WorldWideScience

Sample records for regulates virus reactivation

  1. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  2. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  3. Regulation of human T-lymphotropic virus type I latency and reactivation by HBZ and Rex.

    Directory of Open Access Journals (Sweden)

    Subha Philip

    2014-04-01

    Full Text Available Human T lymphotropic virus type I (HTLV-I infection is largely latent in infected persons. How HTLV-1 establishes latency and reactivates is unclear. Here we show that most HTLV-1-infected HeLa cells become senescent. By contrast, when NF-κB activity is blocked, senescence is averted, and infected cells continue to divide and chronically produce viral proteins. A small population of infected NF-κB-normal HeLa cells expresses low but detectable levels of Tax and Rex, albeit not Gag or Env. In these "latently" infected cells, HTLV-1 LTR trans-activation by Tax persists, but NF-κB trans-activation is attenuated due to inhibition by HBZ, the HTLV-1 antisense protein. Furthermore, Gag-Pol mRNA localizes primarily in the nuclei of these cells. Importantly, HBZ was found to inhibit Rex-mediated export of intron-containing mRNAs. Over-expression of Rex or shRNA-mediated silencing of HBZ led to viral reactivation. Importantly, strong NF-κB inhibition also reactivates HTLV-1. Hence, during HTLV-1 infection, when Tax/Rex expression is robust and dominant over HBZ, productive infection ensues with expression of structural proteins and NF-κB hyper-activation, which induces senescence. When Tax/Rex expression is muted and HBZ is dominant, latent infection is established with expression of regulatory (Tax/Rex/HBZ but not structural proteins. HBZ maintains viral latency by down-regulating Tax-induced NF-κB activation and senescence, and by inhibiting Rex-mediated expression of viral structural proteins.

  4. Substation Reactive Power Regulation Strategy

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.

  5. Glutamine supplementation suppresses herpes simplex virus reactivation.

    Science.gov (United States)

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  6. Latent Virus Reactivation: From Space to Earth

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Reactivation of latent viruses is a recognized consequence of decreased immunity. More recently viral reactivation has been identified as an important in vivo indicator of clinically relevant immune changes. Viral reactivation can be determined quickly and easily by the presence of virus in saliva and other body fluids. Real-time polymerase chain reaction (PCR) is a highly sensitive and specific molecular method to detect the presence of specific viral DNA. Studies in astronauts demonstrated that herpes simplex virus type 1(HSV-1), Epstein-Barr Virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate at rates above normal during and after spaceflight in response to moderately decreased T-cell immunity. This technology was expanded to patients on Earth beginning with human immune deficiency virus (HIV) immuno-compromised patients. The HIV patients shed EBV in saliva at rates 9-fold higher than observed in astronauts demonstrating that the level of EBV shedding reflects the severity of impaired immunity. Whereas EBV reactivation is not expected to produce serious effects in astronauts on missions of 6 months or less, VZV reactivation in astronauts could produce shingles. Reactivation of live, infectious VZV in astronauts with no symptoms was demonstrated in astronauts during and after spaceflight. We applied our technology to study VZV-induced shingles in patients. In a study of 54 shingles patients, we showed salivary VZV was present in every patient on the day antiviral (acyclovir) treatment was initiated. Pain and skin lesions decreased with antiviral treatment. Corresponding decreases in levels of VZV were also observed and accompanied recovery. Although the level of VZV in shingles patients before the treatment was generally higher than those found in astronauts, lower range of VZV numbers in shingles patients overlapped with astronaut s levels. This suggests a potential risk of shingles to astronauts resulting from reactivation of VZV. In

  7. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    Science.gov (United States)

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  8. Radiation enhaced reactivation of herpes simplex virus: effect of caffeine

    International Nuclear Information System (INIS)

    Hellman, K.B.; Lytle, C.D.; Bockstahler, L.E.

    1976-01-01

    Ultraviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since caffeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation

  9. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  10. Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species.

    Science.gov (United States)

    Zhang, Shilun; Yin, Juan; Zhong, Jiang

    2017-01-01

    Oxidative stress, regarded as a negative effect of free radicals in vivo, takes place when organisms suffer from harmful stimuli. Some viruses can induce the release of reactive oxygen species (ROS) in infected cells, which may be closely related with their pathogenicity. In this report, chaetocin, a fungal metabolite reported to have antimicrobial and cytostatic activity, was studied for its effect on the activation of latent Epstein-Barr virus (EBV) in B95-8 cells. We found that chaetocin remarkably up-regulated EBV lytic transcription and DNA replication at a low concentration (50 nmol L -1 ). The activation of latent EBV was accompanied by an increased cellular ROS level. N-acetyl-L-cysteine (NAC), an ROS inhibitor, suppressed chaetocin-induced EBV activation. Chaetocin had little effect on histone H3K9 methylation, while NAC also significantly reduced H3K9 methylation. These results suggested that chaetocin reactivates latent EBV primarily via ROS pathways.

  11. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation

  12. Radiation enhanced reactivation of nuclear replicating mammalian viruses

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Lytle, C.D.

    1977-01-01

    When CV-1 monkey kidney cells were UV-irradiated (0 to 18 J/m 2 ) or X-irradiated (0 to 10 krads) before infection with UV-irradiated simian adenovirus 7 (SA7) or simian virus 40 (SV40), increases in the infectivity of these nuclear replicating viruses as measured by plaque formation were observed. These radiation enhanced reactivations, UV enhanced reactivation (UVER) and X-ray enhanced reactivation (X-ray ER), occurred both when virus infection immediately followed irradiation of the cells (except for X-ray ER with SA7) and when virus infection was delayed until 3 to 5 days after cell irradiation. While there was little difference in the levels of reactivation of UV-irradiated SV40 between immediate and delayed infection, delayed infection resulted in higher levels of reactivation of SA7. X-ray enhanced reactivation of UV-irradiated Herpes simplex virus persisted for several days but did not increase. Thus, X-ray enhanced and UV enhanced reactivations of these mammalian viruses were relatively long-lived effects. Essentially no UVER or X-ray ER was found in CV-1 cells for either immediate or delayed infection with UV-irradiated vaccinia virus or poliovirus, both of which replicate in the cell cytoplasm. These results suggest UVER and X-ray ER in mammalian cells may be restricted to viruses which are replicated in the cell nucleus. (author)

  13. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.

    Science.gov (United States)

    Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J

    2015-07-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing

  14. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation

    Science.gov (United States)

    Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain

    2015-01-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is

  15. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation

    Science.gov (United States)

    BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi; Khan, Arif A.; Simpson, Jennifer L.; Wechsler, Steven L.

    2015-01-01

    Blinding ocular herpetic disease in humans is due to herpes simplex virus type 1 (HSV-1) reactivations from latency, rather than to primary acute infection. The cellular and molecular mechanisms that control the HSV-1 latency-reactivation cycle remain to be fully elucidated. The aim of this study was to determine if reactivation of the HSV-1 latency associated transcript (LAT) deletion mutant (dLAT2903) was impaired in this model, as it is in the rabbit model of induced and spontaneous reactivation and in the explant TG induced reactivation model in mice. The eyes of mice latently infected with wild type HSV-1 strain McKrae (LAT(+) virus) or dLAT2903 (LAT(−) virus) were irradiated with UV-B and reactivation was determined. We found that compared to LAT(−) virus, LAT(+) virus reactivated at a higher rate as determined by shedding of virus in tears on days 3 to 7 after UV-B treatment. Thus, the UV-B induced reactivation model of HSV-1 appears to be a useful small animal model for studying the mechanisms involved in how LAT enhances the HSV-1 reactivation phenotype. The utility of the model for investigating the immune evasion mechanisms regulating the HSV-1 latency/reactivation cycle and for testing the protective efficacy of candidate therapeutic vaccines and drugs are discussed. PMID:26002839

  16. Investigation of radiation enhanced reactivation of cytoplasmic replicating human virus

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Haynes, K.F.; Stafford, J.E.

    1976-01-01

    When monolayers of CV-1 monkey kidney cells were exposed to ultraviolet (uv) radiation (0 to 200 erg/nm 2 ) or x rays (0 to 10 krads) before infection with uv-irradiated herpes simplex virus, an increase in the infectivity of this nuclear replicating virus occurred as measured by plaque formation. These phenomena are known as uv (Weigle) reactivation (WR) and x-ray reactivation (x-ray R). In this study the presence of WR and x-ray R was examined in CV-1 cells infected with uv-irradiated vaccinia virus or poliovirus, both cytoplasmic replicating viruses. Little or no WR or x-ray R was observed for either of these viruses. These results suggest that WR and x-ray R in mammalian cells may be restricted to viruses which are synthesized in the cell nucleus

  17. Hepatitis B virus reactivation during immunosuppressive therapy: Appropriate risk stratification

    OpenAIRE

    Seto, Wai-Kay

    2015-01-01

    Our understanding of hepatitis B virus (HBV) reactivation during immunosuppresive therapy has increased remarkably during recent years. HBV reactivation in hepatitis B surface antigen (HBsAg)-positive individuals has been well-described in certain immunosuppressive regimens, including therapies containing corticosteroids, anthracyclines, rituximab, antibody to tumor necrosis factor (anti-TNF) and hematopoietic stem cell transplantation (HSCT). HBV reactivation could also occur in HBsAg-negati...

  18. Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis

    International Nuclear Information System (INIS)

    Zamansky, G.B.; Kleinman, L.F.; Black, P.H.; Kaplan, J.C.

    1980-01-01

    The reactivation of UV-irradiated herpes simplex virus (HSV) was investigated in irradiated and unirradiated transformed hamster cells in which infectious simian virus 40(SV40) can be induced. Reactivation was enhanced when the cells were treated with UV light or mitomycin C prior to infection with HSV. The UV dose-response curve of this enhanced reactivation was strikingly similar to that found for induction of SV40 virus synthesis in cells treated under identical conditions. This is the first time that two SOS functions described in bacteria have been demonstrated in a single mammalian cell line. (orig.)

  19. Latent Virus Reactivation in Astronauts and Shingles Patients

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  20. Hepatitis B virus reactivation during immunosuppressive therapy: Appropriate risk stratification.

    Science.gov (United States)

    Seto, Wai-Kay

    2015-04-28

    Our understanding of hepatitis B virus (HBV) reactivation during immunosuppresive therapy has increased remarkably during recent years. HBV reactivation in hepatitis B surface antigen (HBsAg)-positive individuals has been well-described in certain immunosuppressive regimens, including therapies containing corticosteroids, anthracyclines, rituximab, antibody to tumor necrosis factor (anti-TNF) and hematopoietic stem cell transplantation (HSCT). HBV reactivation could also occur in HBsAg-negative, antibody to hepatitis B core antigen (anti-HBc) positive individuals during therapies containing rituximab, anti-TNF or HSCT.For HBsAg-positive patients, prophylactic antiviral therapy is proven to the effective in preventing HBV reactivation. Recent evidence also demonstrated entecavir to be more effective than lamivudine in this aspect. For HBsAg-negative, anti-HBc positive individuals, the risk of reactivations differs with the type of immunosuppression. For rituximab, a prospective study demonstrated the 2-year cumulative risk of reactivation to be 41.5%, but prospective data is still lacking for other immunosupressive regimes. The optimal management in preventing HBV reactivation would involve appropriate risk stratification for different immunosuppressive regimes in both HBsAg-positive and HBsAg-negative, anti-HBc positive individuals.

  1. Is ultraviolet enhanced reactivation of mammalian virus mutagenic

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Hellman, K.B.; Cantwell, J.M.; Strickland, A.

    1981-01-01

    Ultraviolet enhanced reactivation consists of an increase in the survival of certain uv-irradiated mammalian viruses when assayed for infectivity in uv-irradiated host mammalian cells, as compared with unirradiated cells. In this report ultraviolet enhanced reactivation is described, and a review is presented of investigations from this and other laboratories to establish whether or not this process is mutagenic. The answer to this question may help establish if error-prone DNA repair is induced in irradiated mammalian cells. We approached the mutagenesis question by examining the phenotypic reversion of a uv-irradiated temperature sensitive mutant of Herpes simplex virus to wild type growth in uv-irradiated monkey kidney cells. Apparent reversion was observed in both irradiated and unirradiated cells. No correlation could be found between the extent of reversion and uv exposure to the cells. The conclusions from studies reported by other investigators using various mammalian virus mutagenesis systems are conflicting. It was generally agreed that viral mutagenesis occurs when irradiated virus is passaged through either irradiated or unexposed cells. However, in some studies it was found that the frequency of mutagenesis in irradiated cells was greater than that in unirradiated cells, while in other studies increased mutagenesis in irradiated cells was not observed

  2. Physiological correlates of emotional reactivity and regulation in early adolescents.

    Science.gov (United States)

    Latham, Melissa D; Cook, Nina; Simmons, Julian G; Byrne, Michelle L; Kettle, Jonathan W L; Schwartz, Orli; Vijayakumar, Nandita; Whittle, Sarah; Allen, Nicholas B

    2017-07-01

    Few studies have examined physiological correlates of emotional reactivity and regulation in adolescents, despite the occurrence in this group of significant developmental changes in emotional functioning. The current study employed multiple physiological measures (i.e., startle-elicited eyeblink and ERP, skin conductance, facial EMG) to assess the emotional reactivity and regulation of 113 early adolescents in response to valenced images. Reactivity was measured while participants viewed images, and regulation was measured when they were asked to discontinue or maintain their emotional reactions to the images. Adolescent participants did not exhibit fear-potentiated startle blink. However, they did display affect-consistent zygomatic and corrugator activity during reactivity, as well as inhibition of some of these facial patterns during regulation. Skin conductance demonstrated arousal dependent activity during reactivity, and overall decreases during regulation. These findings suggest that early adolescents display reactivity to valenced pictures, but not to startle probes. Psychophysiological patterns during emotion regulation indicate additional effort and/or attention during the regulation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Reactivation of herpes zoster infection by varicella-zoster virus].

    Science.gov (United States)

    Cvjetković, D; Jovanović, J; Hrnjaković-Cvjetković, I; Brkić, S; Bogdanović, M

    1999-01-01

    There has been considerable interest in varicella-zoster virus in the middle of the twentieth century. Virus isolation in 1958 had made it possible to find out the complete DNA sequence of the varicella-zoster virus. Molecular identify of the causative agents of varicella and shingles had been proved. ETIOPATHOGENESIS AND HISTOPATHOLOGY: Varicella-zoster virus is a member of the Herpesviridae family. After primary infection which results in varicella, the virus becomes latent in the cerebral or posterior root ganglia. Some of these individuals develop shingles after several decades because of virus reactivation. It is caused by decline of cellular immune response. Circumstances such as old age, hard work, using of steroids or malignancies contribute to the appearance of shingles. Histopathological findings include degenerative changes of epithelial cells such as ballooning, multinucleated giant cells and eosinophilic intranuclear inclusions. Shingles occur sporadically, mainly among the elderly who have had varicella. There is no seasonal appearance of shingles. Individuals suffering from shingles may be sometimes contagious for susceptible children because of enormous amount of virus particles in vesicle fluid. Clinically, shingles is characterized at first by pain or discomfort in involved dermatome, usually without constitutional symptoms. Local edema and erythema appear before developing of rash. Maculopapular and vesicular rash evolves into crusts. The most commonly involved ganglia are: lumbar, thoracic, sacral posterior root ganglia, then geniculate ganglion of the VIIth cranial nerve and the trigeminal ganglion. The most common complication, postherpetic neuralgia, may last for as long as two or three weeks, sometimes even one year or more. Other complications that may be seen in shingles, but more rarely, are ocular (keratitis, iridocyclitis, secondary glaucoma, loss of sight), neurological (various motor neuropathies, encephalitis, Guillain-Barre syndrome

  4. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    International Nuclear Information System (INIS)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.; Notkins, A.L.; Straus, S.E.

    1987-01-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation

  5. Porphyromonas endodontalis reactivates latent Epstein-Barr virus.

    Science.gov (United States)

    Makino, K; Takeichi, O; Imai, K; Inoue, H; Hatori, K; Himi, K; Saito, I; Ochiai, K; Ogiso, B

    2018-06-01

    To determine whether Porphyromonas endodontalis can reactivate latent Epstein-Barr virus (EBV). The concentrations of short-chain fatty acids (SCFAs) in P. endodontalis culture supernatants were determined using high-performance liquid chromatography. A promoter region of BamHI fragment Z leftward open reading frame 1 (BZLF-1), which is a transcription factor that controls the EBV lytic cycle, was cloned into luciferase expression vectors. Then, the luciferase assay was performed using P. endodontalis culture supernatants. Histone acetylation using Daudi cells treated with P. endodontalis culture supernatants was examined using Western blotting. BZLF-1 mRNA and BamHI fragment Z EB replication activator (ZEBRA) protein were also detected quantitatively using real-time polymerase chain reaction (PCR) and Western blotting. Surgically removed periapical granulomas were examined to detect P. endodontalis, EBV DNA, and BZLF-1 mRNA expression using quantitative real-time PCR. Statistical analysis using Steel tests was performed. The concentrations of n-butyric acid in P. endodontalis culture supernatants were significantly higher than those of other SCFAs (P=0.0173). Using B-95-8-221 Luc cells treated with P. endodontalis culture supernatants, the luciferase assay demonstrated that P. endodontalis induced BZLF-1 expression. Hyperacetylation of histones was also observed with the culture supernatants. BZLF-1 mRNA and ZEBRA protein were expressed by Daudi cells in a dose-dependent manner after the treatment with P. endodontalis culture supernatants. P. endodontalis and BZLF-1 in periapical granulomas were also detected. The expression levels of BZLF-1 mRNA were similar to the numbers of P. endodontalis cells in each specimen. n-butyric acid produced by P. endodontalis reactivated latent EBV. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. The molecular basis of the antigenic cross-reactivity between measles and cowpea mosaic viruses

    International Nuclear Information System (INIS)

    Olszewska, Wieslawa; Steward, Michael W.

    2003-01-01

    Two nonrelated viruses, cowpea mosaic virus (wtCPMV) and measles virus (MV), were found to induce cross-reactive antibodies. The nature of this cross-reactivity was studied and results are presented here demonstrating that antiserum raised against wtCPMV reacted with peptide from the fusion (F) protein of MV. Furthermore, the F protein of MV was shown to share an identical conformational B cell epitope with the small subunit of CPMV coat protein. Passive transfer of anti-wtCPMV antibodies into BALB/c mice conferred partial protection against measles virus induced encephalitis. The results are discussed in the context of cross-protection

  7. Cortical associates of emotional reactivity and regulation in childhood stuttering.

    Science.gov (United States)

    Zengin-Bolatkale, Hatun; Conture, Edward G; Key, Alexandra P; Walden, Tedra A; Jones, Robin M

    2018-06-01

    This study sought to determine the cortical associates of emotional reactivity and emotion regulation (as indexed by the amplitude of evoked response potentials [ERP]) in young children who do and do not stutter during passive viewing of pleasant, unpleasant and neutral pictures. Participants were 17 young children who stutter and 22 young children who do not stutter (between 4 years 0 months to 6 years 11 months). The dependent measures were (1) mean amplitude of late positive potential (LPP, an ERP sensitive to emotional stimuli) during passive (i.e., no response required) picture viewing and directed reappraisal tasks and (2) emotional reactivity and regulation related scores on caregiver reports of young children's temperament (Children's Behavior Questionnaire, CBQ). Young CWS, when compared to CWNS, exhibited significantly greater LPP amplitudes when viewing unpleasant pictures, but no significant between-group difference when viewing pleasant pictures and during the emotion regulation condition. There were, however, for CWS, but not CWNS, significant correlations between temperament-related measures of emotion and cortical measures of emotional reactivity and regulation. Findings provide further empirical support for the notion that emotional processes are associated with childhood stuttering, and that CWS's inherent temperamental proclivities need to be taken into account when empirically studying or theorizing about this association. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Serology indicates cytomegalovirus infection is associated with varicella-zoster virus reactivation

    OpenAIRE

    OGUNJIMI, Benson; Theeten, Heidi; HENS, Niel; Beutels, Philippe

    2014-01-01

    Varicella-zoster virus (VZV) causes chickenpox after which the virus remains latent in neural ganglia. Subsequent reactivation episodes occur, leading mainly to subclinical detection of VZV, but also to the clinical entity herpes zoster. These reactivations are known to occur most frequently amongst immunocompromised individuals, but the incidence of herpes zoster is also known to increase with age, supposedly as a consequence of immunosenescence. Our analysis aims to explore associations bet...

  9. Ultraviolet enhanced reactivation of a human virus: effect of delayed infection

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Lytle, C.D.; Stafford, J.E.; Haynes, K.F.

    1976-01-01

    The ability of UV-irradiated herpes simplex virus to form plaques was examined in monolayers of CV-1 monkey kidney cells preexposed to UV radiation at different intervals before virus assay. From analysis of UV reactivation (Weigle reactivation) curves it was found that as the interval between cell UV irradiation (0-20 J/m 2 ) and initiation of the virus assay was increased over a period of five days, (1) the capacity of the cells to support unirradiated virus plaque formation, which was decreased immediately following UV exposure of the monolayers, increased and returned to approximately normal levels within five days, and (2) at five days an exponential increase was observed in the relative plaque formation of irradiated virus as a function of UV dose to the monolayers. For high UV fluence (20 J/m 2 ) to the cells, the relative plaque formation by the UV-irradiated virus at five days was about 10-fold higher than that obtained from assay on unirradiated cells. This enhancement in plaque formation is interpreted as a delayed expression of Weigle reactivation. The amount of enhancement resulting from this delayed reactivation was several fold greater than that produced by the Weigle reactivation which occurred when irradiated herpes virus was assayed immediately following cell irradiation

  10. Reactivation of Latent Epstein-Barr Virus; A Comparison After Gamma Rays and Proton Treatment

    Science.gov (United States)

    Mehta, Satish K.; Plante, Ianik; Bloom, David C.; Stowe, Raymond; Renner, Ashlie; Wu, Honglu; Crucian, Brian; Pierson, Duane L.

    2017-01-01

    Among different unique stressors astronauts are exposed to during spaceflight, cosmic radiation constitutes an important one that leads to various health effects. In particular, space radiation may contribute to decreased immunity, which has been observed in astronauts during short and long duration missions, as evidenced by several changes in cellular immunity and plasma cytokines levels. Reactivation of latent herpes viruses, either directly from radiation or resulting from perturbation in the immune system, is also observed in astronauts. While EBV is one of the eight human herpes viruses known to infect more than 90% human adults and stays latent for the life of the host without normally causing adverse effects of reactivation, increased reactivation in astronauts is well-documented, though the mechanism of this increase is not understood. In this work, we have studied the effect of two different types of radiations, Cs-137 gamma and 150-MeV proton on the reactivation rates of the Epstein - Barr virus (EBV) in vitro in EBV latent cell lines at doses of 0.1, 0.5, 1.0 and 2.0 Gy. While we find that both types of radiations reactivated latent EBV in vitro, we observe that at equivalent doses, early response is stronger for protons but with time, the reactivation induced by gamma rays is more persistent. These differences between the protons and gamma rays curves in latent virus reactivation challenge the common paradigm that protons and gamma rays have similar biological effects.

  11. Virus reactivations after autologous hematopoietic stem cell transplantation detected by multiplex PCR assay.

    Science.gov (United States)

    Inazawa, Natsuko; Hori, Tsukasa; Nojima, Masanori; Saito, Makoto; Igarashi, Keita; Yamamoto, Masaki; Shimizu, Norio; Yoto, Yuko; Tsutsumi, Hiroyuki

    2017-02-01

    Several studies have indicated that viral reactivations following allogeneic hematopoietic stem cell transplantation (allo-HSCT) are frequent, but viral reactivations after autologous HSCT (auto-HSCT) have not been investigated in detail. We performed multiplex polymerase chain reaction (PCR) assay to examine multiple viral reactivations simultaneously in 24 patients undergoing auto-HSCT between September 2010 and December 2012. Weekly whole blood samples were collected from pre- to 42 days post-HSCT, and tested for the following 13 viruses; herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, adeno virus (ADV), BK virus (BKV), JC virus (JCV), parvovirus B19 (B19V), and hepatitis B virus (HBV).  Fifteen (63%) patients had at least one type of viral reactivation. HHV6 (n = 10; 41.7%) was most frequently detected followed by EBV (n = 7; 29.2%). HHV-6 peaked on day 21 after HSCT and promptly declined. In addition, HBV, CMV, HHV7, and B19V were each detected in one patient. HHV6 reactivation was detected in almost half the auto-HSCT patients, which was similar to the incidence in allo-HSCT patients. The incidence of EBV was unexpectedly high. Viral infections in patients undergoing auto-HSCT were higher than previously reported in other studies. Although there were no particular complications of viral infection, we should pay attention to possible viral reactivations in auto-HSCT patients. J. Med. Virol. 89:358-362, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Functional properties of Virus-Encoded and Virus-Regulated 7TM Receptors

    DEFF Research Database (Denmark)

    Spiess, Katja; Rosenkilde, Mette Marie

    2014-01-01

    During co-evolution with their hosts, viruses have developed several survival strategies that involve exploitation of 7TM receptors. These include virus-encoded 7TM receptors and ligands and viral regulation of endogenous receptors. Many functional properties have been ascribed to virus-exploited...

  13. Index-based reactive power compensation scheme for voltage regulation

    Science.gov (United States)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute

  14. Fulminant infectious mononucleosis and recurrent Epstein-Barr virus reactivation in an adolescent.

    Science.gov (United States)

    Nourse, Jamie P; Jones, Kimberley; Dua, Ujjwal; Runnegar, Naomi; Looke, David; Schmidt, Chris; Tey, Siok-Keen; Kennedy, Glen; Gandhi, Maher K

    2010-03-15

    We describe a unique case of fulminant infectious mononucleosis and recurrent Epstein-Barr virus reactivation presenting in an adolescent. Detailed assays of Epstein-Barr virus-specific T cell immunity revealed defects in the patient's T cell receptor signalling pathway characterized by a lack of interleukin-2 and CD25 expression, which may have contributed to her clinical course. Allogeneic stem cell transplantation reversed the clinical and laboratory phenotype.

  15. Vaccine-induced cross-genotype reactive neutralizing antibodies against hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Gottwein, Judith M; Houghton, Michael

    2011-01-01

    We detected cross-reactive neutralizing antibodies (NtAb) against hepatitis C virus (HCV) in chimpanzees vaccinated with HCV-1 (genotype 1a) recombinant E1/E2 envelope glycoproteins. Five vaccinated chimpanzees, protected following HCV-1 challenge, were initially studied using the heterologous H77......a, with limited reactivity against 2a and 3a. Our study provides encouragement for the development of a recombinant envelope-based vaccine against hepatitis C....

  16. Epstein-Barr virus (EBV Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Directory of Open Access Journals (Sweden)

    Yen-Ju Chen

    Full Text Available Epstein-Barr virus (EBV Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV, to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1 an ideal environment for virus reactivation if EBV or KSHV coexists and (2 a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  17. Hepatitis B Virus Reactivation after Partial Hepatic Irradiation Alone: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Kyung [Dankook University College of Medicine, Cheonan (Korea, Republic of)

    2010-11-15

    Reactivation of the hepatitis B virus (HBV) is a well-recognized complication in patients with chronic HBV infection who receive cytotoxic or other immunosuppressive therapy. In cases of patients treated by radiotherapy however, only a few of such reports exist and most of these include the patients previously treated by chemotherapy or transarterial chemoembolization. The results of this study point to a case of a patient with reactivation of HBV after radiotherapy alone. This study shows the possibility of HBV reactivation by partial hepatic irradiation alone hence, special attention should be paid to patients with HBV disease.

  18. Hepatitis B Virus Reactivation after Partial Hepatic Irradiation Alone: A Case Report

    International Nuclear Information System (INIS)

    Kim, Bo Kyung

    2010-01-01

    Reactivation of the hepatitis B virus (HBV) is a well-recognized complication in patients with chronic HBV infection who receive cytotoxic or other immunosuppressive therapy. In cases of patients treated by radiotherapy however, only a few of such reports exist and most of these include the patients previously treated by chemotherapy or transarterial chemoembolization. The results of this study point to a case of a patient with reactivation of HBV after radiotherapy alone. This study shows the possibility of HBV reactivation by partial hepatic irradiation alone hence, special attention should be paid to patients with HBV disease.

  19. The Link between Hypersensitivity Syndrome Reaction Development and Human Herpes Virus-6 Reactivation

    Directory of Open Access Journals (Sweden)

    Joshua C. Pritchett

    2012-01-01

    Data Sources and Extraction. Drugs identified as causes of (i idiosyncratic reactions, (ii drug-induced hypersensitivity, drug-induced hepatotoxicity, acute liver failure, and Stevens-Johnson syndrome, and (iii human herpes virus reactivation in PubMed since 1997 have been collected and discussed. Results. Data presented in this paper show that HHV-6 reactivation is associated with more severe organ involvement and a prolonged course of disease. Conclusion. This analysis of HHV-6 reactivation associated with drug-induced severe cutaneous reactions and hepatotoxicity will aid in causality assessment and clinical diagnosis of possible life-threatening events and will provide a basis for further patient characterization and therapy.

  20. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection.

    Science.gov (United States)

    Nandakumar, Athira; Uwatoko, Futoshi; Yamamoto, Megumi; Tomita, Kazuo; Majima, Hideyuki J; Akiba, Suminori; Koriyama, Chihaya

    2017-07-01

    Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.

  1. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    Science.gov (United States)

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Space Flight-Induced Reactivation of Latent Epstein-Barr Virus

    Science.gov (United States)

    Stowe, Raymond P.; Barrett, Alan D. T.; Pierson, Duane L.

    2001-01-01

    Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Decreased cellular immune function has been reported both during and after space flight. Preliminary studies have demonstrated increased EBV shedding in saliva as well as increased antibody titers to EBV lytic proteins. We hypothesize that the combined effects of microgravity along with associated physical and psychological stress will decrease EBV-specific T-cell immunity and reactivate latent EBV in infected B-lymphocytes. If increased virus production and clonal expansion of infected B-lymphocytes are detected, then pharmacological measures can be developed and instituted prior to onset of overt clinical disease. More importantly, we will begin to understand the basic mechanisms involved in stress-induced reactivation of EBV in circulating B-lymphocytes.

  3. Three Cases of Radiation-Induced Hepatitis B Virus Reactivation after Hepatic Tomotherapy: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Moon Kyoo; Hong, Seong Eon; Kim, Byung Ho; Choi, Jin Hyun [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    2011-03-15

    Radiation-induced liver disease (RILD) has been characterized as a veno-occlusive disease with anicteric elevation of alkaline phosphatase (ALP). However, some RILD patients present with elevated transaminase levels rather than with anicteric elevation of ALP, and these findings are common in the Asia-Pacific region where hepatitis B virus (HBV) infection is associated with 70-90% of hepatocelluar carcinoma (HCC) cases. In addition, the development of RILD is more common in patients with hepatitis B virus-related HCC. These findings indicate that susceptibility to RILD might be different in HBV carriers and non-carriers, and moreover, RILD in patients with HBV-related HCC might be associated with another unique pathogenesis such as HBV reactivation. However, HBV reactivation after hepatic irradiation has been reported in only a few studies. This study reports three cases of HBV reactivation after hepatic tomotherapy for management of HCC.

  4. Three Cases of Radiation-Induced Hepatitis B Virus Reactivation after Hepatic Tomotherapy: Case Report

    International Nuclear Information System (INIS)

    Kong, Moon Kyoo; Hong, Seong Eon; Kim, Byung Ho; Choi, Jin Hyun

    2011-01-01

    Radiation-induced liver disease (RILD) has been characterized as a veno-occlusive disease with anicteric elevation of alkaline phosphatase (ALP). However, some RILD patients present with elevated transaminase levels rather than with anicteric elevation of ALP, and these findings are common in the Asia-Pacific region where hepatitis B virus (HBV) infection is associated with 70-90% of hepatocelluar carcinoma (HCC) cases. In addition, the development of RILD is more common in patients with hepatitis B virus-related HCC. These findings indicate that susceptibility to RILD might be different in HBV carriers and non-carriers, and moreover, RILD in patients with HBV-related HCC might be associated with another unique pathogenesis such as HBV reactivation. However, HBV reactivation after hepatic irradiation has been reported in only a few studies. This study reports three cases of HBV reactivation after hepatic tomotherapy for management of HCC.

  5. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  6. Estimation of age-specific rates of reactivation and immune boosting of the varicella zoster virus

    Directory of Open Access Journals (Sweden)

    Isabella Marinelli

    2017-06-01

    Full Text Available Studies into the impact of vaccination against the varicella zoster virus (VZV have increasingly focused on herpes zoster (HZ, which is believed to be increasing in vaccinated populations with decreasing infection pressure. This idea can be traced back to Hope-Simpson's hypothesis, in which a person's immune status determines the likelihood that he/she will develop HZ. Immunity decreases over time, and can be boosted by contact with a person experiencing varicella (exogenous boosting or by a reactivation attempt of the virus (endogenous boosting. Here we use transmission models to estimate age-specific rates of reactivation and immune boosting, exogenous as well as endogenous, using zoster incidence data from the Netherlands (2002–2011, n = 7026. The boosting and reactivation rates are estimated with splines, enabling these quantities to be optimally informed by the data. The analyses show that models with high levels of exogenous boosting and estimated or zero endogenous boosting, constant rate of loss of immunity, and reactivation rate increasing with age (to more than 5% per year in the elderly give the best fit to the data. Estimates of the rates of immune boosting and reactivation are strongly correlated. This has important implications as these parameters determine the fraction of the population with waned immunity. We conclude that independent evidence on rates of immune boosting and reactivation in persons with waned immunity are needed to robustly predict the impact of varicella vaccination on the incidence of HZ.

  7. Differential reactivity of immune sera from human vaccinees with field strains of eastern equine encephalitis virus.

    Science.gov (United States)

    Strizki, J M; Repik, P M

    1995-11-01

    Eastern equine encephalitis (EEE) virus is a mosquito-borne alphavirus that can produce a severe and often fatal acute encephalitis in humans, with significant neurologic sequelae in survivors. Due to the serious nature of the disease, an investigational inactivated EEE vaccine (PE-6) is available to individuals at risk for infection. Both serologic and recent molecular analyses of EEE viruses have demonstrated marked differences between the two antigenic varieties of EEE virus, designated North American (NA) and South American (SA). In view of these findings, we have examined the reactivity of sera from three individuals immunized with the EEE vaccine, derived from an NA isolate, with field strains of EEE virus. Anti-EEE serum antibodies from vaccinees reacted strongly in Western blot assays with both of the envelope (E1 and E2) glycoproteins of each NA strain examined, while reactivities with the glycoproteins of SA strains were substantially weaker and variable and dependent upon both the immune response of the vaccinee and the virus isolate assayed. Most striking was the modest to virtual lack of reactivity with the E2 protein of SA strains. Antigenic differences among the glycoproteins of EEE viruses were not as pronounced in immunoprecipitation analysis. Most significantly, although human immune sera displayed high neutralizing titers against each of the NA isolates examined, only negligible neutralizing titers were obtained against SA isolates. These data suggest that immunized individuals would mount an effective antibody response against infection with NA strains of EEE virus, but that further investigation is clearly warranted to fully assess the protective capability of the vaccine against infection with SA strains.

  8. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds

    Directory of Open Access Journals (Sweden)

    Andrea Barbieri Barros

    2014-07-01

    Full Text Available Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year. The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported.

  9. Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection.

    Science.gov (United States)

    Felix, Alvina Clara; Souza, Nathalia C Santiago; Figueiredo, Walter M; Costa, Angela A; Inenami, Marta; da Silva, Rosangela M G; Levi, José Eduardo; Pannuti, Claudio Sergio; Romano, Camila Malta

    2017-08-01

    Several countries have local transmission of multiple arboviruses, in particular, dengue and Zika viruses, which have recently spread through many American countries. Cross reactivity among Flaviviruses is high and present a challenge for accurate identification of the infecting agent. Thus, we evaluated the level of cross reactivity of anti-dengue IgM/G Enzyme-Linked Immunosorbent Assays (ELISA) from three manufacturers against 122 serum samples obtained at two time-points from 61 patients with non-dengue confirmed Zika virus infection. All anti-dengue ELISAs cross reacted with serum from patients with acute Zika infection at some level and a worrisome number of seroconversion for dengue IgG and IgM was observed. These findings may impact the interpretation of currently standard criteria for dengue diagnosis in endemic regions. © 2017 Wiley Periodicals, Inc.

  10. Serology indicates cytomegalovirus infection is associated with varicella-zoster virus reactivation.

    Science.gov (United States)

    Ogunjimi, Benson; Theeten, Heidi; Hens, Niel; Beutels, Philippe

    2014-05-01

    Varicella-zoster virus (VZV) causes chickenpox after which the virus remains latent in neural ganglia. Subsequent reactivation episodes occur, leading mainly to subclinical detection of VZV, but also to the clinical entity herpes zoster. These reactivations are known to occur most frequently amongst immunocompromised individuals, but the incidence of herpes zoster is also known to increase with age, supposedly as a consequence of immunosenescence. Our analysis aims to explore associations between cytomegalovirus (CMV) infection and VZV reactivation by analyzing VZV-specific antibody titers as a function of age, gender, and CMV serostatus. The analysis was repeated on measles and parvovirus B19 antibody titers. At the time of the observations, measles virus circulation was virtually eliminated, whereas parvovirus B19 circulated at lower levels than VZV. Multiple linear regression analyses, using the log-transformed antibody titers, identified a positive association between ageing and VZV antibody titers suggesting that ageing increasingly stimulates VZV reactivation. CMV infection further amplified the positive association between ageing and the reactivation rate. A negative association between CMV infection and VZV antibody titers was found in young individuals, thereby supporting the hypothesis that CMV infection may have a negative effect on the number of B-cells. However, no associations between CMV infection and measles or parvovirus B19 antibody titers occurred, but ageing tended to be associated with a decrease in the antibody titer against parvovirus B19. The combined results thus suggest that both CMV-dependent and CMV-independent immunosenescence occurs. This is supported by an in-depth analysis of VZV, measles and parvovirus B19 antibody titers. © 2013 Wiley Periodicals, Inc.

  11. Systematic screening for novel, serologically reactive Hepatitis E Virus epitopes

    Directory of Open Access Journals (Sweden)

    Osterman Andreas

    2012-01-01

    Full Text Available Abstract Background The National Institutes of Health classified Hepatitis E as an emerging disease since Hepatitis E Virus (HEV is the major cause of acute hepatitis in developing countries. Interestingly, an increasing number of sporadic cases of HEV infections are described in industrialized countries as zoonosis from domestic livestock. Despite the increasing relevance of this pathogen in clinical virology, commercial antibody assays are mainly based on fragments of HEV open reading frame (ORF 2 and ORF3. The largest ORF1 (poly-protein, however, is not part of current testing formats. Methods From a synthesized full length HEV genotype 1 cDNA-bank we constructed a complete HEV gene library consisting of 15 respective HEV ORF domains. After bacterial expression and purification of nine recombinant HEV proteins under denaturating conditions serum profiling experiments using 55 sera from patients with known infection status were performed in microarray format. SPSS software assessed the antigenic potential of these nine ORF domains in comparison to seven commercial HEV antigens (genotype 1 and 3 by performing receiver operator characteristics, logistic regression and correlation analysis. Results HEV antigens produced with our method for serum profiling experiments exhibit the same quality and characteristics as commercial antigens. Serum profiling experiments detected Y, V and X domains as ORF1-antigens with potentially comparable diagnostic significance as the well established epitopes of ORF2 and ORF3. However no obvious additional increase in sensitivity or specificity was achieved in diagnostic testing as revealed by bioinformatic analysis. Additionally we found that the C-terminal domain of the potential transmembrane protein ORF3 is responsible for IgG and IgM seroreactivity. Data suggest that there might be a genotype specific seroreactivity of homologous ORF2-antigens. Conclusions The diagnostic value of identified ORF1 epitopes might

  12. The association of Varicella zoster virus reactivation with Bell's palsy in children.

    Science.gov (United States)

    Abdel-Aziz, Mosaad; Azab, Noha A; Khalifa, Badwy; Rashed, Mohammed; Naguib, Nader

    2015-03-01

    Bell's palsy is considered the most common cause of facial nerve paralysis in children. Although different theories have been postulated for its diagnosis, reactivation of the Varicella zoster virus (VZV) has been implicated as one of the causes of Bell's palsy. The aim of the study was to evaluate the association of Varicella-zoster virus infection with Bell's palsy and its outcome in children. A total of 30 children with Bell's palsy were recruited and were assayed for evidence of VZV infection. The severity of facial nerve dysfunction and the recovery rate were evaluated according to House-Brackmann Facial Nerve Grading Scale (HB FGS). Paired whole blood samples from all patients were obtained at their initial visit and 3 weeks later, and serum samples were analyzed for VZV IgG and IgM antibodies using ELISA. A significantly higher percentage of Bell's palsy patients were seropositive for VZV IgM antibodies than controls (36.6% of patients vs 10% of controls) while for VZV IgG antibodies the difference was statistically nonsignificant. HB FGS in Bell's palsy patients with serologic evidence of VZV recent infection or reactivation showed a statistiacally significant less cure rate than other patients. VZV reactivation may be an important cause of acute peripheral facial paralysis in children. The appropriate diagnosis of VZV reactivation should be done to improve the outcome and the cure rate by the early use of antiviral treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Reactivation of UV- and γ-irradiated herpes virus in UV- and X-irradiated CV-1 cells

    International Nuclear Information System (INIS)

    Takimoto, K.; Niwa, O.; Sugahara, T.

    1982-01-01

    Enhanced reactivation of UV- and γ-irradiated herpes virus was investigated by the plaque assay on CV-1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiated CV-1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for γ-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. Thus the UV- or X-irradiated CV-1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of γ-ray damaged ones. (author)

  14. Rabies virus cross-reactive murine T cell clones: analysis of helper and delayed-type hypersensitivity function.

    NARCIS (Netherlands)

    H. Bunschoten; B. Dietzschold; I.J.Th.M. Claassen (Ivo); R. Klapmuts; F. UytdeHaag; A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree T cell clones derived from rabies virus-immunized BALB/c mice were analysed for specificity and function. The clones proved to be broadly cross-reactive by responding to different rabies virus isolates (PM, ERA, CVS, HEP) and other representatives of the genus Lyssavirus, like the

  15. Clinical reactivations of herpes simplex virus type 2 infection and human immunodeficiency virus disease progression markers.

    Directory of Open Access Journals (Sweden)

    Bulbulgul Aumakhan

    Full Text Available BACKGROUND: The natural history of HSV-2 infection and role of HSV-2 reactivations in HIV disease progression are unclear. METHODS: Clinical symptoms of active HSV-2 infection were used to classify 1,938 HIV/HSV-2 co-infected participants of the Women's Interagency HIV Study (WIHS into groups of varying degree of HSV-2 clinical activity. Differences in plasma HIV RNA and CD4+ T cell counts between groups were explored longitudinally across three study visits and cross-sectionally at the last study visit. RESULTS: A dose dependent association between markers of HIV disease progression and degree of HSV-2 clinical activity was observed. In multivariate analyses after adjusting for baseline CD4+ T cell levels, active HSV-2 infection with frequent symptomatic reactivations was associated with 21% to 32% increase in the probability of detectable plasma HIV RNA (trend p = 0.004, an average of 0.27 to 0.29 log10 copies/ml higher plasma HIV RNA on a continuous scale (trend p<0.001 and 51 to 101 reduced CD4+ T cells/mm(3 over time compared to asymptomatic HSV-2 infection (trend p<0.001. CONCLUSIONS: HIV induced CD4+ T cell loss was associated with frequent symptomatic HSV-2 reactivations. However, effect of HSV-2 reactivations on HIV disease progression markers in this population was modest and appears to be dependent on the frequency and severity of reactivations. Further studies will be necessary to determine whether HSV-2 reactivations contribute to acceleration of HIV disease progression.

  16. Non-MHC genes influence virus clearance through regulation of the antiviral T-cell response: correlation between virus clearance and Tc and Td activity in segregating backcross progeny

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    ) was followed by measurement of footpad swelling. Ten days after virus inoculation, the animals were sacrificed and spleen virus titer together with splenic Tc activity was measured. With regard to all three parameters a continuous distribution was observed in this backcross population. However, using cutoff...... values based on parental and F1 animals tested in parallel, 11/30 animals were assigned Tc responders, 23/30 DTH responders and 10/30 cleared virus with maximal efficiency. Comparison of responder status with regard to the different parameters revealed a strong correlation between Tc responsiveness...... and the ability to clear virus. Amongst Tc low responders a correlation between DTH reactivity and virus clearance was observed. Taken together, these results indicate that non-MHC genes affect virus clearance through regulation of the antiviral T-cell response, especially the virus-specific Tc response. However...

  17. Role of estrogen receptors in the regulation of reactive gliosis

    Directory of Open Access Journals (Sweden)

    Luis Miguel Garcia-Segura

    2015-02-01

    Full Text Available Although estradiol may directly act on neurons to promote neuroprotection in vitro, the participation of other cell types is also necessary to maintain global tissue homeostasis in vivo (Arevalo et al., 2010; Johann and Beyer, 2013; Acaz-Fonseca et al., 2014. Thus, estradiol acts on glial and endothelial cells to maintain the function of the neurovascular unit, regulates gliosis and the inflammatory response of astrocytes and microglia to control neuroinflammation and acts on neurons, astrocytes and oligodendrocytes to maintain the function and propagating properties of neuronal circuits (Garcia-Ovejero et al., 2005; Tapia-Gonzalez et al., 2008; Barrerto et al., 2009; Cerciat et al., 2010; López Rodríguez et al., 2011; Barreto et al., 2014. Glial cells express estrogen receptors (ERs, including ERalpha, ERbeta and G protein-coupled estrogen receptor-1 (GPER (Garcia-Ovjero et al., 2005; Dhandapani and Brann, 2007 and brain injury induces both the synthesis of estradiol in both reactive astrocytes and the expression of ERs in these cells (Garcia-Ovejero et al., 2002. This suggests that astrocytes may play an important role in the neuroprotective actions of estradiol. Indeed, recent studies, using conditional KO mice for ERalpha and ERbeta, have shown that in an experimental model of multiple sclerosis the protective action of estradiol is mediated by ERalpha expressed in astrocytes, but not by ERalpha expressed in neurons or ERbeta expressed in astrocytes or neurons (Spence et al., 2013. ERs in glial cells activate several neuroprotective mechanisms in response to estradiol, including the release of factors that have trophic effects on neurons and other cell types and the control of neuroinflammation, edema and extracellular glutamate levels. Classical ERs associated with the plasma membrane of astrocytes are involved in the estradiol-induced release of transforming growth factor (TGF-beta, through the activation of the PI3K/Akt signaling

  18. Varicella-Zoster Virus in Perth, Western Australia: Seasonality and Reactivation.

    Directory of Open Access Journals (Sweden)

    Igor A Korostil

    Full Text Available Identification of the factors affecting reactivation of varicella-zoster virus (VZV largely remains an open question. Exposure to solar ultra violet (UV radiation is speculated to facilitate reactivation. Should the role of UV in reactivation be significant, VZV reactivation patterns would generally be expected to be synchronous with seasonal UV profiles in temperate climates.We analysed age and gender specific VZV notification time series data from Perth, Western Australia (WA. This city has more daily sunshine hours than any other major Australian city. Using the cosinor and generalized linear models, we tested these data for seasonality and correlation with UV and temperature.We established significant seasonality of varicella notifications and showed that while herpes-zoster (HZ was not seasonal it had a more stable seasonal component in males over 60 than in any other subpopulation tested. We also detected significant association between HZ notifications and UV for the entire Perth population as well as for females and males separately. In most cases, temperature proved to be a significant factor as well.Our findings suggest that UV radiation may be important for VZV reactivation, under the assumption that notification data represent an acceptably accurate qualitative measure of true VZV incidence.

  19. Variability of human immunodeficiency virus-1 in the female genital reservoir during genital reactivation of herpes simplex virus type 2.

    Science.gov (United States)

    LeGoff, J; Roques, P; Jenabian, M-A; Charpentier, C; Brochier, C; Bouhlal, H; Gresenguet, G; Frost, E; Pepin, J; Mayaud, P; Belec, L

    2015-09-01

    Clinical and subclinical genital herpes simplex virus type 2 (HSV-2) reactivations have been associated with increases in human immunodeficiency virus (HIV)-1 genital shedding. Whether HSV-2 shedding contributes to the selection of specific genital HIV-1 variants remains unknown. We evaluated the genetic diversity of genital and blood HIV-1 RNA and DNA in 14 HIV-1/HSV-2-co-infected women, including seven with HSV-2 genital reactivation, and seven without as controls. HIV-1 DNA and HIV-1 RNA env V1-V3 sequences in paired blood and genital samples were compared. The HSV-2 selection pressure on HIV was estimated according to the number of synonymous substitutions (dS), the number of non-synonymous substitutions (dN) and the dS/dN ratio within HIV quasi-species. HIV-1 RNA levels in cervicovaginal secretions were higher in women with HSV-2 replication than in controls (p0.02). Plasma HIV-1 RNA and genital HIV-1 RNA and DNA were genetically compartmentalized. No differences in dS, dN and the dS/dN ratio were observed between the study groups for either genital HIV-1 RNA or plasma HIV-1 RNA. In contrast, dS and dN in genital HIV-1 DNA were significantly higher in patients with HSV-2 genital reactivation (p genital HIV-1 DNA was slightly higher in patients with HSV-2 genital replication, indicating a trend for purifying selection (p 0.056). HSV-2 increased the genetic diversity of genital HIV-1 DNA. These observations confirm molecular interactions between HSV-2 and HIV-1 at the genital tract level. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Human T cell leukemia virus reactivation with progression of adult T-cell leukemia-lymphoma.

    Directory of Open Access Journals (Sweden)

    Lee Ratner

    Full Text Available Human T-cell leukemia virus-associated adult T-cell leukemia-lymphoma (ATLL has a very poor prognosis, despite trials of a variety of different treatment regimens. Virus expression has been reported to be limited or absent when ATLL is diagnosed, and this has suggested that secondary genetic or epigenetic changes are important in disease pathogenesis.We prospectively investigated combination chemotherapy followed by antiretroviral therapy for this disorder. Nineteen patients were prospectively enrolled between 2002 and 2006 at five medical centers in a phase II clinical trial of infusional chemotherapy with etoposide, doxorubicin, and vincristine, daily prednisone, and bolus cyclophosphamide (EPOCH given for two to six cycles until maximal clinical response, and followed by antiviral therapy with daily zidovudine, lamivudine, and alpha interferon-2a for up to one year. Seven patients were on study for less than one month due to progressive disease or chemotherapy toxicity. Eleven patients achieved an objective response with median duration of response of thirteen months, and two complete remissions. During chemotherapy induction, viral RNA expression increased (median 190-fold, and virus replication occurred, coincident with development of disease progression.EPOCH chemotherapy followed by antiretroviral therapy is an active therapeutic regimen for adult T-cell leukemia-lymphoma, but viral reactivation during induction chemotherapy may contribute to treatment failure. Alternative therapies are sorely needed in this disease that simultaneously prevent virus expression, and are cytocidal for malignant cells.

  1. Hepatitis B Virus Reactivation After Three-Dimensional Conformal Radiotherapy in Patients With Hepatitis B Virus-Related Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Park, Joong-Won; Kim, Tae Hyun; Koh, Dong Wook; Lee, Woo Jin; Kim, Chang-Min

    2007-01-01

    Purpose: To investigate whether three-dimensional conformal radiotherapy (3D-CRT) influences hepatitis B virus (HBV) reactivation and chronic hepatitis B (CHB) exacerbation in patients with HBV-related hepatocellular carcinoma (HCC). Methods and Materials: Of the 48 HCC patients with HBV who underwent 3D-CRT to the liver, 16 underwent lamivudine therapy before and during 3D-CRT (Group 1) and 32 did not receive antiviral therapy before 3D-CRT (Group 2). To analyze spontaneous HBV reactivation, we included a control group of 43 HCC patients who did not receive any specific treatment for HCC or CHB. Results: The cumulative rate of radiation-induced liver disease for Groups 1 and 2 was 12.5% (2 of 16) and 21.8% (7 of 32), respectively (p > 0.05). The cumulative rate of HBV reactivation was significantly greater in Group 2 (21.8%, 7 of 32) than in Group 1 (0%, 0/16) or the control group (2.3%, 1 of 43; p 0.05 each). The CHB exacerbations in the 4 Group 2 patients had radiation-induced liver disease features but were differentiated by serum HBV DNA changes. Two of these patients required antiviral therapy and effectively recovered with lamivudine therapy. Conclusions: In patients with HBV-related HCC undergoing 3D-CRT, HBV reactivation and consequent CHB exacerbation should be considered in the differential diagnosis of radiation-induced liver disease, and antiviral therapy might be considered for the prevention of liver function deterioration after RT

  2. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2011-08-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases.

  3. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2012-01-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases. PMID:21861620

  4. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer

    Czech Academy of Sciences Publication Activity Database

    Hervouet, E.; Čížková, Alena; Demont, J.; Vojtíšková, Alena; Pecina, Petr; Franssen-van Hal, N.; Keijer, J.; Simonnet, H.; Ivánek, Robert; Kmoch, S.; Godinot, C.; Houštěk, Josef

    2008-01-01

    Roč. 29, č. 8 (2008), s. 1528-1537 ISSN 0143-3334 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA303/07/0781 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50520514 Keywords : carcinoma * mitochondrial biogenesis * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.930, year: 2008

  5. Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Annie Elong Ngono

    2016-11-01

    Full Text Available Infection with one of the four dengue virus serotypes (DENV1-4 presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed “original antigenic sin,” secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR−/− HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR−/− HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4, followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.

  6. UV-enhanced reactivation of minute-virus-of-mice: stimulation of a late step in the viral life cycle

    International Nuclear Information System (INIS)

    Rommelaere, J.; Vos, J.-M.; Cornelis, J.J.

    1981-01-01

    UV-enhanced reactivation of minute-virus-of-mice (MVM), an autonomous parvovirus, was studied in parasynchronous mouse A9 cells. The survival of UV-irradiated MVM is increased in cells which have been UV-irradiated prior to infection. UV-enhanced reactivation can be explained neither by facilitated plaque detection on UV-treated indicator cells, nor by altered kinetics of virus production by UV-irradiated cells. No effect of the multiplicity of infection on virus survival was detected in unirradiated or irradiated cells. The magnitude of UV-enhanced reactivation is a direct exponential function of the UV dose administered to the virus while virus survival is inversely proportional to the UV dosage. The expression of UV-enhanced reactivation can be activated in cells arrested in G 0 , it requires de novo protein synthesis and it is maximal when cells are irradiated 30 h before the onset of viral DNA replication. Early phases of the viral cycle, such as adsorption to cellular receptors, migration to the nucleus and uncoating were not affected by cell irradiation and are unlikely targets of the UV-enhanced reactivation function(s). These results, together with the single-strandedness of the viral genome, strongly suggest that the step stimulated in UV-irradiated cells functions concomitant with, or subsequent to, viral DNA replication. (author)

  7. Determination of Roles of Microgravity and Ionizing Radiation on the Reactivation of Epstein-Barr Virus In Vitro

    Science.gov (United States)

    Mehta, Satish K; Renner, Ashlie; Stowe, Raymond; Bloom, David; Pierson, Duane

    2015-01-01

    Astronauts experience symptomatic and asymptomatic herpes virus reactivation during spaceflight. We have shown increases in reactivation of Epstein-Barr virus (EBV), cytomegalovirus (CMV) and varicella zoster virus (VZV) and shedding in body fluids (saliva and urine) in astronauts during space travel. Alterations in immunity, increased stress hormone levels, microgravity, increased radiation, and other conditions unique to spaceflight may promote reactivation of latent herpes viruses. Unique mechanico-physico forces associated with spaceflight can have profound effects on cellular function, especially immune cells. In space flight analog studies such as Antarctica, bed rest studies, and NASA's undersea habitat (Aquarius), reactivation of these viruses occurred, but to a lesser extent than spaceflight. Spaceflight analogs model some spaceflight factors, but none of the analogs recreates all factors experienced in space. Most notably, microgravity and radiation are not included in many analogs. Stress, processed through the HPA axis and SAM systems, induces viral reactivation. However, the respective roles of microgravity and increased space radiation levels or if any synergy exists are not known. Therefore, we studied the effect of modeled space radiation and/or microgravity, independent of the immune system on the changes in cellular gene expression that results in viral (EBV) reactivation. The effects of modeled microgravity and low shear on EBV replication and cellular and EBV gene expression were studied in human B-lymphocyte cell cultures. Latently infected B-lymphocytes were propagated in the rotating wall bioreactor and irradiated with the various dosages of gamma irradiation. At specific time intervals following exposure to modeled microgravity, the cells and supernatant were harvested and reactivation of EBV were assessed by measuring EBV and gene expression, DNA methylation, and infectious virus production.

  8. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses.

    Science.gov (United States)

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-02-24

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.

  9. Acute Hepatitis E Virus infection with coincident reactivation of Epstein-Barr virus infection in an immunosuppressed patient with rheumatoid arthritis: a case report.

    Science.gov (United States)

    Schultze, Detlev; Mani, Bernhard; Dollenmaier, Günter; Sahli, Roland; Zbinden, Andrea; Krayenbühl, Pierre Alexandre

    2015-10-29

    Hepatitis E virus (HEV) is the most recently discovered of the hepatotropic viruses, and is considered an emerging pathogen in developed countries with the possibility of fulminant hepatitis in immunocompromised patients. Especially in the latter elevated transaminases should be taken as a clue to consider HEV infection, as it can be treated by discontinuation of immunosuppression and/or ribavirin therapy. To our best knowledge, this is a unique case of autochthonous HEV infection with coincident reactivation of Epstein-Barr virus (EBV) infection in an immunosuppressed patient with rheumatoid arthritis (RA). A 68-year-old Swiss woman with RA developed hepatitis initially diagnosed as methotrexate-induced liver injury, but later diagnosed as autochthonous HEV infection accompanied by reactivation of her latent EBV infection. She showed confounding serological results pointing to three hepatotropic viruses (HEV, Hepatitis B virus (HBV) and EBV) that could be resolved by detection of HEV and EBV viraemia. The patient recovered by temporary discontinuation of immunosuppressive therapy. In immunosuppressed patients with RA and signs of liver injury, HEV infection should be considered, as infection can be treated by discontinuation of immunosuppression. Although anti-HEV-IgM antibody assays can be used as first line virological tools, nucleic acid amplification tests (NAAT) for detection of HEV RNA are recommended--as in our case--if confounding serological results from other hepatotropic viruses are obtained. After discontinuation of immunosuppressive therapy, our patient recovered from both HEV infection and reactivation of latent EBV infection without sequelae.

  10. Herpes simplex virus latency-associated transcript sequence downstream of the promoter influences type-specific reactivation and viral neurotropism.

    Science.gov (United States)

    Bertke, Andrea S; Patel, Amita; Krause, Philip R

    2007-06-01

    Herpes simplex virus (HSV) establishes latency in sensory nerve ganglia during acute infection and may later periodically reactivate to cause recurrent disease. HSV type 1 (HSV-1) reactivates more efficiently than HSV-2 from trigeminal ganglia while HSV-2 reactivates more efficiently than HSV-1 from lumbosacral dorsal root ganglia (DRG) to cause recurrent orofacial and genital herpes, respectively. In a previous study, a chimeric HSV-2 that expressed the latency-associated transcript (LAT) from HSV-1 reactivated similarly to wild-type HSV-1, suggesting that the LAT influences the type-specific reactivation phenotype of HSV-2. To further define the LAT region essential for type-specific reactivation, we constructed additional chimeric HSV-2 viruses by replacing the HSV-2 LAT promoter (HSV2-LAT-P1) or 2.5 kb of the HSV-2 LAT sequence (HSV2-LAT-S1) with the corresponding regions from HSV-1. HSV2-LAT-S1 was impaired for reactivation in the guinea pig genital model, while its rescuant and HSV2-LAT-P1 reactivated with a wild-type HSV-2 phenotype. Moreover, recurrences of HSV-2-LAT-S1 were frequently fatal, in contrast to the relatively mild recurrences of the other viruses. During recurrences, HSV2-LAT-S1 DNA increased more in the sacral cord compared to its rescuant or HSV-2. Thus, the LAT sequence region, not the LAT promoter region, provides essential elements for type-specific reactivation of HSV-2 and also plays a role in viral neurotropism. HSV-1 DNA, as quantified by real-time PCR, was more abundant in the lumbar spinal cord, while HSV-2 DNA was more abundant in the sacral spinal cord, which may provide insights into the mechanism for type-specific reactivation and different patterns of central nervous system infection of HSV-1 and HSV-2.

  11. Overlapping reactivations of herpes simplex virus type 2 in the genital and perianal mucosa.

    Science.gov (United States)

    Tata, Sunitha; Johnston, Christine; Huang, Meei-Li; Selke, Stacy; Magaret, Amalia; Corey, Lawrence; Wald, Anna

    2010-02-15

    Genital shedding of herpes simplex virus (HSV) type 2 occurs frequently. Anatomic patterns of genital HSV-2 reactivation have not been intensively studied. Four HSV-2-seropositive women with symptomatic genital herpes attended a clinic daily during a 30-day period. Daily samples were collected from 7 separate genital sites. Swab samples were assayed for HSV DNA by quantitative polymerase chain reaction. Anatomic sites of clinical HSV-2 recurrences were recorded. HSV was detected on 44 (37%) of 120 days and from 136 (16%) of 840 swab samples. Lesions were documented on 35 (29%) of 120 days. HSV was detected at >1 anatomic site on 25 (57%) of 44 days with HSV shedding (median, 2 sites; range, 1-7), with HSV detected bilaterally on 20 (80%) of the 25 days. The presence of a lesion was significantly associated with detectable HSV from any genital site (incident rate ratio [IRR], 5.41; 95% confidence interval [CI], 1.24-23.50; P= .02) and with the number of positive sites (IRR, 1.19; 95% CI, 1. 01-1.40; P=.03). The maximum HSV copy number detected was associated with the number of positive sites (IRR, 1.62; 95% CI, 1.44-1.82; Pgenital tract. To prevent HSV-2 reactivation, suppressive HSV-2 therapy must control simultaneous viral reactivations from multiple sacral ganglia.

  12. Identification of a new class of small molecules that efficiently reactivate latent Epstein-Barr virus

    Science.gov (United States)

    Tikhmyanova, Nadezhda; Schultz, David C.; Lee, Theresa; Salvino, Joseph M.; Lieberman, Paul M.

    2014-01-01

    Epstein-Barr Virus (EBV) persists as a latent infection in many lymphoid and epithelial malignancies, including Burkitt's lymphomas, nasopharyngeal carcinomas, and gastric carcinomas. Current chemotherapeutic treatments of EBV-positive cancers include broad- spectrum cytotoxic drugs that ignore the EBV-positive status of tumors. An alternative strategy, referred to as oncolytic therapy, utilizes drugs that stimulate reactivation of latent EBV to enhance the selective killing of EBV positive tumors, especially in combination with existing inhibitors of herpesvirus lytic replication, like Ganciclovir (GCV). At present, no small molecule, including histone deacetylase (HDAC) inhibitors, have proven safe or effective in clinical trials for treatment of EBV positive cancers. Aiming to identify new chemical entities that induce EBV lytic cycle, we have developed a robust high throughput cell-based assay to screen 66,840 small molecule compounds. Five structurally related tetrahydrocarboline derivatives were identified, two of which had EC50 measurements in the range of 150-170 nM. We show that these compounds reactivate EBV lytic markers ZTA and EA-D in all EBV-positive cell lines we have tested independent of the type of latency. The compounds reactivate a higher percentage of latently infected cells than HDAC inhibitors or phorbol esters in many cell types. The most active compounds showed low toxicity to EBV-negative cells, but were highly effective at selective cell killing of EBV-positive cells when combined with GCV. We conclude that we have identified a class of small molecule compounds that are highly effective at reactivating latent EBV infection in a variety of cell types, and show promise for lytic therapy in combination with GCV. PMID:24028149

  13. Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus.

    Science.gov (United States)

    Perng, Guey-Chuen; Osorio, Nelson; Jiang, Xianzhi; Geertsema, Roger; Hsiang, Chinhui; Brown, Don; BenMohamed, Lbachir; Wechsler, Steven L

    2016-01-01

    Recurrent herpetic stromal keratitis (rHSK), due to an immune response to reactivation of herpes simplex virus (HSV-1), can cause corneal blindness. The development of therapeutic interventions such as drugs and vaccines to decrease rHSK have been hampered by the lack of a small and reliable animal model in which rHSK occurs at a high frequency during HSV-1 latency. The aim of this study is to develop a rabbit model of rHSK in which stress from elevated temperatures increases the frequency of HSV-1 reactivations and rHSK. Rabbits latently infected with HSV-1 were subjected to elevated temperatures and the frequency of viral reactivations and rHSK were determined. In an experiment in which rabbits latently infected with HSV-1 were subjected to ill-defined stress as a result of failure of the vivarium air conditioning system, reactivation of HSV-1 occurred at over twice the normal frequency. In addition, 60% of eyes developed severe rHSK compared to tears of that eye and whenever this unusually large amount of reactivated virus was detected in tears, rHSK always appeared 4-5 days later. In subsequent experiments using well defined heat stress the reactivation frequency was similarly increased, but no eyes developed rHSK. The results reported here support the hypothesis that rHSK is associated not simply with elevated reactivation frequency, but rather with rare episodes of very high levels of reactivated virus in tears 4-5 days earlier.

  14. Massive intracerebral Epstein-Barr virus reactivation in lethal multiple sclerosis relapse after natalizumab withdrawal.

    Science.gov (United States)

    Serafini, Barbara; Scorsi, Eleonora; Rosicarelli, Barbara; Rigau, Valérie; Thouvenot, Eric; Aloisi, Francesca

    2017-06-15

    Rebound of disease activity in multiple sclerosis patients after natalizumab withdrawal is a potentially life-threatening event. To verify whether highly destructive inflammation after natalizumab withdrawal is associated with Epstein-Barr virus (EBV) reactivation in central nervous system infiltrating B-lineage cells and cytotoxic immunity, we analyzed post-mortem brain tissue from a patient who died during a fulminating MS relapse following natalizumab withdrawal. Numerous EBV infected B cells/plasma cells and CD8+ T cells infiltrated all white matter lesions; the highest frequency of EBV lytically infected cells and granzyme B+ CD8+ T cells was observed in actively demyelinating lesions. These results may encourage switching to B-cell depleting therapy after natalizumab discontinuation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reactivity of some mammalian sera with the bovine leukaemia virus env gene polypeptide expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Slavikova, K.; Zajac, V.

    1989-01-01

    Sera from bovine leukaemia virus (BLV)-infected cattle and sheep were tested by radioimmunoassay and Western blot for their reactivity with 60,000 protein coded by the env gene of BLV and expressed in Escherichia coli. This protein, antigenically similar to BLV protein, reacted with antibodies against BLV antigens in the sera tested. (author). 3 figs., 1 tab., 13 refs

  16. Real-time Epstein-Barr virus PCR for the diagnosis of primary EBV infections and EBV reactivation

    NARCIS (Netherlands)

    R. Luderer (Rianne); M. Kok (Marieke); H.G.M. Niesters (Bert); R. Schuurman (Rob); O. de Weerdt (Okke); S.F. Thijsen (Steven)

    2005-01-01

    textabstractBackground: The serological diagnosis of primary Epstein-Barr virus (EBV) infections is often difficult, whereas the relevance of elevated immunoglobulin G (IgG) antibodies against early antigen (EA) for the diagnosis of EBV reactivation has increasingly become a matter of dispute.

  17. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners

    Science.gov (United States)

    Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.

    2000-01-01

    Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P viruses.

  18. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    Science.gov (United States)

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  19. Prefrontal and amygdala engagement during emotional reactivity and regulation in generalized anxiety disorder.

    Science.gov (United States)

    Fitzgerald, Jacklynn M; Phan, K Luan; Kennedy, Amy E; Shankman, Stewart A; Langenecker, Scott A; Klumpp, Heide

    2017-08-15

    Emotion dysregulation is prominent in generalized anxiety disorder (GAD), characterized clinically by exaggerated reactivity to negative stimuli and difficulty in down-regulating this response. Although limited research implicates frontolimbic disturbances in GAD, whether neural aberrations occur during emotional reactivity, regulation, or both is not well understood. During functional magnetic resonance imaging (fMRI), 30 individuals with GAD and 30 healthy controls (HC) completed a well-validated explicit emotion regulation task designed to measure emotional reactivity and regulation of reactivity. During the task, participants viewed negative images ('Look-Negative' condition) and, on some trials, used a cognitive strategy to reduce negative affective response ('Reappraise' condition). Results from an Analysis of Variance corrected for whole brain multiple comparisons showed a significant group x condition interaction in the left amygdala and left inferior frontal gyrus (IFG). Results from post-hoc analyses showed that the GAD group engaged these regions to a greater extent than HCs during Look-Negative but not Reappraise. Behaviorally, the GAD group reported feeling more negative than the HC group in each condition, although both groups reported reduced negative affect following regulation. As comorbidity was permitted, the presence of concurrent disorders, like other anxiety disorders and depression, detracts our ability to classify neural engagement particular to GAD alone. Individuals with GAD exhibited over-engagement of amygdala and frontal regions during the viewing of negative images, compared to HCs. Together, these aberrations may indicate that deficits in emotional reactivity rather than regulation contribute to emotion dysregulation in those with GAD. Copyright © 2017. Published by Elsevier B.V.

  20. Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence

    OpenAIRE

    Silvers, Jennifer A.; McRae, Kateri; Gross, James J.; Remy, Katherine A.; Ochsner, Kevin N.; Gabrieli, John D. E.

    2012-01-01

    Although adolescents’ emotional lives are thought to be more turbulent than those of adults, it is unknown whether this difference is attributable to developmental changes in emotional reactivity or emotion regulation. Study 1 addressed this question by presenting healthy individuals aged 10–23 with negative and neutral pictures and asking them to respond naturally or use cognitive reappraisal to down-regulate their responses on a trial-by-trial basis. Results indicated that age exerted both ...

  1. The Role of Emotional Reactivity, Self-Regulation, and Puberty in Adolescents' Prosocial Behaviors

    Science.gov (United States)

    Carlo, Gustavo; Crockett, Lisa J.; Wolff, Jennifer M.; Beal, Sarah J.

    2012-01-01

    This study was designed to examine the roles of emotional reactivity, self-regulation, and pubertal timing in prosocial behaviors during adolescence. Participants were 850 sixth graders (50 percent female, mean age = 11.03, standard deviation = 0.17) who were followed up at the age of 15. In hierarchical regression models, measures of emotional…

  2. Emotional Reactivity and Regulation in Infancy Interact to Predict Executive Functioning in Early Childhood

    Science.gov (United States)

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function…

  3. Emotional Reactivity, Regulation and Childhood Stuttering: A Behavioral and Electrophysiological Study

    Science.gov (United States)

    Arnold, Hayley S.; Conture, Edward G.; Key, Alexandra P. F.; Walden, Tedra

    2011-01-01

    The purpose of this preliminary study was to assess whether behavioral and psychophysiological correlates of emotional reactivity and regulation are associated with developmental stuttering, as well as determine the feasibility of these methods in preschool-age children. Nine preschool-age children who stutter (CWS) and nine preschool-age children…

  4. Reactivation of hepatitis B in patients of chronic hepatitis C with hepatitis B virus infection treated with direct acting antivirals.

    Science.gov (United States)

    Yeh, Ming-Lun; Huang, Chung-Feng; Hsieh, Meng-Hsuan; Ko, Yu-Min; Chen, Kuan-Yu; Liu, Ta-Wei; Lin, Yi-Hung; Liang, Po-Cheng; Hsieh, Ming-Yen; Lin, Zu-Yau; Chen, Shinn-Cherng; Huang, Ching-I; Huang, Jee-Fu; Kuo, Po-Lin; Dai, Chia-Yen; Yu, Ming-Lung; Chuang, Wan-Long

    2017-10-01

    Hepatitis B virus (HBV) may reactivate when treating chronic hepatitis C (CHC) with direct acting antivirals (DAA). We aim to investigate the risk of HBV reactivation during DAA therapy. Chronic hepatitis C patients receiving pan-oral DAA therapy from December 2013 to August 2016 were evaluated. Fifty-seven patients that had a past HBV infection (negative hepatitis B surface antigen [HBsAg] and positive hepatitis B core antibody) and seven patients that had a current HBV infection (positive HBsAg) were enrolled. Serum HBV and hepatitis C virus (HCV) markers were regularly measured. The endpoints were the HCV sustained virological response (SVR) and the HBV virological/clinical reactivation. The overall SVR 12 rate was 96.9%, and two patients, one with positive HBsAg, had a relapse of HCV. No episodes of HBV virological reactivation were observed among the patients with a past HBV infection. For the seven patients with a current HBV infection, HBV virological reactivation was found in four (57.1%) of the seven patients. Clinical reactivation of HBV was observed in one patient with pretreatment detectable HBV DNA and recovered after entecavir administration. For the other three patients with HBV virological reactivation, the reappearance of low level HBV DNA without clinical reactivation was observed. HBsAg levels demonstrated only small fluctuations in all the patients. There was a minimal impact of hepatitis B core antibody seropositivity on HCV efficacy and safety. For CHC patients with current HBV infection, the risk of HBV reactivation was present, and monitoring the HBV DNA level during therapy is warranted. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  5. In Situ Detection of Regulatory T Cells in Human Genital Herpes Simplex Virus Type 2 (HSV-2) Reactivation and Their Influence on Spontaneous HSV-2 Reactivation.

    Science.gov (United States)

    Milman, Neta; Zhu, Jia; Johnston, Christine; Cheng, Anqi; Magaret, Amalia; Koelle, David M; Huang, Meei-Li; Jin, Lei; Klock, Alexis; Layton, Erik D; Corey, Lawrence

    2016-07-01

    Herpes simplex virus type 2 (HSV-2) reactivation is accompanied by a sustained influx of CD4(+) and CD8(+) T cells that persist in genital tissue for extended periods. While CD4(+) T cells have long been recognized as being present in herpetic ulcerations, their role in subclinical reactivation and persistence is less well known, especially the role of CD4(+) regulatory T cells (Tregs). We characterized the Treg (CD4(+)Foxp3(+)) population during human HSV-2 reactivation in situ in sequential genital skin biopsy specimens obtained from HSV-2-seropositive subjects at the time of lesion onset up to 8 weeks after healing. High numbers of Tregs infiltrated to the site of viral reactivation and persisted in proximity to conventional CD4(+) T cells (Tconvs) and CD8(+) T cells. Treg density peaked during the lesion stage of the reactivation. The number of Tregs from all time points (lesion, healed, 2 weeks after healing, 4 weeks after healing, and 8 weeks after healing) was significantly higher than in control biopsy specimens from unaffected skin. There was a direct correlation between HSV-2 titer and Treg density. The association of a high Treg to Tconv ratio with high viral shedding suggests that the balance between regulatory and effector T cells influences human HSV-2 disease. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Anger Modulates Influence Hierarchies Within and Between Emotional Reactivity and Regulation Networks

    Science.gov (United States)

    Jacob, Yael; Gilam, Gadi; Lin, Tamar; Raz, Gal; Hendler, Talma

    2018-01-01

    Emotion regulation is hypothesized to be mediated by the interactions between emotional reactivity and regulation networks during the dynamic unfolding of the emotional episode. Yet, it remains unclear how to delineate the effective relationships between these networks. In this study, we examined the aforementioned networks’ information flow hierarchy during viewing of an anger provoking movie excerpt. Anger regulation is particularly essential for averting individuals from aggression and violence, thus improving prosocial behavior. Using subjective ratings of anger intensity we differentiated between low and high anger periods of the film. We then applied the Dependency Network Analysis (DEPNA), a newly developed graph theory method to quantify networks’ node importance during the two anger periods. The DEPNA analysis revealed that the impact of the ventromedial prefrontal cortex (vmPFC) was higher in the high anger condition, particularly within the regulation network and on the connections between the reactivity and regulation networks. We further showed that higher levels of vmPFC impact on the regulation network were associated with lower subjective anger intensity during the high-anger cinematic period, and lower trait anger levels. Supporting and replicating previous findings, these results emphasize the previously acknowledged central role of vmPFC in modulating negative affect. We further show that the impact of the vmPFC relies on its correlational influence on the connectivity between reactivity and regulation networks. More importantly, the hierarchy network analysis revealed a link between connectivity patterns of the vmPFC and individual differences in anger reactivity and trait, suggesting its potential therapeutic role. PMID:29681803

  7. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung.

    Science.gov (United States)

    Talker, Stephanie C; Stadler, Maria; Koinig, Hanna C; Mair, Kerstin H; Rodríguez-Gómez, Irene M; Graage, Robert; Zell, Roland; Dürrwald, Ralf; Starick, Elke; Harder, Timm; Weissenböck, Herbert; Lamp, Benjamin; Hammer, Sabine E; Ladinig, Andrea; Saalmüller, Armin; Gerner, Wilhelm

    2016-10-15

    Pigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i. Ex vivo flow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67(+)) CD8(+) T cells with an early effector phenotype (perforin(+) CD27(+)) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4(+) and CD8(+) T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4(+) and CD8(+) T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4(+) and CD8(+) memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles and in vitro reactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs. Pigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we

  8. Associations between narcissism and emotion regulation difficulties: Respiratory sinus arrhythmia reactivity as a moderator.

    Science.gov (United States)

    Zhang, Hui; Wang, Zhenhong; You, Xuqun; Lü, Wei; Luo, Yun

    2015-09-01

    The aim of the current study was to examine the direct and interactive effects of two types of narcissism (overt and covert) and respiratory sinus arrhythmia (RSA) reactivity on emotion regulation difficulties in 227 undergraduate students. Overt and covert narcissism and emotion regulation difficulties were assessed with self-report measures (narcissistic personality inventory (NPI)-16, hypersensitive narcissism scale (HSNS), and difficulties in emotion regulation scale (DERS)), and physiological data were measured during the baseline, stress (a public-speaking task), and recovery periods in the laboratory. Results indicated that overt narcissism was negatively related to a lack of emotional awareness and emotional clarity, whereas covert narcissism was positively related to overall emotion regulation difficulties, nonacceptance of emotional responses, impulse control difficulties, limited access to emotion regulation strategies, and a lack of emotional clarity. RSA reactivity in response to a mock job interview moderated the associations between covert narcissism (as a predictor) and overall emotion regulation difficulties and impulse control difficulties (as outcomes). This finding showed that a greater stress-induced RSA decrease may serve as a protective factor and ameliorate the effect of covert narcissism on individuals' emotion regulation difficulties. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains

    Directory of Open Access Journals (Sweden)

    Phelps Amanda L

    2009-11-01

    Full Text Available Abstract Background There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV, as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. Results In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. Conclusion A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans. Crown Copyright © 2009

  10. Comparative studies of host-cell reactivation, cellular capacity and enhanced reactivation of herpes simplex virus in normal, xeroderma pigmentosum and Cockayne syndrome fibroblasts

    International Nuclear Information System (INIS)

    Ryan, D.K.G.; Rainbow, A.J.; McMaster Univ., Hamilton, Ontario

    1986-01-01

    Host-cell reactivation (HCR) of UV-irradiated herpes simplex virus type 2 (HSV-2), capacity of UV-irradiated cells to support HSV-2 plaque formation and UV-enhanced reactivation (UVER) of UV-irradiated HSV-2 were examined in fibroblasts from 4 patients with Cockayne syndrome (CS), 5 with xeroderma pigmentosum and 5 normals. The results indicate that delayed capacity for HSV-2 plaque formation is a more sensitive assay than HCR in the detection of cellular DNA-repair deficiency for XP and CS. For the examination of UVER, fibroblasts were irradiated with various UV doses and subsequently infected with either unirradiated or UV-irradiated HSV and scored for plaque formation 2 days later. UVER expression was maximum when the delay between UV-irradiation of the cells and HSV infection was 48 h. (Auth.)

  11. Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Henderson, E.E.; Long, W.K.

    1981-01-01

    The efficacy of using an infected centers assay, employing herpes simplex virus-infected, Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) as components, to study host cell reactivation has been explored. Herpes simplex virus type 1 (HSV-1) was shown through the infected centers assay to have detectable but varying ability to lytically infect LCLs established from chromosomal breakage syndromes or closely related genetic disorders. The rate of HSV inactivation by ultraviolet (uv) irradiation was faster in LCLs established from Cockaynes's syndrome than in normal LCLs, and faster still in LCLs established from xeroderma pigmentosum. These results indicate that Cockayne's syndrome, while having what appears to be quantitatively normal levels of uv-induced DNA repair replication, shows decreased ability to host cell reactivated uv-damaged HSV. In direct contrast, X-irradiated HSV showed identical survival when assayed on normal LCLs or LCLs established from ataxia telangiectasia showing increased sensitivity to X irradiation as measured by colony formation. Through the infected centers assay, it has also been possible to demonstrate low levels of multiplicity reactivation of mutagen-damaged HSV in permanently proliferating LCLs

  12. Neuroticism and responsiveness to error feedback: adaptive self-regulation versus affective reactivity.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Fetterman, Adam K

    2010-10-01

    Responsiveness to negative feedback has been seen as functional by those who emphasize the value of reflecting on such feedback in self-regulating problematic behaviors. On the other hand, the very same responsiveness has been viewed as dysfunctional by its link to punishment sensitivity and reactivity. The present 4 studies, involving 203 undergraduate participants, sought to reconcile such discrepant views in the context of the trait of neuroticism. In cognitive tasks, individuals were given error feedback when they made mistakes. It was found that greater tendencies to slow down following error feedback were associated with higher levels of accuracy at low levels of neuroticism but lower levels of accuracy at high levels of neuroticism. Individual differences in neuroticism thus appear crucial in understanding whether behavioral alterations following negative feedback reflect proactive versus reactive mechanisms and processes. Implications for understanding the processing basis of neuroticism and adaptive self-regulation are discussed.

  13. U.V.-enhanced reactivation of u.v.-irradiated herpes virus by primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Zurlo, J.; Yager, J.D.

    1984-01-01

    Carcinogen treatment of cultured mammalian cells prior to infection with u.v.-irradiated virus results in enhanced virus survival and mutagenesis suggesting the induction of SOS-type processes. In this paper, we report the development of a primary rat hepatocyte culture system to investigate cellular responses to DNA damage which may be relevant to hepatocarcinogenesis in vivo. We have obtained data demonstrating that enhanced reactivation of u.v.-irradiated Herpes simplex virus type 1 (HSV-1) occurs in hepatocytes irradiated with u.v. Cultured hepatocytes were pretreated with u.v. at the time of enhanced DNA synthesis. These treatments caused an inhibition followed by a recovery of DNA synthesis. At various times after pretreatment, the hepatocytes were infected with control or u.v.-irradiated HSV-1 at low multiplicity, and virus survival was measured by direct plaque assay. U.v.-irradiated HSV-1 exhibited the expected two-component survival curve in control or u.v. pretreated hepatocytes. The magnitude of enhanced reactivation of HSV-1 was dependent on the u.v. dose to the hepatocytes, the time of infection following u.v. pretreatment, and the level of DNA synthesis at the time of pretreatment. These results suggest that u.v. treatment of rat hepatocytes causes the induction of SOS-type functions that may have a role in the initiation of hepatocarcinogenesis

  14. Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation In Vitro

    Science.gov (United States)

    Gavegnano, Christina; Detorio, Mervi; Montero, Catherine; Bosque, Alberto; Planelles, Vicente

    2014-01-01

    The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals. PMID:24419350

  15. Characterization of herpes simplex virus 2 primary microRNA Transcript regulation.

    Science.gov (United States)

    Tang, Shuang; Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P; Krause, Philip R

    2015-05-01

    In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5' ends and evaluation of ICP4 response. These

  16. Host-cell reactivation of UV-irradiated and chemically-treated herpes simplex virus-1 by xeroderma pigmentosum, xp heterozygotes and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1978-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus. (Auth.)

  17. Immune response to inactivated influenza virus vaccine: antibody reactivity with epidemic influenza B viruses of two highly distinct evolutionary lineages.

    Science.gov (United States)

    Pyhälä, R; Kleemola, M; Kumpulainen, V; Vartiainen, E; Lappi, S; Pönkä, A; Cantell, K

    1992-01-01

    Vaccination of adults (healthy female employees potentially capable of transmitting influenza to high-risk persons; n = 104) in autumn 1990 with a trivalent influenza virus vaccine containing B/Yamagata/16/88 induced a low antibody response to B/Finland/150/90, a recent variant of B/Victoria/2/87-like viruses, as compared with the antibody response to B/Finland/172/91, a current variant in the lineage of B/Yamagata/16/88-like viruses. Up to the end of the epidemic season, the antibody status declined but was still significantly better than before the vaccination. The results suggest that the vaccine strain was appropriate for the outbreak of 1990 to 1991 in Finland, but may provide unsatisfactory protection against B/Victoria/2/87-like viruses. Evidence is given that use of Madin-Darby canine kidney (MDCK)-grown virus as an antigen in the haemagglutination inhibition test (HI) may provide more reliable information about the protective antibodies than use of untreated or ether-treated egg-grown viruses. Significantly higher postvaccination and postepidemic antibody titres were recorded among subjects who exhibited the antibody before vaccination than among seronegative subjects. A significantly higher response rate among initially seronegative people than among seropositive people was recorded for antibody to B/Finland/150/90, but no clear evidence was obtained that the pre-existing antibody could have had a negative effect on the antibody production.

  18. Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies

    DEFF Research Database (Denmark)

    Sun, Jing; Kudahl, Ulrich J.; Simon, Christian

    2014-01-01

    Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast gene mutation on surface proteins of influenza virus result in increasing resistance to current vaccines and available antiviral drugs. Broadly neutralizing antibodies (bnAbs) represent targets for prophylacti......, and differences between historical influenza strains, we enhance our preparedness and the ability to respond to the emerging pandemic threats....... a method to assess the likely cross-reactivity potential of bnAbs for influenza strains, either newly emerged or existing. Our method catalogs influenza strains by a new concept named discontinuous peptide, and then provide assessment of cross-reactivity. Potentially cross-reactive strains are those...

  19. Stimulation of HIV-1-specific cytolytic T-lymphocytes facilitates elimination of latent viral reservoir after virus reactivation

    Science.gov (United States)

    Shan, Liang; Deng, Kai; Shroff, Neeta S.; Durand, Christine; Rabi, S. Alireza.; Yang, Hung-Chih; Zhang, Hao; Margolick, Joseph B.; Blankson, Joel N.; Siliciano, Robert F.

    2012-01-01

    Summary Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia. Life-long treatment is therefore required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T-cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4+ T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T-lymphocytes (CTL) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. PMID:22406268

  20. PTSD Psychotherapy Outcome Predicted by Brain Activation During Emotional Reactivity and Regulation.

    Science.gov (United States)

    Fonzo, Gregory A; Goodkind, Madeleine S; Oathes, Desmond J; Zaiko, Yevgeniya V; Harvey, Meredith; Peng, Kathy K; Weiss, M Elizabeth; Thompson, Allison L; Zack, Sanno E; Lindley, Steven E; Arnow, Bruce A; Jo, Booil; Gross, James J; Rothbaum, Barbara O; Etkin, Amit

    2017-12-01

    Exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD), but many patients do not respond. Brain functions governing treatment outcome are not well characterized. The authors examined brain systems relevant to emotional reactivity and regulation, constructs that are thought to be central to PTSD and exposure therapy effects, to identify the functional traits of individuals most likely to benefit from treatment. Individuals with PTSD underwent functional MRI (fMRI) while completing three tasks assessing emotional reactivity and regulation. Participants were then randomly assigned to immediate prolonged exposure treatment (N=36) or a waiting list condition (N=30). A random subset of the prolonged exposure group (N=17) underwent single-pulse transcranial magnetic stimulation (TMS) concurrent with fMRI to examine whether predictive activation patterns reflect causal influence within circuits. Linear mixed-effects modeling in line with the intent-to-treat principle was used to examine how baseline brain function moderated the effect of treatment on PTSD symptoms. At baseline, individuals with larger treatment-related symptom reductions (compared with the waiting list condition) demonstrated 1) greater dorsal prefrontal activation and 2) less left amygdala activation, both during emotion reactivity; 3) better inhibition of the left amygdala induced by single TMS pulses to the right dorsolateral prefrontal cortex; and 4) greater ventromedial prefrontal/ventral striatal activation during emotional conflict regulation. Reappraisal-related activation was not a significant moderator of the treatment effect. Capacity to benefit from prolonged exposure in PTSD is gated by the degree to which prefrontal resources are spontaneously engaged when superficially processing threat and adaptively mitigating emotional interference, but not when deliberately reducing negative emotionality.

  1. Emotional reactivity and regulation in preschool-age children who stutter.

    Science.gov (United States)

    Ntourou, Katerina; Conture, Edward G; Walden, Tedra A

    2013-09-01

    This study experimentally investigated behavioral correlates of emotional reactivity and emotion regulation and their relation to speech (dis)fluency in preschool-age children who do (CWS) and do not (CWNS) stutter during emotion-eliciting conditions. Participants (18 CWS, 14 boys; 18 CWNS, 14 boys) completed two experimental tasks (1) a neutral ("apples and leaves in a transparent box," ALTB) and (2) a frustrating ("attractive toy in a transparent box," ATTB) task, both of which were followed by a narrative task. Dependent measures were emotional reactivity (positive affect, negative affect), emotion regulation (self-speech, distraction) exhibited during the ALTB and the ATTB tasks, percentage of stuttered disfluencies (SDs) and percentage of non-stuttered disfluencies (NSDs) produced during the narratives. Results indicated that preschool-age CWS exhibited significantly more negative emotion and more self-speech than preschool-age CWNS. For CWS only, emotion regulation behaviors (i.e., distraction, self-speech) during the experimental tasks were predictive of stuttered disfluencies during the subsequent narrative tasks. Furthermore, for CWS there was no relation between emotional processes and non-stuttered disfluencies, but CWNS's negative affect was significantly related to nonstuttered disfluencies. In general, present findings support the notion that emotional processes are associated with childhood stuttering. Specifically, findings are consistent with the notion that preschool-age CWS are more emotionally reactive than CWNS and that their self-speech regulatory attempts may be less than effective in modulating their emotions. The reader will be able to: (a) communicate the relevance of studying the role of emotion in developmental stuttering close to the onset of stuttering and (b) describe the main findings of the present study in relation to previous studies that have used different methodologies to investigate the role of emotion in developmental

  2. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium).

    Science.gov (United States)

    Salleh, Faezah Mohd; Mariotti, Lorenzo; Spadafora, Natasha D; Price, Anna M; Picciarelli, Piero; Wagstaff, Carol; Lombardi, Lara; Rogers, Hilary

    2016-04-02

    transcript abundance of WPS46, an auxin-induced gene. A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission.

  3. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  4. IL-15 enhances cross-reactive antibody recall responses to seasonal H3 influenza viruses in vitro [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Junqiong Huang

    2017-11-01

    Full Text Available Background: Recently, several human monoclonal antibodies that target conserved epitopes on the stalk region of influenza hemagglutinin (HA have shown broad reactivity to influenza A subtypes. Also, vaccination with recombinant chimeric HA or stem fragments from H3 influenza viruses induce broad immune protection in mice and humans. However, it is unclear whether stalk-binding antibodies can be induced in human memory B cells by seasonal H3N2 viruses. Methods: In this study, we recruited 13 donors previously exposed to H3 viruses, the majority (12 of 13 of which had been immunized with seasonal influenza vaccines. We evaluated plasma baseline strain-specific and stalk-reactive anti-HA antibodies and B cell recall responses to inactivated H3N2 A/Victoria/361/2011 virus in vitro using a high throughput multiplex (mPlex-Flu assay. Results: Stalk-reactive IgG was detected in the plasma of 7 of the subjects. Inactivated H3 viral particles rapidly induced clade cross-reactive antibodies in B cell cultures derived from all 13 donors. In addition, H3 stalk-reactive antibodies were detected in culture supernatants from 7 of the 13 donors (53.8%.  H3 stalk-reactive antibodies were also induced by H1 and H7 subtypes. Interestingly, broadly cross-reactive antibody recall responses to H3 strains were also enhanced by stimulating B cells in vitro with CpG2006 ODN in the presence of IL-15. H3 stalk-reactive antibodies were detected in  CpG2006 ODN + IL-15 stimulated B cell cultures derived from 12 of the 13 donors (92.3%, with high levels detected in cultures from 7 of the 13 donors. Conclusions: Our results demonstrate that stalk-reactive antibody recall responses induced by seasonal H3 viruses and CpG2006 ODN can be enhanced by IL-15.

  5. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    Science.gov (United States)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  6. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  7. Adaptive Immune Responses in a Multiple Sclerosis Patient with Acute Varicella-Zoster Virus Reactivation during Treatment with Fingolimod

    Directory of Open Access Journals (Sweden)

    Andrea Harrer

    2015-09-01

    Full Text Available Fingolimod, an oral sphingosine 1-phosphate (S1P receptor modulator, is approved for the treatment of relapsing forms of multiple sclerosis (MS. The interference with S1P signaling leads to retention particularly of chemokine receptor-7 (CCR7 expressing T cells in lymph nodes. The immunological basis of varicella zoster virus (VZV infections during fingolimod treatment is unclear. Here, we studied the dynamics of systemic and intrathecal immune responses associated with symptomatic VZV reactivation including cessation of fingolimod and initiation of antiviral therapy. Key features in peripheral blood were an about two-fold increase of VZV-specific IgG at diagnosis of VZV reactivation as compared to the previous months, a relative enrichment of effector CD4+ T cells (36% versus mean 12% in controls, and an accelerated reconstitution of absolute lymphocytes counts including a normalized CD4+/CD8+ ratio and reappearance of CCR7+ T cells. In cerebrospinal fluid (CSF the lymphocytic pleocytosis and CD4+/CD8+ ratios at diagnosis of reactivation and after nine days of fingolimod discontinuation remained unchanged. During this time CCR7+ T cells were not observed in CSF. Further research into fingolimod-associated VZV reactivation and immune reconstitution is mandatory to prevent morbidity and mortality associated with this potentially life-threatening condition.

  8. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  9. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can

  10. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Merika T Koday

    Full Text Available Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.

  11. Roles and regulation of Epstein-Barr virus microRNAs

    NARCIS (Netherlands)

    Hooykaas, M.J.G.

    2016-01-01

    MicroRNAs are posttranscriptional gene regulators that play important roles in many cellular processes. These short non-coding RNA molecules regulate gene expression by binding to complementary target mRNAs, thereby inducing RNA destabilization and inhibition of translation. Several DNA viruses

  12. Synergistic Effect of Radiation and Interleukin-6 on Hepatitis B Virus Reactivation in Liver Through STAT3 Signaling Pathway

    International Nuclear Information System (INIS)

    Chou, C.H.; Chen, P.-J.; Jeng, Y.-M.; Cheng, A.-L.; Huang, L.-R.; Cheng, J.C.-H.

    2009-01-01

    Purpose: Hepatitis B virus (HBV) reactivation can occur after radiotherapy (RT) for hepatobiliary malignancies. Our previous in vitro culture study identified interleukin-6 (IL-6) as the main bystander mediator of RT-induced HBV replication. We attempted to examine the molecular mechanism in HBV-transgenic mice. Methods and materials: HBV transgenic mice were treated with whole liver RT (4 Gy daily for 5 days) with or without administration of IL-6 (400 ng twice daily for 15 days). The serum level of HBV DNA was measured using real-time polymerase chain reaction, and the IL-6 concentration was measured using enzyme-linked immunosorbent assay. The intensity of immunostaining with antibodies to HBV core protein and phosphorylated signal transducer and activator of transcription (STAT)3 in the mouse liver was qualitatively analyzed. HepG2.2.15 cells (a human hepatoblastoma cell line that persistently produces HBV DNA) were used to investigate the molecular role of IL-6 plus RT in HBV reactivation. Results: HBV reactivation was induced in vivo with IL-6 plus RT (5.58-fold) compared with RT alone (1.31-fold, p = .005), IL-6 alone (1.31-fold, p = .005), or sham treatment (1.22-fold, p = .004). HBV core protein staining confirmed augmentation of intrahepatic HBV replication. IL-6 plus RT-induced HBV DNA replication in HepG2.2.15 cells was suppressed by the STAT3 inhibitor AG490 and by transfection with dominant-negative STAT3 plasmid. Phosphorylated STAT3 staining was strongest in liver tissue from mice treated with IL-6 plus RT. The mobility shift assay demonstrated that reactivation was mediated through the interaction of phosphorylated STAT3/hepatocyte nuclear factor-3 complex with HBV enhancer 1. Conclusion: RT to the liver and longer sustained IL-6 induced HBV reactivation through the STAT3 signal transduction pathway.

  13. Threat and defense as goal regulation: from implicit goal conflict to anxious uncertainty, reactive approach motivation, and ideological extremism.

    Science.gov (United States)

    Nash, Kyle; McGregor, Ian; Prentice, Mike

    2011-12-01

    Four studies investigated a goal regulation view of anxious uncertainty threat (Gray & McNaughton, 2000) and ideological defense. Participants (N = 444) were randomly assigned to have achievement or relationship goals implicitly primed. The implicit goal primes were followed by randomly assigned achievement or relationship threats that have reliably caused generalized, reactive approach motivation and ideological defense in past research. The threats caused anxious uncertainty (Study 1), reactive approach motivation (Studies 2 and 3), and reactive ideological conviction (Study 4) only when threat-relevant goals had first been primed, but not when threat-irrelevant goals had first been primed. Reactive ideological conviction (Study 4) was eliminated if participants were given an opportunity to attribute their anxiety to a mundane source. Results support a goal regulation view of anxious uncertainty, threat, and defense with potential for integrating theories of defensive compensation.

  14. Delayed cranial neuropathy after neurosurgery caused by herpes simplex virus reactivation: report of three cases.

    NARCIS (Netherlands)

    Hengstman, G.J.D.; Gons, R.A.R.; Menovsky, T.; Verduyn Lunel, F.M.; Vlasakker, C.J.W. van de; Vries, J. de

    2005-01-01

    BACKGROUND: Delayed cranial neuropathy is an uncommon complication of neurosurgical interventions of which the exact etiology is uncertain. Several authors have hypothesized that reactivation of herpesviruses may play a role. CASE DESCRIPTIONS: The first patient underwent microvascular decompression

  15. The neural correlates of sex differences in emotional reactivity and emotion regulation.

    Science.gov (United States)

    Domes, Gregor; Schulze, Lars; Böttger, Moritz; Grossmann, Annette; Hauenstein, Karlheinz; Wirtz, Petra H; Heinrichs, Markus; Herpertz, Sabine C

    2010-05-01

    Sex differences in emotional responding have been repeatedly postulated but less consistently shown in empirical studies. Because emotional reactions are modulated by cognitive appraisal, sex differences in emotional responding might depend on differences in emotion regulation. In this study, we investigated sex differences in emotional reactivity and emotion regulation using a delayed cognitive reappraisal paradigm and measured whole-brain BOLD signal in 17 men and 16 women. During fMRI, participants were instructed to increase, decrease, or maintain their emotional reactions evoked by negative pictures in terms of cognitive reappraisal. We analyzed BOLD responses to aversive compared to neutral pictures in the initial viewing phase and the effect of cognitive reappraisal in the subsequent regulation phase. Women showed enhanced amygdala responding to aversive stimuli in the initial viewing phase, together with increased activity in small clusters within the prefrontal cortex and the temporal cortex. During cognitively decreasing emotional reactions, women recruited parts of the orbitofrontal cortex, the anterior cingulate, and the dorsolateral prefrontal cortex to a lesser extent than men, while there was no sex effect on amygdala activity. In contrast, compared to women, men showed an increased recruitment of regulatory cortical areas during cognitively increasing initial emotional reactions, which was associated with an increase in amygdala activity. Clinical implications of these findings are discussed.

  16. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    International Nuclear Information System (INIS)

    Fanarraga, M.L.; Villegas, J.C.; Carranza, G.; Castano, R.; Zabala, J.C.

    2009-01-01

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes

  17. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  18. Evidence of cross-reactive immunity to 2009 pandemic influenza A virus in workers seropositive to swine H1N1 influenza viruses circulating in Italy.

    Directory of Open Access Journals (Sweden)

    Maria A De Marco

    Full Text Available BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs and 379 control subjects (Cs, not exposed to pig herds, were tested by haemagglutination inhibition (HI assay against selected SIVs belonging to H1N1 (swH1N1, H1N2 (swH1N2 and H3N2 (swH3N2 subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes. Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs and after (n. 39 SWs; n. 145 Cs the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively. Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively. No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4% and swH3N2 (51.2 vs. 55.4% viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001 whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed

  19. JC virus antibody index in natalizumab-treated patients: correlations with John Cunningham virus DNA and C-reactive protein level

    Directory of Open Access Journals (Sweden)

    Lanzillo R

    2014-10-01

    Full Text Available Roberta Lanzillo,1 Raffaele Liuzzi,2 Luca Vallefuoco,3 Marcello Moccia,1 Luca Amato,1 Giovanni Vacca,1 Veria Vacchiano,1 Giuseppe Portella,3 Vincenzo Brescia Morra1 1Neurological Sciences Department, Federico II University, 2Institute of Biostructure and Bioimaging, National Research Council, 3Clinical Pathology Department, Federico II University, Naples, ItalyAbstract: Natalizumab-treated patients have a higher risk of developing progressive multifocal leukoencephalopathy. Exposure to John Cunningham virus (JCV is a prerequisite for PML (progressive multifocal leukoencephalopathy. To assess JCV exposure in multiple sclerosis patients, we performed a serological examination, obtained the antibody index, performed real-time polymerase chain reaction (PCR to detect JCV DNA in plasma and urine, and investigated the role of ultrasensitive C-reactive protein (usCRP as a possible biological marker of JCV reactivation. We retrospectively analyzed consecutive natalizumab-treated multiple sclerosis patients who underwent a JCV antibody test through a two-step enzyme-linked immunosorbent assay (STRATIFY test to the measure of serum usCRP levels, and to perform blood and urine JCV PCR. The studied cohort included 97 relapsing–remitting patients (60 women. Fifty-two patients (53.6% tested positive for anti-JCV antibodies. PCR showed JCV DNA in the urine of 30 out of 83 (36.1% patients and 28 out of 44 seropositive patients (63.6%, with a 6.7% false-negative rate for the STRATIFY test. Normalized optical density values were higher in urinary JCV DNA-positive patients (P<0.0001. Interestingly, the level of usCRP was higher in urinary JCV DNA-positive patients and correlated to the number of DNA copies in urine (P=0.028. As expected, patients' age correlated with JCV seropositivity and with JC viruria (P=0.02 and P=0.001, respectively. JC viruria was significantly correlated with a high JCV antibody index and high serum usCRP levels. We suggest that PCR and

  20. Long Non-Coding RNAs: Emerging and Versatile Regulators in Host–Virus Interactions

    Directory of Open Access Journals (Sweden)

    Xing-Yu Meng

    2017-11-01

    Full Text Available Long non-coding RNAs (lncRNAs are a class of non-protein-coding RNA molecules, which are involved in various biological processes, including chromatin modification, cell differentiation, pre-mRNA transcription and splicing, protein translation, etc. During the last decade, increasing evidence has suggested the involvement of lncRNAs in both immune and antiviral responses as positive or negative regulators. The immunity-associated lncRNAs modulate diverse and multilayered immune checkpoints, including activation or repression of innate immune signaling components, such as interleukin (IL-8, IL-10, retinoic acid inducible gene I, toll-like receptors 1, 3, and 8, and interferon (IFN regulatory factor 7, transcriptional regulation of various IFN-stimulated genes, and initiation of the cell apoptosis pathways. Additionally, some virus-encoded lncRNAs facilitate viral replication through individually or synergistically inhibiting the host antiviral responses or regulating multiple steps of the virus life cycle. Moreover, some viruses are reported to hijack host-encoded lncRNAs to establish persistent infections. Based on these amazing discoveries, lncRNAs are an emerging hotspot in host–virus interactions. In this review, we summarized the current findings of the host- or virus-encoded lncRNAs and the underlying mechanisms, discussed their impacts on immune responses and viral replication, and highlighted their critical roles in host–virus interactions.

  1. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  2. Multiple viral/self immunological cross-reactivity in liver kidney microsomal antibody positive hepatitis C virus infected patients is associated with the possession of HLA B51.

    Science.gov (United States)

    Bogdanos, D-P; Lenzi, M; Okamoto, M; Rigopoulou, E I; Muratori, P; Ma, Y; Muratori, L; Tsantoulas, D; Mieli- Vergani, G; Bianchi, F B; Vergani, D

    2004-01-01

    Liver Kidney Microsomal autoantibody type 1(LKM1) directed to cytochrome P4502D6 (CYP2D6) characterises autoimmune hepatitis type-2 (AIH-2), but is also found in a proportion of chronic hepatitis C virus (HCV) infected patients, CYP2D6252-271 being a major B- cell autoepitope. Molecular mimicry and immunological cross-reactivity between CYP2D6252-271, HCV polyprotein and the infected cell protein 4 (ICP4) of herpes simplex virus type 1 (HSV-1) have been suggested as triggers for the induction of LKM1, but reactivity and cross-reactivity to the relevant sequences have not been investigated experimentally. CYP2D6252-271 and its viral homologues were constructed and tested by ELISA in the sera of 46 chronically infected HCV patients, 23 of whom were LKM1 positive. Reactivity to the E1 HCV and ICP4 HSV1 mimics was frequently found in HCV infected patients irrespectively of their LKM1 status; viral/self cross-reactivity (as indicated by inhibition studies), however, was present in the only 2 of the 23 LKM1 seropositive HCV patients, who possessed the HLA allotype B51. Our results indicate that in HCV infected patients virus/self cross-reactivity is dependent on a specific immunogenetic background, a finding awaiting confirmation by studies in larger series of patients.

  3. Host-cell reactivation of uv-irradiated and chemically treated Herpes simplex virus type 1 strain MP in normal and xeroderma pigmentosum skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1976-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated herpes simplex virus type 1 strain mp was studied in normal human skin fibroblasts and xeroderma pigmentosum skin fibroblasts from XP genetic complementation groups A-D and in an XP variant. The increasing relative order for the host-cell reactivation of both types of damaged virus in the different complementation groups is A = D < B < C; XP variant = normal controls. XP complementation group D cells, which manifest the most severe inhibition of her ability for both UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus, can reactivate nitrogen mustard treated HSV-1 mp to the same extent as normal cells. Together, these results indicate that (1) Excision repair of UV and N-acetoxy-2-acetylaminofluorene DNA damaged viruses share a common rate limiting enzymatic step and (2) The repair defect in xeroderma pigmentosum cells plays little or no role in the recovery of nitrogen mustard treated virus. The results of studies on the effect of caffeine on the survival of both UV- and N-acetoxy-2-acetylaminofluorene-treated virus in normal and XP cells imply that the reactivation of HSV-1 mp is mediated by an excision repair process with little if any recovery contributed by post-replication repair mechanisms. The host-cell reactivation of N-acetoxy-2-acetylaminofluorene-treated HSV-1 mp was also correlated with the defective UV-induced unscheduled DNA synthesis in two skin fibroblast strains established from a skin biopsy obtained from each of two juvenile females who had been clinically diagnosed as xeroderma pigmentosum. These findings are discussed in relation to the further characterization of the xeroderma pigmentosum phenotype and their possible utilization for the selection and isolation of new mammalian cell DNA repair mutants

  4. Effects of UVA irradiation, aryl azides, and reactive oxygen species on the orthogonal inactivation of the human immunodeficiency virus (HIV-1)

    International Nuclear Information System (INIS)

    Belanger, Julie M.; Raviv, Yossef; Viard, Mathias; Cruz, M. Jason de la; Nagashima, Kunio; Blumenthal, Robert

    2011-01-01

    Previously we reported that hydrophobic aryl azides partition into hydrophobic regions of the viral membrane of enveloped viruses and inactivate the virus upon UVA irradiation for 2 min. Prolonged irradiation (15 min) resulted in viral protein aggregation as visualized via Western blot analysis, due to reactive oxygen species (ROS) formation, with preservation of the surface antigenic epitopes. Herein, we demonstrate that these aggregates show detergent resistance and that this property may be useful towards the creation of a novel orthogonal virus inactivation strategy for use in preparing experimental vaccines. When ROS-modified HIV virus preparations were treated with 1% Triton X-100, there was an increase in the percent of viral proteins (gp41, p24) in the viral pellet after ultracentrifugation through sucrose. Transmission electron microscopy (TEM) of these detergent-resistant pellets shows some recognizable virus fragments, and immunoprecipitation studies of the gp41 aggregates suggest the aggregation is covalent in nature, involving short-range interactions.

  5. Rapid localized spread and immunologic containment define Herpes simplex virus-2 reactivation in the human genital tract.

    Science.gov (United States)

    Schiffer, Joshua T; Swan, David; Al Sallaq, Ramzi; Magaret, Amalia; Johnston, Christine; Mark, Karen E; Selke, Stacy; Ocbamichael, Negusse; Kuntz, Steve; Zhu, Jia; Robinson, Barry; Huang, Meei-Li; Jerome, Keith R; Wald, Anna; Corey, Lawrence

    2013-04-16

    Herpes simplex virus-2 (HSV-2) is shed episodically, leading to occasional genital ulcers and efficient transmission. The biology explaining highly variable shedding patterns, in an infected person over time, is poorly understood. We sampled the genital tract for HSV DNA at several time intervals and concurrently at multiple sites, and derived a spatial mathematical model to characterize dynamics of HSV-2 reactivation. The model reproduced heterogeneity in shedding episode duration and viral production, and predicted rapid early viral expansion, rapid late decay, and wide spatial dispersion of HSV replication during episodes. In simulations, HSV-2 spread locally within single ulcers to thousands of epithelial cells in genital epithelium. DOI:http://dx.doi.org/10.7554/eLife.00288.001.

  6. Selective Estrogen Receptor Modulators regulate reactive microglia after penetrating brain injury

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2014-06-01

    Full Text Available Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In the present study, we have assessed whether raloxifene and tamoxifen are able to affect microglia activation after brain injury in young and aged animals in time points relevant to clinics, which is hours after brain trauma. Volume fraction of MHC-II+ microglia was estimated according to the point-counting method of Weibel within a distance of 350 μm from the lateral border of the wound, and cellular morphology was measured by fractal analysis. Two groups of animals were studied: 1 young rats, ovariectomized at 2 months of age; and 2 aged rats, ovariectomized at 18 months of age. Fifteen days after ovariectomy animals received a stab wound brain injury and the treatment with estrogenic compounds. Our findings indicate that raloxifene and tamoxifen reduced microglia activation in both young and aged animals. Although the volume fraction of reactive microglia was found lower in aged animals, this was accompanied by important changes in cell morphology, where aged microglia assume a bushier and hyperplasic aspect when compared to young microglia. These data suggest that early regulation of microglia activation provides a mechanism by which SERMs may exert a neuroprotective effect in the setting of a brain trauma.

  7. Discordance of epstein-barr virus (ebv) specific humoral and cellular immunity in patients with malignant lymphomas : Elevated antibody titers and lowered invitro lymphocyte-reactivity

    NARCIS (Netherlands)

    ten Napel, C. H. H.; The, T. Hauw; van Egten-Bijker, J; de Gast, G. C.; Halie, M. R.; Langenhuysen, M. M. A. C.

    1978-01-01

    The relationship between specific viral cellular and humoral immunity to the Epstein–Barr Virus (EBV) was investigated in thirty-one untreated patients with malignant lymphoma (ML) and sex- and age-matched controls. In vitro reactivity of peripheral blood lymphocytes to heatinactivated purified EBV,

  8. A multi-method laboratory investigation of emotional reactivity and emotion regulation abilities in borderline personality disorder.

    Science.gov (United States)

    Kuo, Janice R; Fitzpatrick, Skye; Metcalfe, Rebecca K; McMain, Shelley

    2016-03-01

    Borderline personality disorder (BPD) is conceptualized as a disorder of heightened emotional reactivity and difficulties with emotion regulation. However, findings regarding emotional reactivity in BPD are mixed and there are limited studies examining emotion regulation capabilities in this population. Twenty-five individuals with BPD and 30 healthy controls (HCs) engaged in a baseline assessment followed by the presentation of neutral and BPD-relevant negative images. Participants were instructed to react as they naturally would to the image, or to use a mindfulness-based or distraction-based strategy to feel less negative. Self-reported and physiological (i.e., heart rate, electrodermal activity, and respiratory sinus arrhythmia) measures were collected. Compared with the HCs, the BPD group exhibited elevated heart rate and reduced respiratory sinus arrhythmia at baseline. However, there were no differences in emotional reactivity in self-report or physiological indices between the two groups. In addition, the BPD group did not exhibit deficits in the ability to implement either emotion regulation strategy, with the exception that the BPD group reported less positive emotions while distracting compared with the HCs. This study is limited by a small sample size and the inclusion of a medicated BPD sample. Emotion dysregulation in BPD might be better accounted for by abnormal baseline emotional functioning rather than heightened emotional reactivity or deficits in emotion regulation. Treatments for BPD might be enhanced by directly targeting resting state emotional functioning rather than emotional reactions or regulatory attempts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp.

    Science.gov (United States)

    Gong, Yi; Ju, Chenyu; Zhang, Xiaobo

    2015-10-01

    The p53 protein plays an important role in apoptosis which is involved in the immunity of animals. However, effects of the miRNA-mediated regulation of p53 expression on apoptosis and virus infection are not extensively investigated. To address this issue, the miRNA-mediated p53-dependent apoptotic pathway was explored in this study. The results indicated that p53 could regulate the apoptotic activity of Marsupenaeus japonicas shrimp and influence the infection of white spot syndrome virus (WSSV). The further data presented that miR-1000 could target the 3'-untranslated region (3'UTR) of p53 gene. The results of in vivo experiments showed that the miR-1000 overexpression led to significant decreases of shrimp apoptotic activity and the capacity of WSSV infection, while the miR-1000 silencing resulted in significant increases of apoptotic activity and virus infection, indicating that miR-1000 took great effects on apoptosis and virus infection by targeting p53. Therefore, our study revealed a novel mechanism that the miR-1000-p53 pathway regulated apoptosis and virus infection in shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Immune regulation in chronic hepatitis C virus infection

    DEFF Research Database (Denmark)

    Hartling, Hans Jakob; Ballegaard, Vibe Cecilie; Nielsen, Nick Schou

    2016-01-01

    The immunological result of infection with Hepatitis C virus (HCV) depends on the delicate balance between a vigorous immune response that may clear the infection, but with a risk of unspecific inflammation and, or a less inflammatory response that leads to chronic infection. In general, exhaustion...... and impairment of cytotoxic function of HCV-specific T cells and NK cells are found in patients with chronic HCV infection. In contrast, an increase in immune regulatory functions is found primarily in form of increased IL-10 production possibly due to increased level and function of anti-inflammatory Tregs...

  11. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response.

    Science.gov (United States)

    Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R

    2017-11-01

    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.

  12. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Ziying Han

    2015-10-01

    Full Text Available Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg and arenaviruses (Lassa and Junín viruses, are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1 and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms.

  13. Chemical conjugation of cowpea mosaic viruses with reactive HPMA-based polymers

    Czech Academy of Sciences Publication Activity Database

    Laga, Richard; Koňák, Čestmír; Šubr, Vladimír; Ulbrich, Karel; Suthiwangcharoen, N.; Niu, Q.; Wang, Q.

    2010-01-01

    Roč. 21, č. 12 (2010), s. 1669-1685 ISSN 0920-5063 R&D Projects: GA AV ČR KJB400500803; GA ČR GA202/09/2078; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40500505 Keywords : acylthiazolidine-2-thione reactive groups * bioconjugation * coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.842, year: 2010

  14. Broad spectrum reactivity versus subtype specificity-trade-offs in serodiagnosis of influenza A virus infections by competitive ELISA.

    Science.gov (United States)

    Postel, A; Ziller, M; Rudolf, M; Letzel, T; Ehricht, Ralf; Pourquier, P; Dauber, M; Grund, C; Beer, Martin; Harder, T C

    2011-04-01

    Avian influenza viruses (AIVs) of the H5 and H7 subtypes can cause substantial economic losses in the poultry industry and are a potential threat to public health. Serosurveillance of poultry populations is an important monitoring tool and can also be used for control of vaccination campaigns. The purpose of this study was to develop broadly reactive, yet subtype-specific competitive ELISAs (cELISAs) for the specific detection of antibodies to the notifiable AIV subtypes H5 and H7 as an alternative to the gold standard haemagglutination inhibition assay (HI). Broadly reacting monoclonal competitor antibodies (mAbs) and genetically engineered subtype H5 or H7 haemagglutinin antigen, expressed and in vivo biotinylated in insect cells, were used to develop the cELISAs. Sera from galliform species and water fowl (n=793) were used to evaluate the performance characteristics of the cELISAs. For the H5 specific cELISA, 98.1% test sensitivity and 91.5% test specificity (97.7% and 90.2% for galliforms; 98.9% and 92.6% for waterfowl), and for the H7 cELISA 97.3% sensitivity and 91.8% specificity (95.3% and 98.9% for galliforms; 100% and 82.7% for waterfowl) were reached when compared to HI. The use of competitor mAbs with broad spectrum reactivity within an AIV haemagglutinin subtype allowed for homogenous detection with high sensitivity of subtype-specific antibodies induced by antigenically widely distinct isolates including antigenic drift variants. However, a trade-off regarding sensitivity versus nonspecific detection of interfering antibodies induced by phylo- and antigenically closely related subtypes, e.g., H5 versus H2 and H7 versus H15, must be considered. The observed intersubtype antibody cross-reactivity remains a disturbance variable in AIV subtype-specific serodiagnosis which negatively affects specificity. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Pre-emptive rituximab for Epstein-Barr virus reactivation after haplo-hematopoietic stem cell transplantation.

    Science.gov (United States)

    Kobayashi, Shogo; Sano, Hideki; Mochizuki, Kazuhiro; Ohara, Yoshihiro; Takahashi, Nobuhisa; Ohto, Hitoshi; Kikuta, Atsushi

    2017-09-01

    Epstein-Barr virus-related post-transplantation lymphoproliferative disease (EBV-PTLD) is a serious complication in hematopoietic stem cell transplantation (HSCT) recipients. We conducted a retrospective study to investigate the incidence and potential risk factors for EBV reactivation and to assess the efficacy of the management of EBV reactivation with pre-emptive rituximab in children who had T-cell-replete haploidentical HSCT (TCR-haplo-SCT) with low-dose anti-thymocyte globulin (ATG). EBV-DNA level in peripheral blood (PB) was measured when suspected EBV reactivation were observed. When the EBV-DNA level in PB increased to >1,000 copies/10 6 peripheral blood mononuclear cells (PBMC), patients were pre-emptively treated with rituximab (375 mg/m 2 /dose). A total of 19 (50%) of 38 patients received rituximab infusion at a median time of 56 days after HSCT (range, 17-270 days). The median viral load at initiation of therapy was 2,900 copies/10 6 PBMC (range, 1,000-650 000). Pre-emptive therapy was started after a median of 2 days (range, 0-7 days). The median number of weekly treatment cycles was 2 (range, 1-3). None of the patients developed PTLD or other EBV-associated diseases. Pre-emptive rituximab therapy could be a useful strategy for EBV-PTLD in TCR-haplo-SCT recipients with low-dose ATG. © 2017 Japan Pediatric Society.

  16. TCR down-regulation controls virus-specific CD8+ T cell responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...

  17. Pivotal Roles of Ginsenoside Rg3 in Tumor Apoptosis Through Regulation of Reactive Oxygen Species.

    Science.gov (United States)

    Sun, Hwa Yeon; Lee, Jun Hee; Han, Yong-Seok; Yoon, Yeo Min; Yun, Chul Won; Kim, Jae Heon; Song, Yun Seob; Lee, Sang Hun

    2016-09-01

    Elevated production of reactive oxygen species (ROS) is observed in various cancer types and pathophysiological conditions. In cancer cells, ROS induce cell proliferation, genetic instability, and a malignant phenotype. Ginsenoside Rg3 is the main pharmacologically active component in ginseng and has been reported to have an antioxidant effect. To overcome lung cancer by regulating the ROS level, we investigated the antitumor effect and mechanism of Rg3 and its antioxidative property on Lewis lung carcinoma (LLC) cells. Inhibition of ROS was suppressed in LLC cells by Rg3 treatment, and these cells were used to investigate the antioxidant, antiproliferative, and antitumor effects in LLC cells. ROS production was increased in cells grown in serum-containing media (conditioned media) compared to those grown in serum-free media. The high level of ROS induced LLC cell proliferation, but treatment with Rg3 (200 ng/ml) resulted in reduction of ROS, leading to inhibition of cell proliferation. Treatment with Rg3 significantly reduced cyclin and cyclin-dependent kinase expression in LLC cells. Additionally, Rg3 treatment significantly suppressed activation of mitogen-activated protein kinases and induced LLC cell apoptosis through activation of pro-apoptotic proteins and suppression of anti-apoptotic proteins. Taken together, these findings demonstrate the role of Rg3 in reduction of the intracellular ROS level, attenuation of proliferation via augmentation of cell cycle- and cell proliferation-associated proteins, and activation of apoptosis through regulation of apoptosis-associated proteins in LLC. These findings suggest that Rg3 could be used as a therapeutic agent in lung cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger.

    Science.gov (United States)

    Kim, Yeung-Hyen; Kumar, Ajay; Chang, Cheong-Hee; Pyaram, Kalyani

    2017-11-15

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Regulation of radiation protective agents on cell damage induced by reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Si Eun; Ju, Eun Mi; Gao, Eu Feng [Kyung Hee University, Seoul (Korea)

    2002-04-01

    In this study, we developed candidates of new radio-protective agents and elucidated the regulation mechanism of these candidates on cell damage induced by reactive oxygen species. The methanol extracts and ethylacetate fractions of NP-1, NP-5, NP-7, NP-11, NP-12 and NP-14 showed higher radical scavenging activity. The extracts of NP-7, NP-12 and NP-14 showed strong protective effect against oxidative damage induced by UV and H{sub 2}O{sub 2}. The most of samples enhanced SOD, CAT and GPX activity in V79-4 cells. The protective effect of samples on H{sub 2}O{sub 2}-induced apoptosis was observed with microscope and flow cytometer. Cells exposed to H{sub 2}O{sub 2} exhibit distinct morphological features of programmed cell death, such as nuclear fragmentation and increase in the percentage of cells with a sub-G1 DNA content. However, cells which was pretreated with samples significantly reduced the characteristics of apoptotic cells. Their morphological observation and DNA profiles were similar to those of the control cells. NP-14 which had excellent antioxidant activity restored G2/M arrest induced by oxidative stress. These data suggested that natural medicinal plants protected H{sub 2}O{sub 2}-induced apoptosis. 42 refs., 29 figs., 11 tabs. (Author)

  20. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D

    2011-01-01

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout...... mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  1. Disrupted amygdala-prefrontal connectivity during emotion regulation links stress-reactive rumination and adolescent depressive symptoms

    Directory of Open Access Journals (Sweden)

    Carina H. Fowler

    2017-10-01

    Full Text Available Rumination in response to stress (stress-reactive rumination has been linked to higher levels of depressive symptoms in adolescents. However, no work to date has examined the neural mechanisms connecting stress-reactive rumination and adolescent depressive symptoms. The present work attempted to bridge this gap through an fMRI study of 41 adolescent girls (Mage = 15.42, SD = 0.33 – a population in whom elevated levels of depressive symptoms, rumination, and social stress sensitivity are displayed. During the scan, participants completed two tasks: an emotion regulation task and a social stress task. Using psychophysiological interaction (PPI analyses, we found that positive functional connectivity between the amygdala and ventrolateral prefrontal cortex (VLPFC during the emotion regulation task mediated the association between stress-reactive rumination and depressive symptoms. These results suggest that stress-reactive rumination may interfere with the expression and development of neural connectivity patterns associated with effective emotion regulation, which may contribute, in turn, to heightened depressive symptoms.

  2. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2017-10-01

    Full Text Available Human immunodeficiency virus (HIV hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR. This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS. Quantitative enzyme-linked immunoadsorption assays (ELISA demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.

  3. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression.

    Science.gov (United States)

    Liu, Yuanwu; Sun, Jing; Zhang, Hongwen; Wang, Mingming; Gao, George Fu; Li, Xiangdong

    2016-10-01

    The 2014 outbreak of Ebola virus caused more than 10,000 human deaths. Current knowledge of suitable drugs, clinical diagnostic biomarkers and molecular mechanisms of Ebola virus infection is either absent or insufficient. By screening stem-loop structures from the viral genomes of four virulence species, we identified a novel, putative viral microRNA precursor that is specifically expressed by the Ebola virus. The sequence of the microRNA precursor was further confirmed by mining the existing RNA-Seq database. Two putative mature microRNAs were predicted and subsequently validated in human cell lines. Combined with this prediction of the microRNA target, we identified importin-α5, which is a key regulator of interferon signaling following Ebola virus infection, as one putative target. We speculate that this microRNA could facilitate the evasion of the host immune system by the virus. Moreover, this microRNA might be a potential clinical therapeutic target or a diagnostic biomarker for Ebola virus.

  4. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    Science.gov (United States)

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  5. [Immunotherapy in aplastic anaemia as a cause of reactivation of hepatitis B virus-immunologic aspects].

    Science.gov (United States)

    Luczyński, Włodzimierz; Muszyńska-Rosłan, Katarzyna; Krawczuk-Rybak, Maryna; Lebensztejn, Dariusz M

    2005-01-01

    We present history of 16-year-old boy, HBsAg carrier, treated with interferon alpha at the age of 6 because of hepatitis B (HBeAg/antyHBe seroconversion). In August 2002--admitted to Department of Pediatric Oncology due to pancytopenia--diagnosis of severe aplastic anaemia was made (bone marrow cellularity--10%). We found no relative donor for hematopoietic cells transplantation and started immunosuppresive therapy (ATG, G-CSF, methyloprednisolon, cyclosporin). Haematologic parameters were improving. At day +60 he was admitted to our Department due to the increase in aminotransferases and cyclosporin activity. He was treated with cefuroxim, acyclovir and drugs improving liver cell function, cyclosporin was stopped. Presence of HBV DNA in serum confirmed HBV reactivation--a boy received lamivudine and cyclosporin again (as a maintenance therapy of aplastic anaemia). Aminotransferase activity and haematological parameters returned to normal. This case indicates the possibility of HBV reactivation in the course of immunosuppressive therapy (e.g. after antithymocytic globulin and cyclosporin) for aplastic anaemia.

  6. Uncoupled regulation of fibronectin and collagen synthesis in Rous sarcoma virus transformed avian tendon cells

    International Nuclear Information System (INIS)

    Parry, G.; Soo, W.J.; Bissell, M.J.

    1979-01-01

    The regulation of fibronectin and procollagen synthesis has been investigated in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. Whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells was thus examined. It was found that while the synthesis of both pro α 1 and pro α 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules

  7. Loss of Anti-Viral Immunity by Infection with a Virus Encoding a Cross-Reactive Pathogenic Epitope

    OpenAIRE

    Chen, Alex T.; Cornberg, Markus; Gras, Stephanie; Guillonneau, Carole; Rossjohn, Jamie; Trees, Andrew; Emonet, Sebastien; de la Torre, Juan C.; Welsh, Raymond M.; Selin, Liisa K.

    2012-01-01

    Author Summary The purpose of vaccination against viruses is to induce strong neutralizing antibody responses that inactivate viruses on contact and strong T cell responses that attack and kill virus-infected cells. Some viruses, however, like HIV and hepatitis C virus, are only weakly controlled by neutralizing antibody, so T cell immunity is very important for control of these infections. T cells recognize small virus-encoded peptides, called epitopes, presented on the surface of infected c...

  8. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake.

    Science.gov (United States)

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  9. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    International Nuclear Information System (INIS)

    Shimizu, T; Villamayor, M; Helmersson, U; Lundin, D

    2016-01-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar–N 2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N 2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf–N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail. (paper)

  10. Richter transformation driven by Epstein-Barr virus reactivation during therapy-related immunosuppression in chronic lymphocytic leukaemia.

    Science.gov (United States)

    García-Barchino, Maria J; Sarasquete, Maria E; Panizo, Carlos; Morscio, Julie; Martinez, Antonio; Alcoceba, Miguel; Fresquet, Vicente; Gonzalez-Farre, Blanca; Paiva, Bruno; Young, Ken H; Robles, Eloy F; Roa, Sergio; Celay, Jon; Larrayoz, Marta; Rossi, Davide; Gaidano, Gianluca; Montes-Moreno, Santiago; Piris, Miguel A; Balanzategui, Ana; Jimenez, Cristina; Rodriguez, Idoia; Calasanz, Maria J; Larrayoz, Maria J; Segura, Victor; Garcia-Muñoz, Ricardo; Rabasa, Maria P; Yi, Shuhua; Li, Jianyong; Zhang, Mingzhi; Xu-Monette, Zijun Y; Puig-Moron, Noemi; Orfao, Alberto; Böttcher, Sebastian; Hernandez-Rivas, Jesus M; Miguel, Jesus San; Prosper, Felipe; Tousseyn, Thomas; Sagaert, Xavier; Gonzalez, Marcos; Martinez-Climent, Jose A

    2018-05-01

    The increased risk of Richter transformation (RT) in patients with chronic lymphocytic leukaemia (CLL) due to Epstein-Barr virus (EBV) reactivation during immunosuppressive therapy with fludarabine other targeted agents remains controversial. Among 31 RT cases classified as diffuse large B-cell lymphoma (DLBCL), seven (23%) showed EBV expression. In contrast to EBV - tumours, EBV + DLBCLs derived predominantly from IGVH-hypermutated CLL, and they also showed CLL-unrelated IGVH sequences more frequently. Intriguingly, despite having different cellular origins, clonally related and unrelated EBV + DLBCLs shared a previous history of immunosuppressive chemo-immunotherapy, a non-germinal centre DLBCL phenotype, EBV latency programme type II or III, and very short survival. These data suggested that EBV reactivation during therapy-related immunosuppression can transform either CLL cells or non-tumoural B lymphocytes into EBV + DLBCL. To investigate this hypothesis, xenogeneic transplantation of blood cells from 31 patients with CLL and monoclonal B-cell lymphocytosis (MBL) was performed in Rag2 -/- IL2γc -/- mice. Remarkably, the recipients' impaired immunosurveillance favoured the spontaneous outgrowth of EBV + B-cell clones from 95% of CLL and 64% of MBL patients samples, but not from healthy donors. Eventually, these cells generated monoclonal tumours (mostly CLL-unrelated but also CLL-related), recapitulating the principal features of EBV + DLBCL in patients. Accordingly, clonally related and unrelated EBV + DLBCL xenografts showed indistinguishable cellular, virological and molecular features, and synergistically responded to combined inhibition of EBV replication with ganciclovir and B-cell receptor signalling with ibrutinib in vivo. Our study underscores the risk of RT driven by EBV in CLL patients receiving immunosuppressive therapies, and provides the scientific rationale for testing ganciclovir and ibrutinib in EBV + DLBCL. Copyright © 2018 Pathological

  11. Portal hypertension and an atypical reactive arthritis like presentation in a patient infected with hepatitis C virus genotype 3

    Directory of Open Access Journals (Sweden)

    Moushumi Lodh

    2014-01-01

    Full Text Available Background: Reactive arthritis (ReA is defined as a peripheral arthritis lasting longer than 1 month, associated with urethritis, cervicitis, or diarrhea. The reported annual incidence of ReA is approximately 30-40 cases per 100,000 adults, occurring commonly in the age group of 16 and 35 years. It is known to be associated with gastrointestinal infections with Shigella, Salmonella, and Campylobacter species and other microorganisms, as well as with genitourinary infections (especially with Chlamydia trachomatis. Case Report: This article reports the case of a 53-year-old, post-right total hip replacement, Indian man, with ReA, who presented with fever, respiratory distress, and abdominal discomfort. He complained of itching, tingling sensation, pain on urination, and retention of urine. He had right hip joint pain for 3 weeks, inability to move right leg since 10 days, and melena since 1 week. Laboratory tests revealed anemia, high liver and kidney function tests, elevated erythrocyte sedimentation rate, C reactive protein, procalcitonin and occult blood in stool. He tested positive for hepatitis C virus genotype 3. Gastroduodenoscopy revealed multiple apthoid ulcers at D2 and large gastric varix. Ultrasonography of whole abdomen revealed cholelithiasis and splenomegaly. Skin lesions and arthritis led to the diagnosis of associated ReA. The patient was managed conservatively and discharged in a stable condition. Conclusions: Our case is unlike classical ReA because the patient is older, HLA B27 negative, and without florid urethritis. Admitted for fever and lower urinary tract symptoms, along with respiratory distress, the primary objective of the emergency doctors was to prevent the patient from progressing to organ failure. The diagnosis of underlying atypical/incomplete ReA could easily have been missed without adequate awareness, dermatological consultation, and a skin biopsy.

  12. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization.

    Science.gov (United States)

    Kamranvar, Siamak A; Masucci, Maria G

    2017-08-09

    The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.

  13. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    Science.gov (United States)

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1 -/- mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1 -/- mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  14. The Relations Between Maternal Prenatal Anxiety or Stress and Child's Early Negative Reactivity or Self-Regulation: A Systematic Review.

    Science.gov (United States)

    Korja, Riikka; Nolvi, Saara; Grant, Kerry Ann; McMahon, Cathy

    2017-12-01

    In the present review, we examine the association between maternal prenatal stress or anxiety and children's early negative reactivity or self-regulation. The review includes 32 studies that focus on pregnancy-related anxiety, state or trait anxiety, perceived stress, and stressful life events in relation to child's crying, temperament, or behavior during the first 2 years of life. We searched four electronic databases and 32 studies were selected based on the inclusion criteria. Twenty-three studies found an association between maternal prenatal anxiety or stress and a child's negative reactivity or self-regulation, and typically the effect sizes varied from low to moderate. The association was found regardless of the form of prenatal stress or anxiety and the trimester in which the prenatal stress or anxiety was measured. In conclusion, several forms of prenatal anxiety and stress may increase the risk of emotional and self-regulatory difficulties during the first 2 years of life.

  15. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    International Nuclear Information System (INIS)

    Kokusho, Ryuhei; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu

    2016-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  16. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Ryuhei, E-mail: kokusho@ss.ab.a.u-tokyo.ac.jp; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu, E-mail: katsuma@ss.ab.a.u-tokyo.ac.jp

    2016-11-15

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  17. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    Science.gov (United States)

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  18. Targeting cysteine residues of human immunodeficiency virus type 1 protease by reactive free radical species.

    Science.gov (United States)

    Basu, A; Sehajpal, P K; Ogiste, J S; Lander, H M

    1999-01-01

    Nitric oxide (NO) is a naturally occurring free radical with many functions. The oxidized form of NO, the nitrosonium ion, reacts with the thiol group of cysteine residues resulting in their modification to S-nitrosothiols. The human immunodeficiency virus type 1 (HIV-1) protease (HIV-PR) has two cysteine residues that are conserved amongst different viral isolates found in patients with acquired immunodeficiency syndrome (AIDS). In an active dimer, these residues are located near the surface of the protease. We have found that treatment of HIV-PR with different NO congeners results in loss of its proteolytic activity and simultaneous formation of S-nitrosothiols. Sodium nitroprusside inhibited HIV-PR up to 70% and S-nitroso-N-acetylpenicillamine completely inhibited the protease within 5 min of treatment. The pattern of inhibition by NO donors is comparable to its inhibition by N-acetyl pepstatin. Using electrospray ionization-mass spectrometry, we identified the modification of HIV-PR by NO as that of S-nitrosation. Our findings point towards a possible role of NO in mediating resistance to HIV-1 infection.

  19. Emotional reactivity and regulation in individuals with psychopathic traits: Evidence for a disconnect between neurophysiology and self-report.

    Science.gov (United States)

    Ellis, Jennifer D; Schroder, Hans S; Patrick, Christopher J; Moser, Jason S

    2017-10-01

    Individuals with psychopathic traits often demonstrate blunted reactivity to negative emotional stimuli. However, it is not yet clear whether these individuals also have difficulty regulating their emotional responses to negative stimuli. To address this question, participants with varying levels of psychopathic traits (indexed by the Triarchic Measure of Psychopathy; Patrick, 2010) completed a task in which they passively viewed, increased, or decreased their emotions to negative picture stimuli while electrocortical activity was recorded. During passive viewing of negative images, higher boldness, but not higher disinhibition or meanness, was associated with reduced amplitude of the late positive potential (LPP), an ERP that indexes reactivity to emotionally relevant stimuli. However, all participants demonstrated expected enhancement of the LPP when asked to increase their emotional response. Participants did not show expected suppression of the LPP when asked to decrease their emotional response. Contrary to the electrophysiological data, individuals with higher boldness did not self-report experiencing blunted emotional response during passive viewing trials, and they reported experiencing greater emotional reactivity relative to other participants when regulating (e.g., both increasing and decreasing) their emotions. Results suggest inconsistency between physiological and self-report indices of emotion among high-bold individuals during both affective processing and regulation. © 2017 Society for Psychophysiological Research.

  20. Design of reactive power regulator of synchronous generators by considering grid impedance angle for characteristic index objectives

    DEFF Research Database (Denmark)

    Raboni, Pietro; Chaudhary, Sanjay K.; Chen, Zhe

    2016-01-01

    functions are formulated on the basis of the integral of an error. This difference makes them suitable for the cases where the entire step-response data series are unavailable. The performances of differently tuned regulators are compared considering a test system including a 100 kW Diesel Generator Set......Effects of low reactance to resistance ratio in distribution networks are widely studied but little work dealing with the tuning of voltage and reactive power regulators of small synchronous generators has been reported. This study endeavours the design of a proportional integral controller...

  1. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  2. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2012-01-01

    Full Text Available The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption.

  3. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase.

    Science.gov (United States)

    Watashi, Koichi; Ishii, Naoto; Hijikata, Makoto; Inoue, Daisuke; Murata, Takayuki; Miyanari, Yusuke; Shimotohno, Kunitada

    2005-07-01

    Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.

  4. Evidence of an IFN-γ by early life stress interaction in the regulation of amygdala reactivity to emotional stimuli.

    Science.gov (United States)

    Redlich, Ronny; Stacey, David; Opel, Nils; Grotegerd, Dominik; Dohm, Katharina; Kugel, Harald; Heindel, Walter; Arolt, Volker; Baune, Bernhard T; Dannlowski, Udo

    2015-12-01

    Since numerous studies have found that exposure to early life stress leads to increased peripheral inflammation and psychiatric disease, it is thought that peripheral immune activation precedes and possibly mediates the onset of stress-associated psychiatric disease. Despite early studies, IFNγ has received little attention relative to other inflammatory cytokines in the context of the pathophysiology of affective disorders. Neuroimaging endophenotypes have emerged recently as a promising means of elucidating these types of complex relationships including the modeling of the interaction between environmental factors and genetic predisposition. Here we investigate the GxE relationship between early-life stress and genetic variants of IFNγ on emotion processing. To investigate the impact of the relationship between genetic variants of IFNγ (rs1861494, rs2069718, rs2430561) and early life stress on emotion processing, a sample of healthy adults (n=409) undergoing an emotional faces paradigm in an fMRI study were genotyped and analysed. Information on early life stress was obtained via Childhood Trauma Questionnaire (CTQ). A positive association between early life stress and amygdala reactivity was found. Specifically, the main effect of genotype of rs1861494 on amygdala reactivity indicates a higher neural response in C allele carriers compared to T homozygotes, while we did not find main effects of rs2069718 and rs2430561. Importantly, interaction analyses revealed a specific interaction between IFNγ genotype (rs1861494) and early life stress affecting amygdala reactivity to emotional faces, resulting from a positive association between CTQ scores and amygdala reactivity in C allele carriers while this association was absent in T homozygotes. Our findings indicate that firstly the genetic variant of IFNγ (rs1861494) is involved with the regulation of amygdala reactivity to emotional stimuli and secondly, that this genetic variant moderates effects of early life

  5. Primary Epstein–Barr virus infection and probable parvovirus B19 reactivation resulting in fulminant hepatitis and fulfilling five of eight criteria for hemophagocytic lymphohistiocytosis

    Directory of Open Access Journals (Sweden)

    Matthias Karrasch

    2014-11-01

    Full Text Available A case of primary Epstein–Barr virus (EBV infection/parvovirus B19 reactivation fulfilling five of eight criteria for hemophagocytic lymphohistiocytosis (HLH is presented. Despite two coinciding viral infections, massive splenomegaly, and fulminant hepatitis, the patient had a good clinical outcome, probably due to an early onset form of HLH with normal leukocyte count, normal natural killer (NK cell function, and a lack of hemophagocytosis.

  6. Primary Epstein-Barr virus infection and probable parvovirus B19 reactivation resulting in fulminant hepatitis and fulfilling five of eight criteria for hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Karrasch, Matthias; Felber, Jörg; Keller, Peter M; Kletta, Christine; Egerer, Renate; Bohnert, Jürgen; Hermann, Beate; Pfister, Wolfgang; Theis, Bernhard; Petersen, Iver; Stallmach, Andreas; Baier, Michael

    2014-11-01

    A case of primary Epstein-Barr virus (EBV) infection/parvovirus B19 reactivation fulfilling five of eight criteria for hemophagocytic lymphohistiocytosis (HLH) is presented. Despite two coinciding viral infections, massive splenomegaly, and fulminant hepatitis, the patient had a good clinical outcome, probably due to an early onset form of HLH with normal leukocyte count, normal natural killer (NK) cell function, and a lack of hemophagocytosis.

  7. Primary Epstein–Barr virus infection and probable parvovirus B19 reactivation resulting in fulminant hepatitis and fulfilling five of eight criteria for hemophagocytic lymphohistiocytosis

    OpenAIRE

    Karrasch, Matthias; Felber, Jörg; Keller, Peter M.; Kletta, Christine; Egerer, Renate; Bohnert, Jürgen; Hermann, Beate; Pfister, Wolfgang; Theis, Bernhard; Petersen, Iver; Stallmach, Andreas; Baier, Michael

    2014-01-01

    A case of primary Epstein–Barr virus (EBV) infection/parvovirus B19 reactivation fulfilling five of eight criteria for hemophagocytic lymphohistiocytosis (HLH) is presented. Despite two coinciding viral infections, massive splenomegaly, and fulminant hepatitis, the patient had a good clinical outcome, probably due to an early onset form of HLH with normal leukocyte count, normal natural killer (NK) cell function, and a lack of hemophagocytosis.

  8. Assessment of cancer and virus antigens for cross-reactivity in human tissues.

    Science.gov (United States)

    Jaravine, Victor; Raffegerst, Silke; Schendel, Dolores J; Frishman, Dmitrij

    2017-01-01

    Cross-reactivity (CR) or invocation of autoimmune side effects in various tissues has important safety implications in adoptive immunotherapy directed against selected antigens. The ability to predict CR (on-target and off-target toxicities) may help in the early selection of safer therapeutically relevant target antigens. We developed a methodology for the calculation of quantitative CR for any defined peptide epitope. Using this approach, we performed assessment of 4 groups of 283 currently known human MHC-class-I epitopes including differentiation antigens, overexpressed proteins, cancer-testis antigens and mutations displayed by tumor cells. In addition, 89 epitopes originating from viral sources were investigated. The natural occurrence of these epitopes in human tissues was assessed based on proteomics abundance data, while the probability of their presentation by MHC-class-I molecules was modelled by the method of Keşmir et al. which combines proteasomal cleavage, TAP affinity and MHC-binding predictions. The results of these analyses for many previously defined peptides are presented as CR indices and tissue profiles. The methodology thus allows for quantitative comparisons of epitopes and is suggested to be suited for the assessment of epitopes of candidate antigens in an early stage of development of adoptive immunotherapy. Our method is implemented as a Java program, with curated datasets stored in a MySQL database. It predicts all naturally possible self-antigens for a given sequence of a therapeutic antigen (or epitope) and after filtering for predicted immunogenicity outputs results as an index and profile of CR to the self-antigens in 22 human tissues. The program is implemented as part of the iCrossR webserver, which is publicly available at http://webclu.bio.wzw.tum.de/icrossr/ CONTACT: d.frishman@wzw.tum.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press

  9. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes

    OpenAIRE

    Campbell, Karen M.; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V.; Halsey, Eric S.; Laguna-Torres, V. Alberto; Yagui, Mart?n; Morrison, Amy C.; Lin, Chii-Dean; Scott, Thomas W.

    2015-01-01

    Background Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model devel...

  10. The tripeptide feG regulates the production of intracellular reactive oxygen species by neutrophils

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2006-06-01

    Full Text Available Abstract Background The D-isomeric form of the tripeptide FEG (feG is a potent anti-inflammatory agent that suppresses type I hypersensitivity (IgE-mediated allergic reactions in several animal species. One of feG's primary actions is to inhibit leukocyte activation resulting in loss of their adhesive and migratory properties. Since activation of neutrophils is often associated with an increase in respiratory burst with the generation of reactive oxygen species (ROS, we examined the effect of feG on the respiratory burst in neutrophils of antigen-sensitized rats. A role for protein kinase C (PKC in the actions of feG was evaluated by using selective isoform inhibitors for PKC. Results At 18h after antigen (ovalbumin challenge of sensitized Sprague-Dawley rats a pronounced neutrophilia occurred; a response that was reduced in animals treated with feG (100 μg/kg. With antigen-challenged animals the protein kinase C (PKC activator, PMA, significantly increased intracellular ROS of circulating neutrophils, as determined by flow cytometry using the fluorescent probe dihydrorhodamine-123. This increase was prevented by treatment with feG at the time of antigen challenge. The inhibitor of PKCδ, rottlerin, which effectively prevented intracellular ROS production by circulating neutrophils of animals receiving a naïve antigen, failed to inhibit PMA-stimulated ROS production if the animals were challenged with antigen. feG treatment, however, re-established the inhibitory effects of the PKCδ inhibitor on intracellular ROS production. The extracellular release of superoxide anion, evaluated by measuring the oxidative reduction of cytochrome C, was neither modified by antigen challenge nor feG treatment. However, hispidin, an inhibitor of PKCβ, inhibited the release of superoxide anion from circulating leukocytes in all groups of animals. feG prevented the increased expression of the β1-integrin CD49d on the circulating neutrophils elicited by antigen

  11. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus.

    Science.gov (United States)

    Graham, Simon P; Haines, Felicity J; Johns, Helen L; Sosan, Olubukola; La Rocca, S Anna; Lamp, Benjamin; Rümenapf, Till; Everett, Helen E; Crooke, Helen R

    2012-04-05

    Live attenuated C-strain classical swine fever viruses (CSFV) provide a rapid onset of protection, but the lack of a serological test that can differentiate vaccinated from infected animals limits their application in CSF outbreaks. Since immunity may precede antibody responses, we examined the kinetics and specificity of peripheral blood T cell responses from pigs vaccinated with a C-strain vaccine and challenged after five days with a genotypically divergent CSFV isolate. Vaccinated animals displayed virus-specific IFN-γ responses from day 3 post-challenge, whereas, unvaccinated challenge control animals failed to mount a detectable response. Both CD4(+) and cytotoxic CD8(+) T cells were identified as the cellular source of IFN-γ. IFN-γ responses showed extensive cross-reactivity when T cells were stimulated with CSFV isolates spanning the major genotypes. To determine the specificity of these responses, T cells were stimulated with recombinant CSFV proteins and a proteome-wide peptide library from a related virus, BVDV. Major cross-reactive peptides were mapped on the E2 and NS3 proteins. Finally, IFN-γ was shown to exert potent antiviral effects on CSFV in vitro. These data support the involvement of broadly cross-reactive T cell IFN-γ responses in the rapid protection conferred by the C-strain vaccine and this information should aid the development of the next generation of CSFV vaccines. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Colpitts, Che C; Bach, Charlotte; Heydmann, Laura; Zona, Laetitia; Xiao, Fei; Thumann, Christine; Crouchet, Emilie; Gaudin, Raphaël; Sureau, Camille; Cosset, François-Loïc; McKeating, Jane A; Pessaux, Patrick; Hoshida, Yujin; Schuster, Catherine; Zeisel, Mirjam B; Baumert, Thomas F

    2016-10-25

    Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV) infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs), including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes

    Directory of Open Access Journals (Sweden)

    Eloi R. Verrier

    2016-10-01

    Full Text Available Chronic hepatitis B, C, and D virus (HBV, HCV, and HDV infections are the leading causes of liver disease and cancer worldwide. Recently, the solute carrier and sodium taurocholate co-transporter NTCP has been identified as a receptor for HBV and HDV. Here, we uncover NTCP as a host factor regulating HCV infection. Using gain- and loss-of-function studies, we show that NTCP mediates HCV infection of hepatocytes and is relevant for cell-to-cell transmission. NTCP regulates HCV infection by augmenting the bile-acid-mediated repression of interferon-stimulated genes (ISGs, including IFITM3. In conclusion, our results uncover NTCP as a mediator of innate antiviral immune responses in the liver, and they establish a role for NTCP in the infection process of multiple viruses via distinct mechanisms. Collectively, our findings suggest a role for solute carriers in the regulation of innate antiviral responses, and they have potential implications for virus-host interactions and antiviral therapies.

  14. A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype

    Science.gov (United States)

    Carpenter, Dale; Singh, Sukhpreet; Osorio, Nelson; Hsiang, Chinhui; Jiang, Xianzhi; Jin, Ling; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT (latency-associated transcript) is the only abundantly expressed viral gene. LAT plays an important role in the HSV-1 latency-reactivation cycle, because LAT deletion mutants have a significantly decreased reactivation phenotype. Based solely on sequence analysis, it was speculated that LAT encodes a ribozyme that plays an important role in how LAT enhances the virus’ reactivation phenotype. Because LAT ribozyme activity has never been reported, we decided to test the converse hypothesis, namely, that this region of LAT does not encode a ribozyme function important for LAT’s ability to enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz) in which the speculated ribozyme consensus sequence was altered such that no ribozyme was encoded. We report here that LAT-Rz had a wild-type reactivation phenotype in mice, confirming the hypothesis that the speculated LAT ribozyme is not a dominant factor in stimulating the latency-reactivation cycle in mice. PMID:18982533

  15. True positivity of anti-Hepatitis C Virus Enzyme-linked immunosorbent assay reactive blood donors: A prospective study done in western India

    Directory of Open Access Journals (Sweden)

    Sunita Tulsiani

    2012-01-01

    Full Text Available Background: A significant number of safe donations are removed from the blood supply, because of the reactive anti-HCV screening test results. This study aimed to assess if the HCV (Hepatitis C Virus seropositive donors were confirmed positive or not. Materials and Methods: More than 68,000 blood donors′ samples were routinely screened and 140 samples were found to be anti-HCV ELISA reactive. These 140 samples were tested by NAT. The NAT negative samples were tested by RIBA. Analysis of samples reactive in single ELISA kit vs. two ELISA kits was done. Results: Out of 140 anti-HCV ELISA reactive samples, a total of 16 (11.43% were positive by NAT. The results of 124 RIBA showed 6 (4.84% positive, 92 (74.19% negative, and 26 (20.97% indeterminate results. None of the sample which was reactive in only single ELISA kit was positive by NAT or RIBA. Conclusion: Only a minority of blood donors with repeatedly reactive anti-HCV screening test is positive by confirmatory testing, but all these blood units are discarded as per existing legal provisions in India. Efforts should be made to retain these donors and also donor units.

  16. Efficacies of Gel Formulations Containing Foscarnet, Alone or Combined with Sodium Lauryl Sulfate, against Establishment and Reactivation of Latent Herpes Simplex Virus Type 1

    Science.gov (United States)

    Piret, Jocelyne; Lamontagne, Julie; Désormeaux, André; Bergeron, Michel G.

    2001-01-01

    The influence of sodium lauryl sulfate (SLS) on the efficacies of gel formulations of foscarnet against herpes simplex virus type 1 (HSV-1) cutaneous lesions and on the establishment and reactivation of latent virus has been evaluated in a murine model of orofacial infection. Topical treatments were given twice daily for 3 days and were initiated at 6, 24, and 48 h after virus inoculation. The gel formulation that contained both 3% foscarnet and 5% SLS and that was administered within 48 h postinfection reduced the rate of development of herpetic skin lesions. This formulation also significantly decreased the viral content in skin tissues and in ipsilateral trigeminal ganglia when it was given within 24 and 6 h postinfection, respectively. A lower level of efficacy was observed for the gel formulation containing 3% foscarnet alone. Of prime interest, the gel formulation containing 5% SLS reduced significantly the mortality rate among mice in a zosteriform model of infection. Both formulations of foscarnet had no effect on the mean titers of reactivated virus in explant cultures of ipsilateral and contralateral trigeminal ganglia from latently infected mice. The use of a gel formulation containing combinations of foscarnet and SLS could represent an attractive approach for the treatment of herpetic mucocutaneous infections. PMID:11257012

  17. Low-fat fermented milk with a combination of fructooligosaccharides and live Lactobacillus rhamnosus GG (ATCC 53103), Streptococcus thermophilus (Z57) andLactobacillus bulgaricus (LB2), and defence against reactivation of Herpes simplex virus in the orolabial epithelia: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following an application from Granarolo S.p.A., submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Italy, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the...... epithelia is a beneficial physiological effect. The Panel considers that no conclusions can be drawn from three out of the four human intervention studies, which were provided by the applicant, for the scientific substantiation of the claim. In weighing the evidence, the Panel took into account that one...... for a mechanism by which the low-fat fermented milk could contribute to the defence against reactivation of HSV in the orolabial epithelia. The Panel concludes that a cause and effect relationship has not been established between the consumption of the low-fat fermented milk, which is the subject of the health...

  18. Gamma-irradiated influenza A virus can prime for a cross-reactive and cross-protective immune response against influenza A viruses

    International Nuclear Information System (INIS)

    Mullbacher, A.; Ada, G.L.; Tha Hla, R.

    1988-01-01

    A-strain influenza virus A/JAP (H2N2) was tested for its ability to induce cytotoxic T cells (Tc) after being rendered non-infectious by either UV or gamma irradiation. Gamma-irradiated virus proved to be more efficient than UV-inactivated virus in priming for a memory Tc cell response or in boosting memory spleen cells in vitro. Most importantly, γ-inactivated, but not UV-inactivated, A/JAP immunized animals survived lethal challenge with heterologous (A/PC(H3N2), A/WSN(H1N1)) virus as effectively as mice primed with infectious virus

  19. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity

    Directory of Open Access Journals (Sweden)

    Zhao Qinjian

    2012-02-01

    Full Text Available Abstract Background Human papillomavirus (HPV vaccines based on major capsid protein L1 are licensed in over 100 countries to prevent HPV infections. The yeast-derived recombinant quadrivalent HPV L1 vaccine, GARDASIL(R, has played an important role in reducing cancer and genital warts since its introduction in 2006. The L1 proteins self-assemble into virus-like particles (VLPs. Results VLPs were subjected to post-purification disassembly and reassembly (D/R treatment during bioprocessing to improve VLP immunoreactivity and stability. The post-D/R HPV16 VLPs and their complex with H16.V5 neutralizing antibody Fab fragments were visualized by cryo electron microscopy, showing VLPs densely decorated with antibody. Along with structural improvements, post-D/R VLPs showed markedly higher antigenicity to conformational and neutralizing monoclonal antibodies (mAbs H16.V5, H16.E70 and H263.A2, whereas binding to mAbs recognizing linear epitopes (H16.J4, H16.O7, and H16.H5 was greatly reduced. Strikingly, post-D/R VLPs showed no detectable binding to H16.H5, indicating that the H16.H5 epitope is not accessible in fully assembled VLPs. An atomic homology model of the entire HPV16 VLP was generated based on previously determined high-resolution structures of bovine papillomavirus and HPV16 L1 pentameric capsomeres. Conclusions D/R treatment of HPV16 L1 VLPs produces more homogeneous VLPs with more virion-like antibody reactivity. These effects can be attributed to a combination of more complete and regular assembly of the VLPs, better folding of L1, reduced non-specific disulfide-mediated aggregation and increased stability of the VLPs. Markedly different antigenicity of HPV16 VLPs was observed upon D/R treatment with a panel of monoclonal antibodies targeting neutralization sensitive epitopes. Multiple epitope-specific assays with a panel of mAbs with different properties and epitopes are required to gain a better understanding of the immunochemical

  20. Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions.

    Science.gov (United States)

    Ramsey, Jolene; Renzi, Emily C; Arnold, Randy J; Trinidad, Jonathan C; Mukhopadhyay, Suchetana

    2017-02-01

    Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a -1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the

  1. Epstein-Barr Virus Lytic Reactivation Activates B Cells Polyclonally and Induces Activation-Induced Cytidine Deaminase Expression: A Mechanism Underlying Autoimmunity and Its Contribution to Graves' Disease.

    Science.gov (United States)

    Nagata, Keiko; Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko

    2017-04-01

    Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein-Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases.

  2. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    Full Text Available Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB, cAMP/calcium signaling (CRE/CREB, and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  3. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Science.gov (United States)

    Meliopoulos, Victoria A; Andersen, Lauren E; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J Keegan; Tompkins, S Mark; Tripp, Ralph A

    2012-01-01

    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  4. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Chapuis, Sophie [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France); Revers, Frédéric [INRA, Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, 33882 Villenave d’Ornon (France); Ziegler-Graff, Véronique [Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l’Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg (France); Brault, Véronique, E-mail: veronique.brault@colmar.inra.fr [UMR 1131 SVQV INRA-UDS, 28 rue de Herrlisheim, 68021 Colmar (France)

    2015-12-15

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT{sub Cter}) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT{sub Cter}. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT{sub Cter} in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  5. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation

    International Nuclear Information System (INIS)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-01-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74 kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RT_C_t_e_r) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RT_C_t_e_r. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. - Highlights: • The C-terminal domain of TuYV-RT is required for long-distance movement. • CIPK7 from Arabidopsis interacts with RT_C_t_e_r in yeast and in plants. • CIPK7 overexpression increases virus titer locally but not virus systemic movement. • CIPK7 localizes to plasmodesmata. • CIPK7 could be a defense protein regulating virus export.

  6. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection.

    Directory of Open Access Journals (Sweden)

    Gene S Tan

    2016-04-01

    Full Text Available In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9 virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.

  7. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    Science.gov (United States)

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  8. SU-F-T-103: Analysis of Hepatitis B Virus Reactivation After Conformal Radiotherapy in Patients with Hepatocellular Carcinoma Using the Lyman NTCP Model

    International Nuclear Information System (INIS)

    Li, Z; Li, B; Huang, W; Li, H

    2016-01-01

    Purpose: The aim of this research was to investigate the feasibility of Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model in analyzing hepatitis B virus (HBV) reactivation in patients receiving conformal radiotherapy for patients with hepatocellular carcinoma (HCC). Methods: Between June 2009 and June 2012, 108 HBV-related HCC patients (90 were specifically selected and 18 patients were excluded) treated with conformal RT at three centers were enrolled in this retrospective study. They were all diagnosed as HCC by pathology or cytology. All 90 patients were followed up to September 2013 with a median follow-up time of 25.2 months. The parameters (TD50 (1), n, and m) of the modified LKB NTCP model were derived using maximum likelihood estimation. Bootstrap and leave-one-out were employed to test the generalizability of the results for use in a general population. Results: The incidences of complications in the study population were as follows: radiation-induced liver diseases (RILD) were 17.6%, HBV reactivation was 24.8%, and HBV reactivation-induced hepatitis was 22.7%, respectively. In multivariate analysis, the NTCP (p<0.001), and V20 were associated with HBV reactivation. TD50 (1), m and n were 42.9Gy (95% CI) (38.2–46.8), 0.14 (0.12–0.15) and 0.30 (0.2–0.33), respectively, for HBV reactivation. Bootstrap and leave-one-out results showed that the HBV parameter fits were extremely robust. Conclusion: A modified LKB NTCP model has been established to predict HBV reactivation for patients with HCC receiving conformal RT. The finding derives parameters set to predict potential endpoints of HBV reactivation.

  9. SU-F-T-103: Analysis of Hepatitis B Virus Reactivation After Conformal Radiotherapy in Patients with Hepatocellular Carcinoma Using the Lyman NTCP Model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Li, B [Laboratory of Image Science and Technology, Southeast University (China); Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences (China); Huang, W; Li, H [Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences (China)

    2016-06-15

    Purpose: The aim of this research was to investigate the feasibility of Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model in analyzing hepatitis B virus (HBV) reactivation in patients receiving conformal radiotherapy for patients with hepatocellular carcinoma (HCC). Methods: Between June 2009 and June 2012, 108 HBV-related HCC patients (90 were specifically selected and 18 patients were excluded) treated with conformal RT at three centers were enrolled in this retrospective study. They were all diagnosed as HCC by pathology or cytology. All 90 patients were followed up to September 2013 with a median follow-up time of 25.2 months. The parameters (TD50 (1), n, and m) of the modified LKB NTCP model were derived using maximum likelihood estimation. Bootstrap and leave-one-out were employed to test the generalizability of the results for use in a general population. Results: The incidences of complications in the study population were as follows: radiation-induced liver diseases (RILD) were 17.6%, HBV reactivation was 24.8%, and HBV reactivation-induced hepatitis was 22.7%, respectively. In multivariate analysis, the NTCP (p<0.001), and V20 were associated with HBV reactivation. TD50 (1), m and n were 42.9Gy (95% CI) (38.2–46.8), 0.14 (0.12–0.15) and 0.30 (0.2–0.33), respectively, for HBV reactivation. Bootstrap and leave-one-out results showed that the HBV parameter fits were extremely robust. Conclusion: A modified LKB NTCP model has been established to predict HBV reactivation for patients with HCC receiving conformal RT. The finding derives parameters set to predict potential endpoints of HBV reactivation.

  10. Reactivation of Hepatitis B Virus in Hematopoietic Stem Cell Transplant Recipients in Japan: Efficacy of Nucleos(tide Analogues for Prevention and Treatment

    Directory of Open Access Journals (Sweden)

    Shingo Nakamoto

    2014-11-01

    Full Text Available We retrospectively reviewed 413 recipients with hematologic malignancies who underwent hematopoietic stem cell transplantation (HSCT between June 1986 and March 2013. Recipients with antibody to hepatitis B core antigen (anti-HBc and/or to hepatitis B surface antigen (anti-HBs were regarded as experiencing previous hepatitis B virus (HBV infection. Clinical data of these recipients were reviewed from medical records. We defined ≥1 log IU/mL increase in serum HBV DNA from nadir as HBV reactivation in hepatitis B surface antigen (HBsAg-positive recipients, and also defined ≥1 log IU/mL increase or re-appearance of HBV DNA and/or HBsAg as HBV reactivation in HBsAg-negative recipients. In 5 HBsAg-positive recipients, 2 recipients initially not administered with nucleos(tide analogues (NUCs experienced HBV reactivation, but finally all 5 were successfully controlled with NUCs. HBV reactivation was observed in 11 (2.7% of 408 HBsAg-negative recipients; 8 of these were treated with NUCs, and fortunately none developed acute liver failure. In 5 (6.0% of 83 anti-HBc and/or anti-HBs-positive recipients, HBV reactivation occurred. None of 157 (0% recipients without HBsAg, anti-HBs or anti-HBc experienced HBV reactivation. In HSCT recipients, HBV reactivation is a common event in HBsAg-positive recipients, or in HBsAg-negative recipients with anti-HBc and/or anti-HBs. Further attention should be paid to HSCT recipients with previous exposure to HBV.

  11. Molecular analysis of hepatitis B virus (HBV in an HIV co-infected patient with reactivation of occult HBV infection following discontinuation of lamivudine-including antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Costantini Andrea

    2011-11-01

    Full Text Available Abstract Background Occult hepatitis B virus (HBV infection (OBI is characterized by HBV DNA persistence even though the pattern of serological markers indicates an otherwise resolved HBV infection. Although OBI is usually clinically silent, immunocompromised patients may experience reactivation of the liver disease. Case presentation We report the case of an individual with human immunodeficiency virus (HIV infection and anti-HBV core antibody positivity, who experienced severe HBV reactivation after discontinuation of lamivudine-including antiretroviral therapy (ART. HBV sequencing analysis showed a hepatitis B surface antigen escape mutant whose presence in an earlier sample excluded reinfection. Molecular sequencing showed some differences between two isolates collected at a 9-year interval, indicating HBV evolution. Resumption of ART containing an emtricitabine/tenofovir combination allowed control of plasma HBV DNA, which fell to undetectable levels. Conclusion This case stresses the ability of HBV to evolve continuously, even during occult infection, and the effectiveness of ART in controlling OBI reactivation in HIV-infected individuals.

  12. JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis

    NARCIS (Netherlands)

    Wu, A.; Devi Allu, A.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.I.; Amparo Asensi-Fabado, M.; Munne´ -Bosch, S.; Antonio, C.; Tohge, T.; Fernie, A.R.; Kaufmann, K.; Xue, G.P.; Mueller-Roeber, B.; Balazadeh, S.

    2012-01-01

    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1

  13. Listening to music and physiological and psychological functioning: the mediating role of emotion regulation and stress reactivity.

    Science.gov (United States)

    Thoma, M V; Scholz, U; Ehlert, U; Nater, U M

    2012-01-01

    Music listening has been suggested to have short-term beneficial effects. The aim of this study was to investigate the association and potential mediating mechanisms between various aspects of habitual music-listening behaviour and physiological and psychological functioning. An internet-based survey was conducted in university students, measuring habitual music-listening behaviour, emotion regulation, stress reactivity, as well as physiological and psychological functioning. A total of 1230 individuals (mean = 24.89 ± 5.34 years, 55.3% women) completed the questionnaire. Quantitative aspects of habitual music-listening behaviour, i.e. average duration of music listening and subjective relevance of music, were not associated with physiological and psychological functioning. In contrast, qualitative aspects, i.e. reasons for listening (especially 'reducing loneliness and aggression', and 'arousing or intensifying specific emotions') were significantly related to physiological and psychological functioning (all p = 0.001). These direct effects were mediated by distress-augmenting emotion regulation and individual stress reactivity. The habitual music-listening behaviour appears to be a multifaceted behaviour that is further influenced by dispositions that are usually not related to music listening. Consequently, habitual music-listening behaviour is not obviously linked to physiological and psychological functioning.

  14. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    Science.gov (United States)

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  15. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    Directory of Open Access Journals (Sweden)

    Matthias Totzeck

    Full Text Available The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.

  16. Large Scale Genome Analysis Shows that the Epitopes for Broadly Cross-Reactive Antibodies Are Predominant in the Pandemic 2009 Influenza Virus A H1N1 Strain

    Directory of Open Access Journals (Sweden)

    Edgar E. Lara-Ramírez

    2013-11-01

    Full Text Available The past pandemic strain H1N1 (A (H1N1pdm09 has now become a common component of current seasonal influenza viruses. It has changed the pre-existing immunity of the human population to succeeding infections. In the present study, a total of 14,210 distinct sequences downloaded from National Center for Biotechnology Information (NCBI database were used for the analysis. The epitope compositions in A (H1N1pdm09, classic seasonal strains, swine strains as well as highly virulent avian strain H5N1, identified with the aid of the Immune Epitope DataBase (IEDB, were compared at genomic level. The result showed that A (H1N1 pdm09 contains the 90% of B-cell epitopes for broadly cross-reactive antibodies (EBCA, which is in consonance with the recent reports on the experimental identification of new epitopes or antibodies for this virus and the binding tests with influenza virus protein HA of different subtypes. Our analysis supports that high proportional EBCA depends on the epitope pattern of A (H1N1pdm09 virus. This study may be helpful for better understanding of A (H1N1pdm09 and the production of new influenza vaccines.

  17. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    Science.gov (United States)

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  18. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  19. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  20. Transcription of minute virus of mice, an autonomous parvovirus, may be regulated by attenuation

    International Nuclear Information System (INIS)

    Ben-Asher, E.; Aloni, Y.

    1984-01-01

    To characterize the transcriptional organization and regulation of minute virus of mice, an autonomous parvovirus, viral transcriptional complexes were isolated and cleaved with restriction enzymes. The in vivo preinitiated nascent RNA was elongated in vitro in the presence of [alpha- 32 P]UTP to generate runoff transcripts. The lengths of the runoff transcripts were analyzed by gel electrophoresis under denaturing conditions. On the basis of the map locations of the restriction sites and the lengths of the runoff transcripts, the in vivo initiation sites were determined. Two major initiation sites having similar activities were thus identified at residues 201 +/- 5 and 2005 +/- 5; both of them were preceded by a TATAA sequence. When uncleaved viral transcriptional complexes or isolated nuclei were incubated in vitro in the presence of [alpha- 32 P]UTP or [alpha- 32 P]CTP, they synthesized labeled RNA that, as determined by polyacrylamide gel electrophoresis, contained a major band of 142 nucleotides. The RNA of the major band was mapped between the initiation site at residue 201 +/- 5 and residue 342. We noticed the potential of forming two mutually exclusive stem-and-loop structures in the 142-nucleotide RNA; one of them is followed by a string of uridylic acid residues typical of a procaryotic transcription termination signal. We propose that, as in the transcription of simian virus 40, RNA transcription in minute virus of mice may be regulated by attenuation and may involve eucaryotic polymerase B, which can respond to a transcription termination signal similar to that of the procaryotic polymerase

  1. An update: Epstein-Barr virus and immune evasion via microRNA regulation.

    Science.gov (United States)

    Zuo, Lielian; Yue, Wenxin; Du, Shujuan; Xin, Shuyu; Zhang, Jing; Liu, Lingzhi; Li, Guiyuan; Lu, Jianhong

    2017-06-01

    Epstein-Barr virus (EBV) is an oncogenic virus that ubiquitously establishes life-long persistence in humans. To ensure its survival and maintain its B cell transformation function, EBV has developed powerful strategies to evade host immune responses. Emerging evidence has shown that microRNAs (miRNAs) are powerful regulators of the maintenance of cellular homeostasis. In this review, we summarize current progress on how EBV utilizes miRNAs for immune evasion. EBV encodes miRNAs targeting both viral and host genes involved in the immune response. The miRNAs are found in two gene clusters, and recent studies have demonstrated that lack of these clusters increases the CD4 + and CD8 + T cell response of infected cells. These reports strongly indicate that EBV miRNAs are critical for immune evasion. In addition, EBV is able to dysregulate the expression of a variety of host miRNAs, which influence multiple immune-related molecules and signaling pathways. The transport via exosomes of EBV-regulated miRNAs and viral proteins contributes to the construction and modification of the inflammatory tumor microenvironment. During EBV immune evasion, viral proteins, immune cells, chemokines, pro-inflammatory cytokines, and pro-apoptosis molecules are involved. Our increasing knowledge of the role of miRNAs in immune evasion will improve the understanding of EBV persistence and help to develop new treatments for EBV-associated cancers and other diseases.

  2. A protein kinase binds the C-terminal domain of the readthrough protein of Turnip yellows virus and regulates virus accumulation.

    Science.gov (United States)

    Rodriguez-Medina, Caren; Boissinot, Sylvaine; Chapuis, Sophie; Gereige, Dalya; Rastegar, Maryam; Erdinger, Monique; Revers, Frédéric; Ziegler-Graff, Véronique; Brault, Véronique

    2015-12-01

    Turnip yellows virus (TuYV), a phloem-limited virus, encodes a 74kDa protein known as the readthrough protein (RT) involved in virus movement. We show here that a TuYV mutant deleted of the C-terminal part of the RT protein (TuYV-∆RTCter) was affected in long-distance trafficking in a host-specific manner. By using the C-terminal domain of the RT protein as a bait in a yeast two-hybrid screen of a phloem cDNA library from Arabidopsis thaliana we identified the calcineurin B-like protein-interacting protein kinase-7 (AtCIPK7). Transient expression of a GFP:CIPK7 fusion protein in virus-inoculated Nicotiana benthamiana leaves led to local increase of wild-type TuYV accumulation, but not that of TuYV-∆RTCter. Surprisingly, elevated virus titer in inoculated leaves did not result in higher TuYV accumulation in systemic leaves, which indicates that virus long-distance movement was not affected. Since GFP:CIPK7 was localized in or near plasmodesmata, CIPK7 could negatively regulate TuYV export from infected cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Stress Regulation in Adolescents: Physiological Reactivity during the Adult Attachment Interview and Conflict Interaction

    Science.gov (United States)

    Beijersbergen, Marielle D.; Bakermans-Kranenburg, Marian J.; van IJzendoorn, Marinus H.; Juffer, Femmie

    2008-01-01

    The current study examined whether adolescents' attachment representations were associated with differences in emotion regulation during the Adult Attachment Interview (AAI; C. George, N. Kaplan, & M. Main, 1996) and during a mother-adolescent conflict interaction task (Family Interaction Task [FIT]; J. P. Allen et al., 2003). Participants…

  4. The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer.

    Science.gov (United States)

    Nishikawa, Jun; Iizasa, Hisashi; Yoshiyama, Hironori; Nakamura, Munetaka; Saito, Mari; Sasaki, Sho; Shimokuri, Kanami; Yanagihara, Masashi; Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro; Sakaida, Isao

    2017-07-25

    The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma (EBVaGC), all tumor cells harbor the clonal EBV genome. The expression of latent EBV genes is strictly regulated through the methylation of EBV DNA. The methylation of viral DNA regulates the type of EBV latency, and methylation of the tumor suppressor genes is a key abnormality in EBVaGC. The methylation frequencies of several tumor suppressor genes and cell adhesion molecules are significantly higher in EBVaGC than in control cases. EBV-derived microRNAs repress translation from viral and host mRNAs. EBV regulates the expression of non-coding RNA in gastric carcinoma. With regard to the clinical application of demethylating agents against EBVaGC, we investigated the effects of decitabine against the EBVaGC cell lines. Decitabine inhibited the cell growth of EBVaGC cells. The promoter regions of p73 and Runt-related transcription factor 3(RUNX3) were demethylated, and their expression was upregulated by the treatment. We review the role of epigenetic regulation in the development and maintenance of EBVaGC and discuss the therapeutic application of DNA demethylating agents for EBVaGC.

  5. The molecular basis of herpes simplex virus latency

    Science.gov (United States)

    Nicoll, Michael P; Proença, João T; Efstathiou, Stacey

    2012-01-01

    Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699

  6. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  7. Emotional reactivity and emotion regulation among adults with a history of self-harm: laboratory self-report and functional MRI evidence.

    Science.gov (United States)

    Davis, Tchiki S; Mauss, Iris B; Lumian, Daniel; Troy, Allison S; Shallcross, Amanda J; Zarolia, Paree; Ford, Brett Q; McRae, Kateri

    2014-08-01

    Intentionally hurting one's body (deliberate self-harm; DSH) is theorized to be associated with high negative emotional reactivity and poor emotion regulation ability. However, little research has assessed the relationship between these potential risk factors and DSH using laboratory measures. Therefore, we conducted 2 studies using laboratory measures of negative emotional reactivity and emotion regulation ability. Study 1 assessed self-reported negative emotions during a sad film clip (reactivity) and during a sad film clip for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with 2 control groups without a history of DSH matched on key demographics: 1 healthy group low in depression and anxiety symptoms and 1 group matched to the DSH group on depression and anxiety symptoms. Study 2 extended Study 1 by assessing neural responding to negative images (reactivity) and negative images for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with a control group matched to the DSH group on demographics, depression, and anxiety symptoms. Compared with control groups, participants with a history of DSH did not exhibit greater negative emotional reactivity but did exhibit lower ability to regulate emotion with reappraisal (greater self-reported negative emotions in Study 1 and greater amygdala activation in Study 2 during regulation). These results suggest that poor emotion regulation ability, but not necessarily greater negative emotional reactivity, is a correlate of and may be a risk factor for DSH, even when controlling for mood disorder symptoms. (c) 2014 APA, all rights reserved.

  8. Zhx2 and Zbtb20: Novel regulators of postnatal alpha-fetoprotein repression and their potential role in gene reactivation during liver cancer

    Science.gov (United States)

    Peterson, Martha L.; Ma, Chunhong; Spear, Brett T.

    2012-01-01

    The mouse alpha-fetoprotein (AFP) gene is abundantly expressed in the fetal liver, normally silent in the adult liver but is frequently reactivated in hepatocellular carcinoma. The basis for AFP expression in the fetal liver has been studied extensively. However, the basis for AFP reactivation during hepatocarcinogenesis is not well understood. Two novel factors that control postnatal AFP repression, Zhx2 and Zbtb20, were recently identified. Here, we review the transcription factors that regulate AFP in the fetal liver, as well as Zhx2 and Zbtb20, and raise the possibility that the loss of these postnatal repressors may be involved in AFP reactivation in liver cancer. PMID:21216289

  9. Inorganic Polyphosphates Regulate Hexokinase Activity and Reactive Oxygen Species Generation in Mitochondria of Rhipicephalus (Boophilus) microplus Embryo

    Science.gov (United States)

    Fraga, Amanda; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Menezes, Jackson; da Silva Vaz Jr, Itabajara; Logullo, Carlos; da Fonseca, Rodrigo Nunes; Campos, Eldo

    2013-01-01

    The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. PMID:23983617

  10. Spontaneous resolution of hemophagocytic syndrome associated with acute parvovirus B19 infection and concomitant Epstein-Barr virus reactivation in an otherwise healthy adult.

    Science.gov (United States)

    Larroche, C; Scieux, C; Honderlick, P; Piette, A M; Morinet, F; Blétry, O

    2002-10-01

    Reported here is the case of a patient who spontaneously recovered from hemophagocytic syndrome associated with acute B19 infection and concomitant Epstein-Barr virus reactivation. The previously healthy 37-year-old-man was hospitalized after 10 days of high fever, arthralgia and arthritis and was determined to have hemophagocytic syndrome. Immunoglobulin (Ig) M antibodies to Epstein-Barr virus (EBV) capsid antigen, early antigen and parvovirus B19 (B19) were found. B19 DNA and low-level EBV DNA were detected in bone marrow, serum and peripheral blood mononuclear cells. The patient recovered spontaneously without any treatment. Two months later anti-B19 IgG antibodies were detected, while at 9-month follow-up, anti-B19 IgM antibodies were no longer detectable and B19 DNA had disappeared from serum. To the best of our knowledge, this is the first report of spontaneous resolution of hemophagocytic syndrome associated with acute B19 infection and concomitant EBV reactivation in an otherwise healthy adult.

  11. Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1.

    Science.gov (United States)

    Sun, Li-Jie; Yu, Jian-Wu; Shi, Yu-Guang; Zhang, Xiao-Yu; Shu, Meng-Ni; Chen, Mo-Yang

    2018-05-01

    Hepatic fibrosis is a frequent feature of chronic hepatitis C virus (HCV) infection. Some evidence has suggested the potential role of silent information regulator 1 (SIRT1) in organ fibrosis. The aim of this study was to investigate the effect of HCV core protein on expression of SIRT1 of liver sinusoidal endothelial cell (LSEC) and function of LSEC. LSECs were co-cultured with HepG2 cells or HepG2 cells expressing HCV core protein and LSECs cultured alone were used as controls. After co-culture, the activity and expression levels of mRNA and protein of SIRT1 in LSEC were detected by a SIRT1 fluorometric assay kit, real time-PCR (RT-PCR), Western blot, respectively. The levels of adiponectin receptor 2 (AdipoR2), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by Western blot. Cluster of differentiation 31 (CD31), CD14, and von Willebrand factor (vWf) of LSECs was performed by flow cytometry. The level of reactive oxygen species (ROS) was assayed. Malondialdehyde (MDA), superoxide dismutase (SOD), adiponectin, nitric oxide (NO), and endothelin-1 (ET-1) levels in the co-culture supernatant were measured. The co-culture supernatant was then used to cultivate LX-2 cells. The levels of α-smooth muscle actin (ASMA) and transforming growth factor-β1 (TGF-β1) protein in LX-2 cells were measured by Western blot. Compared with LSEC co-cultured with HepG2 cells group, in LSEC co-cultured with HepG2-core cells group, the activity and expression level of mRNA and protein of SIRT1 reduced; the level of adiponectin reduced and the expression level of AdipoR2 protein decreased; ROS levels increased; the expression level of eNOS, VEGF protein decreased; and the expression level of CD14 decreased; the expression level of vWf and CD31 increased; NO and SOD levels decreased; whereas ET-1 and MDA levels increased; the levels of ASMA and TGF-β1 protein in LX-2 cells increased. SIRT1 activator improved the above-mentioned changes

  12. Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis.

    Science.gov (United States)

    Pastor, Victoria; Luna, Estrella; Ton, Jurriaan; Cerezo, Miguel; García-Agustín, Pilar; Flors, Victor

    2013-11-01

    Selected stimuli can prime the plant immune system for a faster and stronger defense reaction to pathogen attack. Pretreatment of Arabidopsis with the chemical agent β-aminobutyric acid (BABA) augmented H2O2 and callose production after induction with the pathogen-associated molecular pattern (PAMP) chitosan, or inoculation with the necrotrophic fungus Plectosphaerella cucumerina. However, BABA failed to prime H2O2 and callose production after challenge with the bacterial PAMP Flg22. Analysis of Arabidopsis mutants in reactive oxygen species (ROS) production (rbohD) or ROS scavenging (pad2, vtc1, and cat2) suggested a regulatory role for ROS homeostasis in priming of chitosan- and P. cucumerina-inducible callose and ROS. Moreover, rbohD and pad2 were both impaired in BABA-induced resistance against P. cucumerina. Gene expression analysis revealed direct induction of NADPH/respiratory burst oxidase protein D (RBOHD), γ-glutamylcysteine synthetase 1 (GSH1), and vitamin C defective 1 (VTC1) genes after BABA treatment. Conversely, ascorbate peroxidase 1 (APX1) transcription was repressed by BABA after challenge with chitosan or P. cucumerina, probably to provide a more oxidized environment in the cell and facilitate augmented ROS accumulation. Measuring ratios between reduced and oxidized glutathione confirmed that augmented defense expression in primed plants is associated with a more oxidized cellular status. Together, our data indicate that an altered ROS equilibrium is required for augmented defense expression in primed plants.

  13. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    Science.gov (United States)

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in

  14. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril; Thomsen, Joakim S.

    2011-01-01

    Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13-23. Background Alternative influenza vaccines...... and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross-reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change...... in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were...

  15. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate.

    OpenAIRE

    Coen, D M; Kosz-Vnenchak, M; Jacobson, J G; Leib, D A; Bogard, C L; Schaffer, P A; Tyler, K L; Knipe, D M

    1989-01-01

    Herpes simplex virus infection of mammalian hosts involves lytic replication at a primary site, such as the cornea, translocation by axonal transport to sensory ganglia and replication, and latent infection at a secondary site, ganglionic neurons. The virus-encoded thymidine kinase, which is a target for antiviral drugs such as acyclovir, is not essential for lytic replication yet evidently is required at the secondary site for replication and some phase of latent infection. To determine the ...

  16. KSHV Rta promoter specification and viral reactivation

    Directory of Open Access Journals (Sweden)

    Jonathan eGuito

    2012-02-01

    Full Text Available Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent KSHV into the lytic infection cycle is called K-Rta. Rta is a transcriptional activator that specifies promoters by binding direct DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation.. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic CANT DNA repeats in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV reactivation.

  17. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication

    Directory of Open Access Journals (Sweden)

    Michael Niepmann

    2018-03-01

    Full Text Available Hepatitis C virus (HCV preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES in the 5′ untranslated region (5′ UTR, while also downstream elements like the cis-replication element (CRE in the coding region and the 3′ UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5′- and 3′-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA–RNA interactions (LRIs are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122 binds to two target sites at the 5′ end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3′ UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in

  18. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication.

    Science.gov (United States)

    Niepmann, Michael; Shalamova, Lyudmila A; Gerresheim, Gesche K; Rossbach, Oliver

    2018-01-01

    Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis -replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis -elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis -elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis -elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis -element in question acts on HCV

  19. An amino-terminal segment of hantavirus nucleocapsid protein presented on hepatitis B virus core particles induces a strong and highly cross-reactive antibody response in mice

    International Nuclear Information System (INIS)

    Geldmacher, Astrid; Skrastina, Dace; Petrovskis, Ivars; Borisova, Galina; Berriman, John A.; Roseman, Alan M.; Crowther, R. Anthony; Fischer, Jan; Musema, Shamil; Gelderblom, Hans R.; Lundkvist, Aake; Renhofa, Regina; Ose, Velta; Krueger, Detlev H.; Pumpens, Paul; Ulrich, Rainer

    2004-01-01

    Previously, we have demonstrated that hepatitis B virus (HBV) core particles tolerate the insertion of the amino-terminal 120 amino acids (aa) of the Puumala hantavirus nucleocapsid (N) protein. Here, we demonstrate that the insertion of 120 amino-terminal aa of N proteins from highly virulent Dobrava and Hantaan hantaviruses allows the formation of chimeric core particles. These particles expose the inserted foreign protein segments, at least in part, on their surface. Analysis by electron cryomicroscopy of chimeric particles harbouring the Puumala virus (PUUV) N segment revealed 90% T = 3 and 10% T = 4 shells. A map computed from T = 3 shells shows additional density splaying out from the tips of the spikes producing the effect of an extra shell of density at an outer radius compared with wild-type shells. The inserted Puumala virus N protein segment is flexibly linked to the core spikes and only partially icosahedrally ordered. Immunisation of mice of two different haplotypes (BALB/c and C57BL/6) with chimeric core particles induces a high-titered and highly cross-reactive N-specific antibody response in both mice strains

  20. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  1. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    International Nuclear Information System (INIS)

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-01-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  2. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    Science.gov (United States)

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  3. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  4. A role for the nucleosome assembly proteins TAF-Iβ and NAP1 in the activation of BZLF1 expression and Epstein-Barr virus reactivation.

    Science.gov (United States)

    Mansouri, Sheila; Wang, Shan; Frappier, Lori

    2013-01-01

    The reactivation of Epstein-Barr virus (EBV) from latent to lytic infection begins with the expression of the viral BZLF1 gene, leading to a subsequent cascade of viral gene expression and amplification of the EBV genome. Using RNA interference, we show that nucleosome assembly proteins NAP1 and TAF-I positively contribute to EBV reactivation in epithelial cells through the induction of BZLF1 expression. In addition, overexpression of NAP1 or the β isoform of TAF-I (TAF-Iβ) in AGS cells latently infected with EBV was sufficient to induce BZLF1 expression. Chromatin immunoprecipitation experiments performed in AGS-EBV cells showed that TAF-I associated with the BZLF1 promoter upon lytic induction and affected local histone modifications by increasing H3K4 dimethylation and H4K8 acetylation. MLL1, the host protein known to dimethylate H3K4, was found to associate with the BZLF1 promoter upon lytic induction in a TAF-I-dependent manner, and MLL1 depletion decreased BZLF1 expression, confirming its contribution to lytic reactivation. The results indicate that TAF-Iβ promotes BZLF1 expression and subsequent lytic infection by affecting chromatin at the BZLF1 promoter.

  5. Elevated Levels of Interferon-γ Are Associated with High Levels of Epstein-Barr Virus Reactivation in Patients with the Intestinal Type of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    María G. Cárdenas-Mondragón

    2017-01-01

    Full Text Available Background. The inflammatory response directed against Helicobacter pylori (HP is believed to be one of the main triggers of the appearance of gastric lesions and their progression to gastric cancer (GC. Epstein-Barr virus (EBV has been found responsible for about 10% of all GCs, but the inflammatory response has not been studied in GC patients with evidence of high levels of EBV reactivation. Objective. To determine the relationship between inflammation and antibodies against EBV reactivation antigens, HP, and the bacterium virulence factor CagA in patients with GC. Methods. 127 GC patients, 46 gastritis patients, and 197 healthy subjects were studied. IL-1β, IL-6, IL-8, IL-10, TNF-α, TGF-β, MCP-1, and IFN-γ levels were measured in serum or plasma and compared against the antibody titers of VCA-IgG, HP, and the HP virulence factor CagA. Statistical associations were estimated. Results. Significant ORs and positive trends were found between VCA-IgG and IFN-γ, specifically for patients with GC of intestinal type (OR: 6.4, 95% C.I. 1.2–35.4 (p<0.044. Conclusions. We confirmed a positive association between a marker of EBV reactivation and intestinal gastric cancer and present evidence of a correlation with elevated serum levels of IFN-γ, but not with the other cytokines.

  6. Research advances in microRNAs in regulating hepatitis C virus replication and antiviral therapy

    Directory of Open Access Journals (Sweden)

    CUI Xianghua

    2015-05-01

    Full Text Available Hepatitis C virus (HCV infection is one of the most common causes of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. MicroRNAs (miRNAs, a class of small, non-coding RNA, are involved in a variety of physiological and pathological processes in human bodies. The mechanism by which miRNAs regulate HCV replication is described, and the effects of liver-specific microRNA-122 antagonists on hepatitis C antiviral therapy are discussed. Our study indicates that miRNAs play an important regulatory role in HCV expression. Targeting miRNAs may be a potential therapeutic approach for treating HCV infection, but further studies are still in need.

  7. Development and Regulation of Novel Influenza Virus Vaccines: A United States Young Scientist Perspective.

    Science.gov (United States)

    Khurana, Surender

    2018-04-27

    Vaccination against influenza is the most effective approach for reducing influenza morbidity and mortality. However, influenza vaccines are unique among all licensed vaccines as they are updated and administered annually to antigenically match the vaccine strains and currently circulating influenza strains. Vaccine efficacy of each selected influenza virus vaccine varies depending on the antigenic match between circulating strains and vaccine strains, as well as the age and health status of the vaccine recipient. Low vaccine effectiveness of seasonal influenza vaccines in recent years provides an impetus to improve current seasonal influenza vaccines, and for development of next-generation influenza vaccines that can provide broader, long-lasting protection against both matching and antigenically diverse influenza strains. This review discusses a perspective on some of the issues and formidable challenges facing the development and regulation of the next-generation influenza vaccines.

  8. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  9. Computer-Mediated Communication Preferences and Individual Differences in Neurocognitive Measures of Emotional Attention Capture, Reactivity and Regulation

    Science.gov (United States)

    Babkirk, Sarah; Luehring-Jones, Peter; Dennis, Tracy A.

    2016-01-01

    The use of computer-mediated communication (CMC) to engage socially has become increasingly prevalent, yet few studies examined individual differences that may shed light on implications of CMC for adjustment. The current study examined neurocognitive individual differences associated with preferences to use technology in relation to social-emotional outcomes. In Study 1 (N =91), a self-report measure, the Social Media Communication Questionnaire (SMCQ), was evaluated as an assessment of preferences for communicating positive and negative emotions on a scale ranging from purely via CMC to purely face-to-face. In Study 2, SMCQ preferences were examined in relation to event-related potentials (ERPs) associated with early emotional attention capture and reactivity (the frontal N1) and later sustained emotional processing and regulation [the late positive potential (LPP)]. Electroencephalography (EEG) was recorded while 22 participants passively viewed emotional and neutral pictures and completed an emotion regulation task with instructions to increase, decrease or maintain their emotional responses. A greater preference for CMC was associated with reduced size of and satisfaction with social support, greater early (N1) attention capture by emotional stimuli, and reduced LPP amplitudes to unpleasant stimuli in the increase emotion regulatory task. These findings are discussed in the context of possible emotion- and social-regulatory functions of CMC. PMID:26613269

  10. Anesthetic propofol reduces endotoxic inflammation by inhibiting reactive oxygen species-regulated Akt/IKKβ/NF-κB signaling.

    Directory of Open Access Journals (Sweden)

    Chung-Hsi Hsing

    Full Text Available BACKGROUND: Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS induces inflammation through toll-like receptor (TLR 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α, interleukin (IL-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180 and nuclear factor (NF-κB (Ser536; the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473 partly by reducing reactive oxygen species (ROS generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. CONCLUSIONS/SIGNIFICANCE: These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways.

  11. Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling

    Science.gov (United States)

    Hsing, Chung-Hsi; Lin, Ming-Chung; Choi, Pui-Ching; Huang, Wei-Ching; Kai, Jui-In; Tsai, Cheng-Chieh; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Chang, Yu-Ping; Chen, Yu-Hong; Chen, Chia-Ling; Lin, Chiou-Feng

    2011-01-01

    Background Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. Methodology/Principal Findings Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. Conclusions/Significance These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways. PMID:21408125

  12. Stearoyl coenzyme A desaturase 1 is associated with hepatitis C virus replication complex and regulates viral replication

    DEFF Research Database (Denmark)

    Nguyen, LN; Lim, YS; Pham, Long

    2014-01-01

    The hepatitis C virus (HCV) life cycle is tightly regulated by lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have recently screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet...

  13. Child Maltreatment, Inflammation, and Internalizing Symptoms: Investigating the Roles of C-Reactive Protein, Gene Variation and Neuroendocrine Regulation

    Science.gov (United States)

    Cicchetti, Dante; Handley, Elizabeth D.; Rogosch, Fred A.

    2015-01-01

    Prior research has found inconsistent evidence regarding the association among childhood adversity, inflammation, and internalizing symptoms, perhaps because previous studies have yet to adequately integrate important factors such as the timing of the adversity, genetic variation, and other relevant processes such as neuroendocrine regulation. The aims of the present study were threefold: 1) Determine whether the effect of the timing of child maltreatment on C-reactive protein (CRP), an inflammatory marker, varies by CRP gene variation; 2) Explore whether links between salivary CRP and childhood internalizing symptoms depend on the presence and timing of maltreatment experiences; 3) Investigate the role of CRP in the relations between child neuroendocrine regulation and internalizing symptoms and examine whether these associations are moderated by the presence and timing of child maltreatment. Participants included a sample of 267 maltreated and 222 nonmaltreated children (M age= 9.72, SD=0.99; 52.4% male; 66% African-American) who attended a summer day camp research program designed for school-aged low-income children. Department of Human Services records were examined to determine the onset and recency of maltreatment for children in the maltreated group. Results indicated that among children with recent onset maltreatment, those with at least one A allele from CRP SNP rs1417938 evidenced significantly higher CRP levels compared to recently maltreated children carrying the TT genotype. Moreover, higher levels of CRP were associated with higher levels of internalizing symptoms only for recently maltreated children. Finally, we did not find support for salivary CRP as a mechanism in the relation between neuroendocrine regulation and childhood internalizing symptoms. Our findings highlight the importance of the timing of child maltreatment and have important implications for characterizing variability in inflammation and internalizing symptoms among youth. PMID

  14. Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs.

    Directory of Open Access Journals (Sweden)

    Marnie L Fusco

    2015-06-01

    Full Text Available The filoviruses, which include the marburg- and ebolaviruses, have caused multiple outbreaks among humans this decade. Antibodies against the filovirus surface glycoprotein (GP have been shown to provide life-saving therapy in nonhuman primates, but such antibodies are generally virus-specific. Many monoclonal antibodies (mAbs have been described against Ebola virus. In contrast, relatively few have been described against Marburg virus. Here we present ten mAbs elicited by immunization of mice using recombinant mucin-deleted GPs from different Marburg virus (MARV strains. Surprisingly, two of the mAbs raised against MARV GP also cross-react with the mucin-deleted GP cores of all tested ebolaviruses (Ebola, Sudan, Bundibugyo, Reston, but these epitopes are masked differently by the mucin-like domains themselves. The most efficacious mAbs in this panel were found to recognize a novel "wing" feature on the GP2 subunit that is unique to Marburg and does not exist in Ebola. Two of these anti-wing antibodies confer 90 and 100% protection, respectively, one hour post-exposure in mice challenged with MARV.

  15. Influenza-associated encephalopathy: no evidence for neuroinvasion by influenza virus nor for reactivation of human herpesvirus 6 or 7.

    NARCIS (Netherlands)

    van Zeijl, J.H.; Bakkers, J.; Wilbrink, B.; Melchers, W.J.; Mullaart, R.A.; Galama, J.M.

    2005-01-01

    During 2 consecutive influenza seasons we investigated the presence of influenza virus, human herpesvirus (HHV) type 6, and HHV-7 in cerebrospinal fluid samples from 9 white children suffering from influenza-associated encephalopathy. We conclude that it is unlikely that neuroinvasion by influenza

  16. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    International Nuclear Information System (INIS)

    Knipe, David M.

    2015-01-01

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression

  17. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    Energy Technology Data Exchange (ETDEWEB)

    Knipe, David M., E-mail: david_knipe@hms.harvard.edu

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  18. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  19. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    Science.gov (United States)

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  20. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract.

    Science.gov (United States)

    Posavad, C M; Zhao, L; Dong, L; Jin, L; Stevens, C E; Magaret, A S; Johnston, C; Wald, A; Zhu, J; Corey, L; Koelle, D M

    2017-09-01

    Local mucosal cellular immunity is critical in providing protection from HSV-2. To characterize and quantify HSV-2-reactive mucosal T cells, lymphocytes were isolated from endocervical cytobrush and biopsy specimens from 17 HSV-2-infected women and examined ex vivo for the expression of markers associated with maturation and tissue residency and for functional T-cell responses to HSV-2. Compared with their circulating counterparts, cervix-derived CD4+ and CD8+ T cells were predominantly effector memory T cells (CCR7-/CD45RA-) and the majority expressed CD69, a marker of tissue residency. Co-expression of CD103, another marker of tissue residency, was highest on cervix-derived CD8+ T cells. Functional HSV-2 reactive CD4+ and CD8+ T-cell responses were detected in cervical samples and a median of 17% co-expressed CD103. HSV-2-reactive CD4+ T cells co-expressed IL-2 and were significantly enriched in the cervix compared with blood. This first direct ex vivo documentation of local enrichment of HSV-2-reactive T cells in the human female genital mucosa is consistent with the presence of antigen-specific tissue-resident memory T cells. Ex vivo analysis of these T cells may uncover tissue-specific mechanisms of local control of HSV-2 to assist the development of vaccine strategies that target protective T cells to sites of HSV-2 infection.

  1. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    Science.gov (United States)

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  2. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity.

    Science.gov (United States)

    Moreno-Cubero, Elia; Subirá, Dolores; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad; Madejón, Antonio; Miquel, Joaquín; Olveira, Antonio; González-Praetorius, Alejandro; García-Samaniego, Javier; Larrubia, Juan-Ramón

    2018-01-15

    Hepatitis C virus (HCV)-specific CD8 + T cells suffer a progressive exhaustion during persistent infection (PI) with HCV. This process could involve the positive immune checkpoint 4-1BB/4-1BBL through the loss of its signal transducer, TRAF1. To address this issue, peripheral HCV-specific CD8 + T cells (pentamer-positive [pentamer + ]/CD8 + T cells) from patients with PI and resolved infection (RI) after treatment were studied. The duration of HCV infection and the liver fibrosis progression rate inversely correlated with the likelihood of detection of peripheral pentamer + /CD8 + cells. In PI, pentamer + /CD8 + cells had impaired antigen-specific reactivity that worsened when these cells were not detectable ex vivo Short/midduration PI was characterized by detectable peripheral PD-1 + CD127 low TRAF1 low cells. After triggering of T cell receptors (TCR), the TRAF1 level positively correlated with the levels of CD127, Mcl-1, and CD107a expression and proliferation intensity but negatively with PD-1 expression, linking TRAF1 low to exhaustion. In vitro treatment with interleukin-7 (IL-7) upregulated TRAF1 expression, while treatment with transforming growth factor-β1 (TGF-β1) did the opposite, suggesting that the IL-7/TGF-β1 balance, besides TCR stimulation, could be involved in TRAF1 regulation. In fact, the serum TGF-β1 concentration was higher in patients with PI than in patients with RI, and it negatively correlated with TRAF1 expression. In line with IL-7 increasing the level of TRAF1 expression, IL-7 plus 4-1BBL treatment in vitro enhanced T cell reactivity in patients with short/midduration infection. However, in patients with long-lasting PI, anti-PD-L1, in addition to the combination of IL-7 and 4-1BBL, was necessary to reestablish T cell proliferation in individuals with slowly progressing liver fibrosis (slow fibrosers) but had no effect in rapid fibrosers. In conclusion, a peripheral hyporeactive TRAF1 low HCV-specific CD8 + T cell response

  3. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  4. [Cerebral infarction and intracranial aneurysm related to the reactivation of varicella zoster virus in a Japanese acquired immunodeficiency syndrome (AIDS) patient].

    Science.gov (United States)

    Yasuda, Chiharu; Okada, Kazumasa; Ohnari, Norihiro; Akamatsu, Naoki; Tsuji, Sadatoshi

    2013-01-01

    A 35-years-old right-handed man admitted to our hospital with a worsening of dysarthria, left facial palsy and left hemiparesis for 2 days. Acquired immunodeficiency syndrome (AIDS) was diagnosed when he was 28 years old. At that time, he also was treated for syphilis. After highly active antiretroviral treatment (HAART) was introduced at the age of 35 years old, serum level of human immunodeficiency virus (HIV) was not detected, but the number of CD4+ T cells was still less than 200/μl. He had no risk factors of atherosclerosis including hypertension, diabetes and hyperlipidemia. He had neither coagulation abnormality nor autoimmune disease. Magnetic resonance imaging (MRI) showed acute ischemic infarction spreading from the right corona radiate to the right internal capsule without contrast enhancement. Stenosis and occlusion of intracranial arteries were not detected by MR angiography. Although argatroban and edaravone were administered, his neurological deficits were worsened to be difficult to walk independently. Cerebrospinal fluid (CSF) examination showed a mild mononuclear pleocytosis (16/μl). Oligoclonal band was positive. The titer of anti-varicella zoster virus (VZV) IgG antibodies was increased, that indicated VZV reactivation in the central nervous system (CNS), although VZV DNA PCR was not detected. Therefore, acyclovir (750 mg/day for 2 weeks) and valaciclovir (3,000 mg/day for 1 month) were administered in addition to stroke therapy. He recovered to be able to walk independently 2 month after the admission.Angiography uncovered a saccular aneurysm of 3 mm at the end of branch artery of right anterior cerebral artery, Heubner artery, 28 days after the admission. We speculated that VZV vasculopathy caused by VZV reactivation in CNS was involved in the pathomechanism of cerebral infarction rather than HIV vasculopathy in the case.

  5. Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell--depleted SCT

    NARCIS (Netherlands)

    van Esser, J W; van der Holt, B; Meijer, E; Niesters, H G; Trenschel, R; Thijsen, S F; van Loon, A M; Frassoni, F; Bacigalupo, A; Schaefer, U W; Osterhaus, A D; Gratama, J W; Löwenberg, B; Verdonck, L F; Cornelissen, J J

    2001-01-01

    Reactivation of the Epstein-Barr virus (EBV) after allogeneic stem cell transplantation (allo-SCT) may evoke a protective cellular immune response or may be complicated by the development of EBV-lymphoproliferative disease (EBV-LPD). So far, very little is known about the incidence, recurrence, and

  6. Up-regulation of A1M/α1-microglobulin in skin by heme and reactive oxygen species gives protection from oxidative damage.

    Science.gov (United States)

    Olsson, Magnus G; Allhorn, Maria; Larsson, Jörgen; Cederlund, Martin; Lundqvist, Katarina; Schmidtchen, Artur; Sørensen, Ole E; Mörgelin, Matthias; Akerström, Bo

    2011-01-01

    During bleeding the skin is subjected to oxidative insults from free heme and radicals, generated from extracellular hemoglobin. The lipocalin α(1)-microglobulin (A1M) was recently shown to have reductase properties, reducing heme-proteins and other substrates, and to scavenge heme and radicals. We investigated the expression and localization of A1M in skin and the possible role of A1M in the protection of skin tissue from damage induced by heme and reactive oxygen species. Skin explants, keratinocyte cultures and purified collagen I were exposed to heme, reactive oxygen species, and/or A1M and investigated by biochemical methods and electron microscopy. The results demonstrate that A1M is localized ubiquitously in the dermal and epidermal layers, and that the A1M-gene is expressed in keratinocytes and up-regulated after exposure to heme and reactive oxygen species. A1M inhibited the heme- and reactive oxygen species-induced ultrastructural damage, up-regulation of antioxidation and cell cycle regulatory genes, and protein carbonyl formation in skin and keratinocytes. Finally, A1M bound to purified collagen I (K(d) = 0.96×10(-6) M) and could inhibit and repair the destruction of collagen fibrils by heme and reactive oxygen species. The results suggest that A1M may have a physiological role in protection of skin cells and matrix against oxidative damage following bleeding.

  7. High sensitivity C-reactive protein and its relationship with impaired glucose regulation in lean patients with polycystic ovary syndrome.

    Science.gov (United States)

    Kim, Ji Won; Han, Ji Eun; Kim, You Shin; Won, Hyung Jae; Yoon, Tae Ki; Lee, Woo Sik

    2012-04-01

    The polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disorder, also associated with the metabolic syndrome. Serum high sensitivity C-reactive protein (hs-CRP), a marker of low-grade chronic inflammation is a potent predictor of cardiovascular events, closely linked to metabolic syndrome features and higher in patients with PCOS. However, hs-CRP in lean patients with PCOS has not been fully evaluated and few data are available. We aimed to investigate the relation between glucose intolerance and hs-CRP levels in lean patients with PCOS, and to evaluate the possible relationship between hs-CRP and PCOS by evaluating PCOS-related metabolic abnormalities in Korean women. We consecutively recruited 115 lean (BMI PCOS and 103 lean healthy controls. The PCOS group was divided two groups: impaired glucose regulation (IGR) and normal glucose tolerance group (NGT). In lean patients with PCOS, hs-CRP level was higher in the IGR group than in the NGT group (0.60 ± 1.37 versus 0.18 ± 0.46, p(Bonf) = 0.023) and other metabolic risk factors were also higher in the IGR group than in the NGT group. And there were close relationships between hs-CRP level and metabolic risk factor, such as 2 h postprandial insulin level in the lean patients with PCOS.

  8. Hepatitis B virus reactivation after treatment for hepatitis C in hemodialysis patients with HBV/HCV coinfection

    Directory of Open Access Journals (Sweden)

    Raul Carlos Wahle

    2015-09-01

    Full Text Available In coinfected HBV/HCV patients, HBV replication is usually suppressed by HCV over the time. No study to date has evaluated the HBV viremia in long-term follow-up after HCV treatment in hemodialysis patients with HBV/HCV coinfection. This study aimed to assess the evolution of HBV viremia after HCV treatment in this special population. Ten hemodialysis patients with HBV/HCV coinfection with dominant HCV infection (HBV lower than 2000 IU/mL and significant fibrosis were treated with interferon-alpha 3 MU 3×/week for 12 months and could be followed for at least 36 months after HCV treatment. Six cases of HBV reactivation (60% during follow-up were observed and 5/6 had been successfully treated for HCV. Patients with HBV reactivation received anti-HBV therapy. Our preliminary findings indicate that treatment of hepatitis C in HBV/HCV coinfected hemodialysis patients may favor HBV reactivation. Thus, continued monitoring of HBV viremia must be recommended and prompt anti-HBV therapy should be implemented.

  9. Modelling the effect of temperament on BMI through appetite reactivity and self-regulation in eating: a Structural Equation Modelling approach in young adolescents.

    Science.gov (United States)

    Godefroy, V; Trinchera, L; Romo, L; Rigal, N

    2016-04-01

    Appetitive traits and general temperament traits have both been correlated with adiposity and obesity in children. However, very few studies have tested structural models to identify the links between temperament, appetitive traits and adiposity in children. A validated structural model would help suggesting mechanisms to explain the impact of temperament on body mass index (BMI). In this study, we used Rothbart's heuristic definition of temperament as a starting point to define four appetitive traits, including two appetite reactivity dimensions (Appetite Arousal and Appetite Persistence) and two dimensions of self-regulation in eating (Self-regulation In Eating Without Hunger and Self-regulation in Eating Speed). We conducted a cross-sectional study in young adolescents to validate a structural model including these four appetitive traits, Effortful Control (a general temperament trait) and adiposity. A questionnaire assessing the four appetitive trait dimensions and Effortful Control was completed by adolescents from 10 to 14 years old (n=475), and their BMI-for-age was calculated (n=441). In total, 74% of the study participants were normal weight, 26% were overweight and 8% were obese. We then used structural equation modelling to test the structural model. We identified a well-fitting structural model (Comparative Fit Index=0.91; Root Mean Square Error of Approximation=0.04) that supports the hypothesis that Effortful Control impacts both dimensions of self-regulation in eating, which in turn are linked with both appetite reactivity dimensions. Moreover, Appetite Persistence is the only appetitive trait that was significantly related to adiposity (B=0.12; Pappetite reactivity and self-regulation in eating). Results suggest that young adolescents who exhibit high appetite reactivity but a low level of self-regulation in eating are at higher risk for excess adiposity.

  10. Dengue virus-induced regulation of the host cell translational machinery

    Directory of Open Access Journals (Sweden)

    C.S.A. Villas-Bôas

    2009-11-01

    Full Text Available Dengue virus (DV-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0. Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors, eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.

  11. Phosphorylation regulates human T-cell leukemia virus type 1 Rex function

    Directory of Open Access Journals (Sweden)

    Ward Michael

    2009-11-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 is a pathogenic complex deltaretrovirus, which is the causative agent of adult T-cell leukemia/lymphoma (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to the structural and enzymatic viral gene products, HTLV-1 encodes the positive regulatory proteins Tax and Rex along with viral accessory proteins. Tax and Rex proteins orchestrate the timely expression of viral genes important in viral replication and cellular transformation. Rex is a nucleolar-localizing shuttling protein that acts post-transcriptionally by binding and facilitating the export of the unspliced and incompletely spliced viral mRNAs from the nucleus to the cytoplasm. HTLV-1 Rex (Rex-1 is a phosphoprotein and general protein kinase inhibition correlates with reduced function. Therefore, it has been proposed that Rex-1 function may be regulated through site-specific phosphorylation. Results We conducted a phosphoryl mapping of Rex-1 over-expressed in transfected 293 T cells using a combination of affinity purification and liquid chromatography tandem mass spectrometry. We achieved 100% physical coverage of the Rex-1 polypeptide and identified five novel phosphorylation sites at Thr-22, Ser-36, Thr-37, Ser-97, and Ser-106. We also confirmed evidence of two previously identified residues, Ser-70 and Thr-174, but found no evidence of phosphorylation at Ser-177. The functional significance of these phosphorylation events was evaluated using a Rex reporter assay and site-directed mutational analysis. Our results indicate that phosphorylation at Ser-97 and Thr-174 is critical for Rex-1 function. Conclusion We have mapped completely the site-specific phosphorylation of Rex-1 identifying a total of seven residues; Thr-22, Ser-36, Thr-37, Ser-70, Ser-97, Ser-106, and Thr-174. Overall, this work is the first to completely map the phosphorylation sites in Rex-1 and provides important insight into

  12. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    Science.gov (United States)

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.

  13. Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    Science.gov (United States)

    Kang, Sang-Min; Min, Saehong; Son, Kidong; Lee, Han Sol; Park, Eun Mee; Ngo, Huong T. T.; Tran, Huong T. L.; Lim, Yun-Sook; Hwang, Soon B.

    2012-01-01

    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by quantitative real-time PCR, reporter assay, and immunoblot analysis. In addition, saponin potentiated IFN-α-induced anti-HCV activity. Moreover, saponin exerted antiviral activity even in IFN-α resistant mutant HCVcc-infected cells. To investigate how cellular genes were regulated by saponin, we performed microarray analysis using HCVcc-infected cells. We demonstrated that suppressor of cytokine signaling 2 (SOCS2) protein level was distinctively increased by saponin, which in turn resulted in inhibition of HCV replication. We further showed that silencing of SOCS2 resurrected HCV replication and overexpression of SOCS2 suppressed HCV replication. These data imply that saponin inhibits HCV replication via SOCS2 signaling pathway. These findings suggest that saponin may be a potent therapeutic agent for HCV patients. PMID:22745742

  14. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Peter, E-mail: pewild@access.uzh.ch [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Oliveira, Anna Paula de [Institute of Virology, University of Zuerich (Switzerland); Sonda, Sabrina [Institute for Parasitology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Ackermann, Mathias; Tobler, Kurt [Institute of Virology, University of Zuerich (Switzerland)

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.

  15. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag.

    Science.gov (United States)

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-04-25

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (L-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.

  16. In Vivo Regulation of Hepatitis B Virus Replication by Peroxisome Proliferators†

    Science.gov (United States)

    Guidotti, Luca G.; Eggers, Carrie M.; Raney, Anneke K.; Chi, Susan Y.; Peters, Jeffrey M.; Gonzalez, Frank J.; McLachlan, Alan

    1999-01-01

    The role of the peroxisome proliferator-activated receptor α (PPARα) in regulating hepatitis B virus (HBV) transcription and replication in vivo was investigated in an HBV transgenic mouse model. Treatment of HBV transgenic mice with the peroxisome proliferators Wy-14,643 and clofibric acid resulted in a less than twofold increase in HBV transcription rates and steady-state levels of HBV RNAs in the livers of these mice. In male mice, this increase in transcription was associated with a 2- to 3-fold increase in replication intermediates, whereas in female mice it was associated with a 7- to 14-fold increase in replication intermediates. The observed increases in transcription and replication were dependent on PPARα. HBV transgenic mice lacking this nuclear hormone receptor showed similar levels of HBV transcripts and replication intermediates as untreated HBV transgenic mice expressing PPARα but failed to demonstrate alterations in either RNA or DNA synthesis in response to peroxisome proliferators. Therefore, it appears that very modest alterations in transcription can, under certain circumstances, result in relatively large increases in HBV replication in HBV transgenic mice. PMID:10559356

  17. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription.

    Science.gov (United States)

    Curtil, Claire; Enache, Liviu S; Radreau, Pauline; Dron, Anne-Gaëlle; Scholtès, Caroline; Deloire, Alexandre; Roche, Didier; Lotteau, Vincent; André, Patrice; Ramière, Christophe

    2014-03-01

    Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.

  18. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Kang, Misun [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Rho, Jaerang, E-mail: jrrho@cnu.ac.kr [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); GRAST, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of)

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  19. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    Science.gov (United States)

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  20. Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism

    Directory of Open Access Journals (Sweden)

    Sai Zhang

    2018-06-01

    Full Text Available The unicellular heterotrophic thraustochytrids are attractive candidates for commercial polyunsaturated fatty acids (PUFA production. However, the reactive oxygen species (ROS generated in their aerobic fermentation process often limits their PUFA titer. Yet, the specific mechanisms of ROS involvement in the crosstalk between oxidative stress and intracellular lipid synthesis remain poorly described. Metabolic engineering to improve the PUFA yield in thraustochytrids without compromising growth is an important aspect of economic feasibility. To fill this gap, we overexpressed the antioxidative gene superoxide dismutase (SOD1 by integrating it into the genome of thraustochytrid Schizochytrium sp. PKU#Mn4 using a novel genetic transformation system. This study reports the ROS alleviation, enhanced PUFA production and transcriptome changes resulting from the SOD1 overexpression. SOD1 activity in the recombinant improved by 5.2–71.6% along with 7.8–38.5% decline in ROS during the fermentation process. Interestingly, the total antioxidant capacity in the recombinant remained higher than wild-type and above zero in the entire process. Although lipid profile was similar to that of wild-type, the concentrations of major fatty acids in the recombinant were significantly (p ≤ 0.05 higher. The PUFA titer increased up to 1232 ± 41 mg/L, which was 32.9% higher (p ≤ 0.001 than the wild type. Transcriptome analysis revealed strong downregulation of genes potentially involved in β-oxidation of fatty acids in peroxisome and upregulation of genes catalyzing lipid biosynthesis. Our results enrich the knowledge on stress-induced PUFA biosynthesis and the putative role of ROS in the regulation of lipid metabolism in oleaginous thraustochytrids. This study provides a new and alternate strategy for cost-effective industrial fermentation of PUFA. Keywords: Polyunsaturated fatty acids, Schizochytrium sp., Superoxide dismutase, Transgene

  1. C-reactive protein expression is up-regulated in apical lesions of endodontic origin in association with interleukin-6.

    Science.gov (United States)

    Garrido, Mauricio; Dezerega, Andrea; Bordagaray, María José; Reyes, Montserrat; Vernal, Rolando; Melgar-Rodríguez, Samantha; Ciuchi, Pía; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ahumada-Montalva, Pablo; Hernández, Marcela

    2015-04-01

    C-reactive protein (CRP) is the prototype component of acute-phase proteins induced ultimately by interleukin (IL)-6 in the liver, but it is unknown whether periradicular tissues locally express CRP. The present study aimed to identify whether CRP messenger RNA synthesis occurs in situ within apical lesions of endodontic origin (ALEOs) and healthy periodontal ligament and its association with IL-6 and to determine their protein levels and tissue localization. Patients with asymptomatic apical periodontitis and healthy volunteers presenting at the School of Dentistry, University of Chile, Santiago, Chile, were enrolled. ALEOs and healthy teeth were obtained and processed for either immunohistochemistry and double immunofluorescence to assess IL-6 and CRP tissue localization, whereas healthy periodontal ligaments were processed as controls for real-time reverse-transcription polymerase chain reaction for their RNA expression levels and multiplex assay to determine their protein levels. Statistic analysis was performed using the unpaired t test or Mann-Whitney test according to data distribution and Pearson correlation. IL-6 and CRP were synthesized in ALEOs, whereas their RNA expression and protein levels were significantly higher when compared with healthy periodontal ligament. IL-6 and CRP immunolocalized to the inflammatory cells, vascular endothelial cells, and mesenchymal cells. Both, IL-6 and CRP colocalized in ALEOs, and a positive correlation was found between their expression levels (P periodontal ligament and up-regulated in ALEOs along with higher protein levels. Given their pleiotropic effects, IL-6 and CRP protein levels in apical tissues might partially explain the development and progression of ALEOs as well as potentially asymptomatic apical periodontitis-associated systemic low-grade inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells.

    Science.gov (United States)

    Thangamani, Shankar; Eldesouky, Hassan E; Mohammad, Haroon; Pascuzzi, Pete E; Avramova, Larisa; Hazbun, Tony R; Seleem, Mohamed N

    2017-01-01

    Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes.

    Science.gov (United States)

    Campbell, Karen M; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V; Halsey, Eric S; Laguna-Torres, V Alberto; Yagui, Martín; Morrison, Amy C; Lin, Chii-Dean; Scott, Thomas W

    2015-01-01

    Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2

  4. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Directory of Open Access Journals (Sweden)

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  5. Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Karen M Campbell

    Full Text Available Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather.We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5

  6. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner.

    Directory of Open Access Journals (Sweden)

    Josef Köck

    Full Text Available Persistence of hepatitis B virus (HBV infection requires covalently closed circular (cccDNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.

  7. The Annexin A1 Receptor FPR2 Regulates the Endosomal Export of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Fryad Rahman

    2018-05-01

    Full Text Available The Formyl Peptide Receptor 2 (FPR2 is a novel promising target for the treatment of influenza. During viral infection, FPR2 is activated by annexinA1, which is present in the envelope of influenza viruses; this activation promotes virus replication. Here, we investigated whether blockage of FPR2 would affect the genome trafficking of influenza virus. We found that, upon infection and cell treatment with the specific FPR2 antagonist WRW4 or the anti-FPR2 monoclonal antibody, FN-1D6-AI, influenza viruses were blocked into endosomes. This effect was independent on the strain and was observed for H1N1 and H3N2 viruses. In addition, blocking FPR2signaling in alveolar lung A549 epithelial cells with the monoclonal anti-FPR2 antibody significantly inhibited virus replication. Altogether, these results show that FPR2signaling interferes with the endosomal trafficking of influenza viruses and provides, for the first time, the proof of concept that monoclonal antibodies directed against FPR2 inhibit virus replication. Antibodies-based therapeutics have emerged as attractive reagents in infectious diseases. Thus, this study suggests that the use of anti-FPR2 antibodies against influenza hold great promise for the future.

  8. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Stacey Ann Gorski

    2013-09-01

    Full Text Available Respiratory virus infections, such as influenza, typically induce a robust type I (pro-inflammatory cytokine immune response, however, the production of type 2 cytokines has been observed. Type 2 cytokine production during respiratory virus infection is linked to asthma exacerbation; however, type 2 cytokines may also be tissue protective. Interleukin (IL-5 is a prototypical type 2 cytokine that is essential for eosinophil maturation and egress out of the bone marrow. However, little is known about the cellular source and underlying cellular and molecular basis for the regulation of IL-5 production during respiratory virus infection. Using a mouse model of influenza virus infection, we found a robust transient release of IL-5 into infected airways along with a significant and progressive accumulation of eosinophils into the lungs, particularly during the recovery phase of infection, i.e. following virus clearance. The cellular source of the IL-5 was group 2 innate lymphoid cells (ILC2 infiltrating the infected lungs. Interestingly, the progressive accumulation of eosinophils following virus clearance is reflected in the rapid expansion of c-kit⁺ IL-5 producing ILC2. We further demonstrate that the enhanced capacity for IL-5 production by ILC2 during recovery is concomitant with the enhanced expression of the IL-33 receptor subunit, ST2, by ILC2. Lastly, we show that NKT cells, as well as alveolar macrophages (AM, are endogenous sources of IL-33 that enhance IL-5 production from ILC2. Collectively, these results reveal that c-kit⁺ ILC2 interaction with IL-33 producing NKT and AM leads to abundant production of IL-5 by ILC2 and accounts for the accumulation of eosinophils observed during the recovery phase of influenza infection.

  9. Human Leukocyte Antigen (HLA and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections?

    Directory of Open Access Journals (Sweden)

    Nicole B. Crux

    2017-07-01

    Full Text Available The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV and hepatitis C virus (HCV, is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C, class Ib (HLA-E, -F, -G, -H, and class II (HLA-DR, -DQ, -DM, and -DP in immune regulation and viral pathogenesis (e.g., HIV and HCV. To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.

  10. Suppressors of cytokine signaling 1 and 3 are up-regulated in brain resident cells in response to virus induced inflammation of the CNS via at least two distinctive pathways

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Fenger, Christina; Christensen, Jeanette Erbo

    2014-01-01

    underlie a virus induced up-regulation of SOCS in the CNS. We found that i.c. infection with either lymphocytic choriomeningitis virus (LCMV) or yellow fever virus (YF) results in gradual up-regulation of SOCS1/3 mRNA expression peaking at day 7 post infection (p.i.). In the LCMV model, SOCS m...

  11. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, K.; Parsons, P.G.; Cerny, T.; Margison, G.P. (Queensland Institute of Medical Research, Herston (Australia))

    1989-09-01

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea.

  12. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    International Nuclear Information System (INIS)

    Maynard, K.; Parsons, P.G.; Cerny, T.; Margison, G.P.

    1989-01-01

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea

  13. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.

    Science.gov (United States)

    Wei, Zhi-Qiang; Zhang, Yong-Hong; Ke, Chang-Zheng; Chen, Hong-Xia; Ren, Pan; He, Yu-Lin; Hu, Pei; Ma, De-Qiang; Luo, Jie; Meng, Zhong-Ji

    2017-09-14

    To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% ( P curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.

  14. A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection.

    Science.gov (United States)

    Palmer, Clovis; Hampartzoumian, Taline; Lloyd, Andrew; Zekry, Amany

    2008-08-01

    Adipose tissue releases pro-inflammatory and anti-inflammatory mediators, including adiponectin, which elicit a broad range of metabolic and immunological effects. The study aim was to determine in subjects infected with chronic hepatitis C virus (HCV) the effects of total adiponectin and its high-molecular-weight (HMW) and low-molecular-weight isoforms on HCV-specific immune responses. Serum levels of total adiponectin and its isoforms were determined by immunoassay. The ex vivo effect of adiponectin on the HCV-specific T-cell response was examined by interferon gamma (IFN-gamma) enzyme-linked immunosorbent spot and enzyme-linked immunosorbent assay cytokine assays. The role of the mitogen-activated protein kinase (MAPK) signaling pathway in mediating the adiponectin effect on T cells was also evaluated. We found that serum levels of total and HMW adiponectin were significantly decreased in subjects with chronic HCV and increased body mass index (BMI) compared with HCV-infected lean subjects. The presence of an anti-HCV specific immune response was strongly associated with lower BMI (P = 0.004) and higher serum total (P = 0.01) and HMW (P = 0.02) adiponectin. In ex vivo assays, total adiponectin and the HMW adiponectin isoform enhanced HCV-specific IFN-gamma production (P = 0.02 and 0.03, respectively). Adiponectin-R1 receptors were expressed on T cells and monocytes. In depletion experiments, the IFN-gamma response to adiponectin was entirely dependent on the simultaneous presence of both CD4 and CD8 T cells, and to a lesser extent, natural killer cells. Selective inhibition of p38MAPK activity by SB203580 abrogated the IFN-gamma response to adiponectin, whereas extracellular signal-regulated kinase 1/2 inhibition by PD98059 did not affect the response. In chronic HCV, a reciprocal association exists between BMI, adiponectin, and the anti-HCV immune responses, emphasizing the important role played by adiposity in regulating the immune response in HCV infection.

  15. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity — Clues for Treatments and Vaccines

    Directory of Open Access Journals (Sweden)

    Jesper Melchjorsen

    2013-01-01

    Full Text Available Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs, recognizing distinct conserved pathogen-associated molecular patterns (PAMPs. The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.

  16. RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by N6 -methyladenosine (m6 A).

    Science.gov (United States)

    Tan, Brandon; Gao, Shou-Jiang

    2018-04-26

    N 6 -methyladenosine (m 6 A) was discovered 4 decades ago. However, the functions of m 6 A and the cellular machinery that regulates its changes have just been revealed in the last few years. m 6 A is an abundant internal mRNA modification on cellular RNA and is implicated in diverse cellular functions. Recent works have demonstrated the presence of m 6 A in the genomes of RNA viruses and transcripts of a DNA virus with either a proviral or antiviral role. Here, we first summarize what is known about the m 6 A "writers," "erasers," "readers," and "antireaders" as well as the role of m 6 A in mRNA metabolism. We then review how the replications of numerous viruses are enhanced and restricted by m 6 A with emphasis on the oncogenic DNA virus, Kaposi sarcoma-associated herpesvirus (KSHV), whose m 6 A epitranscriptome was recently mapped. In the context of KSHV, m 6 A and the reader protein YTHDF2 acts as an antiviral mechanism during viral lytic replication. During viral latency, KSHV alters m 6 A on genes that are implicated in cellular transformation and viral latency. Lastly, we discuss future studies that are important to further delineate the functions of m 6 A in KSHV latent and lytic replication and KSHV-induced oncogenesis. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Mothers' depressive symptoms predict both increased and reduced negative reactivity: aversion sensitivity and the regulation of emotion.

    Science.gov (United States)

    Dix, Theodore; Moed, Anat; Anderson, Edward R

    2014-07-01

    This study examined whether, as mothers' depressive symptoms increase, their expressions of negative emotion to children increasingly reflect aversion sensitivity and motivation to minimize ongoing stress or discomfort. In multiple interactions over 2 years, negative affect expressed by 319 mothers and their children was observed across variations in mothers' depressive symptoms, the aversiveness of children's immediate behavior, and observed differences in children's general negative reactivity. As expected, depressive symptoms predicted reduced maternal negative reactivity when child behavior was low in aversiveness, particularly with children who were high in negative reactivity. Depressive symptoms predicted high negative reactivity and steep increases in negative reactivity as the aversiveness of child behavior increased, particularly when high and continued aversiveness from the child was expected (i.e., children were high in negative reactivity). The findings are consistent with the proposal that deficits in parenting competence as depressive symptoms increase reflect aversion sensitivity and motivation to avoid conflict and suppress children's aversive behavior. © The Author(s) 2014.

  18. Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum.

    Science.gov (United States)

    Wu, Chen-Gao; Tian, Jia-Long; Liu, Rui; Cao, Peng-Fei; Zhang, Tian-Jun; Ren, Ang; Shi, Liang; Zhao, Ming-Wen

    2017-10-15

    Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC -silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC -silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC -silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC -silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes. IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC -silenced strains. The content of

  19. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  20. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  1. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice.

    Science.gov (United States)

    Jaiswal, Smita; Smith, Kenneth; Ramirez, Alejandro; Woda, Marcia; Pazoles, Pamela; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2015-01-01

    The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγ(null) mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines. © 2014 by the Society for Experimental Biology and Medicine.

  2. Small RNA profiling of influenza A virus-infected cells identifies miR-449b as a regulator of histone deacetylase 1 and interferon beta.

    Directory of Open Access Journals (Sweden)

    William A Buggele

    Full Text Available The mammalian antiviral response relies on the alteration of cellular gene expression, to induce the production of antiviral effectors and regulate their activities. Recent research has indicated that virus infections can induce the accumulation of cellular microRNA (miRNA species that influence the stability of host mRNAs and their protein products. To determine the potential for miRNA regulation of cellular responses to influenza A virus infection, small RNA profiling was carried out using next generation sequencing. Comparison of miRNA expression profiles in uninfected human A549 cells to cells infected with influenza A virus strains A/Udorn/72 and A/WSN/33, revealed virus-induced changes in miRNA abundance. Gene expression analysis identified mRNA targets for a cohort of highly inducible miRNAs linked to diverse cellular functions. Experiments demonstrate that the histone deacetylase, HDAC1, can be regulated by influenza-inducible miR-449b, resulting in altered mRNA and protein levels. Expression of miR-449b enhances virus and poly(I:C activation of the IFNβ promoter, a process known to be negatively regulated by HDAC1. These findings demonstrate miRNA induction by influenza A virus infection and elucidate an example of miRNA control of antiviral gene expression in human cells, defining a role for miR-449b in regulation of HDAC1 and antiviral cytokine signaling.

  3. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine.

    Directory of Open Access Journals (Sweden)

    Marianne De Paepe

    2016-02-01

    Full Text Available Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts' fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity.

  4. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78.

    Science.gov (United States)

    Chen, Hsin-Hsin; Chen, Chien-Chin; Lin, Yee-Shin; Chang, Po-Chun; Lu, Zi-Yi; Lin, Chiou-Feng; Chen, Chia-Ling; Chang, Chih-Peng

    2017-06-01

    Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan, yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV requires both viral and cellular factors. Targeting host factors may provide a potential antiviral strategy. It has been known that up-regulation of PI3K/AKT signaling and GRP78 by DENV infection supports its replication. AR-12, a celecoxib derivative with no inhibiting activity on cyclooxygenase, shows potent inhibitory activities on both PI3K/AKT signaling and GRP78 expression levels, and recently has been found to block the replication of several hemorrhagic fever viruses. However the efficacy of AR-12 in treating DENV infection is still unclear. Here, we provide evidence to show that AR-12 is able to suppress DENV replication before or after virus infection in cell culture and mice. The antiviral activities of AR-12 are positive against infection of the four different DENV serotypes. AR-12 significantly down-regulates the PI3K/AKT activity and GRP78 expression in DENV infected cells whereas AKT and GRP78 rescue are able to attenuate anti-DENV effect of AR-12. Using a DENV-infected suckling mice model, we further demonstrate that treatment of AR-12 before or after DENV infection reduces virus replication and mice mortality. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for treating dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The effects of ultraviolet light on host cell reactivation and plaque size of Herpes simplex virus type 1 in C3H/10T1/2 mouse cells

    International Nuclear Information System (INIS)

    Montes, J.G.; Taylor, W.D.

    1986-01-01

    Herpes simplex virus-type 1 (HSV-1) plaque-forming ability and plaque size were measured on (C3H/10T1/2) cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus, as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others, C3H/10T1/2 cells have been transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation. (author)

  6. Stable Human Hepatoma Cell Lines for Efficient Regulated Expression of Nucleoside/Nucleotide Analog Resistant and Vaccine Escape Hepatitis B Virus Variants and Woolly Monkey Hepatitis B Virus.

    Directory of Open Access Journals (Sweden)

    Xin Cheng

    Full Text Available Hepatitis B virus (HBV causes acute and chronic hepatitis B (CHB. Due to its error-prone replication via reverse transcription, HBV can rapidly evolve variants that escape vaccination and/or become resistant to CHB treatment with nucleoside/nucleotide analogs (NAs. This is particularly problematic for the first generation NAs lamivudine and adefovir. Though now superseded by more potent NAs, both are still widely used. Furthermore, resistance against the older NAs can contribute to cross-resistance against more advanced NAs. For lack of feasible HBV infection systems, the biology of such variants is not well understood. From the recent discovery of Na+-taurocholate cotransporting polypeptide (NTCP as an HBV receptor new in vitro infection systems are emerging, yet access to the required large amounts of virions, in particular variants, remains a limiting factor. Stably HBV producing cell lines address both issues by allowing to study intracellular viral replication and as a permanent source of defined virions. Accordingly, we generated a panel of new tetracycline regulated TetOFF HepG2 hepatoma cell lines which produce six lamivudine and adefovir resistance-associated and two vaccine escape variants of HBV as well as the model virus woolly monkey HBV (WMHBV. The cell line-borne viruses reproduced the expected NA resistance profiles and all were equally sensitive against a non-NA drug. The new cell lines should be valuable to investigate under standardized conditions HBV resistance and cross-resistance. With titers of secreted virions reaching >3 x 10(7 viral genome equivalents per ml they should also facilitate exploitation of the new in vitro infection systems.

  7. Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke

    2014-11-01

    Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined

  8. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    International Nuclear Information System (INIS)

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  9. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis.

    Directory of Open Access Journals (Sweden)

    Robert N Kirchdoerfer

    2016-10-01

    Full Text Available Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP, a phosphoprotein (VP35 and a polymerase (L. However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  10. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.; Saphire, Erica Ollmann (Scripps)

    2016-10-18

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  11. Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis.

    Science.gov (United States)

    Doolittle, J M; Webster-Cyriaque, J

    2014-04-29

    ABSTRACT The human body plays host to a wide variety of microbes, commensal and pathogenic. In addition to interacting with their host, different microbes, such as bacteria and viruses, interact with each other, sometimes in ways that exacerbate disease. In particular, gene expression of a number of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV), is known to be regulated by epigenetic modifications induced by bacteria. These viruses establish latent infection in their host cells and can be reactivated by bacterial products. Viral reactivation has been suggested to contribute to periodontal disease and AIDS. In addition, bacterium-virus interactions may play a role in cancers, such as Kaposi's sarcoma, gastric cancer, and head and neck cancer. It is important to consider the effects of coexisting bacterial infections when studying viral diseases in vivo.

  12. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding.

    Directory of Open Access Journals (Sweden)

    Yao E Wang

    2010-11-01

    Full Text Available Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4 pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS and the leucine-rich nuclear export signal (NES found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC(50 of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an "off-the-shelf" therapeutic against acute NiV infection.

  13. C-reactive protein-to-albumin ratio is a predictor of hepatitis B virus related decompensated cirrhosis: time-dependent receiver operating characteristics and decision curve analysis.

    Science.gov (United States)

    Huang, Si-Si; Xie, Dong-Mei; Cai, Yi-Jing; Wu, Jian-Min; Chen, Rui-Chong; Wang, Xiao-Dong; Song, Mei; Zheng, Ming-Hua; Wang, Yu-Qun; Lin, Zhuo; Shi, Ke-Qing

    2017-04-01

    Hepatitis B virus (HBV) infection remains a major health problem and HBV-related-decompensated cirrhosis (HBV-DC) usually leads to a poor prognosis. Our aim was to determine the utility of inflammatory biomarkers in predicting mortality of HBV-DC. A total of 329 HBV-DC patients were enrolled. Survival estimates for the entire study population were generated using the Kaplan-Meier method. The prognostic values for model for end-stage liver disease (MELD) score, Child-Pugh score, and inflammatory biomarkers neutrophil/lymphocyte ratio, C-reactive protein-to-albumin ratio (CAR), and lymphocyte-to-monocyte ratio (LMR) for HBV-DC were compared using time-dependent receiver operating characteristic curves and time-dependent decision curves. The survival time was 23.1±15.8 months. Multivariate analysis identified age, CAR, LMR, and platelet count as prognostic independent risk factors. Kaplan-Meier analysis indicated that CAR of at least 1.0 (hazard ratio, 7.19; 95% confidence interval, 4.69-11.03), and LMR less than 1.9 (hazard ratio, 2.40; 95% confidence interval, 1.69-3.41) were independently associated with mortality of HBV-DC. The time-dependent receiver operating characteristic indicated that CAR showed the best performance in predicting mortality of HBV-DC compared with LMR, MELD score, and Child-Pugh score. The results were also confirmed by time-dependent decision curves. CAR and LMR were associated with the prognosis of HBV-DC. CAR was superior to LMR, MELD score, and Child-Pugh score in HBV-DC mortality prediction.

  14. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    Science.gov (United States)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  15. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    Science.gov (United States)

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A

    2016-01-15

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections.

  16. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection

    Science.gov (United States)

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A.

    2016-01-01

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated “CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections. PMID:26784220

  17. A riboswitch regulates RNA dimerization and packaging in human immunodeficiency virus type 1 virions

    NARCIS (Netherlands)

    Ooms, Marcel; Huthoff, Hendrik; Russell, Rodney; Liang, Chen; Berkhout, Ben

    2004-01-01

    The genome of retroviruses, including human immunodeficiency virus type I (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA-the Psi

  18. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    2009-03-01

    Full Text Available Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes.

  19. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update

    Science.gov (United States)

    Aneja, Kawalpreet K.; Yuan, Yan

    2017-01-01

    The life cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) consists of two phases, latent and lytic. The virus establishes latency as a strategy for avoiding host immune surveillance and fusing symbiotically with the host for lifetime persistent infection. However, latency can be disrupted and KSHV is reactivated for entry into the lytic replication. Viral lytic replication is crucial for efficient dissemination from its long-term reservoir to the sites of disease and for the spread of the virus to new hosts. The balance of these two phases in the KSHV life cycle is important for both the virus and the host and control of the switch between these two phases is extremely complex. Various environmental factors such as oxidative stress, hypoxia, and certain chemicals have been shown to switch KSHV from latency to lytic reactivation. Immunosuppression, unbalanced inflammatory cytokines, and other viral co-infections also lead to the reactivation of KSHV. This review article summarizes the current understanding of the initiation and regulation of KSHV reactivation and the mechanisms underlying the process of viral lytic replication. In particular, the central role of an immediate-early gene product RTA in KSHV reactivation has been extensively investigated. These studies revealed multiple layers of regulation in activation of RTA as well as the multifunctional roles of RTA in the lytic replication cascade. Epigenetic regulation is known as a critical layer of control for the switch of KSHV between latency and lytic replication. The viral non-coding RNA, PAN, was demonstrated to play a central role in the epigenetic regulation by serving as a guide RNA that brought chromatin remodeling enzymes to the promoters of RTA and other lytic genes. In addition, a novel dimension of regulation by microPeptides emerged and has been shown to regulate RTA expression at the protein level. Overall, extensive investigation of KSHV reactivation and lytic replication has revealed

  20. tRNA-like structure regulates translation of Brome mosaic virus RNA.

    Science.gov (United States)

    Barends, Sharief; Rudinger-Thirion, Joëlle; Florentz, Catherine; Giegé, Richard; Pleij, Cornelis W A; Kraal, Barend

    2004-04-01

    For various groups of plant viruses, the genomic RNAs end with a tRNA-like structure (TLS) instead of the 3' poly(A) tail of common mRNAs. The actual function of these TLSs has long been enigmatic. Recently, however, it became clear that for turnip yellow mosaic virus, a tymovirus, the valylated TLS(TYMV) of the single genomic RNA functions as a bait for host ribosomes and directs them to the internal initiation site of translation (with N-terminal valine) of the second open reading frame for the polyprotein. This discovery prompted us to investigate whether the much larger TLSs of a different genus of viruses have a comparable function in translation. Brome mosaic virus (BMV), a bromovirus, has a tripartite RNA genome with a subgenomic RNA4 for coat protein expression. All four RNAs carry a highly conserved and bulky 3' TLS(BMV) (about 200 nucleotides) with determinants for tyrosylation. We discovered TLS(BMV)-catalyzed self-tyrosylation of the tyrosyl-tRNA synthetase but could not clearly detect tyrosine incorporation into any virus-encoded protein. We established that BMV proteins do not need TLS(BMV) tyrosylation for their initiation. However, disruption of the TLSs strongly reduced the translation of genomic RNA1, RNA2, and less strongly, RNA3, whereas coat protein expression from RNA4 remained unaffected. This aberrant translation could be partially restored by providing the TLS(BMV) in trans. Intriguingly, a subdomain of the TLS(BMV) could even almost fully restore translation to the original pattern. We discuss here a model with a central and dominant role for the TLS(BMV) during the BMV infection cycle.

  1. The Hepatitis B Virus (HBV) HBx Protein Activates AKT To Simultaneously Regulate HBV Replication and Hepatocyte Survival

    Science.gov (United States)

    Rawat, Siddhartha

    2014-01-01

    ABSTRACT Chronic infection with hepatitis B virus (HBV) is a risk factor for developing liver diseases such as hepatocellular carcinoma (HCC). HBx is a multifunctional protein encoded by the HBV genome; HBx stimulates HBV replication and is thought to play an important role in the development of HBV-associated HCC. HBx can activate the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in some cell lines; however, whether HBx regulates PI3K/AKT signaling in normal hepatocytes has not been evaluated. In studies described here, we assessed HBx activation of PI3K/AKT signaling in an ex vivo model of cultured primary hepatocytes and determined how this HBx activity affects HBV replication. We report that HBx activates AKT in primary hepatocytes and that the activation of AKT decreases HBV replication and HBV mRNA and core protein levels. We show that the transcription factor hepatocyte nuclear factor 4α (HNF4α) is a target of HBx-regulated AKT, and we link HNF4α to HBx-regulated AKT modulation of HBV transcription and replication. Although we and others have shown that HBx stimulates and is likely required for HBV replication, we now report that HBx also activates signals that can diminish the overall level of HBV replication. While this may seem counterintuitive, we show that an important effect of HBx activation of AKT is inhibition of apoptosis. Consequently, our studies suggest that HBx balances HBV replication and cell survival by stimulating signaling pathways that enhance hepatocyte survival at the expense of higher levels of HBV replication. IMPORTANCE Chronic hepatitis B virus (HBV) infection is a common cause of the development of liver cancer. Regulation of cell signaling pathways by the HBV HBx protein is thought to influence the development of HBV-associated liver cancer. HBx stimulates, and may be essential for, HBV replication. We show that HBx activates AKT in hepatocytes to reduce HBV replication. While this seems contradictory to an

  2. Memories of Recent Life Events: Differences in Emotional Reactivity and Regulation of Individuals with High and Low Levels of Depressive Symptoms

    DEFF Research Database (Denmark)

    del Palacio Gonzalez, Adriana; Watson, Lynn Ann; Berntsen, Dorthe

    Existing studies investigating involuntary memories (IMs) in the context of depression extend their hypotheses from PTSD models. Findings suggest that the frequency and suppression of IMs are associated with depression. However, in order to fully understand the memory-mental health relationship......, it is of paramount importance to identify the centrality of events to an individual's identity, and potential differences between IMs and word-cued memories (i.e., voluntary). Method: Participants of this two-staged study were 205 non-clinical adults (Mage = 22.72, SD = 1.99). In Stage 1 participants completed...... questionnaires assessing depressive symptoms, emotion regulation, and recent positive and negative life events. Participants nominated the most and least central events to their identity. Emotion reactivity and regulation of IMs of both events were rated. In Stage 2, participants (n = 48) reporting low and high...

  3. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke

    2016-02-15

    The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis

  4. Down-regulation of MHC class I by the Marek's disease virus (MDV) UL49.5 gene product mildly affects virulence in a haplotype-specific fashion.

    Science.gov (United States)

    Jarosinski, Keith W; Hunt, Henry D; Osterrieder, Nikolaus

    2010-09-30

    Marek's disease is a devastating neoplastic disease of chickens caused by Marek's disease virus (MDV). MDV down-regulates surface expression of MHC class I molecules, although the mechanism has remained elusive. MDV harbors a UL49.5 homolog that has been shown to down-regulate MHC class I expression in other Varicelloviruses. Using in vitro assays, we showed that MDV pUL49.5 down-regulates MHC class I directly and identified its cytoplasmic tail as essential for this function. In vivo, viruses lacking the cytoplasmic tail of pUL49.5 showed no differences in MD pathogenesis compared to revertant viruses in highly susceptible chickens of the B(19)B(19) MHC class I haplotype, while there was a mild reduction in pathogenic potential of the deletion viruses in chickens more resistant to MD pathogenesis (MHC:B(21)B(21)). We concluded that the pathogenic effect of MHC class I down-regulation mediated by pUL49.5 is small because virus immune evasion possibly requires more than one viral protein. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Ghrelin-reactive immunoglobulins and anxiety, depression and stress-induced cortisol response in adolescents. The TRAILS study.

    Science.gov (United States)

    François, Marie; Schaefer, Johanna M; Bole-Feysot, Christine; Déchelotte, Pierre; Verhulst, Frank C; Fetissov, Sergueï O

    2015-06-03

    Ghrelin, a hunger hormone, has been implicated in the regulation of stress-response, anxiety and depression. Ghrelin-reactive immunoglobulins (Ig) were recently identified in healthy and obese humans showing abilities to increase ghrelin's stability and orexigenic effects. Here we studied if ghrelin-reactive Ig are associated with anxiety and depression and with the stress-induced cortisol response in a general population of adolescents. Furthermore, to test the possible infectious origin of ghrelin-reactive Ig, their levels were compared with serum IgG against common viruses. We measured ghrelin-reactive IgM, IgG and IgA in serum samples of 1199 adolescents from the Dutch TRAILS study and tested their associations with 1) anxiety and depression symptoms assessed with the Youth Self-Report, 2) stress-induced salivary cortisol levels and 3) IgG against human herpesvirus 1, 2, 4 and 6 and Influenza A and B viruses. Ghrelin-reactive IgM and IgG correlated positively with levels of antibodies against Influenza A virus. Ghrelin-reactive IgM correlated negatively with antibodies against Influenza B virus. Ghrelin-reactive IgM correlated positively with anxiety scores in girls and ghrelin-reactive IgG correlated with stress-induced cortisol secretion, but these associations were weak and not significant after correction for multiple testing. These data indicate that production of ghrelin-reactive autoantibodies could be influenced by viral infections. Serum levels of ghrelin-reactive autoantibodies probably do not play a role in regulating anxiety, depression and the stress-response in adolescents from the general population. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    Science.gov (United States)

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Regulation of Cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils

    Czech Academy of Sciences Publication Activity Database

    Heneberg, Petr; Dráber, Petr

    2005-01-01

    Roč. 12, č. 16 (2005), s. 1859-1871 ISSN 0929-8673 R&D Projects: GA ČR(CZ) GA204/03/0594; GA ČR(CZ) GA301/03/0596; GA AV ČR(CZ) IAA5052310; GA MZd(CZ) NR8079; GA MŠk(CZ) 1M0506; GA MŠk(CZ) 1P04OE158 Institutional research plan: CEZ:AV0Z50520514 Keywords : mast cell * tyrosine phosphatase * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.904, year: 2005

  8. Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    OpenAIRE

    Lee, Jihye; Lim, Seri; Kang, Sang-Min; Min, Saehong; Son, Kidong; Lee, Han Sol; Park, Eun Mee; Ngo, Huong T. T.; Tran, Huong T. L.; Lim, Yun-Sook; Hwang, Soon B.

    2012-01-01

    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by...

  9. Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating

    International Nuclear Information System (INIS)

    Asenjo, Ana; Gonzalez-Armas, Juan C.; Villanueva, Nieves

    2008-01-01

    The human respiratory syncytial virus (HRSV) structural P protein, phosphorylated at serine (S) and threonine (T) residues, is a co-factor of viral RNA polymerase. The phosphorylation of S54 is controlled by the coordinated action of two cellular enzymes: a lithium-sensitive kinase, probably glycogen synthetase kinase (GSK-3) β and protein phosphatase 2A (PP2A). Inhibition of lithium-sensitive kinase, soon after infection, blocks the viral growth cycle by inhibiting synthesis and/or accumulation of viral RNAs, proteins and extracellular particles. P protein phosphorylation at S54 is required to liberate viral ribonucleoproteins (RNPs) from M protein, during the uncoating process. Kinase inhibition, late in infection, produces a decrease in genomic RNA and infectious viral particles. LiCl, intranasally applied to mice infected with HRSV A2 strain, reduces the number of mice with virus in their lungs and the virus titre. Administration of LiCl to humans via aerosol should prevent HRSV infection, without secondary effects

  10. Transcriptional regulation of latent feline immunodeficiency virus in peripheral CD4+ T-lymphocytes.

    Science.gov (United States)

    McDonnel, Samantha J; Sparger, Ellen E; Luciw, Paul A; Murphy, Brian G

    2012-05-01

    Feline immunodeficiency virus (FIV), the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 10(3) CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV)-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.

  11. Transcriptional Regulation of Latent Feline Immunodeficiency Virus in Peripheral CD4+ T-lymphocytes

    Directory of Open Access Journals (Sweden)

    Brian G. Murphy

    2012-05-01

    Full Text Available Feline immunodeficiency virus (FIV, the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 103 CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.

  12. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  13. HACE1 Negatively Regulates Virus-Triggered Type I IFN Signaling by Impeding the Formation of the MAVS-TRAF3 Complex

    Directory of Open Access Journals (Sweden)

    He-Ting Mao

    2016-05-01

    Full Text Available During virus infection, the cascade signaling pathway that leads to the production of proinflammatory cytokines is controlled at multiple levels to avoid detrimental overreaction. HACE1 has been characterized as an important tumor suppressor. Here, we identified HACE1 as an important negative regulator of virus-triggered type I IFN signaling. Overexpression of HACE1 inhibited Sendai virus- or poly (I:C-induced signaling and resulted in reduced IFNB1 production and enhanced virus replication. Knockdown of HACE1 expression exhibited the opposite effects. Ubiquitin E3 ligase activity of the dead mutant HACE1/C876A had a comparable inhibitory function as WT HACE1, suggesting that the suppressive function of HACE1 on virus-induced signaling is independent of its E3 ligase activity. Further study indicated that HACE1 acted downstream of MAVS and upstream of TBK1. Mechanistic studies showed that HACE1 exerts its inhibitory role on virus-induced signaling by disrupting the MAVS-TRAF3 complex. Therefore, we uncovered a novel function of HACE1 in innate immunity regulation.

  14. Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus.

    Directory of Open Access Journals (Sweden)

    Fuqu Yu

    2007-03-01

    Full Text Available The herpesvirus life cycle has two distinct phases: latency and lytic replication. The balance between these two phases is critical for viral pathogenesis. It is believed that cellular signals regulate the switch from latency to lytic replication. To systematically evaluate the cellular signals regulating this reactivation process in Kaposi sarcoma-associated herpesvirus, the effects of 26,000 full-length cDNA expression constructs on viral reactivation were individually assessed in primary effusion lymphoma-derived cells that harbor the latent virus. A group of diverse cellular signaling proteins were identified and validated in their effect of inducing viral lytic gene expression from the latent viral genome. The results suggest that multiple cellular signaling pathways can reactivate the virus in a genetically homogeneous cell population. Further analysis revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced reactivation. The same pathway also mediates spontaneous reactivation, which sets the first example to our knowledge of a specific cellular pathway being studied in the spontaneous reactivation process. Our study provides a functional genomic approach to systematically identify the cellular signals regulating the herpesvirus life cycle, thus facilitating better understanding of a fundamental issue in virology and identifying novel therapeutic targets.

  15. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    International Nuclear Information System (INIS)

    Tang, Lin-Quan; Li, Chao-Feng; Chen, Qiu-Yan; Zhang, Lu; Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan; Chen, Wen-Hui; Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting; Li, Jing; Zhang, Jing-Ping

    2015-01-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease

  16. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin-Quan [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Nasopharyngeal Carcinoma, Sun Yat-sen University, Guangzhou (China); Li, Chao-Feng [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Information Technology, Sun Yat-sen University, Guangzhou (China); Chen, Qiu-Yan; Zhang, Lu [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Nasopharyngeal Carcinoma, Sun Yat-sen University, Guangzhou (China); Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan [ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou (China); Chen, Wen-Hui [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Nasopharyngeal Carcinoma, Sun Yat-sen University, Guangzhou (China); Li, Jing [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Jing-Ping [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Clinical Laboratory, Sun Yat-sen University, Guangzhou (China); and others

    2015-02-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease.

  17. Less Empathic and More Reactive: The Different Impact of Childhood Maltreatment on Facial Mimicry and Vagal Regulation.

    Directory of Open Access Journals (Sweden)

    Martina Ardizzi

    Full Text Available Facial mimicry and vagal regulation represent two crucial physiological responses to others' facial expressions of emotions. Facial mimicry, defined as the automatic, rapid and congruent electromyographic activation to others' facial expressions, is implicated in empathy, emotional reciprocity and emotions recognition. Vagal regulation, quantified by the computation of Respiratory Sinus Arrhythmia (RSA, exemplifies the autonomic adaptation to contingent social cues. Although it has been demonstrated that childhood maltreatment induces alterations in the processing of the facial expression of emotions, both at an explicit and implicit level, the effects of maltreatment on children's facial mimicry and vagal regulation in response to facial expressions of emotions remain unknown. The purpose of the present study was to fill this gap, involving 24 street-children (maltreated group and 20 age-matched controls (control group. We recorded their spontaneous facial electromyographic activations of corrugator and zygomaticus muscles and RSA responses during the visualization of the facial expressions of anger, fear, joy and sadness. Results demonstrated a different impact of childhood maltreatment on facial mimicry and vagal regulation. Maltreated children did not show the typical positive-negative modulation of corrugator mimicry. Furthermore, when only negative facial expressions were considered, maltreated children demonstrated lower corrugator mimicry than controls. With respect to vagal regulation, whereas maltreated children manifested the expected and functional inverse correlation between RSA value at rest and RSA response to angry facial expressions, controls did not. These results describe an early and divergent functional adaptation to hostile environment of the two investigated physiological mechanisms. On the one side, maltreatment leads to the suppression of the spontaneous facial mimicry normally concurring to empathic understanding of

  18. BDNF Val66Met Genotype Interacts With a History of Simulated Stress Exposure to Regulate Sensorimotor Gating and Startle Reactivity.

    Science.gov (United States)

    Notaras, Michael J; Hill, Rachel A; Gogos, Joseph A; van den Buuse, Maarten

    2017-05-01

    Reduced expression of Brain-Derived Neurotrophic Factor (BDNF) has been implicated in the pathophysiology of schizophrenia. The BDNF Val66Met polymorphism, which results in deficient activity-dependent secretion of BDNF, is associated with clinical features of schizophrenia. We investigated the effect of this polymorphism on Prepulse Inhibition (PPI), a translational model of sensorimotor gating which is disrupted in schizophrenia. We utilized humanized BDNFVal66Met (hBDNFVal66Met) mice which have been modified to carry the Val66Met polymorphism, as well as express humanized BDNF in vivo. We also studied the long-term effect of chronic corticosterone (CORT) exposure in these animals as a model of history of stress. PPI was assessed at 30ms and 100ms interstimulus intervals (ISI). Analysis of PPI at the commonly used 100ms ISI identified that, irrespective of CORT treatment, the hBDNFVal/Met genotype was associated with significantly reduced PPI. In contrast, PPI was not different between hBDNFMet/Met and hBDNFVal/Val genotype mice. At the 30ms ISI, CORT treatment selectively disrupted sensorimotor gating of hBDNFVal/Met heterozygote mice but not hBDNFVal/Val or hBDNFMet/Met mice. Analysis of startle reactivity revealed that chronic CORT reduced startle reactivity of hBDNFVal/Val male mice by 51%. However, this was independent of the effect of CORT on PPI. In summary, we provide evidence of a distinct BDNFVal66Met heterozygote-specific phenotype using the sensorimotor gating endophenotype of schizophrenia. These data have important implications for clinical studies where, if possible, the BDNFVal/Met heterozygote genotype should be distinguished from the BDNFMet/Met genotype. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Epstein-Barr virus-derived EBNA2 regulates STAT3 activation

    International Nuclear Information System (INIS)

    Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Togi, Sumihito; Kamitani, Shinya; Fujimuro, Masahiro; Harada, Shizuko; Oritani, Kenji; Matsuda, Tadashi

    2009-01-01

    The Epstein-Barr virus (EBV)-encoded latency protein EBNA2 is a nuclear transcriptional activator that is essential for EBV-induced cellular transformation. Here, we show that EBNA2 interacts with STAT3, a signal transducer for an interleukin-6 family cytokine, and enhances the transcriptional activity of STAT3 by influencing its DNA-binding activity. Furthermore, EBNA2 cooperatively acts on STAT3 activation with LMP1. These data demonstrate that EBNA2 acts as a transcriptional coactivator of STAT3.

  20. Dengue virus infection down-regulates differentiation markers in neuroblastoma cells

    OpenAIRE

    Rincón Forero, Verónica; Alvear Gómez, Diana; Solano Orjuela, Oscar; Prada-Arismendy, Jeanette; Castellanos Parra, Jaime Eduardo

    2011-01-01

    Introducción: cerca del 5% de los pacientes con dengue hemorrágico pueden presentar manifestaciones neurológicas; sin embargo, existe poca información sobre la infección directa por el virus dengue (DENV) en neuronas. Objetivo: determinar el papel del fenotipo neuronal en la infección por DENV en células de neuroblastoma SH-SY5Y inducidas o no a la diferenciación con ácido retinoico (AR). Materiales y métodos: células SH-SY5Y fueron inducidas con AR a diferenciarse e infectadas con DENV. Post...

  1. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  2. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    Science.gov (United States)

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  3. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    OpenAIRE

    Tweedy, J; Spyrou, MA; Pearson, M; Lassner, D; Kuhl, U; Gompels, UA

    2016-01-01

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, imp...

  4. Cytochrome P4502D6(193-212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease.

    Science.gov (United States)

    Kerkar, Nanda; Choudhuri, Kaushik; Ma, Yun; Mahmoud, Ayman; Bogdanos, Dimitrios P; Muratori, Luigi; Bianchi, Francesco; Williams, Roger; Mieli-Vergani, Giorgina; Vergani, Diego

    2003-02-01

    Cytochrome P4502D6 (CYP2D6), target of liver kidney microsomal autoantibody type 1 (LKM1), characterizes autoimmune hepatitis type 2 (AIH2) but is also found in patients with chronic hepatitis C virus (HCV) infection. To provide a complete linear epitope B cell map of CYP2D6, we tested peptides spanning the entire sequence of CYP2D6. In addition to confirming previously described antigenic sites, we identified four new epitopes (193-212, 238-257, 268-287, and 478-497). CYP2D6(193-212) is immunodominant and was the target of 12 of 13 (93%) patients with AIH2 and 5 of 10 (50%) HCV/LKM1-positive patients. Because LKM1 is present in both AIH2 and a viral infection, we tested whether Abs to CYP2D6(193-212) arise through cross-reactive immunity between virus and self. We identified a hexameric sequence "RLLDLA" sharing 5 of 6 aa with "RLLDLS" of HCV(2985-2990) and all 6 aa with CMV(130-135). Of 17 CYP2D6(193-212)-reactive sera, 11 (7 AIH and 4 HCV) reacted by ELISA with the HCV homologue, 8 (5 AIH and 3 HCV) with the CMV homologue, and 8 (5 AIH and 3 HCV) showed double reactivity. Autoantibody binding to CYP2D6(193-212) was inhibited by preincubation with HCV(2977-2996) or CMV(121-140). Recombinant HCV-nonstructural protein 5 and CMV-UL98 proteins also inhibited Ab binding to CYP2D6(193-212). Affinity-purified CYP2D6(193-212)-specific Ab inhibited the metabolic activity of CYP2D6. The demonstrated similarity and cross-reactivity between CYP2D6(193-212) and two unrelated viruses suggests that multiple exposure to viruses mimicking self may represent an important pathway to the development of autoimmunity.

  5. Position dependence of the rous sarcoma virus negative regulator of splicing element reflects proximity to a 5' splice site

    International Nuclear Information System (INIS)

    Wang Yuedi; McNally, Mark T.

    2003-01-01

    Rous sarcoma virus (RSV) requires incomplete splicing of its viral transcripts to maintain efficient replication. A splicing inhibitor element, the negative regulator of splicing (NRS), is located near the 5' end of the RNA but the significance of this positioning is not known. In a heterologous intron the NRS functions optimally when positioned close to the authentic 5' splice site. This observation led us to investigate the basis of the position dependence. Four explanations were put forth and stressed the role of three major elements involved in splicing, the 3' splice site, the 5' splice site, and the 5' end cap structure. NRS function was unrelated to its position relative to the 3' splice site or the cap structure and appeared to depend on its position relative to the authentic 5' splice site. We conclude that position dependence may reflect distance constraints necessary for competition of the NRS with the authentic 5' splice site for pairing with the 3' splice sites

  6. Prevalence and chemotherapy-induced reactivation of occult hepatitis B virus among hepatitis B surface antigen negative patients with diffuse large B-cell lymphoma: Significance of hepatitis B core antibodies screening

    International Nuclear Information System (INIS)

    Elbedewy, T.A.; Elashtokhy, H.A.; Rabee, E.S.; Kheder, G.E.

    2015-01-01

    Background: Occult hepatitis B infection (OBI) is characterized by negative hepatitis B surface antigen (HBsAg) and detectable hepatitis B virus (HBV)-DNA in the liver and/or serum, with or without hepatitis B core antibody (anti-HBc). Anti-HBc is the most sensitive marker of previous HBV. HBV reactivation in patients under immunosuppressive treatment is life-threatening, occurring in both overt and occult HBV especially in hematological malignancies. Aim of the work: To evaluate the prevalence and chemotherapy-induced reactivation of OBI among hepatitis B surface antigen negative patients with diffuse large B-cell lymphoma (DLBCL) patients and to determine the significance of anti-HBc screening among this group of patients before receiving chemotherapy. Patients and methods: This cross-sectional study included 72 DLBCL patients negative for HBsAg, HBsAb and hepatitis C virus antibodies (anti-HCV). Patients were subjected to investigations including anti-HBc. All patients underwent alanine transaminase (ALT) monitoring before each cycle of chemotherapy and monthly for 12 months after the end of chemotherapy. Patients with suspected OBI were tested for HBV-DNA using real-time polymerase chain reaction (PCR). Results: Anti-HBc was detected in 10 of 72 HBsAg negative sera (13.89%) (95% confidence interval 6.9-22.2%). Five of the 10 anti-HBc positive patients in this study had OBI reactivation. Conclusion: The study concluded that anti-HBc screening is mandatory before chemotherapy. HBsAg-negative/anti-HBc-positive patients should be closely observed for signs of HBV reactivation through the regular monitoring of ALT. Prophylaxis lamivudine is recommended for anti-HBc positive patients before chemotherapy.

  7. MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo

    DEFF Research Database (Denmark)

    Mattox, Taylor A; Young, Martin E; Rubel, Carrie E

    2014-01-01

    MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1's role in regulating mitoc...

  8. Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection.

    Directory of Open Access Journals (Sweden)

    Yongmei Zhang

    Full Text Available The persistence of hepatitis B virus (HBV infection is maintained by the nuclear viral covalently closed circular DNA (cccDNA, which serves as transcription template for viral mRNAs. Previous studies suggested that cccDNA contains methylation-prone CpG islands, and that the minichromosome structure of cccDNA is epigenetically regulated by DNA methylation. However, the regulatory effect of each CpG island methylation on cccDNA activity remains elusive. In the present study, we analyzed the distribution of CpG methylation within cccDNA in patient samples and investigated the impact of CpG island methylation on cccDNA-driven virus replication. Our study revealed the following observations: 1 Bisulfite sequencing of cccDNA from chronic hepatitis B patients indicated that CpG island I was seldom methylated, 2 CpG island II methylation was correlated to the low level of serum HBV DNA in patients, and in vitro methylation studies confirmed that CpG island II methylation markedly reduced cccDNA transcription and subsequent viral core DNA replication, 3 CpG island III methylation was associated with low serum HBsAg titers, and 4 Furthermore, we found that HBV genotype, HBeAg positivity, and patient age and liver fibrosis stage were also relevant to cccDNA CpG methylation status. Therefore, we clearly demonstrated that the status of cccDNA methylation is connected to the biological behavior of HBV. Taken together, our study provides a complete profile of CpG island methylation within HBV cccDNA and new insights for the function of CpG methylation in regulating HBV cccDNA transcription.

  9. Positive regulation of humoral and innate immune responses induced by inactivated Avian Influenza Virus vaccine in broiler chickens.

    Science.gov (United States)

    Abdallah, Fatma; Hassanin, Ola

    2015-12-01

    Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.

  10. Immunological reactive rate to Zika virus in canine sera: A report from a tropical area and concern on pet, zoonosis and reservoir host

    Institute of Scientific and Technical Information of China (English)

    Beuy Joob; Viroj Wiwanitkit

    2017-01-01

    This letter to editor discusses and describes Zika virus IgG seropositivity rate in canine sera from endemic area. This is the first world report and it raises an urgent concern on pet, zoonosis and reservoir host regarding Zika virus.

  11. Crystal Structure of the Conserved Herpes Virus Fusion Regulator Complex gH–gL

    Energy Technology Data Exchange (ETDEWEB)

    Chowdary, T.; Cairns, T; Atanasiu, D; Cohen, G; Eisenberg, R; Heldwein, E

    2010-01-01

    Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.

  12. Crystal structure of the conserved herpes virus fusion regulator complex gH-gL

    Energy Technology Data Exchange (ETDEWEB)

    Chowdary, Tirumala K; Cairns, Tina M; Atanasiu, Doina; Cohen, Gary H; Eisenberg, Roselyn J; Heldwein, Ekaterina E [UPENN; (Tufts-MED)

    2010-09-13

    Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.

  13. Hepatitis B virus X protein suppresses caveolin-1 expression in hepatocellular carcinoma by regulating DNA methylation

    International Nuclear Information System (INIS)

    Yan, Jun; Lu, Qian; Dong, Jiahong; Li, Xiaowu; Ma, Kuansheng; Cai, Lei

    2012-01-01

    To understand the molecular mechanisms of caveolin-1 downregulation by hepatitis B virus X protein (HBx). The DNA methylation status of the caveolin-1 promoter was examined by nested methylation-specific PCR of 33 hepatitis B virus (HBV)-infected hepatocellular carcinoma (HCC) samples. The SMMC-7721 hepatoma cell line was transfected with a recombinant HBx adenoviral vector, and the effects of HBx protein on caveolin-1 expression and promoter methylation were examined and confirmed by sequencing. A reporter gene containing the caveolin-1 promoter region was constructed, and the effects of HBx on the transcriptional activity of the promoter were also studied. Methylation of the caveolin-1 promoter was detected in 84.8% (28/33) of HBV-infected HCC samples. Expression of caveolin-1 was significantly downregulated (P = 0.022), and multiple CpG sites in the promoter region of caveolin-1 were methylated in SMMC-7721 cells after HBx transfection. Transfected HBx significantly suppressed caveolin-1 promoter activity (P = 0.001). HBx protein induces methylation of the caveolin-1 promoter region and suppresses its expression

  14. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    Science.gov (United States)

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  15. High Content Image Based Analysis Identifies Cell Cycle Inhibitors as Regulators of Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-09-01

    Full Text Available Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  16. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production

    Science.gov (United States)

    Na, Hong; Huisman, Willem; Ellestad, Kristofor K.; Phillips, Tom R.; Power, Christopher

    2010-01-01

    Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection. PMID:20570310

  17. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ

    2011-02-01

    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  18. Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity.

    Science.gov (United States)

    Bringolf, Fanny; Herren, Michael; Wyss, Marianne; Vidondo, Beatriz; Langedijk, Johannes P; Zurbriggen, Andreas; Plattet, Philippe

    2017-08-15

    Paramyxoviruses rely on the matrix (M) protein to orchestrate viral assembly and budding at the plasma membrane. Although the mechanistic details remain largely unknown, structural data suggested that M dimers and/or higher-order oligomers may facilitate membrane budding. To gain functional insights, we employed a structure-guided mutagenesis approach to investigate the role of canine distemper virus (CDV) M protein self-assembly in membrane-budding activity. Three six-alanine-block (6A-block) mutants with mutations located at strategic oligomeric positions were initially designed. While the first one includes residues potentially residing at the protomer-protomer interface, the other two display amino acids located within two distal surface-exposed α-helices proposed to be involved in dimer-dimer contacts. We further focused on the core of the dimeric interface by mutating asparagine 138 (N138) to several nonconservative amino acids. Cellular localization combined with dimerization and coimmunopurification assays, performed under various denaturing conditions, revealed that all 6A-block mutants were impaired in self-assembly and cell periphery accumulation. These phenotypes correlated with deficiencies in relocating CDV nucleocapsid proteins to the cell periphery and in virus-like particle (VLP) production. Conversely, all M-N138 mutants remained capable of self-assembly, though to various extents, which correlated with proper accumulation and redistribution of nucleocapsid proteins at the plasma membrane. However, membrane deformation and VLP assays indicated that the M-N138 variants exhibiting the most reduced dimerization propensity were also defective in triggering membrane remodeling and budding, despite proper plasma membrane accumulation. Overall, our data provide mechanistic evidence that the efficiency of CDV M dimerization/oligomerization governs both cell periphery localization and membrane-budding activity. IMPORTANCE Despite the availability of

  19. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2018-06-01

    Full Text Available Reactive oxygen species (ROS generated by up-regulated NADPH oxidase (Nox contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA, a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression. Keywords: NADPH oxidase, Epigenetics, HDAC, Histone acetylation, Diabetes

  20. Interferon Potentiates Toll-Like Receptor-Induced Prostaglandin D2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ji-Yun Kim

    2017-12-01

    Full Text Available Prostaglandin D2 (PGD2 is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammatory stimuli. Interferons (IFNs potentiate macrophage activation and act in concert with exogenous inflammatory mediators such as toll-like receptor (TLR ligands to amplify inflammatory responses. A recent study found that IFN-γ enhanced lipopolysaccharide-induced PGD2 production, indicating a role of IFNs in PGD2 regulation. Here, we demonstrate that TLR-induced PGD2 production by macrophages was significantly potentiated by signaling common to IFN-β and IFN-γ in a signal transducer and activators of transcription (STAT1-dependent mechanism. Such potentiation by IFNs was also observed for PGE2 production, despite the differential regulation of PGD synthase and PGE synthase isoforms mediating PGD2 and PGE2 production under inflammatory conditions. Mechanistic analysis revealed that the generation of intracellular reactive oxygen species (ROS was remarkably potentiated by IFNs and required for PGD2 production, but was nullified by STAT1 deficiency. Conversely, the regulation of STAT1 level and activity by IFNs was largely dependent on ROS levels. Using a model of zymosan-induced peritonitis, the relevance of this finding in vivo was supported by marked inhibition of PGD2 and ROS produced in peritoneal exudate cells by STAT1 deficiency. Collectively, our findings suggest that IFNs, although not activating on their own, are potent amplifiers of TLR-induced PGD2 production via positive-feedback regulation between STAT1 and ROS.

  1. Down-regulation of MHC Class I by the Marek's Disease Virus (MDV) UL49.5 Gene Product Mildly Affects Virulence in a Haplotype-specific Fashion

    Science.gov (United States)

    Marek’s disease is a devastating neoplastic disease of chickens caused by gallid herpesvirus 2 or Marek’s disease virus (MDV), which is characterized by massive visceral tumors, immune suppression, neurologic syndromes, and peracute deaths. It has been reported that MDV down-regulates surface expre...

  2. "Opening an emotional dimension in me": changes in emotional reactivity and emotion regulation in a case of executive impairment after left fronto-parietal damage.

    Science.gov (United States)

    Salas, Christian E; Radovic, Darinka; Yuen, Kenneth S L; Yeates, Giles N; Castro, O; Turnbull, Oliver H

    2014-01-01

    Dysexecutive impairment is a common problem after brain injury, particularly after damage to the lateral surface of the frontal lobes. There is a large literature describing the cognitive deficits associated with executive impairment after dorsolateral damage; however, little is known about its impact on emotional functioning. This case study describes changes in a 72-year-old man (Professor F) who became markedly dysexecutive after a left fron-to-parietal stroke. Professor F's case is remarkable in that, despite exhibiting typical executive impairments, abstraction and working memory capacities were spared. Such preservation of insight-related capacities allowed him to offer a detailed account of his emotional changes. Quantitative and qualitative tools were used to explore changes in several well-known emotional processes. The results suggest that Professor F's two main emotional changes were in the domain of emotional reactivity (increased experience of both positive and negative emotions) and emotion regulation (down-regulation of sadness). Professor F related both changes to difficulties in his thinking process, especially a difficulty generating and manipulating thoughts during moments of negative arousal. These results are discussed in relation to the literature on executive function and emotion regulation. The relevance of these findings for neuropsychological rehabilitation and for the debate on the neural basis of emotional processes is addressed.

  3. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    Science.gov (United States)

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  4. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  5. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS).

    Science.gov (United States)

    Olson, Kenneth R; Gao, Yan; DeLeon, Eric R; Arif, Maaz; Arif, Faihaan; Arora, Nitin; Straub, Karl D

    2017-08-01

    Catalase is well-known as an antioxidant dismutating H 2 O 2 to O 2 and H 2 O. However, catalases evolved when metabolism was largely sulfur-based, long before O 2 and reactive oxygen species (ROS) became abundant, suggesting catalase metabolizes reactive sulfide species (RSS). Here we examine catalase metabolism of H 2 S n , the sulfur analog of H 2 O 2 , hydrogen sulfide (H 2 S) and other sulfur-bearing molecules using H 2 S-specific amperometric electrodes and fluorophores to measure polysulfides (H 2 S n ; SSP4) and ROS (dichlorofluorescein, DCF). Catalase eliminated H 2 S n , but did not anaerobically generate H 2 S, the expected product of dismutation. Instead, catalase concentration- and oxygen-dependently metabolized H 2 S and in so doing acted as a sulfide oxidase with a P 50 of 20mmHg. H 2 O 2 had little effect on catalase-mediated H 2 S metabolism but in the presence of the catalase inhibitor, sodium azide (Az), H 2 O 2 rapidly and efficiently expedited H 2 S metabolism in both normoxia and hypoxia suggesting H 2 O 2 is an effective electron acceptor in this reaction. Unexpectedly, catalase concentration-dependently generated H 2 S from dithiothreitol (DTT) in both normoxia and hypoxia, concomitantly oxidizing H 2 S in the presence of O 2 . H 2 S production from DTT was inhibited by carbon monoxide and augmented by NADPH suggesting that catalase heme-iron is the catalytic site and that NADPH provides reducing equivalents. Catalase also generated H 2 S from garlic oil, diallyltrisulfide, thioredoxin and sulfur dioxide, but not from sulfite, metabisulfite, carbonyl sulfide, cysteine, cystine, glutathione or oxidized glutathione. Oxidase activity was also present in catalase from Aspergillus niger. These results show that catalase can act as either a sulfide oxidase or sulfur reductase and they suggest that these activities likely played a prominent role in sulfur metabolism during evolution and may continue do so in modern cells as well. This also appears

  6. Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Rasmussen, Lene Juel; Friis-Hansen, Lennart

    2014-01-01

    Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS). In recent years increasing attention has been drawn to microRNAs (miRNAs) due to their role in the pathogenesis...... of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis) on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E...... by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial...

  7. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L.

    Science.gov (United States)

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2017-04-01

    The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice ( Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10-60 µg mL -1 ) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL -1 ) and rutin (50 µg mL -1 ), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H 2 O 2 and O 2 - by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.

  8. The Food Contaminants Nivalenol and Deoxynivalenol Induce Inflammation in Intestinal Epithelial Cells by Regulating Reactive Oxygen Species Release

    Directory of Open Access Journals (Sweden)

    Simona Adesso

    2017-12-01

    Full Text Available Fusarium mycotoxins are fungal metabolites whose ability to affect cereal grains as multi-contaminants is progressively increasing. The trichothecene mycotoxins nivalenol (NIV and deoxynivalenol (DON are often found in almost all agricultural commodities worldwide. They are able to affect animal and human health, including at the intestinal level. In this study, NIV, both alone and in combination with DON, induced inflammation and increased the inflammatory response induced by lipopolysaccharide (LPS plus Interferon-γ (IFN in the non-tumorigenic intestinal epithelial cell line (IEC-6. The inflammatory response induced by NIV and DON involves tumor necrosis factor-α (TNF-α production, inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 expression, nitrotyrosine formation, reactive oxygen species (ROS release, Nuclear Factor-κB (NF-κB, Nuclear factor (erythroid-derived 2-like 2 (Nrf2 and inflammasome activation. The pro-inflammatory effect was strongly induced by NIV and by the mycotoxin mixture, when compared to DON alone. Mechanistic studies indicate a pivotal role for ROS in the observed pro-inflammatory effects induced by mycotoxins. In this study, the interactions between NIV and DON point out the importance of their food co-contamination, further highlighting the risk assessment process that is of growing concern.

  9. The Food Contaminants Nivalenol and Deoxynivalenol Induce Inflammation in Intestinal Epithelial Cells by Regulating Reactive Oxygen Species Release.

    Science.gov (United States)

    Adesso, Simona; Autore, Giuseppina; Quaroni, Andrea; Popolo, Ada; Severino, Lorella; Marzocco, Stefania

    2017-12-11

    Fusarium mycotoxins are fungal metabolites whose ability to affect cereal grains as multi-contaminants is progressively increasing. The trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON) are often found in almost all agricultural commodities worldwide. They are able to affect animal and human health, including at the intestinal level. In this study, NIV, both alone and in combination with DON, induced inflammation and increased the inflammatory response induced by lipopolysaccharide (LPS) plus Interferon-γ (IFN) in the non-tumorigenic intestinal epithelial cell line (IEC-6). The inflammatory response induced by NIV and DON involves tumor necrosis factor-α (TNF-α) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, nitrotyrosine formation, reactive oxygen species (ROS) release, Nuclear Factor-κB (NF-κB), Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inflammasome activation. The pro-inflammatory effect was strongly induced by NIV and by the mycotoxin mixture, when compared to DON alone. Mechanistic studies indicate a pivotal role for ROS in the observed pro-inflammatory effects induced by mycotoxins. In this study, the interactions between NIV and DON point out the importance of their food co-contamination, further highlighting the risk assessment process that is of growing concern.

  10. Estrogen receptor α induces prosurvival autophagy in papillary thyroid cancer via stimulating reactive oxygen species and extracellular signal regulated kinases.

    Science.gov (United States)

    Fan, Dahua; Liu, Shirley Y W; van Hasselt, C Andrew; Vlantis, Alexander C; Ng, Enders K W; Zhang, Haitao; Dong, Yujuan; Ng, Siu Kwan; Chu, Ryan; Chan, Amy B W; Du, Jing; Wei, Wei; Liu, Xiaoling; Liu, Zhimin; Xing, Mingzhao; Chen, George G

    2015-04-01

    The incidence of papillary thyroid cancer (PTC) shows a predominance in females, with a male:female ratio of 1:3, and none of the known risk factors are associated with gender difference. Increasing evidence indicates a role of estrogen in thyroid tumorigenesis, but the mechanism involved remains largely unknown. This study aimed to assess the contribution of autophagy to estrogen receptor α (ERα)-mediated growth of PTC. The expression of ERα in thyroid tissue of patients with PTC tissues was analyzed. Cell viability, proliferation, and apoptosis were evaluated after chemical and genetic inhibition of autophagy. Autophagy in PTC cell lines BCPAP and BCPAP-ERα was assessed. ERα expression was increased in PTC tissues compared with the adjacent nontumor tissues. Estrogen induced autophagy in an ERα-dependent manner. Autophagy induced by estrogen/ERα is associated with generation of reactive oxygen species, activation of ERK1/2, and the survival/growth of PTC cells. Chemical and genetic inhibition of autophagy dramatically decreased tumor cell survival and promoted apoptosis, confirming the positive role of autophagy in the growth of PTC. ERα contributes to the growth of PTC by enhancing an important prosurvival catabolic process, autophagy, in PTC cells. The inhibition of autophagy promotes apoptosis, implicating a novel strategy for the treatment of ERα-positive PTC.

  11. Differential Regulation of Interferon Responses by Ebola and Marburg Virus VP35 Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Megan R.; Liu, Gai; Mire, Chad E.; Sureshchandra, Suhas; Luthra, Priya; Yen, Benjamin; Shabman, Reed S.; Leung, Daisy W.; Messaoudi, Ilhem; Geisbert, Thomas W.; Amarasinghe, Gaya K.; Basler, Christopher F.

    2016-02-11

    Suppression of innate immune responses during filoviral infection contributes to disease severity. Ebola (EBOV) and Marburg (MARV) viruses each encode a VP35 protein that suppresses RIG-I-like receptor signaling and interferon-α/β (IFN-α/β) production by several mechanisms, including direct binding to double stranded RNA (dsRNA). Here, we demonstrate that in cell culture, MARV infection results in a greater upregulation of IFN responses as compared to EBOV infection. This correlates with differences in the efficiencies by which EBOV and MARV VP35s antagonize RIG-I signaling. Furthermore, structural and biochemical studies suggest that differential recognition of RNA elements by the respective VP35 C-terminal IFN inhibitory domain (IID) rather than affinity for RNA by the respective VP35s is critical for this observation. Our studies reveal functional differences in EBOV versus MARV VP35 RNA binding that result in unexpected differences in the host response to deadly viral pathogens.

  12. Tight regulation of the Epstein-Barr virus setpoint: interindividual differences in Epstein-Barr virus DNA load are conserved after HIV infection

    NARCIS (Netherlands)

    Piriou, Erwan; van Dort, Karel; Otto, Sigrid; van Oers, Marinus H. J.; van Baarle, Debbie

    2008-01-01

    Healthy individuals carry a constant number of Epstein-Barr virus-infected B cells in the peripheral blood over time. Here, we show that interindividual differences in Epstein-Barr virus DNA levels are maintained after HIV infection, providing evidence for the existence of an individual Epstein-Barr

  13. Avicin D: a protein reactive plant isoprenoid dephosphorylates Stat 3 by regulating both kinase and phosphatase activities.

    Directory of Open Access Journals (Sweden)

    Valsala Haridas

    Full Text Available Avicins, a class of electrophilic triterpenoids with pro-apoptotic, anti-inflammatory and antioxidant properties, have been shown to induce redox-dependant post-translational modification of cysteine residues to regulate protein function. Based on (a the cross-talk that occurs between redox and phosphorylation processes, and (b the role of Stat3 in the process of apoptosis and carcinogenesis, we chose to study the effects of avicins on the processes of phosphorylation/dephosphorylation in Stat3. Avicins dephosphorylate Stat3 in a variety of human tumor cell lines, leading to a decrease in the transcriptional activity of Stat3. The expression of Stat3-regulated proteins such as c-myc, cyclin D1, Bcl2, survivin and VEGF were reduced in response to avicin treatment. Underlying avicin-induced dephosphorylation of Stat3 was dephosphorylation of JAKs, as well as activation of protein phosphatase-1. Downregulation of both Stat3 activity and expression of Stat 3-controlled pro-survival proteins, contributes to the induction of apoptosis in avicin treated tumor cells. Based on the role of Stat3 in inflammation and wounding, and the in vivo inhibition of VEGF by avicins in a mouse skin carcinogenesis model, it is likely that avicin-induced inhibition of Stat3 activity results in the suppression of the pro-inflammatory and pro-oxidant stromal environment of tumors. Activation of PP-1, which also acts as a cellular economizer, combined with the redox regulation by avicins, can aid in redirecting metabolism from growth promoting anabolic to energy sparing pathways.

  14. Extracellular Redox Regulation of Intracellular Reactive Oxygen Generation, Mitochondrial Function and Lipid Turnover in Cultured Human Adipocytes.

    Directory of Open Access Journals (Sweden)

    Albert R Jones

    Full Text Available Many tissues play an important role in metabolic homeostasis and the development of diabetes and obesity. We hypothesized that the circulating redox metabolome is a master metabolic regulatory system that impacts all organs and modulates reactive oxygen species (ROS production, lipid peroxidation, energy production and changes in lipid turnover in many cells including adipocytes.Differentiated human preadipocytes were exposed to the redox couples, lactate (L and pyruvate (P, β-hydroxybutyrate (βOHB and acetoacetate (Acoc, and the thiol-disulfides cysteine/ cystine (Cys/CySS and GSH/GSSG for 1.5-4 hours. ROS measurements were done with CM-H2DCFDA. Lipid peroxidation (LPO was assessed by a modification of the thiobarbituric acid method. Lipolysis was measured as glycerol release. Lipid synthesis was measured as 14C-glucose incorporated into lipid. Respiration was assessed using the SeaHorse XF24 analyzer and the proton leak was determined from the difference in respiration with oligomycin and antimycin A.Metabolites with increasing oxidation potentials (GSSG, CySS, Acoc increased adipocyte ROS. In contrast, P caused a decrease in ROS compared with L. Acoc also induced a significant increase in both LPO and lipid synthesis. L and Acoc increased lipolysis. βOHB increased respiration, mainly due to an increased proton leak. GSSG, when present throughout 14 days of differentiation significantly increased fat accumulation, but not when added later.We demonstrated that in human adipocytes changes in the external redox state impacted ROS production, LPO, energy efficiency, lipid handling, and differentiation. A more oxidized state generally led to increased ROS, LPO and lipid turnover and more reduction led to increased respiration and a proton leak. However, not all of the redox couples were the same suggesting compartmentalization. These data are consistent with the concept of the circulating redox metabolome as a master metabolic regulatory system.

  15. Epstein-Barr virus (EBV) LMP2A alters normal transcriptional regulation following B-cell receptor activation

    International Nuclear Information System (INIS)

    Portis, Toni; Longnecker, Richard

    2004-01-01

    The latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) is an important mediator of viral latency in infected B-lymphocytes. LMP2A inhibits B-cell receptor (BCR) signaling in vitro and allows for the survival of BCR-negative B cells in vivo. In this study, we compared gene transcription in BCR-activated B cells from non-transgenic and LMP2A Tg6 transgenic mice. We found that the transcriptional induction and down-regulation of many genes that normally occurs in B cells following BCR activation did not occur in B cells from LMP2A Tg6 transgenic mice. Furthermore, LMP2A induced the expression of various transcription factors and genes associated with DNA/RNA metabolism, which may allow for the altered transcriptional regulation observed in BCR-activated B cells from LMP2A Tg6 mice. These results suggest that LMP2A may inhibit the downstream effects of BCR signaling by directly or indirectly altering gene transcription to ensure EBV persistence in infected B cells

  16. Broadly reactive pan-paramyxovirus reverse transcription polymerase chain reaction and sequence analysis for the detection of Canine distemper virus in a case of canine meningoencephalitis of unknown etiology

    Science.gov (United States)

    Schatzberg, Scott J.; Li, Qiang; Porter, Brian F.; Barber, Renee M.; Claiborne, Mary Kate; Levine, Jonathan M.; Levine, Gwendolyn J.; Israel, Sarah K.; Young, Benjamin D.; Kiupel, Matti; Greene, Craig; Ruone, Susan; Anderson, Larry; Tong, Suxiang

    2016-01-01

    Despite the immunologic protection associated with routine vaccination protocols, Canine distemper virus (CDV) remains an important pathogen of dogs. Antemortem diagnosis of systemic CDV infection may be made by reverse transcription polymerase chain reaction (RT-PCR) and/or immunohistochemical testing for CDV antigen; central nervous system infection often requires postmortem confirmation via histopathology and immunohistochemistry. An 8-month-old intact male French Bulldog previously vaccinated for CDV presented with multifocal neurologic signs. Based on clinical and postmortem findings, the dog’s disease was categorized as a meningoencephalitis of unknown etiology. Broadly reactive, pan-paramyxovirus RT-PCR using consensus-degenerate hybrid oligonucleotide primers, combined with sequence analysis, identified CDV amplicons in the dog’s brain. Immunohistochemistry confirmed the presence of CDV antigens, and a specific CDV RT-PCR based on the phosphoprotein gene identified a wild-type versus vaccinal virus strain. This case illustrates the utility of broadly reactive PCR and sequence analysis for the identification of pathogens in diseases with unknown etiology. PMID:19901287

  17. Up-regulation of cytosolic phospholipase A2α expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide

    International Nuclear Information System (INIS)

    Akiyama, Nobuteru; Nabemoto, Maiko; Hatori, Yoshio; Nakamura, Hiroyuki; Hirabayashi, Tetsuya; Fujino, Hiromichi; Saito, Takeshi; Murayama, Toshihiko

    2006-01-01

    Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the α type of cytosolic phospholipase A 2 (cPLA 2 α) in PC12 cells. Treatment with 80-120 μM DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA 2 α mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N G nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA 2 α expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA 2 . Furthermore, DDC treatment of the cells enhanced Ca 2+ -ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA 2 α expression by DDC treatment in neuronal cells

  18. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING.

    Directory of Open Access Journals (Sweden)

    Yanming Wang

    2015-06-01

    Full Text Available Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α was induced by herpes simplex virus type 1 (HSV-1 infection in dendritic cells (DCs. Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING, which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.

  19. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  20. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  1. The Mechanism of Synchronous Precise Regulation of Two Shrimp White Spot Syndrome Virus Targets by a Viral MicroRNA

    Science.gov (United States)

    He, Yaodong; Ma, Tiantian; Zhang, Xiaobo

    2017-01-01

    MicroRNAs (miRNAs), important factors in animal innate immunity, suppress the expressions of their target genes by binding to target mRNA’s 3′ untranslated regions (3′UTRs). However, the mechanism of synchronous regulation of multiple targets by a single miRNA remains unclear. In this study, the interaction between a white spot syndrome virus (WSSV) miRNA (WSSV-miR-N32) and its two viral targets (wsv459 and wsv322) was characterized in WSSV-infected shrimp. The outcomes indicated that WSSV-encoded miRNA (WSSV-miR-N32) significantly inhibited virus infection by simultaneously targeting wsv459 and wsv322. The silencing of wsv459 or wsv322 by siRNA led to significant decrease of WSSV copies in shrimp, showing that the two viral genes were required for WSSV infection. WSSV-miR-N32 could mediate 5′–3′ exonucleolytic digestion of its target mRNAs, which stopped at the sites of target mRNA 3′UTRs close to the sequence complementary to the miRNA seed sequence. The complementary bases (to the target mRNA sequence) of a miRNA 9th–18th non-seed sequence were essential for the miRNA targeting. Therefore, our findings presented novel insights into the mechanism of miRNA-mediated suppression of target gene expressions, which would be helpful for understanding the roles of miRNAs in innate immunity of invertebrate. PMID:29230209

  2. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    Science.gov (United States)

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.

  3. NF-κB Signaling Regulates Epstein–Barr Virus BamHI-Q-Driven EBNA1 Expression

    Directory of Open Access Journals (Sweden)

    Rob J. A. Verhoeven

    2018-04-01

    Full Text Available Epstein–Barr virus (EBV nuclear antigen 1 (EBNA1 is one of the few viral proteins expressed by EBV in nasopharyngeal carcinoma (NPC, most likely because of its essential role in maintaining the viral genome in EBV-infected cells. In NPC, EBNA1 expression is driven by the BamHI-Q promoter (Qp, which is regulated by both cellular and viral factors. We previously determined that the expression of another group of EBV transcripts, BamHI-A rightward transcripts (BARTs, is associated with constitutively activated nuclear factor-κB (NF-κB signaling in NPC cells. Here, we show that, like the EBV BART promoter, the EBV Qp also responds to NF-κB signaling. NF-κB p65, but not p50, can activate Qp in vitro, and NF-κB signaling regulates Qp-EBNA1 expression in NPC cells, as well as in other EBV-infected epithelial cells. The introduction of mutations in the putative NF-κB site reduced Qp activation by the NF-κB p65 subunit. Binding of p65 to Qp was shown by chromatin immunoprecipitation (ChIP analysis, while electrophoretic mobility shift assays (EMSAs demonstrated that p50 can also bind to Qp. Inhibition of NF-κB signaling by the IκB kinase inhibitor PS-1145 resulted in the downregulation of Qp-EBNA1 expression in C666-1 NPC cells. Since EBNA1 has been reported to block p65 activation by inhibiting IKKα/β through an unknown mechanism, we suggest that, in NPC, NF-κB signaling and EBNA1 may form a regulatory loop which supports EBV latent gene expression, while also limiting NF-κB activity. These findings emphasize the role of NF-κB signaling in the regulation of EBV latency in EBV-associated tumors.

  4. Interaction between C/EBPβ and Tax down-regulates human T-cell leukemia virus type I transcription

    International Nuclear Information System (INIS)

    Hivin, P.; Gaudray, G.; Devaux, C.; Mesnard, J.-M.

    2004-01-01

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein β (C/EBPβ) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPβ has also been found to interact with Tax, we analyzed the effects of C/EBPβ on viral Tax-dependent transcription. We show here that C/EBPβ represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPβ. We also analyzed the physical interactions between Tax and C/EBPβ and found that the central region of C/EBPβ, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPβ would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPβ was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPβ may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response

  5. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex.

    Science.gov (United States)

    Pegoraro, Gianluca; Marcello, Alessandro; Myers, Michael P; Giacca, Mauro

    2006-07-01

    The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.

  6. Human T-lymphotropic virus type I tax regulates the expression of the human lymphotoxin gene.

    Science.gov (United States)

    Tschachler, E; Böhnlein, E; Felzmann, S; Reitz, M S

    1993-01-01

    Human T-lymphotropic virus type-I (HTLV-I)-infected T-cell lines constitutively produce high levels of lymphotoxin (LT). To analyze the mechanisms that lead to the expression of LT in HTLV-I-infected cell lines, we studied regulatory regions of the human LT promoter involved in the activation of the human LT gene. As determined by deletional analysis, sequences between +137 and -116 (relative to the transcription initiation site) are sufficient to direct expression of a reporter gene in the HTLV-I-infected cell line MT-2. Site-directed mutation of a of the single kappa B-like motif present in the LT promoter region (positions -99 to -89) completely abrogated LT promoter activity in MT-2 cells, suggesting that this site plays a critical role in the activation of the human LT gene. Transfection of LT constructs into HTLV-I-uninfected and -unstimulated Jurkat and U937 cell lines showed little to no activity of the LT promoter. Cotransfection of the same constructs with a tax expression plasmid into Jurkat cells led to detectable promoter activity, which could be significantly increased by stimulation of the cells with phorbol myristate acetate (PMA). Similarly, cotransfection of the LT promoter constructs and the tax expression plasmid into U937 cells led to significant promoter activity upon stimulation with PMA. These data suggest that HTLV-I tax is involved in the upregulation of LT gene expression in HTLV-I-infected cells.

  7. Exosome RNA Released by Hepatocytes Regulates Innate Immune Responses to Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Takahisa Kouwaki

    2016-08-01

    Full Text Available The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80+ cells. Moreover, extracellular vesicles released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from extracellular vesicles markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in extracellular vesicles and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.

  8. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    Science.gov (United States)

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  9. Clinical and virological factors associated with hepatitis B virus reactivation in HBsAg-negative and anti-HBc antibodies-positive patients undergoing chemotherapy and/or autologous stem cell transplantation for cancer.

    Science.gov (United States)

    Borentain, P; Colson, P; Coso, D; Bories, E; Charbonnier, A; Stoppa, A M; Auran, T; Loundou, A; Motte, A; Ressiot, E; Norguet, E; Chabannon, C; Bouabdallah, R; Tamalet, C; Gérolami, R

    2010-11-01

    We studied clinical outcome and clinico-virological factors associated with hepatitis B virus reactivation (HBV-R) following cancer treatment in hepatitis B virus surface antigen (HBsAg)-negative/anti-hepatitis B core antibodies (anti-HBcAb)-positive patients. Between 11/2003 and 12/2005, HBV-R occurred in 7/84 HBsAg-negative/anti-HBcAb-positive patients treated for haematological or solid cancer. Virological factors including HBV genotype, core promoter, precore, and HBsAg genotypic and amino acid (aa) patterns were studied. Patients presenting with reactivation were men, had an hepatitis B virus surface antibody (HBsAb) titre 1 line of chemotherapy (CT) significantly more frequently than controls. All were treated for haematological cancer, 3/7 received haematopoietic stem cell transplantation (HSCT), and 4/7 received rituximab. Using multivariate analysis, receiving >1 line of CT was an independent risk factor for HBV-R. Fatal outcome occurred in 3/7 patients (despite lamivudine therapy in two), whereas 2/4 survivors had an HBsAg seroconversion. HBV-R involved non-A HBV genotypes and core promoter and/or precore HBV mutants in all cases. Mutations known to impair HBsAg antigenicity were detected in HBV DNA from all seven patients. HBV DNA could be retrospectively detected in two patients prior cancer treatment and despite HBsAg negativity. HBV-R is a concern in HBsAg-negative/anti-HBcAb-positive patients undergoing cancer therapy, especially in males presenting with haematological cancer, a low anti-HBsAb titre and more than one chemotherapeutic agent. HBV DNA testing is mandatory to improve diagnosis and management of HBV-R in these patients. The role of specific therapies such as rituximab or HSCT as well as of HBV aa variability deserves further studies. © 2009 Blackwell Publishing Ltd.

  10. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Coursol, Sylvie; Fromentin, Jérôme; Noirot, Elodie; Brière, Christian; Robert, Franck; Morel, Johanne; Liang, Yun-Kuan; Lherminier, Jeannine; Simon-Plas, Françoise

    2015-02-01

    The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells. © 2014 INRA New Phytologist © 2014 New Phytologist Trust.

  11. Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria

    Directory of Open Access Journals (Sweden)

    Servais Stéphane

    2010-04-01

    Full Text Available Abstract Background Although identified in several bird species, the biological role of the avian homolog of mammalian uncoupling proteins (avUCP remains extensively debated. In the present study, the functional properties of isolated mitochondria were examined in physiological or pharmacological situations that induce large changes in avUCP expression in duckling skeletal muscle. Results The abundance of avUCP mRNA, as detected by RT-PCR in gastrocnemius muscle but not in the liver, was markedly increased by cold acclimation (CA or pharmacological hyperthyroidism but was down-regulated by hypothyroidism. Activators of UCPs, such as superoxide with low doses of fatty acids, stimulated a GDP-sensitive proton conductance across the inner membrane of muscle mitochondria from CA or hyperthyroid ducklings. The stimulation was much weaker in controls and not observed in hypothyroid ducklings or in any liver mitochondrial preparations. The production of endogenous mitochondrial reactive oxygen species (ROS was much lower in muscle mitochondria from CA and hyperthyroid ducklings than in the control or hypothyroid groups. The addition of GDP markedly increased the mitochondrial ROS production of CA or hyperthyroid birds up to, or above, the level of control or hypothyroid ducklings. Differences in ROS production among groups could not be attributed to changes in antioxidant enzyme activities (superoxide dismutase or glutathione peroxidase. Conclusion This work provides the first functional in vitro evidence that avian UCP regulates mitochondrial ROS production in situations of enhanced metabolic activity.

  12. Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria.

    Science.gov (United States)

    Rey, Benjamin; Roussel, Damien; Romestaing, Caroline; Belouze, Maud; Rouanet, Jean-Louis; Desplanches, Dominique; Sibille, Brigitte; Servais, Stéphane; Duchamp, Claude

    2010-04-28

    Although identified in several bird species, the biological role of the avian homolog of mammalian uncoupling proteins (avUCP) remains extensively debated. In the present study, the functional properties of isolated mitochondria were examined in physiological or pharmacological situations that induce large changes in avUCP expression in duckling skeletal muscle. The abundance of avUCP mRNA, as detected by RT-PCR in gastrocnemius muscle but not in the liver, was markedly increased by cold acclimation (CA) or pharmacological hyperthyroidism but was down-regulated by hypothyroidism. Activators of UCPs, such as superoxide with low doses of fatty acids, stimulated a GDP-sensitive proton conductance across the inner membrane of muscle mitochondria from CA or hyperthyroid ducklings. The stimulation was much weaker in controls and not observed in hypothyroid ducklings or in any liver mitochondrial preparations. The production of endogenous mitochondrial reactive oxygen species (ROS) was much lower in muscle mitochondria from CA and hyperthyroid ducklings than in the control or hypothyroid groups. The addition of GDP markedly increased the mitochondrial ROS production of CA or hyperthyroid birds up to, or above, the level of control or hypothyroid ducklings. Differences in ROS production among groups could not be attributed to changes in antioxidant enzyme activities (superoxide dismutase or glutathione peroxidase). This work provides the first functional in vitro evidence that avian UCP regulates mitochondrial ROS production in situations of enhanced metabolic activity.

  13. Global Structural Flexibility of Metalloproteins Regulates Reactivity of Transition Metal Ion in the Protein Core: An Experimental Study Using Thiol-subtilisin as a Model Protein.

    Science.gov (United States)

    Matsuo, Takashi; Kono, Takamasa; Shobu, Isamu; Ishida, Masaya; Gonda, Katsuya; Hirota, Shun

    2018-02-21

    The functions of metal-containing proteins (metalloproteins) are determined by the reactivities of transition metal ions at their active sites. Because protein macromolecular structures have several molecular degrees of freedom, global structural flexibility may also regulate the properties of metalloproteins. However, the influence of this factor has not been fully delineated in mechanistic studies of metalloproteins. Accordingly, we have investigated the relationship between global protein flexibility and the characteristics of a transition metal ion in the protein core using thiol-subtilisin (tSTL) with a Cys-coordinated Cu 2+ ion as a model system. Although tSTL has two Ca 2+ -binding sites, the Ca 2+ -binding status hardly affects its secondary structure. Nevertheless, guanidinium-induced denaturation and amide H/D exchange indicated the increase in the structural flexibility of tSTL by the removal of bound Ca 2+ ions. Electron paramagnetic resonance and absorption spectral changes have revealed that the protein flexibility determines the characteristics of a Cu 2+ ion in tSTL. Therefore, global protein flexibility should be recognized as an important factor that regulates the properties of metalloproteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Establishment of HSV1 latency in immunodeficient mice facilitates efficient in vivo reactivation.

    Directory of Open Access Journals (Sweden)

    Chandran Ramakrishna

    2015-03-01

    Full Text Available The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1 infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD, but not low dose (LD, HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS, the majority of HD inoculated mice developed HSV1 encephalitis (HSE rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg. T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation.

  15. Herpes simplex virus following stab phlebectomy.

    Science.gov (United States)

    Hicks, Caitlin W; Lum, Ying Wei; Heller, Jennifer A

    2017-03-01

    Herpes simplex virus infection following surgery is an unusual postoperative phenomenon. Many mechanisms have been suggested, with the most likely explanation related to latent virus reactivation due to a proinflammatory response in the setting of local trauma. Here, we present a case of herpes simplex virus reactivation in an immunocompetent female following a conventional right lower extremity stab phlebectomy. Salient clinical and physical examination findings are described, and management strategies for herpes simplex virus reactivation are outlined. This is the first known case report of herpes simplex virus reactivation following lower extremity phlebectomy.

  16. Thought suppression, impaired regulation of urges, and Addiction-Stroop predict affect-modulated cue-reactivity among alcohol dependent adults.

    Science.gov (United States)

    Garland, Eric L; Carter, Kristin; Ropes, Katie; Howard, Matthew O

    2012-01-01

    Abstinent alcohol dependent individuals commonly employ thought suppression to cope with stress and intrusive cognitions about alcohol. This strategy may inadvertently bias attention towards alcohol-related stimuli while depleting neurocognitive resources needed to regulate urges, manifested as decreased heart rate variability (HRV) responsivity to alcohol cues. The present study tested the hypothesis that trait and state thought suppression, impaired regulation of urges, and alcohol attentional bias as measured by the Addiction-Stroop would have significant effects on the HRV responsivity of 58 adults in residential treatment for alcohol dependence (mean age=39.6 ± 9.4, 81% female) who participated in an affect-modulated cue-reactivity protocol. Regression analyses controlling for age, level of pre-treatment alcohol consumption, and baseline HRV indicated that higher levels of trait thought suppression, impaired regulation of alcohol urges, and attentional fixation on alcohol cues were associated with lower HRV responsivity during stress-primed alcohol cue-exposure. Moreover, there was a significant state × trait suppression interaction on HRV cue-responsivity, such that alcohol dependent persons reporting high levels of state and trait suppression exhibited less HRV during cue-exposure than persons reporting low levels of state and trait suppression. Results suggest that chronic thought suppression taxes regulatory resources reflected in reduced HRV responsivity, an effect that is particularly evident when high trait suppressors engage in intensive suppression of drinking-related thoughts under conditions of stress. Treatment approaches that offer effective alternatives to the maladaptive strategy of suppressing alcohol urges may be crucial for relapse prevention. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2006-01-01

    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  18. Reactive neurogenesis and down-regulation of the potassium-chloride cotransporter KCC2 in the cochlear nuclei after cochlear deafferentation

    Directory of Open Access Journals (Sweden)

    Brahim Tighilet

    2016-08-01

    Full Text Available While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus of cats. We found a strong cell proliferation in all the cochlear nucleus sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to one month after cochlear deafferentation in all cochlear nuclei (except the dorsal cochlear nucleus and give rise to a variety of cell types, i.e. microglial cells, astrocytes and neurons. Interestingly, many of the newborn neurons had an inhibitory (GABAergic phenotype. This result is intriguing since sensory deafferentation is usually accompanied by enhanced excitation, consistent with a reduction in central inhibition. The membrane potential effect of GABA depends, however, on the intra-cellular chloride concentration, which is maintained at low levels in adults by the potassium chloride co-transporter KCC2. The KCC2 density on the plasma membrane of neurons was then assessed after cochlear deafferentation in the cochlear nuclei ipsilateral and contralateral to the lesion. Cochlear deafferentation is accompanied by a strong down-regulation of KCC2 ipsilateral to the lesion at 3 and 30 days post-lesion. This study suggests that reactive neurogenesis and downregulation of KCC2 is part of the vast repertoire involved in homeostatic plasticity triggered by hearing loss. These central changes may also play a role in the generation of tinnitus and hyperacusis.

  19. Emotion reactivity and regulation in late-life generalized anxiety disorder: Functional connectivity at baseline and post-treatment

    Science.gov (United States)

    Andreescu, Carmen; Sheu, Lei K.; Tudorascu, Dana; Gross, James J.; Walker, Sarah; Banihashemi, Layla; Aizenstein, Howard

    2014-01-01

    Objectives Generalized Anxiety Disorder (GAD) is one of the most prevalent mental disorders in the elderly, but its functional neuroanatomy is not well understood. Given the role of emotion dysregulation in GAD, we sought to describe the neural bases of emotion regulation in late-life GAD by analyzing the functional connectivity (FC) in the Salience Network and the Executive Control Network during worry induction and worry reappraisal. Design, setting and participants Twenty-eight elderly GAD and thirty-one non-anxious comparison participants were included. Twelve elderly GAD completed a 12-week pharmacotherapy trial. We used an in-scanner worry script that alternates blocks of worry induction and reappraisal. We assessed network FC, employing the following seeds: anterior insula (AI), dorso-lateral prefrontal cortex (dlPFC), the bed nucleus of stria terminalis (BNST), the paraventricular nucleus (PVN). Results GAD participants exhibited greater FC during worry induction between the left AI and the right orbito-frontal cortex (OFC), and between the BNST and the subgenual cingulate. During worry reappraisal, the non-anxious participants had greater FC between the left dlPFC and the medial PFC, as well as between the left AI and the medial PFC, while elderly GAD had greater FC between the PVN and the amygdala. Following twelve weeks of pharmacotherapy, GAD participants had greater connectivity between the dlPFC and several prefrontal regions during worry reappraisal. Conclusion FC during worry induction and reappraisal points toward abnormalities in both worry generation and worry reappraisal. Following successful pharmacologic treatment, we observed greater connectivity in the prefrontal nodes of the Executive Control Network during reappraisal of worry. PMID:24996397

  20. Hepatitis A virus cellular receptor 2 (HAVCR2) is decreased with viral infection and regulates pro-labour mediators OA.

    Science.gov (United States)

    Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-07-01

    Intrauterine infection caused by viral infection has been implicated to contribute to preterm birth. Hepatitis A virus cellular receptor 2 (HAVCR2) regulates inflammation in non-gestational tissues in response to viral infection. The aims of this study were to determine the effect of: (i) viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on HAVCR2 expression; and (ii) HAVCR2 silencing by siRNA (siHAVCR2) in primary amnion and myometrial cells on poly(I:C)-induced inflammation. In human foetal membranes and myometrium, HAVCR2 mRNA and protein expression was decreased when exposed to poly(I:C). Treatment of primary amnion and myometrial cells with poly(I:C) significantly increased the expression and release of pro-inflammatory cytokines TNF, IL1A, IL1B and IL6; the expression of chemokines CXCL8 and CCL2; the expression and secretion of adhesion molecules ICAM1 and VCAM1; and PTGS2 and PTGFR mRNA expression and the release of prostaglandin PGF 2α . This increase was significantly augmented in cells transfected with siHAVCR2. Furthermore, mRNA expression of anti-inflammatory cytokines IL4 and IL10 was significantly decreased. Collectively, our data suggest that HAVCR2 regulates cytokines, chemokines, prostaglandins and cell adhesion molecules in the presence of viral infection. This suggests a potential for HAVCR2 activators as therapeutics for the management of preterm birth associated with viral infections. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    Science.gov (United States)

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  2. A Novel Nuclear Trafficking Module Regulates the Nucleocytoplasmic Localization of the Rabies Virus Interferon Antagonist, P Protein*

    Science.gov (United States)

    Oksayan, Sibil; Wiltzer, Linda; Rowe, Caitlin L.; Blondel, Danielle; Jans, David A.; Moseley, Gregory W.

    2012-01-01

    Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1–P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3–P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection. PMID:22700958

  3. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core.

    Directory of Open Access Journals (Sweden)

    Barbora Lubyova

    Full Text Available In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc protein and dimethylates arginine residues within the arginine-rich domain (ARD of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI and R156 (outside ARDs were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs, arginine methylation and ubiquitination.

  4. Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice.

    Science.gov (United States)

    Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2018-04-10

    Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Transfusion-transmitted hepatitis B virus (HBV) infection from an individual-donation nucleic acid (ID-NAT) non-reactive donor.

    LENUS (Irish Health Repository)

    O'Flaherty, N

    2018-02-14

    Lookback was initiated upon notification of an acute HBV infection in a repeat Irish donor, 108 days post-donation. The donation screened non-reactive by individual-donation nucleic acid testing (ID-NAT) using the Procleix Ultrio Elite multiplex assay and again when the archived sample was retested, but the discriminatory assay for HBV was reactive. The immunocompromised recipient of the implicated red cell component was tested 110 days post-transfusion, revealing a HBV DNA viral load of 470 IU\\/ml. Genotype C2 sequences identical across two regions of the HBV genome were found in samples from the donor and recipient.

  6. Evaluation of live attenuated H7N3 and H7N7 vaccine viruses for their receptor binding preferences, immunogenicity in ferrets and cross reactivity to the novel H7N9 virus.

    Directory of Open Access Journals (Sweden)

    Qi Xu

    Full Text Available Live attenuated influenza vaccine (LAIV candidates of the H7 subtype, A/Netherlands/219/03 (H7N7, NL03 ca and A/chicken/British Columbia/CN-6/2004 (H7N3, BC04 ca, were evaluated for their receptor binding specificity and immunogenicity in ferrets. The BC04 ca virus exhibited α2,3-SA and α2,6-SA dual receptor binding preference while the NL03 ca virus preferentially bound to α2,3-SA. Substitution of the Q226 and G228 (Q-G by the L226 and S228 (L-S residues in the HA improved binding to α2,6-SA for NL03 ca. The vaccine viruses with L-S retained the attenuation phenotype. NL03 L-S ca replicated more efficiently than the original NL03 ca virus in the upper respiratory tract of ferrets, and induced higher levels of humoral and cellular immune responses. Prior vaccination with seasonal LAIV reduced H7-specific antibody responses, but did not reduce the H7N7 vaccine mediated protection against a heterologous H7N3 BC04 wt virus infection in ferrets. In addition, the H7N3 and H7N7 vaccine immunized ferret sera cross reacted with the newly emerged H7N9 virus. These data, in combination with the safety data from previously conducted Phase 1 studies, suggest that these vaccines may have a role in responding to the threat posed by the H7N9 virus.

  7. Selective silencing of full-length CD80 but not IgV-CD80 leads to impaired clonal deletion of self-reactive T cells and altered regulation of immune responses.

    Science.gov (United States)

    Bugeon, L; Hargreaves, R E; Crompton, T; Outram, S; Rahemtulla, A; Porter, A C; Dallman, M J

    2001-01-01

    Co-stimulation provided by the B7 family of proteins underpins the development of protective immunity. There are three identified members of this family: CD80, its splice variant IgV-CD80 and CD86. It has hitherto been difficult to analyze the expression and function of IgV-CD80 since there are no appropriate reagents capable of distinguishing it from CD80. We have generated mice, by gene targeting, the lack CD80 whilst maintaining expression of IgV-CD80. Mutant animals did not delete T cells bearing mammary tumor virus-reactive TCR as efficiently as wild-type animals. We also demonstrate the importance of IgV-CD80 in the responses of recently activated cells and reveal a role for CD80 in sustaining T cell responses. CD86, whilst critical to primary T cell activation, made only a minor contribution to re-activation of normal cells.

  8. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12 expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury

    Directory of Open Access Journals (Sweden)

    Walker Aisha L

    2005-10-01

    Full Text Available Abstract Background Stromal cell-derived factor 1 (SDF-1 or CXCL12 is chemotaxic for CXCR4 expressing bone marrow-derived cells. It functions in brain embryonic development and in response to ischemic injury in helping guide neuroblast migration and vasculogenesis. In experimental adult stroke models SDF-1 is expressed perivascularly in the injured region up to 30 days after the injury, suggesting it could be a therapeutic target for tissue repair strategies. We hypothesized that SDF-1 would be expressed in similar temporal and spatial patterns following hypoxic-ischemic (HI injury in neonatal brain. Results Twenty-five 7-day-old C57BL/J mice underwent HI injury. SDF-1 expression was up regulated up to 7 days after the injury but not at the later time points. The chief sites of SDF-1 up regulation were astrocytes, their foot processes along blood vessels and endothelial cells. Conclusion The localization of SDF-1 along blood vessels in the HI injury zone suggests that these perivascular areas are where chemotaxic signaling for cellular recruitment originates and that reactive astrocytes are major mediators of this process. The associated endothelium is likely to be the site for vascular attachment and diapedesis of CXCR4 receptor expressing cells to enter the injured tissue. Here we show that, relative to adults, neonates have a significantly smaller window of opportunity for SDF-1 based vascular chemotaxic recruitment of bone marrow-derived cells. Therefore, without modification, following neonatal HI injury there is only a narrow period of time for endogenous SDF-1 mediated chemotaxis and recruitment of reparative cells, including exogenously administered stem/progenitor cells.

  9. Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture

    Directory of Open Access Journals (Sweden)

    Jesper A. B. Strickertsson

    2014-08-01

    Full Text Available Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS. In recent years increasing attention has been drawn to microRNAs (miRNAs due to their role in the pathogenesis of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E. faecalis for 24 h or for 5 days or with E. faecalis lysate for 5 days. The miRNA expression was examined by microarray analysis using Affymetrix GeneChip miRNA Arrays. To test the effect of ROS, MKN74 cells were treated with 100 mM tert-Butyl hydroperoxide (TBHP. Following 5 days of E. faecalis infection we found 91 differentially expressed miRNAs in response to living bacteria and 2 miRNAs responded to E. faecalis lysate. We verified the down-regulation of the miR-17-92 and miR-106-363 clusters and of other miRNAs involved in the oxidative stress-response by qRT-PCR. We conclude that only infection by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial cells to bacterial infections.

  10. Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection

    Science.gov (United States)

    Kemper, Martin F.; Stirone, Chris; Krause, Diana N.; Duckles, Sue P.; Procaccio, Vincent

    2014-01-01

    We previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC). In vessels ex vivo, estrogen decreased protein levels of PGC-1α via activation of phosphatidylinositol 3-kinase (PI3K). Estrogen treatment also increased phosphorylation of forkhead transcription factor, FoxO1, a known pathway for PGC-1α downregulation. In contrast to the decrease in PGC-1α, estrogen increased protein levels of nuclear respiratory factor 1, a known PGC target and mediator of mitochondrial biogenesis. The latter effect of estrogen was independent of PI3K, suggesting a separate mechanism consistent with increased expression of PGC-1β and PRC. We demonstrated increased mitochondrial biogenesis following estrogen treatment in vivo; cerebrovascular levels of mitochondrial transcription factor A and electron transport chain subunits as well as the mitochondrial/ nuclear DNA ratio were increased. We examined a downstream target of PGC-1β, glutamate-cysteine ligase (GCL), the rate-limiting enzyme for glutathione synthesis. In vivo estrogen increased protein levels of both GCL subunits and total glutathione levels. Together these data show estrogen differentially regulates PGC-1 isoforms in brain vasculature, underscoring the importance of these coactivators in adapting mitochondria in specific tissues. By upregulating PGC-1β and/or PRC, estrogen appears to enhance mitochondrial biogenesis, function and reactive oxygen species protection. PMID:24275351

  11. Glucagon-Like Peptide-1 Secreting Cell Function as well as Production of Inflammatory Reactive Oxygen Species Is Differently Regulated by Glycated Serum and High Levels of Glucose

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1, an intestinal hormone contributing to glucose homeostasis, is synthesized by proglucagon and secreted from intestinal neuroendocrine cells in response to nutrients. GLP-1 secretion is impaired in type 2 diabetes patients. Here, we aimed at investigating whether diabetic toxic products (glycated serum (GS or high levels of glucose (HG may affect viability, function, and insulin sensitivity of the GLP-1 secreting cell line GLUTag. Cells were cultured for 5 days in presence or absence of different dilutions of GS or HG. GS and HG (alone or in combination increased reactive oxygen species (ROS production and upregulated proglucagon mRNA expression as compared to control medium. Only HG increased total production and release of active GLP-1, while GS alone abrogated secretion of active GLP-1. HG-mediated effects were associated with the increased cell content of the prohormone convertase 1/3 (PC 1/3, while GS alone downregulated this enzyme. HG upregulated Glucokinase (GK and downregulated SYNTHAXIN-1. GS abrogated SYNTHAXIN-1 and SNAP-25. Finally, high doses of GS alone or in combination with HG reduced insulin-mediated IRS-1 phosphorylation. In conclusion, we showed that GS and HG might regulate different pathways of GLP-1 production in diabetes, directly altering the function of neuroendocrine cells secreting this hormone.

  12. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo.

    Science.gov (United States)

    Gao, Junqing; Chen, Tao; Zhao, Deqiang; Zheng, Jianpu; Liu, Zongjun

    2016-01-01

    The aim of this study was to evaluate the effect of Ginkgolide B (GB) on doxorubicin (DOX) induced cardiotoxicity in vitro and in vivo. Rat cardiomyocyte cell line H9c2 was pretreated with GB and subsequently subjected to doxorubicin treatment. Cell viability and cell apoptosis were assessed by MTT assay and Hoechst staining, respectively. Reactive oxygen species (ROS), Akt phosphorylation and intracellular calcium were equally determined in order to explore the underlying molecular mechanism. To verify the in vivo therapeutic effect of GB, we established a mouse model of cardiotoxicity and determined left ventricle ejection fraction (LVEF) and left ventricular mass (LVM). The in vitro experimental results indicated that pretreatment with GB significantly decreases the viability and apoptosis of H9c2 cells by decreasing ROS and intracellular calcium levels and activating Akt phosphorylation. In the in vivo study, we recorded an improved LVEF and a decreased LVM in the group of cardiotoxic rats treated with GB. Altogether, our findings anticipate that GB exerts a cardioprotective effect through possible regulation of the ROS, Akt and calcium pathways. The findings suggest that combination of GB with DOX in chemotherapy could help avoid the cardiotoxic side effects of GB.

  13. Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

    Science.gov (United States)

    Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E

    2015-10-01

    The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious

  14. B-cell-rich T-cell lymphoma associated with Epstein-Barr virus-reactivation and T-cell suppression following antithymocyte globulin therapy in a patient with severe aplastic anemia

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Hanaoka

    2015-09-01

    Full Text Available B-cell lymphoproliferative disorder (B-LPD is generally characterized by the proliferation of Epstein-Barr virus (EBV-infected B lymphocytes. We here report the development of EBV-negative B-LPD associated with EBV-reactivation following antithymocyte globulin (ATG therapy in a patient with aplastic anemia. The molecular autopsy study showed the sparse EBV-infected clonal T cells could be critically involved in the pathogenesis of EBV-negative oligoclonal B-LPD through cytokine amplification and escape from T-cell surveillances attributable to ATG-based immunosuppressive therapy, leading to an extremely rare B-cell-rich T-cell lymphoma. This report helps in elucidating the complex pathophysiology of intractable B-LPD refractory to rituximab.

  15. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  16. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings.

    Science.gov (United States)

    Airaki, Morad; Leterrier, Marina; Valderrama, Raquel; Chaki, Mounira; Begara-Morales, Juan C; Barroso, Juan B; del Río, Luis A; Palma, José M; Corpas, Francisco J

    2015-09-01

    The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes

  17. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  18. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  19. Thyrotropin Receptor Antibody (TRAb)-IgM Levels Are Markedly Higher Than TRAb-IgG Levels in Graves' Disease Patients and Controls, and TRAb-IgM Production Is Related to Epstein-Barr Virus Reactivation.

    Science.gov (United States)

    Kumata, Keisuke; Nagata, Keiko; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Fukata, Shuji; Hayashi, Kazuhiko

    2016-10-01

    Graves' disease is an autoimmune thyroid disorder that mainly presents as hyperthyroidism and is caused by thyrotropin receptor antibodies (TRAbs) that stimulate thyroid-stimulating hormone receptors. We previously reported that Graves' disease patients and healthy controls both had Epstein-Barr virus (EBV)-infected TRAb-positive B cells and the EBV-reactivated induction of these B cells in cultures may induce the production of TRAbs. In the present study, we quantified serum TRAb-IgG and TRAb-IgM levels in 34 Graves' disease patients and 15 controls using ELISA to elucidate the mechanisms underlying EBV-related antibody production. As expected, TRAb-IgG and TRAb-IgM levels were higher in Graves' disease patients than in controls; however, TRAb-IgM levels were significantly higher than those of TRAb-IgG levels, whereas total IgM levels were lower than total IgG levels. On the other hand, the enhanced production of TRAb-IgM was frequently observed in patients with EBV reactivation. These results are consistent with the fact that the percentage of autoreactive IgM B cells are higher than that of autoreactive IgG B cells, and support the EBV-related polyclonal B cell activation. It is necessary to clarify the biological characteristics of TRAb-IgM and the relationship between TRAb isotypes and the biology of Graves' disease.

  20. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase.

    Directory of Open Access Journals (Sweden)

    Michael B Cheung

    Full Text Available Respiratory syncytial virus (RSV has been reported to infect human mesenchymal stem cells (MSCs but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold and indoleamine-2,3-dioxygenase (IDO (~70-fold than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD.

  1. A proteomic perspective of inbuilt viral protein regulation: pUL46 tegument protein is targeted for degradation by ICP0 during herpes simplex virus type 1 infection.

    Science.gov (United States)

    Lin, Aaron E; Greco, Todd M; Döhner, Katinka; Sodeik, Beate; Cristea, Ileana M

    2013-11-01

    Much like the host cells they infect, viruses must also regulate their life cycles. Herpes simples virus type 1 (HSV-1), a prominent human pathogen, uses a promoter-rich genome in conjunction with multiple viral trans-activating factors. Following entry into host cells, the virion-associated outer tegument proteins pUL46 and pUL47 act to increase expression of viral immediate-early (α) genes, thereby helping initiate the infection life cycle. Because pUL46 has gone largely unstudied, we employed a hybrid mass spectrometry-based approach to determine how pUL46 exerts its functions during early stages of infection. For a spatio-temporal characterization of pUL46, time-lapse microscopy was performed in live cells to define its dynamic localization from 2 to 24 h postinfection. Next, pUL46-containing protein complexes were immunoaffinity purified during infection of human fibroblasts and analyzed by mass spectrometry to investigate virus-virus and virus-host interactions, as well as post-translational modifications. We demonstrated that pUL46 is heavily phosphorylated in at least 23 sites. One phosphorylation site matched the consensus 14-3-3 phospho-binding motif, consistent with our identification of 14-3-3 proteins and host and viral kinases as specific pUL46 interactions. Moreover, we determined that pUL46 specifically interacts with the viral E3 ubiquitin ligase ICP0. We demonstrated that pUL46 is partially degraded in a proteasome-mediated manner during infection, and that the catalytic activity of ICP0 is responsible for this degradation. This is the first evidence of a viral protein being targeted for degradation by another viral protein during HSV-1 infection. Together, these data indicate that pUL46 levels are tightly controlled and important for the temporal regulation of viral gene expression throughout the virus life cycle. The concept of a structural virion protein, pUL46, performing nonstructural roles is likely to reflect a theme common to many viruses

  2. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7.

    Directory of Open Access Journals (Sweden)

    Ben Hudjetz

    2012-01-01

    Full Text Available Influenza A viruses may cross species barriers and transmit to humans with the potential to cause pandemics. Interplay of human- (PB2 627K and avian-like (PB2 627E influenza polymerase complexes with unknown host factors have been postulated to play a key role in interspecies transmission. Here, we have identified human importin-α isoforms (α1 and α7 as positive regulators of human- but not avian-like polymerase activity. Human-like polymerase activity correlated with efficient recruitment of α1 and α7 to viral ribonucleoprotein complexes (vRNPs without affecting subcellular localization. We also observed that human-like influenza virus growth was impaired in α1 and α7 downregulated human lung cells. Mice lacking α7 were less susceptible to human- but not avian-like influenza virus infection. Thus, α1 and α7 are positive regulators of human-like polymerase activity and pathogenicity beyond their role in nuclear transport.

  3. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Ju [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China); Chen, Ta-Liang [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tseng, Yuan-Yun [Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Gong-Jhe [Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); Hsieh, Ming-Hui [Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan (China); Lin, Yung-Wei [Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Chen, Ruei-Ming, E-mail: rmchen@tmu.edu.tw [Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan (China); Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan (China); Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan (China); Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan (China)

    2016-08-01

    Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway. - Highlights: • Exposure of mice with intracranial gliomas to honokiol induces cell apoptosis and autophagy. • Honokiol triggers autophagy of human glioma cells via the PISK/AKT/mTOR signaling pathway. • P53 induces autophagy via regulating the AKT/mTOR pathway in honokiol-treated glioma cells. • ROS participates

  4. Frequency of hepatitis C viral RNA in anti-hepatitis C virus non-reactive blood donors with normal alanine aminotransferase

    International Nuclear Information System (INIS)

    Ali, N.; Moinuddin, A.; Ahmed, S.A.

    2010-01-01

    To determine the frequency of HCV RNA in an anti-HCV non-reactive blood donor population with normal ALT, and its cost effectiveness. Study Design: An observational study. Place and Duration of Study: Baqai Institute of Haematology, Baqai Medical University, Karachi, and Combined Military Hospital, Malir Cantt, Karachi, from May 2006 to April 2008. Methodology: After initial interview and mini-medical examination, demographic data of blood donors was recorded, and anti-HCV, HBsAg and HIV were screened by third generation ELISA. Those reactive to anti-HCV, HbsAg and/or HIV were excluded. Four hundred consecutive donors with ALT within the reference range of 15-41 units/L were included in study. HCV RNA RT-PCR was performed on 5 sample mini-pools using Bio-Rad Real time PCR equipment. Results: All 400 donors were male, with mean age 27 years SD + 6.2. ALT of blood donors varied between 15-41 U/L with mean of 31.5+6.4 U/L, HCV RNA was detected in 2/400 (0.5%) blood donors. Screening one blood bag for HCV RNA costs Rs 4,000.00 equivalent to 50 US dollars, while screening through 5 sample mini-pools was Rs. 800.00 equivalent to approximately 10 US dollars. Conclusion: HCV RNA frequency was 0.5% (2/400) in the studied anti-HCV non-reactive normal ALT blood donors. Screening through mini-pools is more cost-effective. (author)

  5. Two cis-acting elements responsible for posttranscriptional trans-regulation of gene expression of human T-cell leukemia virus type I

    International Nuclear Information System (INIS)

    Seiki, Motoharu; Inoue, Junichiro; Hidaka, Makoto; Yoshida, Mitsuaki

    1988-01-01

    The pX sequence of human T-cell leukemia virus type I codes for two nuclear proteins, p40 tax and p27 rex and a cytoplasmic protein, p21 X-III . p40 tax activates transcription from the long terminal repeat (LTR), whereas p27 rex modulates posttranscriptional processing to accumulate gag and env mRNAs that retain intron sequences. In this paper, the authors identify two cis-acting sequence elements needed for regulation by p27 rex : a 5' splice signal and a specific sequence in the 3' LTR. These two sequence elements are sufficient for regulation by p27 rex ; expression of a cellular gene (metallothionein I) became sensitive to rex regulation when the LTR was inserted at the 3' end of this gene. The requirement for these two elements suggests and unusual regulatory mechanism of RNA processing in the nucleus

  6. UV-enhanced reactivation in mammalian cells: increase by caffeine

    International Nuclear Information System (INIS)

    Lytle, C.D.; Iacangelo, A.L.; Lin, C.H.; Goddard, J.G.

    1981-01-01

    It has been reported that caffeine decreases UV-enhanced reactivation of UV-irradiated Herpes simplex virus in CV-l monkey kidney cells. That occurred when there was no delay between cell irradiation and virus infection. In the present study, virus infection was delayed following cell irradiation to allow an 'induction' period separate from the 'expression' period which occurs during the virus infection. Thus, the effects of caffeine on 'induction' and 'expression' could be determined separately. Caffeine increased the expression of UV-enhanced reactivation, while causing a small decrease in the 'induction' of enhanced reactivation. (author)

  7. A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hugh D.; Eisfeld, Amie J.; Sims, Amy; McDermott, Jason E.; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Tilton, Susan C.; Tchitchek, Nicholas; Josset, Laurence; Li, Chengjun; Ellis, Amy L.; Chang, Jean H.; Heegel, Robert A.; Luna, Maria L.; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Neumann, Gabriele; Benecke, Arndt; Smith, Richard D.; Baric, Ralph; Kawaoka, Yoshihiro; Katze, Michael G.; Waters, Katrina M.

    2013-07-25

    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.

  8. How much of Virus-Specific CD8 T Cell Reactivity is Detected with a Peptide Pool when Compared to Individual Peptides?

    Directory of Open Access Journals (Sweden)

    Ramu A. Subbramanian

    2012-10-01

    Full Text Available Immune monitoring of T cell responses increasingly relies on the use of peptide pools. Peptides, when restricted by the same HLA allele, and presented from within the same peptide pool, can compete for HLA binding sites. What impact such competition has on functional T cell stimulation, however, is not clear. Using a model peptide pool that is comprised of 32 well-defined viral epitopes from Cytomegalovirus, Epstein-Barr virus, and Influenza viruses (CEF peptide pool, we assessed peptide competition in PBMC from 42 human subjects. The magnitude of the peptide pool-elicited CD8 T cell responses was a mean 79% and a median 77% of the sum of the CD8 T cell responses elicited by the individual peptides. Therefore, while the effect of peptide competition was evident, it was of a relatively minor magnitude. By studying the dose-response curves for individual CEF peptides, we show that several of these peptides are present in the CEF-pool at concentrations that are orders of magnitude in excess of what is needed for the activation threshold of the CD8 T cells. The presence of such T cells with very high functional avidity for the viral antigens can explain why the effect of peptide competition is relatively minor within the CEF-pool.

  9. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  10. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection.

    Directory of Open Access Journals (Sweden)

    Indrani Das

    Full Text Available BACKGROUND: The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV emphasize the need to understand the biology of the virus for developing effective antiviral therapies. METHODS AND FINDINGS: In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90 mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27 and Indian outbreak strain of 2006 (DRDE-06. Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production. CONCLUSION: Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06

  11. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  12. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  13. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65

    Directory of Open Access Journals (Sweden)

    Pengcheng Li

    2018-04-01

    Full Text Available Dengue virus (DENV is a mosquito-borne single-stranded RNA virus causing human disease with variable severity. The production of massive inflammatory cytokines in dengue patients has been associated with dengue disease severity. However, the regulation of these inflammatory responses remains unclear. In this study, we report that SIRT6 is a negative regulator of innate immune responses during DENV infection. Silencing of Sirt6 enhances DENV-induced proinflammatory cytokine and chemokine production. Overexpression of SIRT6 inhibits RIG-I-like receptor (RLR and Toll-like receptor 3 (TLR3 mediated NF-κB activation. The sirtuin core domain of SIRT6 is required for the inhibition of NF-κB p65 function. SIRT6 interacts with the DNA binding domain of p65 and competes with p65 to occupy the Il6 promoter during DENV infection. Collectively, our study demonstrates that SIRT6 negatively regulates DENV-induced inflammatory response via RLR and TLR3 signaling pathways.

  14. Electron microscopic identification of Zinga virus as a strain of Rift Valley fever virus.

    Science.gov (United States)

    Olaleye, O D; Baigent, C L; Mueller, G; Tomori, O; Schmitz, H

    1992-01-01

    Electron microscopic examination of a negatively stained suspension of Zinga virus showed particles 90-100 nm in diameter, enveloped with spikes 12-20 nm in length and 5 nm in diameter. Further identification of the virus by immune electron microscopy showed the reactivity of human Rift Valley fever virus-positive serum with Zinga virus. Results of this study are in agreement with earlier reports that Zinga virus is a strain of Rift Valley fever virus.

  15. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    Science.gov (United States)

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  16. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  17. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions.

    OpenAIRE

    Pettit, S C; Moody, M D; Wehbie, R S; Kaplan, A H; Nantermet, P V; Klein, C A; Swanstrom, R

    1994-01-01

    The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p...

  18. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation.

    Science.gov (United States)

    Xu, Donglin; Zhou, Guohui

    2017-02-10

    Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host

  19. Analysis of the association opportunistic infections with c-reactive protein focus toxoplasma, cytomegalovirus, rubella,and hepatitis in human immunodeficiency virus

    Science.gov (United States)

    Khadijah, K. H.; Ferica, K.; Katu, S.; Halim, R.; Mubin, A. H.

    2018-03-01

    Opportunistic infections occur more often severe in people with HIV. C-reactive protein is known to have a prognostic value in HIV and those with HIV-related opportunistic infections. High level of CRP will increase therisk of infection toxoplasma, CMV, rubella,and hepatitis in HIV.Analyzing association of opportunistic infections toxoplasma, CMV, rubella,and hepatitis with the level of CRP in HIV, a cross-sectional analytic study wasduring January-July 2017 on both outpatientand inpatient HIV subjects at Wahidin Sudirohusodo Hospital, Makassar. Each HIV patient is categorized into agroup of opportunistic infections: toxoplasma, CMV, rubella, hepatitis. CRP levels will be assessed in each group, defined by normal values 0.05).

  20. Three monoclonal antibodies to the VHS virus glycoprotein: comparison of reactivity in relation to differences in immunoglobulin variable domain gene sequences

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Cupit, P.M.; Secombes, C.J.

    2000-01-01

    and their neutralising activity was evident. Binding kinetic analyses by plasmon resonance identified differences in the dissociation rate constant (kd) as a possible explanation for the different reactivity levels of the MAbs. The Ig variable heavy (VH) and light (V kappa) domain gene sequences of the three hybridomas...... were compared. The inferred amino acid sequence of the two neutralising antibody VH domains differed by three amino acid residues (97% identity) and only one residue difference was evident in the Vk. domains. In contrast, IP1H3 shared only 38 and 39% identity with the 3F1A2 and 3F1H10 VH domains...... respectively and 49 and 50% identity with the 3F1A2 and 3F1H10 VK domains respectively. The neutralising antibodies were produced by hybridomas originating from the same fusion and the high nucleotide sequence homology of the variable Ig gene regions indicated that the plasma cell partners of the hybridomas...

  1. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production.

    Directory of Open Access Journals (Sweden)

    Huamei Forsman

    Full Text Available Neutrophils express different chemoattractant receptors of importance for guiding the cells from the blood stream to sites of inflammation. These receptors communicate with one another, a cross talk manifested as hierarchical, heterologous receptor desensitization. We describe a new receptor cross talk mechanism, by which desensitized formyl peptide receptors (FPRdes can be reactivated. FPR desensitization is induced through binding of specific FPR agonists and is reached after a short period of active signaling. The mechanism that transfers the receptor to a non-signaling desensitized state is not known, and a signaling pathway has so far not been described, that transfers FPRdes back to an active signaling state. The reactivation signal was generated by PAF stimulation of its receptor (PAFR and the cross talk was uni-directional. LatrunculinA, an inhibitor of actin polymerization, induced a similar reactivation of FPRdes as PAF while the phosphatase inhibitor CalyculinA inhibited reactivation, suggesting a role for the actin cytoskeleton in receptor desensitization and reactivation. The activated PAFR could, however, reactivate FPRdes also when the cytoskeleton was disrupted prior to activation. The receptor cross talk model presented prophesies that the contact on the inner leaflet of the plasma membrane that blocks signaling between the G-protein and the FPR is not a point of no return; the receptor cross-talk from the PAFRs to the FPRdes initiates an actin-independent signaling pathway that turns desensitized receptors back to a signaling state. This represents a novel mechanism for amplification of neutrophil production of reactive oxygen species.

  2. Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8+ T Cell-Lineage-Specific Function

    Directory of Open Access Journals (Sweden)

    Brendan E. Russ

    2017-12-01

    Full Text Available Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs, we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+ chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.

  3. The role of the local microenvironment in regulating susceptibility and immune responses to sexually transmitted viruses in the female genital tract.

    Science.gov (United States)

    Kaushic, Charu

    2009-12-01

    Sexually transmitted viruses cause chronic infections that have serious long-term health consequences. Based on the evidence from clinical and epidemiological studies, women carry a disproportionately higher burden of sexually transmitted diseases. The reasons for this are not well understood and possibly relate to a variety of social, behavioral and economic factors. In addition to these factors there are biological reasons that contribute to the higher prevalence in women. In this context it is critical to focus on and understand the local microenvironment of the female genital tract, since the majority of viral infections in women occur by heterosexual transmission. The genital tract is also the target site for initiation and maintenance of protective immune responses that could prevent or eliminate viral infections. The epithelial cells of the genital tract provide the first line of defense against viral entry. The interactions between each sexually transmitted virus and the genital epithelium are distinct and determine the outcome of exposure. They are also influenced by a number of factors in the local genital milieu. Among these factors are the female sex hormones that regulate both the susceptibility as well as immune responses to viral infections in the genital tract. Better understanding of the interactions of viruses with the local environment in the female genital tract will lead to development of novel methods to prevent sexually transmitted infections as well as to enhance innate and adaptive immunity.

  4. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1.

    Science.gov (United States)

    Dyson, Ossie F; Pagano, Joseph S; Whitehurst, Christopher B

    2017-10-01

    Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae ; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and

  5. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env in an adjuvant containing monophosphoryl lipid A (MPL and QS21 (AS02A. Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4, gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L, also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D or monomer (gp140-L(M. Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN human monoclonal antibodies (mAbs similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.

  6. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    Science.gov (United States)

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  7. Reactivation of hepatitis B virus infection with persistently negative HBsAg on three HBsAg assays in a lymphoma patient undergoing chemotherapy.

    Science.gov (United States)

    Cheung, Wing-I; Chan, Henry Lik-Yuen; Leung, Vincent King-Sun; Tse, Chi-Hang; Fung, Kitty; Lin, Shek-Ying; Wong, Ann; Wong, Vincent Wai-Sun; Chau, Tai-Nin

    2010-02-01

    In patients with occult hepatitis B virus (HBV) infection, acute exacerbation may occur when they become immunocompromised. Usually, these patients develop hepatitis B surface antigen (HBsAg) seroreversion during the flare. Here we report on a patient with occult HBV infection, who developed HBV exacerbation after chemotherapy for diffuse large B-cell lymphoma. The resurgence of HBV DNA preceded the elevation of liver enzymes for 20 weeks. Atypically, despite high viraemia, serological tests showed persistently negative HBsAg using three different sensitive HBsAg assays (i.e., Architect, Murex and AxSYM). On comparing the amino acid sequence of the index patient with the consensus sequence, five mutations were found at pre-S1, five at pre-S2 and twenty-three mutations at the S region. Six amino acid mutations were located in the 'a' determinant, including P120T, K122R, M133T, F134L, D144A and G145A. The mutants K122R, F134L and G145A in our patient have not been tested for their sensitivity to Architect and Murex assays by the previous investigators and might represent the escape mutants to these assays.

  8. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Replication of wild type RNA 3 of alfalfa mosaic virus (AIMV) and mutants with frameshifts in the P3 or coat protein (CP) genes was studied in protoplasts from tobacco plants transformed with DNA copies of AIMV RNAs 1 and 2. Accumulation of viral plus and minus strand RNAs was monitored with

  9. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation

    DEFF Research Database (Denmark)

    Pham, Long; Ngo, HT; Lim, YS

    2012-01-01

    Background & Aims Hepatitis C virus (HCV) requires host cellular proteins for its own propagation. To identify the cellular factors necessary for HCV propagation, we have recently screened the small interfering RNA (siRNA) library targeting cell cycle genes using cell culture grown HCV (HCVcc...

  10. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A-binding protein are distinct processes mediated by two Epstein Barr virus proteins.

    Directory of Open Access Journals (Sweden)

    Richard Park

    Full Text Available Many viruses target cytoplasmic polyA binding protein (PABPC to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs. During lytic replication of Epstein Barr Virus (EBV we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E, was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.

  11. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection.

    Science.gov (United States)

    Zainal, Nurhafiza; Chang, Chih-Peng; Cheng, Yi-Lin; Wu, Yan-Wei; Anderson, Robert; Wan, Shu-Wen; Chen, Chia-Ling; Ho, Tzong-Shiann; AbuBakar, Sazaly; Lin, Yee-Shin

    2017-02-20

    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.

  12. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation

    NARCIS (Netherlands)

    Kleemann, R.; Gervois, P.P.; Verschuren, L.; Staels, B.; Princen, H.M.G.; Kooistra, T.

    2003-01-01

    C-reactive protein (CRP) is a major acute-phase protein in humans. Elevated plasma CRP levels are a risk factor for cardiovascular disease. CRP is predominantly expressed in hepatocytes and is induced by interleukin-1 (IL-1) and IL-6 under inflammatory situations, such as the acute phase. Fibrates

  13. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  14. A virus-sensitive suppressor cell is involved in the regulation of human allospecific T cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Muluk, S.C.; Bernstein, D.C.; Shearer, G.M.

    1989-01-01

    The in vitro generation of allospecific CTL by human PBMC was enhanced 4- to 16-fold by sequential plastic and nylon wool adherence, which depleted the PBMC of macrophages and B cells. The enhanced CTL response was suppressed by adding back irradiated, unfractionated PBMC or adherent cells to the depleted cells. This finding suggests that the enhanced CTL response was not simply a consequence of enrichment of T cells, but was instead due to active suppression by radioresistant cells contained in the adherent fraction. Of note is the finding that, unlike the CTL response, the proliferative response to allostimulation was not affected by the removal of adherent cells. The suppressor function could be abrogated by preincubation of irradiated PBMC with influenza A virus before the coculture with depleted cells. Furthermore, costimulation of unfractionated PBMC with influenza A virus and allogeneic stimulators augmented allospecific CTL activity. Thus, in the adherent fraction of human PBMC, there appears to be a native suppressor population that can be functionally inactivated by virus. This result may account for the clinical observation of increased allograft rejection after certain viral infections

  15. Management of hepatitis B reactivation in patients receiving cancer chemotherapy

    OpenAIRE

    Huang, Yi-Wen; Chung, Raymond T.

    2012-01-01

    Hepatitis B virus (HBV) reactivation is well documented in previously resolved or inactive HBV carriers who receive cancer chemotherapy. The consequences of HBV reactivation range from self-limited conditions to fulminant hepatic failure and death. HBV reactivation also leads to premature termination of chemotherapy or delay in treatment schedules. This review summarizes current knowledge of management of HBV reactivation in patients receiving cancer chemotherapy. HBV surface antigen (HBsAg) ...

  16. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  17. A Tariff for Reactive Power

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would

  18. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  19. Blood transfusion and hepatitis viruses

    African Journals Online (AJOL)

    virus in blood donors: investigation of type-specific differences in serologic reactivity and rate of alanine aminotransferase abnormalities. Transfusion 1993;. 33: 7-13. 45. McFarlane IG, Smith HM, Johnson PJ, Bray GP, Vergani 0, Williams R. Hepatitis. C virus antibodies in chronic active hepatitis: pathogenetic factor or false-.

  20. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    Science.gov (United States)

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  1. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  2. In Vivo fitness associated with high virulence in a vertebrate virus is a complex trait regulated by host entry, replication, and shedding

    Science.gov (United States)

    Wargo, Andrew R.; Kurath, Gael

    2011-01-01

    The relationship between pathogen fitness and virulence is typically examined by quantifying only one or two pathogen fitness traits. More specifically, it is regularly assumed that within-host replication, as a precursor to transmission, is the driving force behind virulence. In reality, many traits contribute to pathogen fitness, and each trait could drive the evolution of virulence in different ways. Here, we independently quantified four viral infection cycle traits, namely, host entry, within-host replication, within-host coinfection fitness, and shedding, in vivo, in the vertebrate virus Infectious hematopoietic necrosis virus (IHNV). We examined how each of these stages of the viral infection cycle contributes to the fitness of IHNV genotypes that differ in virulence in rainbow trout. This enabled us to determine how infection cycle fitness traits are independently associated with virulence. We found that viral fitness was independently regulated by each of the traits examined, with the largest impact on fitness being provided by within-host replication. Furthermore, the more virulent of the two genotypes of IHNV we used had advantages in all of the traits quantified. Our results are thus congruent with the assumption that virulence and within-host replication are correlated but suggest that infection cycle fitness is complex and that replication is not the only trait associated with virulence.

  3. Assembly of Ebola virus matrix protein VP40 is regulated by latch-like properties of N and C terminal tails.

    Directory of Open Access Journals (Sweden)

    Leslie P Silva

    Full Text Available The matrix protein VP40 coordinates numerous functions in the viral life cycle of the Ebola virus. These range from the regulation of viral transcription to morphogenesis, packaging and budding of mature virions. Similar to the matrix proteins of other nonsegmented, negative-strand RNA viruses, VP40 proceeds through intermediate states of assembly (e.g. octamers but it remains unclear how these intermediates are coordinated with the various stages of the life cycle. In this study, we investigate the molecular basis of synchronization as governed by VP40. Hydrogen/deuterium exchange mass spectrometry was used to follow induced structural and conformational changes in VP40. Together with computational modeling, we demonstrate that both extreme N and C terminal tail regions stabilize the monomeric state through a direct association. The tails appear to function as a latch, released upon a specific molecular trigger such as RNA ligation. We propose that triggered release of the tails permits the coordination of late-stage events in the viral life cycle, at the inner membrane of the host cell. Specifically, N-tail release exposes the L-domain motifs PTAP/PPEY to the transport and budding complexes, whereas triggered C-tail release could improve association with the site of budding.

  4. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  5. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  6. Structural characterization of an intermolecular RNA–RNA interaction involved in the transcription regulation element of a bipartite plant virus

    OpenAIRE

    Guenther, Richard H.; Sit, Tim L.; Gracz, Hanna S.; Dolan, Michael A.; Townsend, Hannah L.; Liu, Guihua; Newman, Winnell H.; Agris, Paul F.; Lommel, Steven A.

    2004-01-01

    The 34-nucleotide trans-activator (TA) located within the RNA-2 of Red clover necrotic mosaic virus folds into a simple hairpin. The eight-nucleotide TA loop base pairs with eight complementary nucleotides in the TA binding sequence (TABS) of the capsid protein subgenomic promoter on RNA-1 and trans-activates subgenomic RNA synthesis. Short synthetic oligoribonucleotide mimics of the RNA-1 TABS and the RNA-2 TA form a weak 1:1 bimolecular complex in vitro with a Ka of 5.3 × 104 M–1. Ka determ...

  7. The Highly Conserved Proline at Position 438 in Pseudorabies Virus gH Is Important for Regulation of Membrane Fusion

    OpenAIRE

    Schröter, Christina; Klupp, Barbara G.; Fuchs, Walter; Gerhard, Marika; Backovic, Marija; Rey, Felix A.; Mettenleiter, Thomas C.

    2014-01-01

    Membrane fusion in herpesviruses requires viral glycoproteins (g) gB and gH/gL. While gB is considered the actual fusion protein but is nonfusogenic per se, the function of gH/gL remains enigmatic. Crystal structures for different gH homologs are strikingly similar despite only moderate amino acid sequence conservation. A highly conserved sequence motif comprises the residues serine-proline-cysteine corresponding to positions 437 to 439 in pseudorabies virus (PrV) gH. The PrV-gH structure sho...

  8. The regulated secretory pathway in CD4(+ T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse.

    Directory of Open Access Journals (Sweden)

    Clare Jolly

    2011-09-01

    Full Text Available Direct cell-cell spread of Human Immunodeficiency Virus type-1 (HIV-1 at the virological synapse (VS is an efficient mode of dissemination between CD4(+ T cells but the mechanisms by which HIV-1 proteins are directed towards intercellular contacts is unclear. We have used confocal microscopy and electron tomography coupled with functional virology and cell biology of primary CD4(+ T cells from normal individuals and patients with Chediak-Higashi Syndrome and report that the HIV-1 VS displays a regulated secretion phenotype that shares features with polarized secretion at the T cell immunological synapse (IS. Cell-cell contact at the VS re-orientates the microtubule organizing center (MTOC and organelles within the HIV-1-infected T cell towards the engaged target T cell, concomitant with polarization of viral proteins. Directed secretion of proteins at the T cell IS requires specialized organelles termed secretory lysosomes (SL and we show that the HIV-1 envelope glycoprotein (Env localizes with CTLA-4 and FasL in SL-related compartments and at the VS. Finally, CD4(+ T cells that are disabled for regulated secretion are less able to support productive cell-to-cell HIV-1 spread. We propose that HIV-1 hijacks the regulated secretory pathway of CD4(+ T cells to enhance its dissemination.

  9. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus.

    Directory of Open Access Journals (Sweden)

    Jaehyuk Yoo

    Full Text Available Lymphatic endothelial cells (LECs are differentiated from blood vascular endothelial cells (BECs during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming, but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming. Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated