAIR in the mechanism of action of certain epigenetic drugs. In summary, long noncoding RNAs (newly discovered epigenomic factors) play a vital role in GBM and deserve attention as entirely novel drug targets as well as biomarkers.

  14. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.

    Science.gov (United States)

    Zhang, Yi-Xin; Li, Xiao-Fang; Yuan, Guo-Qiang; Hu, Hui; Song, Xiao-Yun; Li, Jing-Yi; Miao, Xiao-Kang; Zhou, Tian-Xiong; Yang, Wen-Le; Zhang, Xiao-Wei; Mou, Ling-Yun; Wang, Rui

    2017-05-26

    Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G 2 /M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G 2 /M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

    Science.gov (United States)

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D; Rossi, John J; Shi, Yanhong

    2016-02-03

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.

  16. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  17. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  18. Colorectal cancer patients' preferences for type of caregiver during survivorship care

    NARCIS (Netherlands)

    Wieldraaijer, T.; Duineveld, L. A. M.; Donkervoort, S. C.; Busschers, W. B.; van Weert, H. C. P. M.; Wind, J.

    2018-01-01

    Colorectal cancer (CRC) survivors are currently included in a secondary care-led survivorship care programme. Efforts are underway to transfer this survivorship care to primary care, but met with some reluctance by patients and caregivers. This study assesses (1) what caregiver patients prefer to

  19. A Cross-Cultural Perspective on Challenges Facing Comparative Cancer Survivorship Research

    International Nuclear Information System (INIS)

    Syse, A.; Syse, A.; Geller, B.

    2011-01-01

    Cancer survivorship research includes the study of physical, psychosocial, and economic consequences of cancer diagnosis and treatment among pediatric and adult cancer survivors. Historically, the majority of cancer survivorship studies were from the United States, but survivorship issues are increasingly being addressed in other developed countries. Cross-cultural studies remain, however, scarce. The degree to which knowledge attained may or may not be transferred across cultures, countries, or regions is not known. Some important challenges for comparative research are therefore discussed in a cross-cultural perspective. Several substantive and methodological challenges that complicate the execution of cross-cultural cancer survivorship research are presented with examples and discussed to facilitate comparative research efforts in the establishment of new survivorship cohorts and in the planning and implementation of survivorship studies. Comparative research is one key to understanding the nature of cancer survivorship, distinguishing modifiable from non modifiable factors at individual, hospital, societal, and system levels and may thus guide appropriate interventions. Lastly, suggested future courses of action within the field of comparative cancer survivorship research are provided.

  20. Cancer survivorship: Advancing the concept in the context of colorectal cancer.

    Science.gov (United States)

    Drury, Amanda; Payne, Sheila; Brady, Anne-Marie

    2017-08-01

    Previous conceptualizations of cancer survivorship have focused on heterogeneous cancer survivors, with little consideration of the validity of conclusions for homogeneous tumour groups. This paper aims to examine the concept of cancer survivorship in the context of colorectal cancer (CRC). Rodgers' (1989) Evolutionary Method of Concept Analysis guided this study. A systematic search of PUBMED, CINAHL, PsycINFO and The Cochrane Library was conducted in November 2016 to identify studies of CRC survivorship. The Braun and Clarke (2006) framework guided the analysis and interpretation of data extracted from eighty-five publications. Similar to general populations of cancer survivors, CRC survivors experience survivorship as an individual, life-changing process, punctuated by uncertainty and a duality of positive and negative outcomes affecting quality of life. However, CRC survivors experience specific concerns arising from the management of their disease. The concept of cancer survivorship has evolved over the past decade as the importance of navigating the healthcare system and its resources, and the constellation of met and unmet needs of cancer survivors are realised. The results highlight core similarities between survivorship in the context of CRC and other tumour groups, but underlines issues specific to CRC survivorship. Communication and support are key issues in survivorship care which may detrimentally affect CRC survivors' well-being if they are inadequately addressed. Healthcare professionals (HCP's) therefore have a duty to ensure cancer survivors' health, information and supportive care needs are met in the aftermath of treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells

    DEFF Research Database (Denmark)

    Schonberg, David L; Miller, Tyler E; Wu, Qiulian

    2015-01-01

    Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue......, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable...

  2. Role of differentiation in glioblastoma invasion

    NARCIS (Netherlands)

    Vareecal Joseph, Justin

    2015-01-01

    Glioblastoma (GBM) is de meest agressieve hersentumor en diffuse infiltratie in het normale hersenweefsel is een van de hoofdoorzaken van een slechte prognose, aangezien volledige chirurgische verwijdering hierdoor vrijwel onmogelijk is. Het belangrijkste doel van het in dit proefschrift beschreven

  3. Combining Immunotherapy with Standard Glioblastoma Therapy

    Science.gov (United States)

    This clinical trial is testing standard therapy (surgery, radiation and temozolomide) plus immunotherapy with pembrolizumab with or without a cancer treatment vaccine for patients with newly diagnosed glioblastoma, a common and deadly type of brain tumor.

  4. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Using a predictive model of clinician intention to improve continuing health professional education on cancer survivorship.

    Science.gov (United States)

    Buriak, S E; Potter, J; Bleckley, M Kathryn

    2015-01-01

    Cancer survivorship is a chronic disease that places patients in limbo between oncologists and primary care clinicians. Strategies have been proposed to ease the shift in coordination of care, including broad-based educational outreach to primary care providers. Guided by the theory of planned behavior (TPB), predictors of intention to provide survivorship care, including credentials, experience, perception of barriers, and personal survivorship status, were evaluated using logistic regression with a cohort of physicians, nurse practitioners, and registered nurses participating in an unprecedented online continuing medical education/continuing education survivorship care course. Results showed that physicians were significantly less likely to express intent to provide survivorship care (odds ratio [OR] = .237, p = .0001) compared to the other groups. Overall, clinicians with 6-10 years of experience were 3 times more likely to express intent to provide survivorship care (OR = 2.86, p = .045) than those with less or more experience. When clinicians perceived the presence of a barrier, they were nearly twice as likely to have diminished intent (OR = 1.89, p = .035). Most participants (66%; n = 1185) selected two barriers: lack of survivorship care plans and treatment summaries (45.4%; n = 821) and lack of education (20.1%; n = 364). Barriers to the delivery of survivorship care can influence clinicians' intention to provide survivorship care, which varied by years of experience in this study. Interdisciplinary educational strategies featuring midcareer provider champions who have successfully incorporated survivorship care and can offer specific solutions to these barriers are recommended for future interventions. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  6. Immunotherapy for the Treatment of Glioblastoma

    Science.gov (United States)

    Thomas, Alissa A.; Ernstoff, Marc S.; Fadul, Camilo E.

    2012-01-01

    Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma. PMID:22290259

  7. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    International Nuclear Information System (INIS)

    Noerholm, Mikkel; Balaj, Leonora; Limperg, Tobias; Salehi, Afshin; Zhu, Lin Dan; Hochberg, Fred H; Breakefield, Xandra O; Carter, Bob S; Skog, Johan

    2012-01-01

    RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9) and normal controls (N = 7) were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups). Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down) in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size < 500 nt. Gene ontology of the down-regulated genes indicated these are coding for ribosomal proteins and genes related to ribosome production. Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size < 500 nt

  8. TSPO Imaging in Glioblastoma Multiforme

    DEFF Research Database (Denmark)

    Jensen, Per; Feng, Ling; Law, Ian

    2015-01-01

    -CLINDE is superior to (18)F-FET in predicting progression of glioblastoma multiforme (GBM) at follow-up. METHODS: Three patients with World Health Organization grade IV GBM were scanned with (123)I-CLINDE SPECT, (18)F-FET PET, and gadolinium-enhanced MR imaging. Molecular imaging data were compared with follow......-CLINDE (15%-30%). In contrast, VOIs of increased contrast enhancement at follow-up compared with baseline overlapped to a greater extent with baseline (123)I-CLINDE VOIs than (18)F-FET VOIs (21% vs. 8% and 72% vs. 55%). CONCLUSION: Our preliminary results suggest that TSPO brain imaging in GBM may...... be a useful tool for predicting tumor progression at follow-up and may be less susceptible to changes in blood-brain barrier permeability than (18)F-FET. Larger studies are warranted to test the clinical potential of TSPO imaging in GBM, including presurgical planning and radiotherapy....

  9. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  10. Cancer Supportive and Survivorship Care in Singapore: Current Challenges and Future Outlook

    Directory of Open Access Journals (Sweden)

    Kiley Wei-Jen Loh

    2018-02-01

    Full Text Available Despite being a relatively young nation, Singapore has established itself as a leading multifaceted medical hub, both regionally and globally. Although Singapore continues to pursue excellence in oncology care, cancer supportive care and survivorship care remain in the infancy stage. In an effort to advance this important aspect of oncology care in Singapore, the first cancer supportive and survivorship care forum was held in December 2016, involving 74 oncology practitioners. The primary goals of this forum were to raise awareness of the importance of cancer supportive and survivorship care and to provide a platform for oncology practitioners of diverse backgrounds to converge and address the challenges associated with the delivery of cancer supportive and survivorship care in Singapore. Key challenges identified during this forum included, but were not limited to, care fragmentation in an oncologist-centric model of care, poor integration of allied health and rehabilitation services, passive engagement of community partners, lack of specialized skill sets and knowledge in supportive and survivorship care, and patient-related barriers such as poor health literacy. The survivorship care model commonly used in Singapore places an imbalanced emphasis on surveillance for cancer recurrence and second primary cancers, with little attention given to the supportive and survivorship needs of the survivors. In summary, these challenges set the stage for the development and use of a more survivor-centric model, one that focuses not only on cancer surveillance, but also on the broad and unique physical and psychosocial needs of survivors of cancer in Singapore.

  11. Occupational Therapy's Role in Cancer Survivorship as a Chronic Condition.

    Science.gov (United States)

    Baxter, Mary Frances; Newman, Robin; Longpré, Sheila M; Polo, Katie M

    Improved medical care has resulted in a documented increase in cancer survivors in the United States. Cancer survivors face challenges in participation across all facets of life as a result of the cancer and subsequent cancer treatments. Long-term and late-term sequelae can result in impairments in neurological systems, decreased stamina, loss of range of motion, and changes in sensation and cognition. These impairments are often long lasting, which categorizes cancer survivorship as a chronic condition. This categorization presents treatment challenges, especially in creating rehabilitation and habilitation service options that support cancer survivors. Occupational therapy provides a unique focus that can benefit cancer survivors as they face limitations in participation in all aspects of daily living. Research, advocacy, and education efforts are needed to focus on the specific rehabilitation and habilitation needs of cancer survivors to increase access to occupational therapy's distinct value. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  12. Multivariate survivorship analysis using two cross-sectional samples.

    Science.gov (United States)

    Hill, M E

    1999-11-01

    As an alternative to survival analysis with longitudinal data, I introduce a method that can be applied when one observes the same cohort in two cross-sectional samples collected at different points in time. The method allows for the estimation of log-probability survivorship models that estimate the influence of multiple time-invariant factors on survival over a time interval separating two samples. This approach can be used whenever the survival process can be adequately conceptualized as an irreversible single-decrement process (e.g., mortality, the transition to first marriage among a cohort of never-married individuals). Using data from the Integrated Public Use Microdata Series (Ruggles and Sobek 1997), I illustrate the multivariate method through an investigation of the effects of race, parity, and educational attainment on the survival of older women in the United States.

  13. Diet and Nutrition in Cancer Survivorship and Palliative Care

    Directory of Open Access Journals (Sweden)

    Anthony J. Bazzan

    2013-01-01

    Full Text Available The primary goal of palliative cancer care is typically to relieve suffering and improve quality of life. Most approaches to diet in this setting have focused only on eating as many calories as possible to avoid cachexia. However, as the concept of palliative care has evolved to include all aspects of cancer survivorship and not just end of life care, there is an increasing need to thoughtfully consider diet and nutrition approaches that can impact not only quality of life but overall health outcomes and perhaps even positively affect cancer recurrence and progression. In this regard, there has been a recent emphasis in the literature on nutrition and cancer as an important factor in both quality of life and in the pathophysiology of cancer. Hence, the primary purpose of this paper is to review the current data on diet and nutrition as it pertains to a wide range of cancer patients in the palliative care setting.

  14. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls

    Directory of Open Access Journals (Sweden)

    Noerholm Mikkel

    2012-01-01

    Full Text Available Abstract Background RNA from exosomes and other microvesicles contain transcripts of tumour origin. In this study we sought to identify biomarkers of glioblastoma multiforme in microvesicle RNA from serum of affected patients. Methods Microvesicle RNA from serum from patients with de-novo primary glioblastoma multiforme (N = 9 and normal controls (N = 7 were analyzed by microarray analysis. Samples were collected according to protocols approved by the Institutional Review Board. Differential expressions were validated by qRT-PCR in a separate set of samples (N = 10 in both groups. Results Expression profiles of microvesicle RNA correctly separated individuals in two groups by unsupervised clustering. The most significant differences pertained to down-regulated genes (121 genes > 2-fold down in the glioblastoma multiforme patient microvesicle RNA, validated by qRT-PCR on several genes. Overall, yields of microvesicle RNA from patients was higher than from normal controls, but the additional RNA was primarily of size Conclusions Serum microvesicle RNA from patients with glioblastoma multiforme has significantly down-regulated levels of RNAs coding for ribosome production, compared to normal healthy controls, but a large overabundance of RNA of unknown origin with size

  15. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma.

    Science.gov (United States)

    Gujar, Amit D; Le, Son; Mao, Diane D; Dadey, David Y A; Turski, Alice; Sasaki, Yo; Aum, Diane; Luo, Jingqin; Dahiya, Sonika; Yuan, Liya; Rich, Keith M; Milbrandt, Jeffrey; Hallahan, Dennis E; Yano, Hiroko; Tran, David D; Kim, Albert H

    2016-12-20

    Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD + ). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD + synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD + -dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix-loop-helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD + metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.

  16. Long-term survivorship of stemless anatomical shoulder replacement.

    Science.gov (United States)

    Beck, Sascha; Beck, Verena; Wegner, Alexander; Dudda, Marcel; Patsalis, Theodor; Jäger, Marcus

    2018-01-24

    Like in many other joints, current shoulder replacement designs aim at bone preservation. According to the literature available, stemless total shoulder arthroplasty (TSA) compares favourably with stemmed designs in terms of function and survivorship of the implant. However, long-term results of stemless shoulder arthroplasty are still missing. Therefore, the aim of the present study was to evaluate long-term results of stemless anatomical TSA. Between 2006 and 2009, 51 shoulders in 46 patients were resurfaced using the Biomet Total Evolutive Shoulder System (TESS). Thirty-one shoulders in 26 patients who were aged 66.7 ± 10.0 (range 34-82) years were available for review at a mean follow-up of 94.7 ± 11.3 (76-124) months. The implant survival rate was 93.5% at eight years. The overall revision rate of the TESS implant was 9.7%. Radiolucent lines were found on the glenoid side of the TESS arthroplasty in 90.9% of the cases. All stemless humeral corolla implants showed solid fixation at follow-up. Clinical scores significantly improved at long-term follow-up (VAS from 8.1 ± 0.9 to 1.0 ± 1.2, p < 0.001; Quick-DASH from 67.9 ± 13.5 to 18.7 ± 16.5, p < 0.001 and Constant score from 14.7 ± 6.1 to 68.8 ± 13.2, p < 0.001). Stemless TSA has stood the test of time at eight years in terms of clinical scores, radiographic loosening, complication rates and implant survivorship.

  17. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030 were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP. MicroRNA-4284 (miR-4284 was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK/stress-activated protein kinase (SAPK, resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an

  18. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  19. Advance Care Planning in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Lara Fritz

    2016-11-01

    Full Text Available Despite multimodal treatment with surgery, radiotherapy and chemotherapy, glioblastoma is an incurable disease with a poor prognosis. During the disease course, glioblastoma patients may experience progressive neurological deficits, symptoms of increased intracranial pressure such as drowsiness and headache, incontinence, seizures and progressive cognitive dysfunction. These patients not only have cancer, but also a progressive brain disease. This may seriously interfere with their ability to make their own decisions regarding treatment. It is therefore warranted to involve glioblastoma patients early in the disease trajectory in treatment decision-making on their future care, including the end of life (EOL care, which can be achieved with Advance Care Planning (ACP. Although ACP, by definition, aims at timely involvement of patients and proxies in decision-making on future care, the optimal moment to initiate ACP discussions in the disease trajectory of glioblastoma patients remains controversial. Moreover, the disease-specific content of these ACP discussions needs to be established. In this article, we will first describe the history of patient participation in treatment decision-making, including the shift towards ACP. Secondly, we will describe the possible role of ACP for glioblastoma patients, with the specific aim of treatment of disease-specific symptoms such as somnolence and dysphagia, epileptic seizures, headache, and personality changes, agitation and delirium in the EOL phase, and the importance of timing of ACP discussions in this patient population.

  20. Early presentation of primary glioblastoma.

    Science.gov (United States)

    Faguer, R; Tanguy, J-Y; Rousseau, A; Clavreul, A; Menei, P

    2014-08-01

    Clinical and neuroimaging findings of glioblastomas (GBM) at an early stage have rarely been described and those tumors are most probably under-diagnosed. Furthermore, their genetic alterations, to our knowledge, have never been previously reported. We report the clinical as well as neuroimaging findings of four early cases of patients with GBM. In our series, early stage GBM occurred at a mean age of 57 years. All patients had seizures as their first symptom. In all early stages, MRI showed a hyperintense signal on T2-weighted sequences and an enhancement on GdE-T1WI sequences. A hyperintense signal on diffusion sequences with a low ADC value was also found. These early observed occurrences of GBM developed rapidly and presented the MRI characteristics of classic GBM within a few weeks. The GBM size was multiplied by 32 in one month. Immunohistochemical analysis indicated the de novo nature of these tumors, i.e. absence of mutant IDH1 R132H protein expression, which is a diagnostic marker of low-grade diffuse glioma and secondary GBM. A better knowledge of early GBM presentation would allow a more suitable management of the patients and may improve their prognosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Adoptive Cell Therapies for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Kevin James Bielamowicz

    2013-11-01

    Full Text Available Glioblastoma (GBM is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard-of-care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients(1. Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly self, it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer (LAK cells, natural killer (NK cells, cytotoxic T lymphocytes (CTL, and transgenic chimeric antigen receptor (CAR- or αβ T cell receptor (TCR grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system towards the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts.

  2. Adoptive Cell Therapies for Glioblastoma

    Science.gov (United States)

    Bielamowicz, Kevin; Khawja, Shumaila; Ahmed, Nabil

    2013-01-01

    Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts. PMID:24273748

  3. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    Science.gov (United States)

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  4. The state of survivorship care in radiation oncology: Results from a nationally distributed survey.

    Science.gov (United States)

    Frick, Melissa A; Rosenthal, Seth A; Vapiwala, Neha; Monzon, Brian T; Berman, Abigail T

    2018-04-18

    Survivorship care has become an increasingly critical component of oncologic care as well as a quality practice and reimbursement metric. To the authors' knowledge, the current climate of survivorship medicine in radiation oncology has not been investigated fully. An institutional review board-approved, Internet-based survey examining practices and preparedness in survivorship care was distributed to radiation oncology practices participating in the American College of Radiology Radiation Oncology Practice Accreditation program between November 2016 and January 2017. A total of 78 surveys were completed. Among these, 2 were nonphysicians, resulting in 76 evaluable responses. Radiation oncologists (ROs) frequently reported that they are the primary provider in the evaluation of late toxicities and the recurrence of primary cancer. Although approximately 68% of ROs frequently discuss plans for future care with survivors, few provide a written survivorship care plan to their patients (18%) or the patients' primary care providers (24%). Patient prognosis, disease site, and reimbursement factors often influence the provision of survivorship care. Although ROs report that several platforms offer training in survivorship medicine, the quality of these resources is variable and extensive instruction is rare. Fewer than one-half of ROs believe they are expertly trained in survivorship care. ROs play an active role within the multidisciplinary team in the cancer-related follow-up care of survivors. Investigation of barriers to the provision of survivorship care and optimization of service delivery should be pursued further. The development of high-quality, easily accessible educational programming is needed so that ROs can participate more effectively in the care of cancer survivors. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  5. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Science.gov (United States)

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  6. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  7. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Science.gov (United States)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  8. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    Science.gov (United States)

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  9. Active CREB1 promotes a malignant TGFβ2 autocrine loop in glioblastoma.

    Science.gov (United States)

    Rodón, Laura; Gonzàlez-Juncà, Alba; Inda, María del Mar; Sala-Hojman, Ada; Martínez-Sáez, Elena; Seoane, Joan

    2014-10-01

    In advanced cancer, including glioblastoma, the TGFβ pathway acts as an oncogenic factor. Some tumors exhibit aberrantly high TGFβ activity, and the mechanisms underlying this phenomenon are not well understood. We have observed that TGFβ can induce TGFβ2, generating an autocrine loop leading to aberrantly high levels of TGFβ2. We identified cAMP-responsive element-binding protein 1 (CREB1) as the critical mediator of the induction of TGFβ2 by TGFβ. CREB1 binds to the TGFB2 gene promoter in cooperation with SMAD3 and is required for TGFβ to activate transcription. Moreover, the PI3K-AKT and RSK pathways regulate the TGFβ2 autocrine loop through CREB1. The levels of CREB1 and active phosphorylated CREB1 correlate with TGFβ2 in glioblastoma. In addition, using patient-derived in vivo models of glioblastoma, we found that CREB1 levels determine the expression of TGFβ2. Our results show that CREB1 can be considered a biomarker to stratify patients for anti-TGFβ treatments and a therapeutic target in glioblastoma. TGFβ is considered a promising therapeutic target, and several clinical trials using TGFβ inhibitors are generating encouraging results. Here, we discerned the molecular mechanisms responsible for the aberrantly high levels of TGFβ2 found in certain tumors, and we propose biomarkers to predict the clinical response to anti-TGFβ therapies. ©2014 American Association for Cancer Research.

  10. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  11. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  12. Long-term In Vitro Treatment of Human Glioblastoma Cells with Temozolomide Increases Resistance In Vivo through Up-regulation of GLUT Transporter and Aldo-Keto Reductase Enzyme AKR1C Expression

    Directory of Open Access Journals (Sweden)

    Benjamin Le Calvé

    2010-09-01

    Full Text Available Glioblastoma (GBM is the most frequent malignant glioma. Treatment of GBM patients is multimodal with maximum surgical resection, followed by concurrent radiation and chemotherapy with the alkylating drug temozolomide (TMZ. The present study aims to identify genes implicated in the acquired resistance of two human GBM cells of astrocytic origin, T98G and U373, to TMZ. Resistance to TMZ was induced by culturing these cells in vitro for months with incremental TMZ concentrations up to 1 mM. Only partial resistance to TMZ has been achieved and was demonstrated in vivo in immunocompromised mice bearing orthotopic U373 and T98G xenografts. Our data show that long-term treatment of human astroglioma cells with TMZ induces increased expression of facilitative glucose transporter/solute carrier GLUT/SLC2A family members, mainly GLUT-3, and of the AKR1C family of proteins. The latter proteins are phase 1 drug-metabolizing enzymes involved in the maintenance of steroid homeostasis, prostaglandin metabolism, and metabolic activation of polycyclic aromatic hydrocarbons. GLUT-3 has been previously suggested to exert roles in GBM neovascularization processes, and TMZ was found to exert antiangiogenic effects in experimental gliomas. AKR1C1 was previously shown to be associated with oncogenic potential, with proproliferative effects similar to AKR1C3 in the latter case. Both AKR1C1 and AKR1C2 proteins are involved in cancer pro-proliferative cell chemoresistance. Selective targeting of GLUT-3 in GBM and/or AKR1C proteins (by means of jasmonates, for example could thus delay the acquisition of resistance to TMZ of astroglioma cells in the context of prolonged treatment with this drug.

  13. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  14. Social factors matter in cancer risk and survivorship.

    Science.gov (United States)

    Dean, Lorraine T; Gehlert, Sarah; Neuhouser, Marian L; Oh, April; Zanetti, Krista; Goodman, Melody; Thompson, Beti; Visvanathan, Kala; Schmitz, Kathryn H

    2018-07-01

    Greater attention to social factors, such as race/ethnicity, socioeconomic position, and others, are needed across the cancer continuum, including breast cancer, given differences in tumor biology and genetic variants have not completely explained the persistent Black/White breast cancer mortality disparity. In this commentary, we use examples in breast cancer risk assessment and survivorship to demonstrate how the failure to appropriately incorporate social factors into the design, recruitment, and analysis of research studies has resulted in missed opportunities to reduce persistent cancer disparities. The conclusion offers recommendations for how to better document and use information on social factors in cancer research and care by (1) increasing education and awareness about the importance of inclusion of social factors in clinical research; (2) improving testing and documentation of social factors by incorporating them into journal guidelines and reporting stratified results; and (3) including social factors to refine extant tools that assess cancer risk and assign cancer care. Implementing the recommended changes would enable more effective design and implementation of interventions and work toward eliminating cancer disparities by accounting for the social and environmental contexts in which cancer patients live and are treated.

  15. Lessons Learned from the Young Breast Cancer Survivorship Network.

    Science.gov (United States)

    Gisiger-Camata, Silvia; Nolan, Timiya S; Vo, Jacqueline B; Bail, Jennifer R; Lewis, Kayla A; Meneses, Karen

    2017-11-30

    The Young Breast Cancer Survivors Network (Network) is an academic and community-based partnership dedicated to education, support, and networking. The Network used a multi-pronged approach via monthly support and networking, annual education seminars, website networking, and individual survivor consultation. Formative and summative evaluations were conducted using group survey and individual survivor interviews for monthly gatherings, annual education meetings, and individual consultation. Google Analytics was applied to evaluate website use. The Network began with 4 initial partnerships and grew to 38 in the period from 2011 to 2017. During this 5-year period, 5 annual meetings (598 attendees), 23 support and networking meetings (373), and 115 individual survivor consultations were conducted. The Network website had nearly 12,000 individual users and more than 25,000 page views. Lessons learned include active community engagement, survivor empowerment, capacity building, social media outreach, and network sustainability. The 5-year experiences with the Network demonstrated that a regional program dedicated to the education, support, networking, and needs of young breast cancer survivors and their families can become a vital part of cancer survivorship services in a community. Strong community support, engagement, and encouragement were vital components to sustain the program.

  16. Gender and Role Differences in Couples' Communication During Cancer Survivorship.

    Science.gov (United States)

    Lim, Jung-won; Paek, Min-so; Shon, En-jung

    2015-01-01

    Individuals with cancer and their partners often experience communication difficulties. However, questions still remain regarding the influence of gender and role in cancer survivor-partner communication within couples. The current study intended to examine the communication patterns in breast, colorectal, and prostate cancer survivor-partner couples during cancer survivorship and whether gender and role differences in couples communication exist. The dominant-less dominant method of sequential mixed design was used. Ten couples who were recruited from the University Hospital registry in Cleveland, Ohio, participated in both mail surveys and individual interviews. Family and cancer-related communication was assessed in the quantitative phase. Both male survivors and partners demonstrated better family communication scores compared with their female counterparts, whereas there were no gender differences in the cancer-related communication scores. In the qualitative phase, 3 major themes were identified: (1) selective sharing of cancer-related issues, (2) initiation of cancer-related communication, and (3) emotional reaction in communication. The patterns associated with these themes differed between the male survivor-female partner and female survivor-male partner couples. This study provides new knowledge about family and cancer-related communication. Our findings highlight the importance of understanding different perspectives in the quality of communication by gender and role. Exploring couples' communication patterns by gender and role stimulates the research and the development of effective consumer-centered communication interventions. The findings provide assessment tools to inform dyadic communication patterns for clinical and scientific purposes.

  17. N-(4-Hydroxyphenyl) retinamide potentiated paclitaxel for cell cycle arrest and apoptosis in glioblastoma C6 and RG2 cells

    Science.gov (United States)

    Janardhanan, Rajiv; Butler, Jonathan T.; Banik, Naren L.; Ray, Swapan K.

    2009-01-01

    Glioblastoma grows aggressively due to its ability to maintain abnormally high potentials for cell proliferation. The present study examines the synergistic actions of N-(4-hdroxyphenyl) retinamide (4-HPR) and paclitaxel (PTX) to control the growth of rat glioblastoma C6 and RG2 cell lines. 4-HPR induced astrocytic differentiation was accompanied by increased expression of the tight junction protein e-cadherin and sustained down regulation of Id2 (member of inhibitor of differentiation family), catalytic subunit of rat telomerase reverse transcriptase (rTERT), and proliferating cell nuclear antigen (PCNA). Flow cytometric analysis showed that the microtubule stabilizer PTX caused cell cycle deregulation due to G2/M arrest. This in turn could alter the fate of kinetochore-spindletube dynamics thereby halting cell cycle progression. An interesting observation was induction of G1/S arrest by combination of 4-HPR and PTX, altering the G2/M arrest induced by PTX alone. This was further ratified by the upregulation of tumor suppressor protein retinoblastoma, which repressed the expression of the key signaling moieties to induce G1/S arrest. Collectively, combination of 4-HPR and PTX diminished the survival factors (e.g., rTERT, PCNA, and Bcl-2) to make glioblastoma cells highly prone to apoptosis with activation of cysteine proteases (e.g., calpain, cathepsins, caspase-8, caspase-3) in two glioblastoma cell lines. Hence, combination 4-HPR and PTX can be considered as an effective therapeutic strategy for controlling the growth of heterogeneous glioblastoma cell populations. PMID:19285047

  18. Agomelatine or ramelteon as treatment adjuncts in glioblastoma and other M1- or M2-expressing cancers.

    Science.gov (United States)

    Kast, Richard E

    2015-01-01

    The impressive but sad list of over forty clinical studies using various cytotoxic chemotherapies published in the last few years has failed to increase median survival of glioblastoma beyond two years after diagnosis. In view of this apparent brick wall, adjunctive non-cytotoxic growth factor blocking drugs are being tried, as in the CUSP9* protocol. A related theme is searching for agonists at growth inhibiting receptors. One such dataset is that of melatonin agonism at M1 or M2 receptors found on glioblastoma cells, being a negative regulator of these cells' growth. Melatonin itself is an endogenous hormone, but when used as an exogenously administered drug it has many disadvantages. Agomelatine, marketed as an antidepressant, and ramelteon, marketed as a treatment for insomnia, are currently-available melatonin receptor agonists. These melatonin receptor agonists have significant advantages over the natural ligand: longer half-life, better oral absorption, and higher affinity to melatonin receptors. They have an eminently benign side effect profile. As full agonists they should function to inhibit glioblastoma growth, as demonstrated for melatonin. A potentially helpful ancillary attribute of melatonergic agonists in glioblastoma treatment is an increase in interleukin-2 synthesis, expected, at least partially, to reverse some of the immunosuppression associated with glioblastoma.

  19. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    Science.gov (United States)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  20. Radiation induced glioblastoma. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naoki; Kayama, Takamasa; Sakurada, Kaori; Saino, Makoto; Kuroki, Akira [Yamagata Univ. (Japan). School of Medicine

    2000-05-01

    We report a surgical case of a 54-year-old woman with a radiation induced glioblastoma. At the age of 34, the patient was diagnosed to have a non-functioning pituitary adenoma. It was partially removed followed by 50 Gy focal irradiation with a 5 x 5 cm lateral opposed field. Twenty years later, she suffered from rapidly increasing symptoms such as aphasia and right hemiparesis. MRI showed a large mass lesion in the left temporal lobe as well as small mass lesions in the brain stem and the right medial temporal lobe. These lesions situated within the irradiated field. Magnetic resonance spectroscopy revealed relatively high lactate signal and decreased N-acetyl aspartate, choline, creatine and phosphocreatine signals. Increased lactate signal meant anaerobic metabolism that suggested the existence of a rapidly growing malignant tumor. Thus, we planned surgical removal of the left temporal lesion with the diagnosis of a radiation induced malignant glioma. The histological examination revealed a glioblastoma with radiation necrosis. MIB-1 staining index was 65%. Postoperatively, her symptoms improved, but she died from pneumonia 1 month after the surgery. A autopsy was obtained. The lesion of the left temporal lobe was found to have continuity to the lesion in the midbrain, the pons and the right temporal lobe as well. High MIB-1 staining index suggested that a radiation induced glioblastoma had high proliferative potential comparing with a de novo and secondary glioblastoma. (author)

  1. [Glioblastoma and nursing care in neurosurgery].

    Science.gov (United States)

    Lefort, Mathilde

    2017-02-01

    Nurses in neurosurgical departments play a critical role as they are involved in the first stages of the care pathway of patients with glioblastoma. Indeed, surgery enables a definitive histopathological diagnosis to be established and the size of the tumour to be significantly reduced, thereby improving the prognosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Immunological targeting of cytomegalovirus for glioblastoma therapy

    OpenAIRE

    Nair, Smita K; Sampson, John H; Mitchell, Duane A

    2014-01-01

    Human cytomegalovirus (CMV) is purportedly present in glioblastoma (GBM) while absent from the normal brain, making CMV antigens potentially ideal immunological anti-GBM targets. We recently demonstrated that patient-derived CMV pp65-specific T cells are capable of recognizing and killing autologous GBM tumor cells. This data supports CMV antigen-directed immunotherapies against GBM.

  3. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther

    2013-01-01

    tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  4. Immunotherapy for glioblastoma: playing chess, not checkers.

    Science.gov (United States)

    Jackson, Christopher M; Lim, Michael

    2018-04-24

    Patients with glioblastoma (GBM) exhibit a complex state of immune dysfunction involving multiple mechanisms of local, regional, and systemic immune suppression and tolerance. These pathways are now being identified and their relative contributions explored. Delineating how these pathways are interrelated is paramount to effectively implementing immunotherapy for GBM. Copyright ©2018, American Association for Cancer Research.

  5. Glioblastoma after radiotherapy for craniopharyngioma: case report

    International Nuclear Information System (INIS)

    Ushio, Y.; Arita, N.; Yoshimine, T.; Nagatani, M.; Mogami, H.

    1987-01-01

    A 6-year-old girl developed a glioblastoma in the basal ganglia and brain stem 5 years after surgical excision and local irradiation (5460 cGy) for craniopharyngioma. Clinical and histological details are presented, and the literature on radiation-induced gliomas is reviewed

  6. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  7. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  8. 'Intensive care unit survivorship' - a constructivist grounded theory of surviving critical illness.

    Science.gov (United States)

    Kean, Susanne; Salisbury, Lisa G; Rattray, Janice; Walsh, Timothy S; Huby, Guro; Ramsay, Pamela

    2017-10-01

    To theorise intensive care unit survivorship after a critical illness based on longitudinal qualitative data. Increasingly, patients survive episodes of critical illness. However, the short- and long-term impact of critical illness includes physical, psychological, social and economic challenges long after hospital discharge. An appreciation is emerging that care needs to extend beyond critical illness to enable patients to reclaim their lives postdischarge with the term 'survivorship' being increasingly used in this context. What constitutes critical illness survivorship has, to date, not been theoretically explored. Longitudinal qualitative and constructivist grounded theory. Interviews (n = 46) with 17 participants were conducted at four time points: (1) before discharge from hospital, (2) four to six weeks postdischarge, (3) six months and (4) 12 months postdischarge across two adult intensive care unit setting. Individual face-to-face interviews. Data analysis followed the principles of Charmaz's constructivist grounded theory. 'Intensive care unit survivorship' emerged as the core category and was theorised using concepts such as status passages, liminality and temporality to understand the various transitions participants made postcritical illness. Intensive care unit survivorship describes the unscheduled status passage of falling critically ill and being taken to the threshold of life and the journey to a life postcritical illness. Surviving critical illness goes beyond recovery; surviving means 'moving on' to life postcritical illness. 'Moving on' incorporates a redefinition of self that incorporates any lingering intensive care unit legacies and being in control of one's life again. For healthcare professionals and policymakers, it is important to realise that recovery and transitioning through to survivorship happen within an individual's time frame, not a schedule imposed by the healthcare system. Currently, there are no care pathways or policies in

  9. Contrasting Seasonal Survivorship of Two Migratory Songbirds Wintering in Threatened Mangrove Forests

    Directory of Open Access Journals (Sweden)

    Anna M. Calvert

    2010-06-01

    Full Text Available Long-distance migrants wintering in tropical regions face a number of critical conservation threats throughout their lives, but seasonal estimates of key demographic parameters such as winter survival are rare. Using mist-netting-based mark-recapture data collected in coastal Costa Rica over a six-year period, we examined variation in within- and between-winter survivorship of the Prothonotary Warbler (Protonotaria citrea; 753 young and 376 adults banded, a declining neotropical habitat specialist that depends on threatened mangrove forests during the nonbreeding season. We derived parallel seasonal survivorship estimates for the Northern Waterthrush (Seiurus noveboracensis; 564 young and 93 adults banded, a cohabitant mangrove specialist that has not shown the same population decline in North America, to assess whether contrasting survivorship might contribute to the observed differences in the species’ population trajectories. Although average annual survival probability was relatively similar between the two species for both young and adult birds, monthly estimates indicated that relative to Northern Waterthrush, Prothonotary Warblers exhibited: greater interannual variation in survivorship, especially within winters; greater variation in survivorship among the three study sites; lower average between-winter survivorship, particularly among females, and; a sharp decline in between-winter survivorship from 2003 to 2009 for both age groups and both sexes. Rather than identifying one seasonal vital rate as a causal factor of Prothonotary Warbler population declines, our species comparison suggests that the combination of variable within-winter survival with decreasing between-winter survival demands a multi-seasonal approach to the conservation of this and other tropical-wintering migrants.

  10. Glioblastoma as differential diagnosis of autoimmune encephalitis.

    Science.gov (United States)

    Vogrig, Alberto; Joubert, Bastien; Ducray, Francois; Thomas, Laure; Izquierdo, Cristina; Decaestecker, Kévin; Martinaud, Olivier; Gerardin, Emmanuel; Grand, Sylvie; Honnorat, Jérome

    2018-03-01

    To identify the clinical and radiological features that should raise suspicion for the autoimmune encephalitis (AE)-like presentation of glioblastoma. This is an observational, retrospective case series of patients referred to the French National Reference Center on Paraneoplastic Neurological Diseases for suspected AE (possible, probable or definite, using the 2016 criteria) who later received a final diagnosis of glioblastoma according to 2016 WHO criteria. An extensive literature search was also conducted for similar existing cases. Between 2014 and 2016, 306 patients were referred to our center for suspected AE. Six of these patients (2%) later developed pathologically confirmed glioblastoma. Thirteen patients (9 male) were included for analysis (6 from the present series and 7 from the literature); median age was 63. Initially, a diagnosis of AE was clinically suspected based on: working memory deficits (77%), seizures (62%) (including status epilepticus in 23%), and psychiatric symptoms (46%). Initial brain MRI was not in favor of a typical glioblastoma pattern and showed bilateral (54%) or unilateral selective limbic involvement. Five patients exhibited initial slight contrast enhancement. A clear inflammatory CSF was present in five patients and three from the literature showed autoantibody positivity (NMDAR, VGKC, GluRepsilon2). Median delay between suspicions of AE to GBM diagnosis was 3 months (range 1.5-24) and one patient from the literature was diagnosed post-mortem. An alternative diagnosis of glioblastoma should be considered in patients presenting initially as AE, especially in patients who do not fulfill the criteria for definite AE and in those with a poor clinical evolution despite initial improvement.

  11. Molecular and cellular heterogeneity: the hallmark of glioblastoma.

    Science.gov (United States)

    Aum, Diane J; Kim, David H; Beaumont, Thomas L; Leuthardt, Eric C; Dunn, Gavin P; Kim, Albert H

    2014-12-01

    There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.

  12. This too shall pass: a grounded theory study of Filipino cancer survivorship.

    Science.gov (United States)

    de Guzman, Allan B; Jimenez, Benito Christian B; Jocson, Kathlyn P; Junio, Aileen R; Junio, Drazen E; Jurado, Jasper Benjamin N; Justiniano, Angela Bianca F

    2013-03-01

    Considering the paucity of studies dealing with the holistic aspect of the cancer experience, this grounded theory study seeks to conceptualize the process of cancer survivorship among Filipinos. Twenty-seven Filipino cancer survivors were purposively selected, and a two-part instrument, specifically robotfoto and focus group interviews, was used to gather data. The Glaserian method of grounded theory analysis was used, and extended texts were analyzed inductively via a dendrogram. Member checking and correspondence were observed to validate the surfacing stages, leading to the conceptualization of a theoretical model termed as the Ribbon of Cancer Survivorship. The said model describes the trifling (living before), transfusing (accepting the reality), transforming (being strong), and transcending (living beyond) phases of cancer survivorship. Ten interesting substages were also identified, namely: tainting, desolating, disrupting, and embracing for the transfusing phase; tormenting, distressing, awakening, and transfiguring for the transforming phase, and trembling and enlivening for the transcending phase. The resulting theoretical model has clearly and successfully described the entire process of cancer survivorship among Filipinos. It is hoped that the model be used as a reference for future studies about cancer survivorship and as a guide for nurses in providing a more empathetic care among cancer patients.

  13. Survivorship Care Plan Information Needs: Perspectives of Safety-Net Breast Cancer Patients.

    Science.gov (United States)

    Burke, Nancy J; Napoles, Tessa M; Banks, Priscilla J; Orenstein, Fern S; Luce, Judith A; Joseph, Galen

    2016-01-01

    Despite the Institute of Medicine's (IOM) 2005 recommendation, few care organizations have instituted standard survivorship care plans (SCPs). Low health literacy and low English proficiency are important factors to consider in SCP development. Our study aimed to identify information needs and survivorship care plan preferences of low literacy, multi-lingual patients to support the transition from oncology to primary care and ongoing learning in survivorship. We conducted focus groups in five languages with African American, Latina, Russian, Filipina, White, and Chinese medically underserved breast cancer patients. Topics explored included the transition to primary care, access to information, knowledge of treatment history, and perspectives on SCPs. Analysis of focus group data identified three themes: 1) the need for information and education on the transition between "active treatment" and "survivorship"; 2) information needed (and often not obtained) from providers; and 3) perspectives on SCP content and delivery. Our data point to the need to develop a process as well as written information for medically underserved breast cancer patients. An SCP document will not replace direct communication with providers about treatment, symptom management and transition, a communication that is missing in participating safety-net patients' experiences of cancer care. Women turned to peer support and community-based organizations in the absence of information from providers. "Clear and effective" communication of survivorship care for safety-net patients requires dedicated staff trained to address wide-ranging information needs and uncertainties.

  14. PCDH10 is required for the tumorigenicity of glioblastoma cells

    International Nuclear Information System (INIS)

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-01

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma

  15. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A.

    Science.gov (United States)

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-04-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21(Cip1) and p27(Kip1). Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21(Cip1), and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.

  16. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  17. Stereotactic Radiosurgery and Hypofractionated Radiotherapy for Glioblastoma.

    Science.gov (United States)

    Shah, Jennifer L; Li, Gordon; Shaffer, Jenny L; Azoulay, Melissa I; Gibbs, Iris C; Nagpal, Seema; Soltys, Scott G

    2018-01-01

    Glioblastoma is the most common primary brain tumor in adults. Standard therapy depends on patient age and performance status but principally involves surgical resection followed by a 6-wk course of radiation therapy given concurrently with temozolomide chemotherapy. Despite such treatment, prognosis remains poor, with a median survival of 16 mo. Challenges in achieving local control, maintaining quality of life, and limiting toxicity plague treatment strategies for this disease. Radiotherapy dose intensification through hypofractionation and stereotactic radiosurgery is a promising strategy that has been explored to meet these challenges. We review the use of hypofractionated radiotherapy and stereotactic radiosurgery for patients with newly diagnosed and recurrent glioblastoma. Copyright © 2017 by the Congress of Neurological Surgeons.

  18. The state of cancer survivorship programming in Commission on Cancer-accredited hospitals in Georgia.

    Science.gov (United States)

    Kirsch, Logan J; Patterson, Angela; Lipscomb, Joseph

    2015-03-01

    In Georgia, there are more than 356,000 cancer survivors. Although many encounter challenges as a result of treatment, there is limited data on the availability of survivorship programming. This paper highlights findings from two surveys assessing survivorship care in Commission on Cancer (CoC)-accredited hospitals in Georgia. In 2010, 38 CoC-accredited hospitals were approached to complete a 36-item survey exploring knowledge of national standards and use of survivorship care plans (SCPs), treatment summaries (TSs), and psychosocial assessment tools. In 2012, 37 CoC-accredited hospitals were asked to complete a similar 21-item survey. Seventy-nine percent (n = 30) of cancer centers completed the 2010 survey. Sixty percent (n = 18) reported having a cancer survivorship program in place or in development. Forty-three percent (n = 13) provided survivors with a SCP and 40% (n = 12) a TS. Sixty percent (n = 18) reported either never or rarely using a psychosocial assessment tool. Sixty-two percent (n = 23) completed the 2012 survey. Ninety-six percent (n = 22) were aware of the new CoC guideline 3.3. Thirty-nine percent (n = 9) provided a SCP and/or TS. Eighty-seven percent (n = 20) stated they were very confident or somewhat confident their organization could implement a SCP and/or TS by 2015. The data indicated the importance of collaboration and shared responsibility for survivorship care. Broad implementation of SCPs and TSs can help address the late and long-term effects of treatment. Increasing knowledge on survivorship care is imperative as the Georgia oncology community engages oncologists and primary care providers to achieve higher quality of life for all survivors.

  19. Barriers and facilitators to implementing cancer survivorship care plans.

    Science.gov (United States)

    Dulko, Dorothy; Pace, Claire M; Dittus, Kim L; Sprague, Brian L; Pollack, Lori A; Hawkins, Nikki A; Geller, Berta M

    2013-11-01

    To evaluate the process of survivorship care plan (SCP) completion and to survey oncology staff and primary care physicians (PCPs) regarding challenges of implementing SCPs. Descriptive pilot study. Two facilities in Vermont, an urban academic medical center and a rural community academic cancer center. 17 oncology clinical staff created SCPs, 39 PCPs completed surveys, and 58 patients (breast or colorectal cancer) participated in a telephone survey. Using Journey Forward tools, SCPs were created and presented to patients. PCPs received the SCP with a survey assessing its usefulness and barriers to delivery. Oncology staff were interviewed to assess perceived challenges and benefits of SCPs. Qualitative and quantitative data were used to identify challenges to the development and implementation process as well as patient perceptions of the SCP visit. SCP, healthcare provider perception of barriers to completion and implementation, and patient perception of SCP visit. Oncology staff cited the time required to obtain information for SCPs as a challenge. Completing SCPs 3-6 months after treatment ended was optimal. All participants felt advanced practice professionals should complete and review SCPs with patients. The most common challenge for PCPs to implement SCP recommendations was insufficient knowledge of cancer survivor issues. Most patients found the care plan visit very useful, particularly within six months of diagnosis. Creation time may be a barrier to widespread SCP implementation. Cancer survivors find SCPs useful, but PCPs feel insufficient knowledge of cancer survivor issues is a barrier to providing best follow-up care. Incorporating SCPs in electronic medical records may facilitate patient identification, appropriate staff scheduling, and timely SCP creation. Oncology nurse practitioners are well positioned to create and deliver SCPs, transitioning patients from oncology care to a PCP in a shared-care model of optimal wellness. Institution support for

  20. Glioblastoma multiforme after radiotherapy for acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.

    1983-07-01

    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed.

  1. Glioblastoma multiforme after radiotherapy for acromegaly

    International Nuclear Information System (INIS)

    Piatt, J.H. Jr.; Blue, J.M.; Schold, S.C. Jr.; Burger, P.C.

    1983-01-01

    A case of glioblastoma multiforme that occurred 14 years after radiotherapy for acromegaly is presented. The striking correspondence between the anatomy of the tumor and the geometry of the radiation ports is suggestive of a causal relationship. Previously reported cases of radiation-associated glioma are reviewed, and a brief appraisal of the evidence for induction of these lesions by radiation is presented. The differentiation of radiation-associated neoplasms from radionecrosis is also discussed

  2. Cancer survivorship care-planning: Practice, research, and policy implications for social work.

    Science.gov (United States)

    Wagner, Richard W; Pritzker, Suzanne

    2016-01-01

    Increasing numbers of cancer survivors are living longer than 5 years from their diagnosis date. This has resulted in a growing population of cancer survivors, expected to reach 19 million by 2024. Survivors frequently experience late effects caused by cancer and its treatment, reducing survivors' quality of life in multiple domains. Survivorship care-plans may aid the many physical, psychosocial, and financial needs that emerge posttreatment. However, the lack of reimbursement mechanisms, the limited amount of effectiveness research, and minimal guidelines for content and delivery are barriers to the widespread provision of survivorship care-plans. Challenges and opportunities for social work practice, research, and policy are identified and discussed.

  3. Treatment of glioblastoma with herbal medicines.

    Science.gov (United States)

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Darko; Trogrlić, Amina Kadrić

    2018-02-13

    In the latest years, a lot of research studies regarding the usage of active agents from plants in the treatment of tumors have been published, but there is no data about successful usage of herbal remedies in the treatment of glioblastoma in humans. The phytotherapy involved five types of herbal medicine which the subjects took in the form of tea, each type once a day at regular intervals. Three patients took herbal medicine along with standard oncological treatment, while two patients applied for phytotherapy after completing medical treatment. The composition of herbal medicine was modified when necessary, which depended on the results of the control scans using the nuclear magnetic resonance technique and/or computed tomography. Forty-eight months after the introduction of phytotherapy, there were no clinical or radiological signs of the disease, in three patients; in one patient, the tumor was reduced and his condition was stable, and one patient lived for 48 months in spite of a large primary tumor and a massive recurrence, which developed after the treatment had been completed. The results achieved in patients in whom tumor regression occurred exclusively through the use of phytotherapy deserve special attention. In order to treat glioblastoma more effectively, it is necessary to develop innovative therapeutic strategies and medicines that should not be limited only to the field of conventional medicine. The results presented in this research paper are encouraging and serve as a good basis for further research on the possibilities of phytotherapy in the treatment of glioblastoma.

  4. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  5. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma.

    Science.gov (United States)

    Cai, H; Liu, X; Zheng, J; Xue, Y; Ma, J; Li, Z; Xi, Z; Li, Z; Bao, M; Liu, Y

    2017-01-19

    Angiogenesis is one of the critical biological elements affecting the development and progression of cancer. Long non-coding RNAs (lncRNAs) are important regulators and aberrantly expressed in various types of human cancer. Our previous studies indicated that lncRNA taurine upregulated 1 (TUG1) implicated in the regulation of blood-tumor barrier permeability; however, its role in glioblastoma angiogenesis still unclear. Here we demonstrated that TUG1 was up-expressed in human glioblastoma tissues and glioblastoma cell lines. Knockdown of TUG1 remarkably suppressed tumor-induced endothelial cell proliferation, migration and tube formation as well as reducing spheroid-based angiogenesis ability in vitro, which are the critical steps for tumor angiogenesis. Besides, knockdown of TUG1 significantly increased the expression of mircroRNA-299 (miR-299), which was down-expressed in glioblastoma tissues and glioblastoma cell lines. Bioinformatics analysis and luciferase reporter assay revealed that TUG1 influenced tumor angiogenesis via directly binding to the miR-299 and there was a reciprocal repression between TUG1 and miR-299 in the same RNA-induced silencing complex. Moreover, knockdown of TUG1 reduced the expression of vascular endothelial growth factor A (VEGFA), which was defined as a functional downstream target of miR-299. In addition, knockdown of TUG1, shown in the in vivo studies, has effects on suppressing tumor growth, reducing tumor microvessel density and decreasing the VEGFA expression by upregulating miR-299 in xenograft glioblastoma model. Overall, the results demonstrated that TUG1 enhances tumor-induced angiogenesis and VEGF expression through inhibiting miR-299. Also, the inhibition of TUG1 could provide a novel therapeutic target for glioblastoma treatment.

  6. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  7. Sprouty2 enhances the tumorigenic potential of glioblastoma cells.

    Science.gov (United States)

    Park, Jong-Whi; Wollmann, Guido; Urbiola, Carles; Fogli, Barbara; Florio, Tullio; Geley, Stephan; Klimaschewski, Lars

    2018-02-23

    Sprouty2 (SPRY2), a feedback regulator of receptor tyrosine kinase (RTK) signaling, has been shown to be associated with drug resistance and cell proliferation in glioblastoma (GBM), but the underlying mechanisms are still poorly defined. SPRY2 expression and survival patterns of patients with gliomas were analyzed using publicly available databases. Effects of RNA interference targeting SPRY2 on cellular proliferation in established GBM or patient-derived GBM stemlike cells were examined. Loss- or gain-of-function of SPRY2 to regulate the tumorigenic capacity was assessed in both intracranial and subcutaneous xenografts. SPRY2 was found to be upregulated in GBM, which correlated with reduced survival in GBM patients. SPRY2 knockdown significantly impaired proliferation of GBM cells but not of normal astrocytes. Silencing of SPRY2 increased epidermal growth factor-induced extracellular signal-regulated kinase (ERK) and Akt activation causing premature onset of DNA replication, increased DNA damage, and impaired proliferation, suggesting that SPRY2 suppresses DNA replication stress. Abrogating SPRY2 function strongly inhibited intracranial tumor growth and led to significantly prolonged survival of U87 xenograft-bearing mice. In contrast, SPRY2 overexpression promoted tumor propagation of low-tumorigenic U251 cells. The present study highlights an antitumoral effect of SPRY2 inhibition that is based on excessive activation of ERK signaling and DNA damage response, resulting in reduced cell proliferation and increased cytotoxicity, proposing SPRY2 as a promising pharmacological target in GBM patients.

  8. Glioblastoma multiforme of the cerebellum: description of three cases.

    Science.gov (United States)

    Luccarelli, G

    1980-01-01

    Only 43 cases of glioblastoma multiforme of the cerebellum have been reported in the literature. This report is based on the findings of 3 cerebellar glioblastomas in a review of 1,206 consecutive confirmed cases of glioblastoma operated on between 1947 and 1977 at the Istituto Neurologico of Milan, giving an incidence of 0.24%. Clinical features are similar to those of any other fast-growing subtentorial tumour. Neuroradiological studies, including CAT, are of little help in predicting the exact nature of these tumours before surgery. A correct diagnosis can be reached only by microscopic examination. Histological patterns appear in no way to differ from those of cerebral glioblastoma. The biological behaviour of these tumours is in all respects identical to that of glioblastoma of cerebral hemispheres.

  9. Combined osteochondral allograft and meniscal allograft transplantation: a survivorship analysis.

    Science.gov (United States)

    Getgood, Alan; Gelber, Jonathon; Gortz, Simon; De Young, Alison; Bugbee, William

    2015-04-01

    The efficacy of meniscal allograft transplantation (MAT) and osteochondral allografting (OCA) as individual treatment modalities for select applications is well established. MAT and OCA are considered symbiotic procedures due to a complementary spectrum of indications and reciprocal contraindications. However, few outcomes of concomitant MAT and OCA have been reported. This study is a retrospective review of patients who received simultaneous MAT and OCA between 1983 and 2011. Forty-eight (twenty-nine male: nineteen female) patients with a median age of 35.8 years (15-66) received combined MAT and OCA procedures between 1983 and 2011. Forty-three patients had received previous surgery with a median of 3 procedures (1-11 procedures). The underlying diagnosis was trauma (tibial plateau fracture) in 33 % with osteoarthritis predominating in 54.2 % of cases. Thirty-one patients received a lateral meniscus, 16 received a medial meniscus and one patient received bilateral MAT. The median number of OCAs was two per patient (1-5 grafts), with a median graft area of 15 cm(2) (0.7-41 cm(2)). There were 21 unipolar, 24 bipolar (tibiofemoral) and three multifocal lesions. Thirty-six MATs constituted a compound tibial plateau OCA with native meniscus attached. At follow-up, failure was defined as any procedure resulting in removal or revision of one or more of the grafts. Patients completed the modified Merle d'Aubigné and Postel (18-point) scale, Knee Society Function (KS-F) score, and subjective International Knee Documentation Committee (IKDC) scores. Patient satisfaction was also captured. Twenty-six of 48 patients (54.2 %) required reoperation, but only 11 patients (22.9 %) were noted to have failed (10 MAT and 11 OCA). The mean time to failure was 3.2 years (95 % CI 1.5-4.9 years) and 2.7 years (95 % CI 1.3-4.2 years) for MAT and OCA, respectively. The 5-year survivorship was 78 and 73 % for MAT and OCA respectively, and 69 and 68 % at 10 years. Six of

  10. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  11. Breast cancer survivorship: the role of perceived discrimination and sexual orientation.

    Science.gov (United States)

    Jabson, Jennifer M; Donatelle, Rebecca J; Bowen, Deborah

    2011-03-01

    Breast cancer disproportionately affects sexual minority women (SMW) compared to heterosexual women and a small but growing literature indicates that SMW may have diminished survivorship outcomes; outcomes that are measurably and importantly different from heterosexual breast cancer survivors. However, it remains unknown how sexual orientation influences breast cancer survivorship outcomes such as quality of life. One possible route of influence is SMW's perceived discrimination in the health care setting. This cross-sectional study examines SMW perceptions of discrimination as one of the multiple facets of the breast cancer survivorship process. This study assessed SMW breast cancer survivor's perceptions of discrimination during their breast cancer treatment experience and secondarily, examined the role of this perceived discrimination on SMW's quality of life. Sixty-eight purposefully sampled sexual minority breast cancer survivors completed assessments of quality of life, perceived discrimination, perceived social support and perceived stress via an online survey. Statistical analyses point to perceived discrimination and perceived social support as important indicators for predicting SMW's quality of life. Future research on SMW's breast cancer survivorship should include measures of perceived discrimination.

  12. Translocation as a conservation tool for Agassiz's desert tortoises: Survivorship, reproduction, and movements

    Science.gov (United States)

    K. E. Nussear; C. R. Tracy; P. A. Medica; D. S. Wilson; R. W. Marlow; P. S. Corn

    2012-01-01

    We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving...

  13. Oncology nurses′ recognition of long-term cancer survivorship care in Japan

    Directory of Open Access Journals (Sweden)

    Asako Miura

    2015-01-01

    Full Text Available Objective: This study aims to assess the knowledge of definition of cancer survivors among Japanese oncology nurses and their roles in long-term cancer survivorship care. Methods: A structured self-administered and self-report questionnaire created by the study investigators was given to members of the Japanese Society of Cancer Nursing. The subjects were 81 female oncology nurses. Results: Forty-nine nurses had 11 or more years of nursing experience, while 27 nurses had cancer-related nursing certifications such as, certification in oncology nursing specialist. This study population had rather rich experience in oncology nursing. Sixty-two nurses defined a cancer survivor from the time of diagnosis, while the nurses′ recognition of long-term survivorship care was poor, compared with nursing care at the time of diagnosis, during treatment, and end of life. Conclusions: The nurses were aware of the needs to recognize and address issues faced by long-term cancer survivors and for nursing study, but very few put the effective patient education and interventions into practice. It is because oncology nurses have few chances to see cancer survivors who go out of the hands of healthcare professionals. In increasing the number of long-term survivors, long-term survivorship care is needed in addition to incorporating such education into undergraduate and graduate programs. Further study on the knowledge of long-term cancer survivorship care and nursing practices are required.

  14. Modelling the survivorship of Nigeria children in their first 10 years of ...

    African Journals Online (AJOL)

    Fagbamigbe

    Conflict of Interest: Authors declared no conflict of interest ... Keywords: Survivorship, Nigeria, children mortality, Kaplan Meier, Brass Indirect method, Prediction ... variables or sex of older siblings, post- neonatal mortality is 12% higher and 2nd ... Relationship between maternal education and child survival in developing ...

  15. Cancer Survivorship Care: Person Centered Care in a Multidisciplinary Shared Care Model

    Directory of Open Access Journals (Sweden)

    Jacqueline Loonen

    2018-01-01

    Full Text Available Survivors of childhood and adult-onset cancer are at lifelong risk for the development of late effects of treatment that can lead to serious morbidity and premature mortality. Regular long-term follow-up aiming for prevention, early detection and intervention of late effects can preserve or improve health. The heterogeneous and often serious character of late effects emphasizes the need for specialized cancer survivorship care clinics. Multidisciplinary cancer survivorship care requires a coordinated and well integrated health care environment for risk based screening and intervention. In addition survivors engagement and adherence to the recommendations are also important elements. We developed an innovative model for integrated care for cancer survivors, the “Personalized Cancer Survivorship Care Model”, that is being used in our clinic. This model comprises 1. Personalized follow-up care according to the principles of Person Centered Care, aiming to empower survivors and to support self management, and 2. Organization according to a multidisciplinary and risk based approach. The concept of person centered care is based on three components: initiating, integrating and safeguarding the partnership with the patient. This model has been developed as a universal model of care that will work for all cancer survivors in different health care systems. It could be used for studies to improve self efficacy and the cost-effectiveness of cancer survivorship care.

  16. Reverse engineering of modified genes by Bayesian network analysis defines molecular determinants critical to the development of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Brian W Kunkle

    Full Text Available In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV, and 'key genes' within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated. These 10 genes were able to predict tumor status with 96-100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential 'hubs of activity'. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several 'key genes' may be required for the development of glioblastoma. Further studies are needed to validate these 'key genes' as useful tools for early detection and novel therapeutic options for these tumors.

  17. Survivorship of Total Hip Joint Replacements Following Isolated Liner Exchange for Wear.

    Science.gov (United States)

    Vadei, Leone; Kieser, David C; Frampton, Chris; Hooper, Gary

    2017-11-01

    Liner exchange for articular component wear in total hip joint replacements (THJRs) is a common procedure, often thought to be benign with reliable outcomes. Recent studies, however, suggest high failure rates of liner exchange revisions with significant complications. The primary aim of this study was, therefore, to analyze the survivorship of isolated liner exchange for articular component wear, and secondarily to assess the influence of patient demographics (gender, age, and American Society of Anaesthesiologists [ASA] ratings) on rerevisions following isolated liner exchange for wear. A retrospective review of the 15-year New Zealand Joint Registry (1999-2014) was performed, analyzing the outcomes of isolated liner exchange for articular component wear. The survivorship as defined as rerevision with component exchange was determined and 10-year Kaplan-Meier survivorship curves were constructed. These revision rates were compared to age, gender, and ASA rating groups using a log-rank test. The 10-year survivorship of THJR following liner exchange revision for liner wear was 75.3%. If a rerevision was required, the median time to rerevision was 1.33 years with a rerevision rate of 3.33 per 100 component years (95% confidence interval 2.68-4.08/100 component years). The principle reasons for rerevision were dislocation (48.4%) and acetabular component loosening (20.9%). There was no statistically significant difference in rerevision rates based on gender, age categories, or ASA scores. THJR isolated liner exchange for liner wear is not a benign procedure with a survivorship of 75.3% at 10 years. Surgeons contemplating liner exchange revisions should be cognisant of this risk and should adequately assess component position and stability preoperatively. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Long-Term Survivorship of Esophageal Cancer Patients Treated with Radical Intent

    Directory of Open Access Journals (Sweden)

    Alex Agranovich

    2008-01-01

    Full Text Available To investigate the recent trends in definitive management of esophageal cancer, the records of 138 consecutive patients treated with radical intent in a single institution between 1995 and 2003 were reviewed and analyzed. The median follow-up period was 5.7 years (range 1.1 to 10.4 years. Seventy-seven patients were treated with radiation therapy (RT only and 61 with combined regimens (CRT, in which RT was combined with either radical surgery or chemotherapy, or both. The overall survival of the entire cohort was 32% over two years and 20% over five years. The survivorship in the RT group was 17% over two years and 5% over five years. In the CRT group, 51% and 35% survived over two and five years, respectively. From all the potential prognostic factors examined by univariate and multivariate analyses, only male sex and use of CRT were strongly associated with better survivorship. There was no significant difference in the outcomes among the different regimens of CRT. Survivorship was not affected by the location or histology of the tumour, clinical stage, dose of RT or use of endoluminal brachytherapy in addition to external beam RT. There was a greater tendency to use RT only more often in older patients, but patient age did not affect survivorship. The proportion of patients treated with CRT did not change significantly over the last versus the first four years of the observed period. Combined regimens are undoubtedly superior to RT as a single modality. The long-term survivorship of patients in a subgroup of our patients treated with combined modality protocols compared favourably with the previously reported results in the literature and specifically in prospective randomized trials. However, the optimal combined modality regimen is yet to be defined.

  19. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  20. MRI and the diagnosis of glioblastomas

    International Nuclear Information System (INIS)

    Bowe, S.

    2002-01-01

    This paper is based on an oral presentation given at the Sydney conference in February 2000. Two cases will be presented to demonstrate the use of this imaging modality in the diagnosis of glioblastomas, MRI has superior soft tissue imaging abilities making it ideal for imaging the brain. Conventional MRI is good for evaluating oedema and haemorrhage and offers high resolution without associated bone artefacts. However, as with all imaging modalities there are some disadvantages. Patients with pacemakers, certain types of metallic clips, or claustrophobia may not be suitable for an MRI scan. Copyright (2002) Australian Institute of Radiography

  1. Survivorship and the chronic cancer patient: Patterns in treatment-related effects, follow-up care, and use of survivorship care plans.

    Science.gov (United States)

    Frick, Melissa A; Vachani, Carolyn C; Bach, Christina; Hampshire, Margaret K; Arnold-Korzeniowski, Karen; Metz, James M; Hill-Kayser, Christine E

    2017-11-01

    The survivorship needs of patients living with chronic cancer (CC) and their use of survivorship care plans (SCPs) have been overlooked and underappreciated. A convenience sample of 39,088 SCPs completed for cancer survivors with an Internet-based SCP tool was examined; it included 5847 CC survivors (15%; CC was defined as chronic leukemia and/or recurrent/metastatic cancer of another nature). Patient-reported treatment effects and follow-up care patterns were compared between CC survivors and survivors treated with curative intent (CI). Responses from a follow-up survey regarding SCP satisfaction and use were reviewed. CC survivors had greater odds of experiencing multiple treatment-related effects than survivors treated with CI; these effects included fatigue, cognitive changes, dyspnea, peripheral neuropathy, lymphedema, and erectile dysfunction. Nearly half of CC survivors were managed by an oncologist alone, and they were less likely than CI patients to be comanaged by a primary care provider and an oncologist. Fewer SCPs were generated by health care providers (HCPs) for CC survivors versus CI survivors. A smaller proportion of CC users versus CI users rated their experience and satisfaction with the SCP tool as very good or excellent, and CC users were less likely to share the HCP summary with their health care team. A substantial number of CC survivors, often considered incurable but treatable, seek survivorship support. Tools to facilitate participation, communication, and coordination of care are valuable for these patients, and future iterations of SCPs should be designed to address the particular circumstances of living with CC. Cancer 2017;123:4268-4276. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. Radiotherapy Results of Brain Astrocytoma and Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Kim, Il Han; Ha, Sung Whan; Chi, Je Geun

    1988-01-01

    A retrospective analysis was performed on 49 patients with astrocytoma of glioblastoma multiforme of brain who received postoperative radiotherapy in the period between February 1979 and December 1985. Fourteen patients had grade I astrocytoma, 11 patients grade II, 14 patients grade III, and 10 patients glioblastoma multiforme. Three year actuarial survival rates were 85.7%, 44.6% and 23.1% for grade I, II, and III astrocytomas, respectively. One and 2 year actuarial survival rates for patients with glioblastoma multiforme were 54.5% and 27.3%, respectively. Histologic grade, age, extent of operation and tumor location were revealed to be prognosticators

  3. Bicruciate-retaining Total Knee Replacement Provides Satisfactory Function and Implant Survivorship at 23 Years.

    Science.gov (United States)

    Pritchett, James W

    2015-07-01

    One of the goals of a TKA is to approximate the function of a normal knee. Preserving the natural ligaments might provide a method of restoring close to normal function. Sacrifice of the ACL is common and practical during a TKA. However, this ligament is functional in more than 60% of patients undergoing a TKA and kinematic studies support the concept of bicruciate-retaining (that is, ACL-preserving) TKA; however, relatively few studies have evaluated patients treated with bicruciate-retaining TKA implants. I asked: (1) what is the long-term (minimum 20-year) survivorship, (2) what are the functional results, and (3) what are the reasons for revision of bicruciate-retaining knee arthroplasty prostheses? From January 1989 to September 1992, I performed 639 total knee replacements in 537 patients. Of these, 489 were performed in 390 patients using a bicruciate-retaining, minimally constrained device. During the period in question, this knee prosthesis was used for all patients observed intraoperatively to have an intact, functional ACL with between 15° varus and 15° valgus joint deformity. There were 234 women and 156 men with a mean age at surgery of 65 years (range, 42-84 years) and a primary diagnosis of osteoarthritis in 89%. The patella was resurfaced in all knees. The mean followup was 23 years (range, 20-24 years). At the time of this review, 199 (51%) patients had died and 31 (8%) patients were lost to followup, leaving 160 (41%) patients (214 knees) available for review. Component survivorship was determined by competing-risks analysis and Kaplan Meier survivorship analysis with revision for any reason as the primary endpoint. Patients were evaluated every 2 years to assess ROM, joint laxity, knee stability, and to determine American Knee Society scores. The Kaplan-Meier survivorship was 89% (95% CI, 82%-93%) at 23 years with revision for any reason as the endpoint. Competing-risks survivorship was 94% (95% CI, 91%%-96 %) at 23 years. At followup, the mean

  4. Is Glioblastoma an Epigenetic Malignancy?

    International Nuclear Information System (INIS)

    Maleszewska, Marta; Kaminska, Bozena

    2013-01-01

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens

  5. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.

    Science.gov (United States)

    Bajbouj, K; Mawrin, C; Hartig, R; Schulze-Luehrmann, J; Wilisch-Neumann, A; Roessner, A; Schneider-Stock, R

    2012-05-01

    Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21(WAF1) was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21(WAF1) and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21(WAF1) promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21(WAF1) verifying a cell cycle arrest. On the other hand, a significant portion of p21(WAF1) was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21(WAF1), showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.

  6. Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of β-Catenin

    Science.gov (United States)

    Lee, Woo Sang; Woo, Eun Young; Kwon, Junhye; Park, Myung-Jin; Lee, Jae-Seon; Han, Young-Hoon; Bae, In Hwa

    2013-01-01

    Bcl-w a pro-survival member of the Bcl-2 protein family, is expressed in a variety of cancer types, including gastric and colorectal adenocarcinomas, as well as glioblastoma multiforme (GBM), the most common and lethal brain tumor type. Previously, we demonstrated that Bcl-w is upregulated in gastric cancer cells, particularly those displaying infiltrative morphology. These reports propose that Bcl-w is strongly associated with aggressive characteristic, such as invasive or mesenchymal phenotype of GBM. However, there is no information from studies of the role of Bcl-w in GBM. In the current study, we showed that Bcl-w is upregulated in human glioblastoma multiforme (WHO grade IV) tissues, compared with normal and glioma (WHO grade III) tissues. Bcl-w promotes the mesenchymal traits of glioblastoma cells by inducing vimentin expression via activation of transcription factors, β-catenin, Twist1 and Snail in glioblastoma U251 cells. Moreover, Bcl-w induces invasiveness by promoting MMP-2 and FAK activation via the PI3K-p-Akt-p-GSK3β-β-catenin pathway. We further confirmed that Bcl-w has the capacity to induce invasiveness in several human cancer cell lines. In particular, Bcl-w-stimulated β-catenin is translocated into the nucleus as a transcription factor and promotes the expression of target genes, such as mesenchymal markers or MMPs, thereby increasing mesenchymal traits and invasiveness. Our findings collectively indicate that Bcl-w functions as a positive regulator of invasiveness by inducing mesenchymal changes and that trigger their aggressiveness of glioblastoma cells. PMID:23826359

  7. A 4-miRNA signature to predict survival in glioblastomas

    DEFF Research Database (Denmark)

    Hermansen, Simon K; Sørensen, Mia D; Hansen, Anker

    2017-01-01

    multiple genes representing an additional level of gene regulation possibly more prognostically powerful than a single gene. The aim of the study was to identify a novel miRNA signature with the ability to separate patients into prognostic subgroups. Samples from 40 glioblastoma patients were included...... association to survival in univariate (HR 8.50; 95% CI 3.06-23.62; psignature of miR-107 and miR-331 (miR sum score), which were the only miRNAs available...

  8. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  9. Childhood cancer survivorship educational resources in North American pediatric hematology/oncology fellowship training programs: a survey study.

    Science.gov (United States)

    Nathan, Paul C; Schiffman, Joshua D; Huang, Sujuan; Landier, Wendy; Bhatia, Smita; Eshelman-Kent, Debra; Wright, Jennifer; Oeffinger, Kevin C; Hudson, Melissa M

    2011-12-15

    Childhood cancer survivors require life-long care by clinicians with an understanding of the specific risks arising from the prior cancer and its therapy. We surveyed North American pediatric hematology/oncology training programs to evaluate their resources and capacity for educating medical trainees about survivorship. An Internet survey was sent to training program directors and long-term follow-up clinic (LTFU) directors at the 56 US and Canadian centers with pediatric hematology/oncology fellowship programs. Perceptions regarding barriers to and optimal methods of delivering survivorship education were compared among training program and LTFU clinic directors. Responses were received from 45/56 institutions of which 37/45 (82%) programs require that pediatric hematology/oncology fellows complete a mandatory rotation focused on survivorship. The rotation is 4 weeks or less in 21 programs. Most (36/45; 80%) offer didactic lectures on survivorship as part of their training curriculum, and these are considered mandatory for pediatric hematology/oncology fellows at 26/36 (72.2%). Only 10 programs (22%) provide training to medical specialty trainees other than pediatric hematology/oncology fellows. Respondents identified lack of time for trainees to spend learning about late effects as the most significant barrier to providing survivorship teaching. LTFU clinic directors were more likely than training program directors to identify lack of interest in survivorship among trainees and survivorship not being a formal or expected part of the fellowship training program as barriers. The results of this survey highlight the need to establish standard training requirements to promote the achievement of basic survivorship competencies by pediatric hematology/oncology fellows. Copyright © 2011 Wiley Periodicals, Inc.

  10. Worker life tables, survivorship, and longevity in colonies of Bombus (Fervidobombus atratus (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Eunice Vieira da Silva-Matos

    2000-06-01

    Full Text Available Survivorship curves and longevity of workers were studied in two queenright and two queenless colonies of Bombus (Fervidobombus atratus. Survivorship curves for workers of all colonies were, in general, convex, indicating an increasing mortality rate with increasing age. The mean longevity for the workers from queenright colonies, 24.3 days and 17.6 days, was not significantly different from that in queenless colonies, 21.2 days and 20.2 days. In all colonies workers started foraging activities when aged 0-5 days, and the potential forager rates rose progressively with increasing age. Mortality rates within each age interval were significantly correlated with the foraging worker rates in all colonies. Only in two of the colonies (one queenright and one queenless longevity was significantly correlated with worker size. The duration of brood development period seems to be one of the most important factors influencing adult worker longevity in this bumble bee species.

  11. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Noorden, Cornelis J. F.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Current GBM treatment includes surgery, radiation therapy, and chemotherapy, sometimes supplemented with novel therapies. Despite recent advances, survival of GBM patients remains poor.

  12. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Science.gov (United States)

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  13. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  14. Therapeutic Advances using Combinational Therapy in the Treatment of Glioblastoma

    DEFF Research Database (Denmark)

    Staberg, Mikkel

    2017-01-01

    Glioblastoma is the most malignant brain tumor in adults. Median survival is only about 15 months despite aggressive treatment, consisting of surgery followed by radio- and chemotherapy, stressing the need for new therapies. Development of glioblastoma is thought to be a result of both genetic...... and epigenetic alterations, ultimately leading to oncogenic transformation of normal glia cells. Several features are suggested to give rise to the poor prognosis of glioblastoma including treatment resistance, a high degree of abnormal blood vessels, and high heterogeneity, both within the single tumor and from...... patient to patient. Thus, investigations are needed to identify the genetic-molecular alterations that glioblastoma tumors depend on in order to overcome treatment and regrow after initial surgery. The findings presented in this thesis illustrate the promising potential of combinational treatments...

  15. Disparities in the survivorship experience among Latina survivors of breast cancer.

    Science.gov (United States)

    Olagunju, Tinuke O; Liu, Yihang; Liang, Li-Jung; Stomber, James M; Griggs, Jennifer J; Ganz, Patricia A; Thind, Amardeep; Maly, Rose C

    2018-04-06

    The authors investigated disparities in the survivorship experience among Latinas with breast cancer (BC) in comparison with non-Latinas. A cross-sectional bilingual telephone survey was conducted among 212 Latina and non-Latina women within 10 to 24 months after a diagnosis of BC (AJCC TNM staging system stage 0-III) at 2 Los Angeles County public hospitals. Data were collected using the Preparing for Life as a (New) Survivor (PLANS) scale, Perceived Efficacy in Patient-Physician Interactions Questionnaire (PEPPI), Breast Cancer Prevention Trial (BCPT) Symptom Checklist, Satisfaction with Care and Information Scale, Consumer Assessment of Healthcare Providers and Systems (CAHPS) tool, Charlson Comorbidity Index adapted for patient self-report, and the 12-item Short Form Health Survey. Controlling variables included age, stage as determined by the American Joint Committee on Cancer (AJCC) TNM staging system, educational level, and study site in multivariate analyses. The mean ages of Latinas and non-Latinas were 51.5 years and 56.6 years, respectively. Compared with non-Latinas, Latinas reported less BC survivorship knowledge (27.3 vs 30.7; Psatisfaction with BC survivorship care (9.6 vs 8.8; P = .298), or their discussion with physicians (9.6 vs 8.1; P = .07). These ethnic group differences persisted in multivariate analyses, with the exception of PEPPI. Latina survivors of BC experienced disparities in BC knowledge and satisfaction with information received, but believed themselves to be prepared for survivorship and were as satisfied with providers, care received, and discussions with physicians as non-Latinas. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  16. Colorectal cancer patients' preferences for type of caregiver during survivorship care.

    Science.gov (United States)

    Wieldraaijer, T; Duineveld, L A M; Donkervoort, S C; Busschers, W B; van Weert, H C P M; Wind, J

    2018-03-01

    Colorectal cancer (CRC) survivors are currently included in a secondary care-led survivorship care programme. Efforts are underway to transfer this survivorship care to primary care, but met with some reluctance by patients and caregivers. This study assesses (1) what caregiver patients prefer to contact for symptoms during survivorship care, (2) what patient factors are associated with a preferred caregiver, and (3) whether the type of symptom is associated with a preferred caregiver. A cross-sectional study of CRC survivors at different time points. For 14 different symptoms, patients reported if they would consult a caregiver, and who they would contact if so. Patient and disease characteristics were retrieved from hospital and general practice records. Two hundred and sixty patients participated (response rate 54%) of whom the average age was 67, 54% were male. The median time after surgery was seven months (range 0-60 months). Patients were divided fairly evenly between tumour stages 1-3, 33% had received chemotherapy. Men, patients older than 65 years, and patients with chronic comorbid conditions preferred to consult their general practitioner (GP). Women, patients with stage 3 disease, and patients that had received chemotherapy preferred to consult their secondary care provider. For all symptoms, patients were more likely to consult their GP, except for (1) rectal blood loss, (2) weight loss, and (3) fear that cancer had recurred, in which case they would consult both their primary and secondary care providers. Patients appreciated all caregivers involved in survivorship care highly; with 8 out of 10 points. CRC survivors frequently consult their GP in the current situation, and for symptoms that could alarm them to a possible recurrent disease consult both their GP and secondary care provider. Patient and tumour characteristics influence patients' preferred caregiver.

  17. From diagnosis through survivorship: health-care experiences of colorectal cancer survivors with ostomies

    Science.gov (United States)

    Grant, Marcia; McMullen, Carmit K.; Altschuler, Andrea; Mohler, M. Jane; Hornbrook, Mark C.; Herrinton, Lisa J.; Krouse, Robert S.

    2014-01-01

    Purpose The journey from diagnosis through treatment to survivorship can be challenging for colorectal cancer (CRC) survivors with permanent ostomies. Memories of both the positive and negative health-care interactions can persist years after the initial diagnosis and treatment. The purpose of this paper is to describe the health-care experiences of long-term (>5 years) CRC survivors with ostomies. Methods Thirty-three CRC survivors with ostomies who were members of Kaiser Permanente, an integrated care organization, in Oregon, southwestern Washington and northern California participated in eight focus groups. Discussions from the focus groups were recorded, transcribed, and analyzed for potential categories and themes. Results Health-care-related themes described CRC survivors’ experiences with diagnosis, treatment decision-making, initial experiences with ostomy, and survivorship. Participants discussed both positive and negative health-care-related experiences, including the need for continued access to trained nurses for ostomy self-care, access to peer support, and resources related to managing persistent, debilitating symptoms. Conclusions Long-term CRC survivors with ostomies have both positive and negative health-care experiences, regardless of health-related quality of life (HRQOL) and gender. Long-term support mechanisms and quality survivorship care that CRC survivors with ostomies can access are needed to promote positive adjustments and improved HRQOL. Structured abstract The current literature in CRC survivor-ship suggests that HRQOL concerns can persist years after treatment completion. The coordination of care to manage persistent late- and long-term effects are still lacking for CRC survivors living with an ostomy. Findings from this qualitative analysis will aid in the development of support strategies that foster more positive adjustments for CRC survivors living with an ostomy and support their ongoing ostomy-related needs. PMID:24442998

  18. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    International Nuclear Information System (INIS)

    Jhanwar-Uniyal, Meena; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj

    2015-01-01

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM

  19. Invasive Glioblastoma Cells Acquire Stemness and Increased Akt Activation

    Directory of Open Access Journals (Sweden)

    Jennifer R. Molina

    2010-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent and most aggressive brain tumor in adults. The dismal prognosis is due to postsurgery recurrences arising from escaped invasive tumor cells. The signaling pathways activated in invasive cells are under investigation, and models are currently designed in search for therapeutic targets. We developed here an in vivo model of human invasive GBM in mouse brain from a GBM cell line with moderate tumorigenicity that allowed simultaneous primary tumor growth and dispersal of tumor cells in the brain parenchyma. This strategy allowed for the first time the isolation and characterization of matched sets of tumor mass (Core and invasive (Inv cells. Both cell populations, but more markedly Inv cells, acquired stem cell markers, neurosphere renewal ability, and resistance to rapamycin-induced apoptosis relative to parental cells. The comparative phenotypic analysis between Inv and Core cells showed significantly increased tumorigenicity in vivo and increased invasion with decreased proliferation in vitro for Inv cells. Examination of a large array of signaling pathways revealed extracellular signal-regulated kinase (Erk down-modulation and Akt activation in Inv cells and an opposite profile in Core cells. Akt activation correlated with the increased tumorigenicity, stemness, and invasiveness, whereas Erk activation correlated with the proliferation of the cells. These results underscore complementary roles of the Erk and Akt pathways for GBM proliferation and dispersal and raise important implications for a concurrent inhibitory therapy.

  20. Molecular Characteristics in MRI-classified Group 1 Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    William E Haskins

    2013-07-01

    Full Text Available Glioblastoma multiforme (GBM is a clinically and pathologically heterogeneous brain tumor. Previous study of MRI-classified GBM has revealed a spatial relationship between Group 1 GBM (GBM1 and the subventricular zone (SVZ. The SVZ is an adult neural stem cell niche and is also suspected to be the origin of a subtype of brain tumor. The intimate contact between GBM1 and the SVZ raises the possibility that tumor cells in GBM1 may be most related to SVZ cells. In support of this notion, we found that neural stem cell and neuroblast markers are highly expressed in GBM1. Additionally, we identified molecular characteristics in this type of GBM that include up-regulation of metabolic enzymes, ribosomal proteins, heat shock proteins, and c-Myc oncoprotein. As GBM1 often recurs at great distances from the initial lesion, the rewiring of metabolism and ribosomal biogenesis may facilitate cancer cells’ growth and survival during tumor migration. Taken together, combined our findings and MRI-based classification of GBM1 would offer better prediction and treatment for this multifocal GBM.

  1. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  2. Cancer survivorship services for indigenous peoples: where we stand, where to improve? A systematic review.

    Science.gov (United States)

    Cavanagh, Bridget M; Wakefield, Claire E; McLoone, Jordana K; Garvey, Gail; Cohn, Richard J

    2016-04-01

    There are few support programs with evidence-based practices which address the needs of cancer survivors from indigenous populations. This systematic review analysed the experiences and current support services for cancer survivors from indigenous populations following the cessation of cancer treatment. The data sourced for this article was identified from a systematic search of five databases (MEDLINE, MEDLINE In-Process, PyscINFO, CINAHL, and EMBASE). Studies were selected if they described the experiences of indigenous cancer survivors, their families, and/or clinicians primarily responsible for their care. In total 208 unique abstracts were screened, from which 17 studies were identified as having fulfilled all selection criteria. Of the 17 articles reviewed, 12 described qualitative data and 5 provided quantitative data. Common themes identified included the importance of family support throughout the survivorship period, the negative effect of community stigmatization, fatalistic attitudes towards cancer, and the importance of spirituality in coping with, and understanding, the cancer experience. Potential barriers to accessing care included distance and difficulties revisiting the survivor's cancer experience due to an associated fear of cancer recurrence. Indigenous cancer survivors would benefit from survivorship programs more specifically tailored to their individual circumstances, such as personalized spiritual care, facilitation of increased involvement of family members, and connection to other indigenous cancer survivors. The results from this review indicate that there is a need for survivorship care to be shaped specifically for the needs of indigenous cancer survivors.

  3. Women with breast cancer: self-reported distress in early survivorship.

    Science.gov (United States)

    Lester, Joanne; Crosthwaite, Kara; Stout, Robin; Jones, Rachel N; Holloman, Christopher; Shapiro, Charles; Andersen, Barbara L

    2015-01-01

    To identify and compare levels of distress and sources of problems among patients with breast cancer in early survivorship. Descriptive, cross-sectional. A National Cancer Institute-designated comprehensive cancer center. 100 breast cancer survivors were selected to represent four time points in the cancer trajectory. Distress was self-reported using the Distress Thermometer and its 38-item problem list. Analysis of variance and chi-square analyses were performed as appropriate. Distress scores, problem reports, and time groups. Participants scored in range of the cutoff of more than 4 (range = 4.1-5.1) from treatment through three months post-treatment. At six months post-treatment, distress levels were significantly lower. Significant differences were found between groups on the total problem list score (p = 0.007) and emotional (p = 0.01) and physical subscale scores (p = 0.003). Comparison of groups at different points in the cancer trajectory found similar elevated levels from diagnosis through three months. Distress remained elevated in early survivorship but significantly decreased at six months post-treatment. Interventions to reduce or prevent distress may improve outcomes in early survivorship.

  4. Clonal Evolution of Glioblastoma under Therapy

    Science.gov (United States)

    Wang, Jiguang; Cazzato, Emanuela; Ladewig, Erik; Frattini, Veronique; Rosenbloom, Daniel I. S.; Zairis, Sakellarios; Abate, Francesco; Liu, Zhaoqi; Elliott, Oliver; Shin, Yong-Jae; Lee, Jin-Ku; Lee, In-Hee; Park, Woong-Yang; Eoli, Marica; Blumberg, Andrew J.; Lasorella, Anna; Nam, Do-Hyun; Finocchiaro, Gaetano; Iavarone, Antonio; Rabadan, Raul

    2017-01-01

    Glioblastoma (GBM) constitutes the most common and aggressive primary brain tumor. To better understand how GBM evolves we analyzed longitudinal genomic and transcriptomic data of 114 patients. The analysis reveals a highly branched evolutionary pattern in which 63% of patients experience expression-based subtype changes. The branching pattern together with estimates of evolutionary rates suggest that the relapse associated clone typically preexisted years before diagnosis. 15% of tumors present hypermutations at relapse in highly expressed genes with a clear mutational signature. We find that 11% of recurrent tumors harbor mutations in LTBP4, a protein binding to TGF-β. Silencing LTBP4 in GBM cells leads to TGF-β activity suppression and decreased proliferation. In IDH1-wild-type recurrent GBM, high LTBP4 expression is associated with worse prognosis, highlighting the TGF-β pathway as a potential therapeutic target in GBM. PMID:27270107

  5. Statin use and survival following glioblastoma multiforme

    DEFF Research Database (Denmark)

    Gaist, David; Hallas, Jesper; Friis, Søren

    2014-01-01

    with glioblastoma multiforme (GBM). METHODS: We identified 1562 patients diagnosed with GBM during 2000-2009 from the Danish Cancer Registry and linked this cohort to Danish nationwide demographic and health registries. Within the GBM cohort, each patient recorded as using statins prior to diagnosis (defined as ≥2......-cause death associated with prediagnostic statin use. RESULTS: A total of 339 GBM patients were included in the analyses. Of these, 325 died during median follow-up of 6.9 months (interquartile range: 3.8-13.4 months). Prediagnostic statin use was associated with a reduced HR of death (0.79; 95% CI: 0......: 0.63-1.01). CONCLUSION: Long-term prediagnostic statin use may improve survival following GBM....

  6. Biomimetic strategies for the glioblastoma microenvironment

    Science.gov (United States)

    Cha, Junghwa; Kim, Pilnam

    2017-12-01

    Glioblastoma multiforme (GBM) is a devastating type of tumor with high mortality, caused by extensive infiltration into adjacent tissue and rapid recurrence. Most therapies for GBM have focused on the cytotoxicity, and have not targeted GBM spread. However, there have been numerous attempts to improve therapy by addressing GBM invasion, through understanding and mimicking its behavior using three-dimensional (3D) experimental models. Compared with two-dimensional models and in vivo animal models, 3D GBM models can capture the invasive motility of glioma cells within a 3D environment comprising many cellular and non-cellular components. Based on tissue engineering techniques, GBM invasion has been investigated within a biologically relevant environment, from biophysical and biochemical perspectives, to clarify the pro-invasive factors of GBM. This review discusses the recent progress in techniques for modeling the microenvironments of GBM tissue and suggests future directions with respect to recreating the GBM microenvironment and preclinical applications.

  7. The Somatic Genomic Landscape of Glioblastoma

    Science.gov (United States)

    Brennan, Cameron W.; Verhaak, Roel G.W.; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R.; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J. Zachary; Berman, Samuel H.; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A.; Ciriello, Giovanni; Yung, WK; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D.; Van Meir, Erwin G.; Prados, Michael; Sloan, Andrew; Black, Keith L.; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W.; Guha, Abhijit; Iacocca, Mary; O’Neill, Brian P.; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J.; Penny, Robert; Kucherlapati, Raju; Perou, Charles M.; Hayes, D. Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B.; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W.; Haussler, David; Getz, Gad; Chin, Lynda

    2013-01-01

    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. PMID:24120142

  8. Glioblastoma Multiforme and Lipid Nanocapsules: A Review.

    Science.gov (United States)

    Aparicio-Blanco, Juan; Torres-Suárez, Ana-Isabel

    2015-08-01

    Epidemiological data on central nervous system disorders call for a focus on the major hindrance to brain drug delivery, blood-central nervous system barriers. Otherwise, there is little chance of improving the short-term survival of patients with diseases such as glioblastoma multiforme, which is one of the brain disorders associated with many years of life lost. Targetable nanocarriers for treating malignant gliomas are a unique way to overcome low chemotherapeutic levels at target sites devoid of systemic toxicity. This review describes the currently available targetable nanocarriers, focusing particularly on one of the newest nanocarriers, lipid nanocapsules. All of the strategies that are likely to be exploited by lipid nanocapsules to bypass blood-central nervous system barriers, including the most recent targeting approaches (mesenchymal cells), and novel administration routes (convection enhanced delivery) are discussed, together with their most remarkable achievements in glioma-implanted animal models. Although these systems are promising, much research remains to be done in this field.

  9. Glioblastoma Multiforme Presenting as Spontaneous Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Cagatay Ozdol

    2014-06-01

    Full Text Available Brain tumors with concomitant intracerebral hemorrhage are rarely encountered. Hemorrhage as the initial presentation of a brain tumour may pose some diagnostic problems, especially if the tumour is small or the hemorrhage is abundant. We present a 47-year-old man who admitted to the emergency department with sudden onset headache, right blurred vision and gait disturbance. A non-contrast cranial computerized tomography scan performed immediately after his admission revealed a well circumscribed right occipitoparietal haematoma with intense peripheral edema causing compression of the ipsilateral ventricles. On 6th hour of his admission the patient%u2019s neurological status deteriorated and he subsequently underwent emergent craniotomy and microsurgical evacuation of the haematoma. The histopathological examination of the mass was consistent with a glioblastoma multiforme. Neoplasms may be hidden behind each case of spontaneous intracerebral hemorrhage. Histological sampling and investigation is mandatory in the presence of preoperative radiological features suggesting a neoplasm.

  10. Current status of intratumoral therapy for glioblastoma.

    Science.gov (United States)

    Mehta, Ankit I; Linninger, Andreas; Lesniak, Maciej S; Engelhard, Herbert H

    2015-10-01

    With emerging drug delivery technologies becoming accessible, more options are expected to become available to patients with glioblastoma (GBM) in the near future. It is important for clinicians to be familiar with the underlying mechanisms and limitations of intratumoral drug delivery, and direction of recent research efforts. Tumor-adjacent brain is an extremely complex living matrix that creates challenges with normal tissue intertwining with tumor cells. For convection-enhanced delivery (CED), the role of tissue anisotropy for better predicting the biodistribution of the infusate has recently been studied. Computational predictive methods are now available to better plan CED therapy. Catheter design and placement—in addition to the agent being used—are critical components of any protocol. This paper overviews intratumoral therapies for GBM, highlighting key anatomic and physiologic perspectives, selected agents (especially immunotoxins), and some new developments such as the description of the glymphatic system.

  11. Reclaiming life on one's own terms: a grounded theory study of the process of breast cancer survivorship.

    Science.gov (United States)

    Sherman, Deborah Witt; Rosedale, Mary; Haber, Judith

    2012-05-01

    To develop a substantive theory of the process of breast cancer survivorship. Grounded theory. A LISTSERV announcement posted on the SHARE Web site and purposeful recruitment of women known to be diagnosed and treated for breast cancer. 15 women diagnosed with early-stage breast cancer. Constant comparative analysis. Breast cancer survivorship. The core variable identified was Reclaiming Life on One's Own Terms. The perceptions and experiences of the participants revealed overall that the diagnosis of breast cancer was a turning point in life and the stimulus for change. That was followed by the recognition of breast cancer as now being a part of life, leading to the necessity of learning to live with breast cancer, and finally, creating a new life after breast cancer. Participants revealed that breast cancer survivorship is a process marked and shaped by time, the perception of support, and coming to terms with the trauma of a cancer diagnosis and the aftermath of treatment. The process of survivorship continues by assuming an active role in self-healing, gaining a new perspective and reconciling paradoxes, creating a new mindset and moving to a new normal, developing a new way of being in the world on one's own terms, and experiencing growth through adversity beyond survivorship. The process of survivorship for women with breast cancer is an evolutionary journey with short- and long-term challenges. This study shows the development of an empirically testable theory of survivorship that describes and predicts women's experiences following breast cancer treatment from the initial phase of recovery and beyond. The theory also informs interventions that not only reduce negative outcomes, but promote ongoing healing, adjustment, and resilience over time.

  12. The effects of antiepileptic drugs on the growth of glioblastoma cell lines

    OpenAIRE

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-01-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levet...

  13. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  14. When a policy decision meets practice realities: The case of cancer survivorship care and rehabilitation needs assessment.

    Science.gov (United States)

    Handberg, Charlotte; Thorne, Sally; Maribo, Thomas

    2018-04-01

    To analyze and describe health professionals' attitudes and perspectives on the complexities of cancer survivorship and rehabilitation needs assessment in a shared cancer care context. The design and methodology for this study was Interpretive Description and the analysis was informed by Symbolic Interactionism as the theoretical framework. Between April and December 2015 an ethnographic fieldwork was carried out by the first author in haematological wards at two Danish hospitals and in two primary care settings conducting cancer survivorship care programs. Participants were 41 health professionals working with needs assessment. The findings revealed an understanding of the health professionals' attitudes and perspectives and were distinguishable in relation to three structural conditions associated with the dimensions of survivorship care: Patient Context, Workplace Priorities and Practice Culture. Despite shared beliefs that needs assessment was essential to ensure survivorship care, the differential conditions surrounding the hospital and the primary care settting impeded the wider idea of formalized needs assessment, creating barriers to a seamless link between the sectors. Meaningful resolution of these disjunctures will require broad solutions, recognizing that the organization of healthcare into disconnected systems, with their different conditions, history, habits and traditions, will certainly plague the "transition" problems in healthcare unless a wider perspective is taken. Thoughtful and informed clinicians working with decision makers and those who know the evidence and can interpret systems in context can certainly bring better options to light in order to develop high quality survivorship care that will support patients throughout their cancer trajectory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Age groups related glioblastoma study based on radiomics approach.

    Science.gov (United States)

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Guo, Yi; Zhang, Qi

    2017-12-01

    Glioblastoma is the most aggressive malignant brain tumor with poor prognosis. Radiomics is a newly emerging and promising technique to reveal the complex relationships between high-throughput medical image features and deep information of disease including pathology, biomarkers and genomics. An approach was developed to investigate the internal relationship between magnetic resonance imaging (MRI) features and the age-related origins of glioblastomas based on a quantitative radiomics method. A fully automatic image segmentation method was applied to segment the tumor regions from three dimensional MRI images. 555 features were then extracted from the image data. By analyzing large numbers of quantitative image features, some predictive and prognostic information could be obtained by the radiomics approach. 96 patients diagnosed with glioblastoma pathologically have been divided into two age groups (age groups (T test, p age difference (T test, p= .006). In conclusion, glioblastoma in different age groups present different radiomics-feature patterns with statistical significance, which indicates that glioblastoma in different age groups should have different pathologic, protein, or genic origins.

  16. Survivorship and complications of total hip arthroplasty in patients with dwarfism.

    Science.gov (United States)

    Modi, Ronuk M; Kheir, Michael M; Tan, Timothy L; Penny, Gregory S; Chen, Chi-Lung; Shao, Hongyi; Chen, Antonia F

    2017-09-19

    Total hip arthroplasty (THA) is a common procedure used to treat bony hip deformities and skeletal dysplasia in dwarfism. These surgeries are often more difficult than conventional THA as they may involve malformed joints and poor bone quality, and may require smaller prostheses. This study aims to investigate whether implant survivorship and revision rates vary among patients with and without dwarfism undergoing THA. A retrospective case-control study was performed for 102 THAs completed between 1997 and 2014 in patients under the height threshold of 147.32 cm. This cohort was matched 1:1.5 with patients of normal height with respect to age, gender, year of surgery, and Charlson comorbidities. All cases had a minimum follow-up of 1 year. A chart review was performed to identify patient and surgical characteristics, including outcomes. Radiographs were assessed for deformity, loosening, and periprosthetic fractures among other factors. The 2-, 5-, and 10-year survivorship of THA in patients with dwarfism was 92.9%, 92.9%, and 80.7%, respectively; and 94.4%, 86.4%, and 86.4% for controls, respectively (p = 0.95). The dwarfism cohort demonstrated an OR of 3.81 and 3.02 for revision for periprosthetic fractures (p = 0.11) and mechanical wear (p = 0.21), respectively. THA in patients with dwarfism achieves comparable results to a non-dwarfism population with regards to implant survivorship; however, there is a trend toward increased periprosthetic fractures and wear-related failures. Surgeons should be aware of this potentially higher risk in this population and take morphological differences into account during surgical planning and technique.

  17. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments.

    Science.gov (United States)

    Lirman

    2000-08-23

    Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.

  18. The effect of vessel speed on the survivorship of biofouling organisms at different hull locations.

    Science.gov (United States)

    Coutts, Ashley D M; Piola, Richard F; Taylor, Michael D; Hewitt, Chad L; Gardner, Jonathan P A

    2010-07-01

    This study used a specially designed MAGPLATE system to quantify the en route survivorship and post-voyage recovery of biofouling assemblages subjected to short voyages (biofouling organisms amongst hull locations, biofouling cover and richness were markedly reduced on faster vessels relative to slower craft. Therefore, the potential inoculum size of non-indigenous marine species and richness is likely to be reduced for vessels that travel at faster speeds (> 14 knots), which is likely to also reduce the chances of successful introductions. Despite this, the magnitude of introductions from biofouling on fast vessels can be considered minor, especially for species richness where 90% of source-port species were recorded at destinations.

  19. Impact of oligodendroglial component in glioblastoma (GBM-O): Is the outcome favourable than glioblastoma?

    Science.gov (United States)

    Goda, Jayant S; Lewis, Shirley; Agarwal, Aditi; Epari, Sridhar; Churi, Shraddha; Padmavati, A; Gupta, Tejpal; Shetty, Prakash; Moiyadi, Aliasgar; Jalali, Rakesh

    2015-08-01

    Prognosis of patients with glioblastoma with oligodendroglial component (GBM-O) is not well defined. We report our experience of patients of GBM-O treated at our center. Between January 2007 and August 2013, out of 817 consecutive patients with glioblastoma (GBM), 74 patients with GBM-O were identified in our prospectively maintained database. An experienced neuropathologist revaluated the histopathology of all these 74 patients and the diagnosis of GBM-O was eventually confirmed in 57 patients. Patients were uniformly treated with maximal safe resection followed by focal radiotherapy with concurrent and adjuvant temozolamide (TMZ). At a median follow up of 16 months, median overall survival (OS) and progression free survival (PFS) of the entire cohort was 23 months and 13 months respectively. Near total excision was performed in 30/57 (52.6%). On univariate analysis, age GBM-O patients with a similarly treated cohort of 105 GBM patients during the same period revealed significantly better median OS in favour of GBM-O (p = 0.01). Our experience suggests patients with GBM-O have a more favourable clinical outcome as compared to GBM. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Heterogeneity maintenance in glioblastoma: a social network.

    Science.gov (United States)

    Bonavia, Rudy; Inda, Maria-del-Mar; Cavenee, Webster K; Furnari, Frank B

    2011-06-15

    Glioblastoma multiforme (GBM), the most common intracranial tumor in adults, is characterized by extensive heterogeneity at the cellular and molecular levels. This insidious feature arises inevitably in almost all cancers and has great significance for the general outcome of the malignancy, because it confounds our understanding of the disease and also intrinsically contributes to the tumor's aggressiveness and poses an obstacle to the design of effective therapies. The classic view that heterogeneity arises as the result of a tumor's "genetic chaos" and the more contemporary cancer stem cell (CSC) hypothesis tend to identify a single cell population as the therapeutic target: the prevailing clone over time in the first case and the CSC in the latter. However, there is growing evidence that the different tumor cell populations may not be simple bystanders. Rather, they can establish a complex network of interactions between each other and with the tumor microenvironment that eventually strengthens tumor growth and increases chances to escape therapy. These differing but complementary ideas about the origin and maintenance of tumor heterogeneity and its importance in GBM are reviewed here.

  1. CANINE BUTTERFLY GLIOBLASTOMAS: A NEURORADIOLOGICAL REVIEW

    Directory of Open Access Journals (Sweden)

    John Henry Rossmeisl

    2016-05-01

    Full Text Available In humans, high-grade gliomas may infiltrate across the corpus callosum resulting in bihemispheric lesions that may have symmetrical, winged-like appearances. This particular tumor manifestation has been coined a ‘butterfly’ glioma (BG. While canine and human gliomas share many neuroradiological and pathological features, the BG morphology has not been previously reported in dogs. Here we describe the magnetic resonance imaging (MRI characteristics of BG in three dogs, and review the potential differential diagnoses based on neuroimaging findings. All dogs presented with generalized seizures and interictal neurological deficits referable to multifocal or diffuse forebrain disease. MRI examinations revealed asymmetrical (2/3 or symmetrical (1/3, bihemispheric intra-axial mass lesions that predominantly affected the frontoparietal lobes and associated with extensive perilesional edema, and involvement of the corpus callosum. The masses displayed heterogeneous T1, T2, and FLAIR signal intensities, variable contrast enhancement (2/3, and mass effect. All tumors demonstrated classical histopathological features of glioblastoma (GBM including glial cell pseudopalisading, serpentine necrosis, microvascular proliferation, as well as invasion of the corpus callosum by neoplastic astrocytes. Although rare, GBM should be considered a differential diagnosis in dogs with MRI evidence of asymmetric or symmetric bilateral, intra-axial cerebral mass lesions with signal characteristics compatible with glioma.

  2. Strategies in Gene Therapy for Glioblastoma

    International Nuclear Information System (INIS)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy

  3. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  4. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment.

    Science.gov (United States)

    Adamski, Vivian; Hempelmann, Annika; Flüh, Charlotte; Lucius, Ralph; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-12-08

    Cellular dormancy is defined as a state in which cells enter quiescence driven by intrinsic or extrinsic factors, and striking parallels exist between the concept of cellular dormancy in malignancies and the cancer stem cell theory. We showed now that the proven dormancy markers insulin-like growth factor-binding protein 5, ephrin receptor A5 and histone cluster 1 H2B family member K were expressed in human glioblastomas in situ , were located in single tumor cells, and could be co-stained with each other and with the stem cell markers krüppel-like factor 4, octamer binding transcription factor 4 and sex determining region Y-box 2. Human non-stem glioblastoma cell lines and primary cultures were characterized by expression of individual, cell-type specific dormancy- and stemness-associated markers, which were (up)regulated and could be co-stained in a cell-type specific manner upon Temozolomide-induced dormancy in vitro . The induction patterns of dormancy- and stemness-associated markers were reflected by cell-type specific responses to Temozolomide-induced and combined Temozolomide/AT101-mediated cytotoxicity in different glioblastoma cell lines and primary cultures in vitro , and accompanied by higher self-renewal capacity and lower TMZ-sensitivity of Temozolomide-pretreated cells. We postulate that a better understanding of the dormant state of tumor cells is essential to further improve efficiency of treatment.

  5. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  6. PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

    Science.gov (United States)

    Karpel-Massler, Georg; Pareja, Fresia; Aimé, Pascaline; Shu, Chang; Chau, Lily; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Crary, John F.; Canoll, Peter; Siegelin, Markus D.

    2014-01-01

    Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM. PMID:25531448

  7. The response of human glioblastoma in culture to radiation

    International Nuclear Information System (INIS)

    Masuda, Koji; Aramaki, Ryoji; Takagi, Tosuke

    1980-01-01

    Cells from two human glioblastoma multiforme and one mouse glioma were grown in tissue cultures and their X-ray survival curve parameters were determined under oxygenated and hypoxic conditions. These were compared with the survival parameters for mouse fibroblasts (L5) and established cell lines from human carcinoma coli (HeLa S3) irradiated under identical conditions. There was no significant difference in response among the cell lines used. Repair of potentially lethal damage for human glioblastoma and HeLa S3 was assessed by the increase in survival which occurred as the cells were held in density inhibited stationary phase. The magnitude of repair of potentially lethal damage (slope modifying factors) for the glioblastoma and HeLa were 1.9 and 1.1, respectively. (author)

  8. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    International Nuclear Information System (INIS)

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis

  9. The use of a patient-reported outcome questionnaire to assess cancer survivorship concerns and psychosocial outcomes among recent survivors.

    Science.gov (United States)

    Palmer, Steven C; Stricker, Carrie T; DeMichele, Angela M; Schapira, Marilyn; Glanz, Karen; Griggs, Jennifer J; Jacobs, Linda A

    2017-08-01

    Survivor distress is well represented in the literature, but less is known about survivors' concerns and how these relate to adaptation. Using a newly designed Survivorship Concern Scale, we examined concerns and their relationship to psychosocial adaptation among recent breast cancer (BC) survivors. One hundred forty-three stage 0-III BC survivors completed an online assessment including the Survivorship Concern Scale (0-3 scale; alpha = 0.91), unmet needs, quality of life (QoL), and anxiety and depressive symptoms within 1 year of end of treatment. Participants were predominately white (76%), middle-aged (51 years), married (70%), and college educated (79%). Eighty-two percent were stage I or II at diagnosis. Mean degree of survivorship concern was moderate (M = 1.75, SD = 0.70) though variable (range = 0.12-3.00). Survivorship concerns were not significantly related to disease, treatment, or demographic variables except income (p = 0.02). Degree of survivorship concern was significantly associated with all indices of psychosocial adaptation: unmet need (r = 0.50), physical and mental QoL (r = -0.32 and r = -0.32, respectively), depressive symptoms (r = 0.21), and anxiety symptoms (r = 0.51; all p psychosocial adaptation. Adequately addressing concerns may be a way to improve psychosocial outcomes early in the survivorship trajectory.

  10. Sex-biased survivorship and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    Science.gov (United States)

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  11. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    Science.gov (United States)

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with 225 Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by 225 Ac-E4G10. We investigated remodeling of the tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4-kBq dose of 225 Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphologic changes in the tumor blood-brain barrier microenvironment. Multicolor flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted MR imaged functional changes in the tumor vascular network. The mechanism of drug action is a combination of remodeling of the glioblastoma vascular microenvironment, relief of edema, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis were lessened, resulting in increased perfusion and reduced diffusion. Pharmacologic uptake of dasatinib into tumor was enhanced after α-particle therapy. Targeted antivascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of platelet-derived growth factor-driven glioblastoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Antitumor Activity and Mechanism of a Reverse Transcriptase Inhibitor, Dapivirine, in Glioblastoma.

    Science.gov (United States)

    Liu, Weiwen; Song, Xian-Lu; Zhao, Shan-Chao; He, Minyi; Wang, Hai; Chen, Ziyang; Xiang, Wei; Yi, Guozhong; Qi, Songtao; Liu, Yawei

    2018-01-01

    Dapivirine is one of reverse transcriptase inhibitors (RTIs). It is the prototype of diarylpyrimidines (DAPY), formerly known as TMC120 or DAPY R147681 (IUPAC name: 4- [[4-(2, 4, 6-trimethylphenyl) amino]-2-pyrimidinyl] amino]-benzonitrile; CAS no.244767-67-7). The purpose of this study is to investigate the antitumor activity of dapivirine, one of the RTIs, on U87 glioblastoma (GBM) cells in vitro and in vivo . U87 GBM cells were cultured and treated with or without dapivirine. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis was analyzed by flow cytometry; cell migration was evaluated by Boyden Chamber assay; Western blotting was performed to detect proteins related to apoptosis, epithelial-to-mesenchymal transition and autophagy. PathScan intracellular signaling array kit was used to detect important and well-characterized signaling molecules. Tumor xenograft model in nude mice was used to evaluate the antitumorigenic effect in vivo . Dapivirine weakened proliferation of glioma cells and induced the apoptosis of U87 glioblastoma cells. Furthermore, dapivirine regulated autophagy and induced Akt, Bad and SAPK/JNK activations. Moreover, the inhibition of glioma cell growth by dapivirine was also observed in nude mice in vivo . In summary, in our study dapivirine exposure induces stress, resulting in JNK and PI3K/Akt pathway activation through diminished inhibition of the apoptosis and autophagy cascade in U87 GBM cells, which inhibits cell growth in vitro and in vivo .

  13. P16.30 4th ventricle glioblastoma

    Science.gov (United States)

    Unal, E.; Isik, S.; Gurbuz, M.; Kilic, K.

    2017-01-01

    Abstract Introduction: We present the 2nd case ever known in English literature describing a glioblastoma of the fourth ventricle originating from cerebellar peduncle. CASE DESCIPTION: A 66 years old woman was admitted to hospital with dizziness and nausea for four months. An MRI scan showed fourth ventricle mass. First impression was an ependymoma due to MRI scan characteristics. Results: A surgery was performed and histopathology revealed Grade IV glial tumor. Radiotherapy was done. CONCLUSION: This report suggests that GBM can mimic every tumor in the CNS. Surgery is the best option for these tumors not only for aggressive behaviour of glioblastoma but also to prevent hydrocephalus and associated symptoms.

  14. Combined Modality Approaches in the Management of Adult Glioblastoma

    International Nuclear Information System (INIS)

    Shirazi, Haider A.; Grimm, Sean; Raizer, Jeffrey; Mehta, Minesh P.

    2011-01-01

    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma.

  15. Combined Modality Approaches in the Management of Adult Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Haider A. [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States); Grimm, Sean; Raizer, Jeffrey [Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States); Mehta, Minesh P., E-mail: mmehta@nmff.org [Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States)

    2011-10-28

    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma.

  16. Non-cancer drug consumption during the early trajectory of lymphoma survivorship.

    Science.gov (United States)

    Rioufol, Catherine; Lamy, Sébastien; Conte, Cécile; Jeanneau, Pauline; Compaci, Giselle; Delpierre, Cyrille; Lapeyre-Mestre, Maryse; Laurent, Guy; Despas, Fabien

    2017-11-22

    This study explored the use of non-cancer drugs in lymphoma survivors during the early trajectory (0 to 2 years) of cancer survivorship and determined the factors that influenced this consumption. Between January and March 2014, a cross-sectional survey was conducted to assess drug consumption in adult lymphoma survivors at the Toulouse University Hospital. This study was based on a questionnaire consisting of ten open questions related to medical prescription and/or self-medication occurring within the last 3 months. A total of 83/103 lymphoma survivors returned the questionnaire. This study showed that 91.6% of patients were drug consumers (about twice more than the general French population). Twenty percent of patients were treated with≥5 drugs. Overall drug consumption mainly concerned analgesics, anti-inflammatory drugs and psychotropics. The presence of comorbidity, urban residence and female gender were associated with overall drug consumption. Moreover, half of survivors required at least one self-medication. Finally, only seven survivors (8.4%) reported no use of any medication. This study shows that, at least during the early trajectory of cancer survivorship, lymphoma patients are heavily treated with non-cancer drug therapy. This drug consumption profile may have serious implications in terms of safety, overall benefit and health economics. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  17. Midterm Survivorship and Complications of Total Knee Arthroplasty in Patients With Dwarfism.

    Science.gov (United States)

    Tan, Timothy L; Kheir, Michael M; Modi, Ronuk; Chen, Chi-Lung; Shao, Hongyi; Chen, Antonia F

    2017-11-01

    Dwarfism is associated with skeletal dysplasias and joint deformities that frequently result in osteoarthritis requiring treatment with total knee arthroplasty (TKA). These surgeries can be challenging because of alignment deformities, poor bone stock, and smaller components. This study aims to compare TKA implant survivorship and complications between dwarf and nondwarf patients. A retrospective case-control study was performed from 1997-2014 evaluating 115 TKAs in patients under the height threshold of 147.32 cm. This cohort was compared with 164 patients of normal height. Medical records were reviewed for demographics, surgical characteristics, and outcomes. All cases had 2-year minimum follow-up. The revision rate was 8.7% in dwarfs compared with 3.7% in controls (P = .08). The 2-, 5-, and 10-year implant survivorship in dwarfs was 96.4%, 92.5%, and 90.2%, respectively; and 96.6%, 95.6%, and 94.8% for controls, respectively (P = .24). Dwarfs underwent significantly more manipulations for arthrofibrosis (P = .002). There was greater femoral (17.4% vs 2.1%, P manipulation; the increased propensity for stiffness may be associated with oversized components, as evidenced by greater component overhang. Surgeons should be aware of this increased risk and may consider using smaller or customized implants to account for the morphological differences in this patient population. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816).

    Science.gov (United States)

    Randall, Carly J; Szmant, Alina M

    2009-12-01

    Elevated seawater temperatures during the late summer have the potential to negatively affect the development and survivorship of the larvae of reef corals that are reproductive during that time of year. Acropora palmata, a major Caribbean hermatype, reproduces annually during August and September. A. palmata populations have severely declined over the past three decades, and recovery will require high recruitment rates. Such recruitment will be limited if larval supply is reduced by elevated temperatures. The effects of elevated temperatures on development, survival, and larval settlement of A. palmata were investigated by culturing newly fertilized eggs at temperatures ranging from 27.5 to 31.5 degrees C. Development was accelerated and the percentage of developmental abnormalities increased at higher temperatures. Embryo mortality peaked during gastrulation, indicating that this complex developmental process is particularly sensitive to elevated temperatures. Larvae cultured at 30 and 31.5 degrees C experienced as much as an 8-fold decrease in survivorship compared to those at 28 degrees C. Additionally, settlement was 62% at 28 degrees C compared to 37% at 31.5 degrees C. These results indicate that embryos and larvae of A. palmata will be negatively affected as sea surface temperatures continue to warm, likely reducing recruitment and the recovery potential of A. palmata on Caribbean reefs.

  19. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.

    Science.gov (United States)

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J

    2009-07-01

    Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.

  20. Advance care planning within survivorship care plans for older cancer survivors: A systematic review.

    Science.gov (United States)

    O'Caoimh, Rónán; Cornally, Nicola; O'Sullivan, Ronan; Hally, Ruth; Weathers, Elizabeth; Lavan, Amanda H; Kearns, Tara; Coffey, Alice; McGlade, Ciara; Molloy, D William

    2017-11-01

    Advances in the medical treatment of cancer have increased the number of survivors, particularly among older adults, who now represent the majority of these. Survivorship care plans (SCPs) are documents that cancer patients receive summarising their care, usually at the end of treatment but preferably from initial diagnosis. These may increase patient satisfaction and represent an opportunity to initiate preventative strategies and address future care needs. Advance care planning (ACP), incorporating advance healthcare decision-making, including formal written directives, increases satisfaction and end-of-life care. This paper systematically reviews evaluations of ACP within SCPs among older (≥65 years) cancer survivors. No studies meeting the inclusion criteria were identified by search strategies conducted in PubMed/MEDLINE and the Cochrane databases. One paper examined cancer survivors' mainly positive views of ACP. Another discussed the use of a SCP supported by a 'distress inventory' that included an advance care directive (living will) as an issue, though no formal evaluation was reported. Although ACP is important for older adults, no study was found that evaluated its role within survivorship care planning. Despite the risk of recurrence and the potential for morbidity and mortality, especially among older cancer survivors, ACP is not yet a feature of SCPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Reverse Engineering of Modified Genes by Bayesian Network Analysis Defines Molecular Determinants Critical to the Development of Glioblastoma

    Science.gov (United States)

    Kunkle, Brian W.; Yoo, Changwon; Roy, Deodutta

    2013-01-01

    In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors. PMID:23737970

  2. About Survivorship

    Science.gov (United States)

    ... CancerProgress.Net website to learn more about the historical pace of cancer research. Surviving cancer: What to ... during treatment Take time off for treatment and return to work afterwards Be unable to return to ...

  3. The Impact of a Primary Care Education Program Regarding Cancer Survivorship Care Plans: Results from an Engineering, Primary Care, and Oncology Collaborative for Survivorship Health.

    Science.gov (United States)

    Donohue, SarahMaria; Haine, James E; Li, Zhanhai; Trowbridge, Elizabeth R; Kamnetz, Sandra A; Feldstein, David A; Sosman, James M; Wilke, Lee G; Sesto, Mary E; Tevaarwerk, Amye J

    2017-09-20

    Survivorship care plans (SCPs) have been recommended as tools to improve care coordination and outcomes for cancer survivors. SCPs are increasingly being provided to survivors and their primary care providers. However, most primary care providers remain unaware of SCPs, limiting their potential benefit. Best practices for educating primary care providers regarding SCP existence and content are needed. We developed an education program to inform primary care providers of the existence, content, and potential uses for SCPs. The education program consisted of a 15-min presentation highlighting SCP basics presented at mandatory primary care faculty meetings. An anonymous survey was electronically administered via email (n = 287 addresses) to evaluate experience with and basic knowledge of SCPs pre- and post-education. A total of 101 primary care advanced practice providers (APPs) and physicians (35% response rate) completed the baseline survey with only 23% reporting prior receipt of a SCP. Only 9% could identify the SCP location within the electronic health record (EHR). Following the education program, primary care physicians and APPs demonstrated a significant improvement in SCP knowledge, including improvement in their ability to locate one within the EHR (9 vs 59%, p educational program containing information about SCP existence, content, and location in the EHR increased primary care physician and APP knowledge in these areas, which are prerequisites for using SCP in clinical practice.

  4. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  5. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M S; Joseph, J. V.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A G; de Vries, E. G E; den Dunnen, W. F A; Kruyt, F. A E; Walenkamp, A. M E

    2015-01-01

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  6. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M. S.; Vareecal Joseph, J.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A. G.; de Vries, E. G. E.; den Dunnen, W. F. A.; Kruyt, F. A. E.; Walenkamp, A. M. E.

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  7. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme

    DEFF Research Database (Denmark)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Slawomir

    2017-01-01

    a harmful influence on viability of U87 glioblastoma multiforme (GBM) cells, but also showed genotoxic properties as well as a pro-apoptotic effect on cancer cells. It was found that NP-Pt decreased the weight and volume of U87 GBM tumor tissue and caused pathomorphological changes in the ultrastructure...

  8. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Therkildsen, C; Ladelund, S; Rambech, E

    2015-01-01

    .5%) in MSH2 gene mutation carriers compared to patients with mutations in MLH1 or MSH6. Glioblastomas predominated (56%), followed by astrocytomas (22%) and oligodendrogliomas (9%). MMR status was assessed in 10 tumors, eight of which showed MMR defects. None of these tumors showed immunohistochemical...

  9. Glioblastoma stem-like cells give rise to tumour endothelium

    NARCIS (Netherlands)

    Wang, Rong; Chadalavada, Kalyani; Wilshire, Jennifer; Kowalik, Urszula; Hovinga, Koos E.; Geber, Adam; Fligelman, Boris; Leversha, Margaret; Brennan, Cameron; Tabar, Viviane

    2010-01-01

    Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly

  10. Radiation induced sarcoma after treatment of glioblastoma: case report

    International Nuclear Information System (INIS)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris

    2016-01-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia

  11. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Ewa; Wierzbicki, Mateusz

    2011-01-01

    The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubati...

  12. Individualized targeted therapy for glioblastoma: fact or fiction?

    Science.gov (United States)

    Weller, Michael; Stupp, Roger; Hegi, Monika; Wick, Wolfgang

    2012-01-01

    This review will address the current state of individualized cancer therapy for glioblastoma. Glioblastomas are highly malignant primary brain tumors presumably originating from neuroglial progenitor cells. Median survival is less than 1 year. Recent developments in the morphologic, clinical, and molecular classification of glioblastoma were reviewed, and their impact on clinical decision making was analyzed. Glioblastomas can be classified by morphology, clinical characteristics, complex molecular signatures, single biomarkers, or imaging parameters. Some of these characteristics, including age and Karnofsky Performance Scale score, provide important prognostic information. In contrast, few markers help to choose between various treatment options. Promoter methylation of the O-methylguanine methyltransferase gene seems to predict benefit from alkylating agent chemotherapy. Hence, it is used as an entry criterion for alkylator-free experimental combination therapy with radiotherapy. Screening for a specific type of epidermal growth factor receptor mutation is currently being explored as a biomarker for selecting patients for vaccination. Positron emission tomography for the detection of ανβ3/5 integrins could be used to select patients for treatment with anti-integrin antiangiogenic approaches. Despite extensive efforts at defining biological markers as a basis for selecting therapies, most treatment decisions for glioblastoma patients are still based on age and performance status. However, several ongoing clinical trials may enrich the repertoire of criteria for clinical decision making in the very near future. The concept of individualized or personalized targeted cancer therapy has gained significant attention throughout oncology. Yet, data in support of such an approach to glioblastoma, the most malignant subtype of glioma, are limited, and personalized medicine plays a minor role in current clinical neuro-oncology practice. In essence, this concept proposes

  13. Survivorship and longevity of adult Diamesa mendotae Muttkowski, 1915 (Diptera: Chironomidae) at controlled, sub-freezing temperatures

    Science.gov (United States)

    Mazack, Jane E.; Kranzfelder, Petra; Anderson, Alyssa M.; Bouchard, William; Perry, James; Vondracek, Bruce C.; Ferrington, Leonard C.

    2014-01-01

    Diamesa mendotae Muttkowski, 1915 is a winter-active species common in groundwater-buffered streams of Minnesota and Wisconsin. This species is capable of surviving under snow cover for at least 28 days. Field collections of adult D. mendotae were used to determine survivorship under long-term exposure to controlled sub-freezing conditions. Specimens were placed into a controlled temperature chamber at −5 °C, batches removed at weekly intervals, and subsequently held at 6 °C to determine survivorship and longevity. Our results indicate that overall survivorship is negatively related to treatment duration of sub-freezing treatment, individuals can survive sub-freezing temperatures for at least 70 days, with total longevity of 92 days. Additionally, males had a significantly higher rate of survivorship than females within treatments. Total longevity increased with treatment time, suggesting adult D. mendotae may survive long periods of below-freezing temperatures under natural conditions before mating, which may convey population-level advantages.

  14. Factors influencing implementation of a Survivorship Care Plan : A quantitative process evaluation of the ROGY Care Trial

    NARCIS (Netherlands)

    de Rooij, B.H.; Ezendam, N.P.M.; Nicolaije, K.A.H.; Vos, M.C.; Pijnenborg, J.M.A.; Boll, Dorry; Kruitwagen, R.F.P.M.; van de Poll-Franse, L.V.

    2017-01-01

    Purpose The aim of this study is to investigate the factors that influence implementation of Survivorship Care Plans (SCPs) in the intervention arm of the ROGY Care trial by (1) assessing the level of SCP receipt in the ROGY Care trial and (2) identifying patient- and provider-level factors that

  15. Group size effects on survivorship and adult development in the gregarious larvae of Euselasia chrysippe (Lepidoptera, Riodinidae)

    Science.gov (United States)

    P. E. Allen

    2010-01-01

    Caterpillars living in aggregations may derive several benefits that outweigh the costs, including better survivorship and improved growth rates. I tested whether larval group size had an effect on these two vital rates in Euselasia chrysippe. These caterpillars feed gregariously during all instars and move in processionary form over the host plant...

  16. Conducting cancer control and survivorship research via cooperative groups: a report from the American Society of Preventive Oncology.

    Science.gov (United States)

    Palesh, Oxana; Demark-Wahnefried, Wendy; Mustian, Karen; Minasian, Lori; Rowland, Julia; Sprod, Lisa; Janelsins, Michelle; Peppone, Luke; Sloan, Jeff; Engquist, Karen Basen; Jones, Lee; Buist, Diana; Paskett, Electra D

    2011-05-01

    As the number of cancer survivors expands, the need for cancer control and survivorship research becomes increasingly important. The National Cancer Institute (NCI) Cooperative Groups may offer a viable platform to perform such research. Observational, preventive, and behavioral research can often be performed within the cooperative group setting, especially if resources needed for evaluation are fairly simple, if protocols are easily implemented within the typical clinical setting, and if interventions are well standardized. Some protocols are better suited to cooperative groups than are others, and there are advantages and disadvantages to conducting survivorship research within the cooperative group setting. Behavioral researchers currently involved in cooperative groups, as well as program staff within the NCI, can serve as sources of information for those wishing to pursue symptom management and survivorship studies within the clinical trial setting. The structure of the cooperative groups is currently changing, but going forward, survivorship is bound to be a topic of interest and one that perhaps may be more easily addressed using the proposed more centralized structure. ©2011 AACR.

  17. A unified degree day model describes survivorship of Copitarsia corruda Pogue & Simmons (Lepidoptera: Noctuidae) at different constant temperatures

    Science.gov (United States)

    N.N. G& #243; mez; R.C. Venette; J.R. Gould; D.F. Winograd

    2009-01-01

    Predictions of survivorship are critical to quantify the probability of establishment by an alien invasive species, but survival curves rarely distinguish between the effects of temperature on development versus senescence. We report chronological and physiological age-based survival curves for a potentially invasive noctuid, recently described as Copitarsia...

  18. Development and Survivorship of Scirtothrips dorsalis Hood (Thysanoptera: Thripidae in Different Growth Stages of Mango and Selected Weeds

    Directory of Open Access Journals (Sweden)

    Affandi

    2018-02-01

    Full Text Available The research objective was to quantify the development and survivorship rate of S. dorsalis in different phenological stages of mango and selected weeds. The research was conducted in the laboratory of PT. Trigatra Rajasa, Mango plantation in Ketowan, Arjasa, Situbondo, East Java, Indonesia from February to September 2015. The development and survivorship rate were done through observation of life span of S. dorsalis from egg to pupa. Analysis of Variance and Duncan Multiple Range Test (p = 0.05 with 5 replications were applied to ensure the significant differences among the treatments. The result showed that development and survivorship of Scirtothrips dorsalis were supported by mango flushes and flower as well as some weeds such as Leucania leucochepala, Ipomoea triloba, Achalypha indica, Desmanthus leptophyllus and Azadirachta indica as source of food. Achalypha indica was the most suitable host with development time (12.82 ± 0.21 days and survivorship (33 %. Weed Tridax procumbent, Momordica charantia and Mimosa pudica were unable to provide the living requirement for immature developmental stage of S. dorsalis.

  19. Supplemental diets containing yeast, sucrose, and soy powder enhance the survivorship, growth, and development of prey-limited cursorial spiders

    Science.gov (United States)

    We examined the effects of a food spray mixture (‘wheast’) and its individual ingredients (sucrose, yeast, and toasted soy flour) on the survivorship, growth, and development of a cursorial spider, Hibana futilis Banks (Anyphaenidae). Some treatments included eggs of Helicoverpa zea, a favored prey...

  20. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  1. A dyadic approach to understanding the impact of breast cancer on relationships between partners during early survivorship.

    Science.gov (United States)

    Keesing, Sharon; Rosenwax, Lorna; McNamara, Beverley

    2016-08-25

    The shared impact of breast cancer for women and their male partners is emerging as an important consideration during the experience of a breast cancer diagnosis, particularly during survivorship. This study aimed to explore the experiences of women and their partners during early survivorship and contributes a range of insights into the lives of those intimately affected by breast cancer. In-depth interviews were completed with Australian women survivors of breast cancer (n = 8) and their partners (n = 8), between six months and five years following cessation of treatment. Questions included a focus on the women and their partners' daily experiences during early survivorship, including the management of ongoing symptoms, engagement in leisure and social interests, returning to work, communicating with each other, maintenance of the current relationship and other important roles and responsibilities. Thematic analysis was employed to determine key themes arising from the dyadic accounts of women and their partners' experiences during early breast cancer survivorship. Women and their partners experienced many changes to their previous roles, responsibilities and relationships during early breast cancer survivorship. Couples also reported a range of communication, intimacy and sexuality concerns which greatly impacted their interactions with each other, adding further demands on the relationship. Three significant themes were determined: (1) a disconnection within the relationship - this was expressed as the woman survivor of breast cancer needing to prioritise her own needs, sometimes at the expense of her partner and the relationship; (2) reformulating the relationship - this reflects the strategies used by couples to negotiate changes within the relationship; and (3) support is needed to negotiate the future of the relationship - couples emphasised the need for additional support and resources to assist them in maintaining their relationship during early

  2. The effect of structural complexity, prey density, and "predator-free space" on prey survivorship at created oyster reef mesocosms

    Science.gov (United States)

    Humphries, Austin T.; La Peyre, Megan K.; Decossas, Gary A.

    2011-01-01

    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.

  3. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  4. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  5. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    Science.gov (United States)

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  6. The Effect of Z-Ligustilide on the Mobility of Human Glioblastoma T98G Cells.

    Directory of Open Access Journals (Sweden)

    Jun Yin

    Full Text Available Z-ligustilide (LIG, an essential oil extract from Radix Angelica sinensis, has broad pharmaceutical applications in treating cardio-vascular diseases and ischemic brain injury. Recently, LIG has been connected to Glioblastoma multiforme (GBM because of its structural similarity to 3-n-alkyphthalide (NBP, which is specifically cytotoxic to GBM cells. Hence, we investigated LIG's effect on GBM T98G cells. The study shows that LIG can significantly reduce T98G cells' migration in a dose-dependent manner. Furthermore, the attenuation of cellular mobility can be linked to the activity of the Rho GTPases (RhoA, Rac1 and Cdc42, the three critical molecular switches governing cytoskeleton remodeling; thus, regulating cell migration. LIG significantly reduces the expression of RhoA and affects in a milder manner the expression of Cdc42 and Rac1.

  7. Fertility preservation: A key survivorship issue for young women with cancer

    Directory of Open Access Journals (Sweden)

    Ana M Angarita

    2016-04-01

    Full Text Available Fertility preservation in the young cancer survivor is recognized as a key survivorship issue by the American Society of Clinical Oncology and the American Society of Reproductive Medicine. Thus, health care providers should inform women about the effects of cancer therapy on fertility and should discuss the different fertility preservation options available. It is also recommended to refer women expeditiously to a fertility specialist in order to improve counseling. Women’s age, diagnosis, presence of male partner, time available and preferences regarding use of donor sperm influence the selection of the appropriate fertility preservation option. Embryo and oocyte cryopreservation are the standard techniques used while ovarian tissue cryopreservation is new, yet promising. Despite the importance of fertility preservation for cancer survivors’ quality of life, there are still communication and financial barriers faced by women who wish to pursue fertility preservation.

  8. Fertility Preservation: A Key Survivorship Issue for Young Women with Cancer

    Science.gov (United States)

    Angarita, Ana Milena; Johnson, Cynae A.; Fader, Amanda Nickles; Christianson, Mindy S.

    2016-01-01

    Fertility preservation in the young cancer survivor is recognized as a key survivorship issue by the American Society of Clinical Oncology and the American Society of Reproductive Medicine. Thus, health-care providers should inform women about the effects of cancer therapy on fertility and should discuss the different fertility preservation options available. It is also recommended to refer women expeditiously to a fertility specialist in order to improve counseling. Women’s age, diagnosis, presence of male partner, time available, and preferences regarding use of donor sperm influence the selection of the appropriate fertility preservation option. Embryo and oocyte cryopreservation are the standard techniques used while ovarian tissue cryopreservation is new, yet promising. Despite the importance of fertility preservation for cancer survivors’ quality of life, there are still communication and financial barriers faced by women who wish to pursue fertility preservation. PMID:27200291

  9. The impact of the survivorship care plan on health care use

    DEFF Research Database (Denmark)

    Jeppesen, Mette Moustgaard; Ezendam, Nicole P M; Pijnenborg, Johanna M A

    2018-01-01

    PURPOSE: The purpose of this paper was to assess the impact of survivorship care plan (SCP) provision and moderating factors on health care use following endometrial cancer treatment. METHODS: Women newly diagnosed with endometrial cancer were included in a pragmatic cluster randomized trial at 12...... of general practitioner, specialist, and additional health care was collected through questionnaires after diagnosis and at 6-, 12-, and 24-month follow-up and compared using linear multilevel regression analyses. RESULTS: Women who received an SCP had more cancer-related primary care visits compared...... to the usual care arm during the first year after diagnosis (β = 0.7, p women in the SCP group used more additional health care compared to women receiving usual care (24 vs. 11%, p = 0.04). Women with anxious symptoms (p = 0.03) and women who received radiotherapy (p = 0.01) had...

  10. The Role of Environmental Design in Cancer Prevention, Diagnosis, Treatment, and Survivorship: A Systematic Literature Review.

    Science.gov (United States)

    Gharaveis, Arsalan; Kazem-Zadeh, Mahshad

    2018-01-01

    The purpose of this literature review is to provide a better understanding of the impact that environmental design can have on the process of cancer prevention, diagnosis, treatment, and survivorship. Cancer is considered a chronic disease in the United States, and more than 1.6 million new cases are diagnosed annually. New strategies of cancer care propose patient-centered services to achieve the best outcome, and researchers have found that environmental design can be an important part of improving this care. Searches were conducted in the PubMed and Google Scholar databases as well as in specific healthcare design journals such as Health Environments Research & Design, Environmental Psychology, and Environment and Behavior. The criteria for articles included in the review were (a) English-language articles related to facility design, which addressed (b) the topics of built environment in relation to cancer diagnosis, treatment, and survivorship, and were (c) published in peer-reviewed journals between 2000 and 2017. Finally, 10 articles were selected, and the contents were analyzed. The selected articles demonstrate that environmental design is one of the critical factors for success throughout the whole continuum of cancer care from diagnosis to end-of-treatment. Some of the specific conclusions from the review are that "neighborhood-oriented" design strategies can be beneficial (by providing accessibility to all facilities along the patient's path), that access to nature for patients, staff, and visitors alike is associated with better outcomes, and that provisions for natural lighting and noise reduction are associated with cancer patients' well-being.

  11. A Primary Care Initiative for Cancer Survivorship: A Case Study of Cancer in Obese Men

    Directory of Open Access Journals (Sweden)

    Mamdouh M. Shubair

    2017-01-01

    Full Text Available Background: Men in rural and northern areas of Canada experience considerable challenges in health care access for chronic conditions such as obesity, type 2 diabetes (T2D, and cancer. Obese men (body mass index/BMI ≥ 30 kg/m2 in rural/remote northern British Columbia (BC experience poorer health outcomes due to cancer risk compared to other men elsewhere in urban Canada. Context: Challenges faced by men who develop cancer as a complication of being obese are paramount in terms of primary care treatment of their cancers. Oftentimes cancer treatment is multi-modal and complex. Models of shared care have been proposed to provide coordinated survivorship care to the growing population of rural male cancer patients suffering from obesity and the Metabolic Syndrome (MetS. Methods: Objectives: The main objective of the study was to examine the type of cancer care programs that may have focused on men with cancer in northern British Columbia (BC. A secondary objective is to identify challenges in care experienced by men with cancer during their transition from in-hospital care back to their home communities. Population: We conducted a comprehensive literature review and a qualitative focus group interview with primary care physicians (PCPs, oncologists (n=8, and a convenience sample of male cancer patients (n=6 who have underlying obesity and Metabolic Syndrome (MetS. We examined the types of cancer care programs that may have targeted such men. We further identified challenges experienced by male cancer patients while transitioning back to their home communities. Results: The focus group results outlined themes speaking to a comprehensive shared care model that goes beyond surveillance of cancer recurrence in men with obesity. Conclusion: A shared survivorship care plan or model integrates collaboration among specialists in clinical decision making and best practice for treatment of cancer in obese men.

  12. Breast Cancer Survivorship: A Comprehensive Review of Long-Term Medical Issues and Lifestyle Recommendations

    Science.gov (United States)

    Bodai, Balazs I; Tuso, Phillip

    2015-01-01

    Long-term survival rates after a diagnosis of breast cancer are steadily rising. This is good news, but clinicians must also recognize that this brings new challenges to the medical community. As breast cancer becomes a chronic condition rather than a life-threatening illness owing to advances in early diagnosis and more effective treatments, health care practitioners must recognize and manage the long-term sequelae of the constellation of therapeutic modalities. Survivors of breast cancer represent a unique and extremely complex group of patients; not only do they have the challenge of dealing with multiple long-term side effects of treatment protocols, but many are also forced to address the preexisting comorbidities of their therapies, which often include multiple other issues. Therapies have additional and/or additive side effects that may interfere with treatments directed toward the new primary diagnosis of breast cancer. Our mandate is to establish a smooth transition from patient with breast cancer to survivor of breast cancer while providing ongoing and future guidance. Certainly, the information and resources to accomplish this transition are readily available; however, they are scattered throughout the literature and therefore are not easily accessible or available to the primary care physician. It is imperative that the information available regarding survivorship issues be accessible in an organized and useful format. This article is a modest attempt to provide a comprehensive review of the long-term medical issues relevant to survivorship after the diagnosis and treatment of breast cancer. A predicted shortage of oncologists by 2020 is well-recognized. Therefore, the bulk of long-term care will become dependent on the primary care physician. This shift of care means that these physicians will need to be well educated in the long-term medical issues related to breast cancer treatment. PMID:25902343

  13. Testicular cancer: A narrative review of the role of socioeconomic position from risk to survivorship

    Science.gov (United States)

    Richardson, Lisa C.; Neri, Antonio J.; Tai, Eric; Glenn, Jeffrey D.

    2015-01-01

    Background Testicular cancer (TC) is one of the most curable cancers. Given survival rates of close to 100% with appropriate therapy, ensuring proper treatment is essential. We reviewed and summarized the literature on the association of socioeconomic position (SEP) along the cancer control spectrum from risk factors to survivorship. Methods We searched PubMed from 1966 to 2011 using the following terms: testicular cancer, testicular neoplasm, poverty, and socioeconomic factors, retrieving 119 papers. After excluding papers for the non-English (10) language and non-relevance (46), we reviewed 63 papers. We abstracted information on socioeconomic position (SEP), including occupation, education, income, and combinations of the 3. Five areas were examined: risk factors, diagnosis, treatment, survival, and survivorship. Results Most studies examined area-based measures, not individual measures of SEP. The majority of studies found an increased risk of developing TC with high SEP though recent papers have indicated increased risk in low-income populations. Regarding diagnosis, recent papers have indicated that lower levels of education and SEP are risk factors for later-stage TC diagnosis and hence higher TC mortality. For treatment, 1 study that examined the use of radiation therapy (RT) in stage I seminoma reported that living in a county with lower educational attainment led to lower use of RT. For survival (mortality), several studies found that men living in lower SEP geographic areas experience lower survival and higher mortality. Conclusion The strongest evidence for SEP impact on testicular germ cell tumor (TGCT) was found for the risk of developing cancer as well as survival. The association of SEP with TGCT risk appears to have changed over the last decade. Given the highly curable nature of TGCT, more research is needed to understand how SEP impacts diagnosis and treatment for TGCT and to design interventions to address disparities in TGCT outcomes and SEP

  14. Glioblastomas with Oligodendroglial Component ? Common Origin of the Different Histological Parts and Genetic Subclassification

    OpenAIRE

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. Methods: The oligodendroglial and the ?classic? glioblastoma parts of 13 GBMO were analyzed separately by interphase flu...

  15. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  16. In vivo radiation sensitivity of glioblastoma multiforme

    International Nuclear Information System (INIS)

    Taghian, Alphonse; Freeman, Jill; Suit, Herman; DuBois, Willem; Budach, Wilfried; Baumann, Michael

    1995-01-01

    Purpose: Human glioblastoma (GBM) is one of the most resistant tumors to radiation. In previous reports, we have demonstrated a wide range of radiation sensitivity of GBM in vitro; that is, SF 2 values of 0.2 to 0.8. The great sensitivity of some of the cell lines is not in accord with the almost invariably fatal clinical outcome of patients with GBM. The sensitivity of cells in vitro pertains to cells cultured in optimal nutritional conditions. The TCD 50 (the radiation dose necessary to control 50% of the tumors locally) determined in lab animals is analogous to the use of radiation with curative intent in clinical radiation oncology. The aim of the present study was (a) to evaluate the sensitivity of GBM in vivo relative to that of other tumor types and (b) assess the relationship between the single dose TCD 50 of the xenografts and the sensitivity of the corresponding cell lines in vitro. Methods and Materials: The TCD 50 assay was used to study twelve human tumor lines. Four previously published values were added. A total of 10 GBM, 4 squamous cell carcinoma (SCC), 1 soft tissue sarcoma (STS), and 1 cancer colon (CC) are included in the analysis. For further suppression of the residual immune system, all the animals received 6 Gy whole-body irradiation 1 day before transplantation. Local tumor irradiations were given as a single dose, under conditions of clamp hypoxia using a Cs irradiator. Results: The TCD 50 values for the 10 GBM xenografts varied between 32.5 and 75.2 Gy, with an average of 47.2 ± 13.1 Gy. The TCD 50 values for the SCC were similar to those of the GBM and ranged from 40.7 and 54.4 Gy, with a mean of 46.8 ± 6.4. The difference between the average TCD 50 of GBM and SCC was not significant. The STS and CC xenografts had TCD 50 values of 46.0 and 49.2 Gy, respectively. No correlation was found between the TCD 50 in vivo and the SF 2 or D 0 in vitro. Conclusions: Our data on GBM xenografts showed a wide range of sensitivities to single dose

  17. In vivo radiation sensitivity of glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Taghian, Alphonse; Freeman, Jill; Suit, Herman; DuBois, Willem; Budach, Wilfried; Baumann, Michael

    1995-04-30

    Purpose: Human glioblastoma (GBM) is one of the most resistant tumors to radiation. In previous reports, we have demonstrated a wide range of radiation sensitivity of GBM in vitro; that is, SF{sub 2} values of 0.2 to 0.8. The great sensitivity of some of the cell lines is not in accord with the almost invariably fatal clinical outcome of patients with GBM. The sensitivity of cells in vitro pertains to cells cultured in optimal nutritional conditions. The TCD{sub 50} (the radiation dose necessary to control 50% of the tumors locally) determined in lab animals is analogous to the use of radiation with curative intent in clinical radiation oncology. The aim of the present study was (a) to evaluate the sensitivity of GBM in vivo relative to that of other tumor types and (b) assess the relationship between the single dose TCD{sub 50} of the xenografts and the sensitivity of the corresponding cell lines in vitro. Methods and Materials: The TCD{sub 50} assay was used to study twelve human tumor lines. Four previously published values were added. A total of 10 GBM, 4 squamous cell carcinoma (SCC), 1 soft tissue sarcoma (STS), and 1 cancer colon (CC) are included in the analysis. For further suppression of the residual immune system, all the animals received 6 Gy whole-body irradiation 1 day before transplantation. Local tumor irradiations were given as a single dose, under conditions of clamp hypoxia using a Cs irradiator. Results: The TCD{sub 50} values for the 10 GBM xenografts varied between 32.5 and 75.2 Gy, with an average of 47.2 {+-} 13.1 Gy. The TCD{sub 50} values for the SCC were similar to those of the GBM and ranged from 40.7 and 54.4 Gy, with a mean of 46.8 {+-} 6.4. The difference between the average TCD{sub 50} of GBM and SCC was not significant. The STS and CC xenografts had TCD{sub 50} values of 46.0 and 49.2 Gy, respectively. No correlation was found between the TCD{sub 50} in vivo and the SF{sub 2} or D{sub 0} in vitro. Conclusions: Our data on GBM

  18. Development of community plans to enhance survivorship from colorectal cancer: community-based participatory research in rural communities.

    Science.gov (United States)

    Lengerich, Eugene J; Kluhsman, Brenda C; Bencivenga, Marcyann; Allen, Regina; Miele, Mary Beth; Farace, Elana

    2007-09-01

    In 2002, 10.4% of the 10 million persons alive who have ever been diagnosed with cancer had colorectal cancer (CRC). Barriers, such as distance, terrain, access to care and cultural differences, to CRC survivorship may be especially relevant in rural communities. We tested the hypothesis that teams from rural cancer coalitions and hospitals would develop a Community Plan (CP) to enhance CRC survivorship. We used community-based participatory research and the PRECEDE-PROCEED model to train teams from rural cancer coalitions and hospitals in Pennsylvania and New York. We measured knowledge at three points in time and tested the change with McNemar's test, corrected for multiple comparisons (p < 0.0167). We also conducted a qualitative review of the CP contents. Fourteen (93.3%) of the 15 coalitions or hospitals initially recruited to the study completed a CP. Knowledge in public health, sponsorship of A National Action Plan for Cancer Survivorship, and CRC survivorship and treatment increased. Teams identified perceived barriers and community assets. All teams planned to increase awareness of community assets and almost all planned to enhance treatment-related care and psychosocial care for the CRC survivor; 50% planned to enhance primary care and CRC screening. The study demonstrated the interest and ability of rural organizations to plan to enhance CRC survivorship, including linkage of CRC survivorship to primary care. Rural cancer coalitions and hospitals may be a vehicle to develop local action for A National Action Plan. Access to more comprehensive care for CRC cancer survivors in rural communities appears to be facilitated by the community-based initiative described and investigated in this study. Efforts such as these could be replicated in other rural communities and may impact the care and quality of life of survivors with many types of cancers. While access to health services may be increased through community-based initiatives, we still need to measure

  19. Rapid progression of gliomatosis cerebri to secondary glioblastoma, factors that affects the progression rate: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Yu, In Kyu; Kim, Seung Min; Kim, Joo Heon; Lee, Seung Hoon; Lee, Seung Yeon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-03-15

    Glioblastomas may develop de novo or through progression from low-grade or anaplastic astrocytomas. The term 'primary glioblastoma' refers to a glioblastoma that lacks a precursor lesion and has a clinical history of less than three months. On the other hand, the term 'secondary glioblastoma' indicates that the glioblastoma has progressed from a low-grade tumor after a long latency period and often manifests in younger patients. These subtypes of glioblastoma develop via different genetic pathways, and they differ in prognosis and response to therapy. Thus, differential diagnosis of these subtypes and prediction of the factors that affect the progression from low-grade diffuse astrocytoma to secondary glioblastoma would be clinically very important. We present a rare case of secondary glioblastoma, which developed only three months after the follow up imaging evaluations, with a history of low grade glioma, and present the factors that cause rapid progression.

  20. A role for the transcription factor HEY1 in glioblastoma

    DEFF Research Database (Denmark)

    Hulleman, Esther; Quarto, Micaela; Vernell, Richard

    2009-01-01

    Glioblastoma multiforme (GBM), the highest-grade glioma, is the most frequent tumour of the brain with a very poor prognosis and limited therapeutic options. Although little is known about the molecular mechanisms that underlie glioblastoma formation, a number of signal transduction routes......, such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically upregulated in glioma...... and that expression of HEY1 in GBM correlates with tumour-grade and survival. In addition, we show by chromatin immunoprecipitations, luciferase assays and Northern blot experiments that HEY1 is a bona fide target of the E2F family of transcription factors, connecting the Ras and Notch signalling pathways. Finally...

  1. Advanced case of glioblastoma multiforme and pregnancy. An ethical dilemma.

    Science.gov (United States)

    Al-Rasheedy, Intisar M; Al-Hameed, Fahad M

    2015-10-01

    Glioblastoma multiforme (GBM) is the most common and malignant form of the glial tumors. Advanced and treated GBM is rarely associated with pregnancy for many reasons. Glioblastoma multiforme presenting during pregnancy carries unique challenges to the patient, baby, family, and health care providers. We describe an unusual case of advanced GBM that was treated with maximum doses of chemotherapy and radiations, and she became pregnant and presented at eighteenth weeks of gestation. Her medical management was associated with a significant ethical dilemma. We managed to deliver the baby safely through cesarean section at week 28 despite the critical condition of the mother. Unfortunately, the mother died 2 weeks post delivery. We concluded that although recurrent and treated GBM is rarely associated with pregnancy and carries dismal prognosis, but if it occurs, it can still be carried, and a multidisciplinary team work is the key for successful outcome.

  2. Management of glioblastoma after recurrence: A changing paradigm

    International Nuclear Information System (INIS)

    Mallick, S.; Benson, R.; Hakim, A.; Rath, G.K.

    2016-01-01

    Glioblastoma remains the most common primary brain tumor after the age of 40 years. Maximal safe surgery followed by adjuvant chemoradiotherapy has remained the standard treatment for glioblastoma (GBM). But recurrence is an inevitable event in the natural history of GBM with most patients experiencing it after 6–9 months of primary treatment. Recurrent GBM poses great challenge to manage with no well-defined management protocols. The challenge starts from differentiating radiation necrosis from true local progression. A fine balance needs to be maintained on improving survival and assuring a better quality of life. Treatment options are limited and ranges from re-excision, re-irradiation, systemic chemotherapy or a combination of these. Re-excision and re-irradiation must be attempted in selected patients and has been shown to improve survival outcomes. To facilitate the management of GBM recurrences, a treatment algorithm is proposed

  3. STAT6 expression in glioblastoma promotes invasive growth

    International Nuclear Information System (INIS)

    Merk, Barbara C; Owens, Jennifer L; Lopes, Maria-Beatriz S; Silva, Corinne M; Hussaini, Isa M

    2011-01-01

    Glioblastoma (GBM) is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs) play important roles in the regulation of GBM pathophysiology. STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA) of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3 H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum). Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt [1] public data depository (https://caintegrator.nci.nih.gov/rembrandt/). Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA) but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV) but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3 H-Thymidine uptake compared to the wild-type. There was some variation among the

  4. A prospective PET study of patients with glioblastoma multiforme

    DEFF Research Database (Denmark)

    Andersen, Preben B.; Blinkenberg, M; Lassen, U

    2006-01-01

    OBJECTIVE: To study the post-surgical metabolic and structural cerebral changes in patients with glioblastoma multiforme (GBM). MATERIALS AND METHODS: We examined ten patients prospectively with newly diagnosed GBM. All patients were primarily treated with surgery, followed by chemotherapy...... compared with structural imaging in the prospective evaluation of GBM. We found a difference in metabolic increase and tumor growth between the two treatment regimens, although this finding has limited relevance due to the design of the study....

  5. Survival benefit of surgery in recurrent glioblastoma multiforme.

    Science.gov (United States)

    Choudry, Usama Khalid; Khan, Saad Akhtar; Shamim, Muhammad Shahzad

    2017-12-01

    There is an ongoing debate regarding role of surgery for recurrent glioblastoma multiforme (GBM). Older literature hinted at only modest survival benefits with surgery and a high rate of morbidity. However, more recent literature suggests better survival that may be attributed to better surgical techniques and better options in adjuvant treatment. Herein the authors review recent literature with regards to the possible role of surgery in recurrent GBM and also look into the key factors impacting second surgery. .

  6. A novel prognostic six-CpG signature in glioblastomas

    OpenAIRE

    Yin , An-An; Lu , Nan; Etcheverry , Amandine; Aubry , Marc; Barnholtz-Sloan , Jill; Zhang , Lu-Hua; Mosser , Jean; Zhang , Wei; Zhang , Xiang; Liu , Yu-He; He , Ya-Long

    2018-01-01

    International audience; Aims: We aimed to identify a clinically useful biomarker using DNA methylation-based information to optimize individual treatment of patients with glioblastoma (GBM). Methods: A six-CpG panel was identified by incorporating genome-wide DNA methylation data and clinical information of three distinct discovery sets and was combined using a risk-score model. Different validation sets of GBMs and lower-grade gliomas and different statistical methods were implemented for pr...

  7. Endothelial trans-differentiation in glioblastoma recurring after radiotherapy.

    Science.gov (United States)

    De Pascalis, Ivana; Morgante, Liliana; Pacioni, Simone; D'Alessandris, Quintino Giorgio; Giannetti, Stefano; Martini, Maurizio; Ricci-Vitiani, Lucia; Malinverno, Matteo; Dejana, Elisabetta; Larocca, Luigi M; Pallini, Roberto

    2018-04-30

    We hypothesized that in glioblastoma recurring after radiotherapy, a condition whereby the brain endothelium undergoes radiation-induced senescence, tumor cells with endothelial phenotype may be relevant for tumor neovascularization. Matched glioblastoma samples obtained at primary surgery and at surgery for tumor recurrence after radiotherapy, all expressing epidermal growth factor receptor variant III (EGFRvIII), were assessed by a technique that combines fluorescent in situ hybridization (FISH) for the EGFR/CEP7 chromosomal probe with immunostaining for endothelial cells (CD31) and activated pericytes (α Smooth Muscle Actin). Five EGFRvIII-expressing paired primary/recurrent glioblastoma samples, in which the tumor cells showed EGFR/CEP7 amplification, were then assessed by CD31 and α Smooth Muscle Actin immunofluorescence. In glomeruloid bodies, the ratio between CD31+ cells with amplified EGFR/CEP7 signal and the total CD31+ cells was 0.23 ± 0.09 (mean ± sem) and 0.63 ± 0.07 in primary tumors and in recurrent ones, respectively (p < 0.002, Student-t test). In capillaries, the ratio of CD31+ cells with amplified EGFR/CEP7 over the total CD31+ cells lining the capillary lumen was 0.21 ± 0.06 (mean ± sem) and 0.42 ± 0.07 at primary surgery and at recurrence, respectively (p < 0.005, Student-t test). Expression of α Smooth Muscle Actin by cells with EGFR/CEP7 amplification was not observed. Then, in glioblastoma recurring after radiotherapy, where the brain endothelium suffers from radiation-induced cell senescence, tumor-derived endothelium plays a role in neo-vascularization.

  8. Neuroimaging classification of progression patterns in glioblastoma: a systematic review.

    Science.gov (United States)

    Piper, Rory J; Senthil, Keerthi K; Yan, Jiun-Lin; Price, Stephen J

    2018-03-30

    Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.

  9. Ebselen abrogates TNFα induced pro‐inflammatory response in glioblastoma

    OpenAIRE

    Tewari, Richa; Sharma, Vivek; Koul, Nitin; Ghosh, Abhishek; Joseph, Christy; Hossain Sk, Ugir; Sen, Ellora

    2008-01-01

    We investigated the pro‐inflammatory response mediated by TNFα in glioblastoma and whether treatment with organoselenium Ebselen (2‐phenyl‐1,2‐benzisoselenazol‐3[2H]one) can affect TNFα induced inflammatory response. Exposure to TNFα increased the expression of pro‐inflammatory mediator interleukin IL‐6, IL‐8, monocyte chemoattractant protein‐1 (MCP‐1) and cyclooxygenase (COX‐2). Treatment with Ebselen abrogated TNFα induced increase in pro‐inflammatory mediators. Ebselen not only abrogated T...

  10. MiRNA expression patterns predict survival in glioblastoma

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Belka, Claus; Zehentmayr, Franz; Niemöller, Olivier M; Eigenbrod, Sabina; Kretzschmar, Hans; Osthoff, Klaus-Schulze; Tonn, Jörg-Christian; Atkinson, Mike; Mörtl, Simone

    2011-01-01

    In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathematical analysis was performed. 35 glioblastoma patients treated between 7/2005 - 8/2008 at a single institution with surgery and postoperative radio(chemo)therapy were included in this retrospective analysis. For microarray analysis the febit biochip 'Geniom ® Biochip MPEA homo-sapiens' was used. Total RNA was isolated from FFPE tissue sections and 1100 different miRNAs were analyzed. It was possible to define a distinct miRNA expression pattern allowing for a separation of distinct prognostic subgroups. The defined miRNA pattern was significantly associated with early death versus long-term survival (split at 450 days) (p = 0.01). The pattern and the prognostic power were both independent of the MGMT status. At present, this is the first dataset defining a prognostic role of miRNA expression patterns in patients with glioblastoma. Having defined such a pattern, a prospective validation of this observation is required

  11. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    Science.gov (United States)

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  12. Prediction of clinical course of glioblastomas by MRI during radiotherapy

    International Nuclear Information System (INIS)

    Leitzen, Christina; Schild, Hans H.; Bungart, Birgitta; Luetter, Christiana; Muedder, Thomas; Wilhelm-Buchstab, Timo; Schueller, Heinrich; Herrlinger, Ulrich

    2010-01-01

    Purpose: Determine the value of MR studies in patients undergoing radiotherapy for glioblastomas pre and during radiotherapy to predict the clinical course. Patients and Methods: MR follow-up studies were performed in 33 patients with glioblastomas before radiotherapy, after 30 Gy, after 60 Gy, and in the treatment follow-up. Findings on MR were categorized into: definite progress, questionable progress, status idem. Patients were followed clinically (median for 11 months). Results: After 30 Gy 23/33 (70%) of the MR examination showed status idem. 10/33 (30%) demonstrated definite (n = 6) or questionable (n = 4) progress. Further tumor progress was faster in these patients and patients succumb to their disease earlier (9 vs. 22 months). The 60 Gy study showed definite (n = 8) and questionable (n = 6) progress in 14/33 (42%) cases. All these tumors were progressing faster and were associated with a comparatively reduced life expectancy. Conclusion: MR follow-up studies after 30 Gy in patients undergoing radiotherapy for glioblastomas allow for prognostic appraisal, and potentially early modification of treatment. (orig.)

  13. CAR T-Cell Therapies in Glioblastoma: A First Look.

    Science.gov (United States)

    Migliorini, Denis; Dietrich, Pierre-Yves; Stupp, Roger; Linette, Gerald P; Posey, Avery D; June, Carl H

    2018-02-01

    Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. A study of concurrent radiochemotherapy with paclitaxel in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Julka, P.K.; Awasthy, B.S.; Rath, G.K.; Agarwal, S.; Varna, T.; Mahapatra, A.K.; Singh, R.

    2000-01-01

    Despite advances in neurosurgery and radiotherapy, the prognosis of patients with glioblastoma multiforme remains poor. Reports in the literature about the radiosensitizing properties of paclitaxel stimulated the authors to conduct a study using paclitaxel concurrently with radiation in a group of 18 patients who had residual disease postoperatively. Paclitaxel was delivered weekly as an intravenous infusion in a dose of 60 mg/m 2 along with radiation to the primary lesion. A total of 108 cycles of paclitaxel was given. All the patients tolerated the treatment well. The main side effects were haematological, and neuropathy which was self-limiting. The overall 1-year survival rate was 70%, with 12 patients alive at 13 months. The median survival has not yet been reached although it is more than 13 months. Thus, paclitaxel can be safely delivered concomitantly with radiation in patients with glioblastoma multiforme. Larger, randomized trials are required to establish the comparative efficacy of paclitaxel as a radiosensitizer in glioblastoma multiforme. Copyright (1999) Blackwell Science Pty Ltd

  15. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Science.gov (United States)

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  16. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    Science.gov (United States)

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  17. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    Science.gov (United States)

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (PRITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  18. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Sminia, P.; Hulshof, M. C.; van der Kracht, A. H.; Leenstra, S.; Bosch, D. A.

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the

  19. American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline.

    Science.gov (United States)

    Runowicz, Carolyn D; Leach, Corinne R; Henry, N Lynn; Henry, Karen S; Mackey, Heather T; Cowens-Alvarado, Rebecca L; Cannady, Rachel S; Pratt-Chapman, Mandi L; Edge, Stephen B; Jacobs, Linda A; Hurria, Arti; Marks, Lawrence B; LaMonte, Samuel J; Warner, Ellen; Lyman, Gary H; Ganz, Patricia A

    2016-02-20

    The purpose of the American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline is to provide recommendations to assist primary care and other clinicians in the care of female adult survivors of breast cancer. A systematic review of the literature was conducted using PubMed through April 2015. A multidisciplinary expert workgroup with expertise in primary care, gynecology, surgical oncology, medical oncology, radiation oncology, and nursing was formed and tasked with drafting the Breast Cancer Survivorship Care Guideline. A total of 1,073 articles met inclusion criteria; and, after full text review, 237 were included as the evidence base. Patients should undergo regular surveillance for breast cancer recurrence, including evaluation with a cancer-related history and physical examination, and should be screened for new primary breast cancer. Data do not support performing routine laboratory tests or imaging tests in asymptomatic patients to evaluate for breast cancer recurrence. Primary care clinicians should counsel patients about the importance of maintaining a healthy lifestyle, monitor for post-treatment symptoms that can adversely affect quality of life, and monitor for adherence to endocrine therapy. Recommendations provided in this guideline are based on current evidence in the literature and expert consensus opinion. Most of the evidence is not sufficient to warrant a strong evidence-based recommendation. Recommendations on surveillance for breast cancer recurrence, screening for second primary cancers, assessment and management of physical and psychosocial long-term and late effects of breast cancer and its treatment, health promotion, and care coordination/practice implications are made.This guideline was developed through a collaboration between the American Cancer Society and the American Society of Clinical Oncology and has been published jointly by invitation and consent in both CA: A Cancer Journal for

  20. Mid-term survivorship and clinical outcomes of cobalt-chrome and oxidized zirconium on highly crosslinked polyethylene.

    Science.gov (United States)

    Petis, Stephen M; Vasarhelyi, Edward M; Lanting, Brent A; Howard, James L; Naudie, Douglas D R; Somerville, Lyndsay E; McCalden, Richard W

    2016-02-01

    The choice of bearing articulation for total hip arthroplasty in younger patients is amenable to debate. We compared mid-term patient-reported outcomes and survivorship across 2 different bearing articulations in a young patient cohort. We reviewed patients with cobalt-chrome or oxidized zirconium on highly crosslinked polyethylene who were followed prospectively between 2004 and 2012. Kaplan-Meier analysis was used to determine predicted cumulative survivorship at 5 years with all-cause and aseptic revisions as the outcome. We compared patient-reported outcomes, including the Harris hip score (HHS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short-form 12 (SF-12) scores. A total of 622 patients were followed during the study period. Mean follow-up was 8.2 (range 2.0-10.6) years for cobalt-chrome and 7.8 (range 2.1-10.7) years for oxidized zirconium. Mean age was 54.9 ± 10.6 years for cobalt-chrome and 54.8 ± 10.7 years for oxidized zirconium. Implant survivorship was 96.0% (95% confidence interval [CI] 94.9%-97.1%) for cobalt-chrome and 98.7% (95% CI 98.0%-99.4%) for oxidized zirconium on highly crosslinked polyethylene for all-cause revisions, and 97.2% (95% CI 96.2%-98.2%) for cobalt-chrome and 99.0% (95% CI 98.4%-99.6%) for oxidized zirconium for aseptic revisions. An age-, sex- and diagnosis-matched comparison of the HHS, WOMAC and SF-12 scores demonstrated no significant changes in clinical outcomes across the groups. Both bearing surface couples demonstrated excellent mid-term survivorship and outcomes in young patient cohorts. Future analyses on wear and costs are warranted to elicit differences between the groups at long-term follow-up.

  1. Conducting Cancer Control and Survivorship Research via Cooperative Groups: A Report from the American Society of Preventive Oncology

    OpenAIRE

    Palesh, Oxana; Demark-Wahnefried, Wendy; Mustian, Karen; Minasian, Lori; Rowland, Julia; Sprod, Lisa; Janelsins, Michelle; Peppone, Luke; Sloan, Jeff; Engquist, Karen Basen; Jones, Lee; Buist, Diana; Paskett, Electra

    2011-01-01

    As the number of cancer survivors expands, the need for cancer control and survivorship research becomes increasingly important. The National Cancer Institute (NCI) Cooperative Groups may offer a viable platform to perform such research. Observational, preventive, and behavioral research can often be performed within the cooperative group setting, especially if resources needed for evaluation are fairly simple, if protocols are easily implemented within the typical clinical setting, and if in...

  2. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples.

    Science.gov (United States)

    Szulzewsky, Frank; Arora, Sonali; de Witte, Lot; Ulas, Thomas; Markovic, Darko; Schultze, Joachim L; Holland, Eric C; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-08-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436. © 2016 Wiley Periodicals, Inc.

  3. Distribution, survivorship and mortality sources in immature stages of the neotropical leaf miner Pachyschelus coeruleipennis Kerremans (Coleoptera: Buprestidae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available Distribution, sources of mortality, and survivorship of immatures was investigated during the reproductive season of the neotropical buprestid leaf miner, Pachyschelus coeruleipennis, that burrows in leaves of Croton floribundus (Euphorbiaceae in SE, Brazil. Immature distribution was investigated by a random sample of 120 shrubs of C. floribundus growing along forest edges. Marked leaves were followed to recorded sources of mortality and survivorship of immature stages. Females lay their eggs preferentially in the young leaves of the host plant, with mines and pupal cells having been found on the middle part of plants. Densities of eggs, active mines, and pupal cells were, respectively, 25 ± 2, 6 ± 1, and 1 ± 0.3 per 100 leaves. Predators and parasitoids accounted for the majority of losses in the immature P. coeruleipennis population. Mortality was 3 times lower in the egg stage than in the last larval instar. Predation rate was greater than parasitism but the latter increased much more during the development of immatures. Survivorship and sources of mortality were different between early and late season sample of leaf-miner immatures. Parasitism rate was greater in the late-season whereas predation was greater in early-season samples. These results are compared with mortality patterns described for other buprestid leaf miners in temperate and tropical regions.

  4. Native legume transplant survivorship and subsequent seedling recruitment on unamended coal mine soils in the Canadian Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.R.

    1997-05-01

    Transplant survivorship, growth, and reproductive performance of several indigenous high-elevation legume species grown in unamended spoil were studied at three coal mines in the Canadian Rocky Mountains. Survivorship varied with species but was highest for Astragalus aboriginum (62%), Astragalus alpinus (73-57%), Astragalus vexilliflexus var. nubilus (73-63%), and Oxytropis sericea (77-62%). Mortality was greatest during the first two years for most species. The causes of transplant mortality are considered to be drought stress, deep-seated `frost-popping`/root exposure, and damage, for example, root exposure and destruction of meristematic tissues by foraging mammals such as bighorn sheep, mountain goats, grizzly bears, and marmots. Survivorship, growth, and reproductive activity were greatest at the two subalpine disturbances. Growth varied with species, but the greatest growth increments (height and diameter) were recorded during the first and second years. Reproductive activity for the Astragalus species began during the first year at one location but, in general, flowering and seed set did not begin until the second or third years. Recruitment from seed was small ({lt} 10/year). Several of these species appear to be suitable for revegetation of subalpine and alpine surface mine disturbances.

  5. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis.

    Science.gov (United States)

    Drury, Crawford; Manzello, Derek; Lirman, Diego

    2017-01-01

    The relationship between the coral genotype and the environment is an important area of research in degraded coral reef ecosystems. We used a reciprocal outplanting experiment with 930 corals representing ten genotypes on each of eight reefs to investigate the influence of genotype and the environment on growth and survivorship in the threatened Caribbean staghorn coral, Acropora cervicornis. Coral genotype and site were strong drivers of coral growth and individual genotypes exhibited flexible, non-conserved reaction norms, complemented by ten-fold differences in growth between specific G-E combinations. Growth plasticity may diminish the influence of local adaptation, where foreign corals grew faster than native corals at their home sites. Novel combinations of environment and genotype also significantly affected disturbance response during and after the 2015 bleaching event, where these factors acted synergistically to drive variation in bleaching and recovery. Importantly, small differences in temperature stress elicit variable patterns of survivorship based on genotype and illustrate the importance of novel combinations of coral genetics and small differences between sites representing habitat refugia. In this context, acclimatization and flexibility is especially important given the long lifespan of corals coping with complex environmental change. The combined influence of site and genotype creates short-term differences in growth and survivorship, contributing to the standing genetic variation needed for adaptation to occur over longer timescales and the recovery of degraded reefs through natural mechanisms.

  6. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis.

    Directory of Open Access Journals (Sweden)

    Crawford Drury

    Full Text Available The relationship between the coral genotype and the environment is an important area of research in degraded coral reef ecosystems. We used a reciprocal outplanting experiment with 930 corals representing ten genotypes on each of eight reefs to investigate the influence of genotype and the environment on growth and survivorship in the threatened Caribbean staghorn coral, Acropora cervicornis. Coral genotype and site were strong drivers of coral growth and individual genotypes exhibited flexible, non-conserved reaction norms, complemented by ten-fold differences in growth between specific G-E combinations. Growth plasticity may diminish the influence of local adaptation, where foreign corals grew faster than native corals at their home sites. Novel combinations of environment and genotype also significantly affected disturbance response during and after the 2015 bleaching event, where these factors acted synergistically to drive variation in bleaching and recovery. Importantly, small differences in temperature stress elicit variable patterns of survivorship based on genotype and illustrate the importance of novel combinations of coral genetics and small differences between sites representing habitat refugia. In this context, acclimatization and flexibility is especially important given the long lifespan of corals coping with complex environmental change. The combined influence of site and genotype creates short-term differences in growth and survivorship, contributing to the standing genetic variation needed for adaptation to occur over longer timescales and the recovery of degraded reefs through natural mechanisms.

  7. STAT6 expression in glioblastoma promotes invasive growth

    Directory of Open Access Journals (Sweden)

    Silva Corinne M

    2011-05-01

    Full Text Available Abstract Background Glioblastoma (GBM is a highly aggressive malignant primary brain tumor, characterized by rapid growth, diffuse infiltration of cells into both adjacent and remote brain regions, and a generalized resistance to currently available treatment modalities. Recent reports in the literature suggest that Signal Transducers and Activators of Transcription (STATs play important roles in the regulation of GBM pathophysiology. Methods STAT6 protein expression was analyzed by Western blotting in GBM cell lines and by immunohistochemistry in a tissue microarray (TMA of glioma patient tissues. We utilized shRNA against STAT6 to investigate the effects of prolonged STAT6 depletion on the growth and invasion of two STAT6-positive GBM cell lines. Cell proliferation was assessed by measuring 3H-Thymidine uptake over time. Invasion was measured using an in vitro transwell assay in which cells invade through a type IV collagen matrix toward a chemoattractant (Fetal Bovine Serum. Cells were then stained and counted. Kaplan-Meyer survival curves were generated to show the correlation between STAT6 gene expression and patient survival in 343 glioma patients and in a subset of patients with only GBM. Gene expression microarray and clinical data were acquired from the Rembrandt 1 public data depository (https://caintegrator.nci.nih.gov/rembrandt/. Lastly, a genome-wide expression microarray analysis was performed to compare gene expression in wild-type GBM cells to expression in stable STAT6 knockdown clones. Results STAT6 was expressed in 2 GBM cell lines, U-1242MG and U-87MG, and in normal astrocytes (NHA but not in the U-251MG GBM cell line. In our TMA study, STAT6 immunostaining was visible in the majority of astrocytomas of all grades (I-IV but not in normal brain tissue. In positive cells, STAT6 was localized exclusively in the nuclei over 95% of the time. STAT6-deficient GBM cells showed a reduction in 3H-Thymidine uptake compared to the wild

  8. Parameter optimization for constructing competing endogenous RNA regulatory network in glioblastoma multiforme and other cancers.

    Science.gov (United States)

    Chiu, Yu-Chiao; Hsiao, Tzu-Hung; Chen, Yidong; Chuang, Eric Y

    2015-01-01

    In addition to direct targeting and repressing mRNAs, recent studies reported that microRNAs (miRNAs) can bridge up an alternative layer of post-transcriptional gene regulatory networks. The competing endogenous RNA (ceRNA) regulation depicts the scenario where pairs of genes (ceRNAs) sharing, fully or partially, common binding miRNAs (miRNA program) can establish coexpression through competition for a limited pool of the miRNA program. While the dynamics of ceRNA regulation among cellular conditions have been verified based on in silico and in vitro experiments, comprehensive investigation into the strength of ceRNA regulation in human datasets remains largely unexplored. Furthermore, pan-cancer analysis of ceRNA regulation, to our knowledge, has not been systematically investigated. In the present study we explored optimal conditions for ceRNA regulation, investigated functions governed by ceRNA regulation, and evaluated pan-cancer effects. We started by investigating how essential factors, such as the size of miRNA programs, the number of miRNA program binding sites, and expression levels of miRNA programs and ceRNAs affect the ceRNA regulation capacity in tumors derived from glioblastoma multiforme patients captured by The Cancer Genome Atlas (TCGA). We demonstrated that increased numbers of common targeting miRNAs as well as the abundance of binding sites enhance ceRNA regulation and strengthen coexpression of ceRNA pairs. Also, our investigation revealed that the strength of ceRNA regulation is dependent on expression levels of both miRNA programs and ceRNAs. Through functional annotation analysis, our results indicated that ceRNA regulation is highly associated with essential cellular functions and diseases including cancer. Furthermore, the highly intertwined ceRNA regulatory relationship enables constitutive and effective intra-function regulation of genes in diverse types of cancer. Using gene and microRNA expression datasets from TCGA, we successfully

  9. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma

    DEFF Research Database (Denmark)

    Sehested, Astrid Marie

    2016-01-01

    Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET...

  10. Prognostic value of plasma transforming growth factor-beta in patients with glioblastoma multiforme

    NARCIS (Netherlands)

    Hulshof, M. C.; Sminia, P.; Barten-van Rijbroek, A. D.; Gonzalez Gonzalez, D.

    2001-01-01

    We investigated whether the postoperative concentration of circulating transforming growth factor beta (TGF-beta) yields prognostic value in patients with glioblastoma multiforme (gbm). Blood was collected from 20 healthy volunteers and in 28 patients with mainly glioblastoma multiforme (gbm), both

  11. Glioblastomas with Oligodendroglial Component – Common Origin of the Different Histological Parts and Genetic Subclassification

    Directory of Open Access Journals (Sweden)

    Barbara Klink

    2010-01-01

    Full Text Available Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO. Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data.

  12. Analysis of fractional anisotropy facilitates differentiation of glioblastoma and brain metastases in a clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Stefanie, E-mail: stefanie.bette@tum.de [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Huber, Thomas; Wiestler, Benedikt; Boeckh-Behrens, Tobias [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Zimmer, Claus; Kirschke, Jan S. [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany)

    2016-12-15

    Purpose: Differentiating glioblastoma from brain metastases is important for therapy planning. Diffusion tensor imaging (DTI) was described as a promising tool, however with conflicting results. Aim: of this study was to analyze the clinical utility of DTI for the differentiation of brain metastases and glioblastoma. Methods: 294 patients (165 glioblastoma, 129 brain metastases) with preoperative DTI were included in this retrospective study. Fractional anisotropy (FA) was measured via regions of interest (ROIs) in the contrast-enhancing tumor, the necrosis and the FLAIR-hyperintense non-enhancing peritumoral region (NEPTR). Two neuroradiologists classified patient cases as glioblastoma or brain metastases without and with knowledge of FA values. Results: Glioblastoma showed significantly higher FA{sub contrast} (median glioblastoma = 0.33, metastases = 0.23; P < 0.001) whereas no significant difference was observed for FA{sub NEPTR} (0.21 vs. 0.22; P = 0.28) and for FA{sub necrosis} (0.17 vs. 0.18, P = 0.37). FA improved diagnostic accuracy of the neuroradiologists significantly from an AUC of 0.84/0.85 (Reader1/Reader2) to 0.89/0.92. Conclusions: Glioblastoma show significantly higher FA values in the contrast enhancing tumor part than brain metastases. Implementation of a ROI-based measurement of FA values and FA color maps in clinical routine helps to differentiate between glioblastoma and brain metastases.

  13. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; Wormer, Jill R.; Kakar, Hala; Breznik, Barbara; van der Swaan, Britt; Hulsbos, Renske; Tigchelaar, Wikky; Tonar, Zbynek; Khurshed, Mohammed; Molenaar, Remco J.; van Noorden, Cornelis J. F.

    2018-01-01

    In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α),

  14. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review.

    Science.gov (United States)

    Mahajan-Thakur, Shailaja; Bien-Möller, Sandra; Marx, Sascha; Schroeder, Henry; Rauch, Bernhard H

    2017-11-17

    The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.

  15. Electronic patient self-assessment and management (SAM): a novel framework for cancer survivorship.

    Science.gov (United States)

    Vickers, Andrew J; Salz, Talya; Basch, Ethan; Cooperberg, Matthew R; Carroll, Peter R; Tighe, Foss; Eastham, James; Rosen, Raymond C

    2010-06-17

    We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM). SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC) and the University of California, San Francisco (UCSF) for aiding the clinical management of patients after surgery for prostate cancer. Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate) or security. SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice.

  16. Haematopoietic stem cell transplantation survivorship and quality of life: is it a small world after all?

    Science.gov (United States)

    Brice, Lisa; Gilroy, Nicole; Dyer, Gemma; Kabir, Masura; Greenwood, Matt; Larsen, Stephen; Moore, John; Kwan, John; Hertzberg, Mark; Brown, Louisa; Hogg, Megan; Huang, Gillian; Tan, Jeff; Ward, Christopher; Gottlieb, David; Kerridge, Ian

    2017-02-01

    The aim of this qualitative study was to gain a rich understanding of the impact that haematopoietic stem cell transplantation (HSCT) has on long-term survivor's quality of life (QoL). Participants included 441 survivors who had undergone HSCT for a malignant or non-malignant disease. Data were obtained by a questionnaire positing a single open-ended question asking respondents to list the three issues of greatest importance to their QoL in survivorship. Responses were analysed and organised into QoL themes and subthemes. Major themes identified included the following: the failing body and diminished physical effectiveness, the changed mind, the loss of social connectedness, the loss of the functional self and the patient for life. Each of these themes manifests different ways in which HSCT survivor's world and opportunities had diminished compared to the unhindered and expansive life that they enjoyed prior to the onset of disease and subsequent HSCT. HSCT has a profound and pervasive impact on the life of survivors-reducing their horizons and shrinking various parts of their worlds. While HSCT survivors can describe the ways in which their life has changed, many of their fears, anxieties, regrets and concerns are existential in nature and are ill-defined-making it exceeding unlikely that they would be adequately captured by standard psychometric measures of QoL post HSCT.

  17. Spatial patterns of coral survivorship: impacts of adult proximity versus other drivers of localized mortality

    Directory of Open Access Journals (Sweden)

    David A. Gibbs

    2015-11-01

    Full Text Available Species-specific enemies may promote prey coexistence through negative distance- and density-dependent survival of juveniles near conspecific adults. We tested this mechanism by transplanting juvenile-sized fragments of the brooding corals Pocillopora damicornis and Seriatopora hystrix 3, 12, 24 and 182 cm up- and down-current of conspecific adults and monitoring their survival and condition over time. We also characterized the spatial distribution of P. damicornis and S. hystrix within replicate plots on three Fijian reef flats and measured the distribution of small colonies within 2 m of larger colonies of each species. Juvenile-sized transplants exhibited no differences in survivorship as a function of distance from adult P. damicornis or S. hystrix. Additionally, both P. damicornis and S. hystrix were aggregated rather than overdispersed on natural reefs. However, a pattern of juveniles being aggregated near adults while larger (and probably older colonies were not suggests that greater mortality near large adults could occur over longer periods of time or that size-dependent mortality was occurring. While we found minimal evidence of greater mortality of small colonies near adult conspecifics in our transplant experiments, we did document hot-spots of species-specific corallivory. We detected spatially localized and temporally persistent predation on P. damicornis by the territorial triggerfish Balistapus undulatus. This patchy predation did not occur for S. hystrix. This variable selective regime in an otherwise more uniform environment could be one mechanism maintaining diversity of corals on Indo-Pacific reefs.

  18. Electronic patient self-assessment and management (SAM: a novel framework for cancer survivorship

    Directory of Open Access Journals (Sweden)

    Tighe Foss

    2010-06-01

    Full Text Available Abstract Background We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM. SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Methods Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC and the University of California, San Francisco (UCSF for aiding the clinical management of patients after surgery for prostate cancer. Results Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate or security. Conclusion SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice.

  19. Survivorship care plans: are randomized controlled trials assessing outcomes that are relevant to stakeholders?

    Science.gov (United States)

    Birken, Sarah A; Urquhart, Robin; Munoz-Plaza, Corrine; Zizzi, Alexandra R; Haines, Emily; Stover, Angela; Mayer, Deborah K; Hahn, Erin E

    2018-03-23

    The purpose of this study was to compare outcomes assessed in extant randomized controlled trials (RCTs) to outcomes that stakeholders expect from survivorship care plans (SCPs). To facilitate the transition from active treatment to follow-up care for the 15.5 million US cancer survivors, many organizations require SCP use. However, results of several RCTs of SCPs' effectiveness have been null, possibly because they have evaluated outcomes on which SCPs should be expected to have limited influence. Stakeholders (e.g., survivors, oncologists) may expect outcomes that differ from RCTs' outcomes. We identified RCTs' outcomes using a PubMed literature review. We identified outcomes that stakeholders expect from SCPs using semistructured interviews with stakeholders in three healthcare systems in the USA and Canada. Finally, we mapped RCTs' outcomes onto stakeholder-identified outcomes. RCT outcomes did not fully address outcomes that stakeholders expected from SCPs, and RCTs assessed outcomes that stakeholders did not expect from SCPs. RCTs often assessed outcomes only from survivors' perspectives. RCTs of SCPs' effectiveness have not assessed outcomes that stakeholders expect. To better understand SCPs' effectiveness, future RCTs should assess outcomes of SCP use that are relevant from the perspective of multiple stakeholders. SCPs' effectiveness may be optimized when used with an eye toward outcomes that stakeholders expect from SCPs. For survivors, this means using SCPs as a map to guide them with respect to what kind of follow-up care they should seek, when they should seek it, and from whom they should seek it.

  20. The Experiences of Young Adults With Hodgkin Lymphoma Transitioning to Survivorship: A Grounded Theory Study.

    Science.gov (United States)

    Matheson, Lauren; Boulton, Mary; Lavender, Verna; Collins, Graham; Mitchell-Floyd, Tracy; Watson, Eila

    2016-09-01

    To explore the experiences of young adults with Hodgkin lymphoma during the first year following the end of initial treatment. 
. A qualitative grounded theory study.
. Interviews with patients recruited from three cancer centers in England.
. 10 Hodgkin lymphoma survivors (four men and six women aged 21-39 years) recruited as part of a larger study of 28 young adult cancer survivors.
. Semistructured interviews were conducted about two months after treatment completion, and follow-up interviews were conducted seven months later. The authors' grounded theory of positive psychosocial adjustment to cancer provided the conceptual framework.
. Positive reframing, informal peer support, acceptance, and normalization helped young adults dismantle the threats of Hodgkin lymphoma during the course of treatment. However, they described losing a sense of security following treatment completion. Greater age-specific information to enable better preparation for the future was desired regarding body image, fertility, sexual relationships, work, and socializing.
. Informal support mechanisms, like peer support and patient navigator interventions, may be useful ways to further support young adults after treatment completion.
. Positive psychosocial adjustment to cancer survivorship in young adults is facilitated by having informal peer support; being able to positively reframe, accept, and normalize their experience; and being prepared for the future.

  1. Acyclovir inhibition of IDO to decrease Tregs as a glioblastoma treatment adjunct

    Directory of Open Access Journals (Sweden)

    Söderlund Johan

    2010-08-01

    Full Text Available Abstract Regulatory T cells, Tregs, are a subset of lymphocytes that have immunosuppressive attributes. They are elevated in blood of glioblastoma patients and within this tumor's tissue itself. Indoleamine 2,3-dioxygenase, IDO, converts tryptophan to kynurenine. IDO activity enhances Treg formation by pathways that are unknown. Experimentally, inhibition of IDO decreases Treg function and number in rodents. The common anti-viral agent acyclovir inhibits IDO. Acyclovir may thereby decrease Treg function in glioblastoma. If it can be confirmed that Treg counts are elevated in glioblastoma patients' tumor tissue, and if we can document acyclovir's lowering of tissue Treg counts by a small trial of acyclovir in pre-operative glioblastoma patients, a trial of acyclovir effect on survival should be done given the current poor prognosis of glioblastoma and the well-established safety and low side effect burden of acyclovir.

  2. Clinico-pathological studies of CSF dissemination of glioblastoma and medulloblastoma

    International Nuclear Information System (INIS)

    Kato, Kyozo; Yoshida, Jun; Kageyama, Naoki

    1986-01-01

    Clinico-pathological findings of CSF dissemination which was diagnosed on CT scan, were studied on 13 cases of glioblastoma and 9 cases of medulloblastoma. The type of CSF dissemination and the prognosis of patients were both different between glioblastoma and medulloblastoma. In the former, the dissemination was predominantly in ventricular walls and in the latter, in basal cisterns. The mean survival time after the diagnosis of dissemination is 6 months of glioblastoma as compared with 13 months of medulloblastoma. The Pathological studies show that subependymal and/or subpial infiltration of tumor cells, and thickness of arachnoid membrane by marked mesodermal reaction were demonstrated in cases of glioblastoma. On the contrary, tumor cells of medulloblastoma grow markedly in the subarachnoid space and/or on the ependymal layers. From these pathological findings of CSF dissemination, it will be resulted that the prognosis of glioblastoma is much more poor that of medulloblastoma. (author)

  3. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  4. Elevated chemokine CC-motif receptor-like 2 (CCRL2) promotes cell migration and invasion in glioblastoma.

    Science.gov (United States)

    Yin, Fengqiong; Xu, Zhenhua; Wang, Zifeng; Yao, Hong; Shen, Zan; Yu, Fang; Tang, Yiping; Fu, Dengli; Lin, Sheng; Lu, Gang; Kung, Hsiang-Fu; Poon, Wai Sang; Huang, Yunchao; Lin, Marie Chia-Mi

    2012-12-14

    Chemokine CC-motif receptor-like 2 (CCRL2) is a 7-transmembrane G protein-coupled receptor which plays a key role in lung dendritic cell trafficking to peripheral lymph nodes. The function and expression of CCRL2 in cancer is not understood at present. Here we report that CCRL2 expression level is elevated in human glioma patient samples and cell lines. The magnitude of increase is positively associated with increasing tumor grade, with the highest level observed in grade IV glioblastoma. By gain-of-function and loss-of-function studies, we further showed that CCRL2 did not regulate the growth of human glioblatoma U87 and U373 cells. Importantly, we demonstrated that over-expression of CCRL2 significantly enhanced the migration rate and invasiveness of the glioblastoma cells. Taken together, these results suggest for the first time that elevated CCRL2 in glioma promotes cell migration and invasion. The potential roles of CCRL2 as a novel therapeutic target and biomarker warrant further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Pablo Freire

    Full Text Available The Cancer Genome Atlas project (TCGA has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise.Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome and (http://bioinformaticstation.org, respectively.The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  6. Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.

    Science.gov (United States)

    Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G

    2018-01-01

    Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.

  7. Glioblastoma Stem-Like Cells—Biology and Therapeutic Implications

    International Nuclear Information System (INIS)

    Gürsel, Demirkan B.; Shin, Benjamin J.; Burkhardt, Jan-Karl; Kesavabhotla, Kartik; Schlaff, Cody D.; Boockvar, John A.

    2011-01-01

    The cancer stem-cell hypothesis proposes that malignant tumors are likely to encompass a cellular hierarchy that parallels normal tissue and may be responsible for the maintenance and recurrence of glioblastoma multiforme (GBM) in patients. The purpose of this manuscript is to review methods for optimizing the derivation and culturing of stem-like cells also known as tumor stem cells (TSCs) from patient-derived GBM tissue samples. The hallmarks of TSCs are that they must be able to self-renew and retain tumorigenicity. The isolation, optimization and derivation of TSCs as outlined in this review, will be important in understanding biology and therapeutic applications related to these cells

  8. Glioblastoma, gadolinium (III) and NCT. An in vitro study

    International Nuclear Information System (INIS)

    Mercanti, D.; Casalbore, P.; Sanita, F.; Rosi, F.; Festinesi, A.; Pallini, R.; Gilbert, B.; Stasio, G. de

    2000-01-01

    We treated cultured human glioblastoma cells with gadolinium (III) [gadopentetic acid] and we found that: a) cells do internalise this element; b) gadolinium can be localised in the cells nuclei; c) exposure of the cultures to a neutron beam produced a significant and immediate cell death. Although cell survival was also influenced in the irradiated controls it was further reduced (about 50%) in cells pre-exposed to 10 mg/ml gadopentetic acid. We also found that Gd uptake, as measured by ICP-AES, was concentration dependent. (author)

  9. Molecular genetics of glioblastomas: defining subtypes and understanding the biology.

    Science.gov (United States)

    Renault, Ilana Zalcberg; Golgher, Denise

    2015-02-01

    Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Glioblastoma: background, standard treatment paradigms, and supportive care considerations.

    Science.gov (United States)

    Ellor, Susan V; Pagano-Young, Teri Ann; Avgeropoulos, Nicholas G

    2014-01-01

    Glioblastoma is a brain tumor condition marked by rapid neurological and clinical demise, resulting in disproportionate disability for those affected. Caring for this group of patients is complex, intense, multidisciplinary in nature, and fraught with the need for expensive treatments, surveillance imaging, physician follow-up, and rehabilitative, psychological, and social support interventions. Few of these patients return to the workforce for any meaningful time frame, and because of the enormity of the financial burden that patients, their caregivers, and society face, utilization reviews become the focus of ethical scrutiny. © 2014 American Society of Law, Medicine & Ethics, Inc.

  11. Defining Survivorship Trajectories Across Patients With Solid Tumors: An Evidence-Based Approach.

    Science.gov (United States)

    Dood, Robert L; Zhao, Yang; Armbruster, Shannon D; Coleman, Robert L; Tworoger, Shelley; Sood, Anil K; Baggerly, Keith A

    2018-06-02

    Survivorship involves a multidisciplinary approach to surveillance and management of comorbidities and secondary cancers, overseen by oncologists, surgeons, and primary care physicians. Optimal timing and coordination of care, however, is unclear and often based on arbitrary 5-year cutoffs. To determine high- and low-risk periods for all tumor types that could define when survivorship care might best be overseen by oncologists and when to transition to primary care physicians. In this pan-cancer, longitudinal, observational study, excess mortality hazard, calculated as an annualized mortality risk above a baseline population, was plotted over time. The time this hazard took to stabilize defined a high-risk period. The percent morality elevation above age- and sex-matched controls in the latter low-risk period was reported as a mortality gap. The US population-based Surveillance, Epidemiology, and End Results database defined the cancer population, and the US Census life tables defined controls. Incident cases of patients with cancer were separated into tumor types based on International Classification of Diseases for Oncology definitions. Population-level data on incident cancer cases was compared with the general US population. Overall mortality and cause of death were reported on observed cancer cases. A total of 2 317 185 patients (median age, 63 years; 49.8% female) with 66 primary tumor types were evaluated. High-risk surveillance period durations ranged from less than 1 year (breast, prostate, lip, ocular, and parathyroid cancers) up to 19 years (unspecified gastrointestinal cancers). The annualized mortality gap, representing the excess mortality in the stable period, ranged from a median 0.26% to 9.33% excess annual mortality (thyroid and hypopharyngeal cancer populations, respectively). Cluster analysis produced 6 risk cluster groups: group 1, with median survival of 16.2 (5th to 95th percentile range [PR], 10.7-40.2) years and median high-risk period

  12. Gender representation of cancer patients in medical treatment and psychosocial survivorship research: changes over three decades.

    Science.gov (United States)

    Hoyt, Michael A; Rubin, Lisa R

    2012-10-01

    Prior studies raise concern about gender bias in cancer research, including insufficient inclusion of women or men, or studying women and men differently. The 1993 National Institutes of Health Revitalization Act aimed to eliminate gender bias in medicine. To examine changes in medical and psychological literature, this study reviews gender representation in biomedical treatment studies and psychosocial survivorship studies published in a single year. Research published in Cancer in 2007, and all empirical psychological studies about cancer published that year, provided a 15-year update to findings reported by Meyerowitz and Hart. The gender distribution and context of included articles were coded and compared with findings from 1983 and 1992. Across biomedical studies, 34.3% of subjects were women (vs 47% of new cancers and 48% of cancer deaths). Among men, 41.3% had sex-specific cancers (vs 12.5% [1983] and 12.3% [1992]). Among women, 46.1% had sex-specific cancers (vs 69.1% [1983] and 64.6% [1992]). Fewer women (36.8%) were represented in sex-nonspecific cancer studies (vs 41.4% [1983] and 42.5% [1992]); however, fewer studies had a significant (>20%) gender disparity. Across psychosocial studies, representation of men increased to 47.9% (vs 30.4% [1983] and 29.9% [1992]). The proportion of men in studies of feelings/relationships increased to 47% (vs 22.9% [1992]); the proportion of women in studies assessing physical/functional ability increased to 58.3% (vs 45.4%). Women remain under-represented in sex-nonspecific biomedical research, whereas men's representation in sex-specific research increased substantially. Psychosocial research trends suggest movement from research questions supporting traditional stereotypes that women feel and men act. Copyright © 2012 American Cancer Society.

  13. Usability and acceptance evaluation of ACESO: a Web-based breast cancer survivorship tool.

    Science.gov (United States)

    Kapoor, Akshat; Nambisan, Priya

    2018-01-25

    The specific objective of this research is to design and develop a personalized Web application to support breast cancer survivors after treatment, as they deal with post-treatment challenges, such as comorbidities and side effects of treatment. A mixed-methods approach, utilizing a combination of think-aloud analysis, personal interviews, and surveys, was adopted for user acceptance and usability testing among a group of breast cancer survivors. User feedback was gathered on their perceived value of the application, and any user-interface issues that may hinder the overall usability were identified. The application's portability and capability of organizing their entire breast cancer-related medical history as well as tracking various quality of life indicators were perceived to be valuable features. The application had an overall high usability; however, certain sections of the application were not as intuitive to locate. Visual elements of the website were appreciated; however, overall experience would benefit from incorporating more sociable elements that exhibit positive re-enforcement within the end user and provide a friendlier experience. The results of the study showcase the need for more personalized tools and resources to support survivors in self-management. It also demonstrates the ability to integrate breast cancer survivorship care plans from diverse providers and paves the way to add further value-added features in consumer health applications, such as personal decision support. Using a personal decision support-based tool can serve as a training tool and resource, providing these patients with pertinent information about the various aspects of their long-term health, while educating them about any related side effects and symptoms. It is hoped that making such tools more accessible could help in engaging survivors to play an active role in managing their health and encourage shared decision-making with their providers.

  14. Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement.

    Directory of Open Access Journals (Sweden)

    Tai Chong Toh

    Full Text Available Size-dependent mortality influences the recolonization success of juvenile corals transplanted for reef restoration and assisting juvenile corals attain a refuge size would thus improve post-transplantation survivorship. To explore colony size augmentation strategies, recruits of the scleractinian coral Pocillopora damicornis were fed with live Artemia salina nauplii twice a week for 24 weeks in an ex situ coral nursery. Fed recruits grew significantly faster than unfed ones, with corals in the 3600, 1800, 600 and 0 (control nauplii/L groups exhibiting volumetric growth rates of 10.65 ± 1.46, 4.69 ± 0.9, 3.64 ± 0.55 and 1.18 ± 0.37 mm3/week, respectively. Corals supplied with the highest density of nauplii increased their ecological volume by more than 74 times their initial size, achieving a mean final volume of 248.38 ± 33.44 mm3. The benefits of feeding were apparent even after transplantation to the reef. The corals in the 3600, 1800, 600 and 0 nauplii/L groups grew to final sizes of 4875 ± 260 mm3, 2036 ± 627 mm3, 1066 ± 70 mm3 and 512 ± 116 mm3, respectively. The fed corals had significantly higher survival rates than the unfed ones after transplantation (63%, 59%, 56% and 38% for the 3600, 1800, 600 and 0 nauplii/L treatments respectively. Additionally, cost-effectiveness analysis revealed that the costs per unit volumetric growth were drastically reduced with increasing feed densities. Corals fed with the highest density of nauplii were the most cost-effective (US$0.02/mm3, and were more than 12 times cheaper than the controls. This study demonstrated that nutrition enhancement can augment coral growth and post-transplantation survival, and is a biologically and economically viable option that can be used to supplement existing coral mariculture procedures and enhance reef restoration outcomes.

  15. Beyond treatment – Psychosocial and behavioural issues in cancer survivorship research and practice

    Directory of Open Access Journals (Sweden)

    Neil K. Aaronson

    2014-06-01

    Full Text Available The population of cancer survivors has grown steadily over the past several decades. Surviving cancer, however, is not synonymous with a life free of problems related to the disease and its treatment. In this paper we provide a brief overview of selected physical and psychosocial health problems prevalent among cancer survivors, namely pain, fatigue, psychological distress and work participation. We also address issues surrounding self-management and e-Health interventions for cancer survivors, and programmes to encourage survivors to adopt healthier lifestyles. Finally, we discuss approaches to assessing health-related quality of life in cancer survivors, and the use of cancer registries in conducting psychosocial survivorship research. We highlight research and practice priorities in each of these areas. While the priorities vary per topic, common themes that emerged included: (1 Symptoms should not be viewed in isolation, but rather as part of a cluster of interrelated symptoms. This has implications for both understanding the aetiology of symptoms and for their treatment; (2 Psychosocial interventions need to be evidence-based, and where possible should be tailored to the needs of the individual cancer survivor. Relatively low cost interventions with self-management and e-Health elements may be appropriate for the majority of survivors, with resource intensive interventions being reserved for those most in need; (3 More effort should be devoted to disseminating and implementing interventions in practice, and to evaluating their cost-effectiveness; and (4 Greater attention should be paid to the needs of vulnerable and high-risk populations of survivors, including the socioeconomically disadvantaged and the elderly.

  16. Glioblastoma multiforme of the pineal region: case report Glioblastoma multiforme de região pineal: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson Leandro Gasparetto

    2003-06-01

    Full Text Available PURPOSE: pineal region tumors are uncommon, and comprise more frequently three categories: germ cell, parenchymal cell and glial tumors. Most pineal gliomas are low-grade astrocytomas. Glioblastoma multiforme, the most aggressive and common brain tumor, is extremely rare at this location with only few cases reported. CASE DESCRIPTION: a 29-year-old woman with a two month history of headache, nuchal pain, fever, nausea and seizures and physical examination showing nuchal rigidity, generalized hypotony, hypotrophy and hyper-reflexia, Babinski sign and left VI cranial par palsy. CT scan examination revealed a ill-defined hypodense lesion at the pineal region with heterogeneous contrast enhancement. MRI showed a lesion at the pineal region infiltrating the right thalamic region. The patient underwent a right craniotomy with partial resection of the mass. The histological examination of paraffin-embedded material defined the diagnosis of glioblastoma multiforme. Post-operative radiotherapy was indicated but the patient refused the treatment and died two months afterwards. CONCLUSION: in spite of its rarity at this location, glioblastoma multiforme should be considered in the differential diagnosis of aggressive lesions at the pineal region.OBJETIVO: Os tumores da região pineal são incomuns e podem ser divididos em três categorias de acordo com a sua origem: células germinativas, células do parênquima e células gliais. Em sua maioria, os gliomas de pineal são astrocitomas de baixo grau, sendo que o seu correspondente maligno, glioblastoma multiforme, é o mais comum e agressivo tumor encefálico e é extremamente raro nesta localização, com apenas alguns casos relatados na literatura. CASO: Mulher com 29 anos apresentando há 2 meses cefaléia, nucalgia, febre, náuseas e crises convulsivas. O exame físico mostrou rigidez de nuca, hipotonia, hipotrofia e hiperreflexia generalizadas, sinal de Babinski e paralisia do VI nervo craniano. A

  17. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  18. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance

    Science.gov (United States)

    Yip, Stephen; Miao, Jiangyong; Cahill, Daniel P.; Iafrate, A. John; Aldape, Ken; Nutt, Catherine L.; Louis, David N.

    2009-01-01

    Purpose Over the past few years, the alkylating agent temozolomide (TMZ) has become the standard-of-care therapy for patients with glioblastoma, the most common brain tumor. Recently, large-scale cancer genome sequencing efforts have identified a hypermutation phenotype and inactivating MSH6 mismatch repair gene mutations in recurrent, post-TMZ glioblastomas, particularly those growing more rapidly during TMZ treatment. This study aimed to clarify the timing and role of MSH6 mutations in mediating glioblastoma TMZ resistance. Experimental Design MSH6 sequence and microsatellite instability (MSI) status were determined in matched pre- and post-chemotherapy glioblastomas identified by The Cancer Genome Atlas (TCGA) as having post-treatment MSH6 mutations. TMZ-resistant lines were derived in vitro via selective growth under TMZ and the MSH6 gene was sequenced in resistant clones. The role of MSH6 inactivation in mediating resistance was explored using lentiviral shRNA knockdown and MSH6 reconstitution. Results MSH6 mutations were confirmed in post-treatment TCGA glioblastomas but absent in matched pre-treatment tumors. The post-treatment hypermutation phenotype displayed a signature bias toward CpC transitions and was not associated with MSI. In vitro modeling via exposure of an MSH6-wildtype glioblastoma line to TMZ resulted in resistant clones; one clone showed an MSH6 mutation, Thr1219Ile, that had been independently noted in two treated TCGA glioblastomas. Knockdown of MSH6 in the glioblastoma line U251 increased resistance to TMZ cytotoxicity and reconstitution restored cytotoxicity in MSH6-null glioma cells. Conclusions MSH6 mutations are selected for in glioblastomas during TMZ therapy both in vitro and in vivo, and are causally associated with TMZ resistance. PMID:19584161

  19. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jian; Xiao, Gelei [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Peng, Gang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Liu, Dingyang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wang, Zeyou [Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Liao, Yiwei; Liu, Qing [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wu, Minghua [The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Yuan, Xianrui, E-mail: xry69@163.com [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China)

    2015-02-06

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.

  20. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wang X

    2017-05-01

    Full Text Available Xingqiang Wang, Shanshi Wang, Xiaolong Li, Shigang Jin, Feng Xiong, Xin Wang Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical University, Rizhao, China Abstract: To date, β-catenin has been reported to be implicated in mediating the epithelial-mesenchymal transition (EMT in a variety of human cancers, which can be triggered by EGF. However, the mechanisms underlying EGF-β-catenin pathway-induced EMT of glioblastoma multiforme (GBM have not been reported previously. In the present study, immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot were applied to investigate the effect of EGF-β-catenin pathway on EMT of GBM. Here, we identified that β-catenin mRNA and protein levels were up-regulated in GBM tissues and four kinds of glioblastoma cell lines, including T98G, A172, U87, and U251 cells, compared with normal brain tissue and astrocytes. In U87 cell line, inhibition of β-catenin by siRNA suppressed EGF-induced proliferation, migration, invasiveness, and the expression of EMT activators (Snail and Slug. In addition, the expression of epithelial markers (E-cadherin was up-regulated and the expression of mesenchymal markers (N-cadherin and MMP9 was down-regulated. Finally, inhibitor of PI3K/Akt signaling pathways inactivated the EGF-β-catenin-induced EMT. In conclusion, β-catenin-EMT pathway induced by EGF is important for GBM progression by the PI3K/Akt pathways. Inhibition of β-catenin leads to suppression of EGF pathway-induced EMT, which provides a new way to treat GBM patients. Keywords: EGF, β-catenin, EMT, GBM

  1. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    International Nuclear Information System (INIS)

    Yuan, Jian; Xiao, Gelei; Peng, Gang; Liu, Dingyang; Wang, Zeyou; Liao, Yiwei; Liu, Qing; Wu, Minghua; Yuan, Xianrui

    2015-01-01

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells

  2. Assessing quality of life in young adult cancer survivors: development of the Survivorship-Related Quality of Life scale.

    Science.gov (United States)

    Park, Crystal L; Wortmann, Jennifer H; Hale, Amy E; Cho, Dalnim; Blank, Thomas O

    2014-10-01

    Scientific advances in treatments and outcomes for those diagnosed with cancer in late adolescence and early adulthood depend, in part, on the availability of adequate assessment tools to measure health-related quality of life (HRQOL) for survivors in this age group. Domains especially relevant to late adolescence and young adulthood (LAYA; e.g., education and career, committed romantic relationships, worldview formation) are typically overlooked in studies assessing the impact of cancer, usually more appropriate for middle-aged or older survivors. Current HRQOL measures also tend to assess issues that are salient during or shortly after treatment rather than reflecting life years after treatment. To develop a new measure to better capture the experience of LAYA cancer survivors in longer-term survivorship (the LAYA Survivorship-Related Quality of Life measure, LAYA-SRQL), we completed an extensive measure development process. After a literature review and focus groups with LAYA cancer survivors, we generated items and ran confirmatory factor and reliability analyses using a sample of 292 LAYA cancer survivors. We then examined validity using existing measures of physical and mental health, quality of life, and impact of cancer. The final model consisted of two domains (satisfaction and impact), each consisting of ten factors: existential/spirituality, coping, relationship, dependence, vitality, health care, education/career, fertility, intimacy/sexuality, and cognition/memory. Confirmatory factor analysis and validity analyses indicated that the LAYA-SRQL is a psychometrically sound instrument with good validity. The LAYA-SRQL fills an important need in survivorship research, providing a way to assess HRQOL in LAYAs in a developmentally informed way.

  3. Survivorship care and support following treatment for breast cancer: a multi-ethnic comparative qualitative study of women's experiences.

    Science.gov (United States)

    Tompkins, Charlotte; Scanlon, Karen; Scott, Emma; Ream, Emma; Harding, Seeromanie; Armes, Jo

    2016-08-18

    As the number of breast cancer survivors continues to rise, Western populations become more ethnically and socially diverse and healthcare resources become ever-more stretched, follow-up that focuses on monitoring for recurrence is no longer viable. New models of survivorship care need to ensure they support self-management and are culturally appropriate across diverse populations. This study explored experiences and expectations of a multi-ethnic sample of women with breast cancer regarding post-treatment care, in order to understand potential barriers to receiving care and inform new models of survivorship care. A phenomenological qualitative research design was employed. In-depth interviews were conducted with women from diverse socio-demographic backgrounds in England, who completed treatment for breast cancer in the 12 months prior to the study. Data were analysed using Framework Analysis. Sixty-six women participated and reported expectations and needs were unmet at follow-up. Whilst there were more commonalities in experiences, discernible differences, particularly by ethnicity and age, were identified relating to three key themes: emotional responses on transition to follow-up; challenges communicating with healthcare professionals at follow-up; and challenges finding and accessing information and support services to address unmet needs. There are cultural differences in the way healthcare professionals and women communicate, not necessarily differences in their post-treatment needs. We do not know if new models of care meet survivors' needs, or if they are appropriate for everyone. Further testing and potential cultural and linguistic adaptation of models of care is necessary to ensure their appropriateness and acceptability to survivors from different backgrounds. New ways of providing survivorship care mean survivors will need to be better prepared for the post-treatment period and the role they will have to play in managing their symptoms and care.

  4. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  5. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  6. Tonsillary carcinoma after temozolomide treatment for glioblastoma multiforme: treatment-related or dual-pathology?

    Science.gov (United States)

    Binello, E; Germano, I M

    2009-08-01

    Glioblastoma multiforme is a primary malignant brain tumor with a prognosis of typically less than 2 years. Standard treatment paradigms include surgery, radiation therapy and temozolomide. Little data exists for temozolomide recommendations after the first 6 months. We present a case of a patient with glioblastoma multiforme treated with surgery, radiation and chronic temozolomide for 6 years. He continues to survive glioblastoma-recurrence-free, but developed tonsillary carcinoma. This case raises the question of whether this secondary solid-organ malignancy is treatment-related or dual pathology.

  7. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-01-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950's While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma

  8. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  9. Glioblastoma niches: from the concept to the phenotypical reality.

    Science.gov (United States)

    Schiffer, Davide; Mellai, Marta; Bovio, Enrica; Bisogno, Ilaria; Casalone, Cristina; Annovazzi, Laura

    2018-05-08

    Recently, the concept of niches as sites of tumor progression, invasion, and angiogenesis in glioblastoma (GB) has been extensively debated. Niches, considered the sites in which glioblastoma stem cells (GSCs) reside, have been classified as perivascular, perinecrotic, and invasive. However, from a neuropathological point of view, it is not easy to establish when a tumor structure can be considered a niche. The relevant literature has been reviewed in the light of our recent experience on the subject. As for perinecrotic niches, the occurrence of GSCs around necrosis is interpreted as triggered by hypoxia through HIF-1α. Our alternative hypothesis is that, together with progenitors, they are the cell constituents of hyper-proliferative areas of GB, where perinecrotic niches have developed, and they would, therefore, represent the remnants of GSCs/progenitors spared by the developing necrosis. Perivascular structures originate from both transport vessels and exchange vessels, i.e., venules, arterioles, or the undefinable neo-formed small vessels, but only those in which a direct contact between GSCs/progenitors and endothelial cells occurs can be called niches. Both pericytes and microglia/macrophages play a role in niche function: Macrophages of blood origin invade GB only after the appearance of "mother vessels" with consequent blood-brain barrier disruption. Not all vessel/tumor cell structures can be considered niches, that is, crucial sites of tumor progression, invasion, and angiogenesis.

  10. Stem Cell Niches in Glioblastoma: A Neuropathological View

    Directory of Open Access Journals (Sweden)

    Davide Schiffer

    2014-01-01

    Full Text Available Glioblastoma (GBM stem cells (GSCs, responsible for tumor growth, recurrence, and resistance to therapies, are considered the real therapeutic target, if they had no molecular mechanisms of resistance, in comparison with the mass of more differentiated cells which are insensitive to therapies just because of being differentiated and nonproliferating. GSCs occur in tumor niches where both stemness status and angiogenesis are conditioned by the microenvironment. In both perivascular and perinecrotic niches, hypoxia plays a fundamental role. Fifteen glioblastomas have been studied by immunohistochemistry and immunofluorescence for stemness and differentiation antigens. It has been found that circumscribed necroses develop inside hyperproliferating areas that are characterized by high expression of stemness antigens. Necrosis developed inside them because of the imbalance between the proliferation of tumor cells and endothelial cells; it reduces the number of GSCs to a thin ring around the former hyperproliferating area. The perinecrotic GSCs are nothing else that the survivors remnants of those populating hyperproliferating areas. In the tumor, GSCs coincide with malignant areas so that the need to detect where they are located is not so urgent.

  11. Advances in Brain Tumor Surgery for Glioblastoma in Adults

    Directory of Open Access Journals (Sweden)

    Montserrat Lara-Velazquez

    2017-12-01

    Full Text Available Glioblastoma (GBM is the most common primary intracranial neoplasia, and is characterized by its extremely poor prognosis. Despite maximum surgery, chemotherapy, and radiation, the histological heterogeneity of GBM makes total eradication impossible, due to residual cancer cells invading the parenchyma, which is not otherwise seen in radiographic images. Even with gross total resection, the heterogeneity and the dormant nature of brain tumor initiating cells allow for therapeutic evasion, contributing to its recurrence and malignant progression, and severely impacting survival. Visual delimitation of the tumor’s margins with common surgical techniques is a challenge faced by many surgeons. In an attempt to achieve optimal safe resection, advances in approaches allowing intraoperative analysis of cancer and non-cancer tissue have been developed and applied in humans resulting in improved outcomes. In addition, functional paradigms based on stimulation techniques to map the brain’s electrical activity have optimized glioma resection in eloquent areas such as the Broca’s, Wernike’s and perirolandic areas. In this review, we will elaborate on the current standard therapy for newly diagnosed and recurrent glioblastoma with a focus on surgical approaches. We will describe current technologies used for glioma resection, such as awake craniotomy, fluorescence guided surgery, laser interstitial thermal therapy and intraoperative mass spectrometry. Additionally, we will describe a newly developed tool that has shown promising results in preclinical experiments for brain cancer: optical coherence tomography.

  12. Diversity of cytogenetic and pathohistologic profiles in glioblastoma.

    Science.gov (United States)

    Hassler, Marco; Seidl, Sonja; Fazeny-Doerner, Barbara; Preusser, Matthias; Hainfellner, Johannes; Rössler, Karl; Prayer, Daniela; Marosi, Christine

    2006-04-01

    We present a small series of patients with primary glioblastoma multiforme (GBM), and combine individual genetic data with pathohistologic characteristics and clinical outcome. Eighteen patients (12 men, 6 women, median age 51 years) with histologically proven GBM underwent surgical debulking followed by radiotherapy. Fifteen received concomitant chemotherapy. Histologic typing, immunohistochemistry for CD34, karyotypic analysis, and classification of the pattern of neovascularization was done in all patients. In 12/18, we performed methylation-specific polymerase chain reaction of the MGMT gene (O-6-methylguanine-DNA methyltransferase). The survival duration of patients spanned 3-58 months. By classical banding methods, 15/18 patients showed at least one aberration characteristic for primary glioblastoma (+7 in 7/18, deletions of 9p in 10/18 and -10 or deletions from 10q in 8/18 patients). We could not assess whether patients who survived for longer periods showed less complex or fewer aberrations than the patients who survived less than one year. Losses of 6p21(VEGF), 4q27(bFGF), and 12p11 approximately p13 (ING4) were associated with the "bizarre" pattern of neoangiogenesis. Methylation of the MGMT promoter was found in 3/12 patients. Even in this small series, the main characteristic of GBM was its diversity regarding all investigated histologic and genetic characteristics. This extreme diversity should be considered in the design of targeted therapies in GBM.

  13. Visualizing molecular profiles of glioblastoma with GBM-BioDP.

    Directory of Open Access Journals (Sweden)

    Orieta Celiku

    Full Text Available Validation of clinical biomarkers and response to therapy is a challenging topic in cancer research. An important source of information for virtual validation is the datasets generated from multi-center cancer research projects such as The Cancer Genome Atlas project (TCGA. These data enable investigation of genetic and epigenetic changes responsible for cancer onset and progression, response to cancer therapies, and discovery of the molecular profiles of various cancers. However, these analyses often require bulk download of data and substantial bioinformatics expertise, which can be intimidating for investigators. Here, we report on the development of a new resource available to scientists: a data base called Glioblastoma Bio Discovery Portal (GBM-BioDP. GBM-BioDP is a free web-accessible resource that hosts a subset of the glioblastoma TCGA data and enables an intuitive query and interactive display of the resultant data. This resource provides visualization tools for the exploration of gene, miRNA, and protein expression, differential expression within the subtypes of GBM, and potential associations with clinical outcome, which are useful for virtual biological validation. The tool may also enable generation of hypotheses on how therapies impact GBM molecular profiles, which can help in personalization of treatment for optimal outcome. The resource can be accessed freely at http://gbm-biodp.nci.nih.gov (a tutorial is included.

  14. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment. - Highlights: ► In this study, we evaluate the clinical outcome of boron neutron capture therapy (BNCT) for malignant brain tumors. ► We have treated 23 glioblastoma (GBM) patients with BNCT without any additional chemotherapy. ► Clinical results of BNCT in patients with GBM are superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.

  15. Predictors for Long-Term Hip Survivorship Following Acetabular Fracture Surgery: Importance of Gap Compared with Step Displacement.

    Science.gov (United States)

    Verbeek, Diederik O; van der List, Jelle P; Tissue, Camden M; Helfet, David L

    2018-06-06

    Historically, the greatest residual (gap or step) displacement is used to predict clinical outcome following acetabular fracture surgery. Gap and step displacement may, however, impact the outcome to different degrees. We assessed the individual relationship between gap or step displacement and hip survivorship and determined their independent association with conversion to total hip arthroplasty. Patients who had acetabular fracture fixation (from 1992 through 2014), follow-up of ≥2 years (or early conversion to total hip arthroplasty), and postoperative computed tomography (CT) scans were included. Of 227 patients, 55 (24.2%) had conversion to total hip arthroplasty at a mean follow-up (and standard deviation) of 8.7 ± 5.6 years. Residual gap and step displacement were measured using a standardized CT-based method, and assessors were blinded to the outcome. Kaplan-Meier survivorship curves for the hips were plotted and compared (log-rank test) using critical cutoff values for gap and step displacement. These values were identified using receiver operating characteristic curves. Multivariate analysis was performed to identify independent variables associated with conversion to total hip arthroplasty. Subgroup analysis was performed in younger patients (step displacement. Hip survivorship at 10 years was 82.0% for patients with a gap of step of step of ≥1.0 mm (p = 0.012). A gap of ≥5 mm (hazard ratio [HR], 2.3; p = 0.012) and an age of ≥50 years (HR, 4.2; p step of ≥1 mm (HR, 6.4; p = 0.017) was an independent factor for conversion to total hip arthroplasty. Residual gap and step displacement as measured on CT scans are both related to long-term hip survivorship, but step displacement (1 mm) is tolerated less than gap displacement (5 mm). Of the 2 types of displacement, only a large gap displacement (≥5 mm) was independently associated with conversion to total hip arthroplasty. In younger patients who had less articular impaction with smaller residual

  16. The dynamics of reproductive rate, offspring survivorship and growth in the lined seahorse, Hippocampus erectus Perry, 1810

    Science.gov (United States)

    Lin, Qiang; Li, Gang; Qin, Geng; Lin, Junda; Huang, Liangmin; Sun, Hushan; Feng, Peiyong

    2012-01-01

    Summary Seahorses are the vertebrate group with the embryonic development occurring within a special pouch in males. To understand the reproductive efficiency of the lined seahorse, Hippocampus erectus Perry, 1810 under controlled breeding experiments, we investigated the dynamics of reproductive rate, offspring survivorship and growth over births by the same male seahorses. The mean brood size of the 1-year old pairs in the 1st birth was 85.4±56.9 per brood, which was significantly smaller than that in the 6th birth (465.9±136.4 per brood) (Pseahorses H. erectus increased with the brood pouch development. PMID:23213429

  17. Expose-R experiment on effects of open space condition on survivorship in dormant stages of aquatic invertebrates

    Science.gov (United States)

    Alekseev, Victor; Novikova, Nataliya; Levinskikh, Margarita; Sychev, Vladimir; Yusoff, Fatimah; Azuraidi, Osman

    2012-07-01

    Dormancy protects animals and plants in harsh environmental conditions from months up to hundred years. This phenomenon is perspective for space researches especially for interplanetary missions. Direct experiments in open space BYORYSK supported in principle the fact of survivorship of bacteria, fungi spores, seed of plants and crustacean dormant cysts. Even though the rate of survivorship in long-term treatments was low but good enough to conclude that biological invasion even to Mars is a real danger. As soon as the BYORYSK lunch was made of metal the possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it an ESA and RSA equipment titled EXPOSE-R was applied. The EXPOSE-R facility was an external facility attached to the outside of the Zvezda Service Module in ISS in the end of November 2008. It had glace windows transparent for UV-radiation and possibility to measure temperature, space- and UV-radiation. Among a number of experiments requiring exposure to the open space environment it had a biological launch containing resting stages of terrestrial and aquatic organisms. These stages included dried ephippia of cladoceran Daphnia magna differentiated on size, dormant eggs of ostracode Eucypris ornate, cysts of fair-shrimp Streptocephalus torvicornis ( all from hemi desert Caspian area) and Artemis salina from salt lake Crimean populations. All dormant stages were kept in transparent to UV plastic bags placed in three layers. After about two years of exposing in open space dormant stages of 3 species A. salina, D. magna, S. torvicornis successfully survived at different scales but in second and third layers only . The highest level of survivorship was found in A. salina cysts. In preliminary land experiments that imitated land EXPOSE imitation of outside space station UV and vacuum conditions survivorship in resting eggs of D .magna, S. torvicornis and E. ornate was tested also. The total UV dose of

  18. Body composition of children with cancer during treatment and in survivorship.

    Science.gov (United States)

    Murphy, Alexia J; White, Melinda; Elliott, Sarah A; Lockwood, Liane; Hallahan, Andrew; Davies, Peter Sw

    2015-10-01

    Malnutrition as assessed with the use of body-composition measurements is a poorly understood short- and long-term complication of childhood cancer. We aimed to evaluate the body composition of 2 childhood cancer cohorts as follows: 1) children currently undergoing cancer treatment and 2) childhood cancer survivors. We also aimed to compare the prevalence of obesity and undernutrition between the cancer groups and investigate the impact of cancer type on body composition. Eighty-two children during the treatment of cancer and 53 childhood cancer survivors were involved in the study. Height, weight, body cell mass, percentage of fat, fat mass index, and fat-free mass index were assessed. Subjects were compared with age- and sex-matched healthy controls. The on-treatment group had a higher percentage of fat (P = 0.0001) and fat mass index (P = 0.0001) and a significantly lower body cell mass index (P = 0.0001) and fat-free mass index (P = 0.003) than did matched controls. The survivor group had a significantly higher percentage of fat (P = 0.03) and fat mass index (P = 0.04) and significantly lower body cell mass index (P = 0.0001) than did matched controls. The prevalence of undernutrition was high in both groups with 48% (95% CI: 36%, 60%) of the on-treatment group and 53% (95% CI: 40%, 66%) of the survivors considered undernourished. According to the percentage of fat cutoffs, significantly more on-treatment patients were obese (55%; 95% CI: 40%, 60%) than were survivors (26%; 95% CI: 14%, 38%) (P = 0.005). There were no statistically significant differences in body composition between cancer types in either the on-treatment or the survivor group. Overnutrition and undernutrition are major concerns in the short and long term for children with cancer. Children treated for cancer have increased fat mass and decreased body cell mass, which are evident during treatment and in survivorship. This trial was registered at http://www.ANZCTR.org.au as ACTRN12614001279617

  19. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru [Toranomon Hospital, Tokyo (Japan); Hirose, Takanori

    1998-02-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-{beta}. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  20. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    International Nuclear Information System (INIS)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru; Hirose, Takanori.

    1998-01-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-β. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  1. Postoperative extracranial metastasis from glioblastoma: a case report and review of the literature.

    Science.gov (United States)

    Wu, Wenjiao; Zhong, Dequan; Zhao, Zhan; Wang, Wentao; Li, Jun; Zhang, Wei

    2017-12-29

    Glioblastoma is the most common primary malignant brain tumor. Extraneural metastases are rarely reported in the literature. We report a case of a 38-year-old patient who was diagnosed with glioblastoma in 2015. Four months after surgery, local relapse was found and the patient received a second surgery. After another 4 months, we found a hard mass in the right posterior neck when she admitted to our department for fourth cycle of adjuvant chemotherapy. Immunohistochemical investigation supported the diagnosis of glioblastoma metastases to the neck after resection of the right neck mass. A few days later, spinal vertebral magnetic resonance imaging (MRI) confirmed multiple metastases in the thoracic, lumbar, sacral, and bilateral iliac bones. Glioblastoma is the most common primary malignant brain tumor. Whole tumor resection and early radiotherapy and chemotherapy can delay recurrence and prolong survival. Extracranial metastases are extremely rare. We report this case with the aim of bringing attention to extracranial metastasis of brain glioma.

  2. PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging

    Directory of Open Access Journals (Sweden)

    Christopher P. Irwin

    2014-05-01

    Full Text Available New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.

  3. Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2016-01-01

    Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers for bevac......Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers...... for bevacizumab response in recurrent glioblastoma patients. Methods: The study included a total of 82 recurrent glioblastoma patients treated with bevacizumab combination therapy whom were both response and biomarker evaluable. Gene expression of tumor tissue was analyzed by using a customized Nano...

  4. [Chromosome abnormalities associated with Phl and acturial survivorship curve in chronic myeloid leukemia. Probabilistic interpretation of blastic transformation of CML].

    Science.gov (United States)

    Coutris, G

    1981-12-01

    Sixty-six patients with chronic myelogenous leukemia, all with Philadelphia chromosome, have been studied for chromosomic abnormalities associated (CAA) to Ph', as well as for actuarial curve of survivorship. Patients dying from another disease were excluded from this study. Frequency of cells with CAA was measured and appeared strongly higher after blastic transformation than during myelocytic state; probability to be a blastic transformation is closely correlated with this frequency. On the other hand, actuarial curve of survivorship is very well represented by an exponential curve. This suggests a constant rate of death during disease evolution, for these patients without intercurrent disease. As a mean survivance after blastic transformation is very shorter than myelocytic duration, a constant rate of blastic transformation could be advanced: it explains possible occurrence of transformation as soon as preclinic state of a chronic myelogenous leukemia. Even if CAA frequency increases after blastic transformation, CAA can occur a long time before it and do not explain it: submicroscopic origin should be searched for the constant rate of blastic transformation would express the risk of a genic transformation at a constant rate during myelocytic state.

  5. The dynamics of reproductive rate, offspring survivorship and growth in the lined seahorse, Hippocampus erectus Perry, 1810

    Directory of Open Access Journals (Sweden)

    Qiang Lin

    2012-02-01

    Seahorses are the vertebrate group with the embryonic development occurring within a special pouch in males. To understand the reproductive efficiency of the lined seahorse, Hippocampus erectus Perry, 1810 under controlled breeding experiments, we investigated the dynamics of reproductive rate, offspring survivorship and growth over births by the same male seahorses. The mean brood size of the 1-year old pairs in the 1st birth was 85.4±56.9 per brood, which was significantly smaller than that in the 6th birth (465.9±136.4 per brood (P<0.001. The offspring survivorship and growth rate increased with the births. The fecundity was positively correlated with the length of brood pouches of males and trunk of females. The fecundity of 1-year old male and 2-year old female pairs was significantly higher than that from 1-year old couples (P<0.001. The brood size (552.7±150.4 of the males who mated with females that were isolated for the gamete-preparation, was larger than those (467.8±141.2 from the long-term pairs (P<0.05. Moreover, the offspring from the isolated females had higher survival and growth rates. Our results showed that the potential reproductive rate of seahorses H. erectus increased with the brood pouch development.

  6. Importance ratings on patient-reported outcome items for survivorship care: comparison between pediatric cancer survivors, parents, and clinicians.

    Science.gov (United States)

    Jones, Conor M; Baker, Justin N; Keesey, Rachel M; Eliason, Ruth J; Lanctot, Jennifer Q; Clegg, Jennifer L; Mandrell, Belinda N; Ness, Kirsten K; Krull, Kevin R; Srivastava, Deokumar; Forrest, Christopher B; Hudson, Melissa M; Robison, Leslie L; Huang, I-Chan

    2018-04-18

    To compare importance ratings of patient-reported outcomes (PROs) items from the viewpoints of childhood cancer survivors, parents, and clinicians for further developing short-forms to use in survivorship care. 101 cancer survivors, 101 their parents, and 36 clinicians were recruited from St. Jude Children's Research Hospital. Participants were asked to select eight items that they deemed useful for clinical decision making from each of the four Patient-Reported Outcomes Measurement Information System Pediatric item banks. These item banks were pain interference (20 items), fatigue (23 items), psychological stress (19 items), and positive affect (37 items). Compared to survivors, clinicians rated more items across four domains that were statistically different than did parents (23 vs. 13 items). Clinicians rated five items in pain interference domain (ORs 2.33-6.01; p's important but rated three items in psychological stress domain (ORs 0.14-0.42; p's important than did survivors. In contrast, parents rated seven items in positive affect domain (ORs 0.25-0.47; p's important than did survivors. Survivors, parents, and clinicians viewed importance of PRO items for survivorship care differently. These perspectives should be used to assist the development of PROs tools.

  7. REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    Full Text Available The Repressor Element 1 Silencing Transcription factor (REST/NRSF is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.

  8. STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Carla Lucia Esposito

    2018-03-01

    Full Text Available Glioblastoma (GBM is the most frequent and aggressive primary brain tumor in adults, and despite advances in neuro-oncology, the prognosis for patients remains dismal. The signal transducer and activator of transcription-3 (STAT3 has been reported as a key regulator of the highly aggressive mesenchymal GBM subtype, and its direct silencing (by RNAi oligonucleotides has revealed a great potential as an anti-cancer therapy. However, clinical use of oligonucleotide-based therapies is dependent on safer ways for tissue-specific targeting and increased membrane penetration. The objective of this study is to explore the use of nucleic acid aptamers as carriers to specifically drive a STAT3 siRNA to GBM cells in a receptor-dependent manner. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase PDGFRβ (Gint4.T, here we describe the design of a novel aptamer-siRNA chimera (Gint4.T-STAT3 to target STAT3. We demonstrate the efficient delivery and silencing of STAT3 in PDGFRβ+ GBM cells. Importantly, the conjugate reduces cell viability and migration in vitro and inhibits tumor growth and angiogenesis in vivo in a subcutaneous xenograft mouse model. Our data reveals Gint4.T-STAT3 conjugate as a novel molecule with great translational potential for GBM therapy.

  9. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma.

    Science.gov (United States)

    Kouri, Fotini M; Hurley, Lisa A; Daniel, Weston L; Day, Emily S; Hua, Youjia; Hao, Liangliang; Peng, Chian-Yu; Merkel, Timothy J; Queisser, Markus A; Ritner, Carissa; Zhang, Hailei; James, C David; Sznajder, Jacob I; Chin, Lynda; Giljohann, David A; Kessler, John A; Peter, Marcus E; Mirkin, Chad A; Stegh, Alexander H

    2015-04-01

    Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM. © 2015 Kouri et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A

    OpenAIRE

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-01-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21Cip1 and p27Kip1. Akt involvement was demonstrated by decreased phosphorylation of its substr...

  11. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    OpenAIRE

    Goffart, Nicolas; KROONEN, Jérôme

    2013-01-01

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays sti...

  12. Presentation of Two Cases with Early Extracranial Metastases from Glioblastoma and Review of the Literature

    DEFF Research Database (Denmark)

    Johansen, Maria Dinche; Rochat, Per; Law, Ian

    2016-01-01

    Extracranial metastases from glioblastoma are rare. We report two patients with extracranial metastases from glioblastoma. Case 1 concerns a 59-year-old woman with multiple metastases that spread early in the course of disease. What makes this case unusual is that the tumor had grown into the fal...... and extensive bleeding during acute surgery with tumor removal, which might have induced extracranial seeding. The cases presented might have hematogenous spreading in common as an explanation to extracranial metastases from GBM....

  13. The role of factor inhibiting HIF (FIH-1 in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Enfeng Wang

    Full Text Available Glioblastoma multiforme (GBM accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1, which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.

  14. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor

    Energy Technology Data Exchange (ETDEWEB)

    Toyonaga, Takuya; Hirata, Kenji; Kobayashi, Kentaro; Manabe, Osamu; Watanabe, Shiro; Hattori, Naoya; Shiga, Tohru; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo, Hokkaido (Japan); Yamaguchi, Shigeru [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo, Hokkaido (Japan); Hokkaido University Graduate School of Medicine, Department of Neurosurgery, Sapporo (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki [Hokkaido University Graduate School of Medicine, Department of Neurosurgery, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Tanaka, Shinya [Hokkaido University Graduate School of Medicine, Department of Cancer Pathology, Sapporo (Japan); Ito, Yoichi M. [Hokkaido University Graduate School of Medicine, Department of Biostatistics, Sapporo (Japan)

    2017-04-15

    Metabolic activity and hypoxia are both important factors characterizing tumor aggressiveness. Here, we used F-18 fluoromisonidazole (FMISO) and F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) to define metabolically active hypoxic volume, and investigate its clinical significance in relation to progression free survival (PFS) and overall survival (OS) in glioblastoma patients. Glioblastoma patients (n = 32) underwent FMISO PET, FDG PET, and magnetic resonance imaging (MRI) before surgical intervention. FDG and FMISO PET images were coregistered with gadolinium-enhanced T1-weighted MR images. Volume of interest (VOI) of gross tumor volume (GTV) was manually created to enclose the entire gadolinium-positive areas. The FMISO tumor-to-normal region ratio (TNR) and FDG TNR were calculated in a voxel-by-voxel manner. For calculating TNR, standardized uptake value (SUV) was divided by averaged SUV of normal references. Contralateral frontal and parietal cortices were used as the reference region for FDG, whereas the cerebellar cortex was used as the reference region for FMISO. FDG-positive was defined as the FDG TNR ≥1.0, and FMISO-positive was defined as FMISO TNR ≥1.3. Hypoxia volume (HV) was defined as the volume of FMISO-positive and metabolic tumor volume in hypoxia (hMTV) was the volume of FMISO/FDG double-positive. The total lesion glycolysis in hypoxia (hTLG) was hMTV x FDG SUVmean. The extent of resection (EOR) involving cytoreduction surgery was volumetric change based on planimetry methods using MRI. These factors were tested for correlation with patient prognosis. All tumor lesions were FMISO-positive and FDG-positive. Univariate analysis indicated that hMTV, hTLG, and EOR were significantly correlated with PFS (p = 0.007, p = 0.04, and p = 0.01, respectively) and that hMTV, hTLG, and EOR were also significantly correlated with OS (p = 0.0028, p = 0.037, and p = 0.014, respectively). In contrast, none of FDG TNR, FMISO TNR, GTV, HV

  15. Limited role for extended maintenance temozolomide for newly diagnosed glioblastoma.

    Science.gov (United States)

    Gramatzki, Dorothee; Kickingereder, Philipp; Hentschel, Bettina; Felsberg, Jörg; Herrlinger, Ulrich; Schackert, Gabriele; Tonn, Jörg-Christian; Westphal, Manfred; Sabel, Michael; Schlegel, Uwe; Wick, Wolfgang; Pietsch, Torsten; Reifenberger, Guido; Loeffler, Markus; Bendszus, Martin; Weller, Michael

    2017-04-11

    To explore an association with survival of modifying the current standard of care for patients with newly diagnosed glioblastoma of surgery followed by radiotherapy plus concurrent and 6 cycles of maintenance temozolomide chemotherapy (TMZ/RT → TMZ) by extending TMZ beyond 6 cycles. The German Glioma Network cohort was screened for patients with newly diagnosed glioblastoma who received TMZ/RT → TMZ and completed ≥6 cycles of maintenance chemotherapy without progression. Associations of clinical patient characteristics, molecular markers, and residual tumor determined by magnetic resonance imaging after 6 cycles of TMZ with progression-free survival (PFS) and overall survival (OS) were analyzed with the log-rank test. Multivariate analyses using the Cox proportional hazards model were performed to assess associations of prolonged TMZ use with outcome. Sixty-one of 142 identified patients received at least 7 maintenance TMZ cycles (median 11, range 7-20). Patients with extended maintenance TMZ treatment had better PFS (20.5 months, 95% confidence interval [CI] 17.7-23.3, vs 17.2 months, 95% CI 10.2-24.2, p = 0.035) but not OS (32.6 months, 95% CI 28.9-36.4, vs 33.2 months, 95% CI 25.3-41.0, p = 0.126). However, there was no significant association of prolonged TMZ chemotherapy with PFS (hazard ratio [HR] = 0.8, 95% CI 0.4-1.6, p = 0.559) or OS (HR = 1.6, 95% CI 0.8-3.3, p = 0.218) adjusted for age, extent of resection, Karnofsky performance score, presence of residual tumor, O 6 -methylguanine DNA methyltransferase (MGMT) promoter methylation status, or isocitrate dehydrogenase ( IDH ) mutation status. These data may not support the practice of prolonging maintenance TMZ chemotherapy beyond 6 cycles. This study provides Class III evidence that in patients with newly diagnosed glioblastoma, prolonged TMZ chemotherapy does not significantly increase PFS or OS. © 2017 American Academy of Neurology.

  16. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Aldaz

    Full Text Available Glioblastoma multiforme (GBM-initiating cells (GICs represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.

  17. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

    Science.gov (United States)

    Montcel, Bruno; Mahieu-Williame, Laurent; Armoiry, Xavier; Meyronet, David; Guyotat, Jacques

    2013-04-01

    5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

  18. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  19. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  20. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  1. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target?

    KAUST Repository

    Vasaikar, Suhas

    2018-02-06

    BackgroundGlioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.MethodsData from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.ResultsBy bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.ConclusionsETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

  2. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology.

    Directory of Open Access Journals (Sweden)

    Sergey Popov

    Full Text Available Glioblastoma is a highly aggressive tumour with marked heterogeneity at the morphological level in both the tumour cells and the associated highly prominent vasculature. As we begin to develop an increased biological insight into the underlying processes driving the disease, fewer attempts have thus far been made to understand these phenotypic differences. We sought to address this by carefully assessing the morphological characteristics of both the tumour cells and the associated vasculature, relating these observations to the IDH1/MGMT status, with a particular focus on the early onset population of young adults who develop primary glioblastoma. 276 primary glioblastoma specimens were classified into their predominant cell morphological type (fibrillary, gemistocytic, giant cell, small cell, oligodendroglial, sarcomatous, and assessed for specific tumour (cellularity, necrosis, palisades and vascular features (glomeruloid structures, arcades, pericyte proliferation. IDH1 positive glioblastomas were associated with a younger age at diagnosis, better clinical outcome, prominent oligodendroglial and small cell tumour cell morphology, pallisading necrosis and glomeruloid vascular proliferation in the absence of arcade-like structures. These features widen the phenotype of IDH1 mutation-positive primary glioblastoma in young adults and provide correlative evidence for a functional role of mutant IDH1 in the differential nature of neo-angiogenesis in different subtypes of glioblastoma.

  3. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  4. APNG as a prognostic marker in patients with glioblastoma

    DEFF Research Database (Denmark)

    Fosmark, Sigurd; Hellwege, Sofie; Dahlrot, Rikke H

    2017-01-01

    AIM: Expression of the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG) has been correlated to temozolomide resistance. Our aim was to evaluate the prognostic value of APNG in a population-based cohort with 242 gliomas including 185 glioblastomas (GBMs). Cellular heterogeneity...... of GBMs was taken into account by excluding APNG expression in non-tumor cells from the analysis. METHODS: APNG expression was evaluated using automated image analysis and a novel quantitative immunohistochemical (IHC) assay (qIHC), where APNG protein expression was evaluated through countable dots. Non...... was an independent prognostic factor among patients with a methylated MGMT promoter. We expect that APNG qIHC can potentially identify GBM patients who will not benefit from treatment with temozolomide....

  5. Cellular and subcellular distribution of BSH in human glioblastoma multiforme

    International Nuclear Information System (INIS)

    Neumann, M.; Gabel, D.

    2000-01-01

    The cellular and subcellular distribution of mercaptoundecahydrododecaborate (BSH) in seven glioblastoma multiforme tissue sections of six patients having received BSH prior to surgery was investigated by light, fluorescence and electron microscopy. With use of specific antibodies against BSH its localization could be found in tissue sections predominantly (approx. 90%) in the cytoplasm of GFAP-positive cells of all but one patient. The latter was significantly younger (33 years in contrast of 46-71 (mean 60) years). In none of the tissue sections BSH could be found to a significant amount in the cell nuclei. In contrast, electron microscopy studies show BSH as well associated with the cell membrane as with the chromatin in the nucleus. (author)

  6. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope?

    Science.gov (United States)

    Ferguson, Sherise D; Srinivasan, Visish M; Ghali, Michael Gz; Heimberger, Amy B

    2016-01-01

    Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.

  7. Multimodality imaging and mathematical modelling of drug delivery to glioblastomas.

    Science.gov (United States)

    Boujelben, Ahmed; Watson, Michael; McDougall, Steven; Yen, Yi-Fen; Gerstner, Elizabeth R; Catana, Ciprian; Deisboeck, Thomas; Batchelor, Tracy T; Boas, David; Rosen, Bruce; Kalpathy-Cramer, Jayashree; Chaplain, Mark A J

    2016-10-06

    Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization, and they typically exhibit a disrupted blood-brain barrier (BBB). Although it has been hypothesized that the 'normalization' of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of BBB integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper, we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated-flow rate, vessel permeability and tissue diffusion coefficient-interact nonlinearly to produce the observed average drug concentration in the microenvironment.

  8. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  9. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    International Nuclear Information System (INIS)

    Zhou, Wenchao; Bao, Shideng

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described

  10. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenchao; Bao, Shideng, E-mail: baos@ccf.org [Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States)

    2014-03-26

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described.

  11. Pediatric glioblastoma multiforme: A single-institution experience.

    Science.gov (United States)

    Ansari, Mansour; Nasrolahi, Hamid; Kani, Amir-Abbas; Mohammadianpanah, Mohammad; Ahmadloo, Niloofar; Omidvari, Shapour; Mosalaei, Ahmad

    2012-07-01

    Glioblastoma multiforme (GBM) is the most common astrocytoma in adults and has a poor prognosis, with a median survival of about 12 months. But, it is rare in children. We report our experience on the pediatric population (20 years or younger) with GBM. Twenty-three patients with GBM who were treated at our hospital during 1990-2008 were evaluated. The mean age was 15.2 years, and the majority of them (14/23) were male. All had received radiotherapy and some had also received chemotherapy. The mean survival was 16.0 months. Two cases survived more than 5 years. Age, radiation dose and performance status were significantly related to survival. GBM in pediatric patients were not very common in our center, and prognosis was unfavorable.

  12. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  13. Single-Cell RNA Sequencing of Glioblastoma Cells.

    Science.gov (United States)

    Sen, Rajeev; Dolgalev, Igor; Bayin, N Sumru; Heguy, Adriana; Tsirigos, Aris; Placantonakis, Dimitris G

    2018-01-01

    Single-cell RNA sequencing (sc-RNASeq) is a recently developed technique used to evaluate the transcriptome of individual cells. As opposed to conventional RNASeq in which entire populations are sequenced in bulk, sc-RNASeq can be beneficial when trying to better understand gene expression patterns in markedly heterogeneous populations of cells or when trying to identify transcriptional signatures of rare cells that may be underrepresented when using conventional bulk RNASeq. In this method, we describe the generation and analysis of cDNA libraries from single patient-derived glioblastoma cells using the C1 Fluidigm system. The protocol details the use of the C1 integrated fluidics circuit (IFC) for capturing, imaging and lysing cells; performing reverse transcription; and generating cDNA libraries that are ready for sequencing and analysis.

  14. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  15. Different angiogenic phenotypes in primary and secondary glioblastomas.

    Science.gov (United States)

    Karcher, Sibylle; Steiner, Hans-Herbert; Ahmadi, Rezvan; Zoubaa, Saida; Vasvari, Gergely; Bauer, Harry; Unterberg, Andreas; Herold-Mende, Christel

    2006-05-01

    Primary and secondary glioblastomas (pGBM, sGBM) are supposed to evolve through different genetic pathways, including EGF receptor and PDGF and its receptor and thus genes that are involved in tumor-induced angiogenesis. However, whether other angiogenic cytokines are also differentially expressed in these glioblastoma subtypes is not known so far, but this knowledge might be important to optimize an antiangiogenic therapy. Therefore, we studied the expression of several angiogenic cytokines, including VEGF-A, HGF, bFGF, PDGF-AB, PDGF-BB, G-CSF and GM-CSF in pGBMs and sGBMs as well as in gliomas WHO III, the precursor lesions of sGBMs. In tumor tissues, expression of all cytokines was observed albeit with marked differences concerning intensity and distribution pattern. Quantification of the cytokines in the supernatant of 30 tissue-corresponding glioma cultures revealed a predominant expression of VEGF-A in pGBMs and significantly higher expression levels of PDGF-AB in sGBMs. HGF and bFGF were determined in nearly all tumor cultures but with no GBM subtype or malignancy-related differences. Interestingly, GM-CSF and especially G-CSF were produced less frequently by tumor cells. However, GM-CSF secretion occurred together with an increased number of simultaneously secreted cytokines and correlated with a worse patient prognosis and may thus represent a more aggressive angiogenic phenotype. Finally, we confirmed an independent contribution of each tumor-derived cytokine analyzed to tumor-induced vascularization. Our data indicate that an optimal antiangiogenic therapy may require targeting of multiple angiogenic pathways that seem to differ markedly in pGBMs and sGBMs. 2005 Wiley-Liss, Inc.

  16. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma.

    Science.gov (United States)

    Rieger, Johannes; Bähr, Oliver; Maurer, Gabriele D; Hattingen, Elke; Franz, Kea; Brucker, Daniel; Walenta, Stefan; Kämmerer, Ulrike; Coy, Johannes F; Weller, Michael; Steinbach, Joachim P

    2014-06-01

    Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3-13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12-124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (pketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet.

  17. ERGO: A pilot study of ketogenic diet in recurrent glioblastoma

    Science.gov (United States)

    RIEGER, JOHANNES; BÄHR, OLIVER; MAURER, GABRIELE D.; HATTINGEN, ELKE; FRANZ, KEA; BRUCKER, DANIEL; WALENTA, STEFAN; KÄMMERER, ULRIKE; COY, JOHANNES F.; WELLER, MICHAEL; STEINBACH, JOACHIM P.

    2014-01-01

    Limiting dietary carbohydrates inhibits glioma growth in preclinical models. Therefore, the ERGO trial (NCT00575146) examined feasibility of a ketogenic diet in 20 patients with recurrent glioblastoma. Patients were put on a low-carbohydrate, ketogenic diet containing plant oils. Feasibility was the primary endpoint, secondary endpoints included the percentage of patients reaching urinary ketosis, progression-free survival (PFS) and overall survival. The effects of a ketogenic diet alone or in combination with bevacizumab was also explored in an orthotopic U87MG glioblastoma model in nude mice. Three patients (15%) discontinued the diet for poor tolerability. No serious adverse events attributed to the diet were observed. Urine ketosis was achieved at least once in 12 of 13 (92%) evaluable patients. One patient achieved a minor response and two patients had stable disease after 6 weeks. Median PFS of all patients was 5 (range, 3–13) weeks, median survival from enrollment was 32 weeks. The trial allowed to continue the diet beyond progression. Six of 7 (86%) patients treated with bevacizumab and diet experienced an objective response, and median PFS on bevacizumab was 20.1 (range, 12–124) weeks, for a PFS at 6 months of 43%. In the mouse glioma model, ketogenic diet alone had no effect on median survival, but increased that of bevacizumab-treated mice from 52 to 58 days (pketogenic diet is feasible and safe but probably has no significant clinical activity when used as single agent in recurrent glioma. Further clinical trials are necessary to clarify whether calorie restriction or the combination with other therapeutic modalities, such as radiotherapy or anti-angiogenic treatments, could enhance the efficacy of the ketogenic diet. PMID:24728273

  18. Toxicity after radiochemotherapy for glioblastoma using temozolomide - a retrospective evaluation

    International Nuclear Information System (INIS)

    Niewald, Marcus; Berdel, Christian; Fleckenstein, Jochen; Licht, Norbert; Ketter, Ralf; Rübe, Christian

    2011-01-01

    Retrospective evaluation of toxicity and results after radiochemotherapy for glioblastoma. 46 patients with histopathologically proven glioblastoma received simultaneous radiochemotherapy (RCT). The mean age at the beginning of therapy was 59 years, the mean Karnofsky performance index 80%. 44 patients had been operated on before radiotherapy, two had not. A total dose of 60 Gy was applied in daily single fractions of 2.0 Gy within six weeks, 75 mg/m 2 /day Temozolomide were given orally during the whole radiotherapy period. A local progression could be diagnosed in 34/46 patients (70%). The median survival time amounted to 13.6 months resulting in one-year and two-year survival probabilities of 48% and 8%, respectively. Radiotherapy could be applied completely in 89% of the patients. Chemotherapy could be completed according to schedule only in 56.5%, the main reason being blood toxicity (50% of the interruptions). Most of those patients suffered from leucopenia and/or thrombopenia grade III and IV CTC (Common toxicity criteria). Further reasons were an unfavourable general health status or a rise of liver enzymes. The mean duration of thrombopenia and leucopenia amounted to 64 and 20 days. In two patients, blood cell counts remained abnormal until death. In two patients we noticed a rise of liver enzymes. In one of these in the healing phase of hepatitis a rise of ASAT and ALAT CTC grade IV was diagnosed. These values normalized after termination of temozolomide medication. One patient died of pneumonia during therapy. Our survival data were well within the range taken from the literature. However, we noticed a considerable frequency and intensity of side effects to bone marrow and liver. These lead to the recommendations that regular examinations of blood cell count and liver enzymes should be performed during therapy and temozolomide should not be applied or application should be terminated according to the criteria given by the manufacturer

  19. Quality of Survivorship in a Rare Disease: Clinicofunctional Outcome and Physical Activity in an Observational Cohort Study of 618 Long-Term Survivors of Ewing Sarcoma

    NARCIS (Netherlands)

    Ranft, Andreas; Seidel, Corinna; Hoffmann, Christiane; Paulussen, Michael; Warby, Ann-Christin; van den Berg, Henk; Ladenstein, Ruth; Rossig, Claudia; Dirksen, Uta; Rosenbaum, Dieter; Juergens, Herbert

    2017-01-01

    PurposeSignificantly improved survival rates in patients with Ewing sarcoma have raised interest in accessing the quality of long-term survivorship. In this study, subjective and objective measurement tools, preclassified as physical or mental scores, were used to assess clinicofunctional outcome

  20. SuperQuant-assisted comparative proteome analysis of glioblastoma subpopulations allows for identification of potential novel therapeutic targets and cell markers

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Gorshkov, Vladimir; Munthe, Sune

    2018-01-01

    Glioblastoma (GBM) is a highly aggressive brain cancer with poor prognosis and low survival rate. Invasive cancer stem-like cells (CSCs) are responsible for tumor recurrence because they escape current treatments. Our main goal was to study the proteome of three GBM subpopulations to identify key...... molecules behind GBM cell phenotypes and potential cell markers for migrating cells. We used SuperQuant-an enhanced quantitative proteome approach-to increase proteome coverage. We found 148 proteins differentially regulated in migrating CSCs and 199 proteins differentially regulated in differentiated cells...... migration. Moreover, our data suggested that microRNA-122 (miR-122) is a potential upstream regulator of GBM phenotypes as miR-122 activation was predicted for differentiated cells while its inhibition was predicted for migrating CSCs. Finally, we validated transferrin (TF) and procollagen-lysine 2...

  1. Cancer Survivorship: Defining the Incidence of Incisional Hernia After Resection for Intra-Abdominal Malignancy.

    Science.gov (United States)

    Baucom, Rebeccah B; Ousley, Jenny; Beveridge, Gloria B; Phillips, Sharon E; Pierce, Richard A; Holzman, Michael D; Sharp, Kenneth W; Nealon, William H; Poulose, Benjamin K

    2016-12-01

    Cancer survivorship focuses largely on improving quality of life. We aimed to determine the rate of ventral incisional hernia (VIH) formation after cancer resection, with implications for survivorship. Patients without prior VIH who underwent abdominal malignancy resections at a tertiary center were followed up to 2 years. Patients with a viewable preoperative computed tomography (CT) scan and CT within 2 years postoperatively were included. Primary outcome was postoperative VIH on CT, reviewed by a panel of surgeons uninvolved with the original operation. Factors associated with VIH were determined using Cox proportional hazards regression. 1847 CTs were reviewed among 491 patients (59 % men), with inter-rater reliability 0.85 for the panel. Mean age was 60 ± 12 years; mean follow-up time 13 ± 8 months. VIH occurred in 41 % and differed across diagnoses: urologic/gynecologic (30 %), colorectal (53 %), and all others (56 %) (p VIH (adjusting for stage, age, adjuvant therapy, smoking, and steroid use) included: incision location [flank (ref), midline, hazard ratio (HR) 6.89 (95 %CI 2.43-19.57); periumbilical, HR 6.24 (95 %CI 1.84-21.22); subcostal, HR 4.55 (95 %CI 1.51-13.70)], cancer type [urologic/gynecologic (ref), other {gastrointestinal, pancreatic, hepatobiliary, retroperitoneal, and others} HR 1.86 (95 %CI 1.26-2.73)], laparoscopic-assisted operation [laparoscopic (ref), HR 2.68 (95 %CI 1.44-4.98)], surgical site infection [HR 1.60 (95 %CI 1.08-2.37)], and body mass index [HR 1.06 (95 %CI 1.03-1.08)]. The rate of VIH after abdominal cancer operations is high. VIH may impact cancer survivorship with pain and need for additional operations. Further studies assessing the impact on QOL and prevention efforts are needed.

  2. An internet tool for creation of cancer survivorship care plans for survivors and health care providers: design, implementation, use and user satisfaction.

    Science.gov (United States)

    Hill-Kayser, Christine E; Vachani, Carolyn; Hampshire, Margaret K; Jacobs, Linda A; Metz, James M

    2009-09-04

    Survivorship care plans have been recommended by the Institute of Medicine for all cancer survivors. We implemented an Internet-based tool for creation of individualized survivorship care plans. To our knowledge, this is the first tool of this type to be designed and made publicly accessible. To investigate patterns of use and satisfaction with an Internet-based tool for creation of survivorship care plans. OncoLife, an Internet-based program for creation of survivorship care plans, was designed by a team of dedicated oncology nurses and physicians at the University of Pennsylvania. The program was designed to provide individualized, comprehensive health care recommendations to users responding to queries regarding demographics, diagnosis, and cancer treatments. After being piloted to test populations, OncoLife was made publicly accessible via Oncolink, a cancer information website based at the University of Pennsylvania which averages 3.9 million page views and over 385,000 unique visits per month. Data entered by anonymous public users was maintained and analyzed. From May 2007 to November 2008, 3343 individuals utilized this tool. Most (63%) identified themselves as survivors, but also health care providers (25%) and friends/family of survivors (12%). Median age at diagnosis was 48 years (18-100+), and median current age 51 (19-100+). Most users were Caucasian (87%), female (71%), and college-educated (82%). Breast cancer was the most common diagnosis (46%), followed by hematologic (12%), gastrointestinal (11%), gynecologic (9%), and genitourinary (8%). Of all users, 84% had undergone surgery, 80% chemotherapy, and 60% radiotherapy. Half of users (53%) reported receiving follow-up care from only an oncologist, 13% only a primary care provider (PCP), and 32% both; 12% reported having received survivorship information previously. Over 90% of users, both survivors and health care providers, reported satisfaction levels of "good" to "excellent" using this tool

  3. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  4. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  5. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor β signal transduction in human glioblastoma cells

    International Nuclear Information System (INIS)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena

    2007-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-β by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-β1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-β receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-β1-induced signalling

  6. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma

    Directory of Open Access Journals (Sweden)

    Aman Sharma

    2017-07-01

    Full Text Available Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10, we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A, vascular endothelial growth factor B (VEGF-B and angiopoietin 1 (ANG1, angiopoietin 2 (ANG2 that effectively segregated the proneural (MTA10 and mesenchymal (KW10 glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS. We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma tumor samples (n = 30. MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1. Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma.

  7. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  8. Do Perceived Needs Affect Willingness to Use Traditional Chinese Medicine for Survivorship Care Among Chinese Cancer Survivors? A Cross-Sectional Survey

    Directory of Open Access Journals (Sweden)

    Lingyun Sun

    2017-12-01

    Full Text Available Purpose: We aimed to quantify Chinese cancer survivors’ perceived needs for survivorship care and to evaluate whether these needs could impact their willingness to use traditional Chinese medicine (TCM. Methods: We conducted a cross-sectional survey with members of the Beijing Anti-Cancer Association in China. We measured perceived needs with the seven-item Brief Chinese Cancer Survivorship Needs Scale that assesses psychological, functional, nutritional, social, body image, pain, and symptom needs. The outcome variable was willingness to use TCM for survivorship care. We performed multivariable logistic regression analyses to evaluate whether perceived needs are associated with willingness. Results: A total of 600 patients were invited, with a response rate of 81%. The mean (standard deviation score of the perceived needs scale (0 to 10 was 4.4 (2.2, with the majority of participants endorsing nutritional (72%, symptom (65%, and psychological (54% needs. Among survivors, 387 (80%; 95% CI, 76% to 83% were willing to use TCM for survivorship care. In multivariable analysis, a higher perceived needs score (adjusted odds ratio [OR], 1.33; 95% CI, 1.14 to 1.56; P < .001 was associated with greater willingness to use TCM. Specifically, nutritional (OR, 3.17; 95% CI, 1.79 to 5.62; P < .001 and symptom needs (OR, 3.15; 95% CI, 1.79 to 5.55; P < .001 had the strongest relationship. Conclusion: A higher level of perceived needs, especially in the areas of nutrition and symptoms, was associated with greater willingness to use TCM for survivorship care.

  9. Do Perceived Needs Affect Willingness to Use Traditional Chinese Medicine for Survivorship Care Among Chinese Cancer Survivors? A Cross-Sectional Survey.

    Science.gov (United States)

    Sun, Lingyun; Yang, Yufei; Vertosick, Emily; Jo, SungHwa; Sun, Guilan; Mao, Jun J

    2017-12-01

    Purpose We aimed to quantify Chinese cancer survivors' perceived needs for survivorship care and to evaluate whether these needs could impact their willingness to use traditional Chinese medicine (TCM). Methods We conducted a cross-sectional survey with members of the Beijing Anti-Cancer Association in China. We measured perceived needs with the seven-item Brief Chinese Cancer Survivorship Needs Scale that assesses psychological, functional, nutritional, social, body image, pain, and symptom needs. The outcome variable was willingness to use TCM for survivorship care. We performed multivariable logistic regression analyses to evaluate whether perceived needs are associated with willingness. Results A total of 600 patients were invited, with a response rate of 81%. The mean (standard deviation) score of the perceived needs scale (0 to 10) was 4.4 (2.2), with the majority of participants endorsing nutritional (72%), symptom (65%), and psychological (54%) needs. Among survivors, 387 (80%; 95% CI, 76% to 83%) were willing to use TCM for survivorship care. In multivariable analysis, a higher perceived needs score (adjusted odds ratio [OR], 1.33; 95% CI, 1.14 to 1.56; P < .001) was associated with greater willingness to use TCM. Specifically, nutritional (OR, 3.17; 95% CI, 1.79 to 5.62; P < .001) and symptom needs (OR, 3.15; 95% CI, 1.79 to 5.55; P < .001) had the strongest relationship. Conclusion A higher level of perceived needs, especially in the areas of nutrition and symptoms, was associated with greater willingness to use TCM for survivorship care.

  10. Development of a text messaging system to improve receipt of survivorship care in adolescent and young adult survivors of childhood cancer.

    Science.gov (United States)

    Casillas, Jacqueline; Goyal, Anju; Bryman, Jason; Alquaddoomi, Faisal; Ganz, Patricia A; Lidington, Emma; Macadangdang, Joshua; Estrin, Deborah

    2017-08-01

    This study aimed to develop and examine the acceptability, feasibility, and usability of a text messaging, or Short Message Service (SMS), system for improving the receipt of survivorship care for adolescent and young adult (AYA) survivors of childhood cancer. Researchers developed and refined the text messaging system based on qualitative data from AYA survivors in an iterative three-stage process. In stage 1, a focus group (n = 4) addressed acceptability; in stage 2, key informant interviews (n = 10) following a 6-week trial addressed feasibility; and in stage 3, key informant interviews (n = 23) following a 6-week trial addressed usability. Qualitative data were analyzed using a constant comparative analytic approach exploring in-depth themes. The final system includes programmed reminders to schedule and attend late effect screening appointments, tailored suggestions for community resources for cancer survivors, and messages prompting participant feedback regarding the appointments and resources. Participants found the text messaging system an acceptable form of communication, the screening reminders and feedback prompts feasible for improving the receipt of survivorship care, and the tailored suggestions for community resources usable for connecting survivors to relevant services. Participants suggested supplementing survivorship care visits and forming AYA survivor social networks as future implementations for the text messaging system. The text messaging system may assist AYA survivors by coordinating late effect screening appointments, facilitating a partnership with the survivorship care team, and connecting survivors with relevant community resources. The text messaging system has the potential to improve the receipt of survivorship care.

  11. The effects of site, supplemental food, and age on survivorship of Carolina Chickadees and implications for dispersal through- riparian corridors

    Science.gov (United States)

    Doherty, P.F.; Grubb, T.G.

    2000-01-01

    Few studies have examined survivorship of animals in forest fragments differing in size, and none has used appropriate mark-recapture analysis techniques taking into account probability of recapture. Using Program MARK, a flexible mark-recapture software package, we estimated annual survival rates of Carolina Chickadees over a 5-yr period in a fragmented landscape in Ohio. The probability of survival was related to site (riparian woodland or woodlot area) and increased with the presence of supplemental food. While there was little evidence for an age difference in apparent survival in woodlots, young birds appeared to survive less well in forested river corridors. This last result was quite likely due, at least in part, to age-specific dispersal, suggesting that river corridors function as important dispersal routes for young birds.

  12. Functional Deficits and Quality of Life Among Cancer Survivors: Implications for Occupational Therapy in Cancer Survivorship Care.

    Science.gov (United States)

    Hwang, Eric J; Lokietz, Nicole C; Lozano, Rachel L; Parke, Megan A

    2015-01-01

    This study aimed to explore functional deficits and perceived quality of life (QoL) among cancer survivors. Sixty-six participants completed the Post Cancer Outcome Survey developed for the purpose of this study. The results indicated (1) modest to moderate degrees of functional deficits in 28 of the 70 items measuring areas of occupation, performance skills, body functions, and psychosocial well-being within the first year after cancer treatment; (2) significantly lower perceived QoL during the first year of survivorship compared with that before diagnosis, at present, and 5 yr hereafter (p occupational therapy during the first year posttreatment. Functional difficulties and compromised QoL identified in this study indicate the need for occupational therapy among cancer survivors. Increasing clients' awareness of occupational therapy for postcancer care is also suggested. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  13. Exploring the role of ethnicity on perceptions of cancer and physical health recovery during the first year of survivorship.

    Science.gov (United States)

    Kim, Youngmee; Shaffer, Kelly M; Rocha-Lima, Caio; Milton, Alexis; Carver, Charles S

    2016-07-01

    This study examined the role of ethnicity (Black vs White) in the extent to which patients' appraisal of the impact of cancer on themselves and their family members relates to their physical health. Colorectal cancer patients provided self-reports for study variables at 2 and 12 months post-diagnosis (N = 60). Hierarchical regression analysis revealed that African American patients' perception of the cancer as disruptive to their family, but not to themselves, related to poorer health recovery, which association was absent among Whites (p stress plays a different role between two ethnic groups in elucidating their health recovery during the early survivorship. © The Author(s) 2014.

  14. Radiation induced sarcoma after treatment of glioblastoma: case report; Sarcoma radioinduzido pós-tratamento de glioblastoma: relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris, E-mail: fernandaperia@fmrp.usp.br, E-mail: victor_lisita@yahoo.com.br, E-mail: carolinesanjos@gmail.com, E-mail: priscilabarile@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeirão Preto, SP (Brazil). Hospital das Clinicas

    2016-07-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia.

  15. Psychological morbidities in adolescent and young adult blood cancer patients during curative-intent therapy and early survivorship.

    Science.gov (United States)

    Muffly, Lori S; Hlubocky, Fay J; Khan, Niloufer; Wroblewski, Kristen; Breitenbach, Katherine; Gomez, Joseline; McNeer, Jennifer L; Stock, Wendy; Daugherty, Christopher K

    2016-03-15

    Adolescents and young adults (AYAs) with cancer face unique psychosocial challenges. This pilot study was aimed at describing the prevalence of psychological morbidities among AYAs with hematologic malignancies during curative-intent therapy and early survivorship and at examining provider perceptions of psychological morbidities in their AYA patients. Patients aged 15 to 39 years with acute leukemia, non-Hodgkin lymphoma, or Hodgkin lymphoma who were undergoing curative-intent therapy (on-treatment group) or were in remission within 2 years of therapy completion (early survivors) underwent a semistructured interview that incorporated measures of anxiety, depression, and posttraumatic stress (PTS). A subset of providers (n = 15) concomitantly completed a survey for each of the first 30 patients enrolled that evaluated their perception of each subject's anxiety, depression, and PTS. Sixty-one of 77 eligible AYAs participated. The median age at diagnosis was 26 years (range, 15-39 years), 64% were male, and 59% were non-Hispanic white. On-treatment demographics differed significantly from early-survivor demographics only in the median time from diagnosis to interview. Among the 61 evaluable AYAs, 23% met the criteria for anxiety, 28% met the criteria for depression, and 13% met the criteria for PTS; 46% demonstrated PTS symptomatology. Thirty-nine percent were impaired in 1 or more psychological domains. Psychological impairments were as frequent among early survivors as AYAs on treatment. Provider perceptions did not significantly correlate with patient survey results. AYAs with hematologic malignancies experience substantial psychological morbidities while they are undergoing therapy and during early survivorship, with more than one-third of the patients included in this study meeting the criteria for anxiety, depression, or traumatic stress. This psychological burden may not be accurately identified by their oncology providers. © 2016 American Cancer Society.

  16. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation

    Directory of Open Access Journals (Sweden)

    Jay J Lunden

    2014-12-01

    Full Text Available Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth, genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.

  17. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation

    Science.gov (United States)

    Lunden, Jay J.; McNicholl, Conall G.; Sears, Christopher R.; Morrison, Cheryl L.; Cordes, Erik E.

    2014-01-01

    Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, net calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14°C and oxygen concentrations of approximately 1.5 ml· l−1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.

  18. Temozolomide during radiotherapy of glioblastoma multiforme. Daily administration improves survival

    Energy Technology Data Exchange (ETDEWEB)

    Nachbichler, Silke Birgit; Schupp, Gabi; Ballhausen, Hendrik; Niyazi, Maximilian; Belka, Claus [LMU Munich, Department of Radiation Oncology, Munich (Germany)

    2017-11-15

    Temozolomide-(TMZ)-based chemoradiotherapy defines the current gold standard for the treatment of newly diagnosed glioblastoma. Data regarding the influence of TMZ dose density during chemoradiotherapy are currently not available. We retrospectively compared outcomes in patients receiving no TMZ, TMZ during radiotherapy on radiotherapy days only, and TMZ constantly 7 days a week. From 2002-2012, a total of 432 patients with newly diagnosed glioblastoma received radiotherapy in our department: 118 patients had radiotherapy alone, 210 had chemoradiotherapy with TMZ (75 mg/m{sup 2}) daily (7/7), and 104 with TMZ only on radiotherapy days (5/7). Radiotherapy was applied to a total dose of 60 Gy. Median survival after radiotherapy alone was 9.1 months, compared to 12.6 months with 5/7-TMZ and to 15.7 months with 7/7-TMZ. The 1-year survival rates were 33, 52, and 64%, respectively. Kaplan-Meier analysis showed a significant improvement of TMZ-7/7 vs. 5/7 (p = 0.01 by the log-rank test), while 5/7-TMZ was still superior to no TMZ at all (p = 0.02). Multivariate Cox regression showed a significant influence of TMZ regimen (p = 0.009) on hazard rate (+58% between groups) even in the presence of confounding factors age, sex, resection status, and radiotherapy dose concept. Our results confirm the findings of the EORTC/NCIC trial. It seems that also a reduced TMZ scheme can at first prolong the survival of glioblastoma patients, but not as much as the daily administration. (orig.) [German] Eine Temozolomid-(TMZ-)basierte Radiochemotherapie ist der gegenwaertige Goldstandard in der Behandlung von neu diagnostizierten Glioblastomen. Daten bezueglich des Einflusses der TMZ-Dosisdichte waehrend der Radiochemotherapie sind derzeit nicht vorhanden. Wir haben retrospektiv die Ergebnisse von Patienten verglichen, die entweder kein TMZ, TMZ zur Strahlentherapie nur an Bestrahlungstagen oder TMZ konstant 7 Tage/Woche erhalten hatten. Von 2002-2012 bekamen insgesamt 432 Patienten mit

  19. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  20. Heterogenic expression of stem cell markers in patient-derived glioblastoma spheroid cultures exposed to long-term hypoxia

    DEFF Research Database (Denmark)

    Rosenberg, Tine; Aaberg-Jessen, Charlotte; Petterson, Stine Asferg

    2018-01-01

    AIM: To investigate the time profile of hypoxia and stem cell markers in glioblastoma spheroids of known molecular subtype. MATERIALS & METHODS: Patient-derived glioblastoma spheroids were cultured up to 7 days in either 2% or 21% oxygen. Levels of proliferation (Ki-67), hypoxia (HIF-1α, CA9...

  1. Changes in chromatin state reveal ARNT2 at a node of a tumorigenic transcription factor signature driving glioblastoma cell aggressiveness.

    Science.gov (United States)

    Bogeas, Alexandra; Morvan-Dubois, Ghislaine; El-Habr, Elias A; Lejeune, François-Xavier; Defrance, Matthieu; Narayanan, Ashwin; Kuranda, Klaudia; Burel-Vandenbos, Fanny; Sayd, Salwa; Delaunay, Virgile; Dubois, Luiz G; Parrinello, Hugues; Rialle, Stéphanie; Fabrega, Sylvie; Idbaih, Ahmed; Haiech, Jacques; Bièche, Ivan; Virolle, Thierry; Goodhardt, Michele; Chneiweiss, Hervé; Junier, Marie-Pierre

    2018-02-01

    Although a growing body of evidence indicates that phenotypic plasticity exhibited by glioblastoma cells plays a central role in tumor development and post-therapy recurrence, the master drivers of their aggressiveness remain elusive. Here we mapped the changes in active (H3K4me3) and repressive (H3K27me3) histone modifications accompanying the repression of glioblastoma stem-like cells tumorigenicity. Genes with changing histone marks delineated a network of transcription factors related to cancerous behavior, stem state, and neural development, highlighting a previously unsuspected association between repression of ARNT2 and loss of cell tumorigenicity. Immunohistochemistry confirmed ARNT2 expression in cell sub-populations within proliferative zones of patients' glioblastoma. Decreased ARNT2 expression was consistently observed in non-tumorigenic glioblastoma cells, compared to tumorigenic cells. Moreover, ARNT2 expression correlated with a tumorigenic molecular signature at both the tissue level within the tumor core and at the single cell level in the patients' tumors. We found that ARNT2 knockdown decreased the expression of SOX9, POU3F2 and OLIG2, transcription factors implicated in glioblastoma cell tumorigenicity, and repressed glioblastoma stem-like cell tumorigenic properties in vivo. Our results reveal ARNT2 as a pivotal component of the glioblastoma cell tumorigenic signature, located at a node of a transcription factor network controlling glioblastoma cell aggressiveness.

  2. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    International Nuclear Information System (INIS)

    Kaaijk, P.; Academic Medical Center, Amsterdam; Troost, D.; Leenstra, S.; Bosch, D.A.; Sminia, P.; Hulshof, M.C.C.M..; Kracht, A.H.W. van der

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author)

  3. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaijk, P [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Troost, D [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; Leenstra, S; Bosch, D A [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Sminia, P; Hulshof, M C.C.M.; Kracht, A.H.W. van der [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Experimental) Radiotherapy

    1997-04-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author).

  4. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Jaworski, Slawomir; Kutwin, Marta

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug...... that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment....

  5. ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy

    NARCIS (Netherlands)

    Lin, Fan; de Gooijer, Mark C; Roig, Eloy Moreno; Buil, Levi C M; Christner, Susan M; Beumer, Jan H; Würdinger, Thomas; Beijnen, Jos H|info:eu-repo/dai/nl/071919570; van Tellingen, Olaf

    2014-01-01

    PURPOSE: Little is known about the optimal clinical use of ABT-888 (veliparib) for treatment of glioblastoma. ABT-888 is a PARP inhibitor undergoing extensive clinical evaluation in glioblastoma, because it may synergize with the standard-of-care temozolomide (TMZ). We have elucidated important

  6. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.

    Science.gov (United States)

    Young, Jonathan D; Cai, Chunhui; Lu, Xinghua

    2017-10-03

    One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related, alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep learning will be related to the cellular signaling system. Robust deep learning model selection identified a network architecture that is biologically plausible. Our model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300 hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised deep learning model, we performed consensus clustering on all tumor samples-leading to the discovery of clusters of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis, suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations (NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and mutations will allow us to

  7. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    International Nuclear Information System (INIS)

    Iliadis, Georgios; Kotoula, Vassiliki; Chatzisotiriou, Athanasios; Televantou, Despina; Eleftheraki, Anastasia G; Lambaki, Sofia; Misailidou, Despina; Selviaridis, Panagiotis; Fountzilas, George

    2012-01-01

    In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O 6 -methylguanine methyltransferase) related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. We prospectively analyzed 65 patients suffering from glioblastoma (GBM) who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR) sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy). The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor) and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS) and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA), for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS) (p = 0.023) and for preoperative necrosis on progression-free survival (PFS) (p = 0.030). Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5%) evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei) was inversely associated with pre-operative tumor necrosis (p = 0.021). Our findings implicate that volumetric parameters may have a significant role in the prognosis of GBM patients. Furthermore

  8. Treatment options and outcomes for glioblastoma in the elderly patient

    Directory of Open Access Journals (Sweden)

    Arvold ND

    2014-02-01

    Full Text Available Nils D Arvold,1 David A Reardon2 1Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA; 2Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA Abstract: Age remains the most powerful prognostic factor among glioblastoma (GBM patients. Half of all patients with GBM are aged 65 years or older at the time of diagnosis, and the incidence rate of GBM in patients aged over 65 years is increasing rapidly. Median survival for elderly GBM patients is less than 6 months and reflects less favorable tumor biologic factors, receipt of less aggressive care, and comorbid disease. The standard of care for elderly GBM patients remains controversial. Based on limited data, extensive resection appears to be more beneficial than biopsy. For patients with favorable Karnofsky performance status (KPS, adjuvant radiotherapy (RT has a demonstrated survival benefit with no observed decrement in quality of life. Concurrent and adjuvant temozolomide (TMZ along with RT to 60 Gy have not been prospectively studied among patients aged over 70 years but should be considered for patients aged 65–70 years with excellent KPS. Based on the recent NOA-08 and Nordic randomized trials, testing for O6-methylguanine-DNA-methyltransferase (MGMT promoter methylation should be performed routinely immediately after surgery to aid in adjuvant treatment decisions. Patients aged over 70 years with favorable KPS, or patients aged 60–70 years with borderline KPS, should be considered for monotherapy utilizing standard TMZ dosing for patients with MGMT-methylated tumors, and hypofractionated RT (34 Gy in ten fractions or 40 Gy in 15 fractions for patients with MGMT-unmethylated tumors. The ongoing European Organisation for Research and Treatment of Cancer/National Cancer Institute of Canada trial will help clarify the role for concurrent TMZ with hypofractionated RT. For elderly patients with poor KPS, reasonable

  9. Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT 1 Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-03-01

    Full Text Available Objective: To explore the new molecular mechanism of anti-tumor effect of temzolomide (TMZon glioblastoma cell strain. Methods: MTT methods and Hoechst 33342 staining method were applied to determine the effect of TMZ on the proliferation and apoptosis of glioblastoma cell strains U251 and SHG44, while flow cytometry was used to detect the impact of TMZ on cellular cycles. Additionally, DCFH-DA probe was adopted to test intracellular reactive oxygen species (ROS level while Real-time PCR and Western blot tests were applied to determine the influence of TMZ on SIRT1 expression. Results: TMZ in different concentrations added into glioblastoma cell strain for 72 h could concentration-dependently inhibit the proliferation of glioblastoma cells, 100 μmol/L of which could also block cells in phase G2/M and improve cellular apoptosis. In addition, TMZ could evidently increase intracellular ROS level so as to activate SIRT1. Conclusion: The mechanism of anti-tumor effect of TMZ on glioblastoma may be associated with ROS-induced SIRT1 pathway, providing theoretical basis for the clinical efficacy of TMZ.

  10. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    Science.gov (United States)

    Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.

    2011-02-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.

  11. CDK4/6 inhibitor PD0332991 in glioblastoma treatment: does it have a future?

    Directory of Open Access Journals (Sweden)

    Lisette eSchroder

    2015-11-01

    Full Text Available Glioblastoma is aggressive, highly infiltrating, and the most frequent malignant form of brain cancer. With a median survival time of only 14.6 months, when treated with the standard of care, it is essential to find new therapeutic options. A specific CDK4/6 inhibitor, PD0332991, obtained accelerated approval from the Food and Drug Administration for the treatment of patients with advanced estrogen receptor-positive and HER2-negative breast cancer. Common alterations in the cyclin D1-Cyclin Dependent Kinase 4/6-Retinoblastoma 1 pathway in glioblastoma make PD0332991 also an interesting drug for the treatment of glioblastoma. Promising results in in vitro studies, where patient derived glioblastoma cell lines showed sensitivity to PD0332991, gave motive to start in vivo studies. Outcomes of these studies have been contrasting in terms of PD0332991 efficacy within the brain: more research is necessary to conclude whether CDK4/6 inhibitor can be beneficial in the treatment of glioblastoma.

  12. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view

    International Nuclear Information System (INIS)

    Basanta, David; Scott, Jacob G; Anderson, Alexander R A; Rockne, Russ; Swanson, Kristin R

    2011-01-01

    Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints

  13. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Science.gov (United States)

    Nitta, Masayuki; Kozono, David; Kennedy, Richard; Stommel, Jayne; Ng, Kimberly; Zinn, Pascal O; Kushwaha, Deepa; Kesari, Santosh; Inda, Maria-del-Mar; Wykosky, Jill; Furnari, Frank; Hoadley, Katherine A; Chin, Lynda; DePinho, Ronald A; Cavenee, Webster K; D'Andrea, Alan; Chen, Clark C

    2010-05-24

    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  14. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Directory of Open Access Journals (Sweden)

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  15. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie

    2012-08-15

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  16. Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI).

    Science.gov (United States)

    Peters, S; Knöß, N; Wodarg, F; Cnyrim, C; Jansen, O

    2012-08-01

    It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    International Nuclear Information System (INIS)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O.

    2012-01-01

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  18. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation.

    Science.gov (United States)

    Iser, Isabele C; Pereira, Mariana B; Lenz, Guido; Wink, Márcia R

    2017-03-01

    Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer due to its highly invasive nature that impedes the surgical removal of all tumor cells, making relapse inevitable. However, the mechanisms used by glioma cells to invade the surrounding tissue are still unclear. In this context, epithelial-to-mesenchymal transition (EMT) has emerged as a key regulator of this invasive state and although the real relevance of this program in malignant glioma is still controversial, it has been strongly associated with GBM malignancy. EMT is a very complex process regulated by several families of transcriptional factors through many signaling pathways that form a network that allows cancer cells to acquire invasive properties and penetrate the neighboring stroma, resulting in the formation of an advantageous microenvironment for cancer progression and metastasis. In this systematic review, we focus on the molecular mechanisms of EMT including EMT-factors, drug resistance, miRNA, and new therapeutic strategies. In addition, we address controversial questions about mesenchymal shift in GBMs with a bioinformatics analysis to show that in terms of epithelial and mesenchymal phenotype, the majority of GBMs samples analyzed have a profile more mesenchymal than epithelial. If induced, this phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like process in glioma cells. A better understanding of the molecular regulation of the EMT during tumor spreading will help to provide potential therapeutic interventions to target this program when treating GBM. © 2016 Wiley Periodicals, Inc.

  19. Labral Reattachment in Femoroacetabular Impingement Surgery Results in Increased 10-year Survivorship Compared With Resection.

    Science.gov (United States)

    Anwander, Helen; Siebenrock, Klaus A; Tannast, Moritz; Steppacher, Simon D

    2017-04-01

    Since the importance of an intact labrum for normal hip function has been shown, labral reattachment has become the standard method for open or arthroscopic treatment of hips with femoroacetabular impingement (FAI). However, no long-term clinical results exist evaluating the effect of labral reattachment. A 2-year followup comparing open surgical treatment of FAI with labral resection versus reattachment was previously performed at our clinic. The goal of this study was to report a concise followup of these patients at a minimum of 10 years. We asked if patients undergoing surgical hip dislocation for the treatment of mixed-type FAI with labral reattachment compared with labral resection had (1) improved hip pain and function based on the Merle d'Aubigné-Postel score; and (2) improved survival at 10-year followup. Between June 1999 and July 2002, we performed surgical hip dislocation with femoral neck osteoplasty and acetabular rim trimming in 52 patients (60 hips) with mixed-type FAI. In the first 20 patients (25 hips) until June 2001, a torn labrum or a detached labrum in the area of acetabular rim resection was resected. In the next 32 patients (35 hips), reattachment of the labrum was performed. The same indications were used to perform both procedures during the periods in question. Of the 20 patients (25 hips) in the first group, 19 patients (95%) (24 hips [96%]) were available for clinical and/or radiographic followup at a minimum of 10 years (mean, 13 years; range, 12-14 years). Of the 32 patients (35 hips) in the second group, 29 patients (91%) (32 hips [91%]) were available for clinical and/or radiographic followup at a minimum of 10 years (mean, 12 years; range, 10-13 years). We used the anterior impingement test to assess pain. Function was assessed using the Merle d'Aubigné- Postel score and ROM. Survivorship calculation was performed using the method of Kaplan-Meier with failure defined as conversion to THA, progression of osteoarthritis (of one

  20. New perspective for GdNCT. Gd-DTPA reaches the nucleus of glioblastoma cells in culture and in vivo

    International Nuclear Information System (INIS)

    Stasio, G. de; Gilbert, B.; Frazer, B.H.

    2000-01-01

    We investigated the prospects of gadolinium as a neutron capture therapy agent by combining three independent techniques to study the uptake of Gd-DTPA in vitro, in cultured glioblastoma cells, and in vivo, in the glioblastoma tissue sections after injection of Gd-DTPA and tumor extraction. We show that gadolinium not only penetrates the plasma membrane of glioblastoma cells grown in culture, but we also observe a statistically significant higher concentration of Gd in the nucleus relative to the cytoplasm. For the in vivo experiments, Gd-DTPA was administered to 6 glioblastoma patients before neurosurgery. The extracted bioptic tissue was then analyzed with spectromictroscopy, showing Gd localized in the nuclei of glioblastoma cells in 5 patients out of the 6 analyzed. (author)

  1. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    Full Text Available Background/Aims: Glioblastoma (GBM is a malignant brain tumor with a poor prognosis. Proteasome subunit beta type-4 (PSMB4 is an essential subunit that contributes to the assembly of the 20S proteasome complex. However, the role of PSMB4 in glioblastomas remains to be clarified. The aim of this study was to investigate the role of PSMB4 in GBM tumor progression. Methods: We first analyzed the PSMB4 protein and mRNA expression in 80 clinical brain specimens and 77 datasets from the National Center for Biotechnology Information (NCBI Gene Expression Omnibus (GEO database. Next, we inhibited the PSMB4 expression by siRNA in cellular and animal models to explore PSMB4’s underlying mechanisms. The cell survival after siPSMB4 transfection was assayed by MTT assay. Annexin V and propidium iodide staining was used to monitor the apoptosis by flow cytometric analysis. Moreover, the migration and invasion were evaluated by wound healing and Transwell assays. The expression of migration-related and invasion-related proteins after PSMB4 inhibition was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of PSMB4 knockdown in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher PSMB4 expression had a shorter survival time than those with lower PSMB4 expression. The staining of clinical brain tissues showed elevated PSMB4 expression in GBM tissues compared with normal brain tissues. The PSMB4 inhibition decreased proliferation, migration and invasion abilities in human GBM cells. Downregulated PSMB4 resulted in cell cycle arrest and apoptosis in vitro. In an orthotropic xenograft mouse model, the glioma tumors progression was reduced when PSMB4 was down-regulated. The decreased PSMB4 enhanced the anti-tumor effect of temozolomide (TMZ on tumor growth. In addition, the absence of PSMB4 decreased the expression of phosphorylated focal adhesion kinase and

  2. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi; Liu, Bo

    2016-01-01

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation and survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.

  3. Adoption, Acceptability, and Effectiveness of a Mobile Health App for Personalized Prostate Cancer Survivorship Care: Protocol for a Realist Case Study of the Ned App.

    Science.gov (United States)

    Pham, Quynh; Cafazzo, Joseph A; Feifer, Andrew

    2017-10-12

    By 2030, prostate cancer will be the most commonly diagnosed cancer in North America. To mitigate this impending challenge, comprehensive support mechanisms for disease- and treatment-specific changes in health and well-being must be proactively designed and thoughtfully implemented for streamlined survivorship care. mHealth apps have been lauded as a promising complement to current outpatient treatment and monitoring strategies, but have not yet been widely used to support prostate cancer survivorship needs. A realist evaluation is needed to examine the impact of such apps on the prostate cancer survivorship experience. We seek to gain an understanding of how an mHealth app for prostate cancer survivorship care called Ned (No Evident Disease) is adopted and accepted by patients, caregivers, and clinicians. We also aim to determine the effect of Ned on health-related quality of life, satisfaction with cancer care, unmet needs, self-efficacy, and prostate cancer-related levels of anxiety. The Ned case study is a 12-month mixed-methods embedded single-case study with a nested within-group pre-post comparison of health outcomes. We will give 400 patients, 200 caregivers, and 10 clinicians access to Ned. Participants will be asked to complete study assessments at baseline, 2 months, 6 months, and 12 months. We will conduct 30 semistructured qualitative interviews with patients (n=20) and their caregivers (n=10) poststudy to gain insight into their experience with the app. We recruited our first survivor in October 2017 and anticipate completing this study by May 2019. This will, to our knowledge, be the first realist case study to evaluate an app for prostate cancer survivorship care. Prostate cancer survivors are set to increase in number and longevity, heightening the need for integrated survivorship solutions to provide them with optimal and durable outcomes. The knowledge gained from this study will comprehensively inform how and why Ned works, for whom, and in

  4. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma.

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Schiffer, Davide

    2017-05-26

    Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.

  5. Immune phenotypes predict survival in patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Haouraa Mostafa

    2016-09-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM, a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. Methods Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. Results Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. Conclusions Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention.

  6. Recurrent glioblastoma: Current patterns of care in an Australian population.

    Science.gov (United States)

    Parakh, Sagun; Thursfield, Vicky; Cher, Lawrence; Dally, Michael; Drummond, Katharine; Murphy, Michael; Rosenthal, Mark A; Gan, Hui K

    2016-02-01

    This retrospective population-based survey examined current patterns of care for patients with recurrent glioblastoma (rGBM) who had previously undergone surgery and post-operative therapy at original diagnosis. The patients were identified from the Victorian Cancer Registry (VCR) from 2006 to 2008. Patient demographics, tumour characteristics and oncological management were extracted using a standardised survey by the treating clinicians/VCR staff and results analysed by the VCR. Kaplan-Meier estimates of overall survival (OS) at diagnosis and progression were calculated. A total of 95 patients (48%) received treatment for first recurrence; craniotomy and post-operative treatment (38), craniotomy only (34) and non-surgical treatment (23). Patients receiving treatment at first progression had a higher median OS than those who did not (7 versus 3 months, ppattern of care survey of treatment for rGBM in an era where post-operative "Stupp" chemo-radiation is standard. First and second line therapy for rGBM is common and associated with significant benefit. Treatment generally includes re-resection and/or systemic therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Phenotypic characterization of glioblastoma identified through shape descriptors

    Science.gov (United States)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2016-03-01

    This paper proposes quantitatively describing the shape of glioblastoma (GBM) tissue phenotypes as a set of shape features derived from segmentations, for the purposes of discriminating between GBM phenotypes and monitoring tumor progression. GBM patients were identified from the Cancer Genome Atlas, and quantitative MR imaging data were obtained from the Cancer Imaging Archive. Three GBM tissue phenotypes are considered including necrosis, active tumor and edema/invasion. Volumetric tissue segmentations are obtained from registered T1˗weighted (T1˗WI) postcontrast and fluid-attenuated inversion recovery (FLAIR) MRI modalities. Shape features are computed from respective tissue phenotype segmentations, and a Kruskal-Wallis test was employed to select features capable of classification with a significance level of p < 0.05. Several classifier models are employed to distinguish phenotypes, where a leave-one-out cross-validation was performed. Eight features were found statistically significant for classifying GBM phenotypes with p <0.05, orientation is uninformative. Quantitative evaluations show the SVM results in the highest classification accuracy of 87.50%, sensitivity of 94.59% and specificity of 92.77%. In summary, the shape descriptors proposed in this work show high performance in predicting GBM tissue phenotypes. They are thus closely linked to morphological characteristics of GBM phenotypes and could potentially be used in a computer assisted labeling system.

  8. Quantitative Magnetization Transfer in Monitoring Glioblastoma (GBM) Response to Therapy.

    Science.gov (United States)

    Mehrabian, Hatef; Myrehaug, Sten; Soliman, Hany; Sahgal, Arjun; Stanisz, Greg J

    2018-02-06

    Quantitative magnetization transfer (qMT) was used as a biomarker to monitor glioblastoma (GBM) response to chemo-radiation and identify the earliest time-point qMT could differentiate progressors from non-progressors. Nineteen GBM patients were recruited and MRI-scanned before (Day 0 ), two weeks (Day 14 ), and four weeks (Day 28 ) into the treatment, and one month after the end of the treatment (Day 70 ). Comprehensive qMT data was acquired, and a two-pool MT model was fit to the data. Response was determined at 3-8 months following the end of chemo-radiation. The amount of magnetization transfer ([Formula: see text]) was significantly lower in GBM compared to normal appearing white matter (p GBM are more sensitive to treatment effects compared to clinically used metrics. qMT could assess tumor aggressiveness and identify early progressors even before the treatment. Changes in qMT parameters within the first 14 days of the treatment were capable of separating early progressors from non-progressors, making qMT a promising biomarker to guide adaptive radiotherapy for GBM.

  9. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-cc.jp [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hatano, Kazuo [Division of Radiation Oncology, Tokyo Bay Advanced Imaging and Radiation Oncology Clinic, Makuhari, Chiba (Japan); Uchino, Yoshio [Division of Nuclear Medicine, Chiba Ryogo Center, Chiba (Japan); Itami, Makiko [Division of Surgical Pathology, Chiba Cancer Center, Chiba (Japan); Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa [Division of Neurological Surgery, Chiba Cancer Center, Chiba (Japan); Hara, Ryusuke [Division of Radiation Oncology, Chiba Cancer Center, Chiba (Japan)

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  10. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor.

    Directory of Open Access Journals (Sweden)

    Yayoi Yoshimura

    Full Text Available Glioblastoma multiforme (GBM is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.

  11. Protein Kinase CK2 Content in GL261 Mouse Glioblastoma.

    Science.gov (United States)

    Ferrer-Font, Laura; Alcaraz, Estefania; Plana, Maria; Candiota, Ana Paula; Itarte, Emilio; Arús, Carles

    2016-07-01

    Glioblastoma (GBM) is the most prevalent and aggressive human glial tumour with a median survival of 14-15 months. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment. Unfortunately, chemoresistence always ensues with concomitant tumour regrowth. Protein kinase CK2 (CK2) contributes to tumour development, proliferation, and suppression of apoptosis in cancer and it is overexpressed in human GBM. Targeting CK2 in GBM treatment may benefit patients. With this translational perspective in mind, we have studied the CK2 expression level by Western blot analysis in a preclinical model of GBM: GL261 cells growing orthotopically in C57BL/6 mice. The expression level of the CK2 catalytic subunit (CK2α) was higher in tumour (about 4-fold) and in contralateral brain parenchyma (more than 2-fold) than in normal brain parenchyma (p < 0.05). In contrast, no significant changes were found in CK2 regulatory subunit (CK2β) expression, suggesting an increased unbalance of CK2α/CK2β in GL261 tumours with respect to normal brain parenchyma, in agreement with a differential role of these two subunits in tumours.

  12. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme.

    Science.gov (United States)

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe

    2015-06-01

    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    Directory of Open Access Journals (Sweden)

    Grodzik M

    2011-11-01

    Full Text Available Marta Grodzik1, Ewa Sawosz1, Mateusz Wierzbicki1, Piotr Orlowski1, Anna Hotowy2, Tomasz Niemiec1, Maciej Szmidt3, Katarzyna Mitura4, André Chwalibog21Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Basic Animal and Veterinary Science, University of Copenhagen, Copenhagen, Denmark; 3Division of Histology and Embryology, Warsaw University of Life Sciences, Warsaw, Poland; 4Department of Biomedical Engineering, Koszalin University of Technology, Koszalin, PolandAbstract: The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chorioallantoic membrane of chicken embryo and after 7 days of incubation, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, and vessel area. Quantitative real-time polymerase chain reaction analysis showed downregulated fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.Keywords: cancer, nanoparticle, embryo, angiogenesis, FGF-2, VEGF

  14. Altered expression of polycomb group genes in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available The Polycomb group (PcG proteins play a critical role in histone mediated epigenetics which has been implicated in the malignant evolution of glioblastoma multiforme (GBM. By systematically interrogating The Cancer Genome Atlas (TCGA, we discovered widespread aberrant expression of the PcG members in GBM samples compared to normal brain. The most striking differences were upregulation of EZH2, PHF19, CBX8 and PHC2 and downregulation of CBX7, CBX6, EZH1 and RYBP. Interestingly, changes in EZH2, PHF19, CBX7, CBX6 and EZH1 occurred progressively as astrocytoma grade increased. We validated the aberrant expression of CBX6, CBX7, CBX8 and EZH2 in GBM cell lines by Western blotting and qRT-PCR, and further the aberrant expression of CBX6 in GBM tissue samples by immunohistochemical staining. To determine if there was functional significance to the diminished CBX6 levels in GBM, CBX6 was overexpressed in GBM cells resulting in decreased proliferative capacity. In conclusion, aberrant expression of PcG proteins in GBMs may play a role in the development or maintenance of the malignancy.

  15. Post progression survival in glioblastoma: where are we?

    Science.gov (United States)

    Franceschi, Enrico; Ermani, Mario; Bartolini, Stefania; Bartolotti, Marco; Poggi, Rosalba; Tallini, Giovanni; Marucci, Gianluca; Fioravanti, Antonio; Tosoni, Alicia; Agati, Raffaele; Bacci, Antonella; Pozzati, Eugenio; Morandi, Luca; Balestrini, Damiano; Ghimenton, Claudio; Crisi, Girolamo; Brandes, Alba A

    2015-01-01

    The optimal end point for phase II studies for recurrent glioblastoma (GBM) is unclear and a matter of debate. Moreover, data about post-progression survival (PPS) after the first disease progression in GBM patients treated according to EORTC 26981/22981/NCIC CE.3 trial are limited. The aim of this study was to evaluate the PPS in GBM patients. The analysis was made with a database on 1,006 GBM patients followed prospectively between 06/2005 and 06/2010. Eligibility criteria for the study were: age ≥ 18 years; PS: 0-2; chemotherapy given at disease progression after RT/TMZ. 232 patients (mean age 52 years, range 18-77 years) were enrolled. The median PFS following second line chemotherapy (PFS2) was 2.5 months (95 % CI 2.1-2.9) and the rate of patients free of progression at 6 months (PFS2-6 mo), was 21.6 % (95 % CI 16.3-26.9 %). The median PPS was 8.6 months (95 % CI 7.4-9.8), PPS rates were: PPS-6: 66 % (95 % CI 60.3-72.9 %), PPS-9: 48.2 % (95 % CI 41.5-54.9 %) and PPS-12: 31.7 % (95 % CI 25.2-38.2 %). PPS in unselected patients treated with alkylating agents is about 8 months. PPS rates could be of interest as an end point in future studies in recurrent GBM.