WorldWideScience

Sample records for regulates starch synthesis

  1. Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Baguma, Yona; Sun, Chuanxin; Boren, Mats; Olsson, Helena; Rosenqvist, Sara; Mutisya, Joel; Rubaihayo, Patrick R.; Jansson, Christer

    2008-01-15

    Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.

  2. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this

  3. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm.

    Science.gov (United States)

    Wang, Jie-Chen; Xu, Heng; Zhu, Ying; Liu, Qiao-Quan; Cai, Xiu-Ling

    2013-08-01

    Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.

  4. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina.

    Science.gov (United States)

    Chen, Guanxing; Zhu, Jiantang; Zhou, Jianwen; Subburaj, Saminathan; Zhang, Ming; Han, Caixia; Hao, Pengchao; Li, Xiaohui; Yan, Yueming

    2014-08-06

    Thorough understanding of seed starch biosynthesis and accumulation mechanisms is of great importance for agriculture and crop improvement strategies. We conducted the first comprehensive study of the dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon and compared the findings with those reported for common wheat (Chinese Spring, CS) and Aegilops peregrina. Only B-granules were identified in Brachypodium Bd21, and the shape variation and development of starch granules were similar in the B-granules of CS and Bd21. Phylogenetic analysis showed that most of the Bd21 starch synthesis-related genes were more similar to those in wheat than in rice. Early expression of key genes in Bd21 starch biosynthesis mediate starch synthesis in the pericarp; intermediate-stage expression increases the number and size of starch granules. In contrast, these enzymes in CS and Ae. peregrina were mostly expressed at intermediate stages, driving production of new B-granules and increasing the granule size, respectively. Immunogold labeling showed that granule-bound starch synthase (GBSSI; related to amylose synthesis) was mainly present in starch granules: at lower levels in the B-granules of Bd21 than in CS. Furthermore, GBSSI was phosphorylated at threonine 183 and tyrosine 185 in the starch synthase catalytic domain in CS and Ae. peregrina, but neither site was phosphorylated in Bd21, suggesting GBSSI phosphorylation could improve amylose biosynthesis. Bd21 contains only B-granules, and the expression of key genes in the three studied genera is consistent with the dynamic development of starch granules. GBSSI is present in greater amounts in the B-granules of CS than in Bd21; two phosphorylation sites (Thr183 and Tyr185) were found in Triticum and Aegilops; these sites were not phosphorylated in Bd21. GBSSI phosphorylation may reflect its importance in amylose synthesis.

  5. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Controllable particles sizes of starch nanoparticles were synthesized via a precipitation in water-in-oil microemulsion approach. Microemulsion method offers the advantages of ultralow interfacial tension, large interfacial area, and being thermodynamically stable and affords monodispersed nanoparticles. The synthesis parameters such as stirring rates, ratios of oil/cosurfactant, oil phases, cosurfactants, and ratios of water/oil were found to affect the mean particle size of starch nanoparticles. Starch nanoparticles with mean particles sizes of 109 nm were synthesized by direct nanoprecipitation method, whereas by using precipitation in microemulsion approach, starch nanoparticles with smaller mean particles sizes of 83 nm were obtained.

  6. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  7. Synthesis and properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, Henning; Vorwerg, Waltraud; Wetzel, Hendrik

    2013-10-15

    Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS>2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2h. FASEs C6-C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, (1)H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified - contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6-C18), formation of concentrated solutions (10 wt%) is feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Viscous polysaccharide and starch synthesis in Rhodella reticulata (Porphyridiales, Rhodophyta)

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.

    1990-01-01

    Rhodella reticulata Deason, Butler and Rhyne produces copious amounts of a viscous polysaccharide (VP) during growth in batch cultures. The VPs accumulated on the cell surface and in the culture medium once cells ceased growth; starch concurrently accumulated within the cells. Light-saturated 14 C-uptake declined steadily as the cells aged. Net synthesis rates for starch and mucilage were two- and four-fold lower, respectively, in non-growing cells than in growing cells, while the relative partitioning of newly-fixed carbon into these materials was not different. These data suggest that total photosynthetic loading, rather than partitioning into one specific pool, controls cellular synthesis rates. No preferential synthesis of VPs occurred during the stationary phase. The findings have important implications for the commercial production of VPs

  9. Viscous polysaccharide and starch synthesis in Rhodella reticulata (Porphyridiales, Rhodophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Kroen, W.K.; Ramus, J. (Duke Univ., Beaufort, NC (USA))

    1990-06-01

    Rhodella reticulata Deason, Butler and Rhyne produces copious amounts of a viscous polysaccharide (VP) during growth in batch cultures. The VPs accumulated on the cell surface and in the culture medium once cells ceased growth; starch concurrently accumulated within the cells. Light-saturated {sup 14}C-uptake declined steadily as the cells aged. Net synthesis rates for starch and mucilage were two- and four-fold lower, respectively, in non-growing cells than in growing cells, while the relative partitioning of newly-fixed carbon into these materials was not different. These data suggest that total photosynthetic loading, rather than partitioning into one specific pool, controls cellular synthesis rates. No preferential synthesis of VPs occurred during the stationary phase. The findings have important implications for the commercial production of VPs.

  10. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  11. Experimental and Modeling Studies on the Synthesis and Properties of Higher Fatty Esters of Corn Starch

    NARCIS (Netherlands)

    Junistia, Laura; Sugih, Asaf K.; Manurung, Robert; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    This paper describes a systematic study on the synthesis of higher fatty esters of corn starch (starch laurate and starch stearate) by using the corresponding vinyl esters. The reactions were carried out in DMSO using basic catalysts (Na(2)HPO(4), K(2)CO(3), and Na-acetate). The effect of the

  12. Synthesis and Characterization of Starch-based Aqueous Polymer Isocyanate Wood Adhesive

    Directory of Open Access Journals (Sweden)

    Shu-min Wang

    2015-09-01

    Full Text Available Modified starch was prepared in this work by acid-thinning and oxidizing corn starch with ammonium persulfate. Also, starch-based aqueous polymer isocyanate (API wood adhesive was prepared. The effect of the added amount of modified starch, styrene butadiene rubber (SBR, polymeric diphenylmethane diisocyanate (P-MDI, and the mass concentration of polyvinyl alcohol (PVOH on the bonding strength of starch-based API adhesives were determined by orthogonal testing. The starch-based API adhesive performance was found to be the best when the addition of modified starch (mass concentration 35% was 45 g, the amount of SBR was 3%, the PVOH mass concentration was 10%, and the amount of P-MDI was 18%. The compression shearing of glulam produced by starch-based API adhesive reached bonding performance indicators of I type adhesive. A scanning electron microscope (SEM was used to analyze the changes in micro-morphology of the starch surface during each stage. Fourier transform infrared spectroscopy (FT-IR was used to study the changes in absorption peaks and functional groups from starch to starch-based API adhesives. The results showed that during starch-based API adhesive synthesis, corn starch surface was differently changed and it gradually reacted with other materials.

  13. New perspectives on the role of α- and β-amylases in transient starch synthesis.

    Science.gov (United States)

    Wu, Alex Chi; Ral, Jean-Philippe; Morell, Matthew K; Gilbert, Robert G

    2014-01-01

    Transient starch in leaves is synthesized by various biosynthetic enzymes in the chloroplasts during the light period. This paper presents the first mathematical model for the (bio)synthesis of the chain-length distribution (CLD) of transient starch to aid the understanding of this synthesis. The model expresses the rate of change of the CLD in terms of the actions of the enzymes involved. Using this to simulate the experimental CLD with different enzyme combinations is a new means to test for enzymes that are significant to the rate of change of the CLD during synthesis. Comparison between the simulated CLD from different enzyme combinations and the experimental CLD in the leaves of the model plant Arabidopsis thaliana indicate α-amylase, in addition to the core starch biosynthetic enzymes, is also involved in the modification of glucans for the synthesis of insoluble starch granules. The simulations suggest involvement of β-amylase, in the absence of α-amylase in mutants, slows the rate of attaining a crystalline-competent CLD for crystallization of glucans to form insoluble starch. This suggests a minor role of β-amylase in shaping normal starch synthesis. The model simulation predicts that debranching of glucans is an efficient mechanism for the attainment of crystalline-competent CLD; however, attaining this is still possible, albeit slower, through combinations of α- and β-amylase in the absence of isoamylase-type debranching enzyme. In Arabidopsis defective in one of the isoamylase-type debranching enzymes, the impact of α-amylase in starch synthesis is reduced, while β-amylase becomes significantly involved, slowing the rate of synthesis in this mutant. Modeling of transient starch CLD brings to light previously unrecognized but significant effects of α- and β-amylase on the rate of transient starch synthesis.

  14. Maltase-glucoamylase: Mucosal regulator of prandial starch glucogenesis and complimentary hepatic gluconeogenesis of mice

    Science.gov (United States)

    In previous studies we have shown that maltase-glucoamylase (Mgam) is required for efficient starch digestion and insulin response to starch feeding. It was hypothesized that the slower rate of starch digestion by residual sucrase-isomaltase (Si) maltase failed to regulate gluconeogenesis. Here, rat...

  15. New perspectives on the role of α- and β-amylases in transient starch synthesis.

    Directory of Open Access Journals (Sweden)

    Alex Chi Wu

    Full Text Available Transient starch in leaves is synthesized by various biosynthetic enzymes in the chloroplasts during the light period. This paper presents the first mathematical model for the (biosynthesis of the chain-length distribution (CLD of transient starch to aid the understanding of this synthesis. The model expresses the rate of change of the CLD in terms of the actions of the enzymes involved. Using this to simulate the experimental CLD with different enzyme combinations is a new means to test for enzymes that are significant to the rate of change of the CLD during synthesis. Comparison between the simulated CLD from different enzyme combinations and the experimental CLD in the leaves of the model plant Arabidopsis thaliana indicate α-amylase, in addition to the core starch biosynthetic enzymes, is also involved in the modification of glucans for the synthesis of insoluble starch granules. The simulations suggest involvement of β-amylase, in the absence of α-amylase in mutants, slows the rate of attaining a crystalline-competent CLD for crystallization of glucans to form insoluble starch. This suggests a minor role of β-amylase in shaping normal starch synthesis. The model simulation predicts that debranching of glucans is an efficient mechanism for the attainment of crystalline-competent CLD; however, attaining this is still possible, albeit slower, through combinations of α- and β-amylase in the absence of isoamylase-type debranching enzyme. In Arabidopsis defective in one of the isoamylase-type debranching enzymes, the impact of α-amylase in starch synthesis is reduced, while β-amylase becomes significantly involved, slowing the rate of synthesis in this mutant. Modeling of transient starch CLD brings to light previously unrecognized but significant effects of α- and β-amylase on the rate of transient starch synthesis.

  16. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.

    Science.gov (United States)

    Guilherme, Ederson Paulo Xavier; de Oliveira, Jocilane Pereira; de Carvalho, Lorendane Millena; Brandi, Igor Viana; Santos, Sérgio Henrique Sousa; de Carvalho, Gleidson Giordano Pinto; Cota, Junio; Mara Aparecida de Carvalho, Bruna

    2017-11-01

    A bioreactor was built by means of immobilizing alpha-amylase from Aspergillus oryzae by encapsulation, through cryopolymerization of acrylamide monomers for the continuous starch hydrolysis. The starch hydrolysis was evaluated regarding pH, the concentration of immobilized amylase on cryogel, the concentration of starch solution and temperature. The maximum value for starch hydrolysis was achieved at pH 5.0, concentration of immobilized enzyme 111.44 mg amylase /g cryogel , concentration of starch solution 45 g/L and temperature of 35°C. The immobilized enzyme showed a conversion ratio ranging from 68.2 to 97.37%, depending on the pH and temperature employed. Thus, our results suggest that the alpha-amylase from A. oryzae immobilized on cryogel monoliths represents a potential process for industrial production of maltose from starch hydrolysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Additional synthesis of starch from sucrose in leaves of arabidopsis in the light

    International Nuclear Information System (INIS)

    Keerberg, O.; Ivanova, H.; Keerberg, H.; Paernik, T.

    2005-01-01

    Full text: Accumulating during daytime starch is converted in the night into sucrose and consumed in respiratory, biosynthetic and transport processes. However in the light the degradation and conversion of starch are blocked. In pulse chase experiments with wild type plants and starchless mutants pgm or adg1 of arabidopsis an increase of starch radioactivity during chase in nonradioactive medium in the light was detected. These findings suggest that starch was additionally synthesized from labeled cytosolic soluble photosynthates, preferentially from sucrose. Radiogasometric studies of gas exchange have revealed that sucrose is consumed also in photorespiratory decarboxylations. To be involved in photorespiration the products of sucrose degradation must be transported from cytosol into chloroplast. We presume that derived from sucrose hexoses are transported into chloroplast by hexose transporter and phosphorylated there in hexokinase reaction. The phosphorylated hexoses may be consumed either for additional synthesis of starch or incorporated into the reductive pentose phosphate cycle and, via this cycle, into the glycolate cycle. (author)

  18. Synthesis of graft copolymers onto starch and its semiconducting properties

    Directory of Open Access Journals (Sweden)

    Nevin Çankaya

    Full Text Available Literature review has revealed that, although there are studies about grafting on natural polymers, especially on starch, few of them are about electrical properties of graft polymers. Starch methacrylate (St.met was obtained by esterification of OH groups on natural starch polymer for this purpose. Grafting of synthesized N-cyclohexyl acrylamide (NCA and commercial methyl methacrylate (MMA monomers with St.met was done by free radical polymerization method. The graft copolymers were characterized with FT-IR spectra, thermal and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis method and thermal stability of the copolymers is decreased via grafting. The electrical conductivity of the polymers was measured as a function of temperature and it has been observed that electrical conductivity increases with increasing temperature. The absorbance and transmittance versus wavelength of the polymers have been measured. Keywords: Starch, Graft copolymer, Semiconducting, Thermal stability, Starch methacrylate

  19. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Md Enamul Hoque

    2013-01-01

    Full Text Available This research focuses on synthesis and characterization of sago starch-mixed LDPE biodegradable polymer. Firstly, the effect of variation of starch content on mechanical property (elongation at break and Young’s modulus and biodegradability of the polymer was studied. The LDPE was combined with 10%, 30%, 50%, and 70% of sago for this study. Then how the cross-linking with trimethylolpropane triacrylate (TMPTA and electron beam (EB irradiation influence the mechanical and thermal properties of the polymer was investigated. In the 2nd study, to avoid overwhelming of data LDPE polymer was incorporated with only 50% of starch. The starch content had direct influence on mechanical property and biodegradability of the polymer. The elongation at break decreased with increase of starch content, while Young’s modulus and mass loss (i.e., degradation were found to increase with increase of starch content. Increase of cross-linker (TMPTA and EB doses also resulted in increased Young’s modulus of the polymer. However, both cross-linking and EB irradiation processes rendered lowering of polymer’s melting temperature. In conclusion, starch content and modification processes play significant roles in controlling mechanical, thermal, and degradation properties of the starch-mixed LDPE synthetic polymer, thus providing the opportunity to modulate the polymer properties for tailored applications.

  20. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    OpenAIRE

    Suh Cem Pang; Soon Hiang Tay; Suk Fun Chin

    2014-01-01

    We have demonstrated the loading of curcumin onto starch maleate (SM) under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v), respectively. Curcumin-loaded starch-maleate (CurSM) nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30...

  1. Recreating the synthesis of starch granules in yeast

    Science.gov (United States)

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  2. Synthesis and characterization of polystyrene-starch polyblend

    International Nuclear Information System (INIS)

    Tetty Kemala; M Syaeful Fahmi; Suminar S Achmadi

    2010-01-01

    Polystyrene foam (PS) is a polymer that is widely used but not biodegradable. Therefore, PS-starch polyblend was developed. In this research the effect of glycerol as plasticizer was evaluated based on mechanical and thermal analyses. PS-starch polyblends were produced by mixing PS and starch solution with composition ratios of 60:40, 65:35, 70:30, 75:25, and 80:20 percent by weight. Polylactic acid (20 %) was added as compatibilizer. The polyblends were analyzed its tensile strength, thermal properties, and density. The PS-starch polyblends were white opaque in color and fragile. The properties of tensile strength and density of the polyblends were in the range of that of pure PS. The tensile strength and density increases as PS constituents increasing with the best composition ratio of 80 PS to 20 of starch. Peak of glass transition and melting point seen a single on composition ration 80 PS to 20 of starch. Additional amount of glycerol did not affect the thermal property, but has caused a slight decrease in tensile strength and density. (author)

  3. Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance.

    Science.gov (United States)

    Lin, Derong; Zhou, Wei; Zhao, Jingjing; Lan, Weijie; Chen, Rongming; Li, Yutong; Xing, Baoshan; Li, Zhuohao; Xiao, Mengshi; Wu, Zhijun; Li, Xindan; Chen, Rongna; Zhang, Xingwen; Chen, Hong; Zhang, Qing; Qin, Wen; Li, Suqing

    2017-10-01

    In this study, synthesis and physicochemical properties of starch acetate with low substitution under microwave were studied. A three-level-three-factorial Central Composite Design using Response Surface Methodology (RSM) was employed to optimize the reaction conditions. The optimal parameters are as follows: amount of acetic anhydride of 12%, radiation time of 11min, and microwave power of 100W. These optimal conditions predicted by RSM were confirmed that the degree of substitution (DS) of acetate starch is 0.0691mg/g and the physical and chemical properties of natural corn starch (NCS) and corn starch acetate (ACS) were further studied.The transparency, water separation, water absorption, expansion force, and solubility of ACS low substitution are better than NCS, while the NCS's hydrolysis percentage is higher than ACS, which indicate that the modified corn starch has better performance than native corn starch. The surface morphology of the corn starch acetate was examined by scanning electron microscope (SEM), which showed that it had a smooth surface and a spherical and polygonal shape. However, samples' shape is irregular. Crystal structure was observed by X-ray diffraction, and the ACS can determine the level of microwave technology that can destroy the extent of the crystal and amorphous regions. Fourier transform infrared (FTIR) spectroscopy shows that around 1750cm -1 carbonyl signal determines acetylation bonding successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis and properties of silane-fluoroacrylate grafted starch.

    Science.gov (United States)

    Qu, Jia; He, Ling

    2013-10-15

    The latex of silane-fluoroacrylate grafted starch for coating materials, VTMS-starch/P(MMA/BA/3FMA), is obtained by two step grafting reactions. Vinyltrimethoxysilane (VTMS) is primarily grafted onto starch by condensation between Si-OH and C-OH at 120 °C, and then the copolymer of methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2-trifluoroethyl methacrylate (3FMA) is grafted onto the VTMS-starch by emulsion polymerization. Fourier transform infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to confirm the chemically grafting reactions in every step. The conversion percent, grafting percent and grafting efficiency for VTMS-starch/p(MMA/BA/3FMA) latex indicate that the optimum conditions should be controlled at 75 °C for 1h as VTMS-starch/P(MMA/BA/3FMA) in 1/3 weight ratio. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis have revealed that the latexes exhibit the uniform spherical particles of 40-60 nm in a narrow size distribution. The latex films perform the obvious hydrophobic (107°) property, lower surface free energy (25-35 mN/m) and the higher thermostability (330-440 °C) than starch (51°, 51.32 mN/m, 100-330 °C). Dynamic thermomechanical analysis (DMA) shows that the latex film could gain considerable toughness and strength with an elongation at break of 39.45% and a tensile strength of 11.97 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The regulation of starch accumulation in Panicum maximum Jacq ...

    African Journals Online (AJOL)

    ... decrease the starch level. These observations are discussed in relation to the photosynthetic characteristics of P. maximum. Keywords: accumulation; botany; carbon assimilation; co2 fixation; growth conditions; mesophyll; metabolites; nitrogen; nitrogen levels; nitrogen supply; panicum maximum; plant physiology; starch; ...

  6. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    International Nuclear Information System (INIS)

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Darroudi, Majid; Zak, Ali Khorsand; Drummen, Gregor P.C.

    2012-01-01

    Highlights: ► Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. ► Nanoparticles of ±15 nm are produced with a narrow size distribution. ► Starch can be used as a template to control nanoparticle size. ► Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength (λ = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or flocculation, which was reflected in no significant change in the ZnO nanoparticle size and size distribution. Overall

  7. Green Synthesis of Gold nanoparticles with Starch-glucose and Application in Bioelectrochemistry

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Zhang, Jingdong

    2009-01-01

    and basic solution. The starch concentration, temperature and chemical nature of the buffers are key factors in the AuNP formation. Glucose and starch are reducing and protecting agents, respectively. Among several inorganic and biological Good's buffers, phosphate and MES buffers give the best results...... MES is also a synergist with more composite function. AuNPs prepared by this method are stable in solution even after 17 months at room temperature. TEM confirms the crystalline structure of the AuNPs, meaning that the AuNP surfaces are low-index single-crystal facets such as (100), (110) and (111......A method for gold nanoparticle (AuNP) synthesis from buffered glucose and starch solution has been developed and the particles investigated by UV-Vis spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry. The synthesis proceeds smoothly in neutral...

  8. Synthesis and Properties of Reactive Interfacial Agents for Polycaprolactone-Starch Blends

    NARCIS (Netherlands)

    Sugih, Asaf K.; Drijfhout, Jan. P.; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2009-01-01

    The synthesis of two reactive interfacial agents for starch-polycaprolactone (PCL) blends, PCL-g-glycidyl methacrylate (PCL-g-GMA) and PCL-g-diethyl maleate (PCL-g-DEM) is described. The compounds were prepared by reacting a low molecular weight PCL. (M(w) 3000) with GMA or DEM in the presence of

  9. Size control synthesis of starch capped-gold nanoparticles

    International Nuclear Information System (INIS)

    Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.

    2009-01-01

    Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl 4 ] - solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl 4 ] - anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.

  10. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    Directory of Open Access Journals (Sweden)

    Ingkasuwan Papapit

    2012-08-01

    Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray

  11. Dynamics of starch granule biogenesis - the role of redox-regulated enzymes and low-affinity carbohydrate-binding modules

    DEFF Research Database (Denmark)

    Blennow, A.; Svensson, Birte

    2010-01-01

    The deposition and degradation of starch in plants is subject to extensive post-translational regulation. To permit degradation of B-type crystallites present in tuberous and leaf starch these starch types are phosphorylated by glucan, water dikinase (GWD). At the level of post-translational redo...

  12. Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid

    International Nuclear Information System (INIS)

    Sharkey, T.D.; Berry, J.A.; Raschke, K.

    1985-01-01

    Phaseolus vulgaris L. leaves were subjected to various light, CO 2 , and O 2 levels and abscisic acid, then given a 10 minute pulse of 14 CO 2 followed by a 5 minute chase with unlabeled CO 2 . After the chase period, very little label remained in the ionic fractions except at low CO 2 partial pressure. Most label was found in the neutral, alcohol soluble fraction or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate. Starch formation increased linearly with assimilation rate, but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO 2 in combination with low O 2 caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO 2 assimilation, with sucrose the preferred product at very low assimilation rates

  13. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2014-01-01

    Full Text Available We have demonstrated the loading of curcumin onto starch maleate (SM under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v, respectively. Curcumin-loaded starch-maleate (CurSM nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30 nm and 110 nm with a mean diameter of 50 nm. The curcumin loading capacity of SM as a function of loading duration was investigated using the UV-visible spectrophotometer. The loading of curcumin onto SM increased rapidly initially with loading duration, and the curcumin loading capacity of 15 mg/g was reached within 12 hours. CurSM nanoparticles exhibited substantially higher water solubility of 6.0 × 10−2 mg/mL which is about 300 times higher than that of pure curcumin. With enhanced water solubility and bioaccessibility of curcumin, the potential utility of CurSM nanoparticles in various biomedical applications is therefore envisaged.

  14. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Darroudi, Majid [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zak, Ali Khorsand [Low Dimensional Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Drummen, Gregor P.C., E-mail: gpcdrummen@bionano-solutions.de [Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio and Nano-Solutions, D-40472 Duesseldorf (Germany)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. Black-Right-Pointing-Pointer Nanoparticles of {+-}15 nm are produced with a narrow size distribution. Black-Right-Pointing-Pointer Starch can be used as a template to control nanoparticle size. Black-Right-Pointing-Pointer Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength ({lambda} = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or

  15. Molecular Regulation of Histamine Synthesis

    Directory of Open Access Journals (Sweden)

    Hua Huang

    2018-06-01

    Full Text Available Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis, a neurotransmitter and a regulator of gastric acid secretion. Histamine is a monoamine synthesized from the amino acid histidine through a reaction catalyzed by the enzyme histidine decarboxylase (HDC, which removes carboxyl group from histidine. Despite the importance of histamine, transcriptional regulation of HDC gene expression in mammals is still poorly understood. In this review, we focus on discussing advances in the understanding of molecular regulation of mammalian histamine synthesis.

  16. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat.

    Science.gov (United States)

    Geng, Juan; Li, Liqun; Lv, Qian; Zhao, Yi; Liu, Yan; Zhang, Li; Li, Xuejun

    2017-12-01

    Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.

  17. Maltase-glucoamylase: Mucosal regulator of prandial starch glucogenesis and complementary hepatic gluconeogenesis of mice

    Science.gov (United States)

    It was hypothesized that the slower rate of starch digestion by residual sucraseisomaltase (Si) maltase failed to fully regulate gluconeogenesis. In the present study the rate of gluconeogenesis was measured directly (J Appl Physiol 104: 944-951, 2008) and compared with exogenous glucose derived fro...

  18. Starch as a major integrator in the regulation of plant growth

    Science.gov (United States)

    Sulpice, Ronan; Pyl, Eva-Theresa; Ishihara, Hirofumi; Trenkamp, Sandra; Steinfath, Matthias; Witucka-Wall, Hanna; Gibon, Yves; Usadel, Björn; Poree, Fabien; Piques, Maria Conceição; Von Korff, Maria; Steinhauser, Marie Caroline; Keurentjes, Joost J. B.; Guenther, Manuela; Hoehne, Melanie; Selbig, Joachim; Fernie, Alisdair R.; Altmann, Thomas; Stitt, Mark

    2009-01-01

    Rising demand for food and bioenergy makes it imperative to breed for increased crop yield. Vegetative plant growth could be driven by resource acquisition or developmental programs. Metabolite profiling in 94 Arabidopsis accessions revealed that biomass correlates negatively with many metabolites, especially starch. Starch accumulates in the light and is degraded at night to provide a sustained supply of carbon for growth. Multivariate analysis revealed that starch is an integrator of the overall metabolic response. We hypothesized that this reflects variation in a regulatory network that balances growth with the carbon supply. Transcript profiling in 21 accessions revealed coordinated changes of transcripts of more than 70 carbon-regulated genes and identified 2 genes (myo-inositol-1-phosphate synthase, a Kelch-domain protein) whose transcripts correlate with biomass. The impact of allelic variation at these 2 loci was shown by association mapping, identifying them as candidate lead genes with the potential to increase biomass production. PMID:19506259

  19. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    Science.gov (United States)

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  20. SYNTHESIS AND CHARACTERIZATION OF BIODEGRDABLE PLASTIC FROM CASAVA STARCH AND ALOE VERA EXTRACT WITH GLYCEROL PLASTICIZER

    Directory of Open Access Journals (Sweden)

    Mery Apriyani

    2016-05-01

    Full Text Available Synthesis and characterizations of Biodegradable Plastic made of Cassava Waste Starch, glycerol, acetic acid and Aloe vera extract has done. The aims of this research are to study the influence of addition of aloe vera extract in plastics mechanics properties, water vapor transmission rate and biodegradation. There are five main steps in this research, extraction of aloe vera, cassava starch preparation from cassava waste, preparations, characterization and biodegradability study of biodegradable plastic. The addition variations of aloe vera extract that used in this research are 0.01; 0.03; 0.05; 0.07 and 0.14 grams. Results showed that the addition of aloe Vera tends to increased biodegrable plastic thickness to 0.01 mm and elongation to 32.07%. However, biodegradable plastic tensile strength tends to decreased to 23.95 Mpa. Optimum tensile strength is 3.90 Mpa and elongation is 34.43%. Optimum water vapor transmission rate is 2.40 g/m2hours. Biodegradation study of biodegradable plastic showed that addition of aloe vera extract doesn’t significantly influence in plastic degradations.

  1. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Jim

    2013-11-30

    Starch is the major reserve polysaccharide in nature and accounts for the majority of the caloric intact of humans. It is also gaining importance as a renewable and biodegradable industrial material. There is burgeoning interest in increasing the amount and altering the properties of the plant starches by plant genetic modification. A rational approach to this effort will require a detailed, atomic-level understanding of the enzymatic processes that produce the starch granule. The starch granule is a complex particle made up of alternating layers of crystalline and amorphous lamellae. It consists of two types of polymer, amylose, a polymer of relatively long chains of α-1,4-linked glucans that contain virtually no branches, and amylopectin, which is highly branched and contains much shorter chains. This complex structure is synthesized by the coordinate activities of the starch synthases (SS), which elongate the polysaccharide chain by addition of glucose units via α-1,4 linkages using ADP- glucose as a donor, and branching enzymes (BE), which branch the polysaccharide chain by cleavage of α₋1,4 linkages and subsequent re-attachment via α₋1,6 linkages. Several isoforms of both starch synthase (SS) and branching enzyme (BE) are found in plants, including SSI, SSII, SSIII and granule- bound SS (GBSS), and SBEI, SBEIIa and SBEIIb. These isoforms have different activities and substrate and product specificities and play different roles in creating the granule and determining the properties of the resulting starch. The overarching goal of this proposal is to begin to understand the regulation and specificities of these enzymes at the atomic level. High-resolution X-ray structures of these enzymes bound to substrates and products will be determined to visualize the molecular interactions responsible for the properties of the enzymes. Hypotheses regarding these issues will then be tested using mutagenesis and enzyme assays. To date, we have determined the

  2. [Starch synthesis in the maize endosperm as affected by starch-synthesizing mutants]. [Annual report, March 1994--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, O.

    1995-07-01

    Progress is reported in several areas relevant to maize endosperm development. These areas are (1) The tentative identification of the enzymatic deficiency in a previously unknown endosperm mutant, sugary3-1 (su3-1). The evidence leading to this conclusion will be presented below. (2) The recognition that the endosperm mutant that produces an interesting starch resembling some starches that have been chemically modified is actually an unusual, hypomorphic allele (8132) at the brittle2 (bt2) locus; (3) The orange endosperm color present in some progenies derived from a cross between the original bt2-8132 and W22N apparently results from an interaction between two genes, one of which behaves as though linked to the bt2 locus. In the orange endosperm derivative, our limited evidence suggests that the quantity of all the carotinoids present in the yellow endosperm stocks appear to be increased proportionally.

  3. A Dual-Promoter Gene Orchestrates the Sucrose-Coordinated Synthesis of Starch and Fructan in Barley

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yunkai; Fei, Mingliang; Rosenquist, Sara; Jin, Lu; Gohil, Suresh; Sandström, Corine; Olsson, Helena; Persson, Cecilia; Höglund, Anna-Stina; Fransson, Gunnel; Ruan, Ying; Åman, Per; Jansson, Christer; Liu, Chunlin; Andersson, Roger; Sun, Chuanxin

    2017-12-01

    Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding how plants allocate photosynthates and how they prioritize synthesis of different carbohydrates during development is essential in efforts to improve cereals for increased stress tolerance and for desirable carbohydrate compositions in food and feed. We report the coordinated synthesis of starch and fructan in barley, orchestrated by two functionally opposing transcription factors encoded from two alternative promoters, one intronic/exonic, harbored on a single gene. . This dual-transcription factor system employs an autoregulatory, antagonsitic mechanism in sensing sucrose at one promoter, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling, and conduct a coordinated synthesis of starch and fructan synthesis by competitive transcription factor binding to the second promoter The finding of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, contributes to our appreciation of the complexity of the plant genome As a case in point for the physiological role of the antagonistic transcription factor system, we have demonstrated that it can be exploited in breeding barley with tailored amounts of fructan for production of specialty food ingredients.

  4. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.

    Science.gov (United States)

    Huang, Zi-Rui; Zhou, Wen-Bin; Yang, Xue-Ling; Tong, Ai-Jun; Hong, Jia-Li; Guo, Wei-Ling; Li, Tian-Tian; Jia, Rui-Bo; Pan, Yu-Yang; Lin, Jun; Lv, Xu-Cong; Liu, Bin

    2018-04-01

    Monascus spp. have been used for thousands of years as a traditional food additive in China. This mold can produce many different types of commercially valuable secondary metabolites of biological activity. Soluble starch and glycerol are the two principal carbon sources universally utilized by Monascus for the production of beneficial metabolites. In this study, the effects and regulation mechanisms of soluble starch and glycerol for M. purpureus FAFU618 on Monascus azaphilone pigments (MonAzPs) were investigated through ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS), comparative proteomics and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). The production of intracellular and extracellular pigments was significantly different between the soluble starch group (SSG) and glycerol group (GCG). Additionally, the components of intracellular pigments revealed by UPLC-QTOF-MS/MS showed that Monascin and Ankaflavin increased significantly in the GCG, while Rubropunctatin and Monascorubrin increased in the SSG. Differentially expressed proteins of mycelia between SSG and GCG were analyzed by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF MS. We identified 27 proteins with statistically altered expression, of which 18 proteins associated with the EMP (glycolytic pathway), translation, energy generation, proteolysis, etc. were up-regulated, and 9 proteins, including ribosomal proteins, heat shock proteins (HSPs) and others, were down-regulated in GCG. Meanwhile, the expression levels of MonAzP biosynthetic genes were also analyzed by RT-qPCR, and the results showed that mppA, mppC, mppR1 and mppR2 were down-regulated, whereas genes MpPKS5, MpFasA2, MpFasB2, mppB, mppD and mppE were up-regulated. Collectively, these findings illustrate that the regulation of MonAzPs is not only closely related to the expression levels of certain proteins in the polyketide synthesis pathway

  5. New perspectives of starch: Synthesis and in vitro assessment of novel thiolated mucoadhesive derivatives.

    Science.gov (United States)

    Jelkmann, Max; Bonengel, Sonja; Menzel, Claudia; Markovic, Svetislav; Bernkop-Schnürch, Andreas

    2018-05-11

    The purpose of this study was to develop a novel thiolated starch polymer with improved mucoadhesive properties by conjugation of cysteamine to starch as a natural polymer of restricted mucoadhesive properties. Aldehyde substructures were integrated into starch via oxidative cleavage of vicinal diols by increasing amounts of sodium periodate followed by covalent attachment of cysteamine to oxidized starch via reductive amination. Thiol groups were quantified via Ellman's reaction and their impact on mucoadhesion was analyzed by rheological investigations, the rotating cylinder method and tensile studies on porcine mucosa. The total amount of immobilized thiol groups revealed a correlation between degree of oxidation and thiolation. Modified starch demonstrated an up to 1.66-fold increase in water uptake in comparison to native starch. Modification of starch resulted in greatly improved cohesive properties and improvement in mucoadhesion. Rheological investigations revealed a 2- to 4-fold rise in viscosity of mucus. Tensile studies revealed a linear correlation between degree of oxidation/thiolation and enhancement of maximum detachment force and total work adhesion. In terms of these results, thiolated starch is a new, promising, polymer in the field of mucoadhesive drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA hydrogels

    Directory of Open Access Journals (Sweden)

    H.L. Abd El-Mohdy

    2016-11-01

    Full Text Available Association of poly(carboxylic acids and non-ionic polymers in solutions via hydrogen bonding results in formation of novel polymeric materials–interpolymer complexes. Starch/(EG-co-MAA polymeric hydrogels were obtained by γ-initiated radiation copolymerization of ethylene glycol (EG with methacrylic acid (MAA which grafted on starch. The gel content of prepared hydrogels was varied with changes in starch content, EG:MAA composition and irradiation dose as well as crosslinking density. The swelling was studied as a function of starch content, EG:MAA composition, irradiation dose, type of soaked liquid, pH and temperature of matrix-surrounding medium. The degree of swelling greatly increased with enhanced MAA content, pH and temperature whereas, it decreased with reduced starch content and irradiation dose. The swelling was varied with the polarity of soaked liquid. The results showed that Starch/(EG-co-MAA hydrogels reached the equilibrium swelling state in water after 72 h. The structure and surface morphology of prepared polymer were confirmed with FTIR and SEM, respectively. The thermal properties of hydrogels were studied by using DSC and TGA, they cleared that there is miscibility between EG and MAA in copolymer and adding them improve the thermal stability of starch. The results indicate that Starch/(EG-co-MAA materials may be used in various applications.

  7. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, M.S., E-mail: msadjad@gmail.com [Department of Chemistry, Science and Research Branch, Islamic Azad University, Poonak, Tehran (Iran, Islamic Republic of); Meskinfam, M. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Poonak, Tehran (Iran, Islamic Republic of); Sadeghi, B. [Department of Chemistry, Tonekabon Branch, Islamic Azad university, Tonekabon (Iran, Islamic Republic of); Jazdarreh, H. [Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2010-11-01

    In this work, we report the synthesis of bone-like hydroxyapatite (HAp) nanorods in wheat starch matrix via a biomimetic process. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Scanning and transmission electron microscopy (SEM and TEM) were used to determine the size, shape and morphology of nano-HAp. The results indicate that, the shape and morphology of nHAp is influenced by the presence of starch as a template agent and rod-like nHAp similar to the inorganic component in the human body is obtained at room temperature. In vitro bioactivity of the synthesized HAp nanocomposites was finally verified by comparison of the HAp's structures and morphology before and after immersion in simulated body fluid (SBF) solution for 3, 7, and 14 days.

  8. Synthesis and Characterization of PVP-Grafted-Starch Hydrogels Using Gamma Radiation

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Sonsuk, Manit

    2004-10-01

    A Series of hydrogels were prepared from gelatinized cassava starch and vinylpyrrolidone by radiation-induced graft copolymerization. Gel fraction, swelling ratio and gel strength of the obtained hydrogels were characterized. The experimental results show that the swelling ratio is inversely dependent on the radiation dose. The results from PVP-grafted-starch were subsequently compared with those of PVP hydrogels and PVP-blended-starch hydrogels. It was found that the PVP-grafted-starch hydrogels, with gel fraction higher than 80% can be prepared at the dose of 10 kGy, while PVP and PVP-blended-starch hydrogels require at least 30 kGy to obtain gels with more than 80% gel fraction

  9. The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution

    Directory of Open Access Journals (Sweden)

    Zamiri R

    2013-01-01

    Full Text Available Reza Zamiri,1 Azmi Zakaria,1,* Hossein Abbastabar Ahangar,2 Majid Darroudi,3 Golnoosh Zamiri,1 Zahid Rizwan,1 Gregor PC Drummen4,* 1Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 4Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Düsseldorf, Germany*These authors contributed to this work equallyAbstract: Laser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described. Conversely, the effect of the laser repetition rate on the final nanoparticle product in laser ablation is less well-documented, especially in the presence of stabilizers. Here, the influence of the laser repetition rate during laser ablation synthesis of silver nanoparticles in the presence of starch as a stabilizer was investigated. The increment of the repetition rate does not negatively influence the ablation efficiency, but rather shows increased productivity, causes a red-shift in the plasmon resonance peak of the silver–starch nanoparticles, an increase in mean particle size and size distribution, and a distinct lack of agglomerate formation. Optimal results were achieved at 10 Hz repetition rate, with a mean particle size of ~10 nm and a

  10. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei; Hu, Jilin; Li, Jing; Peng, Hongxia

    2016-05-15

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.

  11. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    International Nuclear Information System (INIS)

    Tian, Xiuying; Wen, Jin; Wang, Shumei; Hu, Jilin; Li, Jing; Peng, Hongxia

    2016-01-01

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.

  12. Synthesis and application of labelled growth regulators

    International Nuclear Information System (INIS)

    Shyutte, G.R.

    1982-01-01

    For the investigation of the metabolism both of phytoeffectors like herbicides and plant growth regulators such compounds are needed in radioactive labelled form. The synthesis of radioactive labelled fluorodifen, nitrofen, ethephon, diphenylic acetic acid, 2,4-dichlorophenoxyisobutyric acid, abscisic acid, hydroxybenzoic acids and different conjugates are described. Some examples of these compounds metabolism in plants are discussed [ru

  13. Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing.

    Science.gov (United States)

    Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei

    2012-11-01

    Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still

  15. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  16. Responses to Starch Infusion on Milk Synthesis in Low Yield Lactating Dairy Cows

    Directory of Open Access Journals (Sweden)

    Yang Zou

    2015-09-01

    Full Text Available The effect of starch infusion on production, metabolic parameters and relative mRNA abundance was investigated in low yield lactating cows from 86 days in milk. Six Holstein cows fitted with permanent ruminal cannulas were arranged into one of two complete 3×3 Latin squares and infused with a starch solution containing 800 grams starch for 16 days. The three treatments were: i ruminal and abomasal infusion with water (Control; ii ruminal infusion with cornstarch solution and abomasal infusion with water (Rumen; iii ruminal infusion with water and abomasal infusion with cornstarch solution (Abomasum. There were no significant differences (p>0.05 among the three treatments with low yield lactating cows in feed and energy intake, milk yield and composition, plasma metabolism, or even on gene expression. However, cows receiving starch through rumen performed better than directly through the abomasum during the glucose tolerance test procedure with a higher area under the curve (AUC; p = 0.08 and shorter half-time (t1/2; p = 0.11 of plasma insulin, therefore, it increased glucose disposal, which stated a lipid anabolism other than mobilization after energy supplementation. In conclusion, extra starch infusion at concentration of 800 g/d did not enhance energy supplies to the mammary gland and improve the lactating performance in low yield lactating cows.

  17. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 'Green' synthesis of starch capped CdSe nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Li Jinhua; Ren Cuiling; Liu Xiaoyan; Hu Zhide; Xue Desheng

    2007-01-01

    The nearly monodisperse starch capped CdSe nanoparticles were successfully synthesized by a simple and 'green' route at room temperature. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption and photoluminescence (PL) spectra. The XRD analysis showed that the starch capped CdSe nanoparticles were of the cubic structure, the average particle size was calculated to be about 3 nm according to the Debye-Scherrer equation. TEM micrographs exhibited that the starch capped CdSe nanoparticles were well dispersed than the uncapped CdSe nanoparticles, the mean particles size of the capped CdSe was about 3 nm in the TEM image, which was in good agreement with the XRD

  19. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch

    Science.gov (United States)

    El-Rafie, M. H.; Ahmed, Hanan B.; Zahran, M. K.

    2014-01-01

    Silver nanoparticles were prepared by using alkali treated maize starch which plays a dual role as reducer for AgNO3 and stabilizer for the produced AgNPs. The redox reaction which takes a place between AgNO3 and alkali treated starch was followed up and controlled in order to obtain spherical shaped silver nanoparticles with mean size 4–6 nm. The redox potentials confirmed the principle role of alkali treatment in increasing the reducibility of starch macromolecules. The measurements of reducing sugars at the end of reaction using dinitrosalicylic acid reagent (DNS) were carried out in order to control the chemical reduction reaction. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 410 nm, which is characteristic to yellow color of silver nanoparticles solution. The samples have been characterized by transmission electron microscopy (TEM), which reveal the nanonature of the particles. PMID:27433508

  1. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.

    Science.gov (United States)

    El-Naggar, Mehrez E; El-Rafie, M H; El-sheikh, M A; El-Feky, Gina S; Hebeish, A

    2015-11-01

    The current research work focuses on the medical application of the cost-effective cross-linked starch nanoparticles, for the transdermal delivery using Diclofenac sodium (DS) as a model drug. The prepared DS-cross-linked starch nanoparticles were synthesized using nanoprecipitation technique at different concentrations of sodium tripolyphosphate (STPP) in the presence of Tween 80 as a surfactant. The resultant cross-linked starch nanoparticles loaded with DS were characterized using world-class facilities such as TEM, DLS, FT-IR, XRD, and DSc. The efficiency of DS loading was also evaluated via entrapment efficiency as well as in vitro release and histopathological study on rat skin. The optimum nanoparticles formulation selected by the JMP(®) software was the formula that composed of 5% maize starch, 57.7mg DS and 0.5% STPP and 0.4% Tween 80, with particle diameter of about 21.04nm, polydispersity index of 0.2 and zeta potential of -35.3mV. It is also worth noting that this selected formula shows an average entrapment efficiency of 95.01 and sustained DS release up to 6h. The histophathological studies using the best formula on rat skin advocate the use of designed transdermal DS loaded cross-linked starch nanoparticles as it is safe and non-irritant to rat skin. The overall results indicate that, the starch nanoparticles could be considered as a good carrier for DS drug regarding the enhancement in its controlled release and successful permeation, thus, offering a promising nanoparticulate system for the transdermal delivery non-steroidal anti-inflammatory drug (NSAID). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. 1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Lubcke, T.

    2010-01-01

    Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2-(N-morpholino)ethanesulfonic acid (MES), ...

  3. The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source

    International Nuclear Information System (INIS)

    Lawal, O.S.; Lechner, M.D.; Kulicke, W.M.

    2008-05-01

    Starch isolated from an under-utilized legume plant (pigeon pea) was carboxymethylated. Influences of reaction parameters were investigated on the degree of substitution (DS) and the reaction efficiency (RE). Studies showed that optimal DS of 1.12 could be reached at reaction efficiency of 80.6 % in isopropanol-water reaction medium (40 deg. C, 3h). The scanning electron microscopy showed that after carboxymethylation, the granular appearance of the native starch was distorted. Wide-angle X-ray diffractometry revealed that crystallinity was reduced significantly after carboxymethylation. The infrared spectra revealed new bands in the carboxymethyl starch at ν =1600, 1426 and 1324 cm -1 and they were attributed to carbonyl functional groups vibration, -CH2 scissoring and OH bending vibration respectively. Broad band 13 C NMR of carboxymethyl starch showed intense peak at δ 180.3 ppm and it was assigned for carbonyl carbon on the carboxymethyl substituent on the AGU (Anhydroglucose Unit). DEPT (Distortionless Enhancement by Polarization Transfer) 135 NMR showed negative signals which correspond to methylene carbons on the AGU. The differential scanning calorimetry (DSC) suggests loss of crystallinity after carboxymethylation. Thermogravimetry (TG), Derivative Thermogravimetry (DTG) and Differential Thermal Analysis (DTA) show that thermal stability improved after carboxymethylation. The study provides information on the preparation and characterization of a biomaterial from a new source which could be used alone or in the preparation of other functional polymers for diverse polymer applications. (author)

  4. Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation

    OpenAIRE

    Osorio, Marlon A.; Restrepo, David; Velásquez-Cock, Jorge A.; Zuluaga, Robin O.; Montoya, Ursula; Rojas, Orlando; Gañán, Piedad F.; Marin, Diana; Castro, Cristina I.

    2014-01-01

    In this paper, a nanocomposite based on thermoplastic starch (TPS) reinforced with bacterial cellulose (BC) nanoribbons was synthesized by in situ fermentation and chemical crosslinking. BC nanoribbons were produced by a Colombian native strain of Gluconacetobacter medellinensis; the nanocomposite was plasticized with glycerol and crosslinked with citric acid. The reinforcement percentage in the nanocomposites remained constant throughout the fermentation time because of the TPS absorption ca...

  5. Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qintie, E-mail: qintlin@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); National Engineering Laboratory for Rice and By-Product Deep Processing, Center South University of Forestry and Technology, Changsha 41004 (China); Pan, Jianxin [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Lin, Qinlu [National Engineering Laboratory for Rice and By-Product Deep Processing, Center South University of Forestry and Technology, Changsha 41004 (China); Liu, Qianjun [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2013-12-15

    Highlights: • CSM was synthesized in a microwave-assisted inversed emulsion system. • The adsorption of methyl violet on CSM was exothermic and spontaneous. • The adsorption process followed the pseudo-second-order kinetics. • The isothermal data obeyed the Langmuir model. • pH variations did not significantly affect the adsorption of methyl violet onto CSM. -- Abstract: A new crosslinked starch microsphere (CSM) was synthesized in a microwave-assisted inversed emulsion system with soluble starch (ST) as a raw material, MBAA as a crosslinker, and K{sub 2}S{sub 2}O{sub 8}–NaHSO{sub 3} as an initiator. The synthesized starch microsphere was characterized and examined by scanning electron microscope (SEM), FTIR spectroscopy and adsorption isotherms of N{sub 2} at 77 K. Adsorption performance was investigated in methyl violet solution. The results showed that the maximum adsorption capacity for MV was 99.3 mg/g at 298 K, and the adsorption fitted pseudo-second-order kinetic model well with correlation coefficients greater than 0.99. The isothermal data obeyed the Langmuir model better compared to Freundlich model and Tempkin model, and the adsorption was exothermic and spontaneous. pH variations (2.0–10.0) did not significantly affect the adsorption of MV onto CSM.

  6. Starch-templated bio-synthesis of gold nanoflowers for in vitro antimicrobial and anticancer activities

    Science.gov (United States)

    Borah, D.; Hazarika, M.; Tailor, P.; Silva, A. R.; Chetia, B.; Singaravelu, G.; Das, P.

    2018-05-01

    We describe an in situ method of synthesizing highly branched gold nanoflower (AuNFs) using aqueous seed extract of Syzygium cumini (L.) Skeels as reductant in the presence of 0.3% starch. Surprisingly, when the same reaction was carried out in the absence of starch or with starch at a lower concentration (0.15%), instead of flower-like morphology quasi-spherical or polyhedral nanoparticles (AuNPs) are obtained. The nanomaterials were extensively characterized by HRTEM, FESEM, UV-Vis, FTIR, XRD, XPS and TGA analysis. The biological activities of the materials were investigated for antimicrobial activities against four bacterial strains that include one Gram positive (Staphylococcus aureus MTCC 121), two Gram negative (Escherichia coli MTCC 40 and Pseudomonas aeruginosa MTCC 4673) and one fungi (Candida albicans MTCC 227). The nanoparticles functioned as effective antimicrobial and anti-biofilm agents against all the strains under study. Controlled study revealed that, the AuNFs showed improved efficacy over conventional polyhedral AuNPs against all the microbes under study which might be attributed to the larger surface-to-volume ratio of the nanoflowers. The AuNFs also showed effective in vitro anticancer activity against a human liver cancer cell line (HepG2) with no significant cytotoxicity. Our data suggest that the AuNFs can significantly reduce the cancer cell growth with IC50 value of 20 µg mL-1.

  7. Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile under microwave irradiation

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Potato starch-graft-poly(acrylonitrile could be efficiently synthesized using small concentration of ammonium peroxydisulfate (0.0014M in aqueous medium under microwave irradiation. A representative microwave synthesized graft copolymer was characterized using Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy and Thermogravimetric Analysis. Under microwave conditions oxygen removal from the reaction vessel was not required and the graft copolymer was obtained in high yield using very small amount of ammonium peroxydisulfate, however using the same amount of ammonium peroxydisulfate (0.0014M on thermostatic water bath no grafting was observed up to 98°C (even in inert atmosphere. Raising the concentration of the initiator to 0.24 M resulted into 10% grafting at 50 °C but in inert atmosphere.The viscosity/shear stability of the grafted starch (aqueous solution and water/saline retention ability of the microwave synthesized graft copolymer were also studied and compared with that of the native potato starch.

  8. Bioindicative values of microfungi in starch and possible deficiencies of the new Serbian regulation on food hygiene

    Directory of Open Access Journals (Sweden)

    Uzelac Ema D.

    2013-01-01

    Full Text Available The results of tests on the presence of yeasts and molds in cornstarch [AD ‘IPOK’ Zrenjanin, 2007-2008, made at the time when previous Regulations were valid] were analyzed in terms of bioindicative values of microfungi as indicators of quality and safety of raw material or final food products. Microbiological analysis was used to detect the presence of a number of microorganisms MMI-0001, and a questionnaire was designed at the Department of Public Health in Zrenjanin town (Republic of Serbia, where the anal­yses were done, regarding the microbiological tests on starch. In order to rationalize the analyses and make them more economical, several areas of product quality control (water, food, raw materials, space were recommended either to be excluded or regarded as optional. Thus, analysis of presence of microfungi as indicators of product quality was categorized as optional. The results obtained from this research suggest a different conclusion because the bacteria in the samples indicated ˮmicrobiologically“, namely bacteriologically, safe samples of food, while, on the contrary, the presence of some microfungi as distinct xerophilous or xerotolerant microorganisms, indicated that the food was mycologically non-safe. The obtained data are crucial for questioning the decision to exclude the earlier required (mycological analysis of the samples (in the production of starch, or end products, etc. and categorize such analyses in new Regulations as optional, depending on the manufacturer’s preference. Bioindicative values of microfungi as indicators of the quality of starch, clearly point to the shortsightedness of the new Regulations on food hygiene and safety, where tests on certain microorganisms (in this case, yeasts and molds are not legally defined as mandatory, but the Law leaves manufacturers a possibility to choose (or not to choose the testing and frequency of testing on the presence (absence of microorganisms, which can be

  9. Evidence that cellulolysis by an anaerobic ruminal fungus is catabolite regulated by glucose, cellobiose, and soluble starch

    International Nuclear Information System (INIS)

    Morrison, M.; Mackie, R.I.; Kistner, A.

    1990-01-01

    A Piromyces-like ruminal fungus was used to study preferential carbohydrate utilization of [U- 14 C]cellulose, both alone and in combination with several soluble sugars. For cells grown on cellulose alone, cellulolytic activity was immediate and, initially, greater than that observed in the presence of added carbohydrate. Cellulolytic activity remained minimal in cultures containing cellulose plus glucose or cellobiose until the soluble sugar was depleted. Soluble starch also regulated cellulose activity but to a lesser extent. The results presented suggest that some fungal cellulases are susceptible to catabolite regulatory mechanisms

  10. Glycogenesis and de novo lipid synthesis from dietary starch in juvenile gilthead sea bream (Sparus aurata) quantified with stable isotopes

    DEFF Research Database (Denmark)

    Ekmann, Kim Schøn; Dalsgaard, Anne Johanne Tang; Holm, Jørgen

    2013-01-01

    the metabolic fate of dietary starch, 0·7% wheat starch was replaced with isotope-labelled starch (.98% 13C). Fish were fed the experimental diets for three consecutive 10 d periods, and isotope ratio MS was applied to quantify 13C enrichment of liver and whole-body glycogen and lipid pools over the three...

  11. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies.

    Science.gov (United States)

    Shakir, Mohammad; Jolly, Reshma; Khan, Mohd Shoeb; Iram, Noor e; Khan, Haris M

    2015-09-01

    A novel ternary nanocomposite system incorporating hydroxyapatite, chitosan and starch (n-HA/CS-ST) has been synthesized by co-precipitation method at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for bone tissue engineering. The interactions, crystallite size, surface morphology and thermal stability against n-HA/CS nanocomposite have been obtained by comparing the results of FTIR, SEM, TEM, DLS, XRD and TGA/DTA. A comparative study of bioactivity and thermal stability of n-HA/CS and n-HA/CS-ST nanocomposites revealed that the incorporation of starch as templating agent enhanced these properties in n-HA/CS-ST nanocomposite. A lower swelling rate of n-HA/CS-ST relative to n-HA/CS indicates a higher mechanical strength supportive of bone tissue ingrowths. The MTT assay on murine fibroblast L929 and human osteoblasts-like MG-63 cells and in vitro bioactivity of n-HA/CS-ST matrix referred superior non-toxic nature of n-HA/CS-ST nanocomposite and greater possibility of osteointegration in vivo respectively. Furthermore n-HA/CS-ST exhibited improved antibacterial property against both Gram-positive and Gram-negative bacteria relative to n-HA/CS. Copyright © 2015. Published by Elsevier B.V.

  12. Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil-in-water emulsions.

    Science.gov (United States)

    García-Tejeda, Y V; Leal-Castañeda, E J; Espinosa-Solis, V; Barrera-Figueroa, V

    2018-08-15

    The effect of esterification on hydrolyzed rice starch was analyzed, for this aim rice starch was hydrolyzed and subsequently esterified with lauroyl chloride at three modification levels. Starch derivatives were characterized regarding their degree of substitution (DS), water solubility index, z-potential, gelatinization, and digestibility properties. DS of derivatives of rice starch laurate ranged from 0.042 to 1.86. It was determined that after esterification the water solubility index increased from 3.44 to 53.61%, the z-potential decreased from -3.18 to -11.27, and the content of slowly digestible starch (SDS) decreased from 26.22 to 5.13%. Different emulsions with starch concentrations ranging from 6 to 30 wt% were evaluated. The most stable emulsions were those having 20 and 30 wt% of rice starch laurate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas

    2018-01-01

    Application of starch in industry frequently requires extensive modification. This is usually achieved by chemical and/or physical modification that is time-consuming and often expensive and polluting. To impart functionality as early as possible in the starch production chain, modification can...... be achieved directly as part of the developing starch storage roots, tubers, and seeds and grains of the crop. Starch has been a strong driver for human development and is now the most important energy provider in the diet forcing the development of novel and valuable starch qualities for specific...... applications. Among the most important structures that can be targeted include starch phosphorylation chain transfer/branching generating chemically substituted and chain length-modified starches such as resistant and health-promoting high-amylose starch. Starch bioengineering has been employed for more than...

  15. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).

    Science.gov (United States)

    Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H

    2013-12-01

    A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N. © 2012 Blackwell Verlag GmbH.

  16. Synthesis and characterization of retrograded starch nanoparticles through homogenization and miniemulsion cross-linking.

    Science.gov (United States)

    Ding, Yongbo; Zheng, Jiong; Zhang, Fusheng; Kan, Jianquan

    2016-10-20

    A new and convenient route to synthesizing retrograded starch nanoparticles (RS3NPs) through homogenization combined with a water-in-oil miniemulsion cross-linking technique was developed. The RS3NPs were optimized using Box-Behnken experimental design. Homogenization pressure (X1), oil/water ratio (X2), and surfactant (X3) were selected as independent variables, whereas particle size was considered as a dependent variable. Results indicated that homogenization pressure was the main contributing variable for particle size. The optimum values for homogenization pressure, oil/water ratio, and surfactant were 30MPa, 9.34:1, and 2.54g, respectively, whereas the particle size was predicted to be 288.2 nm. Morphological, physical, chemical, and functional properties of the RS3NPs were the assessed. Scanning electron microscopy and dynamic light scattering images showed that RS3NP granules were broken down to size of about 222.2nm. X-ray diffraction results revealed a disruption in crystallinity. The RS3NPs exhibited a slight decrease in To, but Tp and Tc increased and narrowest Tc-To. The solubility and swelling power were also increased. New peaks at 1594.84 and 1403.65cm(-1) were observed in the FTIR graph. However, homogenization minimally influenced the antidigestibility of RS3NPs. The absorption properties improved, and the adsorption kinetic described the contact time on the adsorption of captopril onto RS3NPs. In vitro release experiment indicated that the drug was released as follows: 21% after 2h in SGF, 42.78% at the end of 8h (2h in SGF and 6h in SIF), and 92.55% after 12h in SCF. These findings may help better utilize RS3NP in biomedical applications as a drug delivery material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch.

    Science.gov (United States)

    Liu, Yuxi; Chen, Yuping; Huang, Xuechen; Wu, Gang

    2017-10-01

    Calcium carbonate has been synthesized by the reaction of Na 2 CO 3 and CaCl 2 in the presence of bovine serum albumin (BSA) and soluble starch. Effects of various bovine serum albumin (BSA) and soluble starch on the polymorph and morphology of CaCO 3 crystals were investigated. Crystallization of vaterite is favored in the presence of BSA and soluble starch, respectively, while calcite is favored in the presence of a mixture of BSA and soluble starch. The morphologies of CaCO 3 particles in the presence of mixture of BSA and soluble starch are mainly rod-like, suggesting that the BSA, soluble and their assemblies play key roles in stabilizing and directing the CaCO 3 crystal growth. Copyright © 2017. Published by Elsevier B.V.

  18. Synthesis of Potato Starch-Acrylic-Acid Hydrogels by Gamma Radiation and Their Application in Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Md. Murshed Bhuyan

    2016-01-01

    Full Text Available Several kinds of acrylic-acid-grafted-starch (starch/AAc hydrogels were prepared at room temperature (27°C by applying 5, 10, 15, 20, and 25 kGy of gamma radiation to 15% AAc aqueous solutions containing 5, 7.5, and 15% of starch. With increment of the radiation dose, gel fraction became higher and attained the maximum (96.5% at 15 kGy, above which the fraction got lowered. On the other hand, the gel fraction monotonically increased with the starch content. Swelling ratios were lower for the starch/AAc hydrogels prepared with higher gamma-ray doses and so with larger starch contents. Significant promotions of the swelling ratios were demonstrated by hydrolysis with NaOH: 13632±10% for 15 kGy radiation-dosed [5% starch/15% AAc] hydrogel, while the maximum swelling ratio was ~200% for those without the treatment. The authors further investigated the availability of the starch/AAc hydrogel as an adsorbent recovering dye waste from the industrial effluents by adopting methylene blue as a model material; the hydrogels showed high dye-capturing coefficients which increase with the starch ratio. The optimum dye adsorption was found to be 576 mg per g of the hydrogel having 7.5 starch and 15% AAc composition. Two kinetic models, (i pseudo-first-order and (ii pseudo-second-order kinetic models, were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  19. Synthesis and property characterization of cassava starch grafted poly(acrylamide-co-(maleic acid)) superabsorbent via γ-irradiation

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2004-01-01

    Graft copolymerizations of acrylamide and maleic acid onto cassava starch by a simultaneous irradiation technique using γ-rays as a initiator were carried out. Various important parameters of total dose, dose rate, monomer-to-cassava starch ratio and maleic acid content were studied. Addition of 2% ww -1 diprotic acid of maleic acid into the reaction mixture yields a saponified starch graft copolymer with a water absorption in distilled water as high as 2256g g -1 of its dried weight. The water absorption of these saponified graft copolymers insaline and buffer solutions was also measured. The water absorption depends largely on the cationic type and concentration of these solutions in terms of ionic strength. This research explains a charge transfer mechanism for graft copolymerization of maleic acid and acrylamide onto cassava starch, and describes the influential parameters that affect grafting efficiency and water absorption. (author)

  20. Transglycosylated Starch Modulates the Gut Microbiome and Expression of Genes Related to Lipid Synthesis in Liver and Adipose Tissue of Pigs

    Directory of Open Access Journals (Sweden)

    Monica A. Newman

    2018-02-01

    Full Text Available Dietary inclusion of resistant starches can promote host health through modulation of the gastrointestinal microbiota, short-chain fatty acid (SCFA profiles, and lipid metabolism. This study investigated the impact of a transglycosylated cornstarch (TGS on gastric, ileal, cecal, proximal-colonic, and mid-colonic bacterial community profiles and fermentation metabolites using a growing pig model. It additionally evaluated the effect of TGS on the expression of host genes related to glucose and SCFA absorption, incretins, and satiety in the gut as well as host genes related to lipid metabolism in hepatic and adipose tissue. Sixteen growing pigs (4 months of age were fed either a TGS or control (CON diet for 11 days. Bacterial profiles were determined via Illumina MiSeq sequencing of the V3–5 region of the 16S rRNA gene, whereas SCFA and gene expression were measured using gas chromatography and reverse transcription-quantitative PCR. Megasphaera, which was increased at all gut sites, began to benefit from TGS feeding in gastric digesta, likely through cross-feeding with other microbes, such as Lactobacillus. Shifts in the bacterial profiles from dietary TGS consumption in the cecum, proximal colon, and mid colon were similar. Relative abundances of Ruminococcus and unclassified Ruminococcaceae genus were lower, whereas that of unclassified Veillonellaceae genus was higher in TGS- compared to CON-fed pigs (p < 0.05. TGS consumption also increased (p < 0.05 concentrations of SCFA, especially propionate, and lactate in the distal hindgut compared to the CON diet which might have up-regulated GLP1 expression in the cecum (p < 0.05 and mid colon compared to the control diet (p < 0.10. TGS-fed pigs showed increased hepatic and decreased adipocyte expression of genes for lipid synthesis (FASN, SREBP1, and ACACA compared to CON-fed pigs, which may be related to postprandial portal nutrient flow and reduced systemic insulin signaling. Overall, our data

  1. Thermo-Responsive Starch-g-(PAM-co-PNIPAM) : Controlled Synthesis and Effect of Molecular Components on Solution Rheology

    NARCIS (Netherlands)

    Fan, Yifei; Boulif, Nadia; Picchioni, Francesco

    2018-01-01

    A series of highly branched random copolymers of acrylamide (AM) and N-isopropylacrylamide (NIPAM) have been prepared from a waxy potato starch-based macroinitiator by aqueous Cu-0-mediated living radical polymerization (Cu-0-mediated LRP). The NIPAM intake in the copolymer was varied between 0% and

  2. Regulation of cellulose synthesis in response to stress.

    Science.gov (United States)

    Kesten, Christopher; Menna, Alexandra; Sánchez-Rodríguez, Clara

    2017-12-01

    The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    Science.gov (United States)

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the

  4. Dynamical feedback between circadian clock and sucrose availability explains adaptive response of starch metabolism to various photoperiods

    Directory of Open Access Journals (Sweden)

    Francois Gabriel Feugier

    2013-01-01

    Full Text Available Plants deal with resource management during all their life. During the day they feed on photosynthetic carbon, sucrose, while storing a part into starch for night use. Careful control of carbon partitioning, starch degradation and sucrose export rates is crucial to avoid carbon starvation, insuring optimal growth whatever the photoperiod. Efficient regulation of these key metabolic rates can give an evolutionary advantage to plants. Here we propose a model of adaptive starch metabolism in response to various photoperiods. We assume the three key metabolic rates to be circadian regulated in leaves and that their phases of oscillations are shifted in response to sucrose starvation. We performed gradient descents for various photoperiod conditions to find the corresponding optimal sets of phase shifts that minimize starvation. Results at convergence were all consistent with experimental data: i diurnal starch profile showed linear increase during the day and linear decrease at night; ii shorter photoperiod tended to increase starch synthesis speed while decreasing its degradation speed during the longer night; iii sudden early dusk showed slower starch degradation during the longer night. Profiles that best explained observations corresponded to circadian regulation of all rates. This theoretical study would establish a framework for future research on feedback between starch metabolism and circadian clock as well as plant productivity.

  5. Microwave-Assisted Synthesis of CuFe2O4 Nanoparticles and Starch-Based Magnetic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Gh. Nabiyouni

    2013-06-01

    Full Text Available Magnetic CuFe2O4 nanoparticles were synthesized by a facile microwave-assisted reaction between Cu(NO32 and Fe(NO33. The magnetic nanoparticles were added to starch to make magnetic polymeric nanocomposite. The nanoparticles and nanocomposites were characterized using X-ray diffraction and scanning electron microscopy. The magnetic properties of the samples were investigated using an alternating gradient force magnetometer (AGFM. The copper ferrite nanoparticles exhibited ferromagnetic behavior at room temperature, with a saturation magnetization of 29emu/g and a coercivity of 136 Oe. The distribution of the CuFe2O4 nanoparticles into the polymeric matrixes decreases the coercivity (136 Oe to 66 Oe. The maximum coercivity of 82 Oe was found for 15% of CuFe2O4 distributed to the starch matrix.

  6. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–aluminum–iron–starch flocculant

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qintie, E-mail: qintlin@163.com; Peng, Huanlong; Zhong, Songxiong; Xiang, Jiangxin

    2015-03-21

    Highlights: • Silicon, aluminum, and iron were grafted onto starch chains to synthesize CSiAFS. • The sludge dewatering performance of CSiAFS was superior to PAC, PAM, and FeCl{sub 3}. • CSiAFS exhibited a good dewatering efficiency over a wide range of pH (3.0–11.0). • CSiAFS had a discontinuous surface with channels which helped to sludge dewatering. - Abstract: Flocculation is one of the most widely used cost-effective pretreatment method for sludge dewatering, and a novel environmentally friendly and efficient flocculant is highly desired in the sludge dewatering field. In this study, a novel combined silicon–aluminum–ferric–starch was synthesized by grafting silicon, aluminum, and iron onto a starch backbone. The synthesized starch flocculant was characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, X-ray powder diffraction, and thermogravimetric analysis. The dewatering performance of secondary sludge was evaluated according to the capillary suction time, settling volume percentage, and specific resistance to filtration. The results indicated that the copolymer exhibited: (1) a good dewatering efficiency over a wide pH range of 3.0–11.0, (2) superior sludge dewatering performance compared to those of polyaluminum chloride (PACl), polyacrylamide (PAM), ferric chloride, and (3) a discontinuous surface with many channels or voids that helps to mobilize the impermeable thin layer of secondary sludge during filter pressing. Such a novel copolymer is a promising green flocculant for secondary sludge dewatering applications.

  7. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    Science.gov (United States)

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  8. Regulation of protein synthesis during sea urchin early development

    International Nuclear Information System (INIS)

    Kelso, L.C.

    1989-01-01

    Fertilization of the sea urchin egg results in a 20-40 fold increase in the rate of protein synthesis. The masked message hypothesis proposes that mRNAs are masked or unavailable for translation in the egg. We devised an in vivo assay to test this hypothesis. Our results show that masked mRNAs limit protein synthesis in the unfertilized egg. In addition, we show that protein synthesis is also regulated at the level of translational machinery. Following fertilization is a period of rapid cell divisions. This period, known as the rapid cleavage stage, is characterized by the transient synthesis of a novel set of proteins. The synthesis of these proteins is programmed by maternal mRNAs stored in the unfertilized egg. To study the behavior of these mRNAs, we prepared a cDNA library from polysomal poly (A+) RNA from 2-hour embryos. [ 32 P] labeled probes, prepared from the cDNA library, were used to monitor the levels of individual mRNAs in polysomes at fertilization and during early development

  9. Phosphorylation of mouse serine racemase regulates D-serine synthesis

    DEFF Research Database (Denmark)

    Foltyn, Veronika N; Zehl, Martin; Dikopoltsev, Elena

    2010-01-01

    Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator D-serine, which plays a major role in synaptic plasticity and N-methyl D-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis and in v...... with a phosphorylation-deficient SR mutant indicate that Thr71 phosphorylation increases SR activity, suggesting a novel mechanism for regulating D-serine production....

  10. Biological synthesis of Au nanoparticles using liquefied mash of cassava starch and their functionalization for enhanced hydrolysis of xylan by recombinant xylanase.

    Science.gov (United States)

    Zeng, Sumei; Du, Liangwei; Huang, Meiying; Feng, Jia-Xun

    2016-05-01

    Au nanoparticles (AuNPs) have shown the potential for a variety of applications due to their unique physical and chemical properties. In this study, a facile and affordable method for the synthesis of AuNPs via the liquefied mash of cassava starch has been described and the functionalized AuNPs by L-cysteine improved activity of recombinant xylanase was demonstrated. UV-Vis absorption spectroscopy, transmission electron microscopy, and zeta potential measurements were performed to characterize the AuNPs and monitor their synthesis. The presence of Au was confirmed by energy-dispersive X-ray spectroscopy (EDX) and the X-ray diffraction patterns showed that Au nanocrystals were face-centered cubic. The C=O stretching vibration in the Fourier transform infrared spectrum of AuNPs suggested that the hemiacetal C-OH of sugar molecules performed the reduction of Au³⁺ to Au⁰. The presence of C and O in the EDX spectrum and the negative zeta potential of AuNPs suggested that the biomolecules present in liquefied cassava mash were responsible for the stabilization of AuNPs. The surface of AuNPs was easily functionalized by L-cysteine, which improved the stability of AuNPs. Moreover, cysteine-functionalized AuNPs could significantly improve recombinant xylanase efficiency and stability.

  11. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars.

    Science.gov (United States)

    Goldschmidt, E E; Huber, S C

    1992-08-01

    In the present study, leaves of different plant species were girdled by the hot wax collar method to prevent export of assimilates. Photosynthetic activity of girdled and control leaves was evaluated 3 to 7 days later by two methods: (a) carbon exchange rate (CER) of attached leaves was determined under ambient CO(2) concentrations using a closed gas system, and (b) maximum photosynthetic capacity (A(max)) was determined under 3% CO(2) with a leaf disc O(2) electrode. Starch, hexoses, and sucrose were determined enzymically. Typical starch storers like soybean (Glycine max L.) (up to 87.5 milligrams of starch per square decimeter in girdled leaves), cotton (Gossypium hirsutum L.), and cucumber (Cucumis sativus L.) responded to 7 days of girdling by increased (80-100%) stomatal resistance (r(s)) and decreased A(max) (>50%). On the other hand, spinach (Spinacia oleracea L.), a typical sucrose storer (up to 160 milligrams of sucrose per square decimeter in girdled leaves), showed only a slight reduction in CER and almost no change in A(max). Intermediate plants like tomato (Lycopersicon esculentum Mill.), sunflower (Helianthus annuus L.), broad bean (Vicia faba L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.), which upon girdling store both starch and sucrose, responded to the girdle by a considerable reduction in CER but only moderate inhibition of A(max), indicating that the observed reduction in CER was primarily a stomatal response. Both the wild-type tobacco (Nicotiana sylvestris) (which upon girdling stored starch and hexoses) and the starchless mutant (which stored only hexoses, up to 90 milligrams per square decimeter) showed 90 to 100% inhibition of CER and approximately 50% inhibition of A(max). In general, excised leaves (6 days) behaved like girdled leaves of the respective species, showing 50% reduction of A(max) in wild-type and starchless N. sylvestris but only slight decline of A(max) in spinach. The results of the present study

  12. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. SYNTHESIS OF VOLTAGES OF UNIFORM PWM IN TIME REGULATION

    Directory of Open Access Journals (Sweden)

    A. G. Stryzhniou

    2014-01-01

    Full Text Available The article describes a process of synthesis and qualitative assessment of the harmonic composition of voltages of multiple and single PWM pulses in time regulation, being, along with amplitude, frequency and phase method, one of control methods of an asynchronous motor. The main point of time regulation is that a pause after any two single PWM pulses with different polarity or after any two groups of multiple PWM pulses with different polarity changes during a process of regulation. Feature of time regulation is that a motor has fast response in the range of small-signal of control and good linearity of speed-torque characteristics in the whole control range. Analytical expressions of parameters of PWM pulses ai and ti are obtained which allow to simplify considerably a process of formation and implementation of time regulation using tabular or indexed-tabular methods. These expressions allow not only to define voltage amplitude of  harmonic but also to perform qualitative assessment of harmonic composition of output voltages at time regulation. It is specified that harmonic frequencies wi = w0/q change in inverse proportion to magnitude of parameter q during a process of regulation and there is a replacement of a fundamental frequency by frequencies of higher harmonics.The offered approach allows to synthesize voltage of uniform single and multiple PWM pulses and to perform their comparative and qualitative analysis and the obtained expressions can be used at modeling of AC motor work. Voltage of multiple PWM pulses which is formed using stepped reference voltage with even quantity of steps in a half period and a pause on a zero level has the best parameters by criterion of a minimum of harmonic components and a maximum of a factor of anharmonicity Kнс at time regulation.

  14. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  15. Physically crosslinked poly(vinyl alcohol-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2014-07-01

    Full Text Available Poly(vinyl alcohol, PVA is a polymer of great importance because of its many appealing characteristics specifically for various pharmaceutical and biomedical applications. Physically crosslinked hydrogel membranes composed of different amounts of hydroxyethyl starch (HES in (PVA and ampicillin were prepared by applying freeze–thawing method. This freezing–thawing cycle was repeated for three consecutive cycles. Physicochemical properties of PVA–HES membrane gel such as gel fraction, swelling, morphology, elongation, tensile strength, and protein adsorption were investigated. Introducing HES into freeze–thawed PVA structure affected crystal size distribution of PVA; and hence physicochemical properties and morphological structure have been affected. Increased HES concentration decreased the gel fraction %, maximum strength and break elongation. Indeed it resulted into a significant incrementing of the swelling ability, amount of protein adsorption, broader pore size, and pore distribution of membrane morphological structure. Furthermore, an increase in HES concentration resulted in better and still lower thermal stability compared to virgin PVA and freeze–thawed PVA. The maximum weight loss of PVA–HES hydrogel membranes ranged between 18% and 60% according to HES content, after two days of degradation in phosphate buffer saline (PBS, which indicates they are biodegradable. Thus, PVA–HES hydrogel membranes containing ampicillin could be a novel approach for biomedical application e.g. wound dressing purposes.

  16. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  17. Preliminary Study on the Synthesis of Phosphorylated Mung Bean Starch: The Effect of pH on the Physicochemical and Functional Properties

    Directory of Open Access Journals (Sweden)

    Illona Nathania

    2017-11-01

    Full Text Available Mung bean (Vigna radiate L. is a grain legume widely cultivated in tropical and sub-tropical regions. Mung bean seeds contain a significant amount of carbohydrate (63%-w/w and are easily digested compared to seeds from other legumes. Mung bean starch has the potential to be used as thickener or gelling agents in food industries. Certain functional properties of mung bean starch, however, still need to be improved. In this research, a preliminary study was performed to upgrade mung bean starch properties using phosphorylation reaction. In particular, the effect of starch suspension pH (6–10 on the functional properties of the modified products was investigated. Phosphorylation was carried out at 130 °C, for 2 h using sodium tripolyphosphate (STPP with an intake of 5%-w based on dry starch. The phosphorylated products were subsequently washed with water and dried. The experimental results show that the P-content of the phosphorylated mung bean starch is accessible in the range of 0.04–0.08%. The solubility (6.09–11.37%-w/w and swelling power (9.88–11.17 g/g of the modified starch products have been improved compared to native starch (solubility = 6.06 %-w/w, swelling power = 8.05 g/g. Phosphorylation also proved to increase peak viscosity, paste clarity, and water absorption/oil absorption capacity of the products.

  18. Polyamines Function in Stress Tolerance: From Synthesis to Regulation

    Directory of Open Access Journals (Sweden)

    Ji-Hong eLiu

    2015-10-01

    Full Text Available Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine,spermidine and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested.

  19. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  20. Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit

    Science.gov (United States)

    Liu, Weixin; Xu, Biyu; Jin, Zhiqiang

    2014-01-01

    Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384

  1. DMPD: Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15331118 Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. Wu...e-associated up-regulation in macrophage PGE2 synthesis. PubmedID 15331118 Title Mechanism of age-associated... up-regulation in macrophage PGE2 synthesis. Authors Wu D, Meydani SN. Publicatio

  2. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  3. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Ca2+ concentration enabled the HA crystallization process to be growth dominated, producing films composed of high crystallinity, hexagonal grains on multiple metallic substrates. TEP regulation of HA crystallization enabled the deposition of an adhesive CaTiO3 intermediate layer, and then HA in a continuous, phase sequenced process on Ti6Al4V substrates, the first such process reported in the hydrothermal HA literature. The HA film was found to be deposited by a passivating competitive growth mechanism that enabled the [0001] crystallographic orientation of hexagonal single crystals to be engineered with synthesis time. Bioactivity analysis demonstrated that films were bioactive and bone bonding. Together, these results suggest that these HA films are candidates for use on metallic orthopedic implants, namely Ti6Al4V.

  4. Regulation of Hyaluronan Synthesis in Vascular Diseases and Diabetes

    Directory of Open Access Journals (Sweden)

    Paola Moretto

    2015-01-01

    Full Text Available Cell microenvironment has a critical role determining cell fate and modulating cell responses to injuries. Hyaluronan (HA is a ubiquitous extracellular matrix glycosaminoglycan that can be considered a signaling molecule. In fact, interacting with several cell surface receptors can deeply shape cell behavior. In vascular biology, HA triggers smooth muscle cells (SMCs dedifferentiation which contributes to vessel wall thickening. Furthermore, HA is able to modulate inflammation by altering the adhesive properties of endothelial cells. In hyperglycemic conditions, HA accumulates in vessels and can contribute to the diabetic complications at micro- and macrovasculature. Due to the pivotal role in favoring atherogenesis and neointima formation after injuries, HA could be a new target for cardiovascular pathologies. This review will focus on the recent findings regarding the regulation of HA synthesis in human vascular SMCs. In particular, the effects of the intracellular HA substrates availability, adenosine monophosphate-activated protein kinase (AMPK, and protein O-GlcNAcylation on the main HA synthetic enzyme (i.e., HAS2 will be discussed.

  5. Uncoupled regulation of fibronectin and collagen synthesis in Rous sarcoma virus transformed avian tendon cells

    International Nuclear Information System (INIS)

    Parry, G.; Soo, W.J.; Bissell, M.J.

    1979-01-01

    The regulation of fibronectin and procollagen synthesis has been investigated in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. Whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells was thus examined. It was found that while the synthesis of both pro α 1 and pro α 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules

  6. Genetic regulation of phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis strain PCL1391

    NARCIS (Netherlands)

    Girard, Genevieve

    2006-01-01

    A general overview of regulation of secondary metabolism in Pseudomonas species is given in Chapter 1. Several approaches were combined to identify novel genes involved in the regulation of PCN synthesis and to study their interactions with other regulators. Site-directed mutagenesis was used to

  7. Starch degradation by irradiation

    International Nuclear Information System (INIS)

    Pruzinec, J.; Hola, O.

    1987-01-01

    The effect of high energy irradiation on various starch samples was studied. The radiation dose varied between 43 and 200.9 kGy. The viscosity of starch samples were determined by Hoeppler's method. The percentual solubility of the matter in dry starch was evaluated. The viscosity and solubility values are presented. (author) 14 refs

  8. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical

  9. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    OpenAIRE

    E. Ruchti; P.J. Roach; A.A. DePaoli-Roach; P.J. Magistretti; I. Allaman

    2016-01-01

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the ...

  10. Starches, Sugars and Obesity

    Directory of Open Access Journals (Sweden)

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  11. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  12. Synthesis of a novel superdisintegrant by starch derivatization with polysuccinimide and its application for the development of Ondansetron fast dissolving tablet.

    Science.gov (United States)

    Sadeghi, Mozhgan; Hemmati, Salar; Hamishehkar, Hamed

    2016-01-01

    Disintegrants are the key excipients administered in tablet formulations to boost the decomposition of the tablet into smaller pieces in the gastrointestinal environment, thereby increasing the available surface area and enhancing a more rapid release of the active ingredient. Polysuccinimide (PSI), a biodegradable polymer synthesized from aspartic acid, was reacted with starch and fully assessed by CHN, (1)H-NMR, and FTIR. PSI-grafted starch (PSI-St) was synthesized and applied as a disintegrant in the formulation of a rapidly disintegrating tablet of Ondansetron, a nausea and vomiting medicine. The tablet formulated with the newly developed superdisintegrant was evaluated for hardness, friability, disintegration time, and dissolution rate, and the results were compared with tablets formulated with an identical composition of test formulation differing only in type of disintegrant. Tablets prepared with starch and tablets prepared with sodium starch glycolate (SSG) were used as negative and positive controls, respectively. Dissolution study results indicated that although the onset of disintegration action was faster for SSG than PSI-St, higher amounts of drug were released from tablets formulated from PSI-St than from those formulated from SSG during 10 min. It was concluded that the novel synthesized superdisintegrant has an appropriate potential for the application in the formulation of fast dissolving tablets.

  13. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  14. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  15. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

    Science.gov (United States)

    Burgos, Hector L; O'Connor, Kevin; Sanchez-Vazquez, Patricia; Gourse, Richard L

    2017-11-01

    Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In

  16. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    Science.gov (United States)

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  17. Regulation of glycoprotein synthesis in yeast by mating pheromones

    International Nuclear Information System (INIS)

    Tanner, W.

    1984-01-01

    In Saccharomyces cerevisiae, glycosylated proteins amount to less than 2% of the cell protein. Two intensively studied examples of yeast glycoproteins are the external cell wall - associated invertase and the vacuolar carboxypeptidase Y. Recently, it was shown that the mating pheromone, alpha factor, specifically and strongly inhibits the synthesis of N-glycosylated proteins in haploid a cells, whereas O-glycosylated proteins are not affected. In this paper, the pathways of glycoprotein biosynthesis are summarized briefly, and evidence is presented that mating pheomones have a regulatory function in glycoprotein synthesis

  18. Starch accumulation in hulless barley during grain filling.

    Science.gov (United States)

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  19. Synthesis, Surface Modification and Optical Properties of Thioglycolic Acid-Capped ZnS Quantum Dots for Starch Recognition at Ultralow Concentration

    Science.gov (United States)

    Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Ahmadieh, Mahnaz; Mogharei, Azadeh; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2016-11-01

    In this research, water-soluble thioglycolic acid-capped ZnS quantum dots (QDs) are synthesized by the chemical precipitation method. The prepared QDs are characterized using x-ray diffraction and transmission electron microscopy. Results revealed that ZnS QDs have a 2.73 nm crystallite size, cubic zinc blende structure, and spherical morphology with a diameter less than 10 nm. Photoluminescence (PL) spectroscopy is performed to determine the presence of low concentrations of starch. Four emission peaks are observed at 348 nm, 387 nm, 422 nm, and 486 nm and their intensities are quenched by increasing concentration of starch. PL intensity variations in the studied concentrations range (0-100 ppm) are best described by a Michaelis-Menten model. The Michaelis constant ( K m) for immobilized α-amylase in this system is about 101.07 ppm. This implies a great tendency for the enzyme to hydrolyze the starch as substrate. Finally, the limit of detection is found to be about 6.64 ppm.

  20. Plasma membrane—endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis

    NARCIS (Netherlands)

    Tavassoli, S.; Chao, J.T.; Young, B.P.; Cox, R.C.; Prinz, W.A.; de Kroon, A.I.P.M.; Loewen, C.I.R.

    2013-01-01

    Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and

  1. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.

    Science.gov (United States)

    Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun

    2012-12-27

    L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.

  2. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  3. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-06-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. © 2015 American Society of Plant Biologists. All rights reserved.

  4. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  5. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Developmental Regulation across the Life Span: Toward a New Synthesis

    Science.gov (United States)

    Haase, Claudia M.; Heckhausen, Jutta; Wrosch, Carsten

    2013-01-01

    How can individuals regulate their own development to live happy, healthy, and productive lives? Major theories of developmental regulation across the life span have been proposed (e.g., dual-process model of assimilation and accommodation; motivational theory of life-span development; model of selection, optimization, and compensation), but they…

  7. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11-14.5 hour perspective; a randomized controlled study in healthy subjects.

    Science.gov (United States)

    Sandberg, Jonna C; Björck, Inger M E; Nilsson, Anne C

    2017-04-21

    The prevalence of obesity is increasing worldwide and prevention is needed. Whole grain has shown potential to lower the risk of obesity, cardiovascular disease and type 2 diabetes. One possible mechanism behind the benefits of whole grain is the gut fermentation of dietary fiber (DF), e.g. non-starch polysaccharides and resistant starch (RS), in whole grain. The purpose of the study is to investigate the effect of whole grain rye-based products on glucose- and appetite regulation. Twenty-one healthy subjects were provided four rye-based evening test meals in a crossover overnight study design. The test evening meals consisted of either whole grain rye flour bread (RFB) or a 1:1 ratio of whole grain rye flour and rye kernels bread (RFB/RKB), with or without added resistant starch (+RS). White wheat flour bread (WWB) was used as reference evening meal. Blood glucose, insulin, PYY, FFA, IL-6 as well as breath H 2 and subjective rating of appetite were measured the following morning at fasting and repeatedly up to 3.5 h after a standardized breakfast consisting of WWB. Ad libitum energy intake was determined at lunch, 14.5 h after evening test and reference meals, respectively. The evening meal with RFB/RKB + RS decreased postprandial glucose- and insulin responses (iAUC) (P appetite regulation in a semi-acute perspective. Meanwhile, RFB and RFB/RKB improved subjective appetite ratings. The effects probably emanate from gut fermentation events. The study was registered at: ClinicalTrials.gov, register number NCT02347293 ( www.clinicaltrials.gov/ct2/show/NCT02347293 ). Registered 15 January 2015.

  8. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    , the effects of engineering high levels of phosphate and amylose content on starch physico-chemical properties were evaluated by various biochemical and morphological studies. As a result, a substantial increase of 10-fold phosphate content and ~99% amylose content with high-resistant starch was observed...... in storage reserve accumulation, metabolite accumulation in AO but no significant differences were observed in HP compared to WT. Scanning electron microscopy and confocal microscopy revealed the details in topography and internal structures of the starch granules in these lines. The results demonstrated......Starch represents the most important carbohydrate used for food and feed purposes. Increasingly, it is also used as a renewable raw material, as a source of biofuel, and for many different industrial applications. Progress in understanding starch biosynthesis, and investigations of the genes...

  9. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...... additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently...... released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome...

  10. Functional Characterization of the Canine Heme-Regulated eIF2α Kinase: Regulation of Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Kimon C. Kanelakis

    2009-01-01

    Full Text Available The heme-regulated inhibitor (HRI negatively regulates protein synthesis by phosphorylating eukaryotic initiation factor-2α (eIF2α thereby inhibiting protein translation. The importance of HRI in regulating hemoglobin synthesis in erythroid cells makes it an attractive molecular target in need of further characterization. In this work, we have cloned and expressed the canine form of the HRI kinase. The canine nucleotide sequence has 86%, 82%, and 81% identity to the human, mouse, and rat HRI, respectively. It was noted that an isoleucine residue in the ATP binding site of human, rat, and mouse HRI is replaced by a valine in the canine kinase. The expression of canine HRI protein by in vitro translation using wheat germ lysate or in Sf9 cells using a baculovirus expression system was increased by the addition of hemin. Following purification, the canine protein was found to be 72 kD and showed kinase activity determined by its ability to phosphorylate a synthetic peptide substrate. Quercetin, a kinase inhibitor known to inhibit mouse and human HRI, inhibits canine HRI in a concentration-dependent manner. Additionally, quercetin is able to increase de novo protein synthesis in canine reticulocytes. We conclude that the canine is a suitable model species for studying the role of HRI in erythropoiesis.

  11. DMPD: Regulation of nitric oxide synthesis and apoptosis by arginase and argininerecycling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17513437 Regulation of nitric oxide synthesis and apoptosis by arginase and arginin...tion of nitric oxide synthesis and apoptosis by arginase and argininerecycling. A...erecycling. Mori M. J Nutr. 2007 Jun;137(6 Suppl 2):1616S-1620S. (.png) (.svg) (.html) (.csml) Show Regulation of nitric oxide synthe...sis and apoptosis by arginase and argininerecycling. PubmedID 17513437 Title Regula

  12. IL-6 has no acute effect on the regulation of urea synthesis in vivo in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen; Aagaard, Niels Kristian; Grønbæk, Henning

    2011-01-01

    Clinical or experimentally induced, active inflammation up-regulates the in vivo capacity of urea synthesis (CUNS), which promotes nitrogen removal from the body and metabolic catabolism. We have shown that tumor necrosis factor a (TNF-a) up-regulates CUNS and increases interleukin 6 expression (IL......-6) within hours of administration. The described effect of TNF-a on nitrogen homeostasis may, therefore, depend on IL-6....

  13. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    International Nuclear Information System (INIS)

    Ponka, P.; Schulman, H.M.

    1985-01-01

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59 Fe from [ 59 Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [ 59 Fe]transferrin. Also, Fe-SIH stimulates [2- 14 C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59 Fe incorporation into heme from either [ 59 Fe]transferrin or [ 59 Fe]SIH but does reverse the inhibition of 59 Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes

  14. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder.

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K; Van Vleet, Jeremy; Fenstermaker, Ali G; Silhavy, Jennifer L; Scheliga, Judith S; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma M; Celep, Figen; Oraby, Azza; Zaki, Maha S; Al-Baradie, Raidah; Faqeih, Eissa A; Saleh, Mohammed A M; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W; Gleeson, Joseph G

    2013-08-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    Science.gov (United States)

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  16. Methanol Metabolism in Yeasts : Regulation of the Synthesis of Catabolic Enzymes

    NARCIS (Netherlands)

    Egli, Th.; Dijken, J.P. van; Veenhuis, M.; Harder, W.; Fiechter, A.

    1980-01-01

    The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of

  17. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum.) by the gene encoding granule-bound starch synthase

    NARCIS (Netherlands)

    van der Leij, E.R.; Visser, R.G.E.; OOSTERHAVEN, K; VANDERKOP, DAM; Jacobsen, E.; Feenstra, W.

    1991-01-01

    Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granule-bound starch synthase (GBSS) into the amylose-free starch mutant amf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates that Amf is the structural gene for GBSS.

  18. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  19. First principles insight into the α-glucan structures of starch

    DEFF Research Database (Denmark)

    Damager, Iben; Engelsen, Søren Balling; Blennow, Andreas

    2010-01-01

    A study was conducted to demonstrate the synthesis, conformation, and hydration of the α-glucan structures of starch. Starch and glycogen were synthesized by sets of specific enzyme activities that directly determined their molecular structures and physical properties. It was demonstrated...... that the extent of crystallinity, aggregation and hydration was of fundamental importance for starch and its human analogue glycogen. Starch was deposited in the plant as a stable form in highly organized and semicrystalline granules having specific crystalline polymorphs as determined by powder X......-ray crystallography. The investigations mainly focused on the bottom-up approach of synthesis, conformation, and hydration of starch. Starch and glycogen were found to be polymers that were built up from a single monomer, D-glucopyranose, or for short D-glucose....

  20. Changes in Enzyme Activities Involved in Starch Synthesis and Hormone Concentrations in Superior and Inferior Spikelets and Their Association with Grain Filling of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2013-03-01

    Full Text Available The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed. Four super rice cultivars, Liangyoupeijiu, IIyou 084, Huaidao 9 and Wujing 15, and two high-yielding and elite check cultivars, Shanyou 63 and Yangfujing 8, were used. The activities of sucrose synthase (SuSase, adenosine diphosphoglucose pyrophosphorylase (AGPase, starch synthase (StSase and starch branching enzyme (SBE, and the concentrations of zeatin + zeatin riboside (Z + ZR, indole-3-acetic acid (IAA and abscisic acid (ABA in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed. Maximum grain filling rate, the time reaching the maximum grain-filling rate, mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars, but were significantly lower in the super rice than in the check rice for inferior spikelets. Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period. The peak values and the mean activities of SuSase, AGPase, StSase and SBE were lower in inferior spikelets than in superior ones, as well as the peak values and the mean concentrations of Z + ZR and IAA. However, the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice. The grain filling rate was positively and significantly correlated with the activities of SuSase, AGPase and StSase and the concentrations of Z + ZR and IAA. The results suggested that the low activities of SuSase, AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain

  1. Synthesis carbon-encapsulated NiZn ferrite nanocomposites by in-situ starch coating route combined with hydrogen thermal reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fuming [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Xie, Yu, E-mail: xieyu_121@163.com [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Duan, Junhong; Hua, Helin [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Gao, Yunhua [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Huang, Yan; Pan, Jianfei; Ling, Yun [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-05

    Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction. The nanocomposites were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and vibrate sample magnetometer (VSM) and so on techniques. XRD, FT-IR, TGA and TEM images indicate the formation of carbon-encapsulated NiZn ferrite magnetic nanocomposites. XRD patterns reveal that the crystalline structure of the nanocomposites is cubic spinel and taenite emerges under the hydrogen thermal reductive ambient. FT-IR spectra suggest that there are interactions on the NiZn ferrite nanocomposites and a spinel-type structure corresponding to NiZn ferrite has formed. TGA shows that the weight loss of the nanocomposites can be divided into three stages in the course of heat decomposition. TEM observations reveal that the carbon-encapsulated NiZn ferrite magnetic nanocomposites have an intact core–shell structure. Under the magnetic field, the nanocomposites exhibited the ferrimagnetic behavior. The saturated magnetization (M{sub s}) of carbon-encapsulated NiZn ferrite nanocomposites calcined at 400 °C can reach a high value up to 72.67 emu/g, and the saturated magnetization (M{sub s}) decreases as the annealing temperature goes up, while the coercivity (Hc), magnetic residual (Mr) magnetic parameters practically fixed on 115.15 Oe and 7.85 emu/g. - Graphical abstract: Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction (Fig. 1). The nanocomposites were characterized and the experimental results were discussed. Under applied magnetic field, the nanocomposites exhibited the ferromagnetic behavior

  2. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    International Nuclear Information System (INIS)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K + , however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with [ 3 H]-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K + -evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis

  3. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramasami, Alamelu K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Raja Naika, H. [Dept. of Biotechnology, University College of Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur (India); Ramakrishnappa, T.; Balakrishna, Geetha R. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura (T) (India); Dept. of Chemistry, Siddaganga Institute of Technology, Tumkur (India)

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  4. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  5. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives

    NARCIS (Netherlands)

    Broeren, Martijn L.M.; Kuling, Lody; Worrell, Ernst; Shen, Li

    2017-01-01

    Starch plastics are developed for their biobased origin and potential biodegradability. To assist the development of sustainable starch plastics, this paper quantifies the environmental impacts of starch plastics produced from either virgin starch or starch reclaimed from wastewater. A

  6. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-07-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.

  7. Abscisic Acid Negatively Regulates Elicitor-Induced Synthesis of Capsidiol in Wild Tobacco1[W

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-01-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8′-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8′-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants. PMID:19420326

  8. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis.

    Science.gov (United States)

    Talabér, Gergely; Jondal, Mikael; Okret, Sam

    2013-11-05

    Systemic glucocorticoids (GCs) mainly originate from de novo synthesis in the adrenal cortex under the control of the hypothalamus-pituitary-adrenal (HPA)-axis. However, research during the last 1-2 decades has revealed that additional organs express the necessary enzymes and have the capacity for de novo synthesis of biologically active GCs. This includes the thymus, intestine, skin and the brain. Recent research has also revealed that locally synthesized GCs most likely act in a paracrine or autocrine manner and have significant physiological roles in local homeostasis, cell development and immune cell activation. In this review, we summarize the nature, regulation and known physiological roles of extra-adrenal GC synthesis. We specifically focus on the thymus in which GC production (by both developing thymocytes and epithelial cells) has a role in the maintenance of proper immunological function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Model for the mechanism and regulation of chitosan synthesis in Mucor rouxii

    International Nuclear Information System (INIS)

    Davis, L.L.; Bartnicki-Garcia, S.

    1984-01-01

    The cell walls of mucoraceous fungi are characterized by the joint occurrence of chitosan and chitin, the β-1,4-linked polysaccharides of G1cN and G1cNAc, respectively. It has been proposed that chitosan is made from chitin by enzymatic deacetylation, but the evidence is inconclusive since the deacetylase isolated from Mucor rouxii is effective against glycol chitin, but not against genuine chitin; consequently, chitosan synthesis in vitro was not achieved. The authors discovered that the same deacetylase can deacetylate chitin efficiently if it is allowed to act on chitin chains as they are being formed; i.e. the simultaneous presence and operation of chitin synthetase and chitin deacetylase is required for chitosan synthesis. Subsequent studies on the effect of digitonin on chitosan synthesis were the basis for a model the authors have developed for the regulation of chitosan and chitin syntheses in vivo

  10. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    Science.gov (United States)

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  11. In vitro digestibility of banana starch cookies.

    Science.gov (United States)

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  12. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents.

    Science.gov (United States)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2018-03-15

    The sol-gel auto-combustion technique is an effective method for the synthesis of the composites. In this research for the first time, CoTiO 3 /CoFe 2 O 4 nanocomposites are successfully synthesized via a new sol-gel auto-combustion technique. The glucose, maltose and starch are used as fuel, capping and reducing agents, also the optimal reducing agent is chosen. The effects of quantity of reducing agent, molar ratio of Ti:Co, calcination temperature and time on the morphology, particle size, magnetic property, purity and phase of the nanocomposites are investigated. XRD patterns show formation of CoTiO 3 /CoFe 2 O 4 spherical nanoparticles with nearly evenly distribution, when the molar ratio of Co/Ti is 1:1. EDS analysis confirm results of XRD. The magnetic behavior of the nanocomposites is studied by VSM. The nanocomposites exhibit a high coercivity at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Up-regulation of melanin synthesis by the antidepressant fluoxetine.

    Science.gov (United States)

    Liao, Sha; Shang, Jing; Tian, Xiaoli; Fan, Xueqi; Shi, Xiupu; Pei, Siran; Wang, Qian; Yu, Boyang

    2012-08-01

    Fluoxetine, a member of the class of selective serotonin reuptake inhibitors, is a potent antidepressant commonly used in clinical practice. Here, we report that fluoxetine increases cellular tyrosinase (TYR) activity, enhances the protein levels of microphthalmia-associated transcription factor (MITF), TYR and tyrosinase-related protein-1 (TRP-1) and eventually leads to a dramatic increase in melanin production in both murine B16F10 melanoma cells and normal human melanocytes (NHMCs). In well-characterized C57BL/6 mouse models, systemic application of fluoxetine increased hair pigmentation by up-regulating hair follicular MITF, TYR, TRP-1 and tyrosinase-related protein-2 (TRP-2) protein levels. Using a serotonin 1A receptor (SR1A) antagonist and RNA interference (RNAi) technique, we revealed that SR1A appears to be one of the involved pathways in the fluoxetine-induced melanogenesis in B16F10 cells. These results suggest that fluoxetine may hold a significant therapeutic potential for treating skin hypopigmentation disorders, and SR1A may serve as a novel target in modulating melanogenesis. © 2012 John Wiley & Sons A/S.

  14. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    Science.gov (United States)

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  15. The effect of thai glutinous rice starch on the synthesis of lead zirconate (PbZrO3) nanofibers via the electrospinning method.

    Science.gov (United States)

    Nawanil, Chanisa; Vittayakorn, Wanwilai; Muanghua, Rangson; Niemcharoen, Surasak; Prachayawarakorn, Jutarat; Vittayakorn, Naratip

    2013-05-01

    This study synthesized blended lead zirconate (PbZrO3;PZ)/poly(ethylene oxide)(PEO)/Glutinous rice starch (GRS) nanofibers by the electrospinning method. A number of parameters such as the ratio between PEO and GRS and calcination temperature have been studied. The as-spun PZ/PEO/GRS composite and PZ fibers were characterized by TG-DTA, X-ray diffraction, FT-IR and SEM, respectively. SEM results showed that smooth and continuous fibers were obtained at the volume ratio of 10:2:1, PZ/PEO/GRS. After calcination of the as-spun PZ/PEO/GRS composite nanofibers at 650 degrees C for 4 h, PZ nanofibers with perovskite structure were obtained successfully. The fibers had a uniform and smooth surface without grain boundaries. However, when the calcination temperature increased to 750 degrees C and 850 degrees C, the fiber represented a necklace-like structure with grain boundaries arranged by grain to grain unit cell clusters.

  16. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starchstarch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  17. Naringenin Regulates Expression of Genes Involved in Cell Wall Synthesis in Herbaspirillum seropedicae▿

    Science.gov (United States)

    Tadra-Sfeir, M. Z.; Souza, E. M.; Faoro, H.; Müller-Santos, M.; Baura, V. A.; Tuleski, T. R.; Rigo, L. U.; Yates, M. G.; Wassem, R.; Pedrosa, F. O.; Monteiro, R. A.

    2011-01-01

    Five thousand mutants of Herbaspirillum seropedicae SmR1 carrying random insertions of transposon pTnMod-OGmKmlacZ were screened for differential expression of LacZ in the presence of naringenin. Among the 16 mutants whose expression was regulated by naringenin were genes predicted to be involved in the synthesis of exopolysaccharides, lipopolysaccharides, and auxin. These loci are probably involved in establishing interactions with host plants. PMID:21257805

  18. Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae.

    Science.gov (United States)

    Tadra-Sfeir, M Z; Souza, E M; Faoro, H; Müller-Santos, M; Baura, V A; Tuleski, T R; Rigo, L U; Yates, M G; Wassem, R; Pedrosa, F O; Monteiro, R A

    2011-03-01

    Five thousand mutants of Herbaspirillum seropedicae SmR1 carrying random insertions of transposon pTnMod-OGmKmlacZ were screened for differential expression of LacZ in the presence of naringenin. Among the 16 mutants whose expression was regulated by naringenin were genes predicted to be involved in the synthesis of exopolysaccharides, lipopolysaccharides, and auxin. These loci are probably involved in establishing interactions with host plants.

  19. Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis.

    Directory of Open Access Journals (Sweden)

    Bon Jeong Ku

    Full Text Available The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6 is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+Mig-6(f/f; Mig-6(d/d. Mig-6(d/d mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d mice compared to Mig-6(f/f controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.

  20. Regulation of urea synthesis during the acute phase response in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Jessen, Niels; Buch Møller, Andreas

    2013-01-01

    The acute-phase response is a catabolic event involving increased waste of amino-nitrogen (N) via hepatic urea synthesis, despite an increased need for amino-N incorporation into acute-phase proteins. This study aimed to clarify the regulation of N elimination via urea during different phases...... of the tumor necrosis factor-α (TNF-α)-induced acute-phase response in rats. We used four methods to study the regulation of urea synthesis: We examined urea cycle enzyme mRNA levels in liver tissue, the hepatocyte urea cycle enzyme proteins, the in vivo capacity of urea-N synthesis (CUNS), and known humoral...... regulators of CUNS at 1, 3, 24, and 72 h after TNF-α injection (25 μg/kg iv rrTNF-α) in rats. Serum acute-phase proteins and their liver mRNA levels were also measured. The urea cycle enzyme mRNA levels acutely decreased and then gradually normalized, whereas the urea cycle enzyme proteins remained...

  1. Modifications to the translational apparatus which affect the regulation of protein synthesis in sea urchin embryos

    International Nuclear Information System (INIS)

    Scalise, F.W.

    1988-01-01

    Protein synthesis can be regulated at a number of cellular levels. I have examined how modifications to specific components of the protein synthetic machinery are involved in regulating the efficiency of initiation of translation during early sea urchin embryogenesis. It is demonstrated that Ca 2+ concentrations exceeding 500 uM cause the inhibition of protein synthesis in cell-free translation lysates prepared from sea urchin embryos. Specific changes in the state of phosphorylation of at least 8 proteins occur during this Ca 2+ -mediated repression of translation. Analysis of these proteins has indicated that, unlike mammalian systems, there is no detectable level of Ca 2+ -dependent phosphorylation of the αsubunit eIF-2. Two of the proteins which do become phosphorylated in response to Ca 2+ are calmodulin and an isoelectric form of sea urchin eIF-4D. In addition, 2 proteins which share similarities with kinases involved in the regulation of protein synthesis in mammalian cells, also become phosphorylated. I have investigated the consequences of changes in eIF-4D during sea urchin embryogenesis because it has been proposed that a polyamine-mediated conversion of lysine to hypusine in this factor may enhance translational activity. It is demonstrated that [ 3 H] spermidine-derived radioactivity is incorporated into a number of proteins when sea urchin embryos are labeled in vivo, and that the pattern of individual proteins that become labeled changes over the course of the first 30 hr of development

  2. Starch phosphorylation plays an important role in starch biosynthesis

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Dechesne, Annemarie; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters are crucial in starch metabolism and render valuable functionality to starches for various industrial applications. A potato glucan, water dikinase (GWD1) was introduced in tubers of two different potato genetic backgrounds: an amylose-containing line Kardal and the

  3. Amino acid metabolism in dairy cows and their regulation in milk synthesis.

    Science.gov (United States)

    Wang, Feiran; Shi, Haitao; Wang, Shuxiang; Wang, Yajing; Cao, Zhijun; Li, Shengli

    2018-06-10

    Reducing dietary crude protein (CP) and supplementing with certain amino acids (AAs) has been known as a potential solution to improve nitrogen (N) efficiency in dairy production. Thus understanding how AAs are utilized in various sites along the gut is critical. AA flow from the intestine to portal-drained viscera (PDV) and liver then to the mammary gland was elaborated in this article. Recoveries in individual AA in PDV and liver seem to share similar AA pattern with input: output ratio in mammary gland, which subdivides essential AA (EAA) into two groups, lysine (Lys) and branched-chain AA (BCAA) in group 1, input: output ratio > 1; methionine (Met), histidine (His), phenylalanine (Phe) etc. in group 2, input: output ratio close to 1. AAs in the mammary gland are either utilized for milk protein synthesis or retained as body tissue, or catabolized. The fractional removal of AAs and the number and activity of AA transporters together contribute to the ability of AAs going through mammary cells. Mammalian target of rapamycin (mTOR) pathway is closely related to milk protein synthesis and provides alternatives for AA regulation of milk protein synthesis, which connects AA with lactose synthesis via α-lactalbumin (gene: LALBA) and links with milk fat synthesis via sterol regulatory element-binding transcription protein 1 (SREBP1) and peroxisome proliferator-activated receptor (PPAR). Overall, AA flow across various tissues reveal AA metabolism and utilization in dairy cows on one hand. While the function of AA in the biosynthesis of milk protein, fat and lactose at both transcriptional and posttranscriptional level from another angle provides the possibility for us to regulate them for higher efficiency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca{sub 3}Co{sub 4}O{sub 9} by a starch assisted sol–gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Agilandeswari, K.; Ruban Kumar, A., E-mail: arubankumar@vit.ac.in

    2014-09-01

    In this present work we discussed the synthesis of pure Ca{sub 3}Co{sub 4}O{sub 9} ceramic powder by a starch assisted sol–gel combustion method. The products were characterized by powder X-ray diffraction (XRD), thermogravimetric and differential thermal analyses (TGA–DTA), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscope (SEM) and UV–visible diffuse reflectance spectroscopy (DRS). X-ray diffraction pattern confirmed the formation of single phase Ca{sub 3}Co{sub 4}O{sub 9} at a sintering temperature of 1073 K, and it is also confirmed in the thermal analysis. SEM images indicate the presence of diffused microporous sphere like morphology and the grain sizes are in the range of 150–300 nm. Optical properties of Ca{sub 3}Co{sub 4}O{sub 9} ceramic show a band gap at an energy level of 2.10 eV. A maximum electrical resistivity of 0.002 mΩ cm was exhibited by Ca{sub 3}Co{sub 4}O{sub 9} that was decreased to 0.0012 mΩ cm, when the temperature increased from 300 K to 473 K. Dielectric studies were conducted at various temperatures from room temperature to 673 K and the results indicate that the space charge polarization contributes to the conduction mechanism. It also shows that the dielectric relaxation with activation energy is 0.96 eV. The magnetic properties as a function of temperature represent the ferri-paramagnetic phase transition at above 50 K. M–H curve shows the hysteresis loop with saturation magnetization (M{sub s}) and confirms the presence of soft magnetic materials. - Highlights: • Ca{sub 3}Co{sub 4}O{sub 9} has not yet been reported by this starch assisted sol–gel combustion method. • SEM image shows microporous sphere like morphology. • The optical and dielectric properties of Ca{sub 3}Co{sub 4}O{sub 9} sample were studied. • Temperature dependent magnetic property has been studied for Ca{sub 3}Co{sub 4}O{sub 9}. It behaves as a soft magnetic material at 5 K.

  5. Growth, 14C-sucrose uptake, and metabolites of starch synthesis in apical and basal kernels of corn (Zea mays L.)

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1985-01-01

    Developing field-grown kernels of corn (Zea mays L. cv. Cornell 175) from the base and apex of the ear were sampled from seven to 70 days after pollination (DAP) an compared with respect to dry weight, ability to take up 14 C-sucrose from solution in vitro, and content of sucrose, glucose, starch, glucose-1-P (G1P), glucose-6-P (G6P), fructose-6-P (F6P), ADP-glucose (ADPG), and UDP-glucose (UDPG). ADPG and UDPG were analyzed by HPLC. All other metabolites were analyzed enzymatically. Simultaneous hand-pollination of all ovaries in an ear did not reduce the difference between apical and basal kernels in dry weight, indicating that the latter fertilization of apical kernels was not responsible for their lesser mature dry weight. Detached kernels took up 14 C-sucrose (0.3-400 mM) and glucose (5-100 mM) at rates linearly proportional to the sugar concentration. Glucose, fructose, and sorbitol did not inhibit uptake of 14 C-sucrose. Uptake was not stimulated by 5 mM CaCl 2 or the addition of buffers (pH 4.5-6.7) to the medium. Sulfhydryl reagents (PCMBS, NEM) and metabolic inhibitors (TNBS, DNP, NaF) did not reduce uptake. These observations suggest that sucrose is taken up by a non-saturable, non-energy-requiring mechanism. Sucrose uptake increased throughout development, especially at the stage when basal kernels began to accumulate more dry weight than apical kernels (10-20 DAP in freely pollinated ears; 25 DAP in synchronously pollinated ears). Hydrolysis of incorporated sucrose increased from 87% at 14 DAP to 99% by 57 DAP

  6. Radiation processing of starch

    International Nuclear Information System (INIS)

    Kamaruddin Hashim

    2008-01-01

    Starch is a polysaccharide material and generally, it is non-toxic, biocompatible and biodegradable. It mainly use as foodstuff, food additives, production of sugar and flavouring. Sago palm with scientific name Genus Metroxylon belonging to family Palmae is an important resource in the production of sago starch in Malaysia. Nearly 90% of sago planting areas is found in Sarawak State of Malaysia. It can easily grow under the harsh swampy environment. The sago starch content 4% polyphenol, which is an active compound with antioxidant property that has potential benefit in health and skin care applications. Renewal resources and environmental friendly of natural polymer reason for the researcher to explore the potential of this material in order to improve our quality of live. (author)

  7. Structure of potato starch

    DEFF Research Database (Denmark)

    Bertoft, Eric; Blennow, Andreas

    2016-01-01

    Potato starch granules consist primarily of two tightly packed polysaccharides, amylose and amylopectin. Amylose, which amount for 20-30%, is the principal linear component, but a fraction is in fact slightly branched. Amylopectin is typically the major component and is extensively branched...... chains extending from the clusters. A range of enzymes is involved in the biosynthesis of the cluster structures and linear segments. These are required for sugar activation, chain elongation, branching, and trimming of the final branching pattern. As an interesting feature, potato amylopectin...... is substituted with low amounts of phosphate groups monoesterified to the C-3 and the C-6 carbons of the glucose units. They seem to align well in the granular structure and have tremendous effects on starch degradation in the potato and functionality of the refined starch. A specific dikinase catalyzes...

  8. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  9. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  10. Regulation of aortic extracellular matrix synthesis via noradrenergic system and angiotensin II in juvenile rats.

    Science.gov (United States)

    Dab, Houcine; Hachani, Rafik; Dhaouadi, Nedra; Sakly, Mohsen; Hodroj, Wassim; Randon, Jacques; Bricca, Giampiero; Kacem, Kamel

    2012-10-01

    Extracellular matrix (ECM) synthesis regulation by sympathetic nervous system (SNS) or angiotensin II (ANG II) was widely reported, but interaction between the two systems on ECM synthesis needs further investigation. We tested implication of SNS and ANG II on ECM synthesis in juvenile rat aorta. Sympathectomy with guanethidine (50 mg/kg, subcutaneous) and blockade of the ANG II AT1 receptors (AT1R) blocker with losartan (20 mg/kg/day in drinking water) were performed alone or in combination in rats. mRNA and protein synthesis of collagen and elastin were examined by Q-RT-PCR and immunoblotting. Collagen type I and III mRNA were increased respectively by 62 and 43% after sympathectomy and decreased respectively by 31 and 60% after AT1R blockade. Combined treatment increased collagen type III by 36% but not collagen type I. The same tendency of collagen expression was observed at mRNA and protein levels after the three treatments. mRNA and protein level of elastin was decreased respectively by 63 and 39% and increased by 158 and 15% after losartan treatment. Combined treatment abrogates changes induced by single treatments. The two systems act as antagonists on ECM expression in the aorta and combined inhibition of the two systems prevents imbalance of mRNA and protein level of collagen I and elastin induced by single treatment. Combined inhibition of the two systems prevents deposit or excessive reduction of ECM and can more prevent cardiovascular disorders.

  11. Apolipoprotein B synthesis in rat small intestine: regulation by dietary triglyceride and biliary lipid

    International Nuclear Information System (INIS)

    Davidson, N.O.; Kollmer, M.E.; Glickman, R.M.

    1986-01-01

    Apolipoprotein B (apoB) synthesis rates have been determined, in vivo, in rat enterocytes. Following intralumenal administration of a pulse of [ 3 H]leucine, newly synthesized apoB was quantitated by specific immunoprecipitation and compared to [ 3 H]leucine incorporation into total, trichloroacetic acid-insoluble protein. ApoB synthesis rates were determined after acute administration of either 0.1 or 1 g of triglyceride to fasting animals. No differences were found at any time from 90 min to 6 hr after challenge and values were not different from the basal values established in fasted controls. Animals rechallenged with triglyceride after 8 days' intake of fat-free chow also failed to demonstrate a change in intestinal apoB synthesis rate. By contrast, enterocyte content of apoB appeared to fall, temporarily, with the onset of active triglyceride flux. Groups of animals were then subjected to external bile diversion for 48 hr, a maneuver designed to remove all lumenal sources of lipid. Jejunal apoB synthesis rates fell by 43% (from 0.76% +/- 0.14 to 0.43% +/- 0.12, P less than 0.001), a change that was completely prevented by continuous replacement with 10 mM Na taurocholate. The suppression of jejunal apoB synthesis, induced by prolonged bile diversion, was reversed after 14 hr, but not 8 hr, of intralumenal perfusion with 10 mM Na taurocholate. The addition of micellar fatty acid-monoolein to the perfusate for 4 hr produced no further change in apoB synthesis. Ileal apoB synthesis rates fell by 70% (from 0.61% +/- 0.15 to 0.18% +/- 0.10, P less than 0.001) following 48 hr external bile diversion, a change that was only partially prevented by continuous bile salt replacement. These results suggest that jejunal apoB synthesis demonstrates bile salt dependence but not regulation by acute triglyceride flux

  12. Heterologous expression of two Arabidopsis starch dikinases in potato

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2018-01-01

    Starch phosphate esters influence physiochemical properties of starch granules that are essential both for starch metabolism and industrial use of starches. To modify properties of potato starch and understand the effect of starch phosphorylation on starch metabolism in storage starch, the starch

  13. Contribution of granule bound starch synthase in kernel modification ...

    African Journals Online (AJOL)

    The role of gbssI and gbssII genes, encoding granule bound starch synthase enzyme I and II, respectively, in quality protein maize (QPM) were studied at different days after pollination (DAP). Total RNA was used for first strand cDNA synthesis using the ImpromIISriptTM reverse transcriptase. No detectable levels of gbssI ...

  14. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus.

    Science.gov (United States)

    Laakso, Holly A; Marolda, Cristina L; Pinter, Tyler B; Stillman, Martin J; Heinrichs, David E

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD-I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦

    Science.gov (United States)

    Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960

  16. Regulation of antibody synthesis in the X-irradiated Mexican axolotl

    International Nuclear Information System (INIS)

    Charlemagne, J.

    1981-01-01

    The effects of X-irradiation were studied on the Mexican axolotl antibody synthesis. To reduce the anti-horse red blood cell (HRBC) antibody titers, 150 rd and smaller doses are ineffective, 200-450 rd are increasingly effective, and 700 rd are maximally effective (and lethal). A significant enhancement of the anti-HRBC titers was observed in low doses (50-150 rd X-irradiated animals). This enhancement was also observed when a low X-ray dose was applied only on the thymic areas. In whole body, but thymus area-shielded, 100 rd X-irradiated animals, the anti-HRBC titers were similar to those of the nonirradiated, HRBC-immunized control group. To explain these phenomena, it is suggested that a radiosensitive, adult thymectomy-sensitive and hydrocortisone-sensitive suppressor T cell subpopulation regulates the antibody synthesis in the axolotl. (orig.) [de

  17. Regulation of antibody synthesis in the X-irradiated Mexican axolotl

    Energy Technology Data Exchange (ETDEWEB)

    Charlemagne, J.

    1981-09-01

    The effects of X-irradiation were studied on the Mexican axolotl antibody synthesis. To reduce the anti-horse red blood cell (HRBC) antibody titers, 150 rd and smaller doses are ineffective, 200-450 rd are increasingly effective, and 700 rd are maximally effective (and lethal). A significant enhancement of the anti-HRBC titers was observed in low doses (50-150 rd X-irradiated animals). This enhancement was also observed when a low X-ray dose was applied only on the thymic areas. In whole body, but thymus area-shielded, 100 rd X-irradiated animals, the anti-HRBC titers were similar to those of the nonirradiated, HRBC-immunized control group. To explain these phenomena, it is suggested that a radiosensitive, adult thymectomy-sensitive and hydrocortisone-sensitive suppressor T cell subpopulation regulates the antibody synthesis in the axolotl.

  18. Genetic mapping of the regulator gene determining enterotoxin synthesis in Vibrio cholerae

    International Nuclear Information System (INIS)

    Smirnova, N.I.; Livanova, L.F.; Shaginyan, I.A.; Motin, V.L.

    1986-01-01

    Data on the genetic mapping of mutation tox-7 (the mutation affecting the synthesis of the cholera toxin) were obtained by conjugation crosses between the atoxigenic donor strain Vibrio cholerae Eltor and the toxigenic recipient strain V. cholera classica. The molecular and genetic analysis of the Tox - recombinants indicated that, when the synthesis of the cholera toxin is disrupted in these strains, the tox-7 mutation (which impairs the regulator gene tox) is gained. Close linkage between the tox-7 and pur-63 mutations was established (during the selection procedure there was 81.1% combined transfer with respect to marker pur-63 situated in the donor strain chromosome more proximal than mutation tox-7). The markers were localized in the following order in the region under investigation: asp-cys-nal-pur-61-trp-his-pur-63-tox-7-ile

  19. Hydroxyethyl starch for resuscitation

    DEFF Research Database (Denmark)

    Haase, Nicolai; Perner, Anders

    2013-01-01

    PURPOSE OF REVIEW: Resuscitation with hydroxyethyl starch (HES) is controversial. In this review, we will present the current evidence for the use of HES solutions including data from recent high-quality randomized clinical trials. RECENT FINDINGS: Meta-analyses of HES vs. control fluids show clear...

  20. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  1. A role for PPARα in the regulation of arginine metabolism and nitric oxide synthesis.

    Science.gov (United States)

    Guelzim, Najoua; Mariotti, François; Martin, Pascal G P; Lasserre, Frédéric; Pineau, Thierry; Hermier, Dominique

    2011-10-01

    The pleiotropic effects of PPARα may include the regulation of amino acid metabolism. Nitric oxide (NO) is a key player in vascular homeostasis. NO synthesis may be jeopardized by a differential channeling of arginine toward urea (via arginase) versus NO (via NO synthase, NOS). This was studied in wild-type (WT) and PPARα-null (KO) mice fed diets containing either saturated fatty acids (COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers of arginine metabolism were assayed in urine and plasma. mRNA levels of arginases and NOS were determined in liver. Whole-body NO synthesis and the conversion of systemic arginine into urea were assessed by using (15)N(2)-guanido-arginine and measuring urinary (15)NO(3) and [(15)N]-urea. PPARα deficiency resulted in a markedly lower whole-body NO synthesis, whereas the conversion of systemic arginine into urea remained unaffected. PPARα deficiency also increased plasma arginine and decreased citrulline concentration in plasma. These changes could not be ascribed to a direct effect on hepatic target genes, since NOS mRNA levels were unaffected, and arginase mRNA levels decreased in KO mice. Despite the low level in the diet, the nature of the fatty acids modulated some effects of PPARα deficiency, including plasma arginine and urea, which increased more in KO mice fed the LIN diet than in those fed the COCO diet. In conclusion, PPARα is largely involved in normal whole-body NO synthesis. This warrants further study on the potential of PPARα activation to maintain NO synthesis in the initiation of the metabolic syndrome.

  2. Regulation of pro-adrenocorticotropin-endorphin synthesis and secretion in cultured neonatal rat anterior pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S.M.; Mains, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1987-08-01

    Previous work demonstrated that newborn rat anterior pituitary corticotropes display processing patterns for pro-ACTH/endorphin that are different from the adult. The synthesis and release of beta-endorphin-related peptides was examined in dispersed cell and explant cultures of newborn anterior pituitary to investigate corticotrope development further. The temporal pattern of pro-ACTH/endorphin processing differed significantly from adult rat melanotropes and AtT-20 cells. While pro-ACTH/endorphin processing begins within 30 min of synthesis in adult melanotropes and AtT-20 cells, pulse-labeling of newborn corticotropes in culture indicated that pro-ACTH/endorphin remained uncleaved for at least 90 min after synthesis. With further incubation, there was a decrease in radioactivity associated with the precursor and an equivalent rise in the radioactivity associated with beta-endorphin and beta-lipotropin. However, unprocessed precursor still remained in the cultured newborn anterior pituitary cells after a 25-h chase. Although intact pro-ACTH/endorphin from newborn corticotropes was very long-lived, the precursor did undergo oligosaccharide maturation and became endoglycosidase H resistant within 1 h after synthesis. Similar to the adult, pro-ACTH/endorphin synthesis was doubled in cultures of newborn anterior pituitary chronically treated with 10 nM CRF resulting in a 3- to 4-fold stimulation of secretion over the basal rate. However, unlike the AtT-20 cell or adult rat corticotrope, the proteolytic processing of pro-ACTH/endorphin in the newborn corticotrope was altered by chronic secretagogue treatment; less pro-ACTH/endorphin was converted to beta-endorphin in secretagogue-treated corticotropes than in controls. Thus processing of pro-ACTH/endorphin in the corticotrope is not mature by birth and can be regulated by chronic CRF treatment.

  3. Regulation of pro-adrenocorticotropin-endorphin synthesis and secretion in cultured neonatal rat anterior pituitary

    International Nuclear Information System (INIS)

    Sato, S.M.; Mains, R.E.

    1987-01-01

    Previous work demonstrated that newborn rat anterior pituitary corticotropes display processing patterns for pro-ACTH/endorphin that are different from the adult. The synthesis and release of beta-endorphin-related peptides was examined in dispersed cell and explant cultures of newborn anterior pituitary to investigate corticotrope development further. The temporal pattern of pro-ACTH/endorphin processing differed significantly from adult rat melanotropes and AtT-20 cells. While pro-ACTH/endorphin processing begins within 30 min of synthesis in adult melanotropes and AtT-20 cells, pulse-labeling of newborn corticotropes in culture indicated that pro-ACTH/endorphin remained uncleaved for at least 90 min after synthesis. With further incubation, there was a decrease in radioactivity associated with the precursor and an equivalent rise in the radioactivity associated with beta-endorphin and beta-lipotropin. However, unprocessed precursor still remained in the cultured newborn anterior pituitary cells after a 25-h chase. Although intact pro-ACTH/endorphin from newborn corticotropes was very long-lived, the precursor did undergo oligosaccharide maturation and became endoglycosidase H resistant within 1 h after synthesis. Similar to the adult, pro-ACTH/endorphin synthesis was doubled in cultures of newborn anterior pituitary chronically treated with 10 nM CRF resulting in a 3- to 4-fold stimulation of secretion over the basal rate. However, unlike the AtT-20 cell or adult rat corticotrope, the proteolytic processing of pro-ACTH/endorphin in the newborn corticotrope was altered by chronic secretagogue treatment; less pro-ACTH/endorphin was converted to beta-endorphin in secretagogue-treated corticotropes than in controls. Thus processing of pro-ACTH/endorphin in the corticotrope is not mature by birth and can be regulated by chronic CRF treatment

  4. Preparation And Physicochemical Properties of Octenyl Succinic Anhydride (OSA) Modified Sago Starch

    International Nuclear Information System (INIS)

    Nur Farhana Zainal Abiddin; Anida Yusoff; Noorlaila Ahmad

    2016-01-01

    Starch from sago (Metroxylon sagu) was esterified with octenyl succinic anhydride (OSA) in order to regulate its shortcoming by adding amphiphilic properties. The objective of this work is to determine the physicochemical properties of native sago and OSA sago starches. The OSA sago starch was produced according to the optimum condition generated via response surface methodology (RSM) with 5.00 % OSA at pH 7.20 and a reaction time of 9.65 hours. The esterified sago starch gives a degree of substitution (DS) value of 0.012. The physicochemical properties of OSA sago starch was determined by measuring the amylose content, laser diffraction particle size analyzer, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The amylose content for OSA sago starch was found to be reduced after esterification reaction. The particle size of OSA sago starch was found to increase significantly (p<0.05) compared to their native starches. Scanning electron microscopy (SEM) revealed that OSA starch developed slightly rough surface and their edges lost some definition. FT-IR spectroscopy shows that there was appearance of new absorption correspond to ester carbonyl group (1717 cm -1 ) and carboxylate RCOO- (1569 cm -1 ). This study showed that the physicochemical properties of modified starches were influenced not only by DS but also on the botanical origin of the starches. (author)

  5. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  6. Poliuretanos elastoméricos obtenidos a partir de aceite de ricino y almidón de yuca original y modificado con anhídrido propiónico: síntesis, propiedades fisicoquímicas y fisicomecánicas Polyurethane elastomers from castor oil and chemically modified yucca starch: synthesis and physical-chemical, physical-mechanical and thermical properties

    Directory of Open Access Journals (Sweden)

    Manuel F. Valero

    2010-01-01

    Full Text Available Chemical modification of cassava starch was conducted through an acylation reaction by using pyridine and propionic anhydride to replace the functional groups of starch. Polyurethane elastomers were prepared using suspensions of the mixture obtained from castor oil and yucca starch that was modified by a propionic anhydride reaction. The suspensions were characterized by means of tests based on The Fourier Transform Infrared Spectroscopy and the Hydroxyl Index. The castor oil-AMP suspensions were used for the PU synthesis. The PUs were characterized by their physical-mechanical properties like tension- deformation and Shore A. hardness, thermal gravimetric analysis and swelling test. The density cross-linking of from swelling tests was determined by applying the Flory-Rehner equation.

  7. The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments.

    Science.gov (United States)

    D'Hulst, Christophe; Mérida, Angel

    2010-10-01

    Starch is the main polymer in which carbon and energy are stored in land plants, algae and some cyanobacteria. It plays a crucial role in the physiology of these organisms and also represents an important polymer for humans, in terms of both diet and nonfood industry uses. Recent efforts have elucidated most of the steps involved in the synthesis of starch. However, the process that initiates the synthesis of the starch granule remains unclear. Here, we outline the similarities between the synthesis of starch and the synthesis of glycogen, the other widespread and abundant glucose-based polymer in living cells. We place special emphasis on the mechanisms of initiation of the glycogen granule and current knowledge concerning the initiation of the starch granule. We also discuss recent discoveries regarding the function of starch synthases in the priming of the starch granule and possible interactions with other elements of the starch synthesis machinery.

  8. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms

    Science.gov (United States)

    Briz, Victor; Baudry, Michel

    2014-01-01

    Estrogen rapidly modulates hippocampal synaptic plasticity by activating selective membrane-associated receptors. Reorganization of the actin cytoskeleton and stimulation of mammalian target of rapamycin (mTOR)-mediated protein synthesis are two major events required for the consolidation of hippocampal long-term potentiation and memory. Estradiol regulates synaptic plasticity by interacting with both processes, but the underlying molecular mechanisms are not yet fully understood. Here, we used acute rat hippocampal slices to analyze the mechanisms underlying rapid changes in mTOR activity and actin polymerization elicited by estradiol. Estradiol-induced mTOR phosphorylation was preceded by rapid and transient activation of both extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) and by phosphatase and tensin homolog (PTEN) degradation. These effects were prevented by calpain and ERK inhibitors. Estradiol-induced mTOR stimulation did not require activation of classical estrogen receptors (ER), as specific ERα and ERβ agonists (PPT and DPN, respectively) failed to mimic this effect, and ER antagonists could not block it. Estradiol rapidly activated both RhoA and p21-activated kinase (PAK). Furthermore, a specific inhibitor of RhoA kinase (ROCK), H1152, and a potent and specific PAK inhibitor, PF-3758309, blocked estradiol-induced cofilin phosphorylation and actin polymerization. ER antagonists also blocked these effects of estrogen. Consistently, both PPT and DPN stimulated PAK and cofilin phosphorylation as well as actin polymerization. Finally, the effects of estradiol on actin polymerization were insensitive to protein synthesis inhibitors, but its stimulation of mTOR activity was impaired by latrunculin A, a drug that disrupts actin filaments. Taken together, our results indicate that estradiol regulates local protein synthesis and cytoskeletal reorganization via different molecular mechanisms and signaling pathways. PMID:24611062

  9. Estradiol Synthesis in Gut-Associated Lymphoid Tissue: Leukocyte Regulation by a Sexually Monomorphic System.

    Science.gov (United States)

    Oakley, Oliver R; Kim, Kee Jun; Lin, Po-Ching; Barakat, Radwa; Cacioppo, Joseph A; Li, Zhong; Whitaker, Alexandra; Chung, Kwang Chul; Mei, Wenyan; Ko, CheMyong

    2016-12-01

    17β-estradiol is a potent sex hormone synthesized primarily by gonads in females and males that regulates development and function of the reproductive system. Recent studies show that 17β-estradiol is locally synthesized in nonreproductive tissues and regulates a myriad of events, including local inflammatory responses. In this study, we report that mesenteric lymph nodes (mLNs) and Peyer's patches (Pps) are novel sites of de novo synthesis of 17β-estradiol. These secondary lymphoid organs are located within or close to the gastrointestinal tract, contain leukocytes, and function at the forefront of immune surveillance. 17β-estradiol synthesis was initially identified using a transgenic mouse with red fluorescent protein coexpressed in cells that express aromatase, the enzyme responsible for 17β-estradiol synthesis. Subsequent immunohistochemistry and tissue culture experiments revealed that aromatase expression was localized to high endothelial venules of these lymphoid organs, and these high endothelial venule cells synthesized 17β-estradiol when isolated and cultured in vitro. Both mLNs and Pps contained 17β-estradiol with concentrations that were significantly higher than those of peripheral blood. Furthermore, the total amount of 17β-estradiol in these organs exceeded that of the gonads. Mice lacking either aromatase or estrogen receptor-β had hypertrophic Pps and mLNs with more leukocytes than their wild-type littermates, demonstrating a role for 17β-estradiol in leukocyte regulation. Importantly, we did not observe any sex-dependent differences in aromatase expression, 17β-estradiol content, or steroidogenic capacity in these lymphoid organs.

  10. Synthesis and evaluation of the plant growth regulator property of indolic compounds derived from safrole

    International Nuclear Information System (INIS)

    Marchi, Irineu; Rebelo, Ricardo Andrade; Rosa, Flavia A. Fernandes da; Maiochi, Riceli A.

    2007-01-01

    The present work describes the use of piperonal, a derivative of the secondary metabolite safrole, for the synthesis of new 5,6-methylenedioxy substituted indole carboxylic acids structurally related to the indol-3-yl-acetic acid (AIA, I). The route comprises six steps beginning with piperonal with an overall yield of 19%. Compound IX was tested towards its plant growth regulator properties in bioassays specific for auxine activity. The in vitro assays were performed in a germination chamber and were of two types: root growth in germinated seeds of Lactuca sativa, Cucumbis sativus and Raphanus sativus and peciole biotest using Phaseolus vulgaris. (author)

  11. A role for PPARa in the regulation of arginine metabolismand nitric oxide synthesis

    OpenAIRE

    2011-01-01

    The pleiotropic effects of PPARa may includethe regulation of amino acid metabolism. Nitric oxide (NO)is a key player in vascular homeostasis. NO synthesis maybe jeopardized by a differential channeling of argininetoward urea (via arginase) versus NO (via NO synthase,NOS). This was studied in wild-type (WT) and PPARa-null(KO) mice fed diets containing either saturated fatty acids(COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers ofarginine metabolism were assayed in urine and plasma.mRNA l...

  12. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes.

    Science.gov (United States)

    Lin, Chia-Hung; Chang, Daw-Ming; Wu, Da-Jen; Peng, Hui-Yu; Chuang, Lee-Ming

    2015-08-01

    To evaluate the effects of the new resistant starch (RS) formula, PPB-R-203, on glucose homeostasis in healthy subjects and subjects with type 2 diabetes.A cohort consisting of 40 healthy participants received test and control diets and was checked for up to 3 hours post-meal. A randomized, 2-regimen, cross-over, comparative study was conducted in 44 subjects with type 2 diabetes and glycemic control was assessed with a continuous glucose monitoring system.In healthy participants, serum glucose values and incremental areas under the glucose curves (AUC) were significantly lower in the PPB-R-203 than the control group (P blood glucose concentrations for subjects on the control regimen were higher than those for subjects on the PPB-R-203-based regimen (7.9 ± 1.7, 95% confidence interval [CI] 7.4-8.4 vs 7.4 ± 1.6, 95% CI 6.9-7.9 mmol/L, respectively; P = 0.023). AUCs for total blood glucose and hyperglycemia (glucose >10 mmol/L) were also reduced for subjects on the PPB-R-203-based regimen as compared with those on control regimen (total blood glucose: 16.2 ± 4.0, 95% CI 14.9-17.4 vs 18.7 ± 4.0, 95% CI 17.6-20.1, P AUC measurements for hypoglycemia (glucose glucose excursion.

  13. Catalase anabolism in yeast: loss of regulation by oxygen of catalase apoprotein synthesis after mutation.

    Science.gov (United States)

    Berte, C; Sels, A

    1979-04-17

    A mutant of Saccharomyces cerevisiae which displays catalase activity when grown under strictly anaerobic conditions has been selected on solid media. Although some preformed holoenzyme has accumulated in anaerobic cells, a sharp increase of activity is still measured during adaptation to oxygen in glucose-buffer; however, a striking difference with the wild-type strain is that in the mutant, catalase formation is observed in the presence of cycloheximide that totally inhibits cytoplasmic translation. It is concluded that kat 80 mutant has lost the regulatory control by oxygen of apocatalase synthesis; the later precursor, characterized as apocatalase synthesis; the latter precursor, characterized as apocatalase T, is thought to be activated in vivo, under aerobic conditions, by inclusion of prosthetic group. Regulation of enzyme synthesis by catabolite repression (glucose erfect) persists, unmodified by reference to the wild-type parental strain. Mutation kat 80 specifically hits catalase anabolism, as no significant variations were observed for the edification of the respiratory system and (apo)cytochrome c peroxidase production. Genetic analysis shows that kat 80 phenotype, recessive in heterozygotes, results from a single nuclear mutation.

  14. Enzymatic transformation of nonfood biomass to starch

    Science.gov (United States)

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  15. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  16. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    Science.gov (United States)

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hydroxyethyl starch in sepsis

    DEFF Research Database (Denmark)

    Haase, Nicolai Rosenkrantz Segelcke

    2014-01-01

    BACKGROUND: Hydroxyethyl starch (HES) is a colloid that has been widely used for fluid resuscitation for decades. The newest generation of HES, tetrastarch, was believed to provide an efficient volume expansion without causing the side effects observed with former HES solutions. However, this bel......BACKGROUND: Hydroxyethyl starch (HES) is a colloid that has been widely used for fluid resuscitation for decades. The newest generation of HES, tetrastarch, was believed to provide an efficient volume expansion without causing the side effects observed with former HES solutions. However...... types of patients is unclear, but so far no group of patients with an overall benefit of HES beyond surrogate markers has been identified. In line with this, the European Medicines Agency's Pharmacovigilance Risk Assessment Committee now recommends that the marketing authorisations of all HES solutions...

  18. Evidence for a systemic regulation of neurotrophin synthesis in response to peripheral nerve injury.

    Science.gov (United States)

    Shakhbazau, Antos; Martinez, Jose A; Xu, Qing-Gui; Kawasoe, Jean; van Minnen, Jan; Midha, Rajiv

    2012-08-01

    Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2 weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2 weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  19. The effect of intracellular calcium level regulators on the synthesis of pollen tube callose in Oenothera biennis L.

    Directory of Open Access Journals (Sweden)

    Elżbieta Bednarska

    2014-01-01

    Full Text Available It is shown that callose synthesis in the Oenothera biennis pollen tube is regulated by the endogenous Ca2+ level. Calcium antagonists reduced the amount of callose in the wall above the tip of the pollen tube (Verapamil - calcium channels blocker and at the tube tip after stopping tube growth (La3+ - a Ca2+ substitute. Ruthenium red and ionophore A 23187, which raise the Ca 21 level in the cytoplasm, induced callose synthesis at the tip of pollen tube.

  20. Radiolysis of starch

    International Nuclear Information System (INIS)

    Raffi, J.; Saint-Lebe, L.; Berger, G.

    1978-01-01

    In the first part of the paper the results of work on the identification and determination of the gamma ( 60 Co) radiolysis products of maize starch are brought together and, wherever possible, a balance drawn up by chemical class. The second part of the paper deals with the main parameters governing radiolysis: dose, irradiation temperature and atmosphere, water content and the conditions under which the irradiated starch is stored. The third part, devoted to the mechanisms believed to be involved, contains the following conclusions: (a) the formation of radiation-induced products with a carbon skeleton probably results from a breaking of the -C-O-C- chains with rearrangement of the radicals and/or a reaction involving the water and the oxygen - the oxygen has an activating effect which does not fundamentally modify the mechanism, whereas the effect of the water is more complex and varies according to the product; (b) the formation of hydrogen peroxide probably implies the addition of atmospheric oxygen to the radiation-induced hydrogen atoms in the water or to the organic radicals obtained by abstraction of a hydrogen from the starch. Lastly, the different methods envisaged for confirming or improving the mechanistic hypotheses are discussed. (author)

  1. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    Science.gov (United States)

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    Science.gov (United States)

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  4. Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation.

    Directory of Open Access Journals (Sweden)

    Caitlin K Wotanis

    Full Text Available The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.

  5. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  6. Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency

    Directory of Open Access Journals (Sweden)

    Seyed A. Hosseini

    2017-08-01

    Full Text Available Drought is one of the major stress factors reducing cereal production worldwide. There is ample evidence that the mineral nutrient status of plants plays a critical role in increasing plant tolerance to different biotic and abiotic stresses. In this regard, the important role of various nutrients e.g., potassium (K or silicon (Si in the mitigation of different stress factors, such as drought, heat or frost has been well documented. Si application has been reported to ameliorate plant nutrient deficiency. Here, we used K and Si either solely or in combination to investigate whether an additive positive effect on barley growth can be achieved under osmotic stress and which mechanisms contribute to a better tolerance to osmotic stress. To achieve this goal, barley plants were subjected to polyethylene glycol (PEG-induced osmotic stress under low or high K supply and two Si regimes. The results showed that barley silicon transporters HvLsi1 and HvLsi2 regulate the accumulation of Si in the shoot only when plant suffered from K deficiency. Si, in turn, increased the starch level under both osmotic stress and K deficiency and modulated the glycolytic and TCA pathways. Hormone profiling revealed that the beneficial effect of Si is most likely mediated also by ABA homeostasis and active cytokinin isopentenyl adenine (iP. We conclude that Si may effectively improve stress tolerance under K deficient condition in particular when additional stress like osmotic stress interferes.

  7. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    Science.gov (United States)

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1. Copyright © 2015 the American Physiological Society.

  8. The regulation of protein synthesis and translation factors by CD3 and CD28 in human primary T lymphocytes

    Directory of Open Access Journals (Sweden)

    Proud Christopher G

    2002-05-01

    Full Text Available Abstract Background Activation of human resting T lymphocytes results in an immediate increase in protein synthesis. The increase in protein synthesis after 16–24 h has been linked to the increased protein levels of translation initiation factors. However, the regulation of protein synthesis during the early onset of T cell activation has not been studied in great detail. We studied the regulation of protein synthesis after 1 h of activation using αCD3 antibody to stimulate the T cell receptor and αCD28 antibody to provide the co-stimulus. Results Activation of the T cells with both antibodies led to a sustained increase in the rate of protein synthesis. The activities and/or phosphorylation states of several translation factors were studied during the first hour of stimulation with αCD3 and αCD28 to explore the mechanism underlying the activation of protein synthesis. The initial increase in protein synthesis was accompanied by activation of the guanine nucleotide exchange factor, eukaryotic initiation factor (eIF 2B, and of p70 S6 kinase and by dephosphorylation of eukaryotic elongation factor (eEF 2. Similar signal transduction pathways, as assessed using signal transduction inhibitors, are involved in the regulation of protein synthesis, eIF2B activity and p70 S6 kinase activity. A new finding was that the p38 MAPK α/β pathway was involved in the regulation of overall protein synthesis in primary T cells. Unexpectedly, no changes were detected in the phosphorylation state of the cap-binding protein eIF4E and the eIF4E-binding protein 4E-BP1, or the formation of the cap-binding complex eIF4F. Conclusions Both eIF2B and p70 S6 kinase play important roles in the regulation of protein synthesis during the early onset of T cell activation.

  9. Barley callus: a model system for bioengineering of starch in cereals

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Nielsen, Morten M

    2012-01-01

    . In this way starch is adapted to a variety of specific end-uses. Recombinant DNA technologies offers an alternative to starch industrial processing. The plant biosynthetic pathway can be manipulated to design starches with novel structure and improved technological properties. In the future this may reduce...... or eliminate the economical and environmental costs of industrial modification. Recently, many advances have been achieved to clarify the genetic mechanism that controls starch biosynthesis. Several genes involved in the synthesis and modification of complex carbohydrates in many organisms have been identified...... and cloned. This knowledge suggests a number of strategies and a series of candidate genes for genetic transformation of crops to generate new types of starch-based polymers. However transformation of cereals is a slow process and there is no easy model system available to test the efficiency of candidate...

  10. Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method

    Science.gov (United States)

    Lalithadevi, B.; Mohan Rao, K.; Ramananda, D.

    2018-05-01

    Following a green synthesis method, zinc sulfide (ZnS) nanoparticles were prepared by chemical co-precipitation technique using starch as capping agent. Microwave irradiation was used as heating source. X-ray diffraction studies indicated that nanopowders obtained were polycrystalline possessing ZnS simple cubic structure. Transmission electron microscopic studies indicated that starch limits the agglomeration by steric stabilization. Interaction between ZnS and starch was confirmed by Fourier transform infrared spectroscopy as well as Raman scattering studies. Quantum size effects were observed in optical absorption studies while quenching of defect states on nanoparticles was improved with increase in starch addition as indicated by photoluminescence spectra.

  11. The regulated synthesis of a Bacillus anthracis spore coat protein that affects spore surface properties.

    Science.gov (United States)

    Aronson, A; Goodman, B; Smith, Z

    2014-05-01

    Examine the regulation of a spore coat protein and the effects on spore properties. A c. 23 kDa band in coat/exosporial extracts of Bacillus anthracis Sterne spores varied in amount depending upon the conditions of sporulation. It was identified by MALDI as a likely orthologue of ExsB of Bacillus cereus. Little if any was present in an exosporial preparation with a location to the inner coat/cortex region established by spore fractionation and immunogold labelling of electron micrograph sections. Because of its predominant location in the inner coat, it has been renamed Cotγ. It was relatively deficient in spores produced at 37°C and when acidic fermentation products were produced a difference attributable to transcriptional regulation. The deficiency or absence of Cotγ resulted in a less robust exosporium positioned more closely to the coat. These spores were less hydrophobic and germinated somewhat more rapidly. Hydrophobicity and appearance were rescued in the deletion strain by introduction of the cotγ gene. The deficiency or lack of a protein largely found in the inner coat altered spore hydrophobicity and surface appearance. The regulated synthesis of Cotγ may be a paradigm for other spore coat proteins with unknown functions that modulate spore properties in response to environmental conditions. © 2014 The Society for Applied Microbiology.

  12. Role for tryptophan in regulation of protein synthesis in porcine muscle

    International Nuclear Information System (INIS)

    Lin, F.D.; Smith, T.K.; Bayley, H.S.

    1988-01-01

    Experiments were conducted to determine the effect of varying concentrations of dietary tryptophan on growth rate and protein synthesis in edible muscle tissues of growing swine. A total of 45 immature swine (initial weight approximately 24 kg) were fed corn-gelatin diets containing 0.5 (n = 8), 0.8 (n = 10), 1.3 (n = 10), 1.5 (n = 7) or 2.0 (n = 10) g tryptophan/kg diet for 35 d. Animals fed 0.5 and 0.8 g tryptophan/kg grew more slowly, consumed less feed and had a lower efficiency of feed utilization than animals fed higher concentrations of tryptophan. Thirty similar animals were used in a second experiment. Diets containing 0.5, 0.8, 1.0, 1.5 or 2.0 g tryptophan/kg diet (n = 6) were fed for 14 d, after which all animals were killed and samples were taken of longissimus dorsi, triceps brachii and biceps femoris. Protein synthetic activity was determined by monitoring the incorporation of [ 14 C]phenylalanine into protein in vitro. There was no significant difference in synthetic activity between different muscle types. There was no effect of diet on the activity of the muscle soluble protein fraction. The activity of the muscle ribosomal fraction, however, was positively correlated with increasing concentrations of dietary tryptophan. It was concluded that tryptophan has the potential to regulate muscle protein synthesis in a manner beyond serving simply as a component of protein

  13. Regulation of very-long acyl chain ceramide synthesis by acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Ferreira, Natalia Santos; Engelsby, Hanne; Neess, Ditte

    2017-01-01

    and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very......-long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild-type mice activates CerS3 activity, whereas cytosol from ACBP knock-out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes...... of ACBP(-/-) mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial...

  14. A novel CARD containing splice-isoform of CIITA regulates nitric oxide synthesis in dendritic cells.

    Science.gov (United States)

    Huang, Dachuan; Lim, Sylvia; Chua, Rong Yuan Ray; Shi, Hong; Ng, Mah Lee; Wong, Siew Heng

    2010-03-01

    MHC class II expression is controlled mainly at transcriptional level by class II transactivator (CIITA), which is a non-DNA binding coactivator and serves as a master control factor for MHC class II genes expression. Here, we describe the function of a novel splice-isoform of CIITA, DC-expressed caspase inhibitory isoform of CIITA (or DC-CASPIC), and we show that the expression of DCCASPIC in DC is upregulated upon lipopolysaccharides (LPS) induction. DC-CASPIC localizes to mitochondria, and protein-protein interaction study demonstrates that DC-CASPIC interacts with caspases and inhibits its activity in DC. Consistently, DC-CASPIC suppresses caspases-induced degradation of nitric oxide synthase-2 (NOS2) and subsequently promotes the synthesis of nitric oxide (NO). NO is an essential regulatory molecule that modulates the capability of DC in stimulating T cell proliferation/activation in vitro; hence, overexpression of DC-CASPIC in DC enhances this stimulation. Collectively, our findings reveal that DC-CASPIC is a key molecule that regulates caspases activity and NO synthesis in DC.

  15. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    Science.gov (United States)

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  16. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    Science.gov (United States)

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-05

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras.

    Science.gov (United States)

    Braeuning, Albert; Schwarz, Michael

    2010-11-01

    Cytochrome P450 (CYP) hemoproteins play an important role in hepatic biotransformation. Recently, β-catenin and Ha-ras signaling have been identified as players controlling transcription of various CYP genes in mouse liver. The aim of the present study was to analyze the role of β-catenin and Ha-ras in the regulation of heme synthesis. Heme synthesis-related gene expression was analyzed in normal liver, in transgenic mice expressing activated β-catenin or Ha-ras, and in hepatomas. Regulation of the aminolevulinate dehydratase promoter was studied in vitro. Elevated expression of mRNAs and proteins involved in heme biosynthesis was linked to β-catenin activation in perivenous hepatocytes, in transgenic hepatocytes, and in hepatocellular tumors. Stimulation of the aminolevulinate dehydratase promoter by β-catenin was independent of the β-catenin/T-cell-specific transcription factor dimer. By contrast, activation of Ha-ras repressed heme synthesis-related gene expression. The present data suggest that β-catenin enhances the expression of both CYPs and heme synthesis-related genes, thus coordinating the availability of CYP apoprotein and its prosthetic group heme. The reciprocal regulation of heme synthesis by β-catenin and Ha-ras-dependent signaling supports our previous hypothesis that antagonistic action of these pathways plays a major role in the control of zonal gene expression in healthy mouse liver and aberrant expression patterns in hepatocellular tumors.

  18. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  19. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Synthesis and regulation of flavor compounds derived from brewing yeast: Esters].

    Science.gov (United States)

    Loviso, Claudia L; Libkind, Diego

    2018-04-04

    During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product. Copyright © 2018 The Authors. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    Science.gov (United States)

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production. PMID:29215550

  2. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation.

    Science.gov (United States)

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-12-07

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE , a biosynthesis gene cluster of γ-PGA, and pgdS , a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.

  3. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    2017-12-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.

  4. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis.

    Science.gov (United States)

    Banerjee, Ruma

    2017-04-01

    The view of enzymes as punctilious catalysts has been shifting as examples of their promiscuous behavior increase. However, unlike a number of cases where the physiological relevance of breached substrate specificity is questionable, the very synthesis of H 2 S relies on substrate and reaction promiscuity, which presents the enzymes with a multitude of substrate and reaction choices. The transsulfuration pathway, a major source of H 2 S, is inherently substrate-ambiguous. A heme-regulated switch embedded in the first enzyme in the pathway can help avert the stochastic production of cysteine versus H 2 S and control switching between metabolic tracks to meet cellular needs. This review discusses the dominant role of enzyme promiscuity in pathways that double as sulfur catabolic and H 2 S synthetic tracks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    Science.gov (United States)

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Comparative Transcriptome Analysis Reveals Critical Function of Sucrose Metabolism Related-Enzymes in Starch Accumulation in the Storage Root of Sweet Potato

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-06-01

    Full Text Available The starch properties of the storage root (SR affect the quality of sweet potato (Ipomoea batatas (L. Lam.. Although numerous studies have analyzed the accumulation and properties of starch in sweet potato SRs, the transcriptomic variation associated with starch properties in SR has not been quantified. In this study, we measured the starch and sugar contents and analyzed the transcriptome profiles of SRs harvested from sweet potatoes with high, medium, and extremely low starch contents, at five developmental stages [65, 80, 95, 110, and 125 days after transplanting (DAP]. We found that differences in both water content and starch accumulation in the dry matter affect the starch content of SRs in different sweet potato genotypes. Based on transcriptome sequencing data, we assembled 112336 unigenes, and identified several differentially expressed genes (DEGs involved in starch and sucrose metabolism, and revealed the transcriptional regulatory network controlling starch and sucrose metabolism in sweet potato SRs. Correlation analysis between expression patterns and starch and sugar contents suggested that the sugar–starch conversion steps catalyzed by sucrose synthase (SuSy and UDP-glucose pyrophosphorylase (UGPase may be essential for starch accumulation in the dry matter of SRs, and IbβFRUCT2, a vacuolar acid invertase, might also be a key regulator of starch content in the SRs. Our results provide valuable resources for future investigations aimed at deciphering the molecular mechanisms determining the starch properties of sweet potato SRs.

  7. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to “slowly digestible starch in starch-containing foods” and “reduction of postprandial glycaemic responses” pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    -prandial insulinaemic responses are not disproportionally increased), may be a beneficial physiological effect. The studies provided consistently showed that consumption of 40-50 % of digestible starch as “SDS” in cereal products containing about 55-70 % of available carbohydrates as starch and 30-45 % as sugars...... in the context of a meal providing at least 60 E% of available carbohydrates induced significantly lower post-prandial glycaemic responses (without leading to disproportionally increased post-prandial insulinaemic responses) than the consumption of all digestible starch as “RDS” in cereal products with a similar...... the consumption of “SDS”, as compared to the consumption of “RDS”, in cereal products and reduced post-prandial glycaemic responses (without disproportionally increased post-prandial insulinaemic responses). © European Food Safety Authority, 2011...

  8. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day.

    Science.gov (United States)

    Fernandez, Olivier; Ishihara, Hirofumi; George, Gavin M; Mengin, Virginie; Flis, Anna; Sumner, Dean; Arrivault, Stéphanie; Feil, Regina; Lunn, John E; Zeeman, Samuel C; Smith, Alison M; Stitt, Mark

    2017-08-01

    We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis ( Arabidopsis thaliana ) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred 14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Sugar uptake and starch biosynthesis by slices of developing maize endosperm

    International Nuclear Information System (INIS)

    Felker, F.C.; Liu, Kangchien; Shannon, J.C.

    1990-01-01

    14 C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and D- and L-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and D-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14 C among the soluble sugars extracted from endosperm slices incubated in 14 C-sugars. Competing hexoses reduced the incorporation of 14 C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue

  10. Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Windahl, Michael Skovbo; Sim, Lyann

    2015-01-01

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably...... reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that αconfine high activity of LD to branched...... starch synthesis....

  11. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  12. SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    Full Text Available Disrupting the balance between excitatory and inhibitory neurotransmission in the developing brain has been causally linked with intellectual disability (ID and autism spectrum disorders (ASD. Excitatory synapse strength is regulated in the central nervous system by controlling the number of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs. De novo genetic mutations of the synaptic GTPase-activating protein (SynGAP are associated with ID and ASD. SynGAP is enriched at excitatory synapses and genetic suppression of SynGAP increases excitatory synaptic strength. However, exactly how SynGAP acts to maintain synaptic AMPAR content is unclear. We show here that SynGAP limits excitatory synaptic strength, in part, by suppressing protein synthesis in cortical neurons. The data presented here from in vitro, rat and mouse cortical networks, demonstrate that regulation of translation by SynGAP involves ERK, mTOR, and the small GTP-binding protein Rheb. Furthermore, these data show that GluN2B-containing NMDARs and the cognitive kinase CaMKII act upstream of SynGAP and that this signaling cascade is required for proper translation-dependent homeostatic synaptic plasticity of excitatory synapses in developing cortical networks.

  13. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism

    Directory of Open Access Journals (Sweden)

    Gabriel N. Aughey

    2014-10-01

    Full Text Available The essential metabolic enzyme CTP synthase (CTPsyn can be compartmentalised to form an evolutionarily-conserved intracellular structure termed the cytoophidium. Recently, it has been demonstrated that the enzymatic activity of CTPsyn is attenuated by incorporation into cytoophidia in bacteria and yeast cells. Here we demonstrate that CTPsyn is regulated in a similar manner in Drosophila tissues in vivo. We show that cytoophidium formation occurs during nutrient deprivation in cultured cells, as well as in quiescent and starved neuroblasts of the Drosophila larval central nervous system. We also show that cytoophidia formation is reversible during neurogenesis, indicating that filament formation regulates pyrimidine synthesis in a normal developmental context. Furthermore, our global metabolic profiling demonstrates that CTPsyn overexpression does not significantly alter CTPsyn-related enzymatic activity, suggesting that cytoophidium formation facilitates metabolic stabilisation. In addition, we show that overexpression of CTPsyn only results in moderate increase of CTP pool in human stable cell lines. Together, our study provides experimental evidence, and a mathematical model, for the hypothesis that inactive CTPsyn is incorporated into cytoophidia.

  14. Powder and compaction characteristics of pregelatinized starches.

    Science.gov (United States)

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  15. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  16. Chromatin-associated regulation of sorbitol synthesis in flower buds of peach.

    Science.gov (United States)

    Lloret, Alba; Martínez-Fuentes, Amparo; Agustí, Manuel; Badenes, María Luisa; Ríos, Gabino

    2017-11-01

    PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.

  17. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  18. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.; Roach, P.J.; DePaoli-Roach, A.A.; Magistretti, Pierre J.; Allaman, I.

    2016-01-01

    to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin

  19. FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis.

    Science.gov (United States)

    Knüppel, Larissa; Heinzelmann, Katharina; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Eickelberg, Oliver; Staab-Weijnitz, Claudia A

    2018-04-19

    In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.

  20. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  1. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal.

    Science.gov (United States)

    Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco

    2011-02-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.

  2. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  3. Adrenomedullin and adrenotensin regulate collagen synthesis and proliferation in pulmonary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, W. [School of Control Science and Engineering, Biomedical Engineering Institute, Shandong University, Jinan, Shandong (China); Kong, Q.Y.; Zhao, C.F. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong (China); Zhao, F. [Department of Medicine, Weill Medical College of Cornell University, New York, NY (United States); Li, F.H.; Xia, W. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong (China); Wang, R. [Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong (China); Hu, Y.M. [School of Control Science and Engineering, Biomedical Engineering Institute, Shandong University, Jinan, Shandong (China); Hua, M. [Shandong Institute of Scientific and Technical Information, Jinan, Shandong (China)

    2013-12-10

    To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.

  4. Biglycan- and Sphingosine Kinase-1 Signaling Crosstalk Regulates the Synthesis of Macrophage Chemoattractants

    Directory of Open Access Journals (Sweden)

    Louise Tzung-Harn Hsieh

    2017-03-01

    Full Text Available In its soluble form, the extracellular matrix proteoglycan biglycan triggers the synthesis of the macrophage chemoattractants, chemokine (C-C motif ligand CCL2 and CCL5 through selective utilization of Toll-like receptors (TLRs and their adaptor molecules. However, the respective downstream signaling events resulting in biglycan-induced CCL2 and CCL5 production have not yet been defined. Here, we show that biglycan stimulates the production and activation of sphingosine kinase 1 (SphK1 in a TLR4- and Toll/interleukin (IL-1R domain-containing adaptor inducing interferon (IFN-β (TRIF-dependent manner in murine primary macrophages. We provide genetic and pharmacological proof that SphK1 is a crucial downstream mediator of biglycan-triggered CCL2 and CCL5 mRNA and protein expression. This is selectively driven by biglycan/SphK1-dependent phosphorylation of the nuclear factor NF-κB p65 subunit, extracellular signal-regulated kinase (Erk1/2 and p38 mitogen-activated protein kinases. Importantly, in vivo overexpression of soluble biglycan causes Sphk1-dependent enhancement of renal CCL2 and CCL5 and macrophage recruitment into the kidney. Our findings describe the crosstalk between biglycan- and SphK1-driven extracellular matrix- and lipid-signaling. Thus, SphK1 may represent a new target for therapeutic intervention in biglycan-evoked inflammatory conditions.

  5. CTC1-STN1 coordinates G- and C-strand synthesis to regulate telomere length.

    Science.gov (United States)

    Gu, Peili; Jia, Shuting; Takasugi, Taylor; Smith, Eric; Nandakumar, Jayakrishnan; Hendrickson, Eric; Chang, Sandy

    2018-05-17

    Coats plus (CP) is a rare autosomal recessive disorder caused by mutations in CTC1, a component of the CST (CTC1, STN1, and TEN1) complex important for telomere length maintenance. The molecular basis of how CP mutations impact upon telomere length remains unclear. The CP CTC1 L1142H mutation has been previously shown to disrupt telomere maintenance. In this study, we used CRISPR/Cas9 to engineer this mutation into both alleles of HCT116 and RPE cells to demonstrate that CTC1:STN1 interaction is required to repress telomerase activity. CTC1 L1142H interacts poorly with STN1, leading to telomerase-mediated telomere elongation. Impaired interaction between CTC1 L1142H :STN1 and DNA Pol-α results in increased telomerase recruitment to telomeres and further telomere elongation, revealing that C:S binding to DNA Pol-α is required to fully repress telomerase activity. CP CTC1 mutants that fail to interact with DNA Pol-α resulted in loss of C-strand maintenance and catastrophic telomere shortening. Our findings place the CST complex as an important regulator of both G-strand extensions by telomerase and C-strand synthesis by DNA Pol-α. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Emergence of robust growth laws from optimal regulation of ribosome synthesis.

    Science.gov (United States)

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-08-22

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Phosphatidylcholine synthesis in the rat: The substrate for methylation and regulation by choline

    International Nuclear Information System (INIS)

    Datko, A.H.; Aksamit, R.R.; Mudd, S.H.

    1990-01-01

    Two lines of evidence led us to reexamine the possibility that methylation of phosphoethanolamine and its partially methylated derivatives, in addition to methylation of the corresponding phosphatidyl derivatives, plays a role in mammalian phosphatidylcholine biosynthesis: (a) Results obtained by Salerno and Beeler with rat appear to strongly support such a role for methylation of phosphobases; (b) Such reactions have recently been shown to play major roles in phosphatidylcholine synthesis by higher plants. We found that, following continuous labeling of rat liver with L-[methyl-3H]methionine for 10.4 min (intraperitoneal administration) or for 0.75 min (intraportal administration), virtually no 3H was detected in methylated derivatives of phosphoethanolamine, but readily detectable amounts of 3H were present in the base moiety of each methylated derivative of phosphatidylethanolamine. Thus, there was no indication that phospho-base methylation makes a significant contribution. Studies of cultured rat hepatoma cells showed definitively for the first time in a mammalian system that choline deprivation up-regulates the rate of flow of methyl groups originating in methionine into phosphatidylethanolamine and derivatives. Even under these conditions, methylation of phosphoethanolamine bases appeared to play a negligible role

  8. Design starch: stochastic modeling of starch granule biogenesis.

    Science.gov (United States)

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  9. Design starch: stochastic modeling of starch granule biogenesis

    Science.gov (United States)

    Ebenhöh, Oliver

    2017-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. PMID:28673938

  10. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    Science.gov (United States)

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  11. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  12. Plastid-to-Nucleus Retrograde Signals Are Essential for the Expression of Nuclear Starch Biosynthesis Genes during Amyloplast Differentiation in Tobacco BY-2 Cultured Cells1[W][OA

    Science.gov (United States)

    Enami, Kazuhiko; Ozawa, Tomoki; Motohashi, Noriko; Nakamura, Masayuki; Tanaka, Kan; Hanaoka, Mitsumasa

    2011-01-01

    Amyloplasts, a subtype of plastid, are found in nonphotosynthetic tissues responsible for starch synthesis and storage. When tobacco (Nicotiana tabacum) Bright Yellow-2 cells are cultured in the presence of cytokinin instead of auxin, their plastids differentiate from proplastids to amyloplasts. In this program, it is well known that the expression of nucleus-encoded starch biosynthesis genes, such as ADP-Glucose Pyrophosphorylase (AgpS) and Granule-Bound Starch Synthase (GBSS), is specifically induced. In this study, we investigated the roles of plastid gene expression in amyloplast differentiation. Microarray analysis of plastid genes revealed that no specific transcripts were induced in amyloplasts. Nevertheless, amyloplast development accompanied with starch biosynthesis was drastically inhibited in the presence of plastid transcription/translation inhibitors. Surprisingly, the expression of nuclear AgpS and GBSS was significantly repressed by the addition of these inhibitors, suggesting that a plastid-derived signal(s) that reflects normal plastid gene expression was essential for nuclear gene expression. A series of experiments was performed to examine the effects of intermediates and inhibitors of tetrapyrrole biosynthesis, since some of the intermediates have been characterized as candidates for plastid-to-nucleus retrograde signals. Addition of levulinic acid, an inhibitor of tetrapyrrole biosynthesis, resulted in the up-regulation of nuclear AgpS and GBSS gene expression as well as starch accumulation, while the addition of heme showed opposite effects. Thus, these results indicate that plastid transcription and/or translation are required for normal amyloplast differentiation, regulating the expression of specific nuclear genes by unknown signaling mechanisms that can be partly mediated by tetrapyrrole intermediates. PMID:21771917

  13. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis.

    OpenAIRE

    Nicholson, W L; Chambliss, G H

    1987-01-01

    Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strai...

  14. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.

    Science.gov (United States)

    Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang

    2017-10-01

    Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.

  15. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  16. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice

    Science.gov (United States)

    You, Jae-Sung; Anderson, Garrett B.; Dooley, Matthew S.; Hornberger, Troy A.

    2015-01-01

    ABSTRACT The maintenance of skeletal muscle mass contributes substantially to health and to issues associated with the quality of life. It has been well recognized that skeletal muscle mass is regulated by mechanically induced changes in protein synthesis, and that signaling by mTOR is necessary for an increase in protein synthesis and the hypertrophy that occurs in response to increased mechanical loading. However, the role of mTOR signaling in the regulation of protein synthesis and muscle mass during decreased mechanical loading remains largely undefined. In order to define the role of mTOR signaling, we employed a mouse model of hindlimb immobilization along with pharmacological, mechanical and genetic means to modulate mTOR signaling. The results first showed that immobilization induced a decrease in the global rates of protein synthesis and muscle mass. Interestingly, immobilization also induced an increase in mTOR signaling, eIF4F complex formation and cap-dependent translation. Blocking mTOR signaling during immobilization with rapamycin not only impaired the increase in eIF4F complex formation, but also augmented the decreases in global protein synthesis and muscle mass. On the other hand, stimulating immobilized muscles with isometric contractions enhanced mTOR signaling and rescued the immobilization-induced decrease in global protein synthesis through a rapamycin-sensitive mechanism that was independent of ribosome biogenesis. Unexpectedly, the effects of isometric contractions were also independent of eIF4F complex formation. Similar to isometric contractions, overexpression of Rheb in immobilized muscles enhanced mTOR signaling, cap-dependent translation and global protein synthesis, and prevented the reduction in fiber size. Therefore, we conclude that the activation of mTOR signaling is both necessary and sufficient to alleviate the decreases in protein synthesis and muscle mass that occur during immobilization. Furthermore, these results indicate

  17. Increasing Malonyl-CoA Derived Product through Controlling the Transcription Regulators of Phospholipid Synthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chen, Xiaoxu; Yang, Xiaoyu; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2017-05-19

    Malonyl-CoA is a precursor of a variety of compounds such as polyketides and flavonoids. In Saccharomyces cerevisiae, malonyl-CoA concentration is tightly regulated and therefore maintained at a very low level, limiting the production of malonyl-CoA-derived chemicals. Here we manipulated the phospholipid synthesis transcriptional regulators to control the malonyl-CoA levels and increase the downstream product. Through manipulating different regulators including Ino2p, Ino4p, Opi1p, and a series of synthetic Ino2p variants, combining with studying the inositol and choline effect, the engineered strain achieved a 9-fold increase of the titer of malonyl-CoA-derived product 3-hydroxypropionic acid, which is among the highest improvement relative to previously reported strategies. Our study provides a new strategy to regulate malonyl-CoA availability and will contribute to the production of other highly valued malonyl-CoA-derived chemicals.

  18. DEVELOPMENT OF ADHESIVE TO THE BASIS OF CORN AND CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Rosane Furtado Fabrício

    2014-05-01

    Full Text Available Corn and native cassava starch were modified by oxidation and acid hydrolysis, aiming to develop paper and paperboard stickers. The oxidation was made with Sodium hypochlorite (NaOCl in two distinct concentrations of active chloride which is present on oxidizing agent solution. The synthesis resulting products were used to make stickers and they were compared to corn and cassava starch based stickers without any modification, as well as commercial stickers based on polyvinyl acetate (PVA. Two different methodologies were tested using acid hydrolysis to modify corn and cassava starch, both using phosphoric acid (H3PO4 in order to obtain dextrin and subsequently use it in the production of stickers and also comparing them to petrochemical-based commercial stickers. Considering the different starch modifications methods (oxidation and acid hydrolysis, stickers based on renewable raw material were obtained, which combine biodegradability, low costs and availability.

  19. Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase.

    Science.gov (United States)

    Gaquere-Parker, Anne; Taylor, Tamera; Hutson, Raihannah; Rizzo, Ashley; Folds, Aubrey; Crittenden, Shastina; Zahoor, Neelam; Hussein, Bilal; Arruda, Aaron

    2018-03-01

    Hydrolysis of starch is an important process in the food industry and in the production of bioethanol or smaller carbohydrate molecules that can be used as starting blocks for chemical synthesis. Such hydrolysis can be enhanced by lowering the pH, heating the reaction mixture or catalyzing the reaction with enzymes. This study reports the effect of sonication on the reaction rate of starch hydrolysis at different temperatures, in the presence or absence of alpha-amylase. Starch Azure, a commercially available potato starch covalently linked with Remazol Brilliant Blue, has been chosen since its hydrolysis releases a blue dye, which concentration can be monitored by UV Vis spectroscopy. Ultrasounds, regardless of experimental conditions, provide the highest reaction rate for such hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preparation and characterization of dialdehyde starch urea (DASU ...

    African Journals Online (AJOL)

    Dialdehyde starch urea (DASU) was prepared by the reaction of dialdehyde starch (DAS) from periodate oxidized cassava starch with urea, which was then used to adsorb Co(II), Pb(II) and Zn(II) ions from aqueous solution. Starch modified starches and starch complexes were characterized by Fourier transform infrared ...

  1. Down-regulation of inflammatory mediator synthesis and infiltration of inflammatory cells by MMP-3 in experimentally induced rat pulpitis.

    Science.gov (United States)

    Takimoto, Koyo; Kawashima, Nobuyuki; Suzuki, Noriyuki; Koizumi, Yu; Yamamoto, Mioko; Nakashima, Misako; Suda, Hideaki

    2014-09-01

    Matrix metalloproteinase (MMP)-3 is a member of the MMP family that degrades the extracellular matrix. Application of MMP-3 to injured pulp tissue induces angiogenesis and wound healing, but its anti-inflammatory effects are still unclear. Here, we evaluated the anti-inflammatory functions of MMP-3 in vitro and in vivo. Nitric oxide and inflammatory mediator synthesis in macrophages activated by lipopolysaccharide (LPS) was measured in the presence or absence of MMP-3. The mouse Mmp3 (mMmp3) expression vector containing full length cDNA sequence of mMmp3 or cDNA sequence of mMmp3 missing the signal peptide and pro-peptide regions was transfected to RAW264, a mouse macrophage cell line, and NO synthesis and inflammatory mediator expression were evaluated. Pulpal inflammation was histologically and immunohistochemically evaluated in a rat model of incisor pulpitis induced by the application of LPS for 9 hours in the presence or absence of MMP-3. NO and pro-inflammatory mediator synthesis promoted by LPS was significantly down-regulated by MMP-3 in vitro. The full length of mMmp3 down-regulated the LPS-induced NO synthesis and chemical mediator mRNA expression, however the mMmp3 missing the signal peptide failed to block the NO synthesis induced by LPS. The numbers of major histocompatibility complex class II+ and CD68+ cells, which infiltrated into the rat incisor pulp tissues in response to the topical application of LPS, were significantly decreased by the application of MMP-3 in vivo. These results indicate that MMP-3 possesses anti-inflammatory functions, suggesting its potential utility as an anti-inflammatory agent for pulpal inflammation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  4. Early steps in protein synthesis and their regulation: a background study related to the biological effects of radiation. Progress report, July 1, 1975--June 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, P.C.

    1976-03-01

    This is a continuing study of protein synthesis, involving a search for the role of Ap/sub 4/A and other unusual nucleotides in growth regulation; studies of the mechanism of action of aminoacyl-tRNA ligases and the effect thereof on protein synthesis; a search for new regulators of the translation step, in cell-free systems; and an effort to improve the sensitivity and quantitation of chemical sequencing at the 3'-end of messenger RNA.

  5. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... Key words: Cassava, starch, functional properties, industrial utilization. ... in demand for starch (Davis et al., 2002). Potato, maize, wheat and cassava are the major ... ambient temperature and stored at 4 °C for 4 weeks.

  6. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  7. Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications

    Directory of Open Access Journals (Sweden)

    Broglie Karen E

    2008-09-01

    Full Text Available Abstract Background Starch is of great importance to humans as a food and biomaterial, and the amount and structure of starch made in plants is determined in part by starch synthase (SS activity. Five SS isoforms, SSI, II, III, IV and Granule Bound SSI, have been identified, each with a unique catalytic role in starch synthesis. The basic mode of action of SSs is known; however our knowledge of several aspects of SS enzymology at the structural and mechanistic level is incomplete. To gain a better understanding of the differences in SS sequences that underscore their specificity, the previously uncharacterised SSIVb from wheat was cloned and extensive bioinformatics analyses of this and other SSs sequences were done. Results The wheat SSIV cDNA is most similar to rice SSIVb with which it shows synteny and shares a similar exon-intron arrangement. The wheat SSIVb gene was preferentially expressed in leaf and was not regulated by a circadian clock. Phylogenetic analysis showed that in plants, SSIV is closely related to SSIII, while SSI, SSII and Granule Bound SSI clustered together and distinctions between the two groups can be made at the genetic level and included chromosomal location and intron conservation. Further, identified differences at the amino acid level in their glycosyltransferase domains, predicted secondary structures, global conformations and conserved residues might be indicative of intragroup functional associations. Conclusion Based on bioinformatics analysis of the catalytic region of 36 SSs and 3 glycogen synthases (GSs, it is suggested that the valine residue in the highly conserved K-X-G-G-L motif in SSIII and SSIV may be a determining feature of primer specificity of these SSs as compared to GBSSI, SSI and SSII. In GBSSI, the Ile485 residue may partially explain that enzyme's unique catalytic features. The flexible 380s Loop in the starch catalytic domain may be important in defining the specificity of action for each

  8. Endogenous secreted phospholipase A2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils.

    Science.gov (United States)

    Hallstrand, Teal S; Lai, Ying; Hooper, Kathryn A; Oslund, Rob C; Altemeier, William A; Matute-Bello, Gustavo; Gelb, Michael H

    2016-01-01

    Phospholipase A2s mediate the rate-limiting step in the formation of eicosanoids such as cysteinyl leukotrienes (CysLTs). Group IVA cytosolic PLA2α (cPLA2α) is thought to be the dominant PLA2 in eosinophils; however, eosinophils also have secreted PLA2 (sPLA2) activity that has not been fully defined. To examine the expression of sPLA2 group X (sPLA2-X) in eosinophils, the participation of sPLA2-X in the formation of CysLTs, and the mechanism by which sPLA2-X initiates the synthesis of CysLTs in eosinophils. Peripheral blood eosinophils were obtained from volunteers with asthma and/or allergy. A rabbit polyclonal anti-sPLA2-X antibody identified sPLA2-X by Western blot. We used confocal microscopy to colocalize the sPLA2-X to intracellular structures. An inhibitor of sPLA2-X (ROC-0929) that does not inhibit other mammalian sPLA2s, as well as inhibitors of the mitogen-activated kinase cascade (MAPK) and cPLA2α, was used to examine the mechanism of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated formation of CysLT. Eosinophils express the mammalian sPLA2-X gene (PLA2G10). The sPLA2-X protein is located in the endoplasmic reticulum, golgi, and granules of eosinophils and moves to the granules and lipid bodies during fMLP-mediated activation. Selective sPLA2-X inhibition attenuated the fMLP-mediated release of arachidonic acid and CysLT formation by eosinophils. Inhibitors of p38, extracellular-signal-regulated kinases 1/2 (p44/42 MAPK), c-Jun N-terminal kinase, and cPLA2α also attenuated the fMLP-mediated formation of CysLT. The sPLA2-X inhibitor reduced the phosphorylation of p38 and extracellular-signal-regulated kinases 1/2 (p44/42 MAPK) as well as cPLA2α during cellular activation, indicating that sPLA2-X is involved in activating the MAPK cascade leading to the formation of CysLT via cPLA2α. We further demonstrate that sPLA2-X is activated before secretion from the cell during activation. Short-term priming with IL-13 and TNF/IL-1β increased the

  9. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  10. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  11. ( Phaseolus lunatus ) starch as a tablet disintegrant

    African Journals Online (AJOL)

    ) was evaluated. The starch from the seeds was extracted and its disintegrant ability was compared with that of maize starch BP in paracetamol based tablets at concentrations of 0, 2.5, 5, 7.5 and 10 %w/w. The following properties of the starch ...

  12. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  13. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  14. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Kori, Ayako; Ishihama, Akira

    2013-07-01

    Escherichia coli is able to utilize d-ribose as its sole carbon source. The genes for the transport and initial-step metabolism of d-ribose form a single rbsDACBK operon. RbsABC forms the ABC-type high-affinity d-ribose transporter, while RbsD and RbsK are involved in the conversion of d-ribose into d-ribose 5-phosphate. In the absence of inducer d-ribose, the ribose operon is repressed by a LacI-type transcription factor RbsR, which is encoded by a gene located downstream of this ribose operon. At present, the rbs operon is believed to be the only target of regulation by RbsR. After Genomic SELEX screening, however, we have identified that RbsR binds not only to the rbs promoter but also to the promoters of a set of genes involved in purine nucleotide metabolism. Northern blotting analysis indicated that RbsR represses the purHD operon for de novo synthesis of purine nucleotide but activates the add and udk genes involved in the salvage pathway of purine nucleotide synthesis. Taken together, we propose that RbsR is a global regulator for switch control between the de novo synthesis of purine nucleotides and its salvage pathway. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    Science.gov (United States)

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Feedback regulation of bile acid synthesis in human liver: Importance of HNF-4α for regulation of CYP7A1

    International Nuclear Information System (INIS)

    Abrahamsson, Anna; Gustafsson, Ulf; Ellis, Ewa; Nilsson, Lisa-Mari; Sahlin, Staffan; Bjoerkhem, Ingemar; Einarsson, Curt

    2005-01-01

    A great number of nuclear factors are involved in the negative feedback mechanism regulating bile acid synthesis. There are two major ways for the negative feedback to effect the synthesis; the SHP-dependent, involving FXR, and the SHP-independent way, affecting HNF-4α. We studied 23 patients with gallstone disease. Eight patients were treated with chenodeoxycholic acid, 7 with cholestyramine prior to operation, and 8 served as controls. Liver biopsies were analyzed with Real-time-PCR. In the cholestyramine-treated group mRNA levels of CYP7A1 were increased about 10-fold. Treatment with CDCA decreased the mRNA levels of CYP7A1 by about 70%. The mRNA levels of CYP8B1, CYP27A1, and CYP7B1 were not significantly altered in the treated groups. The analysis of mRNA levels for HNF-4α showed 64% higher levels in the cholestyramine-treated group compared to the controls. These levels showed positive and highly significant correlation to the levels of mRNA of CYP7A1 when studied in all three groups together. FXR, SHP, and LRH-1/FTF were not significantly affected by the different treatments. Our results indicate that when bile acid synthesis is upregulated by cholestyramine treatment the SHP-independent pathway for controlling CYP7A1 transcription dominates over the SHP-dependent pathway

  18. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    Science.gov (United States)

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation1

    Science.gov (United States)

    Kadouche, Derifa; Arias, Maria Cecilia

    2016-01-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  20. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Directory of Open Access Journals (Sweden)

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  1. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    Science.gov (United States)

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses. © 2014 Max Planck Society. New Phytologist © 2014 New Phytologist Trust.

  2. Maize starch biphasic pasting curves

    CSIR Research Space (South Africa)

    Nelles, EM

    2000-05-01

    Full Text Available (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1: 3 v/v), the second...

  3. Resistant starch: promise for improving human health.

    Science.gov (United States)

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  4. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  6. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium.

    Science.gov (United States)

    Rudolph, Michael C; Monks, Jenifer; Burns, Valerie; Phistry, Meridee; Marians, Russell; Foote, Monica R; Bauman, Dale E; Anderson, Steven M; Neville, Margaret C

    2010-12-01

    The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase (Fasn), insulin-induced gene 1 (Insig1), mitochondrial citrate transporter (Slc25a1), and stearoyl-CoA desaturase 2 (Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α (Acaca) and ATP citrate lyase (Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.

  7. [Regulation of acetylcholine synthesis in presynaptic endings of cholinergic neurons of the central nervous system].

    Science.gov (United States)

    Tuchek, S; Dolezhal, V; Richny, Ia

    1984-01-01

    Data on the acetylcholine (ACh) synthesis in nerve cells with special attention to its control are summarized in the paper. At rest or during moderate synaptic activity, the concentration of ACh in the compartment of its synthesis probably corresponds to the equilibrium between the substrates and products in the reaction catalysed by choline acetyltransferase. The release of ACh is followed by a transfer of ACh from the compartment of its synthesis to the compartment of release, and, automatically, by the synthesis of new ACh until a new equilibrium is reached in the compartment of synthesis. In addition, synaptic activity and the release of ACh support the synthesis of new ACh in the following ways: choline carriers are disinhibited by lowering the concentration of ACh in the nerve endings, and the transport of choline from the extracellular fluid to the cell interior according to its electro-chemical gradient is thus facilitated; the concentration of choline in the extracellular fluid is increased in the vicinity of the nerve endings as a consequence of the hydrolysis of the released ACh; postactivation hyperpolarization of the nerve endings brings about an increase of the choline transport and concentration in the nerve endings; presumably, the stimulation of muscarinic receptors brings about a further increase in the choline concentration in the vicinity of the nerve endings by the phosphatidylcholine hydrolysis intensification in postsynaptic cells; the decrease in the concentration of acetyl-CoA (as a consequence of the resynthesis of ACh) increases the activity of pyruvate dehydrogenase and the production of acetyl-CoA; conceivably, the increase in the concentration of Ca2+ ions in the nerve endings assists direct passage of acetyl-CoA from the mitochondria to the cytosol of the nerve endings, where the synthesis of ACh occurs.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Evelyn Zacharewicz

    Full Text Available BACKGROUND: Over the course of ageing there is a natural and progressive loss of skeletal muscle mass. The onset and progression of age-related muscle wasting is associated with an attenuated activation of Akt-mTOR signalling and muscle protein synthesis in response to anabolic stimuli such as resistance exercise. MicroRNAs (miRNAs are novel and important post-transcriptional regulators of numerous cellular processes. The role of miRNAs in the regulation of muscle protein synthesis following resistance exercise is poorly understood. This study investigated the changes in skeletal muscle miRNA expression following an acute bout of resistance exercise in young and old subjects with a focus on the miRNA species predicted to target Akt-mTOR signalling. RESULTS: Ten young (24.2±0.9 years and 10 old (66.6±1.1 years males completed an acute resistance exercise bout known to maximise muscle protein synthesis, with muscle biopsies collected before and 2 hours after exercise. We screened the expression of 754 miRNAs in the muscle biopsies and found 26 miRNAs to be regulated with age, exercise or a combination of both factors. Nine of these miRNAs are highly predicted to regulate targets within the Akt-mTOR signalling pathway and 5 miRNAs have validated binding sites within the 3' UTRs of several members of the Akt-mTOR signalling pathway. The miR-99/100 family of miRNAs notably emerged as potentially important regulators of skeletal muscle mass in young and old subjects. CONCLUSION: This study has identified several miRNAs that were regulated with age or with a single bout of resistance exercise. Some of these miRNAs were predicted to influence Akt-mTOR signalling, and therefore potentially skeletal muscle mass. These miRNAs should be considered as candidate targets for in vivo modulation.

  12. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    DEFF Research Database (Denmark)

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia

    2016-01-01

    to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during...... recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits...

  13. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  14. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  15. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.

    Science.gov (United States)

    Wang, Xinge; Chen, Haiming; Luo, Zhigang; Fu, Xiong

    2016-03-15

    In this research, 1-hexadecyl-3-methylimidazolium bromide C16mimBr/butan-1-ol/cyclohexane/water ionic liquid microemulsion was prepared. The effects of n-alkyl alcohols, alkanes, water content and temperature on the properties of microemulsion were studied by dilution experiment. The microregion of microemulsion was identified by pseudo-ternary phase diagram and conductivity measurement. Then starch nanoparticles were prepared by water in oil (W/O) microemulsion-cross-linking methods with C16mimBr as surfactant. Starch nanoparticles with a mean diameter of 94.3nm and narrow size distribution (SD=3.3) were confirmed by dynamic light scattering (DLS). Scanning electron microscope (SEM) data revealed that starch nanoparticles were spherical granules with the size about 60nm. Moreover the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) demonstrated the formation of cross-linking bonds in starch molecules. Finally, the drug loading and releasing properties of starch nanoparticles were investigated with methylene blue (MB) as drug model. This work may provide an efficient pathway to synthesis starch nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Preparation of hydroxypropyl corn and amaranth starch hydrolyzate and its evaluation as wall material in microencapsulation.

    Science.gov (United States)

    Kshirsagar, Amol C; Singhal, Rekha S

    2008-06-01

    Hydroxypropylation of starches lends it useful physicochemical and functional properties that are industrially important. The literature on hydroxypropylation using organic solvents for obtaining higher molar substitution (MS) is scantily available. The present work reports on hydroxypropylation of corn and a waxy amaranth starch to different MS with propylene oxide in an alkaline-organic medium (isopropanol). The synthesis was followed in terms of MS. The parameters optimized were starch:isopropanol ratio (w/w), reaction temperature, reaction time and the quantity of alkali required in the process. A maximal MS of 0.180 and 0.162 were obtained for hydroxypropyl corn starch (HPSC) and hydroxypropyl amaranth starch (HPSA), respectively. Enzymatic hydrolysis of the HPSC and HPSA of the above MS was carried out on a 30% (w/v) solution at a pH of 6.5 and 95°C for varying time periods using 0.1% (w/w based on starch) bacterial α-amylase, termamyl. The hydrolysis was terminated by adjusting the pH to 3.5 using 0.1N HCl. The hydrolyzates were characterized in terms of dextrose equivalent and viscosity. The hydrolyzate obtained after 3h of hydrolysis was spray dried and compared to gum arabic with respect to encapsulation of model flavourings, orange oil and lemon oil. Copyright © 2007 Elsevier Ltd. All rights reserved.

  17. Identification and phylogenetic analysis of a novel starch synthase in maize

    Directory of Open Access Journals (Sweden)

    Hanmei eLiu

    2015-11-01

    Full Text Available Starch is an important reserve of carbon and energy in plants, providing the majority of calories in the human diet and animal feed. Its synthesis is orchestrated by several key enzymes, and the amount and structure of starch, affecting crop yield and quality, are determined mainly by starch synthase (SS activity. To date, five SS isoforms, including SSI-IV and Granule Bound Starch Synthase (GBSS have been identified and their physiological functions have been well characterized. Here, we report the identification of a new SS isoform in maize, designated SSV. By searching sequenced genomes, SSV has been found in all green plants with conserved sequences and gene structures. Our phylogenetic analysis based on 780 base pairs has suggested that SSIV and SSV resulted from a gene duplication event, which may have occurred before the algae formation. An expression profile analysis of SSV in maize has indicated that ZmSSV is mainly transcribed in the kernel and ear leaf during the grain filling stage, which is partly similar to other SS isoforms. Therefore, it is likely that SSV may play an important role in starch biosynthesis. Subsequent analysis of SSV function may facilitate understanding the mechanism of starch granules formation, number and structure.

  18. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment.

    Science.gov (United States)

    Spasojevic, Natasa; Jovanovic, Predrag; Dronjak, Sladjana

    2015-03-01

    We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  19. Regulation of phospholipid synthesis in Mycobacterium smegmatis by cyclic adenosine monophosphate

    International Nuclear Information System (INIS)

    Sareen, Monica; Kaur, Harpinder; Khuller, G.K.

    1993-01-01

    Forskolin, an adenylate cyclase activator and a cyclic AMP analogue, dibutyryl cyclic AMP have been used to examine the relationship between intracellular levels of cyclic AMP and lipid synthesis in Mycobacterium smegmatis. Total phospholipid content was found to be increased in forskolin grown cells as a result of increased cyclic AMP levels caused by activation of adenylate cyclase. Increased phospholipid content was supported by increased [ 14 C]acetate incorporation as well as increased activity of glycerol-3-phosphate acyltransferase. Pretreatment of cells with dibutyryl cyclic AMP had similar effects on lipid synthesis. Taking all these observations together it is suggested that lipid synthesis is being controlled by cyclic AMP in mycobacteria. (author). 14 refs., 4 tabs

  20. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.

    Science.gov (United States)

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M; Tumimbang, Ellen B; Delatorre, Carla A; Blumwald, Eduardo

    2013-12-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic P(SARK)::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic P(SARK)::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit.

  1. Metabolic Transition of Milk Lactose Synthesis and Up-regulation by AKT1 in Sows from Late Pregnancy to Lactation.

    Science.gov (United States)

    Chen, Fang; Chen, Baoliang; Guan, Wutai; Chen, Jun; Lv, Yantao; Qiao, Hanzhen; Wang, Chaoxian; Zhang, Yinzhi

    2017-03-01

    Lactose plays a crucial role in controlling milk volume by inducing water toward into the mammary secretory vesicles from the mammary epithelial cell cytoplasm, thereby maintaining osmolality. In current study, we determined the expression of several lactose synthesis related genes, including glucose transporters (glucose transporter 1, glucose transporter 8, sodium-glucose cotransporter 1, sodium-glucose cotransporter 3, and sodium-glucose cotransporter 5), lactose synthases (α-lactalbumin and β1,4-galactosyltransferase), and hexokinases (hexokinase-1 and hexokinase-2) in sow mammary gland tissue at day 17 before delivery, on the 1st day of lactation and at peak lactation. The data showed that glucose transporter 1 was the dominant glucose transporter within sow mammary gland and that expression of each glucose transporter 1, sodium-glucose cotransporter 1, hexokinase-1, hexokinase-2, α-lactalbumin, and β1,4-galactosyltransferase were increased (p lactose synthesis was significantly elevated with the increase of milk production and AKT1 could positively regulate lactose synthesis.

  2. Regulatory effect of amino acids on the pasting behavior of potato starch is attributable to its binding to the starch chain.

    Science.gov (United States)

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Watanabe, Ayako; Sato, Ryoichi; Takahashi, Koji

    2006-12-27

    The binding of an amino acid, glycine (Gly), alanine (Ala), epsilon-aminocaproic acid (-AC), monosodium glutamate (GluNa), or lysine (Lys), to starch was examined by a biomolecular interaction analyzer (IAsys). A starch sample (ATS) hydrolyzed to an extent of 1% hydrolysis rate with 15% sulfuric acid was used as a model starch for the binding examination. The reducing end of ATS was oxidized by the Somogyi reagent, and the conversion of the reducing end to the carboxyl group of ATS was confirmed by a carboxylic acid fluorescence labeling reagent. The oxidized ATS was immobilized to the amino group of a sensor cuvette by using water-soluble carbodiimide and N-hydroxysuccinimide through an amide bond. The IAsys examination showed that Gly, Ala, and epsilon-AC scarcely bound to the immobilized starch chains but that GluNa and Lys favorably bound with their increasing concentrations. The relative binding index (RBI) of each amino acid was defined by the ratio of the slope of the linear regression equation between the binding response and the concentration for each amino acid to that for Gly. Because the relationships between the RBI and the pasting characteristics (pasting temperature, peak viscosity, breakdown, and swelling index) could each be expressed by a linear regression equation with a high correlation coefficient, it is concluded that the regulation of the pasting behavior of starch with an amino acid is caused by binding of the amino acid to the starch chains.

  3. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  4. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  5. In Profile: Models of Ribosome Biogenesis Defects and Regulation of Protein Synthesis

    NARCIS (Netherlands)

    Essers, P.B.M.

    2013-01-01

    Ribosomes are the mediators of protein synthesis in the cell and therefore crucial to proper cell function. In addition, ribosomes are highly abundant, with ribosomal RNA making up 80% of the RNA in the cell. A large amount of resources go into maintaining this pool of ribosomes, so ribosome

  6. Regulation of porphyrin synthesis and photodynamic therapy in heavy metal intoxication.

    Science.gov (United States)

    Grinblat, Borislava; Pour, Nir; Malik, Zvi

    2006-01-01

    Protoporphyrin IX (PpIX) synthesis by malignant cells is successfully exploited for photodynamic therapy (PDT) following administration of 5-aminolevulinic acid (ALA) and light irradiation. The influence of two environmental heavy metal poisons, lead and gallium, on PpIX-synthesis and ALA-PDT was studied in two neu-ronal cell lines, SH-SY5Y neuroblastoma and PC12 pheochromocytoma. The heavy metal intoxication affected two of the heme-synthesis enzymes, ALA-dehydratase (ALAD) and porphobilinogen deaminase (PBGD). The present results show that lead poisoning significantly decreased the PBGD cellular level and inhibited its enzymatic activity, whereas the effects of gallium were less prominent. Although, the protein levels were reduced, the mRNA levels of PBGD remained unchanged during metal intoxication. These findings show additional inhibitory activity of lead on top of its classical effect on ALAD. Proteasome activity was enhanced during lead treatment, as measured by the AMC fluorigenic proteasome assay. The reduction in PBGD levels was not a consequence of PBGD mRNA reduced synthesis, which remained unchanged as shown by RT-PCR analysis. As a result of the lead poisoning, marked alterations in the cell cycle were observed, including a decreased G1 phase and an increased number of S phase cells. The efficacy of ALA-PDT was reduced in correlation with decreased activities of the enzymes during lead intoxication. We may conclude that lead poisoning adversely affects the outcome of ALA photodynamic therapy of cancer.

  7. Human keratinocytes produce the complement inhibitor factor H: synthesis is regulated by interferon-gamma

    NARCIS (Netherlands)

    Timár, Krisztina K.; Pasch, Marcel C.; van den Bosch, Norbert H. A.; Jarva, Hanna; Junnikkala, Sami; Meri, Seppo; Bos, Jan D.; Asghar, Syed S.

    2006-01-01

    Locally synthesized complement is believed to play an important role in host defense and inflammation at organ level. In the epidermis, keratinocytes have so far been shown to synthesize two complement components, C3 and factor B. Here, we studied the synthesis of factor H by human keratinocytes. We

  8. Myelin Basic Protein synthesis is regulated by small non-coding RNA 715

    NARCIS (Netherlands)

    Bauer, N.M.; Moos, C.; van Horssen, J.; Witte, M.E.; van der Valk, P.; Altenhein, B.; Luhmann, H.J.; White, R.

    2012-01-01

    Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential for myelin formation in the central nervous system. During oligodendrocyte differentiation, MBP mRNA is kept in a translationally silenced state while intracellularly transported, until neuron-derived signals initiate localized MBP

  9. On the mechanism of regulation of the catalase synthesis rate in the rat liver in the course of acute radiation disease

    International Nuclear Information System (INIS)

    Komov, V.P.; Rakhmanina, T.F.

    1976-01-01

    A method has been proposed to determine the activity of factors that regulate the rate of catalase synthesis in the rat liver at the stage of translation. The analysis of certain normal and pathologic parameters of these factors suggests a possibility of interpreting more definitely the effect of radiation on the catalase synthesis. Marked changes have been found both in the structure and the activity of the given factors in the course of the development of radiation damage

  10. Hydrocortisone and triiodothyronine regulate hyaluronate synthesis in a tissue-engineered human dermal equivalent through independent pathways.

    Science.gov (United States)

    Deshpande, Madhura; Papp, Suzanne; Schaffer, Lana; Pouyani, Tara

    2015-02-01

    Hydrocortisone (HC) and triiodothyronine (T3) have both been shown to be capable of independently inhibiting hyaluronate (HA, hyaluronic acid) synthesis in a self-assembled human dermal equivalent (human dermal matrix). We sought to investigate the action of these two hormones in concert on extracellular matrix formation and HA inhibition in the tissue engineered human dermal matrix. To this end, neonatal human dermal fibroblasts were cultured in defined serum-free medium for 21 days in the presence of each hormone alone, or in combination, in varying concentrations. Through a process of self-assembly, a substantial dermal extracellular matrix formed that was characterized. The results of these studies demonstrate that combinations of the hormones T3 and hydrocortisone showed significantly higher levels of hyaluronate inhibition as compared to each hormone alone in the human dermal matrix. In order to gain preliminary insight into the genes regulating HA synthesis in this system, a differential gene array analysis was conducted in which the construct prepared in the presence of 200 μg/mL HC and 0.2 nM T3 was compared to the normal construct (0.4 μg/mL HC and 20 pM T3). Using a GLYCOv4 gene chip containing approximately 1260 human genes, we observed differential expression of 131 genes. These data suggest that when these two hormones are used in concert a different mechanism of inhibition prevails and a combination of degradation and inhibition of HA synthesis may be responsible for HA regulation in the human dermal matrix. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Regulation of lipid synthesis in hepatocytes from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Triscari, J.; Greenwood, M.R.; Sullivan, A.C.

    1981-01-01

    Fatty acid synthesis and CO 2 production were evaluated in hepatocytes from lean and obese Zucker rats in the presence of 3 H 2 O, and several carbon precursors. The incorporation of 3 H 2 O into fatty acids was greater in obese compared to lean rats in both the isolated hepatocyte and in vivo. The rates of incorporation of 3 H 2 O into fatty acids and cholesterol in hepatocytes of both lean and obese rats were linear for 2 hr, in the absence or presence of 16.7 mM glucose. Rates of fatty acid synthesis were higher in the presence of 16.7 mM glucose compared to the absence of glucose in both lean and obese while rates of cholesterol synthesis were similar. The incorporation of 3H2O into fatty acids, but not into cholesterol, was correlated with increasing glucose concentration and was 2 to three-fold higher in hepatocytes of obese compared to lean rats in the presence of several carbon precursors. Differences in CO 2 production between lean and obese rats suggested increased pentose phosphate shunt activity, decreased pyruvate dehydrogenase activity, and lower tricarboxylic acid cycle activity in obese rats. Fatty acid synthesis and CO 2 production from 3 H 2 O and [U- 14 C]glucose in hepatocytes of lean and obese rats was similarly elevated by insulin and depressed by glucagon at several concentrations, suggesting that hepatocytes of obese animals respond to these hormones. These data indicate that rates of hepatic fatty acid synthesis although higher in obese rats respond to modulation in a fashion which is similar to the response in lean rats. The present studies suggest that the oxidation of several carbon precursors in the tricarboxylic acid cycle is diminished in obese compared to lean rats, but pentose phosphate shunt activity is greater in the obese Zucker rats

  12. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    International Nuclear Information System (INIS)

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A.

    1989-01-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of [35S]methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression

  13. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  14. Absorption of wheat starch in patients resected for left-sided colonic cancer

    DEFF Research Database (Denmark)

    Nordgaard, I; Rumessen, J J; Nielsen, S A

    1992-01-01

    Bacterial fermentation of carbohydrate in the colon, producing short-chain fatty acids (SCFA)--and especially butyrate--has been shown possibly to impede cell proliferation and regulate cell differentiation of colonocytes. In patients with diverticular disease or benign polyps in the colon...... a hyperabsorption of potato starch in the small intestine has been found. We have investigated the absorption of wheat starch in 15 patients radically resected for cancer in the descending or sigmoid colon, and the results were compared with those of 15 healthy controls. The starch malabsorption was quantified...... also similar in patients and controls. The results do not support the theory that hyperabsorption of starch is characteristic of patients with malignant disease in the large intestine....

  15. Regulation of ribonucleic acid synthesis by polyamines. Reversal by spermine of inhibition by methylglyoxal bis(guanylhydrazone) of ribonucleic acid synthesis and histone acetylation in rabbit heart.

    Science.gov (United States)

    Caldarera, C M; Casti, A; Guarnier, C; Moruzzi, G

    1975-10-01

    The relationship between polyamines and RNA synthesis was studied by considering the action of spermine on histone acetylation in perfused heart. In addition, the effect of methylglyoxal bis(guanylhydrazone), inhibitor of putrescine-activated S-adenosylmethionine decarboxylase activity, on RNA and polyamine specific radioactivity and on acetylation of histone fractions was also investigated in perfused heart. Different concentrations of spermine and/or methylglyoxas bis(guanylhydrazone) were injected into the heart, 15 min after beginning the perfusion. The results demonstrate that spermine stimulates the specific radioactivity of RNA of subcellular fractions. Acetylation of the arginine-rich histone fractions, involved in the regulation of RNA transcription, is enhanced by spermine. The perfusion with methylglyoxal bis(guanylhydrazone) causes a decrease in the specific radioactivity of polyamines and RNA, and in acetylation of histone fractions. However, spermine is able to reverse the methylglyoxal bis(guanylhydrazone) inhibition when injected simultaneously. From these results we may assume a possible role for spermine in the regulation of RNA transcription.

  16. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both...... in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers....... of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO...

  17. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  18. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  19. THE SYNTHESIS AND ANALYSIS INFORMATION TECHNOLOGY OF INTERACTIVE REGULATIONS FUNCTIONAL MODELS

    Directory of Open Access Journals (Sweden)

    Владимир Александрович ТИМОФЕЕВ

    2016-02-01

    Full Text Available A person has no ability to capture entirely and to estimate correctly the logical coherence and consistency of Regulations in the Text Form. It leads to mistakes in a work of an Enterprise Staff and to the impossibility of mastering of the Regulations with considerable volume. Presented Information Technology allows the Regulations Executor to receive on-line proper information of the Optimum Actions in any possible Situation, which can arise in the course of the work. Leading Experts of any Enterprise may create the full-fledged Expert System by themselves with the help of Specialized Software. Such a System will contain the knowledge in the Functional Model of Regulations (the Optimum Business Process. Stages of realization of the represented Information Technology and the peculiarities of on-line data displaying for the Regulations Executor are illustrated by the Pharmacy Customer Service Regulations.

  20. Biomolecular Specificity Regulated Synthesis of Nanocatalysts and Heterointegration of Photosynthesis Nanodevices

    Science.gov (United States)

    2016-01-01

    Pd Nanocomposite Photocatalyst for Tandem Synthesis of Benzimidazole 2.1 Approaches: Wet -chemical synthetic routes are explored to create...nanocatalysts, and tandem catalysts systems were created through physical mixture and annealing . XRD, XPS, TEM, and STEM are used to characterized the detailed...its synergetic effect. Through annealing treatment, the metallic surface previously of segregated Au and Pd domains transforms to Au-Pd alloy. Since

  1. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  2. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  3. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  4. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required

  5. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of ... Metal salts influenced the thermal decomposition of starches [4, 5]. Thus, properly ..... reactions of starch resulting in dextrins. After the ...

  7. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment

    Directory of Open Access Journals (Sweden)

    NATASA SPASOJEVIC

    2015-03-01

    Full Text Available We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  8. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  9. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  10. Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate1[W][OPEN

    Science.gov (United States)

    Martins, Marina Camara Mattos; Hejazi, Mahdi; Fettke, Joerg; Steup, Martin; Feil, Regina; Krause, Ursula; Arrivault, Stéphanie; Vosloh, Daniel; Figueroa, Carlos María; Ivakov, Alexander; Yadav, Umesh Prasad; Piques, Maria; Metzner, Daniela; Stitt, Mark; Lunn, John Edward

    2013-01-01

    Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by β-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night. PMID:24043444

  11. Characterization of Native and Modified Starches by Potentiometric Titration

    OpenAIRE

    Soto, Diana; Urdaneta, Jose; Pernia, Kelly

    2014-01-01

    The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, follo...

  12. SINTESIS PATI SAGU IKATAN SILANG FOSFAT BERDERAJAT SUBSTITUSI FOSFAT TINGGI DALAM SUASANA ASAM [Synthesis of Cross-Linked Sago Starch Phosphate with the Highest Degree of Substitution of Phosphate Under Acidic Condition

    Directory of Open Access Journals (Sweden)

    Jorion Romengga*

    2011-12-01

    Full Text Available Cross-linked sago starch phosphate (SgP with high phosphorus contents was successfully synthesized by reacting sago with a mixture of primary and secondary sodium phosphates under acidic condition. The experimental variables investigated include pH, temperature, reaction time, and mixture rate. The physicochemical properties evaluated were moisture, swelling power, water binding capacity, transmittance (%T and percent amylose (%Am, while the pasting properties examined were pasting time, pasting temperature, viscosity at peak, final, and setback. The granule structure was observed by scanning electron microscope and X-ray diffraction. The results showed that the maximum degree of phosphate substitution was obtained at pH of 6.50, 40°C, 20 minutes of reaction time and 300 rpm of mixing rate. The physicochemical (%T and %Am and pasting (viscosity at peak, final, and setback properties of SgP were significantly different (P<0.01 from Sg. Structure of SgP was characterized by FT-IR and the results indicated a new absorption peak at 2362.87 cm-1 which was characterized as the phospho-diester (RO-PO3-R’ stretching vibration. In the fingerprint area, there were two new absorption peaks at 1242.05 and 989.79 cm-1 which were characterized as the P=O and C-O-P vibration, respectively. Sago granules were substantially altered after cross-linking.

  13. An Environmental Impact Analysis of Semi-Mechanical Extraction Process of Sago Starch: Life Cycle Assessment (LCA) Perspective

    Science.gov (United States)

    Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.

    2018-05-01

    Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.

  14. Removal of heavy elements from Contaminated Matrices using amidoxime chelating starch

    International Nuclear Information System (INIS)

    Shama, S.A.; Wally, S.A.; Aly, H.F.

    2012-01-01

    The synthesis of a amidoxime chelating starch was carried out by grafting of acrylonitrile onto starch using the mutual irradiation techniques at dose rate 2.5 kGy. Conversion of nitrile groups of the grafted copolymer into the amidoxime was carried out by treatment with hydroxylamine under alkaline solution. The amidoxime chelating starch was characterized by FT-IR spectra, TG, Particle size, Surface area, SEM, and Elemental analyses. The chelating behavior of the prepared resin was carried out by using uranium. The binding capacity of uranium ion by the amidoxime resin was carried out by the batch technique. The sorption capacity was high for uranium, 86.9 mg/g at ph 6.5. The kinetic exchange rate was fast. It was observed that the uranium uptake ratio reaches 50% at 10 min (t 1/2 ). The treatment process using amidoxime sorbent is efficient to remove uranium from the waste solution of the FMPP plant.

  15. Regulation profiles of e-cigarettes in the United States: a critical review with qualitative synthesis.

    Science.gov (United States)

    Tremblay, Marie-Claude; Pluye, Pierre; Gore, Genevieve; Granikov, Vera; Filion, Kristian B; Eisenberg, Mark J

    2015-06-03

    Electronic cigarettes (e-cigarettes) have been steadily increasing in popularity since their introduction to US markets in 2007. Debates surrounding the proper regulatory mechanisms needed to mitigate potential harms associated with their use have focused on youth access, their potential for nicotine addiction, and the renormalization of a smoking culture. The objective of this study was to describe the enacted and planned regulations addressing this novel public health concern in the US. We searched LexisNexis Academic under Federal Regulations and Registers, as well as State Administrative Codes and Registers. This same database was also used to find information about planned regulations in secondary sources. The search was restricted to US documents produced between January 1(st), 2004, and July 14(th), 2014. We found two planned regulations at the federal level, and 74 enacted and planned regulations in 44 states. We identified six state-based regulation types, including i) access, ii) usage, iii) marketing and advertisement, iv) packaging, v) taxation, and vi) licensure. These were further classified into 10 restriction subtypes: sales, sale to minors, use in indoor public places, use in limited venues, use by minors, licensure, marketing and advertising, packaging, and taxation. Most enacted restrictions aimed primarily to limit youth access, while few regulations enforced comprehensive restrictions on product use and availability. Current regulations targeting e-cigarettes in the US are varied in nature and scope. There is greater consensus surrounding youth protection (access by minors and/or use by minors, and/or use in limited venues), with little consensus on multi-level regulations, including comprehensive use bans in public spaces.

  16. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  17. Heat Shock Protein 70 Negatively Regulates TGF-β-Stimulated VEGF Synthesis via p38 MAP Kinase in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Go Sakai

    2017-11-01

    Full Text Available Background/Aims: We previously demonstrated that transforming growth factor-β (TGF-β stimulates the synthesis of vascular endothelial growth factor (VEGF through the activation of p38 mitogen-activated protein (MAP kinase in osteoblast-like MC3T3-E1 cells. Heat shock protein70 (HSP70 is a ubiquitously expressed molecular chaperone. In the present study, we investigated the involvement of HSP70 in the TGF-β-stimulated VEGF synthesis and the underlying mechanism in these cells. Methods: Culture MC3T3-E1 cells were stimulated by TGF-β. Released VEGF was measured using an ELISA assay. VEGF mRNA level was quantified by RT-PCR. Phosphorylation of each protein kinase was analyzed by Western blotting. Results: VER-155008 and YM-08, both of HSP70 inhibitors, significantly amplified the TGF-β-stimulated VEGF release. In addition, the expression level of VEGF mRNA induced by TGF-β was enhanced by VER-155008. These inhibitors markedly strengthened the TGF-β-induced phosphorylation of p38 MAP kinase. The TGF-β-induced phosphorylation of p38 MAP kinase was amplified in HSP70-knockdown cells. SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by these inhibitors of the TGF-β-induced VEGF release. Conclusion: These results strongly suggest that HSP70 acts as a negative regulator in the TGF-β-stimulated VEGF synthesis in osteoblasts, and that the inhibitory effect of HSP70 is exerted at a point upstream of p38 MAP kinase.

  18. Down-Regulation by Resveratrol of Basic Fibroblast Growth Factor-Stimulated Osteoprotegerin Synthesis through Suppression of Akt in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Gen Kuroyanagi

    2014-10-01

    Full Text Available It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2 on osteoprotegerin (OPG synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK, and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation.

  19. Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin.

    Science.gov (United States)

    Banerjee, A; Udin, S; Krishna, A

    2011-02-01

    Factors regulating leptin synthesis during adipogenesis in wild species are not well known. Studies in the female Cynopterus sphinx bat have shown that it undergoes seasonal changes in its fat deposition and serum leptin and melatonin levels. The aim of the present study was to investigate the hormonal regulation of leptin synthesis by the white adipose tissue during the period of fat deposition in female C. sphinx. This study showed a significant correlation between the seasonal changes in serum melatonin level with the circulating leptin level (r = 0.78; P sphinx. A significant correlation between circulating insulin and leptin levels (r = 0.65; P sphinx. The study showed MT(2) receptors in adipose tissue and a stimulatory effect of melatonin on leptin synthesis, which was blocked by treatment with an MT(2) receptor antagonist, suggesting that the effect of melatonin on leptin synthesis by adipose tissue is mediated through the MT(2) receptor in C. sphinx. The in vitro study showed that the synthesis of leptin is directly proportional to the amount of glucose uptake by the adipose tissue. It further showed that melatonin together with insulin synergistically enhanced the leptin synthesis by adipose tissue through phosphorylation of mitogen-activated protein kinase in C. sphinx.

  20. ATM Protein Physically and Functionally Interacts with Proliferating Cell Nuclear Antigen to Regulate DNA Synthesis*

    Science.gov (United States)

    Gamper, Armin M.; Choi, Serah; Matsumoto, Yoshihiro; Banerjee, Dibyendu; Tomkinson, Alan E.; Bakkenist, Christopher J.

    2012-01-01

    Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner. PMID:22362778

  1. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation.

    Science.gov (United States)

    Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting

    2017-03-08

    Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn.

    Science.gov (United States)

    Lv, Quan-Zhen; Yan, Lan; Jiang, Yuan-Ying

    2016-08-17

    Sterols are the basal components of the membranes of the fungal pathogen Candida albicans, and these membranes determine the susceptibility of C. albicans cells to a variety of stresses, such as ionic, osmotic and oxidative pressures, and treatment with antifungal drugs. The common antifungal azoles in clinical use are targeted to the biosynthesis of ergosterol. In the past years, the synthesis, storage and metabolism of ergosterol in Saccharomyces cerevisiae has been characterized in some detail; however, these processes has not been as well investigated in the human opportunistic pathogen C. albicans. In this review, we summarize the genes involved in ergosterol synthesis and regulation in C. albicans. As well, genes in S. cerevisiae implicated in ergosterol storage and conversions with other lipids are noted, as these provide us clues and directions for the study of the homologous genes in C. albicans. In this report we have particularly focused on the essential roles of ergosterol in the dynamic process of cell biology and its fundamental status in the biological membrane system that includes lipid rafts, lipid droplets, vacuoles and mitochondria. We believe that a thorough understanding of this classic and essential pathway will give us new ideas about drug resistance and morphological switching in C. albicans.

  3. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Directory of Open Access Journals (Sweden)

    Alexeeva I. V.

    2013-07-01

    Full Text Available Results of investigations on the development of new regulators of functional activity of nucleic acid biosynthesis enzymes based on polycyclic nitrogen-containing heterosystems are summarized. Computer design and molecular docking in the catalytic site of target enzyme (T7pol allowed to perform the directed optimization of basic structures. Several series of compounds were obtained and efficient inhibitors of herpes family (simple herpes virus type 2, Epstein-Barr virus, influenza A and hepatitis C viruses were identified, as well as compounds with potent antitumor, antibacterial and antifungal activity. It was established that the use of model test systems based on enzymes participating in nucleic acids synthesis is a promising approach to the primary screening of potential inhibitors in vitro.

  4. Enzymatically Modified Starch Ameliorates Postprandial Serum Triglycerides and Lipid Metabolome in Growing Pigs.

    Science.gov (United States)

    Metzler-Zebeli, Barbara U; Eberspächer, Eva; Grüll, Dietmar; Kowalczyk, Lidia; Molnar, Timea; Zebeli, Qendrim

    2015-01-01

    Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (Pmetabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.

  5. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1.

    Science.gov (United States)

    Kathage, Barbara; Gehlert, Sebastian; Ulbricht, Anna; Lüdecke, Laura; Tapia, Victor E; Orfanos, Zacharias; Wenzel, Daniela; Bloch, Wilhelm; Volkmer, Rudolf; Fleischmann, Bernd K; Fürst, Dieter O; Höhfeld, Jörg

    2017-01-01

    The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rice starch granule amylolysis--differentiating effects of particle size, morphology, thermal properties and crystalline polymorph.

    Science.gov (United States)

    Dhital, Sushil; Butardo, Vito M; Jobling, Stephen A; Gidley, Michael J

    2015-01-22

    The underlying mechanism of amylolysis of rice starch granules was investigated using isolated starch granules from wild-type, as well as SBEIIb mutant and down-regulated lines. Fused granule agglomerates isolated from mutant and transgenic lines were hydrolysed at similar rates by amylases, and had similar crystalline patterns and thermal properties as individual granules. Surface pores, a feature previously only reported for A-polymorphic starch granules, were also observed in B- and C-polymorphic rice starch granules. Although the microscopic patterns of hydrolysis among granules with different crystalline polymorphs were qualitatively similar, the extent and the rate of amylolysis were different, suggesting that B-type crystalline polymorphs are intrinsically more resistant to enzymatic hydrolysis than A-type in rice starch granules. It is proposed that the slightly longer branch lengths of amylopectin which leads to the formation of more stable B-type double helical structures compared to their A-type counterparts is the major parameter, with other factors such as granule size, surface pores and interior channels having secondary roles, in determining the rate of enzymatic hydrolysis of rice starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis.

    Directory of Open Access Journals (Sweden)

    Robert N Kirchdoerfer

    2016-10-01

    Full Text Available Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP, a phosphoprotein (VP35 and a polymerase (L. However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  8. ATP-binding cassette B10 regulates early steps of heme synthesis.

    Science.gov (United States)

    Bayeva, Marina; Khechaduri, Arineh; Wu, Rongxue; Burke, Michael A; Wasserstrom, J Andrew; Singh, Neha; Liesa, Marc; Shirihai, Orian S; Langer, Nathaniel B; Paw, Barry H; Ardehali, Hossein

    2013-07-19

    Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.

  9. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.; Saphire, Erica Ollmann (Scripps)

    2016-10-18

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  10. Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions.

    Science.gov (United States)

    Baran, Talat

    2017-06-15

    In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current
    applicability of these materials is limited due to their poor moisture tolerance and
    mechanical properties. Starch is therefore frequently blended with other polymers to make
    the material more

  12. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Semicontinuous saccharification of starch in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Danilyak, N.I.; Kaminskil, R.S.; Shvedov, A.D.

    1959-05-21

    The saccharification is accomplished with an enzyme preparation of Aspergillus oryzae. In the first stage, the starch is treated at 57 to 59/sup 0/ with a fermenting solution containing 1% enzyme based on the starch content. The second step is carried out in the fermenting solution containing 2.5% enzyme.

  14. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-06

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  16. Coagulopathy following major liver resection: the effect of rBPI21 and the role of decreased synthesis of regulating proteins by the liver

    NARCIS (Netherlands)

    Meijer, C.; Wiezer, M. J.; Hack, C. E.; Boelens, P. G.; Wedel, N. I.; Meijer, S.; Nijveldt, R. J.; Statius Muller, M. G.; Wiggers, T.; Zoetmulder, F. A.; Borel Rinkes, I. H.; Cuesta, M. A.; Gouma, D. J.; van de Velde, C. J.; Tilanus, H. W.; Scotté, M.; Thijs, L. G.; van Leeuwen, P. A.

    2001-01-01

    This prospective study investigated the role of reduced hepatic synthesis of regulating proteins in coagulopathy after partial hepatectomy (PH) compared with major abdominal surgery (MAS) without involvement of the liver. Furthermore, we studied the effect of rBPI21, an endotoxin-neutralizing agent,

  17. Synthesis of the panel information principles for nuclear regulators: the journalist's view

    International Nuclear Information System (INIS)

    Lippman, T.W.

    1994-01-01

    The four journalists who participated in the OECD Nuclear Energy Agency seminar were M. Thomas Lippman, United States; Ms. Anna Schytt, Sweden; M. Michel Lemeret, Belgium; and M. Francis Sorin, France. Although the nuclear industry is structured differently in each of these countries, the journalists who have written about it for many years agreed on certain basic points. In order to have the confidence of the public, nuclear regulators must function openly, provide accurate and dispassionate information, have a reservoir of available technical knowledge and be independent of government and politics. Their purpose should be to regulate, rather than to promote the nuclear energy industry. The participants agreed that it is part of the regulators' role to provide information to the public on a regular basis, to forestall misunderstanding and potential panic. But this must be done in a way that does not appear to be promoting the nuclear power industry as such. (author)

  18. Milk production and composition responds to dietary neutral detergent fiber and starch ratio in dairy cows.

    Science.gov (United States)

    Zhao, Meng; Bu, Dengpan; Wang, Jiaqi; Zhou, Xiaoqiao; Zhu, Dan; Zhang, Ting; Niu, Junli; Ma, Lu

    2016-06-01

    This study was designed to investigate whether dietary neutral detergent fiber (NDF) : starch ratio could be considered as a nutritional indicator to evaluate carbohydrate composition and manipulate milk production and composition synthesis. Eight primiparous dairy cows were assigned to four total mixed rations with NDF : starch ratios of 0.86, 1.18, 1.63 and 2.34 from T1 to T4 in a replicated 4 × 4 Latin square design. Dry matter intake and milk production were decreased from T1 to T4. Digestibility of dry matter, organic matter, NDF and crude protein were linearly decreased from T1 to T4. As NDF : starch ratio increased, milk protein content and production, and milk lactose content and production were linearly reduced. However, milk fat content was linearly increased from T1 to T4. Quadratic effect was observed on milk fat production with the highest level in T3. Averaged rumen pH was linearly increased from T1 to T4, and subacute rumen acidosis occurred in T1. Ruminal propionate and butyrate concentration were linearly decreased, and microbial crude protein and metabolizable protein decreased from T1 to T4. It is concluded that NDF : starch ratio can be considered as a potential indicator to evaluate dietary carbohydrate composition and manipulate milk production and composition synthesis. © 2015 Japanese Society of Animal Science.

  19. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  20. Comparative Phosphoproteomic Analysis of the Developing Seeds in Two Indica Rice ( Oryza sativa L.) Cultivars with Different Starch Quality.

    Science.gov (United States)

    Pang, Yuehan; Zhou, Xin; Chen, Yaling; Bao, Jinsong

    2018-03-21

    Protein phosphorylation plays important roles in regulation of various molecular events such as plant growth and seed development. However, its involvement in starch biosynthesis is less understood. Here, a comparative phosphoproteomic analysis of two indica rice cultivars during grain development was performed. A total of 2079 and 2434 phosphopeptides from 1273 and 1442 phosphoproteins were identified, covering 2441 and 2808 phosphosites in indica rice 9311 and Guangluai4 (GLA4), respectively. Comparative analysis identified 303 differentially phosphorylated peptides, and 120 and 258 specifically phosphorylated peptides in 9311 and GLA4, respectively. Phosphopeptides in starch biosynthesis related enzymes such as AGPase, SSIIa, SSIIIa, BEI, BEIIb, PUL, and Pho1were identified. GLA4 and 9311 had different amylose content, pasting viscosities, and gelatinization temperature, suggesting subtle difference in starch biosynthesis and regulation between GLA4 and 9311. Our study will give added impetus to further understanding the regulatory mechanism of starch biosynthesis at the phosphorylation level.

  1. Regulation of polyamine synthesis in plants. Final progress report, July 1, 1991--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, R.L.

    1995-07-01

    This research focused on unusual post-translational modifications occuring in a arginine decarboxylase cDNA clone in oats. A novel regulatory mechanism for polyamines was explored and an attempt was made to characterize it. A plant ornithine decarboxylase cDNA was identified in Arabidopsis. Further work remains on the mechanisms of polyamine regulation and function in plants.

  2. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chen, Yicai; Yuan, Mingjun; Mohanty, Anee

    2015-01-01

    The nucleotide signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an essential role in regulating microbial virulence and biofilm formation. C-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. One...

  3. Self-regulating insulin delivery systems I. Synthesis and characterization of glycosylated insulin

    NARCIS (Netherlands)

    Jeong, Seo Young; Kim, Sung Wan; Eenink, Martinus J.D.; Feijen, Jan

    1984-01-01

    A design for a self-regulating insulin delivery system based on the competitive binding of glucose and glycosylated insulin to the lectin Concanavalin A is proposed. A differnt approach to diabetes therapy is the attempt to effect a permanent cure of the disease by supplementing the patient's

  4. Morphological aspects of starch and cell wall material mobilization in developing lupine cotyledons and the effect of kinetin on these processes

    Directory of Open Access Journals (Sweden)

    Fortunat Młodzianowski

    2015-01-01

    Full Text Available In the cotyledons of dry lupine seeds the presence of starch was not demonstrated. Its formation during seed imbibition in darkness is accompanied by a reduction in the thickness of cell walls containing hemicelluloses. It is believed that the products of hemicellulose hydrolysis, particullarily in isolated cotyledons, arę the main source of materials for the synthesis of starch, In the process of cell wall decomposition the invaginations of plasmalemma appear to be involved. Kinetin enhance the hydrolysis of cell walls and the mobilization of starch in isolated cotyledons.

  5. Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth.

    Science.gov (United States)

    McMillen, I C; Muhlhausler, B S; Duffield, J A; Yuen, B S J

    2004-08-01

    Exposure to either an increased or decreased level of intrauterine nutrition can result in an increase in adiposity and in circulating leptin concentrations in later life. In animals such as the sheep and pig in which fat is deposited before birth, leptin is synthesised in fetal adipose tissue and is present in the fetal circulation throughout late gestation. In the sheep a moderate increase or decrease in the level of maternal nutrition does not alter fetal plasma leptin concentrations, but there is evidence that chronic fetal hyperglycaemia and hyperinsulinaemia increase fetal fat mass and leptin synthesis within fetal fat depots. Importantly, there is a positive relationship between the relative mass of the 'unilocular' component of fetal perirenal and interscapular adipose tissue and circulating fetal leptin concentrations in the sheep. Thus, as in the neonate and adult, circulating leptin concentrations may be a signal of fat mass in fetal life. There is also evidence that leptin can act to regulate the lipid storage, leptin synthetic capacity and potential thermogenic functions of fat before birth. Thus, leptin may act as a signal of energy supply and have a 'lipostatic' role before birth. Future studies are clearly required to determine whether the intrauterine and early postnatal nutrient environment programme the endocrine feedback loop between adipose tissue and the central and peripheral neuroendocrine systems that regulate energy balance, resulting in an enhanced risk of obesity in adult life.

  6. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cell

    Directory of Open Access Journals (Sweden)

    Lei eXing

    2015-09-01

    Full Text Available Radial glial cells (RGCs are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.

  7. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  8. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  9. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  10. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose

    NARCIS (Netherlands)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical

  11. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  12. Aberrant regulation of synthesis and degradation of viral proteins in coliphage lambda-infected UV-irradiated cells and in minicells

    International Nuclear Information System (INIS)

    Shaw, J.E.; Epp, C.; Pearson, M.L.; Reeve, J.N.

    1987-01-01

    The patterns of bacteriophage lambda proteins synthesized in UV-irradiated Escherichia coli cells and in anucleate minicells are significantly different; both systems exhibit aberrations of regulation in lambda gene expression. In unirradiated cells or cells irradiated with low UV doses (less than 600 J/m2), regulation of lambda protein synthesis is controlled by the regulatory proteins CI, N, CII, CIII, Cro, and Q. As the UV dose increases, activation of transcription of the cI, rexA, and int genes by CII and CIII proteins fails to occur and early protein synthesis, normally inhibited by the action of Cro, continues. After high UV doses (greater than 2000 J/m2), late lambda protein synthesis does not occur. Progression through the sequence of regulatory steps in lambda gene expression is slower in infected minicells. In minicells, there is no detectable cII- and cIII-dependent synthesis of CI, RexA, or Int proteins and inhibition of early protein synthesis by Cro activity is always incomplete. The synthesis of early b region proteins is not subject to control by CI, N, or Cro proteins, and evidence is presented suggesting that, in minicells, transcription of the early b region is initiated at a promoter(s) within the b region. Proteolytic cleavage of the regulatory proteins O and N and of the capsid proteins C, B, and Nu3 is much reduced in infected minicells. Exposure of minicells to very high UV doses before infection does not completely inhibit late lambda protein synthesis

  13. Synthesis Of 2- (1- Naphthyl) Ethanoic Acid ( Plant Growth Regulator ) From Coal Tar And Its Application

    International Nuclear Information System (INIS)

    Khin Mooh Theint; Tin Myint Htwe

    2011-12-01

    Plant growth regulators, which are commonly called as plant hormones, naturally produced non-nutrient chemical compounds involved in growth and development. Among the various kinds of plant growth regulators, 2- (1- Naphthyl ) ethanoic acid especially encourages the root development of the plant. In this work, NAA was successfuly synthesized from naphthalene which was extracted from coal tar. The purity of naphthalene, -Chloromethyl naphthalene, -Naphthyl acetonitrile, - Naphthyl acetic acid or 2 - ( 1-Naphthyl ) ethanoic acid were also confirmed by Thin Layer Chromatography, and by spectroscopy methods. The yield percent of NAA based on naphthalene was found to be 2.1%. The yield percent of naphthaleneFrom coal tar is found to be 4.09%. The effect of NAA on root development was also studied in different concentrations of soy bean (Glycine max)and cow pea (Vigna catjang walp).

  14. Plant-crafted starches for bioplastics production.

    Science.gov (United States)

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-05

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Activity and selectivity regulation of synthesis gas reaction over supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K; Nobusawa, T; Fukushima, T; Tominaga, H

    1985-01-01

    The catalytic activities of supported ruthenium for synthesis-gas conversion to hydrocarbons was found to be in the following order: TiOS > Nb2O3 > ZrO2 > SiO2 > Ta2O5 > Al2O3 > V2O5 > MoO3 > WO3 > MnO2 > ZnO. Turnover frequencies of the supported ruthenium increased with decrease in dispersion of the metal particles for every carrier material. Even the activities per unit weight of metals were higher for low-dispersion ruthenium of Al2O3, TiO2, and ZrO2. The chain-growth probability of a hydrocarbon product, which is characterized by the Schulz-Flory distribution, increased markedly with decrease in the metal dispersion irrespective of the carrier material. The catalytic activity of ruthenium particles with a dispersed ruthenium increased almost linearly with an increase in reaction pressure (up to at least 2.0 MPa). 23 references, 10 figures, 3 tables.

  16. Regulation by nitrate of protein synthesis and translation of RNA in maize roots

    International Nuclear Information System (INIS)

    McClure, P.R.; Bouthyette, P.Y.

    1986-01-01

    Roots of maize seedlings were exposed to 35 S-methionine in the presence or absence of nitrate. Using SDS-PAGE, nitrate-induced changes in labeled polypeptides were noted in the soluble (at 92, 63 and 21kD) and organellar(at 14kD) fractions, as well as in a membrane fraction of putative tonoplast origin (at 31kD). No nitrate-induced changes were noted in a plasmamembrane-enriched fraction or in a membrane fraction of mixed origin. Total RNA from nitrate-treated and control roots was translated in a rabbit reticulocyte system. Five translation products (94, 63, 41, 39 and 21kD) were identified as nitrate-inducible by comparative gel electrophoresis. Changes in protein synthesis and translation of mRNA were apparent within 2-3 h after introduction of nitrate. Within 4-6 h after removal of nitrate, the level of nitrate-inducible translation products diminished to that of control roots. In contrast, the 31kD tonoplast polypeptide was still labeled 26 h after removal of external nitrate and 35 S-methionine. The results will be discussed in relation to the nitrate induction of nitrate reductase, nitrite reductase, and the nitrate uptake system

  17. Fluoride exposure regulates the elongation phase of protein synthesis in cultured Bergmann glia cells.

    Science.gov (United States)

    Flores-Méndez, Marco; Ramírez, Diana; Alamillo, Nely; Hernández-Kelly, Luisa C; Del Razo, Luz María; Ortega, Arturo

    2014-08-17

    Fluoride is an environmental pollutant present in dental products, food, pesticides and water. The latter, is the greatest source of exposure to this contaminant. Structural and functional damages to the central nervous system are present in exposed population. An established consequence of the neuronal is the release of a substantial amount of glutamate to the extracellular space, leading to an excitotoxic insult. Glutamate exerts its actions through the activation of specific plasma membrane receptors and transporters present in neurons and in glia cells and it is the over-activation of glutamate receptors and transporters, the biochemical hallmark of neuronal and oligodendrocyte cell death. In this context, taking into consideration that fluoride leads to degeneration of cerebellar cells, we took the advantage of the well-established model of cerebellar Bergmann glia cultures to gain insight into the molecular mechanisms inherent to fluoride neurotoxicity that might be triggered in glia cells. We could establish that fluoride decreases [(35)S]-methionine incorporation into newly synthesized polypeptides, in a time-dependent manner, and that this halt in protein synthesis is the result of a decrease in the elongation phase of translation, mediated by an augmentation of eukaryotic elongation factor 2 phosphorylation. These results favor the notion of glial cells as targets of fluoride toxicity and strengthen the idea of a critical involvement of glia cells in the function and dysfunction of the brain. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Zuolun; Zhang, Shoufeng; Wei, Jinbei; Ye, Kaiqi; Liu, Yu; Marder, Todd B; Wang, Yue

    2017-08-03

    Noncovalent synthesis of one-dimensional (1D) organic nano-/micro-materials with controllable geometric shapes or morphologies and special luminescent and electronic properties is one of the greatest challenges in modern chemistry and material science. Control of noncovalent interactions is fundamental for realizing desired 1D structures and crucial for understanding the functions of these interactions. Here, a series of thiophene-fused phenazines composed of a halogen-substituted π-conjugated plate and a pair of flexible side chains is presented, which displays halogen-dependent 1D self-assemblies. Luminescent 1D twisted wires, straight rods, and zigzag wires, respectively, can be generated in sequence when the halogen atoms are varied from the lightest F to the heaviest I. It was demonstrated that halogen-dependent anisotropic noncovalent interactions and mirror-symmetrical crystallization dominated the 1D-assembly behaviors of this class of molecules. The methodology developed in this study provides a potential strategy for constructing 1D organic materials with unique optoelectronic functions.

  19. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  1. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    Science.gov (United States)

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  2. STARCH SULFURIC ACID: AN ALTERNATIVE, ECO-FRIENDLY CATALYST FOR BIGINELLI REACTION

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2013-12-01

    Full Text Available The one-pot multicomponent synthesis of 3,4-dihydropyrimidinone derivatives using starch sulfuric acid as an environmentally friendly biopolymer-based solid acid catalyst from aldehydes, β-keto esters and urea/ thiourea without solvent is described. Compared with classical Biginelli reaction conditions, this new method has the advantage of minimizing the cost operational hazards and environmental pollution, good yields, shorter reaction times and simple work-up.

  3. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  4. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gardner, Robert D; Lohman, Egan; Gerlach, Robin; Cooksey, Keith E; Peyton, Brent M

    2013-01-01

    Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO(2) (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO(2) (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage. Copyright © 2012 Wiley Periodicals, Inc.

  6. TECHNOLOGY OF THERMOPLASTIC STARCH PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. D. Lukin

    2015-01-01

    Full Text Available In recent years, the manufacturing of bio-recyclable polymer products, which production and consumption has become an efficient way to protect environment from solid wastes in different countries of the world. The issue of environmental protection becomes global and the rapid growth of synthetic plastics application in many industries is a serious concern. There is a important task to improve the quality, safety and durability of products as well as their utilization after the expiration period. One of the most acceptable ways to solve these issues is to produce biodegradable materials based on natural materials, which are not harmful for environment and human health. A very common and effective method to give biological degradability to synthetic polymers is to insert starch into polymer composition in combination with other ingredients.

  7. Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins.

    Science.gov (United States)

    Wienerroither, Sebastian; Rauch, Isabella; Rosebrock, Felix; Jamieson, Amanda M; Bradner, James; Muhar, Matthias; Zuber, Johannes; Müller, Mathias; Decker, Thomas

    2014-02-01

    Transcriptional activation of the Nos2 gene, encoding inducible nitric oxide synthase (iNOS), during infection or inflammation requires coordinate assembly of an initiation complex by the transcription factors NF-κB and type I interferon-activated ISGF3. Here we show that infection of macrophages with the intracellular bacterial pathogen Listeria monocytogenes caused binding of the BET proteins Brd2, Brd3, and, most prominently, Brd4 to the Nos2 promoter and that a profound reduction of Nos2 expression occurred in the presence of the BET inhibitor JQ1. RNA polymerase activity at the Nos2 gene was regulated through Brd-mediated C-terminal domain (CTD) phosphorylation at serine 5. Underscoring the critical importance of Brd for the regulation of immune responses, application of JQ1 reduced NO production in mice infected with L. monocytogenes, as well as innate resistance to L. monocytogenes and influenza virus. In a murine model of inflammatory disease, JQ1 treatment increased the colitogenic activity of dextran sodium sulfate (DSS). The data presented in our study suggest that BET protein inhibition in a clinical setting poses the risk of altering the innate immune response to infectious or inflammatory challenge.

  8. [14C]sucrose uptake and labeling of starch in developing grains of normal segl barley

    International Nuclear Information System (INIS)

    Felker, F.C.; Peterson, D.M.; Nelson, O.E.

    1984-01-01

    Previous work showed that the segl mutant of barley (Hordeum vulgare o Betzes) did not differ from normal Betzes in plant growth, photosynthesis, or fertility, but it produced only shrunken seeds regardless of pollen source. To determine whether defects in sucrose uptake or starch synthesis resulted in the shrunken condition, developing grains of Betzes and segl were cultured in [ 14 C]sucrose solutions after slicing transversely to expose the endosperm cavity and free space. In both young grains (before genotypes differed in dry weight) and older grains (17 days after anthesis, when segl grains were smaller than Betzes), sucrose uptake and starch synthesis were similar in both genotypes on a dry weight basis. To determine if sucrose was hydrolyzed during uptake, spikes of Betzes and segl were allowed to take up [fructose-U- 14 C]sucrose 14 days after anthesis and the radioactivity of endosperm sugars was examined during 3 hours of incubation. Whereas less total radioactivity entered the endosperm and the endosperm cavity (free space) of segl, in both genotypes over 96% of the label of endosperm sugars was in sucrose, and there was no apparent initial or progressive randomization of label among hexose moieties of sucrose as compared to the free space sampled after 1 hour of incubation. The authors conclude that segl endosperms are capable of normal sucrose uptake and starch synthesis and that hydrolysis of sucrose is not required for uptake in either genotype. Evidence suggests abnormal development of grain tissue of maternal origin during growth of segl grains

  9. Process for the production of starch and alcohol from substances containing starch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N B; McFate, H A; Eubanks, E M

    1969-01-01

    Almost complete extraction of starch from wheat, rice, maize, etc., is achieved more economically then by conventional processes. Starch-containing cereal is soaked, the magma is broken and the seed removed. The magma is then drained and separated into a liquid filtrate consisting of starch, gluten and fine fibers, and a solid residue made up of coarse fibers, husks and grit. The liquid filtrate is sieved to remove the fine fibers, and then centrifuged to obtain pure, gluten-free starch. The solid residue is treated with a mineral acid in a converter to give sugar, thus forming a material which is fermented and distilled to give alcohol.

  10. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  11. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    Energy Technology Data Exchange (ETDEWEB)

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  13. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    Science.gov (United States)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  14. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues

    Science.gov (United States)

    Felizola, Saulo J. A.; Nakamura, Yasuhiro; Ono, Yoshikiyo; Kitamura, Kanako; Kikuchi, Kumi; Onodera, Yoshiaki; Ise, Kazue; Takase, Kei; Sugawara, Akira; Hattangady, Namita; Rainey, William E.; Satoh, Fumitoshi; Sasano, Hironobu

    2014-01-01

    Purkinje cell protein 4 (PCP4) is a calmodulin (CaM) binding protein that accelerates calcium association and dissociation with CaM. It has been previously detected in aldosterone-producing adenomas (APA) but details on its expression and function in adrenocortical tissues have remained unknown. Therefore, we performed the immunohistochemical analysis of PCP4 in the following tissues: normal adrenal (NA; n=15), APA (n=15), cortisol producing adenomas (CPA; n=15) and idiopathic hyperaldosteronism cases (IHA; n=5). APA samples (n=45) were also submitted to quantitative RT-PCR (qPCR) of PCP4, CYP11B1, and CYP11B2, as well as DNA sequencing for KCNJ5 mutations. Transient transfection analysis using PCP4 siRNA was also performed in H295R adrenocortical carcinoma cells, following ELISA analysis, and CYP11B2 luciferase assays were also performed after PCP4 vector transfection in order to study the regulation of PCP4 protein expression. In our findings, PCP4 immunoreactivity was predominantly detected in APA and in the zona glomerulosa (ZG) of NA and IHA. In APA, the mRNA levels of PCP4 were significantly correlated with those of CYP11B2 (P<0.0001) and were significantly higher in cases with KCNJ5 mutation than wild-type (P=0.005). Following PCP4 vector transfection, CYP11B2 luciferase reporter activity was significantly higher than controls in the presence of angiotensin-II. Knockdown of PCP4 resulted in a significant decrease in CYP11B2 mRNA levels (P=0.012) and aldosterone production (P=0.011). Our results indicate that PCP4 is a regulator of aldosterone production in normal, hyperplastic and neoplastic human adrenocortical cells. PMID:24403568

  15. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical

  16. Starch Biosynthesis during Pollen Maturation Is Associated with Altered Patterns of Gene Expression in Maize1

    Science.gov (United States)

    Datta, Rupali; Chamusco, Karen C.; Chourey, Prem S.

    2002-01-01

    Starch biosynthesis during pollen maturation is not well understood in terms of genes/proteins and intracellular controls that regulate it in developing pollen. We have studied two specific developmental stages: “early,” characterized by the lack of starch, before or during pollen mitosis I; and “late,” an actively starch-filling post-pollen mitosis I phase in S-type cytoplasmic male-sterile (S-CMS) and two related male-fertile genotypes. The male-fertile starch-positive, but not the CMS starch-deficient, genotypes showed changes in the expression patterns of a large number of genes during this metabolic transition. In addition to a battery of housekeeping genes of carbohydrate metabolism, we observed changes in hexose transporter, plasma membrane H+-ATPase, ZmMADS1, and 14-3-3 proteins. Reduction or deficiency in 14-3-3 protein levels in all three major cellular sites (amyloplasts [starch], mitochondria, and cytosol) in male-sterile relative to male-fertile genotypes are of potential interest because of interorganellar communication in this CMS system. Further, the levels of hexose sugars were significantly reduced in male-sterile as compared with male-fertile tissues, not only at “early” and “late” stages but also at an earlier point during meiosis. Collectively, these data suggest that combined effects of both reduced sugars and their reduced flux in starch biosynthesis along with a strong possibility for altered redox passage may lead to the observed temporal changes in gene expressions, and ultimately pollen sterility. PMID:12481048

  17. Analysis of Biodegradation of Bioplastics Made of Cassava Starch

    Directory of Open Access Journals (Sweden)

    Nanang Eko Wahyuningtiyas

    2017-08-01

    Full Text Available Environmental pollution due to plastic waste taking too long to decompose has become a global problem. There have been numerous solutions proposed, one of which is the use of bioplastics. The use of cassava starch as the main ingredient in the manufacture of bioplastics shows great potential, since Indonesia has a diverse range of starch-producing plants. The aim of the present study is to analyse the effect of glycerol on microbial degradation. This experimental research investigated the use of cassava flour mixed with glycerol plasticizer at various concentrations (0, 2, 2.5, 3% in the synthesis of bioplastics. The aspects studied were biodegradability, moisture absorption (using ASTM D570, shelf life, and morphological properties (using a camera equipped with a macro lens and SEM. This study revealed that complete degradation could be achieved on the 9th day. The addition of a large concentration of glycerol would accelerate the microbial degradation process, increase moisture, and extend the shelf life of bioplastics in a dry place.

  18. Production of modified starches by gamma irradiation

    International Nuclear Information System (INIS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-01-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch

  19. Utilisation of sago starch for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman Mohd Dahlan; Kamarudin Bahari

    2000-01-01

    Sago starch is utilized in Malaysia mainly for the purpose of food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel wound dressing. The sago starch is blending with water-soluble polymer such as polyvinyl pyrrolidone, polyvinyl alcohol and polyethylene oxide and irradiated with electron beam accelerator to form hydrogel. The parameters such gel strength, elasticity, swelling, gel fraction and tackiness have to be consider for this type of application. We also study the effect of adding additive such as carboxymethyl cellulose and polypropylene glycol into the system to enhance the property of sago starch hydrogel. Works on the use of chitosan in the blend have been performed, in order to prevent microbiological growth such as bacteria and fungi on the hydrogel. (author)

  20. Characterization of Digestion Resistance Sweet Potato Starch ...

    African Journals Online (AJOL)

    Purpose: To analyze the physicochemical properties and in vitro digestibility of sweet potato starchphosphodiester prepared using sodium trimetaphosphate. Methods: The physicochemical properties of sweet potato starch phosphodiester were analyzed by using infrared spectrometry (IR), differential scanning calorimetry ...

  1. Up-Scaling Production of Carboxymethyl Starch

    International Nuclear Information System (INIS)

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  2. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Giordano, Francesca; Dupont, Nicolas; Grasso, Daniel; Vaccaro, Maria I; Codogno, Patrice; Morel, Etienne

    2017-07-14

    The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy. © 2017 The Authors.

  3. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane.

    Science.gov (United States)

    Baskin, Jeremy M; Wu, Xudong; Christiano, Romain; Oh, Michael S; Schauder, Curtis M; Gazzerro, Elisabetta; Messa, Mirko; Baldassari, Simona; Assereto, Stefania; Biancheri, Roberta; Zara, Federico; Minetti, Carlo; Raimondi, Andrea; Simons, Mikael; Walther, Tobias C; Reinisch, Karin M; De Camilli, Pietro

    2016-01-01

    Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.

  4. Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu; Chang, Hwan-You, E-mail: hychang@life.nthu.edu.tw

    2010-10-15

    UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellular spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.

  5. Radiation sterilization of potato starch and Sedonik

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Ismatov, N.B.; Saidov, R.P. et al.

    2016-01-01

    The raw material of pharmaceutical preparations potato starch and sedative means of Sedonik are sterilized at the electron's accelerator Electronics U-003. It is established that at 20.3 kGy absorbed dose and electron's energy 3 - 5 MeV the results of microbiological analysis showed sterility of potato starch and Sedonik and correspondence of their physical-optical properties to the requirements of normative documents. (authors)

  6. Resistant starch: an indigestible fraction of foods

    Directory of Open Access Journals (Sweden)

    Saura Calixto, F.

    1991-06-01

    Full Text Available Resistant starch (RS, the dietary starch that scape digestion in the small intestine, can yields up to 20% of the starch in cereal and legume products. Several fractions contribute to the total RS of foods: retrograded amylose, starch inaccessible to digestive enzymes because of mechanical barriers, chemically modified starch fragments, undigested starch due to α-amylase inhibitors and starch complexed with other food components. RS is formed in products processed following heat treatments (baking, extrusion, autoclaving, etc.. RS produces significant fecal bulking and is partially fermentable by anaerobic bacteria of the colon. On the other hand, the relation of resistant starch with the glucose and insulin response in human subjects is an important nutritional effect. RS analytical methods are reported.

    El almidón resistente (RS, fracción de almidón de la dieta que no es digerido en el intestino delgado, puede alcanzar hasta un 20% del almidón en productos derivados de cereales y legumbres. Varias fracciones contribuyen al contenido total de almidón resistente: amilosa retrogradada, almidón inaccesible físicamente a los enzimas digestivos, almidón indigestible debido a inhibición de α-amilasas y almidón complejado con otros constituyentes de los alimentos. El almidón resistente se forma en productos que han sufrido tratamientos térmicos (panificación, extrusión, autoclave, etc. El RS aumenta el volumen de heces y es fermentado parcialmente en el colon por bacterias anaeróbicas. Igualmente, está relacionado con los niveles de glucosa en sangre y la respuesta de insulina en humanos. Se describen los métodos analíticos para su determinación.

  7. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  8. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  9. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    International Nuclear Information System (INIS)

    Sugaya, Shigeru; Nakanishi, Hiroshi; Tanzawa, Hideki; Sugita, Katsuo; Kita, Kazuko; Suzuki, Nobuo

    2005-01-01

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested

  10. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  11. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Peter, E-mail: pewild@access.uzh.ch [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Oliveira, Anna Paula de [Institute of Virology, University of Zuerich (Switzerland); Sonda, Sabrina [Institute for Parasitology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Ackermann, Mathias; Tobler, Kurt [Institute of Virology, University of Zuerich (Switzerland)

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.

  12. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation...... end-point temperature was increased, whereas in the native waxy maize it was decreased. On the other hand, the onset temperature change was much larger in potato starch than in the two waxy maize starches. Steeping also yielded intermediate effects on the phosphorylated waxy maize starch....... It was concluded that the phosphate groups have similar effects as they do in the native, naturally phosphorylated potato starch, although the substitution pattern is not entirely the same in the artificially phosphorylated starch....

  13. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  14. The synthesis and application involving regulation of the insoluble drug release from mesoporous silica nanotubes

    International Nuclear Information System (INIS)

    Li, Jia; Wang, Yan; Zheng, Xin; Zhang, Ying; Sun, Changshan; Gao, Yikun; Jiang, Tongying; Wang, Siling

    2015-01-01

    Highlights: • Mesoporous silica nanotubes (SNT) were synthesized by using CNT as hard template, and the formation of the SNT shows that CTAB played a significant effect on the coating process. • The tube mesoporous silica materials which were seldom reported were applied in the drug delivery system to improve the loading amount and the drug dissolution. • The release rate could be controlled by the gelatin layer on the silica surface and the mechanism was illustrated. - Abstract: Mesoporous silica nanotubes (SNT) were synthesized using hard template carbon nanotubes (CNT) with the aid of cetyltrimethyl ammonium bromide (CTAB) in a method, which was simple and inexpensive. Scanning electron microscopy, transmission electron microscopy and specific surface area analysis were employed to characterize the morphology and structure of SNT, and the formation mechanism of SNT was also examined by Fourier transform infrared spectroscopy. There are few published reports of the mesoporous SNT with large specific surface area applied in the drug delivery systems to improve the amount of drug loading. In addition, the structure of SNT allows investigators to control the drug particle size in the pore channels and significantly increase the drug dissolution rate. The insoluble drug, cilostazol, was chosen as a model drug to be loaded into SNT and we developed a simple and efficient method for regulating the drug release by using a gelatin coating with different thicknesses around the SNT. The release rate was adjusted by the amount of gelatin surrounding the SNT, with an increased barrier leading to a reduction in the release rate. A model developed on the basis of the Weibull modulus was established to fit the release results

  15. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Science.gov (United States)

    El-Sheikh, M. A.

    2014-01-01

    The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively. PMID:24672325

  16. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. A. El-Sheikh

    2014-01-01

    Full Text Available The water soluble photoinitiator (PI 4-(trimethyl ammonium methyl benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs. A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS, silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.

  17. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  18. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...

  19. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.; Veldman, R.; Veen, W.A.G.; Aar, van der P.J.; Verstegen, M.W.A.

    2001-01-01

    Current feed evaluation systems for poultry are based on digested components (fat, protein and nitrogen-free extracts). Digestible starch is the most important energy source in broiler chicken feeds and is part of the nitrogen-free extract fraction. Digestible starch may be predicted using an in

  20. Green starch conversions : Studies on starch acetylation in densified CO2

    NARCIS (Netherlands)

    Muljana, Henky; Picchioni, Francesco; Heeres, Hero J.; Janssen, Leon P. B. M.

    2010-01-01

    The acetylation of potato starch with acetic anhydride (AAH) and sodium acetate (NaOAc) as catalyst in densified CO2 was explored in a batch reactor setup. The effects of process variables such as pressure (6-9.8 MPa), temperature (40-90 degrees C), AAH to starch ratio (2-5 mol/mol AGU), NaOAc to

  1. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  3. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  4. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Saharoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa

  6. High surface area starch products as filler-binder in direct compression tablets

    NARCIS (Netherlands)

    te Wierik, G.HP; Ramaker, J.S; Eissens, A.C; Bergsma, J; Arends-Scholte, A.W.; Lerk, C.F

    Amylodextrin and modified starch products were prepared from amylose-free starches and from (amylose containing) potato starch by enzymatic degradation, followed by precipitation and filtration. The intermediate retrograded starch products were dehydrated by drying at room temperature or washing

  7. Preparation and characterization of 1,6 anhydrous Β-D-Glucopyranose from starch

    International Nuclear Information System (INIS)

    Alvarez Lopez, M.S.

    1991-01-01

    In order to prepare 2-deoxi-2-fluoride-D-glucosa (2FDG) in an inert form there are several synthesis methods, but the more interesting one for our study is based in a reaction from the 1,6 anhydrous, Β-D-glucopyranose (1,6AGP), in an attempt to compare the labelling efficiency rate of 2FDG with F-18, which is highly used in nuclear medicine. In the present paper the attainment of starch from white potatoe, infrared analysis of this starch and fusion point are included. Also results are compared with an analytical reactive standard. The process of preparation of 1,6AGP by pyrolysis of starch under reduced pressure, its separation and purification by crystallization and infrared characterization of 1,6AGP, nuclear magnetic resonance and mass spectrometry are also included. 10 kg. of potatoes were used, and 93059 g. ±5.8 of starch with an efficiency rate of 9.32 ±0.631; fusion point was 272 o C and there was a 9.83 ± 1.48 % of humidity. After the pyrolysis, crystallization an purification processes, 1.71 ±0.54 % of 1,6AGP were obtained. Later results of compound characterization, nuclear magnetic resonance, infrared and mass spectrometry were compared with a commercial product and it was proved that it corresponds to such pure compound. (Author)

  8. Bioplastic from Chitosan and Yellow Pumpkin Starch with Castor Oil as Plasticizer

    Science.gov (United States)

    Hasan, M.; Rahmayani, R. F. I.; Munandar

    2018-03-01

    This study has been conducted on bioplastic synthesis of chitosan and yellow pumpkin starch (Cucurbita moschata) with castor oil as plasticizer. The purpose of this study is to determine the characteristics of the effect of chitosan and starch composition of pumpkins against solvent absorption, tensile strength and biodegradable. The first stage of the research is the making of bioplastic by blending yellow pumpkin starch, chitosan and castor oil. Further, it tested the absorption capacity of the solvent, tensile strength test, and biodegradable analysis. The optimum absorption capacity of the solvent is obtained on the composition of Pumpkin/Chitosan was 50/50 in H2O and C2H5OH solvent. Meanwhile the optimum absorbency in HCl and NaOH solvents is obtained by 60/40 composition. The characterization of the optimum tensile strength test was obtained on the 40/60 composition of 6.787 ± 0.274 Mpa and the fastest biodegradation test process within 5-10 days occurred in the 50/50 composition. The more chitosan content the higher the value of tensile strength test obtained, while the fastest biodegradation rate occureds in the composition of yellow pumpkin starch and chitosan balanced 50:50.

  9. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  10. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  11. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi; Chaib, Sahraoui; Gu, Qinfen; Hemar, Yacine

    2016-01-01

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  12. Degradation of corn starch under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Saadany, R M.A.; El Saadany, F M; Foda, Y H

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10/sup 5/ rad to 1 x 10/sup 6/ rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used.

  13. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  14. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi

    2016-09-02

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  15. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  16. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  17. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans. © 2013 Institute of Food Technologists®

  18. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  19. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  20. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  1. Physicochemical properties of black pepper (Piper nigrum) starch.

    Science.gov (United States)

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The homeodomain protein ladybird late regulates synthesis of milk proteins during pregnancy in the tsetse fly (Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Geoffrey M Attardo

    2014-04-01

    Full Text Available Regulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina, the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development. Disruption of milk protein synthesis deprives developing larvae of nutrients and results in extended larval development and/or in abortion. The ability to cause such a disruption could be utilized as a tsetse control strategy. Here we identify and delineate the regulatory sequence of a major milk protein gene (milk gland protein 1:mgp1 by utilizing a combination of molecular techniques in tsetse, Drosophila transgenics, transcriptomics and in silico sequence analyses. The function of this promoter is conserved between tsetse and Drosophila. In transgenic Drosophila the mgp1 promoter directs reporter gene expression in a tissue and stage specific manner orthologous to that of Glossina. Analysis of the minimal required regulatory region of mgp1, and the regulatory regions of other Glossina milk proteins identified putative homeodomain protein binding sites as the sole common feature. Annotation and expression analysis of Glossina homeodomain proteins identified ladybird late (lbl as being accessory gland/fat body specific and differentially expressed between lactating/non-lactating flies. Knockdown of lbl in tsetse resulted in a significant reduction in transcript abundance of multiple milk protein genes and in a significant loss of fecundity. The role of Lbl in adult reproductive physiology is previously unknown. These results suggest that Lbl is part of a conserved reproductive regulatory system that could have implications beyond tsetse to other vector insects such as mosquitoes. This

  3. Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress

    Directory of Open Access Journals (Sweden)

    Nikolaos E Ioannidis

    2014-02-01

    Full Text Available Polyamines (PAs are low molecular weight amines that occur in every living organism. The three main PAs [putrescine (Put, spermidine (Spd and spermine (Spm] are involved in several important biochemical processes covered in recent reviews. As rule of thumb, increase of the cellular titer of PAs in plants is related to cell growth and cell tolerance to abiotic and biotic stress. In the present contribution, we describe recent findings from plant bioenergetics that bring to light a previously unrecognized dynamic behavior of the PA pool. Traditionally, PAs are described by many authors as organic polycations, when in fact they are bases that can be found in a charged or uncharged form. Although uncharged forms represent less than 0.1% of the total pool, we propose that their physiological role could be crucial in chemiosmosis. This process describes the formation of a PA gradient across membranes within seconds and is difficult to be tested in vivo in plants due to the relatively small molecular weight of PAs and the speed of the process. We tested the hypothesis that PAs act as permeable buffers in intact leaves by using recent advances in vivo probing. We found that an increase of PAs increases the electric component (∆ψ and decreases the ∆pH component of the proton motive force (pmf. These findings reveal an important modulation of the energy production process and photoprotection of the chloroplast by PAs. We explain in detail the theory behind PA pumping and ion trapping in acidic compartments (such as the lumen in chloroplasts and how this regulatory process could improve either the photochemical efficiency of the photosynthetic apparatus and increase the synthesis of ATP or fine tune antenna regulation and make the plant more tolerant to stress.

  4. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  5. A regulator of ubiquitin-proteasome activity, 2-hexyldecanol, suppresses melanin synthesis and the appearance of facial hyperpigmented spots.

    Science.gov (United States)

    Hakozaki, T; Laughlin, T; Zhao, S; Wang, J; Deng, D; Jewell-Motz, E; Elstun, L

    2013-07-01

    2-Hexyldecanol has long been used in skin-care products, but has not previously been reported as an active ingredient for skin benefits. To evaluate 2-hexyldecanol in in vitro and ex vivo systems and, if found to be active, progress it to topical clinical testing to determine effects on pigmentation in skin. 2-Hexyldecanol was tested in melanocyte cell culture systems (B16 mouse melanoma cells and normal human melanocytes) for its effect on proteolytic activity and melanin production, in the absence and presence of the proteasome-specific inhibitor, MG132. It was further tested in a human skin explant model for its effect on melanin production. Lastly, topically applied 2-hexyldecanol was evaluated for its effect on the appearance of facial pigmentation in an 8-week, randomized, double-blind, vehicle-controlled, split-face incomplete block design study in Chinese women. In submerged cell culture, 2-hexyldecanol upregulated proteolytic activity and decreased melanin synthesis. These effects were antagonized by the proteasome-specific inhibitor MG132. MG132, tested in the absence of 2-hexyldecanol, increased melanin production. In a human skin explant model, topical 2-hexyldecanol suppressed the production of melanin vs. a vehicle control. In a human clinical study in Chinese women (n = 110 observations per test material), a 2-hexyldecanol-containing formulation significantly reduced the appearance of facial hyperpigmented spots vs. its control. These data indicate that regulation of proteasome activity is a viable target for control of melanin production, that 2-hexyldecanol upregulates proteasomal activity in melanocytes, and that topical 2-hexyldecanol reduces the appearance of hyperpigmentation. © 2013 The Authors BJD © 2013 British Association of Dermatologists.

  6. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    International Nuclear Information System (INIS)

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-01-01

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes

  7. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela N; Payne, Mark J; Guiltinan, Mark J

    2015-06-25

    The flavan-3-ols catechin and epicatechin, and their polymerized oligomers, the proanthocyanidins (PAs, also called condensed tannins), accumulate to levels of up to 15 % of the total weight of dry seeds of Theobroma cacao L. These compounds have been associated with several health benefits in humans. They also play important roles in pest and disease defense throughout the plant. In Arabidopsis, the R2R3 type MYB transcription factor TT2 regulates the major genes leading to the synthesis of PA. To explore the transcriptional regulation of the PA synthesis pathway in cacao, we isolated and characterized an R2R3 type MYB transcription factor MYBPA from cacao. We examined the spatial and temporal gene expression patterns of the Tc-MYBPA gene and found it to be developmentally expressed in a manner consistent with its involvement in PAs and anthocyanin synthesis. Functional complementation of an Arabidopsis tt2 mutant with Tc-MYBPA suggested that it can functionally substitute the Arabidopsis TT2 gene. Interestingly, in addition to PA accumulation in seeds of the Tc-MYBPA expressing plants, we also observed an obvious increase of anthocyanidin accumulation in hypocotyls. We observed that overexpression of the Tc-MYBPA gene resulted in increased expression of several key genes encoding the major structural enzymes of the PA and anthocyanidin pathway, including DFR (dihydroflavanol reductase), LDOX (leucoanthocyanidin dioxygenase) and BAN (ANR, anthocyanidin reductase). We conclude that the Tc-MYBPA gene that encodes an R2R3 type MYB transcription factor is an Arabidopsis TT2 like transcription factor, and may be involved in the regulation of both anthocyanin and PA synthesis in cacao. This research may provide molecular tools for breeding of cacao varieties with improved disease resistance and enhanced flavonoid profiles for nutritional and pharmaceutical applications.

  8. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  9. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  10. Copper-mediated homogeneous living radical polymerization of acrylamide with waxy potato starch-based macroinitiator.

    Science.gov (United States)

    Fan, Yifei; Cao, Huatang; van Mastrigt, Frank; Pei, Yutao; Picchioni, Francesco

    2018-07-15

    Cu 0 -mediated living radical polymerization (Cu 0 -mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties. Waxy potato starch-based water-soluble macroinitiator was first synthesized by esterification with 2-bromopropionyl bromide in the mixture of dimethylacetamide and lithium chloride. With the obtained macroinitiator, St-g-PAM was homogeneously synthesized by aqueous Cu 0 -mediated LRP using CuBr/hexamethylated tris(2-aminoethyl)amine (Me 6 Tren) as catalyst. The successful synthesis of the macroinitiator and St-g-PAM was proved by NMR, FT-IR, SEM, XRD and TGA analysis. The molecular weight and polydispersity of PAM chains were analyzed by gel permeation chromatography (GPC) after hydrolyzing the starch backbone. Monomer conversion was monitored by gas chromatography (GC), on the basis of which the kinetics were determined. A preliminarily rheological study was performed on aqueous solutions of the prepared materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  13. Effects of processing conditions on hydrolysis of cassava starch ...

    African Journals Online (AJOL)

    amyloglucosidase using 30% initial cassava starch concentration, which produced 152 g/l reducing sugar concentration and DE of 50.9. The total effective operating time was 60 h. Keywords:Cassava starch, hydrolysis, enzyme, dextrose equivalent.

  14. Comparative studies of starch susceptibilities to α-amylase ...

    African Journals Online (AJOL)

    ayoade

    of the four starch samples varied; amylose content of starch from maize varieties was higher than ... plants as an energy store. ... staple foods as potatoes, wheat, maize (corn), rice and ... of its various chemical and physical properties, can be.

  15. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...

  16. Evaluation of Starch Biodegradable Plastics Derived from Cassava ...

    African Journals Online (AJOL)

    BSN

    bioplastics produced from cassava does not depend on the level of amylose and amylopectin in the starch per se ... cassava starch is a pure, natural biopolymer that is suitable for ... enzymatic action of microorganisms when disposed, is thus ...

  17. composition and physicochemical properties of starch from christ

    African Journals Online (AJOL)

    Thompson O. Izuagie

    and physicochemical properties of the extracted starch were determined using standard methods. ... water, decorticated to remove skin, dried and ground .... Starches of oval shape have been reported by Hoover et al. ... Figure 2 shows values.

  18. Preparation of Edible Corn Starch Phosphate with Highly Reactive ...

    African Journals Online (AJOL)

    1Food & Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003 ... Purpose: To prepare edible corn starch phosphate under optimized experimental conditions. ... In food industry, starch phosphate.

  19. Tunable d-Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals.

    Science.gov (United States)

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2018-01-31

    In order to control d-limonene permeability, cellulose nanocrystals (CNC) were used to regulate starch-based film multiscale structures. The effect of sphere-like cellulose nanocrystal (CS) and rod-like cellulose nanocrystal (CR) on starch molecular interaction, short-range molecular conformation, crystalline structure, and micro-ordered aggregated region structure were systematically discussed. CNC aspect ratio and content were proved to be independent variables to control d-limonene permeability via film-structure regulation. New hydrogen bonding formation and increased hydroxypropyl starch (HPS) relative crystallinity could be the reason for the lower d-limonene permeability compared with tortuous path model approximation. More hydrogen bonding formation, higher HPS relative crystallinity and larger size of micro-ordered aggregated region in CS0.5 and CR2 could explain the lower d-limonene permeability than CS2 and CR0.5, respectively. This study provided new insight for the control of the flavor release from starch-based films, which favored its application in biodegradable food packaging and flavor encapsulation.

  20. Skeletal muscle protein synthesis and the abundance of the mRNA translation initiation repressor PDCD4 are inversely regulated by fasting and refeeding in rats.

    Science.gov (United States)

    Zargar, Sana; Moreira, Tracy S; Samimi-Seisan, Helena; Jeganathan, Senthure; Kakade, Dhanshri; Islam, Nushaba; Campbell, Jonathan; Adegoke, Olasunkanmi A J

    2011-06-01

    Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.

  1. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    Science.gov (United States)

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  3. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  5. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

    Science.gov (United States)

    2010-01-01

    Background Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS) of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values. PMID:21114817

  6. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

    Directory of Open Access Journals (Sweden)

    Hauer Bernhard

    2010-11-01

    Full Text Available Abstract Background Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values.

  7. Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5.

    Science.gov (United States)

    Bai, Yuxiang; Dobruchowska, Justyna M; van der Kaaij, Rachel M; Gerwig, Gerrit J; Dijkhuizen, Lubbert

    2016-10-20

    Lactic acid bacteria (LAB) produce exopolysaccharides (EPS) that are important for biofilm formation in the mammalian oral cavity and gastrointestinal tract. Sucrose is a well-known substrate for homo-EPS formation by Lactobacillus reuteri glucansucrases (GS). Starch is the main fermentable carbohydrate in the human diet, and often consumed simultaneously with sucrose. Recently we have characterized L. reuteri strains that also possess 4,6-α-glucanotransferases (4,6-α-GTases) that act on starch yielding isomalto-/malto-polysaccharides. In this study we have characterized the EPS formed by L. reuteri 35-5 cells and enzymes from sucrose plus starch. The data show that both in vivo and in vitro the L. reuteri 35-5 GS and 4,6-α-GTase enzymes, incubated with sucrose plus starch, cross-react and contribute to synthesis of the final hybrid EPS products. This may have strong effects on the EPS functional properties, influence biofilm formation, and affect the relationship between dietary intake of sucrose and starch, and dental caries formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  9. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  10. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  11. Starch deposits in Themeda triandra Forsk | WRE | African Journal of ...

    African Journals Online (AJOL)

    Themeda triandra tillers were examined microscopically at one to two-weekly intervals to determine where starch was deposited. Large numbers of starch grains were always present but the position of these deposits varied according to growth activity and flowering time of the plant. Starch deposits in the roots were usually ...

  12. Mechanical Properties of Potato- Starch Linear Low Density ...

    African Journals Online (AJOL)

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  13. Composition and Physicochemical Properties of Starch from Christ ...

    African Journals Online (AJOL)

    Starch was extracted from seeds of Christ Thorn by hot water extraction method. The composition and physicochemical properties of the extracted starch were determined using standard methods. The results obtained from the analyses revealed that the % yield of starch was 43.2%, while moisture content, ash content, ...

  14. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  15. Evaluation and Optimization of Godare Starch as a Binder and ...

    African Journals Online (AJOL)

    The binding and disintegrating properties of Godare (Colcosia esculenta) starch in paracetamol tablet formulations were evaluated in comparison with potato starch. Tablet crushing strengths (Hs), friabilities Frs), disintegration times (DTs) and porosities were determined. The results showed that Godare starch has a better ...

  16. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  17. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a

  18. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  19. Starch-based Foam Composite Materials: processing and bioproducts

    Science.gov (United States)

    Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

  20. Isolation and Characterization of Starches from eight Dioscorea ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-09-04

    Sep 4, 2006 ... temperature, with Moonshine (895.551 ± 1.051%) having the highest swelling power ... The properties of the different Dioscorea alata starches may prove useful in nutritional applications. ..... coating. Starch/Starke 44: 393-398. Ayensu ES, Coursey DG (1972). ... World production and marketing of starch. In:.

  1. Kinetics of starch digestion and performance of broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.

    2002-01-01

    Keywords: starch, digestion rate, broiler chickens, peas, tapioca

    Starch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy

  2. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  3. Evaluation of the effect of ginger modified cassava starch as ...

    African Journals Online (AJOL)

    Raw cassava starch has been used as thickener and binder in the formulation of water based paint, but with a problem of loss of viscosity in a very short period. This study evaluates the modification of cassava starch using active component of ginger extract and its use as a water- based paint thickener. 150 g of starch in ...

  4. The cholesterol, fatty acid and triglyceride synthesis pathways regulated by site 1 protease (S1P) are required for efficient replication of severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Urata, Shuzo; Uno, Yukiko; Kurosaki, Yohei; Yasuda, Jiro

    2018-06-12

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a high mortality rate. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV infection. Here, we report that the cholesterol, fatty acid, and triglyceride synthesis pathways regulated by S1P is involved in SFTSV replication, using CHO-K1 cell line (SRD-12B) that is deficient in site 1 protease (S1P) enzymatic activity, PF-429242, a small compound targeting S1P enzymatic activity, and Fenofibrate and Lovastatin, which inhibit triglyceride and cholesterol synthesis, respectively. These results enhance our understanding of the SFTSV replication mechanism and may contribute to the development of novel therapies for SFTSV infection. Copyright © 2018. Published by Elsevier Inc.

  5. Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase.

    OpenAIRE

    Franch, J; Aslesen, R; Jensen, J

    1999-01-01

    We investigated the effects of insulin and adrenaline on the rate of glycogen synthesis in skeletal muscles after electrical stimulation in vitro. The contractile activity decreased the glycogen concentration by 62%. After contractile activity, the glycogen stores were fully replenished at a constant and high rate for 3 h when 10 m-i.u./ml insulin was present. In the absence of insulin, only 65% of the initial glycogen stores was replenished. Adrenaline decreased insulin-stimulated glycogen s...

  6. Control of starch content in potato

    International Nuclear Information System (INIS)

    Korshunov, A.V.; Filippova, G.I.; Gaitova, N.A.; Kutovenko, L.N.

    2010-01-01

    The physiological and biochemical changes and connections defining the starch accumulation in potato tubers are showed. Using the radioisotope C14O2 are analysed data on carbohydrates accumulation in leaves, speed of their movement in tubers, synthetic and decomposing enzyme activities in plant organs, the content of starch in tubers depending on the combination of fertilizers. The necessity for dose phosphorus application level not lower than nitrogen is reasoned. Recommendations on the optimal combination of macrofertilizers, ensuring compromise between yield and tuber starchiness for sod-podzoil sandy-loam and loamy, grey forest, peat, chernozem soils in dry-farming and irrigation are given [ru

  7. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    OpenAIRE

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We inv...

  8. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  9. Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis.

    Science.gov (United States)

    Liu, Long; Tian, Jiao; Nan, Hao; Tian, Mengmeng; Li, Yuan; Xu, Xiaodong; Huang, Baicheng; Zhou, Enmin; Hiscox, Julian A; Chen, Hongying

    2016-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of

  10. Identification of the C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol synthesis in HepG2 cells

    International Nuclear Information System (INIS)

    Sun, Shaowei; Wen, Juan; Qiu, Fei; Yin, Yufang; Xu, Guina; Li, Tianping; Nie, Juan; Xiong, Guozuo; Zhang, Caiping; Liao, Duangfang; Chen, Jianxiong; Tuo, Qinhui

    2016-01-01

    Daxx is a highly conserved nuclear transcriptional factor, which has been implicated in many nuclear processes including transcription and cell cycle regulation. Our previous study demonstrated Daxx also plays a role in regulation of intracellular cholesterol content. Daxx contains several domains that are essential for interaction with a growing number of proteins. To delineate the underlying mechanism of hypocholesterolemic activity of Daxx, we constructed a set of plasmids which can be used to overexpress different fragments of Daxx and transfected to HepG2 cells. We found that the C- terminal region Daxx626–740 clearly reduced intracellular cholesterol levels and inhibited the expression of SREBPs and SCAP. In GST pull-down experiments and Double immunofluorescence assays, Daxx626–740 was demonstrated to bind directly to androgen receptor (AR). Our findings suggest that the interaction of Daxx626-740 and AR abolishes the AR-mediated activation of SCAP/SREBPs pathway, which suppresses the de novo cholesterol synthesis. Thus, C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol content in HepG2 cells. - Highlights: • Daxx C-terminal domain reduces cholesterol levels. • Daxx C-terminal domain binds directly to AR. • The interaction of Daxx C-terminal domain and AR suppresses cholesterol synthesis.

  11. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch

    CSIR Research Space (South Africa)

    Wokadala, OC

    2014-06-01

    Full Text Available In this study, waxy and high amylose starches were modified through butyl-etherification to facilitatecompatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magneticresonance spectroscopy and wettability tests...

  12. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    Directory of Open Access Journals (Sweden)

    Carrier Patrick

    2011-01-01

    Full Text Available Abstract Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols. The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1 showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas

  13. MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice

    Directory of Open Access Journals (Sweden)

    Abu Musa Md Talimur Reza

    2018-02-01

    Full Text Available The Rag2 knockout (KO mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs and messenger RNAs (mRNAs in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.

  14. MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice.

    Science.gov (United States)

    Reza, Abu Musa Md Talimur; Choi, Yun-Jung; Kim, Jin-Hoi

    2018-02-27

    The Rag2 knockout (KO) mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic) regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate) are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory) in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.

  15. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  16. The effect of starch amylose content on the morphology andproperties of melt-processed butyl-etherified starch/poly[(butylenesuccinate)-co-adipate] blends

    CSIR Research Space (South Africa)

    Maubane, Lesego T

    2017-01-01

    Full Text Available structures. Thermogravimetric analysis revealed that the thermal stability of the blends decreased with increasing starch loading for all starch types with varying amylose content; however, the nature of the starch controlled the mechanical properties...

  17. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  18. Wheat B-starch based polymeric materials

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Kruliš, Zdeněk; Šárka, E.

    2011-01-01

    Roč. 105, č. 9 (2011), s. 731 ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /7./. 02.11.2011-04.11.2011, Prague] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable plastic * polycaprolactone * B- starch Subject RIV: JI - Composite Materials

  19. Starch: chemistry, microstructure, processing and enzymatic degradation

    Science.gov (United States)

    Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...

  20. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)