WorldWideScience

Sample records for regulates mycobacterium smegmatis

  1. GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization

    Directory of Open Access Journals (Sweden)

    Ranjan Akash

    2007-08-01

    Full Text Available Abstract Background Mycobacterium smegmatis is fast growing non-pathogenic mycobacteria. This organism has been widely used as a model organism to study the biology of other virulent and extremely slow growing species like Mycobacterium tuberculosis. Based on the homology of the N-terminal DNA binding domain, the recently sequenced genome of M. smegmatis has been shown to possess several putative GntR regulators. A striking characteristic feature of this family of regulators is that they possess a conserved N-terminal DNA binding domain and a diverse C-terminal domain involved in the effector binding and/or oligomerization. Since the physiological role of these regulators is critically dependent upon effector binding and operator sites, we have analysed and classified these regulators into their specific subfamilies and identified their potential binding sites. Results The sequence analysis of M. smegmatis putative GntRs has revealed that FadR, HutC, MocR and the YtrA-like regulators are encoded by 45, 8, 8 and 1 genes respectively. Further out of 45 FadR-like regulators, 19 were classified into the FadR group and 26 into the VanR group. All these proteins showed similar secondary structural elements specific to their respective subfamilies except MSMEG_3959, which showed additional secondary structural elements. Using the reciprocal BLAST searches, we further identified the orthologs of these regulators in Bacillus subtilis and other mycobacteria. Since the expression of many regulators is auto-regulatory, we have identified potential operator sites for a number of these GntR regulators by analyzing the upstream sequences. Conclusion This study helps in extending the annotation of M. smegmatis GntR proteins. It identifies the GntR regulators of M. smegmatis that could serve as a model for studying orthologous regulators from virulent as well as other saprophytic mycobacteria. This study also sheds some light on the nucleotide preferences in the

  2. amiA is a negative regulator of acetamidase expression in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Turner Jane

    2001-08-01

    Full Text Available Abstract Background The acetamidase of Mycobacterium smegmatis is a highly inducible enzyme. Expression of this enzyme is increased 100-fold when the substrate acetamide is present. The acetamidase gene is found immediately downstream of three open reading frames. Two of these are proposed to be involved in regulation. Results We constructed a deletion mutant in one of the upstream ORFs (amiA. This mutant (Mad1 showed a constitutively high level of acetamidase expression. We identified four promoters in the upstream region using a β-galactosidase reporter gene. One of these (P2 was inducible in the wild-type, but was constitutively active in Mad1. Conclusions These results demonstrate that amiA encodes a negative regulatory protein which interacts with P2. Since amiA has homology to DNA-binding proteins, it is likely that it exerts the regulatory effect by binding to the promoter to prevent transcription.

  3. Regulation of the ald Gene Encoding Alanine Dehydrogenase by AldR in Mycobacterium smegmatis

    Science.gov (United States)

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon

    2013-01-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding l-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of l-alanine. The purified AldR protein exists as a homodimer in the absence of l-alanine, while it adopts the quaternary structure of a homohexamer in the presence of l-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by l-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N2-ATC-N2-TC and one putative AldR binding site with the sequence GA-N2-GTT-N2-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of l-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine. PMID:23749971

  4. Methanol production by Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Weisman, L.S.; Ballou, C.E.

    1988-01-01

    Mycobacterium smegmatis cells produce [ 3 H]methanol when incubated with [methyl- 3 H]methionine. The methanol is derived from S-adenosylmethionine rather than methyltetrahydrofolate. M. smegmatis cells carboxymethylate several proteins, and some of the methanol probably results from their demethylation, but most of the methanol may come from an unidentified component with a high gel mobility. Although methanol in the medium reached 19 μM, it was not incorporated into the methylated mannose polysaccharide, a lipid carrier in this organism

  5. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response.

    Science.gov (United States)

    Fudrini Olivencia, Begonia; Müller, Andreas U; Roschitzki, Bernd; Burger, Sibylle; Weber-Ban, Eilika; Imkamp, Frank

    2017-10-25

    Two genes, pafB and pafC, are organized in an operon with the Pup-ligase gene pafA, which is part of the Pup-proteasome system (PPS) present in mycobacteria and other actinobacteria. The PPS is crucial for Mycobacterium tuberculosis resistance towards reactive nitrogen intermediates (RNI). However, pafB and pafC apparently play only a minor role in RNI resistance. To characterize their function, we generated a pafBC deletion in Mycobacterium smegmatis (Msm). Proteome analysis of the mutant strain revealed decreased cellular levels of various proteins involved in DNA damage repair, including recombinase A (RecA). In agreement with this finding, Msm ΔpafBC displayed increased sensitivity to DNA damaging agents. In mycobacteria two pathways regulate DNA repair genes: the LexA/RecA-dependent SOS response and a predominant pathway that controls gene expression via a LexA/RecA-independent promoter, termed P1. PafB and PafC feature winged helix-turn-helix DNA binding motifs and we demonstrate that together they form a stable heterodimer in vitro, implying a function as a heterodimeric transcriptional regulator. Indeed, P1-driven transcription of recA was decreased in Msm ΔpafBC under standard conditions and induction of recA expression upon DNA damage was strongly impaired. Taken together, our data indicate an important regulatory function of PafBC in the mycobacterial DNA damage response.

  6. Regulation Mechanism of the ald Gene Encoding Alanine Dehydrogenase in Mycobacterium smegmatis and Mycobacterium tuberculosis by the Lrp/AsnC Family Regulator AldR.

    Science.gov (United States)

    Jeong, Ji-A; Hyun, Jaekyung; Oh, Jeong-Il

    2015-10-01

    In the presence of alanine, AldR, which belongs to the Lrp/AsnC family of transcriptional regulators and regulates ald encoding alanine dehydrogenase in Mycobacterium smegmatis, changes its quaternary structure from a homodimer to an octamer with an open-ring conformation. Four AldR-binding sites (O2, O1, O4, and O3) with a consensus sequence of GA/T-N2-NWW/WWN-N2-A/TC were identified upstream of the M. smegmatis ald gene by means of DNase I footprinting analysis. O2, O1, and O4 are required for the induction of ald expression by alanine, while O3 is directly involved in the repression of ald expression. In addition to O3, both O1 and O4 are also necessary for full repression of ald expression in the absence of alanine, due to cooperative binding of AldR dimers to O1, O4, and O3. Binding of a molecule of the AldR octamer to the ald control region was demonstrated to require two AldR-binding sites separated by three helical turns between their centers and one additional binding site that is in phase with the two AldR-binding sites. The cooperative binding of AldR dimers to DNA requires three AldR-binding sites that are aligned with a periodicity of three helical turns. The aldR gene is negatively autoregulated independently of alanine. Comparative analysis of ald expression of M. smegmatis and Mycobacterium tuberculosis in conjunction with sequence analysis of both ald control regions led us to suggest that the expression of the ald genes in both mycobacterial species is regulated by the same mechanism. In mycobacteria, alanine dehydrogenase (Ald) is the enzyme required both to utilize alanine as a nitrogen source and to grow under hypoxic conditions by maintaining the redox state of the NADH/NAD(+) pool. Expression of the ald gene was reported to be regulated by the AldR regulator that belongs to the Lrp/AsnC (feast/famine) family, but the underlying mechanism was unknown. This study revealed the regulation mechanism of ald in Mycobacterium smegmatis and

  7. Regulation of phospholipid synthesis in Mycobacterium smegmatis by cyclic adenosine monophosphate

    International Nuclear Information System (INIS)

    Sareen, Monica; Kaur, Harpinder; Khuller, G.K.

    1993-01-01

    Forskolin, an adenylate cyclase activator and a cyclic AMP analogue, dibutyryl cyclic AMP have been used to examine the relationship between intracellular levels of cyclic AMP and lipid synthesis in Mycobacterium smegmatis. Total phospholipid content was found to be increased in forskolin grown cells as a result of increased cyclic AMP levels caused by activation of adenylate cyclase. Increased phospholipid content was supported by increased [ 14 C]acetate incorporation as well as increased activity of glycerol-3-phosphate acyltransferase. Pretreatment of cells with dibutyryl cyclic AMP had similar effects on lipid synthesis. Taking all these observations together it is suggested that lipid synthesis is being controlled by cyclic AMP in mycobacteria. (author). 14 refs., 4 tabs

  8. In vitro Inhibition of Mycobacterium smegmatis and Mycobacterium ...

    African Journals Online (AJOL)

    Some Nigerian plants used in traditional medicine to treat tuberculosis and/or some of its symptoms were screened for in vitro activity against Mycobacterium smegmatis and a clinical isolate of Mycobacterium tuberculosis. Only 3 of the 6 crude methanolic extracts of the 6 plant species exhibited inhibitory activities against ...

  9. An orphan gyrB in the Mycobacterium smegmatis genome

    Indian Academy of Sciences (India)

    DNA gyrase is an essential topoisomerase found in all bacteria. It is encoded by gyrB and gyrA genes. These genes are organized differently in different bacteria. Direct comparison of Mycobacterium tuberculosis and Mycobacterium smegmatis genomes reveals presence of an additional gyrB in M. smegmatis flanked by ...

  10. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis.

    Science.gov (United States)

    Salazar, L; Fsihi, H; de Rossi, E; Riccardi, G; Rios, C; Cole, S T; Takiff, H E

    1996-04-01

    The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.

  11. Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Jin He

    2017-04-01

    Full Text Available Kdp-ATPase is an inducible high affinity potassium uptake system that is widely distributed in bacteria, and is generally regulated by the KdpD/KdpE two-component system (TCS. In this study, conducted on Mycobacterium smegmatis, the kdpFABC (encoding Kdp-ATPase expression was found to be affected by low concentration of K+, high concentrations of Na+, and/or NH4+ of the medium. The KdpE was found to be a transcriptional regulator that bound to a specific 22-bp sequence in the promoter region of kdpFABC operon to positively regulate kdpFABC expression. The KdpE binding motif was highly conserved in the promoters of kdpFABC among the mycobacterial species. 5′-RACE data indicated a transcriptional start site (TSS of the kdpFABC operon within the coding sequence of MSMEG_5391, which comprised a 120-bp long 5′-UTR and an open reading frame of the 87-bp kdpF gene. The kdpE deletion resulted in altered growth rate under normal and low K+ conditions. Furthermore, under K+ limiting conditions, a single transcript (kdpFABCDE spanning kdpFABC and kdpDE operons was observed. This study provided the first insight into the regulation of kdpFABC operon by the KdpD/KdpE TCS in M. smegmatis.

  12. Two DD-carboxypeptidases from Mycobacterium smegmatis affect cell surface properties through regulation of peptidoglycan cross-linking and glycopeptidolipids.

    Science.gov (United States)

    Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S

    2018-05-07

    During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression

  13. Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Riccardi Giovanna

    2009-03-01

    Full Text Available Abstract Background The ESAT-6 (early secreted antigenic target, 6 kDa family collects small mycobacterial proteins secreted by Mycobacterium tuberculosis, particularly in the early phase of growth. There are 23 ESAT-6 family members in M. tuberculosis H37Rv. In a previous work, we identified the Zur- dependent regulation of five proteins of the ESAT-6/CFP-10 family (esxG, esxH, esxQ, esxR, and esxS. esxG and esxH are part of ESAT-6 cluster 3, whose expression was already known to be induced by iron starvation. Results In this research, we performed EMSA experiments and transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis (msmeg0615-msmeg0625 and M. tuberculosis. In contrast to what we had observed in M. tuberculosis, we found that in M. smegmatis ESAT-6 cluster 3 responds only to iron and not to zinc. In both organisms we identified an internal promoter, a finding which suggests the presence of two transcriptional units and, by consequence, a differential expression of cluster 3 genes. We compared the expression of msmeg0615 and msmeg0620 in different growth and stress conditions by means of relative quantitative PCR. The expression of msmeg0615 and msmeg0620 genes was essentially similar; they appeared to be repressed in most of the tested conditions, with the exception of acid stress (pH 4.2 where msmeg0615 was about 4-fold induced, while msmeg0620 was repressed. Analysis revealed that in acid stress conditions M. tuberculosis rv0282 gene was 3-fold induced too, while rv0287 induction was almost insignificant. Conclusion In contrast with what has been reported for M. tuberculosis, our results suggest that in M. smegmatis only IdeR-dependent regulation is retained, while zinc has no effect on gene expression. The role of cluster 3 in M. tuberculosis virulence is still to be defined; however, iron- and zinc-dependent expression strongly suggests that cluster 3 is highly expressed in the infective process, and that the cluster

  14. Mycobacterium smegmatis genomic characteristics associated with its saprophyte lifestyle.

    Science.gov (United States)

    Long, Quanxin; Zhou, Qi; Ji, Lei; Wu, Jun; Wang, Wen; Xie, Jianping

    2012-10-01

    Tuberculosis (TB) remains a great threat to global public health. The high biosafety level III required to tackle its causative agent Mycobacterium tuberculosis seriously hinders the exploration of its biology and new countermeasures. M. smegmatis is a widely recognized good surrogate of M. tuberculosis, largely due to their conserved transcriptional machinery, sigma factors, and two-component systems. However, their distinct lifestyles often confound the explanation of the results. M. tuberculosis leads both parasitic and free life, while M. smegmatis is largely saprophyte. To make full advantage of this model, it is helpful to discover the genome features associated with M. smegmatis unique niches, such as its saprophytic life, high salt tolerance, and relative short generation time. We employed the gene ontology enrichment analysis to characterize the unique lifestyle of M. smegmatis. Gene ontology enrichment analysis provided 12 terms; most are relevant to the special lifestyle of M. smegmatis, especially the saprophytic niche, high salt tolerance adaptation, and short generation time. In-depth functional characterization of these genes will shed new lights on the genetic basis of M. smegmatis saprophytic life and hasten the understanding of the unique biology of M. tuberculosis. Copyright © 2012 Wiley Periodicals, Inc.

  15. Mycobacterium smegmatis Has Two Pyrazinamidase Enzymes, PncA and PzaA

    OpenAIRE

    Guo, Ming; Sun, Zhonghe; Zhang, Ying

    2000-01-01

    The Mycobacterium smegmatis pncA gene, encoding nicotinamidase/pyrazinamidase, was identified. While it was similar to counterparts from other mycobacteria, the M. smegmatis PncA had little homology to the other M. smegmatis pyrazinamidase/nicotinamidase, encoded by the pzaA gene. Transformation of Mycobacterium bovis strain BCG with M. smegmatis pncA or pzaA conferred susceptibility to pyrazinamide.

  16. Mycobacterium smegmatis has two pyrazinamidase enzymes, PncA and pzaA.

    Science.gov (United States)

    Guo, M; Sun, Z; Zhang, Y

    2000-07-01

    The Mycobacterium smegmatis pncA gene, encoding nicotinamidase/pyrazinamidase, was identified. While it was similar to counterparts from other mycobacteria, the M. smegmatis PncA had little homology to the other M. smegmatis pyrazinamidase/nicotinamidase, encoded by the pzaA gene. Transformation of Mycobacterium bovis strain BCG with M. smegmatis pncA or pzaA conferred susceptibility to pyrazinamide.

  17. Discovery and characterization of Ku acetylation in Mycobacterium smegmatis.

    Science.gov (United States)

    Zhou, Ying; Chen, Tao; Zhou, Lin; Fleming, Joy; Deng, Jiaoyu; Wang, Xude; Wang, Liwei; Wang, Yingying; Zhang, Xiaoli; Wei, Wenjing; Bi, Lijun

    2015-03-01

    Lysine acetylation is an important post-translational modification and is known to regulate many eukaryotic cellular processes. Little, however, is known about acetylated proteins in prokaryotes. Here, using immunoblotting, mass spectrometry and mutagenesis studies, we investigate the acetylation dynamics of the DNA repair protein Ku and its relationship with the deacetylase protein Sir2 and the non-homologous end joining (NHEJ) pathway in Mycobacterium smegmatis. We report that acetylation of Ku increases with growth, while NHEJ activity decreases, providing support for the hypothesis that acetylation of Ku may be involved in the DNA damage response in bacteria. Ku has multiple lysine sites. Our results indicate that K29 is an important acetylation site and that deficiency of Sir2 or mutation of K29 affects the quantity of Ku and its acetylation dynamics. Our findings expand knowledge of acetylation targets in prokaryotes and indicate a new direction for further research on bacterial DNA repair mechanisms. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Mycobacterium smegmatis infection of a prosthetic total knee arthroplasty.

    Science.gov (United States)

    Saffo, Zaid; Ognjan, Anthony

    2016-01-01

    The most common organisms causing prosthetic knee joint infections are staphylococci. However, arthroplasty infections with atypical microbial pathogens, such as Mycobacteria can occur. Due to the rarity of mycobacterial prosthetic joint infections, diagnosis, treatment, and management of these atypical infections represent a clinical challenge. A 71-year old female post-operative day 40 after a left total knee arthroplasty was hospitalized secondary to left knee pain and suspected arthroplasty infection. She had failed outpatient oral antimicrobial treatment for superficial stitch abscess; and outpatient IV/Oral antimicrobials for a clinical postoperative septic bursitis. Ultimately, resection arthroplasty with operative tissue acid fast bacterial cultures demonstrated growth of the Mycobacterium smegmatis group. Post-operatively, she completed a combination course of oral doxycycline and levofloxacin and successfully completed a replacement arthroplasty with clinical and microbial resolution of the infection. To our knowledge, literature review demonstrates three case of knee arthroplasty infection caused by the Mycobacterium smegmatis group. Correspondingly, optimal surgical procedures and antimicrobial management including antimicrobial selection, treatment duration are not well defined. Presently, the best treatment options consists of two step surgical management including prosthesis hardware removal followed by extended antimicrobial therapy, followed by consideration for re-implantation arthroplasty. Our case illustrates importance of considering atypical mycobacterial infections in post-operative arthroplasty infections not responding to traditional surgical manipulations and antimicrobials. For an arthroplasty infection involving the atypical Mycobacterium smegmatis group, two step arthroplasty revision, including arthroplasty resection, with a combination of oral doxycycline and levofloxacin can lead to successful infection resolution, allowing for a

  19. An orphan gyrB in the Mycobacterium smegmatis genome ...

    Indian Academy of Sciences (India)

    Unknown

    2002-12-13

    Dec 13, 2002 ... ... respect to gene organization and regulation, biochemical characterization, ... marin class of drugs, resides in GyrB, providing essential energetics for the ... Materials and methods ... analysis of the M. smegmatis genome revealed presence of a gene .... outs of either one of the gyrB alleles to evaluate their.

  20. Nitazoxanide Analogs Require Nitroreduction for Antimicrobial Activity in Mycobacterium smegmatis.

    Science.gov (United States)

    Buchieri, Maria V; Cimino, Mena; Rebollo-Ramirez, Sonia; Beauvineau, Claire; Cascioferro, Alessandro; Favre-Rochex, Sandrine; Helynck, Olivier; Naud-Martin, Delphine; Larrouy-Maumus, Gerald; Munier-Lehmann, Hélène; Gicquel, Brigitte

    2017-09-14

    In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.

  1. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome

    Directory of Open Access Journals (Sweden)

    Jendrik Hentschel

    2017-07-01

    Full Text Available The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics.

  2. Adhesion of Mycobacterium smegmatis to Charged Surfaces and Diagnostics Implications

    Science.gov (United States)

    Gorse, Diane; Dhinojwala, Ali; Moore, Francisco

    Pulmonary tuberculosis (PTB) causes more than 1 million deaths annually. Smear microscopy is a primary rapid detection tool in areas where 95 % of PTB cases occur. This technique, in which the sputum of a symptomatic patient is stained and examined using a light microscope for Mycobacterium tuberculosis (MTB) shows sensitivity between 20 and 60 %. Insufficient bacterial isolation during sample preparation may be a reason for low sensitivity. We are optimizing a system to capture bacteria on the basis of electrostatic interactions to more thoroughly isolate bacteria from suspension and facilitate more accurate detection. Silica supports coated with positively-charged polyelectrolyte, poly(diallyldimethylammonium chloride), captured approximately 4.1 times more Mycobacterium smegmatis, a model organism for MTB, than was captured on negatively-charged silica substrates. Future experimentation will employ branched polymer systems and seek to justify the use of colloidal stability theories to describe initial capture. Supported by University of Akron, Department of Polymer Science, Department of Biology; LORD Corporation.

  3. Mycobacterium smegmatis Ku binds DNA without free ends.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-12-01

    Ku is central to the non-homologous end-joining pathway of double-strand-break repair in all three major domains of life, with eukaryotic homologues being associated with more diversified roles compared with prokaryotic and archaeal homologues. Ku has a conserved central 'ring-shaped' core domain. While prokaryotic homologues lack the N- and C-terminal domains that impart functional diversity to eukaryotic Ku, analyses of Ku from certain prokaryotes such as Pseudomonas aeruginosa and Mycobacterium smegmatis have revealed the presence of distinct C-terminal extensions that modulate DNA-binding properties. We report in the present paper that the lysine-rich C-terminal extension of M. smegmatis Ku contacts the core protein domain as evidenced by an increase in DNA-binding affinity and a decrease in thermal stability and intrinsic tryptophan fluorescence upon its deletion. Ku deleted for this C-terminus requires free DNA ends for binding, but translocates to internal DNA sites. In contrast, full-length Ku can directly bind DNA without free ends, suggesting that this property is conferred by its C-terminus. Such binding to internal DNA sites may facilitate recruitment to sites of DNA damage. The results of the present study also suggest that extensions beyond the shared core domain may have independently evolved to expand Ku function.

  4. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155

    Directory of Open Access Journals (Sweden)

    De Buck Jeroen

    2010-04-01

    Full Text Available Abstract Background The usually non-pathogenic soil bacterium Mycobacterium smegmatis is commonly used as a model mycobacterial organism because it is fast growing and shares many features with pathogenic mycobacteria. Proteomic studies of M. smegmatis can shed light on mechanisms of mycobacterial growth, complex lipid metabolism, interactions with the bacterial environment and provide a tractable system for antimycobacterial drug development. The cell wall proteins are particularly interesting in this respect. The aim of this study was to construct a reference protein map for these proteins in M. smegmatis. Results A proteomic analysis approach, based on one dimensional polyacrylamide gel electrophoresis and LC-MS/MS, was used to identify and characterize the cell wall associated proteins of M. smegmatis. An enzymatic cell surface shaving method was used to determine the surface-exposed proteins. As a result, a total of 390 cell wall proteins and 63 surface-exposed proteins were identified. Further analysis of the 390 cell wall proteins provided the theoretical molecular mass and pI distributions and determined that 26 proteins are shared with the surface-exposed proteome. Detailed information about functional classification, signal peptides and number of transmembrane domains are given next to discussing the identified transcriptional regulators, transport proteins and the proteins involved in lipid metabolism and cell division. Conclusion In short, a comprehensive profile of the M. smegmatis cell wall subproteome is reported. The current research may help the identification of some valuable vaccine and drug target candidates and provide foundation for the future design of preventive, diagnostic, and therapeutic strategies against mycobacterial diseases.

  5. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome.

    Science.gov (United States)

    Hentschel, Jendrik; Burnside, Chloe; Mignot, Ingrid; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad

    2017-07-05

    The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. A moonlighting function of Mycobacterium smegmatis Ku in zinc homeostasis?

    Science.gov (United States)

    Kushwaha, Ambuj K; Deochand, Dinesh K; Grove, Anne

    2015-02-01

    Ku protein participates in DNA double-strand break repair via the nonhomologous end-joining pathway. The three-dimensional structure of eukaryotic Ku reveals a central core consisting of a β-barrel domain and pillar and bridge regions that combine to form a ring-like structure that encircles DNA. Homologs of Ku are encoded by a subset of bacterial species, and they are predicted to conserve this core domain. In addition, the bridge region of Ku from some bacteria is predicted from homology modeling and sequence analyses to contain a conventional HxxC and CxxC (where x is any residue) zinc-binding motif. These potential zinc-binding sites have either deteriorated or been entirely lost in Ku from other organisms. Using an in vitro metal binding assay, we show that Mycobacterium smegmatis Ku binds two zinc ions. Zinc binding modestly stabilizes the Ku protein (by ∼3°C) and prevents cysteine oxidation, but it has little effect on DNA binding. In vivo, zinc induces significant upregulation of the gene encoding Ku (∼sixfold) as well as a divergently oriented gene encoding a predicted zinc-dependent MarR family transcription factor. Notably, overexpression of Ku confers zinc tolerance on Escherichia coli. We speculate that zinc-binding sites in Ku proteins from M. smegmatis and other mycobacterial species have been evolutionarily retained to provide protection against zinc toxicity without compromising the function of Ku in DNA double-strand break repair. © 2014 The Protein Society.

  7. par genes in Mycobacterium bovis and Mycobacterium smegmatis are arranged in an operon transcribed from "SigGC" promoters

    Directory of Open Access Journals (Sweden)

    Casart Yveth

    2008-03-01

    Full Text Available Abstract Background The ParA/Soj and ParB/Spo0J proteins, and the cis-acting parS site, participate actively in chromosome segregation and cell cycle progression. Genes homologous to parA and parB, and two putative parS copies, have been identified in the Mycobacterium bovis BCG and Mycobacterium smegmatis chromosomes. As in Mycobacterium tuberculosis, the parA and parB genes in these two non-pathogenic mycobacteria are located near the chromosomal origin of replication. The present work focused on the determination of the transcriptional organisation of the ~6 Kb orf60K-parB region of M. bovis BCG and M. smegmatis by primer extension, transcriptional fusions to the green fluorescence protein (GFP and quantitative RT-PCR. Results The parAB genes were arranged in an operon. However, we also found promoters upstream of each one of these genes. Seven putative promoter sequences were identified in the orf60K-parB region of M. bovis BCG, whilst four were identified in the homologous region of M. smegmatis, one upstream of each open reading frame (ORF. Real-time PCR assays showed that in M. smegmatis, mRNA-parA and mRNA-parB levels decreased between the exponential and stationary phases. In M. bovis BCG, mRNA-parA levels also decreased between the exponential and stationary phases. However, parB expression was higher than parA expression and remained almost unchanged along the growth curve. Conclusion The majority of the proposed promoter regions had features characteristic of Mycobacterium promoters previously denoted as Group D. The -10 hexamer of a strong E. coli σ70-like promoter, located upstream of gidB of M. bovis BCG, overlapped with a putative parS sequence, suggesting that the transcription from this promoter might be regulated by the binding of ParB to parS.

  8. Photodynamic inactivation of the models Mycobacterium phlei and Mycobacterium smegmatis in vitro

    Science.gov (United States)

    Bruce-Micah, R.; Gamm, U.; Hüttenberger, D.; Cullum, J.; Foth, H.-J.

    2009-07-01

    Photodynamic inactivation (PDI) of bacterial strains presents an attractive potential alternative to antibiotic therapies. Success is dependent on the effective accumulation in bacterial cells of photochemical substances called photosensitizers, which are usually porphyrins or their derivatives. The kinetics of porphyrin synthesis after treatment with the precursor ALA and the accumulation of the Chlorin e6 and the following illumination were studied. The goal was to estimate effectivity of the destructive power of these PS in vitro in respect of the physiological states of Mycobacteria. So the present results examine the cell destruction by PDI using ALA-induced Porphyrins and Chlorin e6 accumulated in Mycobacterium phlei and Mycobacterium smegmatis, which serve as models for the important pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium bovis. We could show that both Mycobacterium after ALA and Chlorin e6 application were killed by illumination with light of about 662 nm. A reduction of about 97% could be reached by using a lightdose of 70 mW/cm2.

  9. Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Helene Botella

    2017-09-01

    Full Text Available Peptidoglycan (PG, a polymer cross-linked by d-amino acid-containing peptides, is an essential component of the bacterial cell wall. We found that a fluorescent d-alanine analog (FDAA incorporates chiefly at one of the two poles in Mycobacterium smegmatis but that polar dominance varies as a function of the cell cycle in Mycobacterium tuberculosis: immediately after cytokinesis, FDAAs are incorporated chiefly at one of the two poles, but just before cytokinesis, FDAAs are incorporated comparably at both. These observations suggest that mycobacterial PG-synthesizing enzymes are localized in functional compartments at the poles and septum and that the capacity for PG synthesis matures at the new pole in M. tuberculosis. Deeper knowledge of the biology of mycobacterial PG synthesis may help in discovering drugs that disable previously unappreciated steps in the process.

  10. A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis.

    Science.gov (United States)

    Zhang, Haiwei; Gao, Long; Zhang, Jiaoling; Li, Weihui; Yang, Min; Zhang, Hua; Gao, Chunhui; He, Zheng-Guo

    2014-01-01

    The multiple-antibiotic resistance regulator (MarR) plays an important role in modulating bacterial antibiotic resistance. However, the regulatory model of the marRAB operon in mycobacteria remains to be characterized. Here we report that a MarR, encoded by Ms6508, and its marRAB operon specifically contribute to rifampicin (RIF) resistance in Mycobacterium smegmatis. We show that the MarR recognizes a conserved 21-bp palindromic motif and negatively regulates the expression of two ABC transporters in the operon, encoded by Ms6509-6510. Unlike other known drug efflux pumps, overexpression of these two ABC transporters unexpectedly increased RIF sensitivity and deletion of these two genes increased mycobacterial resistance to the antibiotic. No change can be detected for the sensitivity of recombinant mycobacterial strains to three other anti-TB drugs. Furthermore, HPLC experiments suggested that Ms6509-Ms6510 could pump RIF into the mycobacterial cells. These findings indicated that the mycobacterial MarR functions as a repressor and constitutively inhibits the expression of the marRAB operon, which specifically contributes to RIF resistance in M. smegmatis. Therefore, our data suggest a new regulatory mechanism of RIF resistance and also provide the new insight into the regulatory model of a marRAB operon in mycobacteria.

  11. Gene Expression, Bacteria Viability and Survivability Following Spray Drying of Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Elizabeth Hunter Lauten

    2010-04-01

    Full Text Available We find that Mycobacterium smegmatis survives spray drying and retains cell viability in accelerated temperature stress (40 °C conditions with a success rate that increases with increasing thermal, osmotic, and nutrient-restriction stresses applied to the mycobacterium prior to spray drying. M.smegmatis that are spray dried during log growth phase, where they suffer little or no nutrient-reduction stress, survive for less than 7 days in the dry powder state at accelerated temperature stress conditions, whereas M. smegmatis that are spray dried during stationary phase, where cells do suffer nutrient reduction, survive for up to 14 days. M. smegmatis that are spray dried from stationary phase, subjected to accelerated temperature stress conditions, regrown to stationary phase, spray dried again, and resubmitted to this same process four consecutive times, display, on the fourth spray drying iteration, an approximate ten-fold increase in stability during accelerated temperature stress testing, surviving up to 105 days. Microarray tests revealed significant differences in genetic expression of M. smegmatis between log phase and stationary phase conditions, between naïve (non spray-dried and multiply cycled dried M. smegmatis (in log and stationary phase, and between M. smegmatis in the dry powder state following a single spray drying operation and after four consecutive spray drying operations. These differences, and other phenotypical differences, point to the carotenoid biosynthetic pathway as a probable pathway contributing to bacteria survival in the spray-dried state and suggests strategies for spray drying that may lead to significantly greater room-temperature stability of mycobacteria, including mycobacterium bovis bacille Calmette-Guerin (BCG, the current TB vaccine.

  12. Expression, purification and functional characterization of AmiA of acetamidase operon of Mycobacterium smegmatis.

    Science.gov (United States)

    Sundararaman, Balaji; Palaniyandi, Kannan; Venkatesan, Arunkumar; Narayanan, Sujatha

    2014-11-01

    Regulation of gene expression is one of the mechanisms of virulence in pathogenic organisms. In this context, we would like to understand the gene regulation of acetamidase enzyme of Mycobacterium smegmatis, which is the first reported inducible enzyme in mycobacteria. The acetamidase is highly inducible and the expression of this enzyme is increased 100-fold when the substrate acetamide is added. The acetamidase structural gene (amiE) is found immediately downstream of three predicted open reading frames (ORFs). Three of these genes along with a divergently expressed ORF are predicted to form an operon and involved in the regulation of acetamidase enzyme. Here we report expression, purification and functional characterization of AmiA which is one of these predicted ORFs. Electrophoretic mobility shift assays showed that AmiA binds to the region between the amiA and amiD near the predicted promoter (P2). Over-expression of AmiA significantly lowered the expression of acetamidase compared to the wild type as demonstrated by qRT-PCR and SDS-PAGE. We conclude that AmiA binds near P2 promoter and acts as a repressor in the regulation of acetamidase operon. The described work is a further step forward toward broadening the knowledge on understanding of the complex gene regulatory mechanism of Mycobacterium sp. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Distinct Responses of Mycobacterium smegmatis to Exposure to Low and High Levels of Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Xiaojing Li

    Full Text Available Hydrogen peroxide (H2O2 is a natural oxidant produced by aerobic organisms and gives rise to oxidative damage, including DNA mutations, protein inactivation and lipid damage. The genus Mycobacterium utilizes redox sensors and H2O2 scavenging enzymes for the detoxification of H2O2. To date, the precise response to oxidative stress has not been fully elucidated. Here, we compared the effects of different levels of H2O2 on transcription in M. smegmatis using RNA-sequencing. A 0.2 mM H2O2 treatment had little effect on the growth and viability of M. smegmatis whereas 7 mM H2O2 was lethal. Analysis of global transcription showed that 0.2 mM H2O2 induced relatively few changes in gene expression, whereas a large proportion of the mycobacterial genome was found to be differentially expressed after treatment with 7 mM H2O2. Genes differentially expressed following treatment with 0.2 mM H2O2 included those coding for proteins involved in glycolysis-gluconeogenesis and fatty acid metabolism pathways, and expression of most genes encoding ribosomal proteins was lower following treatment with 7 mM H2O2. Our analysis shows that M. smegmatis utilizes the sigma factor MSMEG_5214 in response to 0.2 mM H2O2, and the RpoE1 sigma factors MSMEG_0573 and MSMEG_0574 in response to 7 mM H2O2. In addition, different transcriptional regulators responded to different levels of H2O2: MSMEG_1919 was induced by 0.2 mM H2O2, while high-level induction of DevR occurred in response to 7 mM H2O2. We detected the induction of different detoxifying enzymes, including genes encoding KatG, AhpD, TrxB and Trx, at different levels of H2O2 and the detoxifying enzymes were expressed at different levels of H2O2. In conclusion, our study reveals the changes in transcription that are induced in response to different levels of H2O2 in M. smegmatis.

  14. Expression of Mycobacterium smegmatis pyrazinamidase in Mycobacterium tuberculosis confers hypersensitivity to pyrazinamide and related amides.

    Science.gov (United States)

    Boshoff, H I; Mizrahi, V

    2000-10-01

    A pyrazinamidase (PZase)-deficient pncA mutant of Mycobacterium tuberculosis, constructed by allelic exchange, was used to investigate the effects of heterologous amidase gene expression on the susceptibility of this organism to pyrazinamide (PZA) and related amides. The mutant was highly resistant to PZA (MIC, >2,000 microg/ml), in accordance with the well-established role of pncA in the PZA susceptibility of M. tuberculosis (A. Scorpio and Y. Zhang, Nat. Med. 2:662-667, 1996). Integration of the pzaA gene encoding the major PZase/nicotinamidase from Mycobacterium smegmatis (H. I. M. Boshoff and V. Mizrahi, J. Bacteriol. 180:5809-5814, 1998) or the M. tuberculosis pncA gene into the pncA mutant complemented its PZase/nicotinamidase defect. In both pzaA- and pncA-complemented mutant strains, the PZase activity was detected exclusively in the cytoplasm, suggesting an intracellular localization for PzaA and PncA. The pzaA-complemented strain was hypersensitive to PZA (MIC, /=20 microg/ml) and was also sensitive to benzamide (MIC, 20 microg/ml), unlike the wild-type and pncA-complemented mutant strains, which were highly resistant to this amide (MIC, >500 microg/ml). This finding was consistent with the observation that benzamide is hydrolyzed by PzaA but not by PncA. Overexpression of PzaA also conferred sensitivity to PZA, nicotinamide, and benzamide on M. smegmatis (MIC, 150 microg/ml in all cases) and rendered Escherichia coli hypersensitive for growth at low pH.

  15. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2015-10-01

    Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.

  16. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis.

    Science.gov (United States)

    Agrawal, Priyanka; Miryala, Sandeep; Varshney, Umesh

    2015-01-01

    Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Δarr). The M. smegmatis Δarr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Δarr. The growth profiles and mutation spectrum of Δarr and, Δarr combined with ΔudgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of ΔfpgΔarr strain differed somewhat from that of the Δfpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Δarr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.

  17. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis.

    Directory of Open Access Journals (Sweden)

    Priyanka Agrawal

    Full Text Available Rifampicin (Rif is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs. Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Δarr. The M. smegmatis Δarr strains show minimum inhibitory concentration (MIC for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Δarr. The growth profiles and mutation spectrum of Δarr and, Δarr combined with ΔudgB (udgB encodes a DNA repair enzyme that excises uracil strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of ΔfpgΔarr strain differed somewhat from that of the Δfpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G. Our studies suggest M. smegmatis Δarr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.

  18. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons

    OpenAIRE

    Gal?n, Beatriz; Uh?a, Iria; Garc?a?Fern?ndez, Esther; Mart?nez, Igor; Bah?llo, Esther; de la Fuente, Juan L.; Barredo, Jos? L.; Fern?ndez?Cabez?n, Lorena; Garc?a, Jos? L.

    2016-01-01

    Summary A number of pharmaceutical steroid synthons are currently produced through the microbial side?chain cleavage of natural sterols as an alternative to multi?step chemical synthesis. Industrially, these synthons have been usually produced through fermentative processes using environmental isolated microorganisms or their conventional mutants. Mycobacterium smegmatis mc2155 is a model organism for tuberculosis studies which uses cholesterol as the sole carbon and energy source for growth,...

  19. Molecular and functional analysis of the mce4 operon in Mycobacterium smegmatis.

    Science.gov (United States)

    García-Fernández, Julia; Papavinasasundaram, Kadamba; Galán, Beatriz; Sassetti, Christopher M; García, José L

    2017-09-01

    Mycobacterium smegmatis contains 6 homologous mce (mammalian cell entry) operons which have been proposed to encode ABC-like import systems. The mce operons encode up to 10 different proteins of unknown function that are not present in conventional ABC transporters. We have analysed the consequences of individually deleting each of the genes of the mce4 operon of M. smegmatis, which mediates the transport of cholesterol. None of the mce4 mutants were able to grow in cholesterol suggesting that all these genes are required for its uptake and that none of them can be replaced by the homologous genes of the other mce operons. This result suggests that different mce operons do not provide redundant capabilities and that M. smegmatis, in contrast with Mycobacterium tuberculosis, is not able to use alternative systems to import cholesterol in the analysed culture conditions. Either deletion of the entire mce4 operon or single point mutations that eliminate the transport function cause a phenotype similar to the one observed in a mutant lacking all 6 mce operons suggesting a pleiotropic role for this system. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. The Alanine Racemase of Mycobacterium smegmatis Is Essential for Growth in the Absence of d-Alanine▿ †

    Science.gov (United States)

    Milligan, Daniel L.; Tran, Sieu L.; Strych, Ulrich; Cook, Gregory M.; Krause, Kurt L.

    2007-01-01

    Alanine racemase, encoded by the gene alr, is an important enzyme in the synthesis of d-alanine for peptidoglycan biosynthesis. Strains of Mycobacterium smegmatis with a deletion mutation of the alr gene were found to require d-alanine for growth in both rich and minimal media. This indicates that alanine racemase is the only source of d-alanine for cell wall biosynthesis in M. smegmatis and confirms alanine racemase as a viable target gene for antimycobacterial drug development. PMID:17827284

  1. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons.

    Science.gov (United States)

    Galán, Beatriz; Uhía, Iria; García-Fernández, Esther; Martínez, Igor; Bahíllo, Esther; de la Fuente, Juan L; Barredo, José L; Fernández-Cabezón, Lorena; García, José L

    2017-01-01

    A number of pharmaceutical steroid synthons are currently produced through the microbial side-chain cleavage of natural sterols as an alternative to multi-step chemical synthesis. Industrially, these synthons have been usually produced through fermentative processes using environmental isolated microorganisms or their conventional mutants. Mycobacterium smegmatis mc 2 155 is a model organism for tuberculosis studies which uses cholesterol as the sole carbon and energy source for growth, as other mycobacterial strains. Nevertheless, this property has not been exploited for the industrial production of steroidic synthons. Taking advantage of our knowledge on the cholesterol degradation pathway of M. smegmatis mc 2 155 we have demonstrated that the MSMEG_6039 (kshB1) and MSMEG_5941 (kstD1) genes encoding a reductase component of the 3-ketosteroid 9α-hydroxylase (KshAB) and a ketosteroid Δ 1 -dehydrogenase (KstD), respectively, are indispensable enzymes for the central metabolism of cholesterol. Therefore, we have constructed a MSMEG_6039 (kshB1) gene deletion mutant of M. smegmatis MS6039 that transforms efficiently natural sterols (e.g. cholesterol and phytosterols) into 1,4-androstadiene-3,17-dione. In addition, we have demonstrated that a double deletion mutant M. smegmatis MS6039-5941 [ΔMSMEG_6039 (ΔkshB1) and ΔMSMEG_5941 (ΔkstD1)] transforms natural sterols into 4-androstene-3,17-dione with high yields. These findings suggest that the catabolism of cholesterol in M. smegmatis mc 2 155 is easy to handle and equally efficient for sterol transformation than other industrial strains, paving the way for valuating this strain as a suitable industrial cell factory to develop à la carte metabolic engineering strategies for the industrial production of pharmaceutical steroids. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Characterization of the cydAB-Encoded Cytochrome bd Oxidase from Mycobacterium smegmatis

    Science.gov (United States)

    Kana, Bavesh D.; Weinstein, Edward A.; Avarbock, David; Dawes, Stephanie S.; Rubin, Harvey; Mizrahi, Valerie

    2001-01-01

    The cydAB genes from Mycobacterium smegmatis have been cloned and characterized. The cydA and cydB genes encode the two subunits of a cytochrome bd oxidase belonging to the widely distributed family of quinol oxidases found in prokaryotes. The cydD and cydC genes located immediately downstream of cydB encode a putative ATP-binding cassette-type transporter. At room temperature, reduced minus oxidized difference spectra of membranes purified from wild-type M. smegmatis displayed spectral features that are characteristic of the γ-proteobacterial type cytochrome bd oxidase. Inactivation of cydA or cydB by insertion of a kanamycin resistance marker resulted in loss of d-heme absorbance at 631 nm. The d-heme could be restored by transformation of the M. smegmatis cyd mutants with a replicating plasmid carrying the highly homologous cydABDC gene cluster from Mycobacterium tuberculosis. Inactivation of cydA had no effect on the ability of M. smegmatis to exit from stationary phase at 37 or 42°C. The growth rate of the cydA mutant was tested under oxystatic conditions. Although no discernible growth defect was observed under moderately aerobic conditions (9.2 to 37.5 × 102 Pa of pO2 or 5 to 21% air saturation), the mutant displayed a significant growth disadvantage when cocultured with the wild type under extreme microaerophilia (0.8 to 1.7 × 102 Pa of pO2 or 0.5 to 1% air saturation). These observations were in accordance with the two- to threefold increase in cydAB gene expression observed upon reduction of the pO2 of the growth medium from 21 to 0.5% air saturation and with the concomitant increase in d-heme absorbance in spectra of membranes isolated from wild-type M. smegmatis cultured at 1% air saturation. Finally, the cydA mutant displayed a competitive growth disadvantage in the presence of the terminal oxidase inhibitor, cyanide, when cocultured with wild type at 21% air saturation in an oxystat. In conjunction with these findings, our results suggest that

  3. The crystal structure of FdxA, a 7Fe ferredoxin from Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Ricagno, Stefano; De Rosa, Matteo; Aliverti, Alessandro; Zanetti, Giuliana; Bolognesi, Martino

    2007-01-01

    Mycobacterium smegmatis ferredoxin FdxA, which has an orthologue ferredoxin in Mycobacterium tuberculosis, FdxC, contains both one [3Fe-4S] and one [4Fe-4S] cluster. M. smegmatis FdxA has been shown to be a preferred ferredoxin substrate of FprA [F. Fischer, D. Raimondi, A. Aliverti, G. Zanetti, Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase, Eur. J. Biochem. 269 (2002) 3005-3013], an adrenodoxin reductase-like flavoprotein of M. tuberculosis, suggesting that M. tuberculosis FdxC could be the physiological partner of the enzyme in providing reducing power to the cytochromes P450. We report here the crystal structure of FdxA at 1.6 A resolution (R factor 16.5%, R free 20.2%). Besides providing an insight on protein architecture for this 106-residue ferredoxin, our crystallographic investigation highlights lability of the [4Fe-4S] center, which is shown to loose a Fe atom during crystal growth. Due to their high similarity (87% sequence identity), the structure here reported can be considered a valuable model for M. tuberculosis FdxC, thus representing a step forward in the study of the complex mycobacterial redox pathways

  4. Distinct DNA repair pathways involving RecA and nonhomologous end joining in Mycobacterium smegmatis.

    OpenAIRE

    Korycka-Machala, M; Brzostek, A; Rozalska, S; Rumijowska-Galewicz, A; Dziedzic, R; Bowater, R; Dziadek, J

    2006-01-01

    Mycobacterium smegmatis was used to study the relationship between DNA repair processes involving RecA and nonhomologous end joining (NHEJ). The effect of gene deletions in recA and/or in two genes involved in NHEJ (ku and ligD) was tested on the ability of bacteria to join breaks in plasmids transformed into them and in their response to chemicals that damage DNA. The results provide in vivo evidence that only NHEJ is required for the repair of noncompatible DNA ends. By contrast, the respon...

  5. Distinct DNA repair pathways involving RecA and nonhomologous end joining in Mycobacterium smegmatis.

    Science.gov (United States)

    Korycka-Machala, Malgorzata; Brzostek, Anna; Rozalska, Sylwia; Rumijowska-Galewicz, Anna; Dziedzic, Renata; Bowater, Richard; Dziadek, Jaroslaw

    2006-05-01

    Mycobacterium smegmatis was used to study the relationship between DNA repair processes involving RecA and nonhomologous end joining (NHEJ). The effect of gene deletions in recA and/or in two genes involved in NHEJ (ku and ligD) was tested on the ability of bacteria to join breaks in plasmids transformed into them and in their response to chemicals that damage DNA. The results provide in vivo evidence that only NHEJ is required for the repair of noncompatible DNA ends. By contrast, the response of mycobacteria to mitomycin C preferentially involved a RecA-dependent pathway.

  6. Detrimental effects of hypoxia-specific expression of uracil DNA glycosylase (Ung) in Mycobacterium smegmatis.

    Science.gov (United States)

    Kurthkoti, Krishna; Varshney, Umesh

    2010-12-01

    Mycobacterium tuberculosis is known to reside latently in a significant fraction of the human population. Although the bacterium possesses an aerobic mode of metabolism, it adapts to persistence under hypoxic conditions such as those encountered in granulomas. While in mammalian systems hypoxia is a recognized DNA-damaging stress, aspects of DNA repair in mycobacteria under such conditions have not been studied. We subjected Mycobacterium smegmatis, a model organism, to the Wayne's protocol of hypoxia. Analysis of the mRNA of a key DNA repair enzyme, uracil DNA glycosylase (Ung), by real-time reverse transcriptase PCR (RT-PCR) revealed its downregulation during hypoxia. However, within an hour of recovery of the culture under normal oxygen levels, the Ung mRNA was restored. Analysis of Ung by immunoblotting and enzyme assays supported the RNA analysis results. To understand its physiological significance, we misexpressed Ung in M. smegmatis by using a hypoxia-responsive promoter of narK2 from M. tuberculosis. Although the misexpression of Ung during hypoxia decreased C-to-T mutations, it compromised bacterial survival upon recovery at normal oxygen levels. RT-PCR analysis of other base excision repair gene transcripts (UdgB and Fpg) suggested that these DNA repair functions also share with Ung the phenomenon of downregulation during hypoxia and recovery with return to normal oxygen conditions. We discuss the potential utility of this phenomenon in developing attenuated strains of mycobacteria.

  7. Biochemical characterization of the 49 kDa penicillin-binding protein of Mycobacterium smegmatis.

    Science.gov (United States)

    Mukherjee, T; Basu, D; Mahapatra, S; Goffin, C; van Beeumen, J; Basu, J

    1996-01-01

    The 49 kDa penicillin-binding protein (PBP) of Mycobacterium smegmatis catalyses the hydrolysis of the peptide or S-ester bond of carbonyl donors R1-CONH-CHR2-COX-CHR2-COO- (where X is NH or S). In the presence of a suitable amino acceptor, the reaction partitions between the transpeptidation and hydrolysis pathways, with the amino acceptor, behaving as a simple alternative nucleophile at the level of the acyl-enzyme. By virtue of its N-terminal sequence similarity, the 49 kDa PBP represents one of the class of monofunctional low-molecular-mass PBPs. An immunologically related protein of M(r) 52,000 is present in M. tuberculosis. The 49 kDa PBP is sensitive towards amoxycillin, imipenem, flomoxef and cefoxitin. PMID:8947487

  8. Crystal structure of the MSMEG_4306 gene product from Mycobacterium smegmatis.

    Science.gov (United States)

    Kumar, Adarsh; Karthikeyan, Subramanian

    2018-03-01

    The MSMEG_4306 gene from Mycobacterium smegmatis encodes a protein of unknown function with 242 amino-acid residues that contains a conserved zinc-ribbon domain at its C-terminus. Here, the crystal structure of MSMEG_4306 determined by the single-wavelength anomalous dispersion method using just one zinc ion co-purified with the protein is reported. The crystal structure of MSMEG_4306 shows a coiled-coil helix domain in the N-terminal region and a zinc-ribbon domain in the C-terminal region. A structural similarity search against the Protein Data Bank using MSMEG_4306 as a query revealed two similar structures, namely CT398 from Chlamydia trachomatis and HP0958 from Helicobacter pylori, although they share only ∼15% sequence identity with MSMEG_4306. Based on comparative analysis, it is predicted that MSMEG_4306 may be involved in secretion systems, possibly by interacting with multiple proteins or nucleic acids.

  9. Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with 3′ to 5′ translocase and helicase activities

    OpenAIRE

    Yakovleva, Lyudmila; Shuman, Stewart

    2012-01-01

    Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and...

  10. Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice.

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    Full Text Available Tuberculosis (TB remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG, has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA and human interleukin 12 (hIL-12. Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2 in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.

  11. Characterization of a Mycobacterium smegmatis uvrA mutant impaired in dormancy induced by hypoxia and low carbon concentration

    Directory of Open Access Journals (Sweden)

    Calabrese Immacolata

    2011-10-01

    Full Text Available Abstract Background The aerobic fast-growing Mycobacterium smegmatis, like its slow-growing pathogenic counterpart Mycobacterium tuberculosis, has the ability to adapt to microaerobiosis by shifting from growth to a non-proliferating or dormant state. The molecular mechanism of dormancy is not fully understood and various hypotheses have been formulated to explain it. In this work, we open new insight in the knowledge of M. smegmatis dormancy, by identifying and characterizing genes involved in this behavior. Results In a library generated by transposon mutagenesis, we searched for M. smegmatis mutants unable to survive a coincident condition of hypoxia and low carbon content, two stress factors supposedly encountered in the host and inducing dormancy in tubercle bacilli. Two mutants were identified that mapped in the uvrA gene, coding for an essential component of the Nucleotide Excision Repair system (NER. The two mutants showed identical phenotypes, although the respective transposon insertions hit different regions of the uvrA gene. The restoration of the uvrA activity in M. smegmatis by complementation with the uvrA gene of M. tuberculosis, confirmed that i uvrA inactivation was indeed responsible for the inability of M. smegmatis cells to enter or exit dormancy and, therefore, survive hypoxia and presence of low carbon and ii showed that the respective uvrA genes of M. tuberculosis and M. smegmatis are true orthologs. The rate of survival of wild type, uvrA mutant and complemented strains under conditions of oxidative stress and UV irradiation was determined qualitatively and quantitatively. Conclusions Taken together our results confirm that the mycobacterial NER system is involved in adaptation to various stress conditions and suggest that cells with a compromised DNA repair system have an impaired dormancy behavior.

  12. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway.

    Science.gov (United States)

    Kucukyildirim, Sibel; Long, Hongan; Sung, Way; Miller, Samuel F; Doak, Thomas G; Lynch, Michael

    2016-07-07

    Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10(-10) per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways. Copyright © 2016 Kucukyildirim et al.

  13. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway

    Directory of Open Access Journals (Sweden)

    Sibel Kucukyildirim

    2016-07-01

    Full Text Available Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10−10 per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP domain, and/or the existence of a uracil-DNA glycosylase B (UdgB homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways.

  14. Sutherlandia frutescens (Fabaceae extracts used for treating tuberculosis do not have high activity against Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Itumeleng H. Mabusa

    2017-12-01

    Full Text Available Sutherlandia frutescens (L R. Br. contains several essential, bioactive compounds with clinically proven pharmacological activities. Sutherlandia is prescribed for people with tuberculosis but it is still not known what compounds in this plant act against Mycobacterium tuberculosis and its mode of action. This study is aimed at determining if S. frutescens extracts contain antimycobacterial compounds. Aerial parts of S. frutescens were dried, ground and extracted with ethanol, dichloromethane: methanol 1:1 (v/v and water. The chemical profiling was done using high-performance liquid chromatography-mass spectroscopy (HPLC-MS and thin layer chromatography (TLC. TLC plates were developed in butanol:acetic acid:water (BAW to the ratio of 21:6:3; chloroform:methanol:water:formic acid (CMWF1 [60:15:2:1] and (CMWF2 [21:9:1:0.3]. Qualitative antioxidant activity was done, using 2.2-diphenylpacryl-1-hydrazyl (DPPH. Antimycobacterial activity of the plant extracts was evaluated, using micro-dilution and bioautographic methods against Mycobacterium smegmatis. Low antimycobacterial activity against M. smegmatis was observed on the bioautograms. The ethanol extracts contained more compounds compared to water extracts on HPLC-MS chromatographic profiles. The average Minimum Inhibitory Concentration (MIC values for all the extracts were 0.61 mg/mL units and the DCM:MeOH (1:1 extract had the lowest MIC value of 0.28 mg/mL. The results showed that the plant could be further explored for possible antimycobacterial agents. Low activity was observed, possibly due to low replication of bacilli and non-replicating organisms. The study provides preliminary scientific validation of the traditional medicinal use of this plant. Further studies are required to identify the bioactive compounds in the DCM:MeOH 1:1 extract which showed significant antimycobacterial activities.   Research correlation: This article is the original version, of which an Afrikaans

  15. The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis.

    Science.gov (United States)

    Moolla, Nabiela; Goosens, Vivianne J; Kana, Bavesh D; Gordhan, Bhavna G

    2014-01-01

    The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-01-24

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.

  17. S-Nitrosomycothiol Reductase and Mycothiol Are Required for Survival Under Aldehyde Stress and Biofilm Formation in Mycobacterium smegmatis

    Science.gov (United States)

    Vargas, Derek; Hageman, Samantha; Gulati, Megha; Nobile, Clarissa J.; Rawat, Mamta

    2017-01-01

    We show that Mycobacterium smegmatis mutants disrupted in mscR, coding for a dual function S-nitrosomycothiol reductase and formaldehyde dehydrogenase, and mshC, coding for a mycothiol ligase and lacking mycothiol (MSH), are more susceptible to S-nitrosoglutathione (GSNO) and aldehydes than wild type. MSH is a cofactor for MscR, and both mshC and mscR are induced by GSNO and aldehydes. We also show that a mutant disrupted in egtA, coding for a γ-glutamyl cysteine synthetase and lacking in ergothioneine, is sensitive to nitrosative stress but not to aldehydes. In addition, we find that MSH and S-nitrosomycothiol reductase are required for normal biofilm formation in M. smegmatis, suggesting potential new therapeutic pathways to target to inhibit or disrupt biofilm formation. PMID:27321674

  18. The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Mycobacterium smegmatis.

    Science.gov (United States)

    Chen, Hui-Jie; Li, Na; Luo, Ye; Jiang, Yong-Liang; Zhou, Cong-Zhao; Chen, Yuxing; Li, Qiong

    2018-04-09

    The second messenger c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] plays a key role in bacterial growth, survival and pathogenesis, and thus its intracellular homeostasis should be finely maintained. Mycobacterium smegmatis encodes a GAF (mammalian c G MP-regulated phosphodiesterases, Anabaena a denylyl cyclases and Escherichia coli transcription activator F hlA) domain containing bifunctional enzyme DcpA ( d iguanylate c yclase and p hosphodiesterase A ) that catalyzes the synthesis and hydrolysis of c-di-GMP . Here, we found that M. smegmatis DcpA catalyzes the hydrolysis of c-di-GMP at a higher velocity, compared with synthetic activity, resulting in a sum reaction from the ultimate substrate GTP to the final product pGpG [5'-phosphoguanylyl-(3'-5')-guanosine]. Fusion with the N-terminal GAF domain enables the GGDEF (Gly-Gly-Asp-Glu-Phe) domain of DcpA to dimerize and accordingly gain synthetic activity. Screening of putative metabolites revealed that GDP is the ligand of the GAF domain. Binding of GDP to the GAF domain down-regulates synthetic activity, but up-regulates hydrolytic activity, which, in consequence, might enable a timely response to the transient accumulation of c-di-GMP at the stationary phase or under stresses. Combined with the crystal structure of the EAL (Glu-Ala-Leu) domain and the small-angle X-ray scattering data, we propose a putative regulatory model of the GAF domain finely tuned by the intracellular GTP/GDP ratio. These findings help us to better understand the concerted control of the synthesis and hydrolysis of c-di-GMP in M. smegmatis in various microenvironments. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics

    Science.gov (United States)

    Rawat, Mamta; Newton, Gerald L.; Ko, Mary; Martinez, Gladys J.; Fahey, Robert C.; Av-Gay, Yossef

    2002-01-01

    Mycothiol (MSH; 1d-myo-inosityl 2-[N-acetyl-l-cysteinyl]amido-2-deoxy-α-d-glucopyranoside) is the major low-molecular-weight thiol produced by mycobacteria. Mutants of Mycobacterium smegmatis mc2155 deficient in MSH production were produced by chemical mutagenesis as well as by transposon mutagenesis. One chemical mutant (mutant I64) and two transposon mutants (mutants Tn1 and Tn2) stably deficient in MSH production were isolated by screening for reduced levels of MSH content. The MSH contents of transposon mutants Tn1 and Tn2 were found to be less than 0.1% that of the parent strain, and the MSH content of I64 was found to be 1 to 5% that of the parent strain. All three strains accumulated 1d-myo-inosityl 2-deoxy-α-d-glucopyranoside to levels 20- to 25-fold the level found in the parent strain. The cysteine:1d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase (MshC) activities of the three mutant strains were ≤2% that of the parent strain. Phenotypic analysis revealed that these MSH-deficient mutants possess increased susceptibilities to free radicals and alkylating agents and to a wide range of antibiotics including erythromycin, azithromycin, vancomycin, penicillin G, rifamycin, and rifampin. Conversely, the mutants possess at least 200-fold higher levels of resistance to isoniazid than the wild type. We mapped the mutation in the chemical mutant by sequencing the mshC gene and showed that a single amino acid substitution (L205P) is responsible for reduced MSH production and its associated phenotype. Our results demonstrate that there is a direct correlation between MSH depletion and enhanced sensitivity to toxins and antibiotics. PMID:12384335

  20. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: implications of the DNA repair deficiencies in attenuation of mycobacteria.

    Science.gov (United States)

    Rex, Kervin; Kurthkoti, Krishna; Varshney, Umesh

    2013-10-01

    Mycobacteria are an important group of pathogenic bacteria. We generated a series of DNA repair deficient strains of Mycobacterium smegmatis, a model organism, to understand the importance of various DNA repair proteins (UvrB, Ung, UdgB, MutY and Fpg) in survival of the pathogenic strains. Here, we compared tolerance of the M. smegmatis strains to genotoxic stress (ROS and RNI) under aerobic, hypoxic and recovery conditions of growth by monitoring their survival. We show an increased susceptibility of mycobacteria to genotoxic stress under hypoxia. UvrB deficiency led to high susceptibility of M. smegmatis to the DNA damaging agents. Ung was second in importance in strains with single deficiencies. Interestingly, we observed that while deficiency of UdgB had only a minor impact on the strain's susceptibility, its combination with Ung deficiency resulted in severe consequences on the strain's survival under genotoxic stress suggesting a strong interdependence of different DNA repair pathways in safeguarding genomic integrity. Our observations reinforce the possibility of targeting DNA repair processes in mycobacteria for therapeutic intervention during active growth and latency phase of the pathogen. High susceptibility of the UvrB, or the Ung/UdgB deficient strains to genotoxic stress may be exploited in generation of attenuated strains of mycobacteria. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. [Effects of isocitrate lyase from Mycobacterium tuberculosis on the survival of Mycobacterium smegmatis in macrophage and mechanism thereof].

    Science.gov (United States)

    Li, Jun-Ming; Wan, La-Gen; Zhu, Dao-Yin; Li, Na; He, Yong-Lin; Yang, Chun

    2008-02-26

    To investigate the effects of isocitrate lyase (ICL) from Mycobacterium tuberculosis (MTB-icl) on the survival of Mycobacterium smegmatis (MS) in macrophage and illuminate the possible mechanisms. MTB-icl gene was amplified by PCR and cloned into Ecoli-Mycobacterium shuttle plasmid pUV15 to obtain recombinant shuttle plasmid pUV15-icl expressing ICL-GFP. The recombinant shuttle plasmid pUV15-icl and blank plasmid pUV15 were induced into MS of the line 1-2c so as to obtain rMS-pUV15-icl and rMS-pUV15. Shuttle plasmid rMS-pUV15-IG expressing ICL-green fluorescent protein (GFP) was constructed. rMS-pUV15-IG and MS 1-2c were used to infect the murine macrophages of the line RAW264.7, fluorescence microscopy was used to observe the expression of ICL-GFP. The expression of ICL in the MS swallowed by the macrophages was verified by RT-PCR and Western blotting. Another macrophages RAW264.7 were cultured and infected with rMS-pUV15-icl and rMS-pUV15 respectively. 0, 24, and 48 hours later macrophages were collected and the number of MS colonies was calculated. The interferon (IFN)-gamma and nitrogen oxide (NO) concentrations in the culture supernatants of macrophages infected by rMS-pUV15-icl and rMS-pUV15 were measured by ELISA and Griess assay respectively. The apoptotic rate of the macrophages was assayed by in situ TUNEL technique. Western blotting showed that the MTB ICL protein expression of the rMS-pUV15-icl was significantly higher than that of rMS-pUVI5. Fluorescence microscopy showed green fluorescence in the RAW264.7 cells infected with rMS-pUV15-IG, but not ion the RAW264.7 cells infected with MS 1-2c. 0 h after the infection of the macrophages there was not significant difference in the MS amount in the macrophages between the rMS-pUV15-isl and rMS-pUV15 groups, and 24 h and 48 h later the MS amounts of the rMS-pUV15-icl group were (32.78 +/- 2.90) x 10(3) and (23.33 + 2.34) x 10(3) respectively, both significantly higher than those of the rMS-pUV15 group [(14

  2. Extracellular Sphingomyelinase Rv0888 of Mycobacterium tuberculosis Contributes to Pathological Lung Injury of Mycobacterium smegmatis in Mice via Inducing Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Dang, Guanghui; Cui, Yingying; Wang, Lei; Li, Tiantian; Cui, Ziyin; Song, Ningning; Chen, Liping; Pang, Hai; Liu, Siguo

    2018-01-01

    Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), which mainly causes pulmonary injury and tubercles. Although macrophages are generally considered to harbor the main cells of M. tuberculosis , new evidence suggests that neutrophils are rapidly recruited to the infected lung. M. tuberculosis itself, or its early secreted antigenic target protein 6 (ESAT-6), can induce formation of neutrophil extracellular traps (NETs). However, NETs trap mycobacteria but are unable to kill them. The role of NETs' formation in the pathogenesis of mycobacteria remains unclear. Here, we report a new M. tuberculosis extracellular factor, bifunctional enzyme Rv0888, with both nuclease and sphingomyelinase activities. Rv0888 sphingomyelinase activity can induce NETs' formation in vitro and in the lung of the mice and enhance the colonization ability of Mycobacterium smegmatis in the lungs of mice. Mice infected by M. smegmatis harboring Rv0888 sphingomyelinase induced pathological injury and inflammation of the lung, which was mainly mediated by NETs, induced by Rv0888 sphingomyelinase, associated protein (myeloperoxidase) triggered caspase-3. In summary, the study sheds new light on the pathogenesis of mycobacteria and reveals a novel target for TB treatment.

  3. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    Science.gov (United States)

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc 2 155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc 2 155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  4. Protective Effect of a Lipid-Based Preparation from Mycobacterium smegmatis in a Murine Model of Progressive Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles García

    2014-01-01

    Full Text Available A more effective vaccine against tuberculosis (TB is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb, the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms, could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL or nonadjuvanted (LMs showed significant reductions in bacterial load (P<0.01 compared to the negative control group (animals immunized with phosphate buffered saline (PBS. Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG. Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P<0.01 and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.

  5. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane.

    Science.gov (United States)

    Ayala-Torres, Carlos; Novoa-Aponte, Lorena; Soto, Carlos Y

    2015-07-01

    Mycobacterium smegmatis Pma1 is the orthologue of M. tuberculosis P-type ATPase cation transporter CtpF, which is activated under stress conditions, such as hypoxia, starvation and response to antituberculous and toxic substances. The function of Pma1 in the mycobacterial processes across the plasma membrane has not been characterised. In this work, bioinformatic analyses revealed that Pma1 likely contains potential sites for, Na(+), K(+) and Ca(2+) binding and transport. Accordingly, RT-qPCR experiments showed that M. smegmatis pma1 transcription is stimulated by sub-lethal doses of Na(+), K(+) and Ca(2+); in addition, the ATPase activity of plasma membrane vesicles in recombinant Pma1-expressing M. smegmatis cells is stimulated by treatment with these cations. In contrast, M. smegmatis cells homologously expressing Pma1 displayed tolerance to high doses of Na(+) and K(+) but not to Ca(2+) ions. Consistently, the recombinant protein Km embedded in plasma membrane demonstrated that Ca(2+) has more affinity for Pma1 than Na(+) and K(+) ions; furthermore, the estimation of Vmax/Km suggests that Na(+) and K(+) ions are more efficiently translocated than Ca(2+). Thus, these results strongly suggest that Pma1 is a promiscuous alkali/alkaline earth cation ATPase that preferentially transports Na(+) and/or K(+) across the mycobacterial plasma membrane. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis.

    Science.gov (United States)

    Bhattarai, Hitesh; Gupta, Richa; Glickman, Michael S

    2014-10-01

    Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3' phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80

    Directory of Open Access Journals (Sweden)

    Cindy Wang

    2011-01-01

    Full Text Available The addition of polyoxyethylene sorbitan monooleate (Tween 80 to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity.

  8. Enzymatic exchange of mycolic acid in mycobacterium smegmatis involving free trehalose and trehalose 6-mono-mycolate

    International Nuclear Information System (INIS)

    Sathyamoorthy, N.; Qureshi, N.; Takayama, K.

    1986-01-01

    When a dialyzed, cell-free extract of Mycobacterium smegmatis was incubated with [ 14 C]trehalose and unlabeled trehalose 6-monomycolate (TM), radiolabeled TM was formed. This appears to be an enzymatic mycolic acid exchange reaction. The TM was purified by DEAE cellulose and silicic acid column chromatography, followed by reverse-phase HPLC using a C 18 -bonded silica column with a linear gradient of 0-60% hexane-isopropanol (2:1, v/v) in isopropanol-water (9:1, v/v). The donor lipid, the 14 C-labeled product, and authentic TM all comigrated on HPLC. Three peak fractions were obtained from HPLC and analyzed by laser desorption mass spectrometry (LDMS) and the structural series of mycolic acids were identified. The major TM components gave molecular ions (M+K) + at m/z 1486, 1500, and 1528. This corresponded to the presence of dienyl mycolic acids with M/sub r/ of 1106, 1120, and 1148, respectively. Using organically synthesized TM, the authors confirmed that the donor lipid as well as the labeled product of this reaction are indeed TM. This enzyme has now been partially purified by ammonium sulfate precipitation and QAE-Sephadex A-50 column chromatography. This newly discovered mycolic acid exchange reaction might be an integral part of the last step in the biosynthesis of mycolic acid as well as the mycolic acid utilization pathway in Mycobacteria

  9. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Hassim, Farzanah; Papadopoulos, Andrea O.; Kana, Bavesh D.; Gordhan, Bhavna G.

    2015-01-01

    Highlights: • We studied the combined role of MutY and Fpg DNA glycosylases in M. smegmatis. • Loss of MutY showed increased sensitivity to oxidative damage. • Loss of MutY together with the Fpg glycosylases showed increased mutation rates. • Our data indicate interplay between these enzymes to control mutagenesis. - Abstract: Hydroxyl radical (·OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ( 1 0 2 ) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to ·OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei homologues

  10. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis

    Energy Technology Data Exchange (ETDEWEB)

    Hassim, Farzanah; Papadopoulos, Andrea O.; Kana, Bavesh D.; Gordhan, Bhavna G., E-mail: bhavna.gordhan@nhls.ac.za

    2015-09-15

    Highlights: • We studied the combined role of MutY and Fpg DNA glycosylases in M. smegmatis. • Loss of MutY showed increased sensitivity to oxidative damage. • Loss of MutY together with the Fpg glycosylases showed increased mutation rates. • Our data indicate interplay between these enzymes to control mutagenesis. - Abstract: Hydroxyl radical (·OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ({sup 1}0{sub 2}) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to ·OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei

  11. Mycobacterium smegmatis Lhr Is a DNA-dependent ATPase and a 3'-to-5' DNA translocase and helicase that prefers to unwind 3'-tailed RNA:DNA hybrids.

    Science.gov (United States)

    Ordonez, Heather; Shuman, Stewart

    2013-05-17

    We are interested in the distinctive roster of helicases of Mycobacterium, a genus of the phylum Actinobacteria that includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis Lhr as the exemplar of a novel clade of superfamily II helicases, by virtue of its biochemical specificities and signature domain organization. Lhr is a 1507-amino acid monomeric nucleic acid-dependent ATPase that uses the energy of ATP hydrolysis to drive unidirectional 3'-to-5' translocation along single strand DNA and to unwind duplexes en route. The ATPase is more active in the presence of calcium than magnesium. ATP hydrolysis is triggered by either single strand DNA or single strand RNA, yet the apparent affinity for a DNA activator is 11-fold higher than for an RNA strand of identical size and nucleobase sequence. Lhr is 8-fold better at unwinding an RNA:DNA hybrid than it is at displacing a DNA:DNA duplex of identical nucleobase sequence. The truncated derivative Lhr-(1-856) is an autonomous ATPase, 3'-to-5' translocase, and RNA:DNA helicase. Lhr-(1-856) is 100-fold better RNA:DNA helicase than DNA:DNA helicase. Lhr homologs are found in bacteria representing eight different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis) and Proteobacteria (including Escherichia coli).

  12. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA.

    Science.gov (United States)

    Küssau, Tanja; Flipo, Marion; Van Wyk, Niel; Viljoen, Albertus; Olieric, Vincent; Kremer, Laurent; Blaise, Mickaël

    2018-05-01

    In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP + -bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP + -bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.

  13. Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858).

    Science.gov (United States)

    Unciuleac, Mihaela-Carmen; Smith, Paul C; Shuman, Stewart

    2016-05-15

    AAA proteins (ATPases associated with various cellular activities) use the energy of ATP hydrolysis to drive conformational changes in diverse macromolecular targets. Here, we report the biochemical characterization and 2.5-Å crystal structure of a Mycobacterium smegmatis AAA protein Msm0858, the ortholog of Mycobacterium tuberculosis Rv0435c. Msm0858 is a magnesium-dependent ATPase and is active with all nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) as substrates. The Msm0858 structure comprises (i) an N-terminal domain (amino acids [aa] 17 to 201) composed of two β-barrel modules and (ii) two AAA domains, D1 (aa 212 to 473) and D2 (aa 476 to 744), each of which has ADP in the active site. Msm0858-ADP is a monomer in solution and in crystallized form. Msm0858 domains are structurally homologous to the corresponding modules of mammalian p97. However, the position of the N-domain modules relative to the AAA domains in the Msm0858-ADP tertiary structure is different and would impede the formation of a p97-like hexameric quaternary structure. Mutational analysis of the A-box and B-box motifs indicated that the D1 and D2 AAA domains are both capable of ATP hydrolysis. Simultaneous mutations of the D1 and D2 active-site motifs were required to abolish ATPase activity. ATPase activity was effaced by mutation of the putative D2 arginine finger, suggesting that Msm0858 might oligomerize during the ATPase reaction cycle. A truncated variant Msm0858 (aa 212 to 745) that lacks the N domain was characterized as a catalytically active homodimer. Recent studies have underscored the importance of AAA proteins (ATPases associated with various cellular activities) in the physiology of mycobacteria. This study reports the ATPase activity and crystal structure of a previously uncharacterized mycobacterial AAA protein, Msm0858. Msm0858 consists of an N-terminal β-barrel domain and two AAA domains, each with ADP bound in the active site. Msm0858 is a

  14. Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5′-phosphate oxidase from Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Jackson, Colin J.; Taylor, Matthew C.; Tattersall, David B.; French, Nigel G.; Carr, Paul D.; Ollis, David L.; Russell, Robyn J.; Oakeshott, John G.

    2008-01-01

    Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation. Pyridoxine 5′-phosphate oxidases (PNPOxs) are known to catalyse the terminal step in pyridoxal 5′-phosphate biosynthesis in a flavin mononucleotide-dependent manner in humans and Escherichia coli. Recent reports of a putative PNPOx from Mycobacterium tuberculosis, Rv1155, suggest that the cofactor or catalytic mechanism may differ in Mycobacterium species. To investigate this, a putative PNPOx from M. smegmatis, Msmeg-3380, has been cloned. This enzyme has been recombinantly expressed in E. coli and purified to homogeneity. Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation

  15. Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5′-phosphate oxidase from Mycobacterium smegmatis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Colin J., E-mail: colin.jackson@csiro.au; Taylor, Matthew C.; Tattersall, David B.; French, Nigel G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia); Carr, Paul D.; Ollis, David L. [Research School of Chemistry, Australian National University, ACT 0200 (Australia); Russell, Robyn J.; Oakeshott, John G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia)

    2008-05-01

    Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation. Pyridoxine 5′-phosphate oxidases (PNPOxs) are known to catalyse the terminal step in pyridoxal 5′-phosphate biosynthesis in a flavin mononucleotide-dependent manner in humans and Escherichia coli. Recent reports of a putative PNPOx from Mycobacterium tuberculosis, Rv1155, suggest that the cofactor or catalytic mechanism may differ in Mycobacterium species. To investigate this, a putative PNPOx from M. smegmatis, Msmeg-3380, has been cloned. This enzyme has been recombinantly expressed in E. coli and purified to homogeneity. Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation.

  16. Mycobacterium smegmatis SftH exemplifies a distinctive clade of superfamily II DNA-dependent ATPases with 3' to 5' translocase and helicase activities.

    Science.gov (United States)

    Yakovleva, Lyudmila; Shuman, Stewart

    2012-08-01

    Bacterial DNA helicases are nucleic acid-dependent NTPases that play important roles in DNA replication, recombination and repair. We are interested in the DNA helicases of Mycobacteria, a genus of the phylum Actinobacteria, which includes the human pathogen Mycobacterium tuberculosis and its avirulent relative Mycobacterium smegmatis. Here, we identify and characterize M. smegmatis SftH, a superfamily II helicase with a distinctive domain structure, comprising an N-terminal NTPase domain and a C-terminal DUF1998 domain (containing a putative tetracysteine metal-binding motif). We show that SftH is a monomeric DNA-dependent ATPase/dATPase that translocates 3' to 5' on single-stranded DNA and has 3' to 5' helicase activity. SftH homologs are found in bacteria representing 12 different phyla, being especially prevalent in Actinobacteria (including M. tuberculosis). SftH homologs are evident in more than 30 genera of Archaea. Among eukarya, SftH homologs are present in plants and fungi.

  17. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis.

    Science.gov (United States)

    Hassim, Farzanah; Papadopoulos, Andrea O; Kana, Bavesh D; Gordhan, Bhavna G

    2015-09-01

    Hydroxyl radical (OH) among reactive oxygen species cause damage to nucleobases with thymine being the most susceptible, whilst in contrast, the singlet oxygen ((1)02) targets only guanine bases. The high GC content of mycobacterial genomes predisposes these organisms to oxidative damage of guanine. The exposure of cellular DNA to OH and one-electron oxidants results in the formation of two main degradation products, the pro-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and the cytotoxic 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). These lesions are repaired through the base excision repair (BER) pathway and we previously, demonstrated a combinatorial role for the mycobacterial Endonuclease III (Nth) and the Nei family of DNA glycosylases in mutagenesis. In addition, the formamidopyrimidine (Fpg/MutM) and MutY DNA glycosylases have also been implicated in mutation avoidance and BER in mycobacteria. In this study, we further investigate the combined role of MutY and the Fpg/Nei DNA glycosylases in Mycobacterium smegmatis and demonstrate that deletion of mutY resulted in enhanced sensitivity to oxidative stress, an effect which was not exacerbated in Δfpg1 Δfpg2 or Δnei1 Δnei2 double mutant backgrounds. However, combinatorial loss of the mutY, fpg1 and fpg2 genes resulted in a significant increase in mutation rates suggesting interplay between these enzymes. Consistent with this, there was a significant increase in C → A mutations with a corresponding change in cell morphology of rifampicin resistant mutants in the Δfpg1 Δfpg2 ΔmutY deletion mutant. In contrast, deletion of mutY together with the nei homologues did not result in any growth/survival defects or changes in mutation rates. Taken together these data indicate that the mycobacterial mutY, in combination with the Fpg DNA N-glycosylases, plays an important role in controlling mutagenesis under oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The DNA Repair Repertoire of Mycobacterium smegmatis FenA Includes the Incision of DNA 5' Flaps and the Removal of 5' Adenylylated Products of Aborted Nick Ligation.

    Science.gov (United States)

    Uson, Maria Loressa; Ghosh, Shreya; Shuman, Stewart

    2017-09-01

    We characterize Mycobacterium smegmatis FenA as a manganese-dependent 5'-flap endonuclease homologous to the 5'-exonuclease of DNA polymerase I. FenA incises a nicked 5' flap between the first and second nucleotides of the duplex segment to yield a 1-nucleotide gapped DNA, which is then further resected in dinucleotide steps. Initial FenA cleavage at a Y-flap or nick occurs between the first and second nucleotides of the duplex. However, when the template 3' single strand is eliminated to create a 5'-tailed duplex, FenA incision shifts to between the second and third nucleotides. A double-flap substrate with a mobile junction (mimicking limited strand displacement synthesis during gap repair) is preferentially incised as the 1-nucleotide 3'-flap isomer, with the scissile phosphodiester shifted by one nucleotide versus a static double flap. FenA efficiently removes the 5' App(dN) terminus of an aborted nick ligation reaction intermediate, thereby highlighting FenA as an agent of repair of such lesions, which are formed under a variety of circumstances by bacterial NAD + -dependent DNA ligases and especially by mycobacterial DNA ligases D and C. IMPORTANCE Structure-specific DNA endonucleases are implicated in bacterial DNA replication, repair, and recombination, yet there is scant knowledge of the roster and catalytic repertoire of such nucleases in Mycobacteria This study identifies M. smegmatis FenA as a stand-alone endonuclease homologous to the 5'-exonuclease domain of mycobacterial DNA polymerase 1. FenA incises 5' flaps, 5' nicks, and 5' App(dN) intermediates of aborted nick ligation. The isolated N-terminal domain of M. smegmatis Pol1 is also shown to be a flap endonuclease. Copyright © 2017 American Society for Microbiology.

  19. Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Jean Bosco Jouda

    2016-01-01

    Conclusion: Isolated compounds from Penicillium sp. harbored in G. nobilis exhibited promising antimycobacterial activity against M. smegmatis thus supporting the immensity of the potential of antimycobacterial drug discovery from endophytes from medicinal plants. Penialidin C could further be investigated for antimycobacterial drug development.

  20. Important role of the nucleotide excision repair pathway in Mycobacterium smegmatis in conferring protection against commonly encountered DNA-damaging agents.

    Science.gov (United States)

    Kurthkoti, Krishna; Kumar, Pradeep; Jain, Ruchi; Varshney, Umesh

    2008-09-01

    Mycobacteria are an important group of human pathogens. Although the DNA repair mechanisms in mycobacteria are not well understood, these are vital for the pathogen's persistence in the host macrophages. In this study, we generated a null mutation in the uvrB gene of Mycobacterium smegmatis to allow us to compare the significance of the nucleotide excision repair (NER) pathway with two important base excision repair pathways, initiated by uracil DNA glycosylase (Ung) and formamidopyrimidine DNA glycosylase (Fpg or MutM), in an isogenic strain background. The strain deficient in NER was the most sensitive to commonly encountered DNA-damaging agents such as UV, low pH, reactive oxygen species, hypoxia, and was also sensitive to acidified nitrite. Taken together with previous observations on NER-deficient M. tuberculosis, these results suggest that NER is an important DNA repair pathway in mycobacteria.

  1. Obtención y caracterización parcial de un extracto lipídico de la membrana externa de Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Nadine Alvarez

    2009-04-01

    Full Text Available En la actualidad, los antígenos lipídicos de las micobacterias constituyen blancos atractivos para el desarrollo de nuevas formulaciones vacunales contra la tuberculosis. En nuestro trabajo se realizó la caracterización parcial de un extracto lipídico de pared celular de Mycobacterium smegmatis mediante cromatografía de capa delgada y Dot blot frente a gammaglobulina humana. Se identificó, fundamentalmente, la presencia de fosfolípidos y ácidos micólicos en el extracto lipídico y se observó un elevado reconocimiento de los mismos por la gammaglobulina humana, lo cual indica la importancia de continuar los estudios de inmunoprotección empleando antígenos lipídicos de micobacterias.

  2. Adaptación de Mycobacterium smegmatis ante el agotamiento de nutrientes y su efecto en la expresión de esat-6

    Directory of Open Access Journals (Sweden)

    Héctor M. López-Pérez

    2016-01-01

    Full Text Available Cuando los recursos son escasos, las micobacterias detienen su crecimiento para dar paso a los genes de la adaptación. Contrariamente, cuando el crecimiento continúa bajo condiciones de estrés, se activan genes específicos de redes metabólicas para su protección. En este sentido, la proteína codificada por esat-6 (por sus siglas en inglés: early secretory antigenic target, 6 kDa en Mycobacterium tuberculosis, actúa en la lisis del epitelio alveolar y membranas de los macrófagos para escapar e invadir otras células. Pero puede tener otras funciones, tales como interferir en el contacto célula-célula y transferir su ADN. En M. smegmatis, el sistema ESX-1 (por sus siglas en inglés: Secretion Ejectosoma BOX facilita la secreción de la proteína ESAT-6, probablemente es sensible a uno o más nutrientes del medio de cultivo. Por lo que en el presente estudio se evalúan las condiciones de cultivo limitantes en nutrientes para el crecimiento de M. smegmatis y su relación con la expresión del gen esat-6. Los medios de cultivos probados fueron Hartmans de Bond medio mínimo (HdB, limitado en carbono (HdBsmegmatis se adapta a HdB medio mínimo, HdBsmegmatis pierde su capacidad metabólica respecto a la resistencia alcohol-ácido y expresa esat-6. Por lo tanto, se proponen los medios de cultivo probados como modelo para la expresión génica bajo limitación por nutrientes.

  3. Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis.

    Science.gov (United States)

    Malshetty, Vidyasagar S; Jain, Ruchi; Srinath, Thiruneelakantan; Kurthkoti, Krishna; Varshney, Umesh

    2010-03-01

    The incorporation of dUMP during replication or the deamination of cytosine in DNA results in the occurrence of uracils in genomes. To maintain genomic integrity, uracil DNA glycosylases (UDGs) excise uracil from DNA and initiate the base-excision repair pathway. Here, we cloned, purified and biochemically characterized a family 5 UDG, UdgB, from Mycobacterium smegmatis to allow us to use it as a model organism to investigate the physiological significance of the novel enzyme. Studies with knockout strains showed that compared with the wild-type parent, the mutation rate of the udgB( -) strain was approximately twofold higher, whereas the mutation rate of a strain deficient in the family 1 UDG (ung(- )) was found to be approximately 8.4-fold higher. Interestingly, the mutation rate of the double-knockout (ung(-)/ udgB(-)) strain was remarkably high, at approximately 19.6-fold. While CG to TA mutations predominated in the ung(-) and ung(-)/udgB(-) strains, AT to GC mutations were enhanced in the udgB(-) strain. The ung(-)/udgB(-) strain was notably more sensitive to acidified nitrite and hydrogen peroxide stresses compared with the single knockouts (ung(-) or udgB(-)). These observations reveal a synergistic effect of UdgB and Ung in DNA repair, and could have implications for the generation of attenuated strains of Mycobacterium tuberculosis.

  4. Mycobacterium smegmatis HelY Is an RNA-Activated ATPase/dATPase and 3'-to-5' Helicase That Unwinds 3'-Tailed RNA Duplexes and RNA:DNA Hybrids.

    Science.gov (United States)

    Uson, Maria Loressa; Ordonez, Heather; Shuman, Stewart

    2015-10-01

    Mycobacteria have a large and distinctive ensemble of DNA helicases that function in DNA replication, repair, and recombination. Little is known about the roster of RNA helicases in mycobacteria or their roles in RNA transactions. The 912-amino-acid Mycobacterium smegmatis HelY (MSMEG_3885) protein is a bacterial homolog of the Mtr4 and Ski2 helicases that regulate RNA 3' processing and turnover by the eukaryal exosome. Here we characterize HelY as an RNA-stimulated ATPase/dATPase and an ATP/dATP-dependent 3'-to-5' helicase. HelY requires a 3' single-strand RNA tail (a loading RNA strand) to displace the complementary strand of a tailed RNA:RNA or RNA:DNA duplex. The findings that HelY ATPase is unresponsive to a DNA polynucleotide cofactor and that HelY is unable to unwind a 3'-tailed duplex in which the loading strand is DNA distinguish HelY from other mycobacterial nucleoside triphosphatases/helicases characterized previously. The biochemical properties of HelY, which resemble those of Mtr4/Ski2, hint at a role for HelY in mycobacterial RNA catabolism. RNA helicases play crucial roles in transcription, RNA processing, and translation by virtue of their ability to alter RNA secondary structure or remodel RNA-protein interactions. In eukarya, the RNA helicases Mtr4 and Ski2 regulate RNA 3' resection by the exosome. Mycobacterium smegmatis HelY, a bacterial homolog of Mtr4/Ski2, is characterized here as a unidirectional helicase, powered by RNA-dependent ATP/dATP hydrolysis, that tracks 3' to 5' along a loading RNA strand to displace the complementary strand of a tailed RNA:RNA or RNA:DNA duplex. The biochemical properties of HelY suggest a role in bacterial RNA transactions. HelY homologs are present in pathogenic mycobacteria (e.g., M. tuberculosis and M. leprae) and are widely prevalent in Actinobacteria and Cyanobacteria but occur sporadically elsewhere in the bacterial domain. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D.

    Science.gov (United States)

    Zhu, Hui; Bhattarai, Hitesh; Yan, Han-Guang; Shuman, Stewart; Glickman, Michael S

    2012-12-21

    Mycobacteria exploit nonhomologous end-joining (NHEJ) to repair DNA double-strand breaks. The core NHEJ machinery comprises the homodimeric DNA end-binding protein Ku and DNA ligase D (LigD), a modular enzyme composed of a C-terminal ATP-dependent ligase domain (LIG), a central 3'-phosphoesterase domain (PE), and an N-terminal polymerase domain (POL). LigD POL is proficient at adding templated and nontemplated deoxynucleotides and ribonucleotides to DNA ends in vitro and is the catalyst in vivo of unfaithful NHEJ events involving nontemplated single-nucleotide additions to blunt DSB ends. Here, we identify two mycobacterial proteins, PolD1 and PolD2, as stand-alone homologues of the LigD POL domain. Biochemical characterization of PolD1 and PolD2 shows that they resemble LigD POL in their monomeric quaternary structures, their ability to add templated and nontemplated nucleotides to primer-templates and blunt ends, and their preference for rNTPs versus dNTPs. Deletion of polD1, polD2, or both from a Mycobacterium smegmatis strain carrying an inactivating mutation in LigD POL failed to reveal a role for PolD1 or PolD2 in templated nucleotide additions during NHEJ of 5'-overhang DSBs or in clastogen resistance. Whereas our results document the existence and characteristics of new stand-alone members of the LigD POL family of RNA/DNA polymerases, they imply that other polymerases can perform fill-in synthesis during mycobacterial NHEJ.

  6. A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase.

    Science.gov (United States)

    Bansal, Ankita; Kar, Debasish; Murugan, Rajagopal A; Mallick, Sathi; Dutta, Mouparna; Pandey, Satya Deo; Chowdhury, Chiranjit; Ghosh, Anindya S

    2015-05-01

    DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (ΔdacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities. © 2015 The Authors.

  7. Low Molecular Weight Glucosamine/L-lactide Copolymers as Potential Carriers for the Development of a Sustained Rifampicin Release System: Mycobacterium Smegmatis as a Tuberculosis Model

    Science.gov (United States)

    Ragusa, Jorge Alejandro

    Tuberculosis, a highly contagious disease, ranks as the second leading cause of death from an infectious disease, and remains a major global health problem. In 2013, 9 million new cases were diagnosed and 1.5 million people died worldwide from tuberculosis. This dissertation aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (molecular core building unit) and L-lactide (GluN-LLA). Stable particles with a very high 50% drug loading capacity were made via electrohydrodynamic atomization. Prolonged release (>14 days) of RIF from these particles is demonstrated. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism, and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) (reference material) particles did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated an increment in cell death as particle dose increased, but was not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. GluN-LLA particles led to higher uptakes than the PLA particles. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and the particles showed a favorable long term drug release effect in killing intracellular bacteria compared to free RIF. The studies presented and discussed in this dissertation

  8. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains.

    Science.gov (United States)

    Jacewicz, Agata; Shuman, Stewart

    2015-08-01

    Mycobacterium smegmatis encodes several DNA repair polymerases that are adept at incorporating ribonucleotides, which raises questions about how ribonucleotides in DNA are sensed and removed. RNase H enzymes, of which M. smegmatis encodes four, are strong candidates for a surveillance role. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of M. smegmatis RnhC, a bifunctional RNase H and acid phosphatase. We report that (i) the RnhC nuclease is stringently specific for RNA:DNA hybrid duplexes; (ii) RnhC does not selectively recognize and cleave DNA-RNA or RNA-DNA junctions in duplex nucleic acid; (iii) RnhC cannot incise an embedded monoribonucleotide or diribonucleotide in duplex DNA; (iv) RnhC can incise tracts of 4 or more ribonucleotides embedded in duplex DNA, leaving two or more residual ribonucleotides at the cleaved 3'-OH end and at least one or two ribonucleotides on the 5'-PO4 end; (v) the RNase H activity is inherent in an autonomous 140-amino-acid (aa) N-terminal domain of RnhC; and (vi) the C-terminal 211-aa domain of RnhC is an autonomous acid phosphatase. The cleavage specificity of RnhC is clearly distinct from that of Escherichia coli RNase H2, which selectively incises at an RNA-DNA junction. Thus, we classify RnhC as a type I RNase H. The properties of RnhC are consistent with a role in Okazaki fragment RNA primer removal or in surveillance of oligoribonucleotide tracts embedded in DNA but not in excision repair of single misincorporated ribonucleotides. RNase H enzymes help cleanse the genome of ribonucleotides that are present either as ribotracts (e.g., RNA primers) or as single ribonucleotides embedded in duplex DNA. Mycobacterium smegmatis encodes four RNase H proteins, including RnhC, which is characterized in this study. The nucleic acid substrate and cleavage site specificities of RnhC are consistent with a role in initiating the removal of ribotracts but not in single-ribonucleotide surveillance. Rnh

  9. Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kajal Gupta

    2010-11-01

    Full Text Available C-di-GMP, a bacterial second messenger plays a key role in survival and adaptation of bacteria under different environmental conditions. The level of c-di-GMP is regulated by two opposing activities, namely diguanylate cyclase (DGC and phosphodiesterase (PDE-A exhibited by GGDEF and EAL domain, respectively in the same protein. Previously, we reported a bifunctional GGDEF-EAL domain protein, MSDGC-1 from Mycobacterium smegmatis showing both these activities (Kumar and Chatterji, 2008. In this current report, we have identified and characterized the homologous protein from Mycobacterium tuberculosis (Rv 1354c named as MtbDGC. MtbDGC is also a bifunctional protein, which can synthesize and degrade c-di-GMP in vitro. Further we expressed Mtbdgc in M. smegmatis and it was able to complement the MSDGC-1 knock out strain by restoring the long term survival of M. smegmatis. Another protein Rv 1357c, named as MtbPDE, is an EAL domain protein and degrades c-di-GMP to pGpG in vitro. Rv1354c and 1357c have seven cysteine amino acids in their sequence, distributed along the full length of the protein. Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. By proteolytic digestion and mass spectrometric analysis of MtbDGC, connectivity between cysteine pairs Cys94-Cys584, Cys2-Cys479 and Cys429-Cys614 was determined, whereas the third cysteine (Cys406 from N terminal was found to be free in MtbDGC protein, which was further confirmed by alkylation with iodoacetamide labeling. Bioinformatics modeling investigations also supported the pattern of disulfide connectivity obtained by Mass spectrometric analysis. Cys406 was mutated to serine by site directed mutagenesis and the mutant MtbC406S was not found to be active and was not able to synthesize or degrade c-di-GMP. The disulfide connectivity established here would help further in understanding the structure - function relationship in MtbDGC.

  10. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation.

    Science.gov (United States)

    Leiba, Jade; Syson, Karl; Baronian, Grégory; Zanella-Cléon, Isabelle; Kalscheuer, Rainer; Kremer, Laurent; Bornemann, Stephen; Molle, Virginie

    2013-06-07

    GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette-Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.

  11. Mycobacterium smegmatis RqlH defines a novel clade of bacterial RecQ-like DNA helicases with ATP-dependent 3'-5' translocase and duplex unwinding activities.

    Science.gov (United States)

    Ordonez, Heather; Unciuleac, Mihaela; Shuman, Stewart

    2012-05-01

    The Escherichia coli RecQ DNA helicase participates in a pathway of DNA repair that operates in parallel to the recombination pathway driven by the multisubunit helicase-nuclease machine RecBCD. The model mycobacterium Mycobacterium smegmatis executes homologous recombination in the absence of its helicase-nuclease machine AdnAB, though it lacks a homolog of E. coli RecQ. Here, we identify and characterize M. smegmatis RqlH, a RecQ-like helicase with a distinctive domain structure. The 691-amino acid RqlH polypeptide consists of a RecQ-like ATPase domain (amino acids 1-346) and tetracysteine zinc-binding domain (amino acids 435-499), separated by an RqlH-specific linker. RqlH lacks the C-terminal HRDC domain found in E. coli RecQ. Rather, the RqlH C-domain resembles bacterial ComF proteins and includes a phosphoribosyltransferase-like module. We show that RqlH is a DNA-dependent ATPase/dATPase that translocates 3'-5' on single-stranded DNA and has 3'-5' helicase activity. These functions inhere to RqlH-(1-505), a monomeric motor unit comprising the ATPase, linker and zinc-binding domains. RqlH homologs are distributed widely among bacterial taxa. The mycobacteria that encode RqlH lack a classical RecQ, though many other Actinobacteria have both RqlH and RecQ. Whereas E. coli K12 encodes RecQ but lacks a homolog of RqlH, other strains of E. coli have both RqlH and RecQ.

  12. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    Science.gov (United States)

    Baronian, Grégory; Ginda, Katarzyna; Berry, Laurence; Cohen-Gonsaud, Martin; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara; Molle, Virginie

    2015-01-01

    Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  13. Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system.

    Directory of Open Access Journals (Sweden)

    Grégory Baronian

    Full Text Available Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.

  14. An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis.

    Science.gov (United States)

    Zheng, Xuan; Li, Shi-Yuan; Zhao, Guo-Ping; Wang, Jin

    2017-04-15

    Accompanied with the internal non-homologous end joining (NHEJ) system, Cas9 can be used to easily inactivate a gene or delete a fragment through introduction of DNA double-stranded breaks (DSBs) in eukaryotic cells. While in most prokaryotes (e.g. Escherichia coli), due to the lack of NHEJ, homologous recombination (HR) is required for repair of DSBs, which is less convenient. Here, a markerless system was developed for rapid gene inactivation or fragment deletion in E. coli via introduction of both Cas9 and a bacterial NHEJ system. Three bacterial NHEJ systems, i.e. Mycobacterium smegmatis (Msm), Mycobacterium tuberculosis (Mtb) and Bacillus subtilis (Bs), were tested in E. coli, and the MsmNHEJ system showed the best efficiency. With the employment of Cas9 and MsmNHEJ, we efficiently mutated lacZ gene, deleted glnALG operon and two large DNA fragments (67 kb and 123 kb) in E. coli, respectively. Moreover, the system was further designed to allow for continuous inactivation of genes or deletion of DNA fragments in E. coli. We envision this system can be extended to other bacteria, especially those with low HR efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress.

    NARCIS (Netherlands)

    Lu, P.; Heineke, M.H.; Koul, A.; Andries, K.; Cook, G.M.; Lill, H.; van Spanning, R.J.M.; Bald, D.

    2015-01-01

    Targeting respiration and ATP synthesis has received strong interest as a new strategy for combatting drug-resistant Mycobacterium tuberculosis. Mycobacteria employ a respiratory chain terminating with two branches. One of the branches includes a cytochrome bc 1 complex and an aa 3 -type cytochrome

  16. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    Science.gov (United States)

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-25

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance.

  17. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA.

    Science.gov (United States)

    Rudra, Paulami; Prajapati, Ranjit Kumar; Banerjee, Rajdeep; Sengupta, Shreya; Mukhopadhyay, Jayanta

    2015-07-13

    We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation. © Crown copyright 2015.

  18. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Morris, Jessica D; Brooks, Michelle N; Carlson, Tracy K; Bakthavachalu, Baskar; Schoenberg, Daniel R; Torrelles, Jordi B; Schlesinger, Larry S

    2011-10-18

    Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPK-activated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3' UTR region of TNF mRNA and destabilizes the transcript, whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M.tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M.tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M.tb to subvert host immunity and potentially increase its virulence.

  19. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling.

    Directory of Open Access Journals (Sweden)

    Wu Li

    Full Text Available Intracellular survival plays a central role in the pathogenesis of Mycobacterium tuberculosis, a process which depends on an array of virulence factors to colonize and replicate within the host. The M. tuberculosis iron regulated open reading frame (ORF rv3402c, encoding a conserved hypothetical protein, was shown to be up-regulated upon infection in both human and mice macrophages. To explore the function of this ORF, we heterologously expressed the rv3402c gene in the non-pathogenic fast-growing Mycobacterium smegmatis strain, and demonstrated that Rv3402c, a cell envelope-associated protein, was able to enhance the intracellular survival of recombinant M. smegmatis. Enhanced growth was not found to be the result of an increased resistance to intracellular stresses, as growth of the Rv3402c expressing strain was unaffected by iron depletion, H2O2 exposure, or acidic conditions. Colonization of macrophages by M. smegmatis expressing Rv3402c was associated with substantial cell death and significantly greater amount of TNF-α and IL-1β compared with controls. Rv3402c-induced TNF-α and IL-1β production was found to be mediated by NF-κB, ERK and p38 pathway in macrophages. In summary, our study suggests that Rv3402c delivered in a live M. smegmatis vehicle can modify the cytokines profile of macrophage, promote host cell death and enhance the persistence of mycobacterium within host cells.

  20. Clonación, sobreexpresión y determinación de la especificidad iónica de Pma1, una posible Na+/K+ ATPasa de Mycobacterium smegmatis

    OpenAIRE

    Ayala Torres, Carlos Mario

    2014-01-01

    La tuberculosis (TB) es uno de los retos más importantes para la salud pública en el mundo. Actualmente existe una prevalencia de 2 billones de personas infectadas con Mycobacterium tuberculosis, lo que representa el 30% de la población mundial; en este contexto la TB junto con el VIH/SIDA (Virus de Inmunodeficiencia Humana/Síndrome de Inmunodeficiencia Adquirida) son las enfermedades que causan el mayor número de muertes ocasionadas por agentes infecciosos en el mundo, por lo ...

  1. The global reciprocal reprogramming between mycobacteriophage SWU1 and mycobacterium reveals the molecular strategy of subversion and promotion of phage infection

    Directory of Open Access Journals (Sweden)

    Xiangyu eFan

    2016-01-01

    Full Text Available Bacteriophages are the viruses of bacteria, which have contributed extensively to our understanding of life and modern biology. The phage-mediated bacterial growth inhibition represents immense untapped source for novel antimicrobials. Insights into the interaction between mycobacteriophage and Mycobacterium host will inform better utilizing of mycobacteriophage. In this study, RNA sequencing technology (RNA-seq was used to explore the global response of Mycobacterium smegmatis mc2 155 at an early phase of infection with mycobacteriophage SWU1, key host metabolic processes of M. smegmatis mc2 155 shut off by SWU1, and the responsible phage proteins. The results of RNA-seq were confirmed by Real-time PCR and functional assay. 1174 genes of M. smegmatis mc2 155 (16.9% of the entire encoding capacity were differentially regulated by phage infection. These genes belong to six functional categories: (i signal transduction, (ii cell energetics, (iii cell wall biosynthesis, (iv DNA, RNA, and protein biosynthesis, (v iron uptake, (vi central metabolism. The transcription patterns of phage SWU1 were also characterized. This study provided the first global glimpse of the reciprocal reprogramming between the mycobacteriophage and Mycobacterium host.

  2. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  3. Growth of Mycobacterium smegmatis in minimal and complete media

    Indian Academy of Sciences (India)

    tribpo

    Introduction. The growth of bacteria under different nutritional conditions has been studied in considerable detail (Doelle, 1969; Nierlich, 1979; Oginski and Umbreit, 1959; Payne and Weibe, 1978; Sokatch, 1969). However, comparatively little is known regarding mycobacterial nutrition and physiology (Barksdale and Kim, ...

  4. Identification of the Regulator Gene Responsible for the Acetone-Responsive Expression of the Binuclear Iron Monooxygenase Gene Cluster in Mycobacteria ▿

    Science.gov (United States)

    Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki

    2011-01-01

    The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847

  5. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage.

    Directory of Open Access Journals (Sweden)

    Parul Mehrotra

    2014-07-01

    Full Text Available The success of Mycobacterium tuberculosis as a pathogen derives from its facile adaptation to the intracellular milieu of human macrophages. To explore this process, we asked whether adaptation also required interference with the metabolic machinery of the host cell. Temporal profiling of the metabolic flux, in cells infected with differently virulent mycobacterial strains, confirmed that this was indeed the case. Subsequent analysis identified the core subset of host reactions that were targeted. It also elucidated that the goal of regulation was to integrate pathways facilitating macrophage survival, with those promoting mycobacterial sustenance. Intriguingly, this synthesis then provided an axis where both host- and pathogen-derived factors converged to define determinants of pathogenicity. Consequently, whereas the requirement for macrophage survival sensitized TB susceptibility to the glycemic status of the individual, mediation by pathogen ensured that the virulence properties of the infecting strain also contributed towards the resulting pathology.

  6. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  7. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells.

    Science.gov (United States)

    Zenk, Sebastian F; Vollmer, Michael; Schercher, Esra; Kallert, Stephanie; Kubis, Jan; Stenger, Steffen

    2016-06-01

    Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.

  8. An insight into the regulation of mce4 operon of Mycobacterium tuberculosis.

    Science.gov (United States)

    Rathor, Nisha; Chandolia, Amita; Saini, Neeraj Kumar; Sinha, Rajesh; Pathak, Rakesh; Garima, Kushal; Singh, Satendra; Varma-Basil, Mandira; Bose, Mridula

    2013-07-01

    The mce4 operon is reported to be involved in cholesterol utilization and intracellular survival of Mycobacterium tuberculosis (M. tuberculosis). The regulatory mechanism of this important operon was unknown so far. Here we report detection of the promoter region and regulatory factors of the mce4 operon. The in silico analyzed putative promoter region was cloned in promoter selection vector and promoter strength was measured by O-Nitrophenyl-β-D-galactopyranosidase (ONPG) assay. The transcription start site was determined by 5' Rapid amplification of C terminal end (5'RACE). Surface stress, hypoxia and presence of cholesterol, were found to be stimulatory for mce4 operon promoter induction. Pull down assay coupled with 2D gel electrophoresis resolved many proteins; few prominent spots were processed for identification. MALDI TOF-TOF identified proteins of M. tuberculosis which supported the regulatory function of the identified promoter region and cholesterol utilization of mce4 operon. Since mce4 operon is involved in cholesterol utilization and intracellular survival of M. tuberculosis in the later phase of infection, identification of the promoter sequence as reported in the present communication may facilitate development of effective inhibitors to regulate expression of mce4 operon which may prove to be a good drug target to prevent latency in tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The Mycobacterium tuberculosis transcriptional repressor EthR is negatively regulated by Serine/Threonine phosphorylation.

    Science.gov (United States)

    Leiba, Jade; Carrère-Kremer, Séverine; Blondiaux, Nicolas; Dimala, Martin Moune; Wohlkönig, Alexandre; Baulard, Alain; Kremer, Laurent; Molle, Virginie

    2014-04-18

    Recent efforts have underlined the role of Serine/Threonine Protein Kinases (STPKs) in growth, pathogenesis and cell wall metabolism in mycobacteria. Herein, we demonstrated that the Mycobacterium tuberculosis EthR, a transcriptional repressor that regulates the activation process of the antitubercular drug ethionamide (ETH) is a specific substrate of the mycobacterial kinase PknF. ETH is a prodrug that must undergo bioactivation by the monooxygenease EthA to exert its antimycobacterial activity and previous studies reported that EthR represses transcription of ethA by binding to the ethA-ethR intergenic region. Mass spectrometry analyses and site-directed mutagenesis identified a set of four phosphoacceptors, namely Thr2, Thr3, Ser4 and Ser7. This was further supported by the complete loss of PknF-dependent phosphorylation of a phosphoablative EthR mutant protein. Importantly, a phosphomimetic version of EthR, in which all phosphosites were replaced by Asp residues, exhibited markedly decreased DNA-binding activity compared with the wild-type protein. Together, these findings are the first demonstration of EthR phosphorylation and indicate that phosphorylation negatively affects its DNA-binding activity, which may impact ETH resistance levels in M. tb. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis.

    Science.gov (United States)

    Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping

    2017-09-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.

  11. Tissue-specific down-regulation of RIPK 2 in Mycobacterium leprae-infected nu/nu mice

    Directory of Open Access Journals (Sweden)

    Gue-Tae Chae

    1992-01-01

    Full Text Available RIPK 2 is adapter molecule in the signal pathway involved in Toll-like receptors. However, there has been no reported association between receptor-interacting serine/threonine kinase 2 (RIPK 2 expression and the infectious diseases involving mycobacterial infection. This study found that its expression was down-regulated in the footpads and skin but was up-regulated in the liver of Mycobacterium leprae-infected nu/nu mice compared with those of the M. leprae non-infected nu/nu mice. It was observed that the interlukin-12p40 and interferon-γ genes involved in the susceptibility of M. leprae were down-regulated in the skin but were up-regulated in the liver. Overall, this suggests that regulation of RIPK 2 expression is tissue-specifically associated with M. leprae infection.

  12. Development of Escherichia coli and Mycobacterium smegmatis recombinants expressing major Mycobacterium tuberculosis-specific antigenic proteins

    Directory of Open Access Journals (Sweden)

    Hanady A Amoudy

    2016-01-01

    Conclusion: Positive results of cloning and expression suggest that the constructed clones are ready tools for further assessment of their immunogenicity and can be included in improved diagnostic tools and vaccines against TB.

  13. Genome Sequences of Four Subcluster L2 Mycobacterium Phages, Finemlucis, Miley16, Wilder, and Zakai

    OpenAIRE

    Herren, Christopher D.; Peister, Alexandra; Breton, Timothy S.; Hill, Maggie S.; Anderson, Marcy S.; Chang, Adeline W.; Klein, Sydney B.; Thornton, Mackenzie M.; Vars, Stacy J.; Wagner, Kasey E.; Wiebe, Paige L.; Williams, Thomas G.; Yanez, Coraima P.; Ackles, Jasanta M.; Artis, Darius

    2017-01-01

    ABSTRACT Four subcluster L2 mycobacteriophages, Finemlucis, Miley16, Wilder, and Zakai, that infect Mycobacterium smegmatis mc2155 were isolated. The four phages are closely related to each other and code for 12 to 14 tRNAs and 130 to 132 putative protein-coding genes, including tyrosine integrases, cro, immunity repressors, and excise genes involved in the establishment of lysogeny.

  14. Lymphoproliferative and gamma interferon responses to stress-regulated Mycobacterium avium subsp. paratuberculosis recombinant proteins

    Science.gov (United States)

    Johne’s disease in ruminants is a chronic infection of the intestines caused by Mycobacterium avium subsp. paratuberculosis. Economic losses associated with Johne’s disease arise due to premature culling, reduced production of milk and wool and mortalities. The disease is characterised by a long inc...

  15. Mycobacterium tuberculosis Phosphoenolpyruvate Carboxykinase Is Regulated by Redox Mechanisms and Interaction with Thioredoxin

    Czech Academy of Sciences Publication Activity Database

    Machová, Iva; Snášel, Jan; Zimmermann, M.; Laubitz, D.; Plocinski, P.; Oehlmann, W.; Singh, M.; Dostál, Jiří; Sauer, U.; Pichová, Iva

    2014-01-01

    Roč. 289, č. 19 (2014), s. 13066-13078 ISSN 0021-9258 EU Projects: European Commission(XE) 241587 - SYSTEMTB Grant - others:OPPK(CZ) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : enzyme kinetics * hypoxia * metabolism * Mycobacterium tuberculosis * oxidation-reduction * thioredoxin * Phosphoenolpyruvate carboxykinase Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  16. Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis

    Science.gov (United States)

    Vilchèze, Catherine; Molle, Virginie; Carrère-Kremer, Séverine; Leiba, Jade; Mourey, Lionel; Shenai, Shubhada; Baronian, Grégory; Tufariello, Joann; Hartman, Travis; Veyron-Churlet, Romain; Trivelli, Xavier; Tiwari, Sangeeta; Weinrick, Brian; Alland, David; Guérardel, Yann; Jacobs, William R.; Kremer, Laurent

    2014-01-01

    Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4–6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase

  17. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Catherine Vilchèze

    2014-05-01

    Full Text Available Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4-6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of

  18. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Aashish Srivastava

    Full Text Available Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis, purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis, and an aminoacyl-tRNA synthetase (AARS mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens.

  19. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery.

    Science.gov (United States)

    Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte

    2017-07-13

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.

  20. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C.; Jacobs, Jr, William R.; Kremer, Laurent (CNRS-UMR); (Einstein); (TAM)

    2011-08-24

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA{_}T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development.

  1. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis.

    Science.gov (United States)

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C; Jacobs, William R; Kremer, Laurent

    2010-12-01

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA_T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development. © 2010 Blackwell Publishing Ltd.

  2. Regulation of macrophage accessory cell activity by mycobacteria. I. Ia expression in normal and irradiated mice infected with Mycobacterium mycroti

    International Nuclear Information System (INIS)

    Kaye, P.M.; Feldmann, M.

    1986-01-01

    CBA/Ca mice were infected by either the intravenous or intraperitoneal route with Mycobacterium microti and the subsequent changes in local macrophage populations examined. Following infection, the number of macrophages increased and they showed greater expression of both MHC Class II molecules. This response was not dependent on viability of the mycobacteria, in contrast to reports with other microorganisms such as Listeria. Studies in sublethally irradiated mice indicated that persistent antigen could give rise to a response after a period of host recovery which was radiation dose dependent. This procedure also highlighted differences in the regulation of different murine class II antigens in vivo, as seen by delayed re-expression of I-E antigens. Macrophage accessory cell function, as assessed by an in vitro T cell proliferation assay, correlated with Ia expression after fixation, but not after indomethacin treatment; this highlights the diverse nature of regulatory molecules produced by these cells. (author)

  3. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis.

    Science.gov (United States)

    Rothchild, Alissa C; Sissons, James R; Shafiani, Shahin; Plaisier, Christopher; Min, Deborah; Mai, Dat; Gilchrist, Mark; Peschon, Jacques; Larson, Ryan P; Bergthaler, Andreas; Baliga, Nitin S; Urdahl, Kevin B; Aderem, Alan

    2016-10-11

    The regulation of host-pathogen interactions during Mycobacterium tuberculosis (Mtb) infection remains unresolved. MicroRNAs (miRNAs) are important regulators of the immune system, and so we used a systems biology approach to construct an miRNA regulatory network activated in macrophages during Mtb infection. Our network comprises 77 putative miRNAs that are associated with temporal gene expression signatures in macrophages early after Mtb infection. In this study, we demonstrate a dual role for one of these regulators, miR-155. On the one hand, miR-155 maintains the survival of Mtb-infected macrophages, thereby providing a niche favoring bacterial replication; on the other hand, miR-155 promotes the survival and function of Mtb-specific T cells, enabling an effective adaptive immune response. MiR-155-induced cell survival is mediated through the SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)/protein kinase B (Akt) pathway. Thus, dual regulation of the same cell survival pathway in innate and adaptive immune cells leads to vastly different outcomes with respect to bacterial containment.

  4. Crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis CRP/FNR family transcription regulator

    International Nuclear Information System (INIS)

    Akif, Mohd; Akhter, Yusuf; Hasnain, Seyed E.; Mande, Shekhar C.

    2006-01-01

    The CRP/FNR family transcription factor from M. tuberculosis H37Rv has been crystallized in space group P2 1 2 1 2 1 in the absence of cAMP. The crystals show the presence of a dimeric molecule in the asymmetric unit. CRP/FNR family members are transcription factors that regulate the transcription of many genes in Escherichia coli and other organisms. Mycobacterium tuberculosis H37Rv contains a probable CRP/FNR homologue encoded by the open reading frame Rv3676. The deletion of this gene is known to cause growth defects in cell culture, in bone marrow-derived macrophages and in a mouse model of tuberculosis. The mycobacterial gene Rv3676 shares ∼32% sequence identity with prototype E. coli CRP. The structure of the protein might provide insight into transcriptional regulation in the pathogen by this protein. The M. tuberculosis CRP/FNR transcription regulator was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 54.1, b = 84.6, c = 101.2 Å. The crystal diffracted to a resolution of 2.9 Å. Matthews coefficient and self-rotation function calculations reveal the presence of two monomers in the asymmetric unit

  5. MicroRNA-365 in macrophages regulates Mycobacterium tuberculosis-induced active pulmonary tuberculosis via interleukin-6.

    Science.gov (United States)

    Song, Qingzhang; Li, Hui; Shao, Hua; Li, Chunling; Lu, Xiao

    2015-01-01

    The present study is to investigate the relationship between microRNA (miR)-365 expression and the levels of interleukin (IL)-6 mRNA and protein in patients with active tuberculosis. From June 2011 to June 2014, 48 patients with active pulmonary tuberculosis induced by Mycobacterium tuberculosis were included in the study. In addition, 23 healthy subjects were enrolled as control. Macrophages were collected by pulmonary alveolus lavage. In addition, serum and mononuclear cells were isolated from peripheral blood. The levels of miR-365 and IL-6 in macrophages, mononuclear cells and serum were determined using quantitative real-time polymerase chain reaction. The protein expression of IL-6 in macrophages and mononuclear cells was measured using Western blotting, while that in serum was detected by enzyme-linked immunoabsorbent assay. Expression of IL-6 mRNA and protein was significantly enhanced in patients with active pulmonary tuberculosis. Increase of IL-6 protein concentration in serum was probably due to the release of IL-6 protein from mononuclear cells in the blood. In addition, miR-365 levels were significantly lowered in patients with active pulmonary tuberculosis. Up-regulated IL-6 expression in macrophages, mononuclear cells and serum in patients with active pulmonary tuberculosis is related to the down-regulation of miR-365, suggesting that miR-365 may regulate the occurrence and immune responses of active pulmonary tuberculosis via IL-6.

  6. Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus.

    Science.gov (United States)

    Richard, Matthias; Gutiérrez, Ana Victoria; Viljoen, Albertus J; Ghigo, Eric; Blaise, Mickael; Kremer, Laurent

    2018-01-01

    Mycobacterium abscessus is an emerging human pathogen causing severe pulmonary infections and is refractory to standard antibiotherapy, yet few drug resistance mechanisms have been reported in this organism. Recently, mutations in MAB_4384 leading to up-regulation of the MmpS5/MmpL5 efflux pump were linked to increased resistance to thiacetazone derivatives. Herein, the DNA-binding activity of MAB_4384 was investigated by electrophoretic mobility shift assays using the palindromic sequence IR S5/L5 located upstream of mmpS5/mmpL5 . Introduction of point mutations within IR S5/L5 identified the sequence requirements for optimal binding of the regulator. Moreover, formation of the protein/IR S5/L5 complex was severely impaired for MAB_4384 harboring D14N or F57L substitutions. IR S5/L5 /lacZ reporter fusions in M. abscessus demonstrated increased β-galactosidase activity either in strains lacking a functional MAB_4384 or in cultures treated with the TAC analogs. In addition, X-ray crystallography confirmed a typical TetR homodimeric structure of MAB_4384 and unraveled a putative ligand binding site in which the analogs could be docked. Overall, these results support drug recognition of the MAB_4384 TetR regulator, alleviating its binding to IR S5/L5 and steering up-regulation of MmpS5/MmpL5. This study provides new mechanistic and structural details of TetR-dependent regulatory mechanisms of efflux pumps and drug resistance in mycobacteria.

  7. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Wenting He

    2018-02-01

    Full Text Available The mechanisms by which vitamins regulate immunity and their effect as an adjuvant treatment for tuberculosis have gradually become very important research topics. Studies have found that vitamin B5 (VB5 can promote epithelial cells to express inflammatory cytokines. We aimed to examine the proinflammatory and antibacterial effect of VB5 in macrophages infected with Mycobacterium tuberculosis (MTB strain H37Rv and the therapeutic potential of VB5 in vivo with tuberculosis. We investigated the activation of inflammatory signal molecules (NF-κB, AKT, JNK, ERK, and p38, the expression of two primary inflammatory cytokines (tumor necrosis factor and interleukin-6 and the bacterial burdens in H37Rv-infected macrophages stimulated with VB5 to explore the effect of VB5 on the inflammatory and antibacterial responses of macrophages. We further treated the H37Rv-infected mice with VB5 to explore VB5’s promotion of the clearance of H37Rv in the lungs and the effect of VB5 on regulating the percentage of inflammatory cells. Our data showed that VB5 enhanced the phagocytosis and inflammatory response in macrophages infected with H37Rv. Oral administration of VB5 decreased the number of colony-forming units of H37Rv in lungs of mice at 1, 2, and 4 weeks after infection. In addition, VB5 regulated the percentage of macrophages and promoted CD4+ T cells to express interferon-γ and interleukin-17; however, it had no effect on the percentage of polymorphonuclear neutrophils, CD4+ and CD8+ T cells. In conclusion, VB5 significantly inhibits the growth of MTB by regulating innate immunity and adaptive immunity.

  8. VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins.

    Directory of Open Access Journals (Sweden)

    Bintou Ahmadou Ahidjo

    Full Text Available The chromosome of Mycobacterium tuberculosis (Mtb encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as 'non-toxic'. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of 'non-toxic' VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase activity demonstrated for Rv0065 and Rv0617--VapC proteins with similarity to Rv0549c and Rv3320c, respectively--these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism.

  9. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP Binding: Requirement for Establishing Chronic Persistent Infection

    Energy Technology Data Exchange (ETDEWEB)

    Drumm, J.; Mi, K; Bilder, P; Sun, M; Lim, J; Bielefeldt-Ohmann, H; Basaraba, R; So, M; Zhu, G; et. al.

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  10. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage

    Directory of Open Access Journals (Sweden)

    Babban Jee

    2017-07-01

    Full Text Available Mycobacterium tuberculosis (MTB adopts a special survival strategy to overcome the killing mechanism(s of host immune system. Amongst the many known factors, small heat shock protein 16.3 (sHSP16.3 of MTB encoded by gene hspX has been reported to be critical for the survival of MTB. In the present study, the effect of recombinant murine interferon-gamma (rmIFN-γ and recombinant murine interleukin-10 (rmIL-10 on the expression of gene hspX of MTB in murine macrophage RAW264.7 has been investigated. By real-time RT-PCR, it was observed that three increasing concentrations (5, 25 and 50 ng/ml of rmIFN-γ significantly up-regulated the expression of hspX whereas similar concentrations of rmIL-10 (5, 25 and 50 ng/ml significantly down-regulated the hspX expression. This effect was not only dependent on the concentration of the stimulus but this was time-dependent as well. A contrasting pattern of hspX expression was observed against combinations of two different concentrations of rmIFN-γ and rmIL-10. The study results suggest that rIL-10 mediated down-regulation of hspX expression, in the presence of low concentration of rIFN-γ, could be used as an important strategy to decrease the dormancy of MTB in its host and thus making MTB susceptible to the standard anti-mycobacterial therapy used for treating tuberculosis. However, as these are only preliminary results in the murine cell line model, this hypothesis needs to be first validated in human cell lines and subsequently in animal models mimicking the latent infection using clinical isolates of MTB before considering the development of modified regimens for humans.

  11. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    Science.gov (United States)

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different

  12. "Genetic regulation of Mycobacterium tuberculosis in a lipid-rich environment".

    Science.gov (United States)

    Aguilar-Ayala, Diana A; Palomino, Juan Carlos; Vandamme, Peter; Martin, Anandi; Gonzalez-Y-Merchand, Jorge A

    2017-11-01

    Tuberculosis (TB) remains as one of the leading causes of morbidity and mortality among infectious diseases worldwide. Although lipids (mainly fatty acids and cholesterol) have been reported to play an important role during active and latent infection of M. tuberculosis, there are other molecular aspects of bacterial response to those substrates that are not fully understood, involving gene regulation background. This review highlights recent insights on pathogen gene expression: regulation during its active growth, during survival in presence of lipids and under variable hostile host microenvironments. We also propose several application options of this knowledge that may contribute for improved TB control. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development.

    Science.gov (United States)

    Broset, Esther; Martín, Carlos; Gonzalo-Asensio, Jesús

    2015-10-20

    Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology. Copyright © 2015 Broset et al.

  14. Evolutionary Landscape of the Mycobacterium tuberculosis Complex from the Viewpoint of PhoPR: Implications for Virulence Regulation and Application to Vaccine Development

    Science.gov (United States)

    Broset, Esther

    2015-01-01

    ABSTRACT Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacterium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6, biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tuberculosis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mutations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to transmit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon, allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactivation. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human vaccinology. PMID:26489860

  15. TLR2-Modulating Lipoproteins of the Mycobacterium tuberculosis Complex Enhance the HIV Infectivity of CD4+ T Cells.

    Science.gov (United States)

    Skerry, Ciaran; Klinkenberg, Lee G; Page, Kathleen R; Karakousis, Petros C

    2016-01-01

    Co-infection with Mycobacterium tuberculosis accelerates progression from HIV to AIDS. Our previous studies showed that M. tuberculosis complex, unlike M. smegmatis, enhances TLR2-dependent susceptibility of CD4+ T cells to HIV. The M. tuberculosis complex produces multiple TLR2-stimulating lipoproteins, which are absent in M. smegmatis. M. tuberculosis production of mature lipoproteins and TLR2 stimulation is dependent on cleavage by lipoprotein signal peptidase A (LspA). In order to determine the role of potential TLR2-stimulating lipoproteins on mycobacterial-mediated HIV infectivity of CD4+ T cells, we generated M. smegmatis recombinant strains overexpressing genes encoding various M. bovis BCG lipoproteins, as well as a Mycobacterium bovis BCG strain deficient in LspA (ΔlspA). Exposure of human peripheral blood mononuclear cells (PBMC) to M. smegmatis strains overexpressing the BCG lipoproteins, LprF (p<0.01), LprH (p<0.05), LprI (p<0.05), LprP (p<0.001), LprQ (p<0.005), MPT83 (p<0.005), or PhoS1 (p<0.05), resulted in increased HIV infectivity of CD4+ T cells isolated from these PBMC. Conversely, infection of PBMC with ΔlspA reduced HIV infectivity of CD4+ T cells by 40% relative to BCG-infected cells (p<0.05). These results may have important implications for TB vaccination programs in areas with high mother-to-child HIV transmission.

  16. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story

    Science.gov (United States)

    van Dam, Jesse C. J.; Martins dos Santos, Vitor A. P.

    2018-01-01

    Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome. PMID:29364195

  17. A Novel TetR-Like Transcriptional Regulator Is Induced in Acid-Nitrosative Stress and Controls Expression of an Efflux Pump in Mycobacteria

    Directory of Open Access Journals (Sweden)

    Filomena Perrone

    2017-10-01

    Full Text Available Mycobacterium tuberculosis has the ability to survive inside macrophages under acid-nitrosative stress. M. tuberculosis Rv1685c and its ortholog in M. smegmatis, MSMEG_3765, are induced on exposure to acid-nitrosative stress. Both genes are annotated as TetR transcriptional regulators, a family of proteins that regulate a wide range of cellular activities, including multidrug resistance, carbon catabolism and virulence. Here, we demonstrate that MSMEG_3765 is co-transcribed with the upstream genes MSMEG_3762 and MSMEG_3763, encoding efflux pump components. RTq-PCR and GFP-reporter assays showed that the MSMEG_3762/63/65 gene cluster, and the orthologous region in M. tuberculosis (Rv1687c/86c/85c, was up-regulated in a MSMEG_3765 null mutant, suggesting that MSMEG_3765 acts as a repressor, typical of this family of regulators. We further defined the MSMEG_3765 regulon using genome-wide transcriptional profiling and used reporter assays to confirm that the MSMEG_3762/63/65 promoter was induced under acid-nitrosative stress. A putative 36 bp regulatory motif was identified upstream of the gene clusters in both M. smegmatis and M. tuberculosis and purified recombinant MSMEG_3765 protein was found to bind to DNA fragments containing this motif from both M. smegmatis and M. tuberculosis upstream regulatory regions. These results suggest that the TetR repressor MSMEG_3765/Rv1685c controls expression of an efflux pump with an, as yet, undefined role in the mycobacterial response to acid-nitrosative stress.

  18. Natural polyphenols down-regulate universal stress protein in Mycobacterium tuberculosis: An in-silico approach

    Directory of Open Access Journals (Sweden)

    M Vijey Aanandhi

    2014-01-01

    Full Text Available Universal stress protein (USP is a novel target to overcome the tuberculosis resistance. Our present study enlightens the possibilities of some natural polyphenols as an antioxidant for USP. The study has shown some molecular simulations of some selected natural antioxidants with USP. We have considered USP (Rv1636 strain for homology modeling and the selected template was taken for the docking study. Curcumin, catechin, reservetrol has shown ARG 136 (1.8Ε hydrogen bonding and two ionic bonding with carboxyl group of curcumin with LEU 130 (3.3Ε and ASN 144 (3.4Ε respectively. INH was taken for the standard molecule to perform molecular simulation. It showed poor binding interaction with the target, that is, −5.18 kcal, and two hydrogen bonding with SER 140 (1.887Ε, ARG 147 (2.064Ε respectively. The study indicates possible new generation curcumin analogue for future therapy to down-regulate USP.

  19. Morphological and proteomic analysis of early stage air-liquid interface biofilm formation in Mycobacterium smegmatis

    Czech Academy of Sciences Publication Activity Database

    Sochorová, Zuzana; Petráčková, Denisa; Sitařová, B.; Buriánková, Karolína; Bezoušková, Silvia; Benada, Oldřich; Kofroňová, Olga; Janeček, Jiří; Halada, Petr; Weiser, Jaroslav

    2014-01-01

    Roč. 160, JUL 2014 (2014), s. 1346-1356 ISSN 1350-0872 R&D Projects: GA AV ČR IAA500200913 Institutional support: RVO:61388971 Keywords : RHODOCOCCUS-JOSTII RHA1 * BACILLUS-SUBTILIS * GLASS- BEADS Subject RIV: EE - Microbiology, Virology Impact factor: 2.557, year: 2014

  20. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein.

    Directory of Open Access Journals (Sweden)

    Mark J White

    2011-03-01

    Full Text Available Mycobacterium tuberculosis remains a significant global health concern largely due to its ability to persist for extended periods within the granuloma of the host. While residing within the granuloma, the tubercle bacilli are likely to be exposed to stress that can result in formation of aberrant proteins with altered structures. Bacteria encode stress responsive determinants such as proteases and chaperones to deal with misfolded or unfolded proteins. pepD encodes an HtrA-like serine protease and is thought to process proteins altered following exposure of M. tuberculosis to extra-cytoplasmic stress. PepD functions both as a protease and chaperone in vitro, and is required for aspects of M. tuberculosis virulence in vivo. pepD is directly regulated by the stress-responsive two-component signal transduction system MprAB and indirectly by extracytoplasmic function (ECF sigma factor SigE. Loss of PepD also impacts expression of other stress-responsive determinants in M. tuberculosis. To further understand the role of PepD in stress adaptation by M. tuberculosis, a proteomics approach was taken to identify binding proteins and possible substrates of this protein. Using subcellular fractionation, the cellular localization of wild-type and PepD variants was determined. Purified fractions as well as whole cell lysates from Mycobacterium smegmatis or M. tuberculosis strains expressing a catalytically compromised PepD variant were immunoprecipitated for PepD and subjected to LC-MS/MS analyses. Using this strategy, the 35-kDa antigen encoding a homolog of the PspA phage shock protein was identified as a predominant binding partner and substrate of PepD. We postulate that proteolytic cleavage of the 35-kDa antigen by PepD helps maintain cell wall homeostasis in Mycobacterium and regulates specific stress response pathways during periods of extracytoplasmic stress.

  1. Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae

    Directory of Open Access Journals (Sweden)

    Etienne Gilles

    2007-05-01

    Full Text Available Abstract Background The outermost layer of the bacterial surface is of crucial importance because it is in constant interaction with the host. Glycopeptidolipids (GPLs are major surface glycolipids present on various mycobacterial species. In the fast-grower model organism Mycobacterium smegmatis, GPL biosynthesis involves approximately 30 genes all mapping to a single region of 65 kb. Results We have recently sequenced the complete genomes of two fast-growers causing human infections, Mycobacterium abscessus (CIP 104536T and M. chelonae (CIP 104535T. We show here that these two species contain genes corresponding to all those of the M. smegmatis "GPL locus", with extensive conservation of the predicted protein sequences consistent with the production of GPL molecules indistinguishable by biochemical analysis. However, the GPL locus appears to be split into several parts in M. chelonae and M. abscessus. One large cluster (19 genes comprises all genes involved in the synthesis of the tripeptide-aminoalcohol moiety, the glycosylation of the lipopeptide and methylation/acetylation modifications. We provide evidence that a duplicated acetyltransferase (atf1 and atf2 in M. abscessus and M. chelonae has evolved through specialization, being able to transfer one acetyl at once in a sequential manner. There is a second smaller and distant (M. chelonae, 900 kb; M. abscessus, 3 Mb cluster of six genes involved in the synthesis of the fatty acyl moiety and its attachment to the tripeptide-aminoalcohol moiety. The other genes are scattered throughout the genome, including two genes encoding putative regulatory proteins. Conclusion Although these three species produce identical GPL molecules, the organization of GPL genes differ between them, thus constituting species-specific signatures. An hypothesis is that the compact organization of the GPL locus in M. smegmatis represents the ancestral form and that evolution has scattered various pieces throughout the

  2. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis

    OpenAIRE

    Young, Douglas B.; Comas, I?aki; de Carvalho, Luiz P. S.

    2015-01-01

    Comparison of genome sequences from clinical isolates of Mycobacterium tuberculosis with phylogenetically-related pathogens Mycobacterium marinum, Mycobacterium kansasii, and Mycobacterium leprae reveals diversity amongst genes associated with vitamin B12-related metabolism. Diversity is generated by gene deletion events, differential acquisition of genes by horizontal transfer, and single nucleotide polymorphisms (SNPs) with predicted impact on protein function and transcriptional regulation...

  3. Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFα, NFκB, p38 and caspase 8 dependent pathways

    Directory of Open Access Journals (Sweden)

    Elkington Paul T

    2011-05-01

    Full Text Available Abstract Tuberculosis (TB of the central nervous system (CNS is a deadly disease characterized by extensive tissue destruction, driven by molecules such as Matrix Metalloproteinase-2 (MMP-2 which targets CNS-specific substrates. In a simplified cellular model of CNS TB, we demonstrated that conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb, but not direct infection, unexpectedly down-regulates constitutive microglial MMP-2 gene expression and secretion by 72.8% at 24 hours, sustained up to 96 hours (P M.tb-infected monocyte-dependent networks paradoxically involves the pro-inflammatory mediators TNF-α, p38 MAP kinase and NFκB in addition to a novel caspase 8-dependent pathway.

  4. MiR-155–regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis

    Science.gov (United States)

    Rothchild, Alissa C.; Sissons, James R.; Shafiani, Shahin; Plaisier, Christopher; Min, Deborah; Mai, Dat; Gilchrist, Mark; Peschon, Jacques; Larson, Ryan P.; Bergthaler, Andreas; Baliga, Nitin S.; Urdahl, Kevin B.; Aderem, Alan

    2016-01-01

    The regulation of host–pathogen interactions during Mycobacterium tuberculosis (Mtb) infection remains unresolved. MicroRNAs (miRNAs) are important regulators of the immune system, and so we used a systems biology approach to construct an miRNA regulatory network activated in macrophages during Mtb infection. Our network comprises 77 putative miRNAs that are associated with temporal gene expression signatures in macrophages early after Mtb infection. In this study, we demonstrate a dual role for one of these regulators, miR-155. On the one hand, miR-155 maintains the survival of Mtb-infected macrophages, thereby providing a niche favoring bacterial replication; on the other hand, miR-155 promotes the survival and function of Mtb-specific T cells, enabling an effective adaptive immune response. MiR-155–induced cell survival is mediated through the SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)/protein kinase B (Akt) pathway. Thus, dual regulation of the same cell survival pathway in innate and adaptive immune cells leads to vastly different outcomes with respect to bacterial containment. PMID:27681624

  5. Mechanistic insights into a novel exporter-importer system of Mycobacterium tuberculosis unravel its role in trafficking of iron.

    Directory of Open Access Journals (Sweden)

    Aisha Farhana

    2008-05-01

    Full Text Available Elucidation of the basic mechanistic and biochemical principles underlying siderophore mediated iron uptake in mycobacteria is crucial for targeting this principal survival strategy vis-à-vis virulence determinants of the pathogen. Although, an understanding of siderophore biosynthesis is known, the mechanism of their secretion and uptake still remains elusive.Here, we demonstrate an interplay among three iron regulated Mycobacterium tuberculosis (M.tb proteins, namely, Rv1348 (IrtA, Rv1349 (IrtB and Rv2895c in export and import of M.tb siderophores across the membrane and the consequent iron uptake. IrtA, interestingly, has a fused N-terminal substrate binding domain (SBD, representing an atypical subset of ABC transporters, unlike IrtB that harbors only the permease and ATPase domain. SBD selectively binds to non-ferrated siderophores whereas Rv2895c exhibits relatively higher affinity towards ferrated siderophores. An interaction between the permease domain of IrtB and Rv2895c is evident from GST pull-down assay. In vitro liposome reconstitution experiments further demonstrate that IrtA is indeed a siderophore exporter and the two-component IrtB-Rv2895c system is an importer of ferrated siderophores. Knockout of msmeg_6554, the irtA homologue in Mycobacterium smegmatis, resulted in an impaired M.tb siderophore export that is restored upon complementation with M.tb irtA.Our data suggest the interplay of three proteins, namely IrtA, IrtB and Rv2895c in synergizing the balance of siderophores and thus iron inside the mycobacterial cell.

  6. Sonic hedgehog-dependent induction of microRNA 31 and microRNA 150 regulates Mycobacterium bovis BCG-driven toll-like receptor 2 signaling.

    Science.gov (United States)

    Ghorpade, Devram Sampat; Holla, Sahana; Kaveri, Srini V; Bayry, Jagadeesh; Patil, Shripad A; Balaji, Kithiganahalli Narayanaswamy

    2013-02-01

    Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.

  7. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3.

    Science.gov (United States)

    Kumar, Ranjeet; Sahu, Sanjaya Kumar; Kumar, Manish; Jana, Kuladip; Gupta, Pushpa; Gupta, Umesh D; Kundu, Manikuntala; Basu, Joyoti

    2016-05-01

    Autophagy plays a crucial role in the control of bacterial burden during Mycobacterium tuberculosis infection. MicroRNAs (miRNAs) are small non-coding RNAs that regulate immune signalling and inflammation in response to challenge by pathogens. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the role of miRNAs in regulating M. tuberculosis-induced autophagy in macrophages. Here, we demonstrate that M. tuberculosis infection leads to downregulation of miR-17 and concomitant upregulation of its targets Mcl-1 and STAT3, a transcriptional activator of Mcl-1. Forced expression of miR-17 reduces expression of Mcl-1 and STAT3 and also the interaction between Mcl-1 and Beclin-1. This is directly linked to enhanced autophagy, because Mcl-1 overexpression attenuates the effects of miR-17. At the same time, transfection with a kinase-inactive mutant of protein kinase C δ (PKCδ) (an activator of STAT3) augments M. tuberculosis-induced autophagy, and miR-17 overexpression diminishes phosphorylation of PKCδ, suggesting that an miR-17/PKC δ/STAT3 axis regulates autophagy during M. tuberculosis infection. © 2015 John Wiley & Sons Ltd.

  8. Some South African Rubiaceae Tree Leaf Extracts Have Antimycobacterial Activity Against Pathogenic and Non-pathogenic Mycobacterium Species.

    Science.gov (United States)

    Aro, Abimbola O; Dzoyem, Jean P; Hlokwe, Tiny M; Madoroba, Evelyn; Eloff, Jacobus N; McGaw, Lyndy J

    2015-07-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Many plant species contain antimycobacterial compounds, which may serve as template molecules for new anti-TB drugs. The Rubiaceae family is the largest family of trees in southern Africa, and preliminary evidence revealed antimycobacterial activity in several species of the genus, motivating further studies. Leaf extracts of 15 tree species from the Rubiaceae family were screened for antimycobacterial activity against pathogenic M. tuberculosis and non-pathogenic Mycobacterium smegmatis, Mycobacterium aurum and Mycobacterium bovis BCG (Bacillus Calmette-Guérin) using a twofold serial microdilution assay. Cytotoxicity was determined using a tetrazolium-based colorimetric assay against C3A liver cells and Vero kidney cells. Minimum inhibitory concentration values as low as 0.04 mg/mL against M. smegmatis and M. tuberculosis were recorded. Activity against M. aurum was the best predictor of activity against pathogenic M. tuberculosis (correlation coefficient = 0.9). Bioautography indicated at least 40 different antimycobacterial compounds in the extracts. Cytotoxicity of the extracts varied, and Oxyanthus speciosus had the most promising selectivity index values. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations.

    Science.gov (United States)

    Logsdon, Michelle M; Aldridge, Bree B

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  10. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations

    Directory of Open Access Journals (Sweden)

    Michelle M. Logsdon

    2018-03-01

    Full Text Available Model bacteria, such as E. coli and B. subtilis, tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  11. Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum.

    Science.gov (United States)

    Xiong, Liang-Bin; Sun, Wan-Ju; Liu, Yong-Jun; Wang, Feng-Qing; Wei, Dong-Zhi

    2017-12-06

    Modification of the sterol catabolism pathway in mycobacteria may result in the accumulation of some valuable steroid pharmaceutical intermediates, such as 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). In previous work, sigma factor D (SigD) was identified as a negative factor of the 9-OHAD production in Mycobacterium neoaurum. Here, the deficiency of rip1 putatively coding for a regulated intramembrane proteolysis metalloprotease (Rip1), which could cleave the negative regulator of SigD (anti-SigD), enhanced the transcription of some key genes (choM1, kshA, and hsd4A) in the sterol catabolic pathway. Furthermore, the deletion of rip1 increased the consumption of phytosterols by 37.8% after 96 h of growth in M. neoaurum. The production of 9-OHAD in the engineered M. neoaurumΔkstD1ΔkstD2ΔkstD3Δrip1 (MnΔk123Δrip1) strain was ultimately increased by 27.3% compared to that in its parental strain M. neoaurumΔkstD1ΔkstD2ΔkstD3 (MnΔk123). This study further confirms the important role of SigD-related factors in the catabolism of sterols.

  12. Mycobacterium tuberculosis TlyA Protein Negatively Regulates T Helper (Th) 1 and Th17 Differentiation and Promotes Tuberculosis Pathogenesis*

    Science.gov (United States)

    Rahman, Md. Aejazur; Sobia, Parveen; Dwivedi, Ved Prakash; Bhawsar, Aakansha; Singh, Dhiraj Kumar; Sharma, Pawan; Moodley, Prashini; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence. PMID:25847237

  13. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages.

    Science.gov (United States)

    Fu, Xiangdong; Zeng, Lihong; Liu, Zhi; Ke, Xue; Lei, Lin; Li, Guobao

    2016-08-19

    Tuberculosis (TB) is a serious disease that is characterized by Mycobacterium tuberculosis (M.tb)-triggered immune system impairment and lung tissue damage shows limited treatment options. MicroRNAs (miRNAs) are regulators of gene expression that play critical roles in many human diseases, and can be up- or downregulated by M.tb infection in macrophage. Recently, tissue inhibitor of matrix metalloproteinase (TIMP) 3 has been found to play roles in regulating macrophage inflammation. Here, we found that TIMP3 expression was regulated by miR-206 in M.tb-infected THP-1 human macrophages. In THP-1 cells infected with M.tb, the miR-206 level was significantly upregulated and the expression of TIMP3 was markedly decreased when the secretion of inflammatory cytokines was increased. Inhibition of miR-206 markedly suppressed inflammatory cytokine secretion and upregulated the expression of TIMP3. In contrast, the upregulation of miR-206 promoted the matrix metalloproteinase (MMP) 9 levels and inhibited TIMP3 levels. Using a dual-luciferase reporter assay, a direct interaction between miR-206 and the 3'-untranslated region (UTR) of TIMP3 was confirmed. SiTIMP3, the small interfering RNA (siRNA) specific for TIMP3, significantly attenuated the suppressive effects of miR-206-inhibitor on inflammatory cytokine secretion and MMP9 expression. Our data suggest that miR-206 may function as an inflammatory regulator and drive the expression of MMP9 in M.tb-infected THP-1 cells by targeting TIMP3, indicating that miR-206 is a potential therapeutic target for patients with TB. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Forkhead-associated (FHA) Domain Containing ABC Transporter Rv1747 Is Positively Regulated by Ser/Thr Phosphorylation in Mycobacterium tuberculosis*

    Science.gov (United States)

    Spivey, Vicky L.; Molle, Virginie; Whalan, Rachael H.; Rodgers, Angela; Leiba, Jade; Stach, Lasse; Walker, K. Barry; Smerdon, Stephen J.; Buxton, Roger S.

    2011-01-01

    One major signaling method employed by Mycobacterium tuberculosis, the causative agent of tuberculosis, is through reversible phosphorylation of proteins mediated by protein kinases and phosphatases. This study concerns one of these enzymes, the serine/threonine protein kinase PknF, that is encoded in an operon with Rv1747, an ABC transporter that is necessary for growth of M. tuberculosis in vivo and contains two forkhead-associated (FHA) domains. FHA domains are phosphopeptide recognition motifs that specifically recognize phosphothreonine-containing epitopes. Experiments to determine how PknF regulates the function of Rv1747 demonstrated that phosphorylation occurs on two specific threonine residues, Thr-150 and Thr-208. To determine the in vivo consequences of phosphorylation, infection experiments were performed in bone marrow-derived macrophages and in mice using threonine-to-alanine mutants of Rv1747 that prevent specific phosphorylation and revealed that phosphorylation positively modulates Rv1747 function in vivo. The role of the FHA domains in this regulation was further demonstrated by isothermal titration calorimetry, using peptides containing both phosphothreonine residues. FHA-1 domain mutation resulted in attenuation in macrophages highlighting the critical role of this domain in Rv1747 function. A mutant deleted for pknF did not, however, have a growth phenotype in an infection, suggesting that other kinases can fulfill its role when it is absent. This study provides the first information on the molecular mechanism(s) regulating Rv1747 through PknF-dependent phosphorylation but also indicates that phosphorylation activates Rv1747, which may have important consequences in regulating growth of M. tuberculosis. PMID:21622570

  15. TLR2-Modulating Lipoproteins of the Mycobacterium tuberculosis Complex Enhance the HIV Infectivity of CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Ciaran Skerry

    Full Text Available Co-infection with Mycobacterium tuberculosis accelerates progression from HIV to AIDS. Our previous studies showed that M. tuberculosis complex, unlike M. smegmatis, enhances TLR2-dependent susceptibility of CD4+ T cells to HIV. The M. tuberculosis complex produces multiple TLR2-stimulating lipoproteins, which are absent in M. smegmatis. M. tuberculosis production of mature lipoproteins and TLR2 stimulation is dependent on cleavage by lipoprotein signal peptidase A (LspA. In order to determine the role of potential TLR2-stimulating lipoproteins on mycobacterial-mediated HIV infectivity of CD4+ T cells, we generated M. smegmatis recombinant strains overexpressing genes encoding various M. bovis BCG lipoproteins, as well as a Mycobacterium bovis BCG strain deficient in LspA (ΔlspA. Exposure of human peripheral blood mononuclear cells (PBMC to M. smegmatis strains overexpressing the BCG lipoproteins, LprF (p<0.01, LprH (p<0.05, LprI (p<0.05, LprP (p<0.001, LprQ (p<0.005, MPT83 (p<0.005, or PhoS1 (p<0.05, resulted in increased HIV infectivity of CD4+ T cells isolated from these PBMC. Conversely, infection of PBMC with ΔlspA reduced HIV infectivity of CD4+ T cells by 40% relative to BCG-infected cells (p<0.05. These results may have important implications for TB vaccination programs in areas with high mother-to-child HIV transmission.

  16. Oxidative Unfolding of the Rubredoxin Domain and the Natively Disordered N-terminal Region Regulate the Catalytic Activity of Mycobacterium tuberculosis Protein Kinase G.

    Science.gov (United States)

    Wittwer, Matthias; Luo, Qi; Kaila, Ville R I; Dames, Sonja A

    2016-12-30

    Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1-75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74-147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148-420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae to ticarcillin in combination with clavulanic acid.

    OpenAIRE

    Casal, M J; Rodriguez, F C; Luna, M D; Benavente, M C

    1987-01-01

    The in vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae (M. chelonei) to ticarcillin in combination with calvulanic acid (CA) was studied by the agar dilution method. All the M. tuberculosis, M. bovis, and M. africanum strains were inhibited at a ticarcillin concentration of 32 micrograms/ml or lower in combination with 5 micrograms of CA. M. chelonae and M. avium strains ...

  18. Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models

    Science.gov (United States)

    Magombedze, Gesham; Eda, Shigetoshi; Stabel, Judy

    2015-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular bacterial pathogen that causes Johne’s disease (JD) in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type), characterized by antigen-specific γ-interferon (IFN-γ). The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type). Interleukin-10 (IL-10) is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011). Our models predicted that IL-10 can have different roles during MAP infection, (i) it can suppress the Th1 expression, (ii) can enhance Th2 (IL-4) expression, and (iii) can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ) can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection. PMID:26619346

  19. Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models.

    Directory of Open Access Journals (Sweden)

    Gesham Magombedze

    Full Text Available Mycobacterium avium subsp. paratuberculosis (MAP is an intracellular bacterial pathogen that causes Johne's disease (JD in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type, characterized by antigen-specific γ-interferon (IFN-γ. The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type. Interleukin-10 (IL-10 is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011. Our models predicted that IL-10 can have different roles during MAP infection, (i it can suppress the Th1 expression, (ii can enhance Th2 (IL-4 expression, and (iii can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection.

  20. Assessing the inactivation of Mycobacterium avium subsp. paratuberculosis during composting of livestock carcasses.

    Science.gov (United States)

    Tkachuk, Victoria L; Krause, Denis O; McAllister, Tim A; Buckley, Katherine E; Reuter, Tim; Hendrick, Steve; Ominski, Kim H

    2013-05-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants, with substantial economic impacts on the cattle industry. Johne's disease is known for its long latency period, and difficulties in diagnosis are due to insensitivities of current detection methods. Eradication is challenging as M. avium subsp. paratuberculosis can survive for extended periods within the environment, resulting in new infections in naïve animals (W. Xu et al., J. Environ. Qual. 38:437-450, 2009). This study explored the use of a biosecure, static composting structure to inactivate M. avium subsp. paratuberculosis. Mycobacterium smegmatis was also assessed as a surrogate for M. avium subsp. paratuberculosis. Two structures were constructed to hold three cattle carcasses each. Naturally infected tissues and ground beef inoculated with laboratory-cultured M. avium subsp. paratuberculosis and M. smegmatis were placed in nylon and plastic bags to determine effects of temperature and compost environment on viability over 250 days. After removal, samples were cultured and growth of both organisms was assessed after 12 weeks. After 250 days, M. avium subsp. paratuberculosis was still detectable by PCR, while M. smegmatis was not detected after 67 days of composting. Furthermore, M. avium subsp. paratuberculosis remained viable in both implanted nylon and plastic bags over the composting period. As the compost never reached a homogenous thermophilic (55 to 65°C) state throughout each structure, an in vitro experiment was conducted to examine viability of M. avium subsp. paratuberculosis after exposure to 80°C for 90 days. Naturally infected lymph tissues were mixed with and without compost. After 90 days, M. avium subsp. paratuberculosis remained viable despite exposure to temperatures typically higher than that achieved in compost. In conclusion, it is unlikely composting can be used as a means of inactivating M. avium subsp. paratuberculosis associated with cattle

  1. Assessing the Inactivation of Mycobacterium avium subsp. paratuberculosis during Composting of Livestock Carcasses

    Science.gov (United States)

    Tkachuk, Victoria L.; Krause, Denis O.; McAllister, Tim A.; Buckley, Katherine E.; Reuter, Tim; Hendrick, Steve

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants, with substantial economic impacts on the cattle industry. Johne's disease is known for its long latency period, and difficulties in diagnosis are due to insensitivities of current detection methods. Eradication is challenging as M. avium subsp. paratuberculosis can survive for extended periods within the environment, resulting in new infections in naïve animals (W. Xu et al., J. Environ. Qual. 38:437-450, 2009). This study explored the use of a biosecure, static composting structure to inactivate M. avium subsp. paratuberculosis. Mycobacterium smegmatis was also assessed as a surrogate for M. avium subsp. paratuberculosis. Two structures were constructed to hold three cattle carcasses each. Naturally infected tissues and ground beef inoculated with laboratory-cultured M. avium subsp. paratuberculosis and M. smegmatis were placed in nylon and plastic bags to determine effects of temperature and compost environment on viability over 250 days. After removal, samples were cultured and growth of both organisms was assessed after 12 weeks. After 250 days, M. avium subsp. paratuberculosis was still detectable by PCR, while M. smegmatis was not detected after 67 days of composting. Furthermore, M. avium subsp. paratuberculosis remained viable in both implanted nylon and plastic bags over the composting period. As the compost never reached a homogenous thermophilic (55 to 65°C) state throughout each structure, an in vitro experiment was conducted to examine viability of M. avium subsp. paratuberculosis after exposure to 80°C for 90 days. Naturally infected lymph tissues were mixed with and without compost. After 90 days, M. avium subsp. paratuberculosis remained viable despite exposure to temperatures typically higher than that achieved in compost. In conclusion, it is unlikely composting can be used as a means of inactivating M. avium subsp. paratuberculosis associated with cattle

  2. The Mycobacterium tuberculosis homologue of the Mycobacterium ...

    African Journals Online (AJOL)

    With the completion of genome sequencing of Mycobacterium tuberculosis and upsurge in the incidence of M. tuberculosis infection worldwide partly as a result of HIV pandemic, there is need for rationale approach to vaccine and chemotherapy discoveries for M. tuberculosis. The homologue of mig gene of. Mycobacterium ...

  3. In Vitro Activity of Selected West African Medicinal Plants against Mycobacterium ulcerans Disease.

    Science.gov (United States)

    Tsouh Fokou, Patrick Valere; Kissi-Twum, Abena Adomah; Yeboah-Manu, Dorothy; Appiah-Opong, Regina; Addo, Phyllis; Tchokouaha Yamthe, Lauve Rachel; Ngoutane Mfopa, Alvine; Fekam Boyom, Fabrice; Nyarko, Alexander Kwadwo

    2016-04-13

    Buruli ulcer (BU) is the third most prevalent mycobacteriosis, after tuberculosis and leprosy. The currently recommended combination of rifampicin-streptomycin suffers from side effects and poor compliance, which leads to reliance on local herbal remedies. The objective of this study was to investigate the antimycobacterial properties and toxicity of selected medicinal plants. Sixty-five extracts from 27 plant species were screened against Mycobacterium ulcerans and Mycobacterium smegmatis, using the Resazurin Microtiter Assay (REMA). The cytotoxicity of promising extracts was assayed on normal Chang liver cells by an MTT assay. Twenty five extracts showed activity with minimal inhibitory concentration (MIC) values ranging from 16 µg/mL to 250 µg/mL against M. smegmatis, while 17 showed activity against M. ulcerans with MIC values ranging from 125 µg/mL to 250 µg/mL. In most of the cases, plant extracts with antimycobacterial activity showed no cytotoxicity on normal human liver cells. Exception were Carica papaya, Cleistopholis patens, and Polyalthia suaveolens with 50% cell cytotoxic concentrations (CC50) ranging from 3.8 to 223 µg/mL. These preliminary results support the use of some West African plants in the treatment of Buruli ulcer. Meanwhile, further studies are required to isolate and characterize the active ingredients in the extracts.

  4. In Vitro Activity of Selected West African Medicinal Plants against Mycobacterium ulcerans Disease

    Directory of Open Access Journals (Sweden)

    Patrick Valere Tsouh Fokou

    2016-04-01

    Full Text Available Buruli ulcer (BU is the third most prevalent mycobacteriosis, after tuberculosis and leprosy. The currently recommended combination of rifampicin-streptomycin suffers from side effects and poor compliance, which leads to reliance on local herbal remedies. The objective of this study was to investigate the antimycobacterial properties and toxicity of selected medicinal plants. Sixty-five extracts from 27 plant species were screened against Mycobacterium ulcerans and Mycobacterium smegmatis, using the Resazurin Microtiter Assay (REMA. The cytotoxicity of promising extracts was assayed on normal Chang liver cells by an MTT assay. Twenty five extracts showed activity with minimal inhibitory concentration (MIC values ranging from 16 µg/mL to 250 µg/mL against M. smegmatis, while 17 showed activity against M. ulcerans with MIC values ranging from 125 µg/mL to 250 µg/mL. In most of the cases, plant extracts with antimycobacterial activity showed no cytotoxicity on normal human liver cells. Exception were Carica papaya, Cleistopholis patens, and Polyalthia suaveolens with 50% cell cytotoxic concentrations (CC50 ranging from 3.8 to 223 µg/mL. These preliminary results support the use of some West African plants in the treatment of Buruli ulcer. Meanwhile, further studies are required to isolate and characterize the active ingredients in the extracts.

  5. Mycobacterium tuberculosis septum site determining protein, Ssd encoded by rv3660c, promotes filamentation and elicits an alternative metabolic and dormancy stress response

    Directory of Open Access Journals (Sweden)

    Crew Rebecca

    2011-04-01

    Full Text Available Abstract Background Proteins that are involved in regulation of cell division and cell cycle progression remain undefined in Mycobacterium tuberculosis. In addition, there is a growing appreciation that regulation of cell replication at the point of division is important in establishing a non-replicating persistent state. Accordingly, the objective of this study was to use a systematic approach consisting of consensus-modeling bioinformatics, ultrastructural analysis, and transcriptional mapping to identify septum regulatory proteins that participate in adaptive metabolic responses in M. tuberculosis. Results Septum site determining protein (Ssd, encoded by rv3660c was discovered to be an ortholog of septum site regulating proteins in actinobacteria by bioinformatics analysis. Increased expression of ssd in M. smegmatis and M. tuberculosis inhibited septum formation resulting in elongated cells devoid of septa. Transcriptional mapping in M. tuberculosis showed that increased ssd expression elicited a unique response including the dormancy regulon and alternative sigma factors that are thought to play a role in adaptive metabolism. Disruption of rv3660c by transposon insertion negated the unique transcriptional response and led to a reduced bacterial length. Conclusions This study establishes the first connection between a septum regulatory protein and induction of alternative metabolism consisting of alternative sigma factors and the dormancy regulon that is associated with establishing a non-replicating persistent intracellular lifestyle. The identification of a regulatory component involved in cell cycle regulation linked to the dormancy response, whether directly or indirectly, provides a foundation for additional studies and furthers our understanding of the complex mechanisms involved in establishing a non-replicating state and resumption of growth.

  6. Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacterium smegmatis

    OpenAIRE

    Jean Bosco Jouda; Isabelle Kamga Mawabo; Augustin Notedji; Céline Djama Mbazoa; Jean Nkenfou; Jean Wandji; Céline Nguefeu Nkenfou

    2016-01-01

    Objective/background: According to estimates by the World Health Organization, there were 9.6 million new tuberculosis (TB) cases in 2014: 5.4 million among men, 3.2 million among women, and 1.0 million among children. There were also 1.5 million TB deaths. Although there are potent anti-TB molecules, the misuse of these drugs in addition to inconsistent or partial treatment have led to the development of multidrug-resistant TB and extensively drug-resistant TB. It is established that plants ...

  7. Uracil excision repair in Mycobacterium tuberculosis cell-free extracts.

    Science.gov (United States)

    Kumar, Pradeep; Bharti, Sanjay Kumar; Varshney, Umesh

    2011-05-01

    Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Thermal Inactivation of Mycobacterium avium subsp. paratuberculosis in Artificially Contaminated Milk by Direct Steam Injection

    Science.gov (United States)

    Butot, Sophie; Jagadeesan, Balamurugan; Bakker, Douwe; Donaghy, John

    2016-01-01

    ABSTRACT The efficiency of direct steam injection (DSI) at 105°C for 3 s to inactivate Mycobacterium avium subsp. paratuberculosis in milk at a pilot-plant scale was investigated. Milk samples were artificially contaminated with M. avium subsp. paratuberculosis and also with cow fecal material naturally infected with M. avium subsp. paratuberculosis. We also tested milk artificially contaminated with Mycobacterium smegmatis as a candidate surrogate to compare thermal inactivation between M. smegmatis and M. avium subsp. paratuberculosis. Following the DSI process, no viable M. avium subsp. paratuberculosis or M. smegmatis was recovered using culture methods for both strains. For pure M. avium subsp. paratuberculosis cultures, a minimum reduction of 5.6 log10 was achieved with DSI, and a minimum reduction of 5.7 log10 was found with M. smegmatis. The minimum log10 reduction for wild-type M. avium subsp. paratuberculosis naturally present in feces was 3.3. In addition, 44 dairy and nondairy powdered infant formula (PIF) ingredients used during the manufacturing process of PIF were tested for an alternate source for M. avium subsp. paratuberculosis and were found to be negative by quantitative PCR (qPCR). In conclusion, the results obtained from this study indicate that a >7-fold-log10 reduction of M. avium subsp. paratuberculosis in milk can be achieved with the applied DSI process. IMPORTANCE M. avium subsp. paratuberculosis is widespread in dairy herds in many countries. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and infected animals can directly or indirectly (i.e., fecal contamination) contaminate milk. Despite much research and debate, there is no conclusive evidence that M. avium subsp. paratuberculosis is a zoonotic bacterium, i.e., one that causes disease in humans. The presence of M. avium subsp. paratuberculosis or its DNA has been reported in dairy products, including pasteurized milk, cheese, and infant formula

  9. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.

    Directory of Open Access Journals (Sweden)

    Anna K Coussens

    2015-07-01

    Full Text Available Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM directly affect Mycobacterium tuberculosis (Mtb growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OHD3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin, the anti-inflammatory PROC (protein C and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OHD3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OHD3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3 to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OHD3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial

  10. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.

    Science.gov (United States)

    Coussens, Anna K; Wilkinson, Robert J; Martineau, Adrian R

    2015-07-01

    Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP) expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM) directly affect Mycobacterium tuberculosis (Mtb) growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OH)D3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin), the anti-inflammatory PROC (protein C) and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OH)D3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OH)D3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3) to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OH)D3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial

  11. TLR-4/miRNA-32-5p/FSTL1 signaling regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages.

    Science.gov (United States)

    Zhang, Zhi-Min; Zhang, Ai-Rong; Xu, Min; Lou, Jun; Qiu, Wei-Qiang

    2017-03-15

    Macrophages play a pivotal role in host immune response against mycobacterial infection, which is tightly modulated by multiple factors, including microRNAs. The purpose of the present study was to investigate the biological function and potential mechanism of miR-32-5p in human macrophages during Mycobacterium tuberculosis (M.tb) infection. The results demonstrated that miR-32-5p was robustly enhanced in THP-1 and U937 cells in response to M.tb infection. TLR-4 signaling was required for upregulation of miR-32-5p induced by M.tb infection. Additionally, the introduction of miR-32-5p strongly increased the survival rate of intracellular mycobacteria, whereas inhibition of miR-32-5p suppressed intracellular growth of mycobacteria during M.tb challenged. Furthermore, forced expression of miR-32-5p dramatically attenuated the accumulation of inflammatory cytokines IL-1β, IL-6 and TNF-α induced by M.tb infection. Conversely, downregulated expression of miR-32-5p led to enhancement in these inflammatory cytokines. More importantly, our study explored that Follistatin-like protein 1 (FSTL1) was a direct and functional target of miR-32-5p. qRT-PCR and western blot analysis further validated that miR-32-5p negatively regulated the expression of FSTL1. Mechanistically, re-expression of FSTL1 attenuated the ability of miR-32-5p to promote mycobacterial survival. Meanwhile, miR-32-5p-mediated inhibition of the inflammatory cytokine production were completely reversed by overexpression of FSTL1. Collectively, our findings demonstrated a novel role of TLR-4/miRNA-32-5p/FSTL1 in the modulation of host defense against mycobacterial infection, which may provide a better understanding of the pathogenesis of tuberculosis and useful information for developing potential therapeutic interventions against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria

    Science.gov (United States)

    Jesenská, Andrea; Sedlác̆ek, Ivo; Damborský, Jir̆í

    2000-01-01

    Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment. PMID:10618227

  13. A TetR family transcriptional factor directly regulates the expression of a 3-methyladenine DNA glycosylase and physically interacts with the enzyme to stimulate its base excision activity in Mycobacterium bovis BCG.

    Science.gov (United States)

    Liu, Lei; Huang, Cheng; He, Zheng-Guo

    2014-03-28

    3-Methyladenine DNA glycosylase recognizes and excises a wide range of damaged bases and thus plays a critical role in base excision repair. However, knowledge on the regulation of DNA glycosylase in prokaryotes and eukaryotes is limited. In this study, we successfully characterized a TetR family transcriptional factor from Mycobacterium bovis bacillus Calmette-Guerin (BCG), namely BCG0878c, which directly regulates the expression of 3-methyladenine DNA glycosylase (designated as MbAAG) and influences the base excision activity of this glycosylase at the post-translational level. Using electrophoretic mobility shift assay and DNase I footprinting experiments, we identified two conserved motifs within the upstream region of mbaag specifically recognized by BCG0878c. Significant down-regulation of mbaag was observed in BCG0878c-overexpressed M. bovis BCG strains. By contrast, about 12-fold up-regulation of mbaag expression was found in bcg0878c-deleted mutant M. bovis BCG strains. β-Galactosidase activity assays also confirmed these results. Thus, BCG0878c can function as a negative regulator of mbaag expression. In addition, the regulator was shown to physically interact with MbAAG to enhance the ability of the glycosylase to bind damaged DNA. Interaction between the two proteins was further found to facilitate AAG-catalyzed removal of hypoxanthine from DNA. These results indicate that a TetR family protein can dually regulate the function of 3-methyladenine DNA glycosylase in M. bovis BCG both at the transcriptional and post-translational levels. These findings enhance our understanding of the expression and regulation of AAG in mycobacteria.

  14. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p.

    Science.gov (United States)

    Bettencourt, Paulo; Marion, Sabrina; Pires, David; Santos, Leonor F; Lastrucci, Claire; Carmo, Nuno; Blake, Jonathon; Benes, Vladimir; Griffiths, Gareth; Neyrolles, Olivier; Lugo-Villarino, Geanncarlo; Anes, Elsa

    2013-01-01

    Mycobacterium tuberculosis (Mtb) is a successful intracellular pathogen that thrives in macrophages (Mφs). There is a need to better understand how Mtb alters cellular processes like phagolysosome biogenesis, a classical determinant of its pathogenesis. A central feature of this bacteria's strategy is the manipulation of Mφ actin. Here, we examined the role of microRNAs (miRNAs) as a potential mechanism in the regulation of actin-mediated events leading to phagocytosis in the context of mycobacteria infection. Given that non-virulent Mycobacterium smegmatis also controls actin filament assembly to prolong its intracellular survival inside host cells, we performed a global transcriptomic analysis to assess the modulation of miRNAs upon M. smegmatis infection of the murine Mφ cell line, J774A.1. This approach identified miR-142-3p as a key candidate to be involved in the regulation of actin dynamics required in phagocytosis. We unequivocally demonstrate that miR-142-3p targets N-Wasp, an actin-binding protein required during microbial challenge. A gain-of-function approach for miR-142-3p revealed a down-regulation of N-Wasp expression accompanied by a decrease of mycobacteria intake, while a loss-of-function approach yielded the reciprocal increase of the phagocytosis process. Equally important, we show Mtb induces the early expression of miR-142-3p and partially down-regulates N-Wasp protein levels in both the murine J774A.1 cell line and primary human Mφs. As proof of principle, the partial siRNA-mediated knock down of N-Wasp resulted in a decrease of Mtb intake by human Mφs, reflected in lower levels of colony-forming units (CFU) counts over time. We therefore propose the modulation of miRNAs as a novel strategy in mycobacterial infection to control factors involved in actin filament assembly and other early events of phagolysosome biogenesis.

  15. Genetic Mimetics of Mycobacterium tuberculosis and Methicillin-Resistant Staphylococcus aureus as Verification Standards for Molecular Diagnostics.

    Science.gov (United States)

    Machowski, Edith Erika; Kana, Bavesh Davandra

    2017-12-01

    Molecular diagnostics have revolutionized the management of health care through enhanced detection of disease or infection and effective enrollment into treatment. In recognition of this, the World Health Organization approved the rollout of nucleic acid amplification technologies for identification of Mycobacterium tuberculosis using platforms such as GeneXpert MTB/RIF, the GenoType MTBDR plus line probe assay, and, more recently, GeneXpert MTB/RIF Ultra. These assays can simultaneously detect tuberculosis infection and assess rifampin resistance. However, their widespread use in health systems requires verification and quality assurance programs. To enable development of these, we report the construction of genetically modified strains of Mycobacterium smegmatis that mimic the profile of Mycobacterium tuberculosis on both the GeneXpert MTB/RIF and the MTBDR plus line probe diagnostic tests. Using site-specific gene editing, we also created derivatives that faithfully mimic the diagnostic result of rifampin-resistant M. tuberculosis , with mutations at positions 513, 516, 526, 531, and 533 in the rifampin resistance-determining region of the rpoB gene. Next, we extended this approach to other diseases and demonstrated that a Staphylococcus aureus gene sequence can be introduced into M. smegmatis to generate a positive response for the SCC mec probe in the GeneXpert SA Nasal Complete molecular diagnostic cartridge, designed for identification of methicillin-resistant S. aureus These biomimetic strains are cost-effective, have low biohazard content, accurately mimic drug resistance, and can be produced with relative ease, thus illustrating their potential for widespread use as verification standards for diagnosis of a variety of diseases. Copyright © 2017 American Society for Microbiology.

  16. Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system.

    Science.gov (United States)

    Slama, Nawel; Leiba, Jade; Eynard, Nathalie; Daffé, Mamadou; Kremer, Laurent; Quémard, Annaïk; Molle, Virginie

    2011-09-02

    The type II fatty acid synthase system of mycobacteria is involved in the biosynthesis of major and essential lipids, mycolic acids, key-factors of Mycobacterium tuberculosis pathogenicity. One reason of the remarkable survival ability of M. tuberculosis in infected hosts is partly related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate synthesis of these lipids in response to environmental changes are unknown. We demonstrate here that HadAB and HadBC dehydratases of this system are phosphorylated by Ser/Thr protein kinases, which negatively affects their enzymatic activity. The phosphorylation of HadAB/BC is growth phase-dependent, suggesting that it represents a mechanism by which mycobacteria might tightly control mycolic acid biosynthesis under non-replicating condition. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Biochemical and functional characterization of MRA-1571 of Mycobacterium tuberculosis H37Ra and effect of its down-regulation on survival in macrophages

    International Nuclear Information System (INIS)

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Singh, Sudheer Kumar

    2017-01-01

    Amino acid biosynthesis has emerged as a source of new drug targets as many bacterial strains auxotrophic for amino acids fail to proliferate under in vivo conditions. Branch chain amino acids (BCAAs) are important for Mycobacterium tuberculosis (Mtb) survival and strains deficient in their biosynthesis were attenuated for growth in mice. Threonine dehydratase (IlvA) is a pyridoxal-5-phosphate (PLP) dependent enzyme that catalyzes the first step in isoleucine biosynthesis. The MRA-1571 of Mycobacterium tuberculosis H37Ra (Mtb-Ra), annotated to be coding for IlvA, was cloned, expressed and purified. Purified protein was subsequently used for developing enzyme assay and to study its biochemical properties. Also, E. coli BL21 (DE3) IlvA knockout (E. coli-ΔilvA) was developed and genetically complemented with Mtb-Ra ilvA expression construct (pET32a-ilvA) to make complemented E. coli strain (E. coli-ΔilvA + pET32a-ilvA). The E. coli-ΔilvA showed growth failure in minimal medium but growth restoration was observed in E. coli-ΔilvA + pET32a-ilvA. E. coli-ΔilvA growth was also restored in the presence of isoleucine. The IlvA localization studies detected its distribution in cell wall and membrane fractions with relatively minor presence in cytosolic fraction. Maximum IlvA expression was observed at 72 h in wild-type (WT) Mtb-Ra infecting macrophages. Also, Mtb-Ra IlvA knockdown (KD) showed reduced survival in macrophages compared to WT and complemented strain (KDC). - Highlights: • Mtb-Ra gene MRA-1571 codes for a functional threonine dehydratase (IlvA). • IlvA is pyridoxal 5’-phosphate dependent and is inhibited by isoleucine. • E. coli IlvA knockout growth can be supplemented by isoleucine or by Mtb-Ra IlvA. • The enzyme is primarily localized in cell wall and membrane fractions. • IlvA knockdown Mtb-Ra shows reduced growth in macrophages.

  18. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    Science.gov (United States)

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence. © 2015 John Wiley & Sons Ltd.

  19. Mycobacterium tuberculosis complex enhances susceptibility of CD4 T cells to HIV through a TLR2-mediated pathway.

    Directory of Open Access Journals (Sweden)

    Seema M Thayil

    Full Text Available Among HIV-infected individuals, co-infection with Mycobacterium tuberculosis is associated with faster progression to AIDS. We investigated the hypothesis that M. bovis BCG and M. tuberculosis (Mtb complex could enhance susceptibility of CD4+ cells to HIV infection. Peripheral blood mononuclear cells (PBMCs collected from healthy donors were stimulated with M. bovis BCG, M. tuberculosis CDC1551 and M. smegmatis MC(2155, and stimulated CD4+ cells were infected with R5-and X4-tropic single replication-competent pseudovirus. CD4+ cells stimulated with Mtb complex showed enhanced infection with R5- and X4-tropic HIV, compared to unstimulated cells or cells stimulated with M. smegmatis (p<0.01. Treatment with TLR2 siRNA reversed the increased susceptibility of CD4+ cells with R5- and X4-tropic virus induced by Mtb complex. These findings suggest that TB infection and/or BCG vaccination may be a risk factor for HIV acquisition.

  20. Multifaceted role of lipids in Mycobacterium leprae.

    Science.gov (United States)

    Kaur, Gurkamaljit; Kaur, Jagdeep

    2017-03-01

    Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.

  1. The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa.

    Science.gov (United States)

    Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Wilson, R

    2000-10-01

    Mycobacterium avium complex (MAC) are opportunistic respiratory pathogens that infect non-immunocompromised patients with established lung disease, although they can also cause primary infections. The ability to bind fibronectin is conserved among many mycobacterial species. We have investigated the adherence of a sputum isolate of MAC to the mucosa of organ cultures constructed with human tissue and the contribution of M. avium fibronectin attachment protein (FAP) to the process. MAC adhered to fibrous, but not globular mucus, and to extracellular matrix (ECM) in areas of epithelial damage, but not to intact extruded cells and collagen fibres. Bacteria occasionally adhered to healthy unciliated epithelium and to cells that had degenerated exposing their contents, but never to ciliated cells. The results obtained with different respiratory tissues were similar. Two ATCC strains of MAC gave similar results. There was a significant reduction (P fibrous mucus was unchanged. Immunogold labelling demonstrated fibronectin in ECM as well as in other areas of epithelial damage, but only ECM bound FAP. A Mycobacterium smegmatis strain had the same pattern of adherence to the mucosa as MAC. When the FAP gene was deleted, the strain demonstrated reduced adherence to ECM, and adherence was restored when the strain was transfected with an M. avium FAP expression construct. We conclude that MAC adheres to ECM in areas of epithelial damage via FAP and to mucus with a fibrous appearance via another adhesin. Epithelial damage exposing ECM and poor mucus clearance will predispose to MAC airway infection.

  2. Role of the DNA Mismatch Repair Gene MutS4 in Driving the Evolution of Mycobacterium yongonense Type I via Homologous Recombination.

    Science.gov (United States)

    Kim, Byoung-Jun; Kim, Bo-Ram; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-01-01

    We recently showed that Mycobacterium yongonense could be divided into two genotypes: Type I, in which the rpoB gene has been transferred from Mycobacterium parascrofulaceum , and Type II, in which the rpoB gene has not been transferred. Comparative genome analysis of three M. yongonense Type I, two M. yongonense Type II and M. parascrofulaceum type strains were performed in this study to gain insight into gene transfer from M. parascrofulaceum into M. yongonense Type I strains. We found two genome regions transferred from M. parascrofulaceum : one contained 3 consecutive genes, including the rpoBC operon, and the other contained 57 consecutive genes that had been transferred into M. yongonense Type I genomes via homologous recombination. Further comparison between the M. yongonense Type I and II genomes revealed that Type I, but not Type II has a distinct DNA mismatch repair gene ( MutS4 subfamily) that was possibly transferred via non-homologous recombination from other actinomycetes. We hypothesized that it could facilitate homologous recombination from the M. parascrofulaceum to the M. yongonense Type I genomes. We therefore generated recombinant Mycobacterium smegmatis containing a MutS4 operon of M. yongonense . We found that the M. tuberculosis rpoB fragment with a rifampin resistance-conferring mutation was more frequently inserted into recombinant M. smegmatis than the wild type, suggesting that MutS4 is a driving force in the gene transfer from M. parascrofulaceum to M. yongonense Type I strains via homologous recombination. In conclusion, our data indicated that MutS4 in M. yongonense Type I genomes may drive gene transfer from M. parascrofulaceum via homologous recombination, resulting in division of M. yongonense into two genotypes, Type I and II.

  3. Role of the DNA Mismatch Repair Gene MutS4 in Driving the Evolution of Mycobacterium yongonense Type I via Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Byoung-Jun Kim

    2017-12-01

    Full Text Available We recently showed that Mycobacterium yongonense could be divided into two genotypes: Type I, in which the rpoB gene has been transferred from Mycobacterium parascrofulaceum, and Type II, in which the rpoB gene has not been transferred. Comparative genome analysis of three M. yongonense Type I, two M. yongonense Type II and M. parascrofulaceum type strains were performed in this study to gain insight into gene transfer from M. parascrofulaceum into M. yongonense Type I strains. We found two genome regions transferred from M. parascrofulaceum: one contained 3 consecutive genes, including the rpoBC operon, and the other contained 57 consecutive genes that had been transferred into M. yongonense Type I genomes via homologous recombination. Further comparison between the M. yongonense Type I and II genomes revealed that Type I, but not Type II has a distinct DNA mismatch repair gene (MutS4 subfamily that was possibly transferred via non-homologous recombination from other actinomycetes. We hypothesized that it could facilitate homologous recombination from the M. parascrofulaceum to the M. yongonense Type I genomes. We therefore generated recombinant Mycobacterium smegmatis containing a MutS4 operon of M. yongonense. We found that the M. tuberculosis rpoB fragment with a rifampin resistance-conferring mutation was more frequently inserted into recombinant M. smegmatis than the wild type, suggesting that MutS4 is a driving force in the gene transfer from M. parascrofulaceum to M. yongonense Type I strains via homologous recombination. In conclusion, our data indicated that MutS4 in M. yongonense Type I genomes may drive gene transfer from M. parascrofulaceum via homologous recombination, resulting in division of M. yongonense into two genotypes, Type I and II.

  4. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  5. Biochemical characterization of the maltokinase from Mycobacterium bovis BCG

    Directory of Open Access Journals (Sweden)

    Lamosa Pedro

    2010-05-01

    Full Text Available Abstract Background Maltose-1-phosphate was detected in Mycobacterium bovis BCG extracts in the 1960's but a maltose-1-phosphate synthetase (maltokinase, Mak was only much later purified from Actinoplanes missouriensis, allowing the identification of the mak gene. Recently, this metabolite was proposed to be the intermediate in a pathway linking trehalose with the synthesis of glycogen in M. smegmatis. Although the M. tuberculosis H37Rv mak gene (Rv0127 was considered essential for growth, no mycobacterial Mak has, to date, been characterized. Results The sequence of the Mak from M. bovis BCG was identical to that from M. tuberculosis strains (99-100% amino acid identity. The enzyme was dependent on maltose and ATP, although GTP and UTP could be used to produce maltose-1-phosphate, which we identified by TLC and characterized by NMR. The Km for maltose was 2.52 ± 0.40 mM and 0.74 ± 0.12 mM for ATP; the Vmax was 21.05 ± 0.89 μmol/min.mg-1. Divalent cations were required for activity and Mg2+ was the best activator. The enzyme was a monomer in solution, had maximal activity at 60°C, between pH 7 and 9 (at 37°C and was unstable on ice and upon freeze/thawing. The addition of 50 mM NaCl markedly enhanced Mak stability. Conclusions The unknown role of maltokinases in mycobacterial metabolism and the lack of biochemical data led us to express the mak gene from M. bovis BCG for biochemical characterization. This is the first mycobacterial Mak to be characterized and its properties represent essential knowledge towards deeper understanding of mycobacterial physiology. Since Mak may be a potential drug target in M. tuberculosis, its high-level production and purification in bioactive form provide important tools for further functional and structural studies.

  6. Mycobacterium tuberculosis and Mycobacterium marinum non-homologous end-joining proteins can function together to join DNA ends in Escherichia coli.

    Science.gov (United States)

    Wright, Douglas G; Castore, Reneau; Shi, Runhua; Mallick, Amrita; Ennis, Don G; Harrison, Lynn

    2017-03-01

    Mycobacterium tuberculosis and Mycobacterium smegmatis express a Ku protein and a DNA ligase D and are able to repair DNA double strand breaks (DSBs) by non-homologous end-joining (NHEJ). This pathway protects against DNA damage when bacteria are in stationary phase. Mycobacterium marinum is a member of this mycobacterium family and like M. tuberculosis is pathogenic. M. marinum lives in water, forms biofilms and infects fish and frogs. M. marinum is a biosafety level 2 (BSL2) organism as it can infect humans, although infections are limited to the skin. M. marinum is accepted as a model to study mycobacterial pathogenesis, as M. marinum and M. tuberculosis are genetically closely related and have similar mechanisms of survival and persistence inside macrophage. The aim of this study was to determine whether M. marinum could be used as a model to understand M. tuberculosis NHEJ repair. We identified and cloned the M. marinum genes encoding NHEJ proteins and generated E. coli strains that express the M. marinum Ku (Mm-Ku) and ligase D (Mm-Lig) individually or together (LHmKumLig strain) from expression vectors integrated at phage attachment sites in the genome. We demonstrated that Mm-Ku and Mm-Lig are both required to re-circularize Cla I-linearized plasmid DNA in E. coli. We compared repair of strain LHmKumLig with that of an E. coli strain (BWKuLig#2) expressing the M. tuberculosis Ku (Mt-Ku) and ligase D (Mt-Lig), and found that LHmKumLig performed 3.5 times more repair and repair was more accurate than BWKuLig#2. By expressing the Mm-Ku with the Mt-Lig, or the Mt-Ku with the Mm-Lig in E. coli, we have shown that the NHEJ proteins from M. marinum and M. tuberculosis can function together to join DNA DSBs. NHEJ repair is therefore conserved between the two species. Consequently, M. marinum is a good model to study NHEJ repair during mycobacterial pathogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen

  7. MicroRNA 27a-3p Regulates Antimicrobial Responses of Murine Macrophages Infected by Mycobacterium avium subspecies paratuberculosis by Targeting Interleukin-10 and TGF-β-Activated Protein Kinase 1 Binding Protein 2

    Directory of Open Access Journals (Sweden)

    Tariq Hussain

    2018-01-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (MAP persistently survive and replicate in mononuclear phagocytic cells by adopting various strategies to subvert host immune response. Interleukin-10 (IL-10 upregulation via inhibition of macrophage bactericidal activity is a critical step for MAP survival and pathogenesis within the host cell. Mitogen-activated protein kinase p38 signaling cascade plays a crucial role in the elevation of IL-10 and progression of MAP pathogenesis. The contribution of microRNAs (miRNAs and their influence on the activation of macrophages during MAP pathogenesis are still unclear. In the current study, we found that miRNA-27a-3p (miR-27a expression is downregulated during MAP infection both in vivo and in vitro. Moreover, miR-27a is also downregulated in toll-like receptor 2 (TLR2-stimulated murine macrophages (RAW264.7 and bone marrow-derived macrophage. ELISA and real-time qRT-PCR results confirm that overexpression of miR-27a inhibited MAP-induced IL-10 production in macrophages and upregulated pro-inflammatory cytokines, while miR-27a inhibitor counteracted these effects. Luciferase reporter assay results revealed that IL-10 and TGF-β-activated protein kinase 1 binding protein 2 (TAB 2 are potential targets of miR-27a. In addition, we demonstrated that miR-27a negatively regulates TAB 2 expression and diminishes TAB 2-dependent p38/JNK phosphorylation, ultimately downregulating IL-10 expression in MAP-infected macrophages. Furthermore, overexpression of miR-27a significantly inhibited the intracellular survival of MAP in infected macrophages. Our data show that miR-27a augments antimicrobial activities of macrophages and inhibits the expression of IL-10, demonstrating that miR-27a regulates protective innate immune responses during MAP infection and can be exploited as a novel therapeutic target in the control of intracellular pathogens, including paratuberculosis.

  8. Mycobacterium persicum sp. nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastri.

    Science.gov (United States)

    Shahraki, Abdolrazagh Hashemi; Trovato, Alberto; Mirsaeidi, Mehdi; Borroni, Emanuele; Heidarieh, Parvin; Hashemzadeh, Mohamad; Shahbazi, Narges; Cirillo, Daniela M; Tortoli, Enrico

    2017-06-01

    Four strains isolated in Iran from pulmonary specimens of unrelated patients are proposed as representative of a novel Mycobacterium species. Similarity, at the phenotypic level, with Mycobacterium kansasii is remarkable with the photochromogenic yellow pigmentation of the colonies being the salient feature. They differ, however, genotypically from this species and present unique sequences in 16S rRNA, hsp65 and rpoB genes. The average nucleotide identity and the genome-to-genome distance fully support the status of an independent species. The name proposed for this species is Mycobacterium persicum sp. nov. with AFPC-000227T (=DSM 104278T=CIP 111197T) as the type strain.

  9. The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling.

    Science.gov (United States)

    Balážová, Tereza; Makovcová, Jitka; Šedo, Ondrej; Slaný, Michal; Faldyna, Martin; Zdráhal, Zbyněk

    2014-04-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) represents a simple reliable approach for rapid bacterial identification based on specific peptide/protein fingerprints. However, cell-wall characteristics of mycobacterial species, and their well known stability, complicate MALDI-TOF MS profiling analysis. In this study, we tested two recently published protocols for inactivation and disruption of mycobacteria, and we also examined the influence of different culture conditions (four culture media and five cultivation times) on mass spectral quality and the discriminatory power of the method. We found a significant influence of sample pretreatment method and culture medium on species identification and differentiation for a total of 10 strains belonging to Mycobacterium phlei and Mycobacterium smegmatis. Optimum culture conditions yielding the highest identification success rate against the BioTyper database (Bruker Daltonics) and permitting the possibility of automatic acquisition of mass spectra were found to be distinct for the two mycobacterial species examined. Similarly, individual changes in growth conditions had diverse effects on the two species. For these reasons, thorough control over cultivation conditions should always be employed to maximize the performance and discriminatory power of MALDI-TOF MS profiling, and cultivation conditions must be optimized separately for individual groups of mycobacterial species/strains. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS.

    Science.gov (United States)

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-06-03

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Mycobacterium ulcerans disease, Peru.

    Science.gov (United States)

    Guerra, Humberto; Palomino, Juan Carlos; Falconí, Eduardo; Bravo, Francisco; Donaires, Ninoska; Van Marck, Eric; Portaels, Françoise

    2008-03-01

    Eight adult patients (ages 18-58, 5 women) with Buruli ulcer (BU) confirmed by at least 2 diagnostic methods were seen in a 10-year period. Attempts to culture Mycobacterium ulcerans failed. Five patients came from jungle areas, and 3 from the swampy northern coast of Peru. The patients had 1-5 lesions, most of which were on the lower extremities. One patient had 5 clustered gluteal lesions; another patient had 2 lesions on a finger. Three patients were lost to follow-up. All 5 remaining patients had moderate disease. Diverse treatments (antituberculous drugs, World Health Organization [WHO] recommended antimicrobial drug treatment for BU, and for 3 patients, excision surgery) were successful. Only 1 patient (patient 7) received the specific drug treatment recommended by WHO. BU is endemic in Peru, although apparently infrequent. Education of populations and training of health workers are first needed to evaluate and understand the full extent of BU in Peru.

  12. Mycobacterium tuberculosis Metabolism

    Science.gov (United States)

    Warner, Digby F.

    2015-01-01

    Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances—in particular, the development of systems biology tools such as metabolomics—have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host–pathogen interaction through modulation of metabolic functions. PMID:25502746

  13. MicroRNA 26a (miR-26a/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection.

    Directory of Open Access Journals (Sweden)

    Sanjaya Kumar Sahu

    2017-05-01

    Full Text Available For efficient clearance of Mycobacterium tuberculosis (Mtb, macrophages tilt towards M1 polarization leading to the activation of transcription factors associated with the production of antibacterial effector molecules such as nitric oxide (NO and proinflammatory cytokines such as interleukin 1 β (IL-1β and tumor necrosis factor α (TNF-α. At the same time, resolution of inflammation is associated with M2 polarization with increased production of arginase and cytokines such as IL-10. The transcriptional and post-transcriptional mechanisms that govern the balance between M1 and M2 polarization, and bacteria-containing processes such as autophagy and trafficking of Mtb to lysosomes, are incompletely understood. Here we report for the first time, that the transcription factor KLF4 is targeted by microRNA-26a (miR-26a. During Mtb infection, downregulation of miR-26a (observed both ex vivo and in vivo facilitates upregulation of KLF4 which in turn favors increased arginase and decreased iNOS activity. We further demonstrate that KLF4 prevents trafficking of Mtb to lysosomes. The CREB-C/EBPβ signaling axis also favors M2 polarization. Downregulation of miR-26a and upregulation of C/ebpbeta were observed both in infected macrophages as well as in infected mice. Knockdown of C/ebpbeta repressed the expression of selected M2 markers such as Il10 and Irf4 in infected macrophages. The importance of these pathways is substantiated by observations that expression of miR-26a mimic or knockdown of Klf4 or Creb or C/ebpbeta, attenuated the survival of Mtb in macrophages. Taken together, our results attribute crucial roles for the miR-26a/KLF4 and CREB-C/EBPβsignaling pathways in regulating the survival of Mtb in macrophages. These studies expand our understanding of how Mtb hijacks host signaling pathways to survive in macrophages, and open up new exploratory avenues for host-targeted interventions.

  14. Role of ESAT-6 in renal injury by regulating microRNA-155 expression via TLR4/MyD88 signaling pathway in mice with Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Zhou, Zhong-Qi; Wang, Zhi-Kui; Zhang, Lei; Ren, Yue-Qin; Ma, Zhong-Wei; Zhao, Nan; Sun, Fu-Yun

    2017-08-31

    The study aims to investigate the underlying mechanism involved in the early secretory antigenic target-6 (ESAT-6) in renal injury through regulation of the expression of miR-155 through the oll-like receptor (TLR)-4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway in Mycobacterium tuberculosis (MTB)-infected mice. Sixty C57BL/6 mice with MTB-induced renal injury were randomly assigned into control, MTB, mimic, inhibitor, inhibitor + ESAT6, and inhibitor + ESAT6 + TAK242 groups. Body weight, the ratio of kidney weight to body weight (Kw/Bw), blood urea nitrogen (BUN), and serum creatinine (Scr) of mice were measured. Flow cytometry was used to detect renal activation in mice. Expressions of miR-155 and ESAT6 were detected by quantitative real-time PCR (qRT-PCR), and Western blotting was used to examine the expressions of ESAT6, TLR4, and MyD88. Expressions of tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), and interferon-γ (IFN-γ) were measured by qRT-PCR and ELISA. Compared with the control group, the BUN and Scr levels as well as the expression levels of miR-155 , TLR4, MyD88, TNF-α, IL-17, and IFN-γ increased, while Kw/Bw decreased in the MTB and mimic groups. In comparison with the MTB group, the above indexes except Kw/Bw were elevated in the mimic group, but were reduced in the inhibitor group, while the Kw/Bw dropped in the mimic group but increased in the inhibitor group. Compared with the inhibitor group, the Kw/Bw decreased while the rest of the indexes increased in the inhibitor + ESAT6 group. ESAT6 may induce renal injury by promoting miR-155 expression through the TLR-4/MyD88 signaling pathway in MTB-infected mice. © 2017 The Author(s).

  15. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection.

    Science.gov (United States)

    Sahu, Sanjaya Kumar; Kumar, Manish; Chakraborty, Sohini; Banerjee, Srijon Kaushik; Kumar, Ranjeet; Gupta, Pushpa; Jana, Kuladip; Gupta, Umesh D; Ghosh, Zhumur; Kundu, Manikuntala; Basu, Joyoti

    2017-05-01

    For efficient clearance of Mycobacterium tuberculosis (Mtb), macrophages tilt towards M1 polarization leading to the activation of transcription factors associated with the production of antibacterial effector molecules such as nitric oxide (NO) and proinflammatory cytokines such as interleukin 1 β (IL-1β) and tumor necrosis factor α (TNF-α). At the same time, resolution of inflammation is associated with M2 polarization with increased production of arginase and cytokines such as IL-10. The transcriptional and post-transcriptional mechanisms that govern the balance between M1 and M2 polarization, and bacteria-containing processes such as autophagy and trafficking of Mtb to lysosomes, are incompletely understood. Here we report for the first time, that the transcription factor KLF4 is targeted by microRNA-26a (miR-26a). During Mtb infection, downregulation of miR-26a (observed both ex vivo and in vivo) facilitates upregulation of KLF4 which in turn favors increased arginase and decreased iNOS activity. We further demonstrate that KLF4 prevents trafficking of Mtb to lysosomes. The CREB-C/EBPβ signaling axis also favors M2 polarization. Downregulation of miR-26a and upregulation of C/ebpbeta were observed both in infected macrophages as well as in infected mice. Knockdown of C/ebpbeta repressed the expression of selected M2 markers such as Il10 and Irf4 in infected macrophages. The importance of these pathways is substantiated by observations that expression of miR-26a mimic or knockdown of Klf4 or Creb or C/ebpbeta, attenuated the survival of Mtb in macrophages. Taken together, our results attribute crucial roles for the miR-26a/KLF4 and CREB-C/EBPβsignaling pathways in regulating the survival of Mtb in macrophages. These studies expand our understanding of how Mtb hijacks host signaling pathways to survive in macrophages, and open up new exploratory avenues for host-targeted interventions.

  16. Mycobacterium fortuitum causing surgical site wound infection

    International Nuclear Information System (INIS)

    Kaleem, F.; Usman, J.; Omair, M.; Din, R.U.; Hassan, A.

    2010-01-01

    Mycobacterium fortuitum, a rapidly growing mycobacterium, is ubiquitous in nature. The organism was considered to be a harmless saprophyte but now there have been several reports from different parts of the world wherein it has been incriminated in a variety of human infections. We report a culture positive case of surgical site infection caused by Mycobacterium fortuitum, who responded well to the treatment. (author)

  17. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.

    Science.gov (United States)

    Tyagi, Priyanka; Dharmaraja, Allimuthu T; Bhaskar, Ashima; Chakrapani, Harinath; Singh, Amit

    2015-07-01

    Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. Copyright © 2015 The Authors. Published by

  18. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    Science.gov (United States)

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

  19. LytB1 and LytB2 of Mycobacterium tuberculosis Are Not Genetically Redundant.

    Directory of Open Access Journals (Sweden)

    Amanda Claire Brown

    Full Text Available Mycobacterium tuberculosis synthesises isoprenoid precursors via the MEP/DOXP pathway and at least five enzymes in the pathway (Dxs1, Dxr/IspC, IspD, IspF, and GcpE/IspG are required for growth in vitro. We investigated the role of LytB (IspH in M. tuberculosis; M. tuberculosis is unusual in that it has two homologs-LytB1 and LytB2. We were unable to delete the lytB2 gene unless we provided an additional copy elsewhere, demonstrating that this is the essential homolog. We expressed lytB1 from the lytB2 promoter and confirmed that this could not complement for loss of function of lytB2, despite LytB1 possessing all the previously described conserved critical residues. Interestingly the sole LytB homolog of Mycobacterium smegmatis was able to compensate for loss of LytB2 in M. tuberculosis. We tested translational fusions of LytB1 and LytB2 for functionality in M. tuberculosis, but only a fusion with 90% N-terminal LytB2 and 10% C-terminal LytB1 was functional. In order to identify the key difference between the two proteins, site directed mutagenesis was used to change LytB2 residues into their counterparts in LytB1. None of these amino acid substitutions was essential for function and all lytB2 mutant alleles were functional. In contrast, mutation of the key residues for [Fe4S4] cluster formation, as well as a catalytic residue in LytB1 did not result in functional complementation. Thus, although LytB1 and LytB2 are not genetically redundant, this is not dependent on small amino acid changes, but is likely to be a result of major overall structural differences.

  20. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Douglas B. Young

    2015-03-01

    Full Text Available Comparison of genome sequences from clinical isolates of Mycobacterium tuberculosis with phylogenetically-related pathogens Mycobacterium marinum, Mycobacterium kansasii and Mycobacterium leprae reveals diversity amongst genes associated with vitamin B12-related metabolism. Diversity is generated by gene deletion events, differential acquisition of genes by horizontal transfer, and single nucleotide polymorphisms with predicted impact on protein function and transcriptional regulation. Differences in the B12 synthesis pathway, methionine biosynthesis, fatty acid catabolism, and DNA repair and replication are consistent with adaptations to different environmental niches and pathogenic lifestyles. While there is no evidence of further gene acquisition during expansion of the M. tuberculosis complex, the emergence of other forms of genetic diversity provides insights into continuing host-pathogen co-evolution and has the potential to identify novel targets for disease intervention.

  1. Carbohydrate-dependent binding of langerin to SodC, a cell wall glycoprotein of Mycobacterium leprae.

    Science.gov (United States)

    Kim, Hee Jin; Brennan, Patrick J; Heaslip, Darragh; Udey, Mark C; Modlin, Robert L; Belisle, John T

    2015-02-01

    Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Mycobacterium saopaulense sp. nov., a rapidly growing mycobacterium closely related to members of the Mycobacterium chelonae--Mycobacterium abscessus group.

    Science.gov (United States)

    Nogueira, Christiane Lourenço; Whipps, Christopher M; Matsumoto, Cristianne Kayoko; Chimara, Erica; Droz, Sara; Tortoli, Enrico; de Freitas, Denise; Cnockaert, Margo; Palomino, Juan Carlos; Martin, Anandi; Vandamme, Peter; Leão, Sylvia Cardoso

    2015-12-01

    Five isolates of non-pigmented, rapidly growing mycobacteria were isolated from three patients and,in an earlier study, from zebrafish. Phenotypic and molecular tests confirmed that these isolates belong to the Mycobacterium chelonae-Mycobacterium abscessus group, but they could not be confidently assigned to any known species of this group. Phenotypic analysis and biochemical tests were not helpful for distinguishing these isolates from other members of the M. chelonae–M.abscessus group. The isolates presented higher drug resistance in comparison with other members of the group, showing susceptibility only to clarithromycin. The five isolates showed a unique PCR restriction analysis pattern of the hsp65 gene, 100 % similarity in 16S rRNA gene and hsp65 sequences and 1-2 nt differences in rpoB and internal transcribed spacer (ITS) sequences.Phylogenetic analysis of a concatenated dataset including 16S rRNA gene, hsp65, and rpoB sequences from type strains of more closely related species placed the five isolates together, as a distinct lineage from previously described species, suggesting a sister relationship to a group consisting of M. chelonae, Mycobacterium salmoniphilum, Mycobacterium franklinii and Mycobacterium immunogenum. DNA–DNA hybridization values .70 % confirmed that the five isolates belong to the same species, while values ,70 % between one of the isolates and the type strains of M. chelonae and M. abscessus confirmed that the isolates belong to a distinct species. The polyphasic characterization of these isolates, supported by DNA–DNA hybridization results,demonstrated that they share characteristics with M. chelonae–M. abscessus members, butconstitute a different species, for which the name Mycobacterium saopaulense sp. nov. is proposed. The type strain is EPM10906T (5CCUG 66554T5LMG 28586T5INCQS 0733T).

  3. Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2009-01-01

    Full Text Available Abstract Background The exported repetitive protein (erp gene encodes a secreted 36-kDa protein with a central domain containing several proline-glycine-leucine-threonine-serine (PGLTS repeats. It has been demonstrated that erp is a virulence-associated factor since the disruption of this gene impairs the growth of Mycobacterium bovis and Mycobacterium tuberculosis in mice. Results In order to elucidate the function of Erp we searched for Erp-binding proteins from M. tuberculosis by using a bacterial two-hybrid system. Our results indicate that Erp interacts specifically with two putative membrane proteins, Rv1417 and Rv2617c. Further analysis revealed that the latter two interact with each other, indicating that Rv1417, Rv2617c and Erp are connected through multiple interactions. While Rv1417 is disseminated in several Actinomycetales genera, orthologues of Rv2617c are exclusively present in members of the M. tuberculosis complex (MTC. The central and amino-terminal regions of Erp were determined to be involved in the interaction with Rv1417 and Rv2627c. Erp forms from Mycobacterium smegmatis and Mycobacterium leprae were not able to interact with Rv2617c in two-hybrid assays. Immunolocalization experiments showed that Rv1417 and Rv2617c are found on the cell membrane and Erp on the bacterial cell wall. Finally, comparative genomics and expression studies revealed a possible role of Rv1417 in riboflavin metabolism. Conclusion We identified interactive partners of Erp, an M. tuberculosis protein involved in virulence, which will be the focus of future investigation to decipher the function of the Erp family protein.

  4. One of the Two Genes Encoding Nucleoid-Associated HU Proteins in Streptomyces coelicolor Is Developmentally Regulated and Specifically Involved in Spore Maturation▿ †

    Science.gov (United States)

    Salerno, Paola; Larsson, Jessica; Bucca, Giselda; Laing, Emma; Smith, Colin P.; Flärdh, Klas

    2009-01-01

    Streptomyces genomes encode two homologs of the nucleoid-associated HU proteins. One of them, here designated HupA, is of a conventional type similar to E. coli HUα and HUβ, while the other, HupS, is a two-domain protein. In addition to the N-terminal part that is similar to that of HU proteins, it has a C-terminal domain that is similar to the alanine- and lysine-rich C termini of eukaryotic linker histones. Such two-domain HU proteins are found only among Actinobacteria. In this phylum some organisms have only a single HU protein of the type with a C-terminal histone H1-like domain (e.g., Hlp in Mycobacterium smegmatis), while others have only a single conventional HU. Yet others, including the streptomycetes, produce both types of HU proteins. We show here that the two HU genes in Streptomyces coelicolor are differentially regulated and that hupS is specifically expressed during sporulation, while hupA is expressed in vegetative hyphae. The developmental upregulation of hupS occurred in sporogenic aerial hyphal compartments and was dependent on the developmental regulators whiA, whiG, and whiI. HupS was found to be nucleoid associated in spores, and a hupS deletion mutant had an average nucleoid size in spores larger than that in the parent strain. The mutant spores were also defective in heat resistance and spore pigmentation, although they possessed apparently normal spore walls and displayed no increased sensitivity to detergents. Overall, the results show that HupS is specifically involved in sporulation and may affect nucleoid architecture and protection in spores of S. coelicolor. PMID:19717607

  5. Buruli Ulcer (Mycobacterium ulcerans Infection)

    Science.gov (United States)

    ... detail/buruli-ulcer-(mycobacterium-ulcerans-infection)","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... Buruli ulcer on a regular basis to share information, coordinate disease control and research efforts, and monitor ...

  6. Characterization of a Mycobacterium leprae antigen related to the secreted Mycobacterium tuberculosis protein MPT32

    NARCIS (Netherlands)

    Wieles, B.; van Agterveld, M.; Janson, A.; Clark-Curtiss, J.; Rinke de Wit, T.; Harboe, M.; Thole, J.

    1994-01-01

    Secreted proteins may serve as major targets in the immune response to mycobacteria. To identify potentially secreted Mycobacterium leprae antigens, antisera specific for culture filtrate proteins of Mycobacterium tuberculosis were used to screen a panel of recombinant antigens selected previously

  7. MicroRNA profiling of the bovine alveolar macrophage response to Mycobacterium bovis infection suggests pathogen survival is enhanced by microRNA regulation of endocytosis and lysosome trafficking

    OpenAIRE

    BRADLEY, DANIEL

    2015-01-01

    PUBLISHED Mycobacterium bovis, the causative agent of bovine tuberculosis, a major problem for global agriculture, spreads via an airborne route and is taken up by alveolar macrophages (AM) in the lung. Here, we describe the first next-generation sequencing (RNA-seq) approach to temporally profile miRNA expression in primary bovine AMs post-infection with M. bovis. One, six, and forty miRNAs were identified as significantly differentially expressed at 2, 24 and 48 h post-infection, respect...

  8. Biodegradation of 2-ethylhexyl nitrate by Mycobacterium austroafricanum IFP 2173

    International Nuclear Information System (INIS)

    Nicolau, E.

    2008-10-01

    Compounds such as 2-ethylhexyl nitrate (2-EHN) are added to diesel fuel to improve ignition and boost cetane number. The production of 2-EHN reaches around 100000 tons per year in France, principally. Risks associated to its utilization are however poorly known because, in case of accidental release in the environment, nothing is known about its biodegradation. In this study, we aimed at (i) identifying bacterial strains able to degrade 2-EHN and compare their capabilities, (ii) elucidating the degradation pathway, and (iii) identifying the enzymes involved. Biodegradation of 2-EHN was first tested in biphasic cultures under conditions that reduce the toxicity and increase the availability of the hydrophobic substrate. Using optimized culture conditions, we showed that several strains of Mycobacterium austroafricanum were able to degrade 2-EHN. One of the most efficient strain (IFP 2173) which could grow at 2-EHN concentrations up to 6 g.L -1 , was chosen to investigate the degradation pathway. On the basis of carbon balance determination and gas chromatographic (GC) analysis on the culture medium, I found that the degradation of 2-EHN was incomplete and gave rise to the accumulation of a metabolite. This metabolite was identified as β-methyl-γ-butyrolactone by GC-MS and LC-MS/MS analysis. The structure of the lactone indicated that 2-EHN was degraded through a pathway involving the hydroxylation of the methyl group of the main carbon chain, its oxidation into aldehyde an acid and a subsequent cycle of b-oxidation. Enzymes involved in the 2-EHN biodegradation pathway were looked for by a proteomic approach. Analyses by two-dimensional gel electrophoresis showed that, when exposed to 2-EHN, strain IFP 2173 triggered the synthesis of a bunch of enzymes specialized in fatty acid metabolism such as β-oxidation enzymes, as well as alcohol and aldehyde dehydrogenases. An exhaustive analysis of the IFP 2173 proteome resulted in the identification of more than 200

  9. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells

    DEFF Research Database (Denmark)

    Hoff, Soren T; Salman, Ahmed M; Ruhwald, Morten

    2015-01-01

    BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment. A candid......BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment...

  10. Polymorphisms of twenty regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis

    Science.gov (United States)

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans or animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and the other members o...

  11. Biodegradation of 2-ethylhexyl nitrate by Mycobacterium austroafricanum IFP 2173; Biodegradation du 2-ethylhexyl nitrate par Mycobacterium austroafricanum IFP 2173

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, E

    2008-10-15

    Compounds such as 2-ethylhexyl nitrate (2-EHN) are added to diesel fuel to improve ignition and boost cetane number. The production of 2-EHN reaches around 100000 tons per year in France, principally. Risks associated to its utilization are however poorly known because, in case of accidental release in the environment, nothing is known about its biodegradation. In this study, we aimed at (i) identifying bacterial strains able to degrade 2-EHN and compare their capabilities, (ii) elucidating the degradation pathway, and (iii) identifying the enzymes involved. Biodegradation of 2-EHN was first tested in biphasic cultures under conditions that reduce the toxicity and increase the availability of the hydrophobic substrate. Using optimized culture conditions, we showed that several strains of Mycobacterium austroafricanum were able to degrade 2-EHN. One of the most efficient strain (IFP 2173) which could grow at 2-EHN concentrations up to 6 g.L{sup -1}, was chosen to investigate the degradation pathway. On the basis of carbon balance determination and gas chromatographic (GC) analysis on the culture medium, I found that the degradation of 2-EHN was incomplete and gave rise to the accumulation of a metabolite. This metabolite was identified as {beta}-methyl-{gamma}-butyrolactone by GC-MS and LC-MS/MS analysis. The structure of the lactone indicated that 2-EHN was degraded through a pathway involving the hydroxylation of the methyl group of the main carbon chain, its oxidation into aldehyde an acid and a subsequent cycle of b-oxidation. Enzymes involved in the 2-EHN biodegradation pathway were looked for by a proteomic approach. Analyses by two-dimensional gel electrophoresis showed that, when exposed to 2-EHN, strain IFP 2173 triggered the synthesis of a bunch of enzymes specialized in fatty acid metabolism such as {beta}-oxidation enzymes, as well as alcohol and aldehyde dehydrogenases. An exhaustive analysis of the IFP 2173 proteome resulted in the identification of

  12. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2011-07-01

    Full Text Available Abstract Background The P27-P55 (lprG-Rv1410c operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are

  13. Mycobacterium avium Infection after Acupoint Embedding Therapy

    Directory of Open Access Journals (Sweden)

    Jiao Zhang, MD

    2017-09-01

    Full Text Available Summary:. Nontuberculous mycobacterium is a ubiquitous environmental organism that is unusual to cause a true infection, but it can cause severe cutaneous infections. In this case report, we present a successful treatment for a Chinese patient with Mycobacterium avium cutaneous infection after acupoint embedding therapy. We managed to conduct pathogenic detection, drug sensitive test, and multidisciplinary consultation. Finally, a systematic treatment strategy of nontuberculous mycobacterium was performed. Twenty-two-month follow-up revealed excellent outcome without any recurrence.

  14. Molecular Characterization of the Resistance of Mycobacterium ...

    African Journals Online (AJOL)

    Purpose: To characterize the resistance of Mycobacterium tuberculosis to second line drugs using a line probe assay. Methods: Multi-drug resistant strains of Mycobacterium tuberculosis isolated between December 2008 and December 2009 were tested for resistance to fluoroquinolones and second-line injectable drugs ...

  15. Disseminated Mycobacterium avium infection in a cat

    OpenAIRE

    Barry, Maureen; Taylor, Judith; Woods, Paul

    2002-01-01

    A domestic shorthair cat was presented for lethargy and ataxia. Clinical findings included an abdominal mass, lumbosacral pain, ataxia. Aspirates from the liver and lymph nodes revealed intracellular, negative-staining rods. Treatment for presumptive mycobacterium infection was unsuccessful and the cat was euthanized. Disseminated Mycobacterium avium was confirmed on culture.

  16. Disseminated Mycobacterium avium infection in a cat.

    Science.gov (United States)

    Barry, Maureen; Taylor, Judith; Woods, J Paul

    2002-05-01

    A domestic shorthair cat was presented for lethargy and ataxia. Clinical findings included an abdominal mass, lumbosacral pain, ataxia. Aspirates from the liver and lymph nodes revealed intracellular, negative-staining rods. Treatment for presumptive mycobacterium infection was unsuccessful and the cat was euthanized. Disseminated Mycobacterium avium was confirmed on culture.

  17. Drug Resistance of Mycobacterium tuberculosis Complex among ...

    African Journals Online (AJOL)

    BACKGROUND: In Burkina Faso, there is no recent data about the level of drug resistance in Mycobacterium tuberculosis strains among newly diagnosed tuberculosis cases. OBJECTIVE: To provide an update of the primary drug resistance of mycobacterium tuberculosis among patients in Burkina faso. METHODS: ...

  18. MycoCAP - Mycobacterium Comparative Analysis Platform.

    Science.gov (United States)

    Choo, Siew Woh; Ang, Mia Yang; Dutta, Avirup; Tan, Shi Yang; Siow, Cheuk Chuen; Heydari, Hamed; Mutha, Naresh V R; Wee, Wei Yee; Wong, Guat Jah

    2015-12-15

    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.

  19. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Margarita O. Shleeva

    2017-08-01

    Full Text Available Earlier we demonstrated that the adenylyl cyclase (AC encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb, the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.

  20. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum

    Directory of Open Access Journals (Sweden)

    Amy Herndon Lewis

    2015-01-01

    Full Text Available Representative strains of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum (MAIS grew at equal rates in laboratory medium at 21% (air and 12% oxygen. Growth in 6% oxygen proceeded at a 1.4–1.8-fold lower rate. Colony formation was the same at 21% (air and 6% oxygen. The MAIS strains survived rapid shifts from aerobic to anaerobic conditions as measured by two experimental approaches (Falkinham (1996 [1]. MAIS cells grown aerobically to log phase in broth were diluted, spread on agar medium, and incubated anaerobically for up to 20 days at 37 °C. Although no colonies formed anaerobically, upon transfer to aerobic conditions, greater than 25% of the colony forming units (CFU survived after 20 days of anaerobic incubation (Prince et al. (1989 [2]. MAIS cells grown in broth aerobically to log phase were sealed and vigorous agitation led to oxygen depletion (Wayne model. After 12 days anaerobic incubation, M. avium and M. scrofulaceum survival were high (>50%, while M. intracellulare survival was lower (22%. M. avium cells shifted to anaerobiosis in broth had increased levels of glycine dehydrogenase and isocitrate lyase. Growth of MAIS strains at low oxygen levels and their survival following a rapid shift to anaerobiosis is consistent with their presence in environments with fluctuating oxygen levels.

  1. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum.

    Science.gov (United States)

    Lewis, Amy Herndon; Falkinham, Joseph O

    2015-03-01

    Representative strains of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum (MAIS) grew at equal rates in laboratory medium at 21% (air) and 12% oxygen. Growth in 6% oxygen proceeded at a 1.4-1.8-fold lower rate. Colony formation was the same at 21% (air) and 6% oxygen. The MAIS strains survived rapid shifts from aerobic to anaerobic conditions as measured by two experimental approaches (Falkinham (1996) [1]). MAIS cells grown aerobically to log phase in broth were diluted, spread on agar medium, and incubated anaerobically for up to 20 days at 37°C. Although no colonies formed anaerobically, upon transfer to aerobic conditions, greater than 25% of the colony forming units (CFU) survived after 20 days of anaerobic incubation (Prince et al. (1989) [2]). MAIS cells grown in broth aerobically to log phase were sealed and vigorous agitation led to oxygen depletion (Wayne model). After 12 days anaerobic incubation, M. avium and M. scrofulaceum survival were high (>50%), while M. intracellulare survival was lower (22%). M. avium cells shifted to anaerobiosis in broth had increased levels of glycine dehydrogenase and isocitrate lyase. Growth of MAIS strains at low oxygen levels and their survival following a rapid shift to anaerobiosis is consistent with their presence in environments with fluctuating oxygen levels. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  2. Characterization of ML0314c of Mycobacterium leprae and deciphering its role in the immune response in leprosy patients.

    Science.gov (United States)

    Kaur, Gurkamajit; Sharma, Aashish; Narang, Tarun; Dogra, Sunil; Kaur, Jagdeep

    2018-02-15

    Mycobacterium leprae has a reduced genome size due to the reductive evolution over a long period of time. Lipid metabolism plays an important role in the life cycle and pathogenesis of this bacterium. In comparison to 26 lip genes (Lip A-Z) of M. tuberculosis, M. leprae retained only three orthologs indicating their importance in its life cycle. ML0314c (LipU) is one of them. It is conserved throughout the mycobacterium species. Bioinformatics analysis showed the presence of an α/β hydrolase fold and 'GXSXG' characteristic of the esterases/lipases. The gene was expressed in E. coli and purified to homogeneity. It showed preference towards short chain esters with pNP-acetate as the preferred substrate. The enzyme showed optimal activity at 45°C and pH8.0. ML0314c protein was stable between temperatures ranging from 20 to 60°C and pH5.0-8.0, i.e., relatively acidic and neutral conditions. The active site residues predicted bioinformatically were confirmed to be Ser168, Glu267, and His297 by site directed mutagenesis. E-serine, DEPC and Tetrahydrolipstatin (THL) completely inhibited the activity of ML0314c. The protein was localized in cell wall and extracellular medium. Several antigenic epitopes were predicted in ML0314c. Protein elicited strong humoral immune response in leprosy patients, whereas, a reduced immune response was observed in the relapsed cases. No humoral response was observed in treatment completed patients. Overexpression of ml0314c in the surrogate host M. smegmatis showed marked difference in the colony morphology and growth rate. In conclusion, ML0314c is a secretary carboxyl esterase that could modulate the immune response in leprosy patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rapid presumptive identification of the Mycobacterium tuberculosis-bovis complex by radiometric determination of heat stable urease

    International Nuclear Information System (INIS)

    Gandy, J.H.; Pruden, E.L.; Cox, F.R.

    1983-01-01

    Simple and rapid Bactec methodologies for the determination of neat (unaltered) and heat stable urease activity of mycobacteria are presented. Clinical isolates (63) and stock cultures (32)--consisting of: M. tuberculosis (19), M. bovis (5), M. kansasii (15), M. marinum (4), M. simiae (3), M. scrofulaceum (16), M. gordonae (6), M. szulgai (6), M. flavescens (1), M. gastri (1), M. intracellulare (6), M. fortuitum-chelonei complex (12), and M. smegmatis (1)--were tested for neat urease activity by Bactec radiometry. Mycobacterial isolates (50-100 mg wet weight) were incubated at 35 degrees C for 30 minutes with microCi14C-urea. Urease-positive mycobacteria gave Bactec growth index (GI) values greater than 100 units, whereas urease-negative species gave values less than 10 GI units. Eighty-three isolates possessing neat urease activity were heated at 80 degrees C for 30 minutes followed by incubation at 35 degrees C for 30 minutes with 1 microCi14C-urea. Mycobacterium tuberculosis-bovis complex demonstrated heat-stable urease activity (GI more than 130 units) and could be distinguished from mycobacteria other than tuberculosis (MOTT), which gave GI values equal to or less than 40 units

  4. Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.

    Science.gov (United States)

    Segura, C; Salvadó, M

    1997-09-01

    Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.

  5. Reduced pyrazinamidase activity and the natural resistance of Mycobacterium kansasii to the antituberculosis drug pyrazinamide.

    Science.gov (United States)

    Sun, Z; Zhang, Y

    1999-03-01

    Pyrazinamide (PZA), an analog of nicotinamide, is a prodrug that requires conversion to the bactericidal compound pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) activity of nicotinamidase to show activity against Mycobacterium tuberculosis. Mutations leading to a loss of PZase activity cause PZA resistance in M. tuberculosis. M. kansasii is naturally resistant to PZA and has reduced PZase activity along with an apparently detectable nicotinamidase activity. The role of the reduction in PZase activity in the natural PZA resistance of M. kansasii is unknown. The MICs of PZA and POA for M. kansasii were determined to be 500 and 125 micrograms/ml, respectively. Using [14C]PZA and [14C]nicotinamide, we found that M. kansasii had about 5-fold-less PZase activity and about 25-fold-less nicotinamidase activity than M. tuberculosis. The M. kansasii pncA gene was cloned on a 1.8-kb BamHI DNA fragment, using M. avium pncA probe. Sequence analysis showed that the M. kansasii pncA gene encoded a protein with homology to its counterparts from M. tuberculosis (69.9%), M. avium (65.6%), and Escherichia coli (28.5%). Transformation of naturally PZA-resistant M. bovis BCG with M. kansasii pncA conferred partial PZA susceptibility. Transformation of M. kansasii with M. avium pncA caused functional expression of PZase and high-level susceptibility to PZA, indicating that the natural PZA resistance in M. kansasii results from a reduced PZase activity. Like M. tuberculosis, M. kansasii accumulated POA in the cells at an acidic pH; however, due to its highly active POA efflux pump, the naturally PZA-resistant species M. smegmatis did not. These findings suggest the existence of a weak POA efflux mechanism in M. kansasii.

  6. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-08-01

    Full Text Available AbstractThe ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP, the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophage and MAC-T cells and coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increase bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5 conditions. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  7. MicroRNA profiling of the bovine alveolar macrophage response to Mycobacterium bovis infection suggests pathogen survival is enhanced by microRNA regulation of endocytosis and lysosome trafficking.

    Science.gov (United States)

    Vegh, Peter; Magee, David A; Nalpas, Nicolas C; Bryan, Kenneth; McCabe, Matthew S; Browne, John A; Conlon, Kevin M; Gordon, Stephen V; Bradley, Daniel G; MacHugh, David E; Lynn, David J

    2015-01-01

    Mycobacterium bovis, the causative agent of bovine tuberculosis, a major problem for global agriculture, spreads via an airborne route and is taken up by alveolar macrophages (AM) in the lung. Here, we describe the first next-generation sequencing (RNA-seq) approach to temporally profile miRNA expression in primary bovine AMs post-infection with M. bovis. One, six, and forty miRNAs were identified as significantly differentially expressed at 2, 24 and 48 h post-infection, respectively. The differential expression of three miRNAs (bta-miR-142-5p, bta-miR-146a, and bta-miR-423-3p) was confirmed by RT-qPCR. Pathway analysis of the predicted mRNA targets of differentially expressed miRNAs suggests that these miRNAs preferentially target several pathways that are functionally relevant for mycobacterial pathogenesis, including endocytosis and lysosome trafficking, IL-1 signalling and the TGF-β pathway. Over-expression studies using a bovine macrophage cell-line (Bomac) reveal the targeting of two key genes in the innate immune response to M. bovis, IL-1 receptor-associated kinase 1 (IRAK1) and TGF-β receptor 2 (TGFBR2), by miR-146. Taken together, our study suggests that miRNAs play a key role in tuning the complex interplay between M. bovis survival strategies and the host immune response.

  8. Mycobacterium arupense, Mycobacterium heraklionense, and a Newly Proposed Species, "Mycobacterium virginiense" sp. nov., but Not Mycobacterium nonchromogenicum, as Species of the Mycobacterium terrae Complex Causing Tenosynovitis and Osteomyelitis.

    Science.gov (United States)

    Vasireddy, Ravikiran; Vasireddy, Sruthi; Brown-Elliott, Barbara A; Wengenack, Nancy L; Eke, Uzoamaka A; Benwill, Jeana L; Turenne, Christine; Wallace, Richard J

    2016-05-01

    Mycobacterium terrae complex has been recognized as a cause of tenosynovitis, with M. terrae and Mycobacterium nonchromogenicum reported as the primary etiologic pathogens. The molecular taxonomy of the M. terrae complex causing tenosynovitis has not been established despite approximately 50 previously reported cases. We evaluated 26 isolates of the M. terrae complex associated with tenosynovitis or osteomyelitis recovered between 1984 and 2014 from 13 states, including 5 isolates reported in 1991 as M. nonchromogenicum by nonmolecular methods. The isolates belonged to three validated species, one new proposed species, and two novel related strains. The majority of isolates (20/26, or 77%) belonged to two recently described species: Mycobacterium arupense (10 isolates, or 38%) and Mycobacterium heraklionense (10 isolates, or 38%). Three isolates (12%) had 100% sequence identity to each other by 16S rRNA and 99.3 to 100% identity by rpoB gene region V sequencing and represent a previously undescribed species within the M. terrae complex. There were no isolates of M. terrae or M. nonchromogenicum, including among the five isolates reported in 1991. The 26 isolates were susceptible to clarithromycin (100%), rifabutin (100%), ethambutol (92%), and sulfamethoxazole or trimethoprim-sulfamethoxazole (70%). The current study suggests that M. arupense, M. heraklionense, and a newly proposed species ("M. virginiense" sp. nov.; proposed type strain MO-233 [DSM 100883, CIP 110918]) within the M. terrae complex are the major causes of tenosynovitis and osteomyelitis in the United States, with little change over 20 years. Species identification within this complex requires sequencing methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. The transcriptional regulatory network of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Joaquín Sanz

    Full Text Available Under the perspectives of network science and systems biology, the characterization of transcriptional regulatory (TR networks beyond the context of model organisms offers a versatile tool whose potential remains yet mainly unexplored. In this work, we present an updated version of the TR network of Mycobacterium tuberculosis (M.tb, which incorporates newly characterized transcriptional regulations coming from 31 recent, different experimental works available in the literature. As a result of the incorporation of these data, the new network doubles the size of previous data collections, incorporating more than a third of the entire genome of the bacterium. We also present an exhaustive topological analysis of the new assembled network, focusing on the statistical characterization of motifs significances and the comparison with other model organisms. The expanded M.tb transcriptional regulatory network, considering its volume and completeness, constitutes an important resource for diverse tasks such as dynamic modeling of gene expression and signaling processes, computational reliability determination or protein function prediction, being the latter of particular relevance, given that the function of only a small percent of the proteins of M.tb is known.

  10. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  11. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan; Parsons, Sven David Charles; Sampson, Samantha Leigh; Van Der Merwe, Ruben Gerhard; Drewe, Julian Ashley; Abdallah, Abdallah; Siame, Kabengele Keith; Gey Van Pittius, Nicolaas Claudius; Van Helden, Paul David; Pain, Arnab; Warren, Robin Mark

    2015-01-01

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  12. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  13. Mycobacterium intracellulare Infection Mimicking Progression of Scleroderma

    DEFF Research Database (Denmark)

    Krabbe, Simon; Engelhart, Merete; Thybo, Sören

    2017-01-01

    This case report describes a patient with scleroderma who developed Mycobacterium intracellulare infection, which for more than a year mimicked worsening of her connective tissue disorder. The patient was diagnosed with scleroderma based on puffy fingers that developed into sclerodactyly, abnormal......, unfortunately with significant scarring. Immunodeficiency testing was unremarkable. In summary, an infection with Mycobacterium intracellulare was mistaken for an unusually severe progression of scleroderma....

  14. MsDpo4—a DinB Homolog from Mycobacterium smegmatis—Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches

    Directory of Open Access Journals (Sweden)

    Amit Sharma

    2012-01-01

    Full Text Available Error-prone DNA synthesis in prokaryotes imparts plasticity to the genome to allow for evolution in unfavorable environmental conditions, and this phenomenon is termed adaptive mutagenesis. At a molecular level, adaptive mutagenesis is mediated by upregulating the expression of specialized error-prone DNA polymerases that generally belong to the Y-family, such as the polypeptide product of the dinB gene in case of E. coli. However, unlike E. coli, it has been seen that expression of the homologs of dinB in Mycobacterium tuberculosis are not upregulated under conditions of stress. These studies suggest that DinB homologs in Mycobacteria might not be able to promote mismatches and participate in adaptive mutagenesis. We show that a representative homolog from Mycobacterium smegmatis (MsDpo4 can carry out template-dependent nucleotide incorporation and therefore is a DNA polymerase. In addition, it is seen that MsDpo4 is also capable of misincorporation with a significant ability to promote G:T and T:G mismatches. The frequency of misincorporation for these two mismatches is similar to that exhibited by archaeal and prokaryotic homologs. Overall, our data show that MsDpo4 has the capacity to facilitate transition mutations and can potentially impart plasticity to the genome.

  15. Whole-genome sequence analysis of the Mycobacterium avium complex and proposal of the transfer of Mycobacterium yongonense to Mycobacterium intracellulare subsp. yongonense subsp. nov.

    Science.gov (United States)

    Castejon, Maria; Menéndez, Maria Carmen; Comas, Iñaki; Vicente, Ana; Garcia, Maria J

    2018-06-01

    Bacterial whole-genome sequences contain informative features of their evolutionary pathways. Comparison of whole-genome sequences have become the method of choice for classification of prokaryotes, thus allowing the identification of bacteria from an evolutionary perspective, and providing data to resolve some current controversies. Currently, controversy exists about the assignment of members of the Mycobacterium avium complex, as is for the cases of Mycobacterium yongonense and 'Mycobacterium indicus pranii'. These two mycobacteria, closely related to Mycobacterium intracellulare on the basis of standard phenotypic and single gene-sequences comparisons, were not considered a member of such species on the basis on some particular differences displayed by a single strain. Whole-genome sequence comparison procedures, namely the average nucleotide identity and the genome distance, showed that those two mycobacteria should be considered members of the species M. intracellulare. The results were confirmed with other whole-genome comparison supplementary methods. According to the data provided, Mycobacterium yongonense and 'Mycobacterium indicus pranii' should be considered and renamed and included as members of M. intracellulare. This study highlights the problems caused when a novel species is accepted on the basis of a single strain, as was the case for M. yongonense. Based mainly on whole-genome sequence analysis, we conclude that M. yongonense should be reclassified as a subspecies of Mycobacterium intracellulareas Mycobacterium intracellularesubsp. yongonense and 'Mycobacterium indicus pranii' classified in the same subspecies as the type strain of Mycobacterium intracellulare and classified as Mycobacterium intracellularesubsp. intracellulare.

  16. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.; Rashid, M.; Adroub, S. A.; Arnoux, M.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab

    2012-01-01

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  17. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  18. Mycobacterium chelonae infections associated with bee venom acupuncture.

    Science.gov (United States)

    Cho, Sun Young; Peck, Kyong Ran; Kim, Jungok; Ha, Young Eun; Kang, Cheol-In; Chung, Doo Ryeon; Lee, Nam Yong; Song, Jae-Hoon

    2014-03-01

    We report 3 cases of Mycobacterium chelonae infections after bee venom acupuncture. All were treated with antibiotics and surgery. Mycobacterium chelonae infections should be included in the differential diagnosis of chronic skin and soft tissue infections following bee venom acupuncture.

  19. The draft genome of Mycobacterium aurum , a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    Directory of Open Access Journals (Sweden)

    Jody Phelan

    2015-01-01

    Full Text Available Mycobacterium aurum (M. aurum is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related to 96.2% for rrs (streptomycin, capreomycin. We observed two homologous genes encoding the catalase-peroxidase enzyme (katG that is associated with resistance to isoniazid. Similarly, two emb B homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum , this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  20. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    KAUST Repository

    Phelan, Jody

    2015-06-04

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  1. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    KAUST Repository

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G.

    2015-01-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  2. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae.

    Science.gov (United States)

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G

    2015-09-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae. Copyright © 2015 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  3. Enfermedad por Mycobacterium simiae y "Mycobacterium sherrisii" en la Argentina

    Directory of Open Access Journals (Sweden)

    Lucía Barrera

    2010-08-01

    Full Text Available Se presenta información reunida retrospectivamente sobre casos de micobacteriosis originados por Mycobacterium simiae (n = 4 y "M. sherrisii" (n = 6. Los casos ocurrieron entre pacientes con sida (n = 6, historia de silicosis (n = 2 o tuberculosis previa (n = 1. Un caso se perdió luego de diagnosticado y nueve fueron tratados con esquemas terapéuticos basados en claritromicina, etambutol y quinolonas. La respuesta fue muy pobre: cinco pacientes fallecieron (cuatro eran HIV positivos, tres permanecieron crónicos y sólo uno curó. Estas micobacterias originaron 2.1% de los casos de micobacteriosis registrados en un período de ocho años. La distinción de estas micobacterias raras de otras más frecuentes por métodos moleculares rápidos, parece ser clínicamente útil para advertir sobre la dificultad que puede presentar el tratamiento. Sin embargo, la diferenciación genotípica entre M. simiae y "M. sherrisii" parecería no ser clínicamente relevante, dado que no quedaron expuestas características que distingan a los pacientes afectados por los dos microorganismos tan estrechamente relacionados.

  4. Subversion of Schwann Cell Glucose Metabolism by Mycobacterium leprae*

    Science.gov (United States)

    Medeiros, Rychelle Clayde Affonso; Girardi, Karina do Carmo de Vasconcelos; Cardoso, Fernanda Karlla Luz; Mietto, Bruno de Siqueira; Pinto, Thiago Gomes de Toledo; Gomez, Lilian Sales; Rodrigues, Luciana Silva; Gandini, Mariana; Amaral, Julio Jablonski; Antunes, Sérgio Luiz Gomes; Corte-Real, Suzana; Rosa, Patricia Sammarco; Pessolani, Maria Cristina Vidal; Nery, José Augusto da Costa; Sarno, Euzenir Nunes; Batista-Silva, Leonardo Ribeiro; Sola-Penna, Mauro; Oliveira, Marcus Fernandes; Moraes, Milton Ozório; Lara, Flavio Alves

    2016-01-01

    Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed. PMID:27555322

  5. Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins.

    Science.gov (United States)

    Singh, Pawan; Patil, K Neelakanteshwar; Khanduja, Jasbeer Singh; Kumar, P Sanjay; Williams, Alan; Rossi, Franca; Rizzi, Menico; Davis, Elaine O; Muniyappa, K

    2010-06-15

    DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coli RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

  6. The detection and sequencing of a broad-host-range conjugative IncP-1β plasmid in an epidemic strain of Mycobacterium abscessus subsp. bolletii.

    Directory of Open Access Journals (Sweden)

    Sylvia Cardoso Leão

    Full Text Available BACKGROUND: An extended outbreak of mycobacterial surgical infections occurred in Brazil during 2004-2008. Most infections were caused by a single strain of Mycobacterium abscessus subsp. bolletii, which was characterized by a specific rpoB sequevar and two highly similar pulsed-field gel electrophoresis (PFGE patterns differentiated by the presence of a ∼50 kb band. The nature of this band was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Genomic sequencing of the prototype outbreak isolate INCQS 00594 using the SOLiD platform demonstrated the presence of a 56,267-bp [corrected] circular plasmid, designated pMAB01. Identity matrices, genetic distances and phylogeny analyses indicated that pMAB01 belongs to the broad-host-range plasmid subgroup IncP-1β and is highly related to BRA100, pJP4, pAKD33 and pB10. The presence of pMAB01-derived sequences in 41 M. abscessus subsp. bolletii isolates was evaluated using PCR, PFGE and Southern blot hybridization. Sixteen of the 41 isolates showed the presence of the plasmid. The plasmid was visualized as a ∼50-kb band using PFGE and Southern blot hybridization in 12 isolates. The remaining 25 isolates did not exhibit any evidence of this plasmid. The plasmid was successfully transferred to Escherichia coli by conjugation and transformation. Lateral transfer of pMAB01 to the high efficient plasmid transformation strain Mycobacterium smegmatis mc(2155 could not be demonstrated. CONCLUSIONS/SIGNIFICANCE: The occurrence of a broad-host-range IncP-1β plasmid in mycobacteria is reported for the first time. Thus, genetic exchange could result in the emergence of specific strains that might be better adapted to cause human disease.

  7. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  8. Occurrence of Mycobacterium bovis and non-tuberculous mycobacteria (NTM) in raw and pasteurized milk in the northwestern region of Paraná, Brazil.

    Science.gov (United States)

    Sgarioni, Sônia Aparecida; Hirata, Rosario Dominguez Crespo; Hirata, Mario Hiroyuki; Leite, Clarice Queico Fujimura; de Prince, Karina Andrade; de Andrade Leite, Sergio Roberto; Filho, Dirceu Vedovello; Siqueira, Vera Lucia Dias; Caleffi-Ferracioli, Katiany Rizzieri; Cardoso, Rosilene Fressatti

    2014-01-01

    Milk is widely consumed in Brazil and can be the vehicle of agent transmission. In this study, was evaluated the occurrence of Mycobacterium bovis and non-tuberculous mycobacteria (NTM) in raw and pasteurized milk consumed in the northwestern region of Paraná, Brazil. Fifty-two milk samples (20 pasteurized and 32 raw) from dairy farms near the municipality of Maringa, Parana State, Brazil were collected. Milk samples were decontaminated using 5% oxalic acid method and cultured on Lowenstein-Jensen and Stonebrink media at 35 °C and 30 °C, with and without 5-10% CO2. Mycobacteria isolates were identified by morphological features, PCR-Restriction Fragment Length Polymorphism Analysis (PCR-PRA) and Mycolic acids analysis. Thirteen (25%) raw and 2 (4%) pasteurized milk samples were positive for acid fast bacilli growth. Nine different species of NTM were isolated (M. nonchromogenicum, M. peregrinum, M. smegmatis, M. neoaurum, M. fortuitum, M. chelonae, M. flavescens, M. kansasii and M. scrofulaceum). M. bovis was not detected. Raw and pasteurized milk may be considered one source for NTM human infection. The paper reinforces the need for intensification of measures in order to avoid the milk contamination and consequently prevent diseases in the south of Brazil.

  9. Occurrence of Mycobacterium bovis and non-tuberculous mycobacteria (NTM in raw and pasteurized milk in the northwestern region of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Sônia Aparecida Sgarioni

    2014-06-01

    Full Text Available Milk is widely consumed in Brazil and can be the vehicle of agent transmission. In this study, was evaluated the occurrence of Mycobacterium bovis and non-tuberculous mycobacteria (NTM in raw and pasteurized milk consumed in the northwestern region of Paraná, Brazil. Fifty-two milk samples (20 pasteurized and 32 raw from dairy farms near the municipality of Maringa, Parana State, Brazil were collected. Milk samples were decontaminated using 5% oxalic acid method and cultured on Lowenstein-Jensen and Stonebrink media at 35 °C and 30 °C, with and without 5-10% CO2. Mycobacteria isolates were identified by morphological features, PCR-Restriction Fragment Length Polymorphism Analysis (PCR-PRA and Mycolic acids analysis. Thirteen (25% raw and 2 (4% pasteurized milk samples were positive for acid fast bacilli growth. Nine different species of NTM were isolated (M. nonchromogenicum, M. peregrinum, M. smegmatis, M. neoaurum, M. fortuitum, M. chelonae, M. flavescens, M. kansasii and M. scrofulaceum. M. bovis was not detected. Raw and pasteurized milk may be considered one source for NTM human infection. The paper reinforces the need for intensification of measures in order to avoid the milk contamination and consequently prevent diseases in the south of Brazil.

  10. Mycobacterium mageritense Parotitis in an Immunocompetent Adult.

    Science.gov (United States)

    Okabe, Taro; Sasahara, Teppei; Suzuki, Jun; Onishi, Tsubasa; Komura, Masayoshi; Hagiwara, Shigehiro; Suzuki, Hiromichi; Morisawa, Yuji

    2018-03-01

    Mycobacterium mageritense , a rapidly growing mycobacterium, is a rare clinical pathogen. Furthermore, parotitis due to non-tuberculosis mycobacterium is very rare in adults. Herein, we report the first case of M. mageritense parotitis in an immunocompetent adult. A 40-year-old man presented with swelling in a left parotid lesion. He was diagnosed with parotitis. The culture from the parotid abscess grew M. mageritense . He was unsuccessfully treated with levofloxacin monotherapy. Trimethoprim-sulfamethoxazole was added, leading to some clinical response; however, the erythema persisted despite 14 months of antibiotic therapy. Subsequently, the skin lesion was surgically removed. The antibiotic treatment was ceased a week after surgery as the postoperative course was uneventful and the lesion had improved. No recurrence was noted at 7 months after surgery. Although extremely rare, M. mageritense can cause parotitis in immunocompetent adults, and may not be sufficiently treated with antibiotics alone.

  11. Draft Genome Sequence of Mycobacterium chimaera Type ...

    Science.gov (United States)

    We report the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169T, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, though Fl-0169T possesses unique virulence genes. Evidence suggests that M. avium, M. intracellulare, and M. chimaera are differently virulent and a comparative genomic analysis is critically needed to identify diagnostic targets that reliably differentiate species of MAC. With treatment costs for Mycobacterium infections estimated to be >$1.8 B annually in the U.S., correct species identification will result in improved treatment selection, lower costs, and improved patient outcomes.

  12. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species.

    Directory of Open Access Journals (Sweden)

    Vikram Saini

    Full Text Available BACKGROUND: Mycobacterium indicus pranii (MIP, popularly known as Mw, is a cultivable, non-pathogenic organism, which, based on its growth and metabolic properties, is classified in Runyon Group IV along with M. fortuitum, M. smegmatis and M. vaccae. The novelty of this bacterium was accredited to its immunological ability to undergo antigen driven blast transformation of leukocytes and delayed hypersensitivity skin test in leprosy patients, a disease endemic in the Indian sub-continent. Consequently, MIP has been extensively evaluated for its biochemical and immunological properties leading to its usage as an immunomodulator in leprosy and tuberculosis patients. However, owing to advances in sequencing and culture techniques, the citing of new strains with almost 100% similarity in the sequences of marker genes like 16S rRNA, has compromised the identity of MIP as a novel species. Hence, to define its precise taxonomic position, we have carried out polyphasic taxonomic studies on MIP that integrate its phenotypic, chemotaxonomic and molecular phylogenetic attributes. METHODOLOGY/PRINCIPAL FINDINGS: The comparative analysis of 16S rRNA sequence of MIP by using BLAST algorithm at NCBI (nr database revealed a similarity of > or =99% with M. intracellulare, M. arosiense, M. chimaera, M. seoulense, M. avium subsp. hominissuis, M. avium subsp. paratuberculosis and M. bohemicum. Further analysis with other widely used markers like rpoB and hsp65 could resolve the phylogenetic relationship between MIP and other closely related mycobacteria apart from M. intracellulare and M. chimaera, which shares > or =99% similarity with corresponding MIP orthologues. Molecular phylogenetic analysis, based on the concatenation of candidate orthologues of 16S rRNA, hsp65 and rpoB, also substantiated its distinctiveness from all the related organisms used in the analysis excluding M. intracellulare and M. chimaera with which it exhibited a close proximity. This

  13. Mycobacterium chelonae y Mycobacterium abscessus: patógenos emergentes

    Directory of Open Access Journals (Sweden)

    Mónica M. Ortegón

    1996-09-01

    Full Text Available Mycobacterium chelonae es el nombre correcto para la micobacteria aislada en 1903 de los pulmones enfermos de una tortuga marina. En una especie distinta de Mycobacterium fo/tuitum, aislado de ranas en 1905, y de Mycobacterium abscessus, considerado actualmente como una subespecie de M chelonae. Estas tres especies son las únicas patógenas para el hombre dentro del grupo de micobacterias ambientales o atipicas, de crecimiento rápido, las cuales se caracterizan por formar colonias en cultivo en menos de siete días. Son agentes etiológicos de nódulos y abscesos cutáneos, localizados y diseminados, de lesiones postoperatorias, usualmente en la cicatriz quirúrgica, de lesiones pulmonares y de linfadenitis granulomatosa, de osteomielitis y de queratitis, entre otras. Las lesiones cutáneas y de los tejidos blandos son las más frecuentes y resultan generalmente de la inoculación traumática de esta micobacteria. Histopatológicamente, los nódulos y abscesos muestran un proceso inflamatorio, supurativo y granulomatoso, mixto, en el que en la cuarta parte de los casos pueden demostrarse conglomerados de bacilos ácido alcohol resistentes, que tienden a estar situados en una vacuola en el centro del absceso. En Colombia, se han descrito tres brotes de abscesos subcutáneos producidos por bacterias ambientales, secundarios a la aplicación de inyecciones contaminadas con el germen causal: en 1981, en Bucaramanga, luego de la aplicación de la vacuna contra la fiebre amarilla, en 50 personas, la mayoría niños; en 1989, en Medellin, por la inyección subcutánea de alergenos, en 13 personas; y, en 1993, en varias ciudades de la costa atlántica, luego de aplicaciones subcutáneas de xilocaína, como tratamiento bionergético, en 297 pacientes. Existen otros informes aislados de casos posttraumáticos.La enfermedad diseminada por micobacterias de rápido crecimiento, se presenta en pacientes inmunosuprimidos. En la biopsia, predominan los

  14. Mycobacterium franklinii sp. nov., a species closely related to members of the Mycobacterium chelonae-Mycobacterium abscessus group.

    Science.gov (United States)

    Lourenço Nogueira, Christiane; Simmon, Keith E; Chimara, Erica; Cnockaert, Margo; Carlos Palomino, Juan; Martin, Anandi; Vandamme, Peter; Brown-Elliott, Barbara A; Wallace, Richard; Cardoso Leão, Sylvia

    2015-07-01

    Two isolates from water, D16Q19 and D16R27, were shown to be highly similar in their 16S rRNA, 16S-23S internal transcribed spacer (ITS), hsp65 and rpoB gene sequences to 'Mycobacterium franklinii' DSM 45524, described in 2011 but with the name not validly published. They are all nonpigmented rapid growers and are related phenotypically and genetically to the Mycobacterium chelonae-Mycobacterium abscessus group. Extensive characterization by phenotypic analysis, biochemical tests, drug susceptibility testing, PCR restriction enzyme analysis of the hsp65 gene and ITS, DNA sequencing of housekeeping genes and DNA-DNA hybridization demonstrated that 'M. franklinii' DSM 45524, D16Q19 and D16R27 belong to a single species that is separated from other members of the M. chelonae-M. abscessus group. On the basis of these results we propose the formal recognition of Mycobacterium franklinii sp. nov. Strain DSM 45524(T) ( = ATCC BAA-2149(T)) is the type strain.

  15. Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages

    KAUST Repository

    Roy, Sugata

    2018-04-24

    Mycobacterium tuberculosis (Mtb) infection reveals complex and dynamic host-pathogen interactions, leading to host protection or pathogenesis. Using a unique transcriptome technology (CAGE), we investigated the promoter-based transcriptional landscape of IFNγ (M1) or IL-4/IL-13 (M2) stimulated macrophages during Mtb infection in a time-kinetic manner. Mtb infection widely and drastically altered macrophage-specific gene expression, which is far larger than that of M1 or M2 activations. Gene Ontology enrichment analysis for Mtb-induced differentially expressed genes revealed various terms, related to host-protection and inflammation, enriched in up-regulated genes. On the other hand, terms related to dis-regulation of cellular functions were enriched in down-regulated genes. Differential expression analysis revealed known as well as novel transcription factor genes in Mtb infection, many of them significantly down-regulated. IFNγ or IL-4/IL-13 pre-stimulation induce additional differentially expressed genes in Mtb-infected macrophages. Cluster analysis uncovered significant numbers, prolonging their expressional changes. Furthermore, Mtb infection augmented cytokine-mediated M1 and M2 pre-activations. In addition, we identified unique transcriptional features of Mtb-mediated differentially expressed lncRNAs. In summary we provide a comprehensive in depth gene expression/regulation profile in Mtb-infected macrophages, an important step forward for a better understanding of host-pathogen interaction dynamics in Mtb infection.

  16. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution.

    Directory of Open Access Journals (Sweden)

    Holly R Ramage

    2009-12-01

    Full Text Available Toxin-antitoxin (TA systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought. Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex (MTBC, but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus, suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M. smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis.

  17. Targeting phenotypically tolerant Mycobacterium tuberculosis

    Science.gov (United States)

    Gold, Ben; Nathan, Carl

    2016-01-01

    While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in a clinical setting. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of post-treatment relapse. Some promising drugs to treat tuberculosis, such as rifampicin and bedaquiline, only kill nonreplicating M. tuberculosis in vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores. However, few of these compounds were tested under conditions that would exclude the impact of adsorbed compound acting during the recovery phase of

  18. Metabolite analysis of Mycobacterium species under aerobic and hypoxic conditions reveals common metabolic traits.

    Science.gov (United States)

    Drapal, Margit; Wheeler, Paul R; Fraser, Paul D

    2016-08-01

    A metabolite profiling approach has been implemented to elucidate metabolic adaptation at set culture conditions in five Mycobacterium species (two fast- and three slow-growing) with the potential to act as model organisms for Mycobacterium tuberculosis (Mtb). Analysis has been performed over designated growth phases and under representative environments (nutrient and oxygen depletion) experienced by Mtb during infection. The procedure was useful in determining a range of metabolites (60-120 compounds) covering nucleotides, amino acids, organic acids, saccharides, fatty acids, glycerols, -esters, -phosphates and isoprenoids. Among these classes of compounds, key biomarker metabolites, which can act as indicators of pathway/process activity, were identified. In numerous cases, common metabolite traits were observed for all five species across the experimental conditions (e.g. uracil indicating DNA repair). Amino acid content, especially glutamic acid, highlighted the different properties between the fast- and slow-growing mycobacteria studied (e.g. nitrogen assimilation). The greatest similarities in metabolite composition between fast- and slow-growing mycobacteria were apparent under hypoxic conditions. A comparison to previously reported transcriptomic data revealed a strong correlation between changes in transcription and metabolite content. Collectively, these data validate the changes in the transcription at the metabolite level, suggesting transcription exists as one of the predominant modes of cellular regulation in Mycobacterium. Sectors with restricted correlation between metabolites and transcription (e.g. hypoxic cultivation) warrant further study to elucidate and exploit post-transcriptional modes of regulation. The strong correlation between the laboratory conditions used and data derived from in vivo conditions, indicate that the approach applied is a valuable addition to our understanding of cell regulation in these Mycobacterium species.

  19. Detection of Mycobacterium Tuberculosis by using PCR

    International Nuclear Information System (INIS)

    Suhadi, F; Dadang-Sudrajat; Maria-Lina, R.

    1996-01-01

    Polymerase Chain Reaction (PCR) procedure using three primary set derived from repetitive DNA sequence specific to mycobacteria was used to diagnose pathogenic Mycobacterium tuberculosis. The assay was specific for M. tuberculosis and could be used to detect the amount DNA less than 10 -9 g

  20. Molecular Epidemiology of Mycobacterium Tuberculosis Strains in ...

    African Journals Online (AJOL)

    Doroudchi M, Kremer K, Basiri EA, Kadivar MR,. Van Soolingen D, Ghaderi AA. IS6110‑RFLP and spoligotyping of Mycobacterium tuberculosis isolates in Iran. Scand J Infect. Dis 2000;32:663‑8. 13. Farnia P, Masjedi MR, Mirsaeidi M, Mohammadi F,. Jallaledin‑Ghanavi, Vincent V, et al. Prevalence of Haarlem I and Beijing ...

  1. Mycobacterium bovis Infection of Red Fox, France.

    Science.gov (United States)

    Michelet, Lorraine; De Cruz, Krystel; Hénault, Sylvie; Tambosco, Jennifer; Richomme, Céline; Réveillaud, Édouard; Gares, Hélène; Moyen, Jean-Louis; Boschiroli, María Laura

    2018-06-01

    Mycobacterium bovis infection in wild red foxes was found in southern France, where livestock and other wildlife species are infected. Foxes frequently interact with cattle but have been underestimated as a reservoir of M. bovis. Our results suggest a possible role of the red fox in the epidemiology of bovine tuberculosis.

  2. Mycobacterium tuberculosis monoarthritis in a child

    Directory of Open Access Journals (Sweden)

    Rosenberg Alan M

    2008-09-01

    Full Text Available Abstract A child with isolated Mycobacterium tuberculosis monoarthritis, with features initially suggesting oligoarthritis subtype of juvenile idiopathic arthritis, is presented. This patient illustrates the need to consider the possibility of tuberculosis as the cause of oligoarthritis in high-risk pediatric populations even in the absence of a tuberculosis contact history and without evidence of overt pulmonary disease.

  3. Investigating Mycobacterium chelonae-abscessus Complex

    Centers for Disease Control (CDC) Podcasts

    2011-11-17

    Keith Simmon, scientist at Isentio US discusses research that was done while he was at ARUP laboratories, discusses a new classification of Mycobacterium chelonae-abscessus complex.  Created: 11/17/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/22/2011.

  4. Safety assessment in primary Mycobacterium tuberculosis smear ...

    African Journals Online (AJOL)

    Introduction Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is transmitted mainly through aerosolization of infected sputum which puts laboratory workers at risk in spite of the laboratory workersf risk of infection being at 3 to 9 times higher than the general public. Laboratory safety should therefore be ...

  5. Molecular Characterization of the Resistance of Mycobacterium ...

    African Journals Online (AJOL)

    Abstract. Purpose: To characterize the resistance of Mycobacterium tuberculosis to second line drugs using a line probe assay. Methods: ... Marne-la-Coquette,. France). Bacterial isolates contained in 500 µl of liquid culture were heat- inactivated at 95 °C for 30 min and then sonicated for 12 min. Finally, the suspension was ...

  6. Peritoneal tuberculosis due to Mycobacterium caprae

    Directory of Open Access Journals (Sweden)

    T. Nebreda

    2016-01-01

    Full Text Available The incidence of tuberculosis in humans due to Mycobacterium caprae is very low and is almost confined to Europe. We report a case of a previously healthy 41-year-old Moroccan with a 6 month history of abdominal pain, weight loss, fatigue and diarrhea. A diagnosis of peritoneal tuberculosis due to M. caprae was made.

  7. The epidemiology of Mycobacterium leprae: recent insight

    NARCIS (Netherlands)

    van Beers, S. M.; de Wit, M. Y.; Klatser, P. R.

    1996-01-01

    Leprosy is still a health problem in many countries. Because the causative organism, Mycobacterium leprae cannot be cultured in vitro, it is virtually impossible to assess exposure, and the onset of infection and disease. As a consequence, the chain of infection, considered as the relationships

  8. Modelling the Transitional Dynamics of Mycobacterium Tuberculosis ...

    African Journals Online (AJOL)

    The World Health Organization's targets of eliminating Tuberculosis (TB) by 2050 is challenged by the emergence and spread of drug resistance TB. However, the traditional mechanism of resistance is that of acquired resistance, whereby the mycobacterium Tuberculosis (MTB) strain develops mutations under selective ...

  9. Mitogen-activated protein kinases mediate Mycobacterium

    Indian Academy of Sciences (India)

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are ...

  10. Otomastoiditis Caused by Mycobacterium abscessus, the Netherlands

    NARCIS (Netherlands)

    van Ingen, Jakko; Looijmans, Frank; Mirck, Piet; Dekhuijzen, Richard; Boeree, Martin; van Soolingen, Dick

    2010-01-01

    To the Editor: Nontuberculous mycobacteria (NTM) are increasingly recognized as human pathogens (1). Otomastoiditis is a rare extrapulmonary NTM disease type first described in 1976; Mycobacterium chelonae-M. abscessus group bacteria, which are rapidly growing NTM, are the most frequent causative

  11. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    Science.gov (United States)

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms were measured. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1s-1, and the EPMs of fifteen environmental isolates ranged from -1...

  12. Chronic leg ulcer caused by Mycobacterium immunogenum

    NARCIS (Netherlands)

    Loots, Miriam A. M.; de Jong, Menno D.; van Soolingen, Dick; Wetsteyn, José C. F. M.; Faber, William R.

    2005-01-01

    Rare tropical skin diseases are seen more frequently in Western countries because of the increased popularity of visiting tropical regions. A 55-year-old white man developed a painless leg ulcer after traveling in Guatemala and Belize. A mycobacterium was cultured from a biopsy specimen and was

  13. Identification of Immunotopes against Mycobacterium leprae as ...

    African Journals Online (AJOL)

    Purpose: To determine the surface epitopes of Mycobacterium leprae (M. leprae) and evaluate their efficacy in the production of anti-M. leprae antibodies in an animal model. Methods: Blood samples were obtained from 34 patients suffering from lepromatous leprosy. Antibodies were obtained from the samples, ...

  14. Seroprevalence of Mycobacterium avium SSP paratuberculosis ...

    African Journals Online (AJOL)

    This study aimed to determine the seroprevalence of antibodies for Mycobacterium avium subspecies paratuberculosis (MAP) in dairy cattle in the Jimma zone of Ethiopia in 2011. A random sample of 29 herds was selected, and all mature cattle within these herds had a blood sample taken. Serum was tested in duplicate, ...

  15. Granulomatous lobular mastitis secondary to Mycobacterium fortuitum.

    Science.gov (United States)

    Kamyab, Armin

    2016-12-16

    Granulomatous lobular mastitis is a rare inflammatory disease of the breast of unknown etiology. Most present as breast masses in women of child-bearing age. A 29-year-old female presented with a swollen, firm and tender right breast, initially misdiagnosed as mastitis. Core needle biopsy revealed findings consistent with granulomatous lobular mastitis, and cultures were all negative for an infectious etiology. She was started on steroid therapy to which she initially responded well. A few weeks later she deteriorated and was found to have multiple breast abscesses. She underwent operative drainage and cultures grew Mycobacterium fortuitum . Granulomatous lobular mastitis is a rare inflammatory disease of the breast. The definitive diagnose entails a biopsy. Other causes of chronic or granulomatous mastitis should be ruled out, including atypical or rare bacteria such as Mycobacterium fortuitum . This is the first reported case of granulomatous mastitis secondary to Mycobacterium fortuitum . With pathologic confirmation of granulomatous mastitis, an infectious etiology must be ruled out. Atypical bacteria such as Mycobacterium fortuitum may not readily grow on cultures, as with our case. Medical management is appropriate, with surgical excision reserved for refractory cases or for drainage of abscesses.

  16. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  17. Enfermedad por Mycobacterium simiae y "Mycobacterium sherrisii" en la Argentina Disease due to Mycobacterium simiae and "Mycobacterium sherrisii" in Argentina

    Directory of Open Access Journals (Sweden)

    Lucía Barrera

    2010-08-01

    Full Text Available Se presenta información reunida retrospectivamente sobre casos de micobacteriosis originados por Mycobacterium simiae (n = 4 y "M. sherrisii" (n = 6. Los casos ocurrieron entre pacientes con sida (n = 6, historia de silicosis (n = 2 o tuberculosis previa (n = 1. Un caso se perdió luego de diagnosticado y nueve fueron tratados con esquemas terapéuticos basados en claritromicina, etambutol y quinolonas. La respuesta fue muy pobre: cinco pacientes fallecieron (cuatro eran HIV positivos, tres permanecieron crónicos y sólo uno curó. Estas micobacterias originaron 2.1% de los casos de micobacteriosis registrados en un período de ocho años. La distinción de estas micobacterias raras de otras más frecuentes por métodos moleculares rápidos, parece ser clínicamente útil para advertir sobre la dificultad que puede presentar el tratamiento. Sin embargo, la diferenciación genotípica entre M. simiae y "M. sherrisii" parecería no ser clínicamente relevante, dado que no quedaron expuestas características que distingan a los pacientes afectados por los dos microorganismos tan estrechamente relacionados.A revision of mycobacterial disease due to M simiae (n = 4 and "M. sherrisii" (n = 6 identified during an eight-year period is presented. Cases occurred among patients with AIDS (n = 6, previous history of silicosis (n = 2 or tuberculosis (n = 2. One case was lost to follow-up and the remaining nine responded poorly to chemotherapy based on clarithromycin, ethambutol and fluoroquinolones. Five patients died of whom four were HIV-positive, three remained chronic and one was cured. These microorganisms originated 2.1% of mycobacterioses cases detected in an eight-year period. Timely identification of this group of uncommon mycobacteria by molecular methods seems to be clinically relevant in order to warn of difficulties inherent to the treatment. However, the distinction between both closely related microorganisms might not be crucial for case

  18. Cryopreservation of Mycobacterium bovis isolates

    Directory of Open Access Journals (Sweden)

    Cássia Yumi Ikuta

    2016-11-01

    Full Text Available Research, development of new biotechnological methods, diagnostic tests, confirmation of results, and reinvestigations are possible because of the availability of well-preserved living organisms maintained without any changes. Cryopreservation is a simpler, more reliable and long-term stable method for culture maintenance. Storage temperature and composition of the suspending vehicle are factors that affect the viability of mycobacterial strains. Three vehicles and three storage temperatures were evaluated to define a suitable cryoprotective medium for the preservation of Mycobacterium bovis strains. Colonies of sixteen M. bovis isolates were used to prepare the suspensions, which were then added to three vehicles: sterile 0.85% saline solution (SS, Middlebrook 7H9 broth (7H9, and Middlebrook 7H9 broth with sodium pyruvate (7H9p replacing glycerol. Aliquots of these suspensions were frozen by three different methods, directly in the -20°C freezer, directly in the -80°C freezer, and at -196°C by immersion in liquid nitrogen (LN. The frozen aliquots were thawed at room temperature after 45, 90 and 120 days. Mycobacterial viability was assessed by counting the living cells on plates of Stonebrink medium before and after the freezing procedure. Storage at -20°C exhibited a lower recovery of M. bovis compared to storage at -80°C (Dunn’s test, p=0.0018 and LN (Dunn’s test, p=0.0352. There was no statistically significant difference between storage at -80°C and in LN (Dunn’s test, p=0.1403, yet -80°C showed better results than LN. All three suspending vehicles showed no statistically significant difference in terms of viability (Friedman’s test, p=0.7765. Given the low loss proportion of 5% during storage at -20°C and the high cost equipment required for storage at -80°C and LN, we recommend storage at -20°C or -80°C, when this is available, for preservation of M. bovis field strains.

  19. Mycobacterium talmoniae sp. nov., a slowly growing mycobacterium isolated from human respiratory samples.

    Science.gov (United States)

    Davidson, Rebecca M; DeGroote, Mary Ann; Marola, Jamie L; Buss, Sarah; Jones, Victoria; McNeil, Michael R; Freifeld, Alison G; Elaine Epperson, L; Hasan, Nabeeh A; Jackson, Mary; Iwen, Peter C; Salfinger, Max; Strong, Michael

    2017-08-01

    A novel slowly growing, non-chromogenic species of the class Actinobacteria was isolated from a human respiratory sample in Nebraska, USA, in 2012. Analysis of the internal transcribed spacer sequence supported placement into the genus Mycobacterium with high sequence similarity to a previously undescribed strain isolated from a patient respiratory sample from Oregon, USA, held in a collection in Colorado, USA, in 2000. The two isolates were subjected to phenotypic testing and whole genome sequencing and found to be indistinguishable. The bacteria were acid-fast stain-positive, rod-shaped and exhibited growth after 7-10 days on solid media at temperatures ranging from 25 to 42°C. Colonies were non-pigmented, rough and slightly raised. Analyses of matrix-assisted laser desorption ionization time-of-flight profiles showed no matches against a reference library of 130 mycobacterial species. Full-length 16S rRNA gene sequences were identical for the two isolates, the average nucleotide identity (ANI) between their genomes was 99.7 % and phylogenetic comparisons classified the novel mycobacteria as the basal most species in the slowly growing Mycobacterium clade. Mycobacterium avium is the most closely related species based on rpoB gene sequence similarity (92 %), but the ANI between the genomes was 81.5 %, below the suggested cut-off for differentiating two species (95 %). Mycolic acid profiles were more similar to M. avium than to Mycobacterium simiae or Mycobacterium abscessus. The phenotypic and genomic data support the conclusion that the two related isolates represent a novel Mycobacterium species for which the name Mycobacterium talmoniae sp. nov. is proposed. The type strain is NE-TNMC-100812T (=ATCC BAA-2683T=DSM 46873T).

  20. Trehalose Polyphleates, External Cell Wall Lipids in Mycobacterium abscessus, Are Associated with the Formation of Clumps with Cording Morphology, Which Have Been Associated with Virulence

    Directory of Open Access Journals (Sweden)

    Marta Llorens-Fons

    2017-07-01

    Full Text Available Mycobacterium abscessus is a reemerging pathogen that causes pulmonary diseases similar to tuberculosis, which is caused by Mycobacterium tuberculosis. When grown in agar medium, M. abscessus strains generate rough (R or smooth colonies (S. R morphotypes are more virulent than S morphotypes. In searching for the virulence factors responsible for this difference, R morphotypes have been found to form large aggregates (clumps that, after being phagocytozed, result in macrophage death. Furthermore, the aggregates released to the extracellular space by damaged macrophages grow, forming unphagocytosable structures that resemble cords. In contrast, bacilli of the S morphotype, which do not form aggregates, do not damage macrophages after phagocytosis and do not form cords. Cording has also been related to the virulence of M. tuberculosis. In this species, the presence of mycolic acids and surface-exposed cell wall lipids has been correlated with the formation of cords. The objective of this work was to study the roles of the surface-exposed cell wall lipids and mycolic acids in the formation of cords in M. abscessus. A comparative study of the pattern and structure of mycolic acids was performed on R (cording and S (non-cording morphotypes derived from the same parent strains, and no differences were observed between morphotypes. Furthermore, cords formed by R morphotypes were disrupted with petroleum ether (PE, and the extracted lipids were analyzed by thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Substantial amounts of trehalose polyphleates (TPP were recovered as major lipids from PE extracts, and images obtained by transmission electron microscopy suggested that these lipids are localized to the external surfaces of cords and R bacilli. The structure of M. abscessus TPP was revealed to be similar to those previously described in Mycobacterium smegmatis. Although the exact role of TPP is unknown, our

  1. Bone marrow infection with mycobacterium fortuitum in a diabetic patient

    International Nuclear Information System (INIS)

    Satti, L.; Abbasi, S.; Sattar, A.; Ikram, A.; Manzar, M.A.; Khalid, M.M.

    2011-01-01

    Incidence and prevalence of Mycobacterium fortuitum infection vary greatly by location and death is very rare except in disseminated disease in immunocompromised individuals. We present what we believe is the first case of bone marrow infection with Mycobacterium fortuitum in an HIV negative patient. Bone marrow examination revealed presence of numerous acid fast bacilli which were confirmed as Mycobacterium fortuitum on culture and by molecular analysis. Patient was managed successfully with amikacin and ciprofloxacin. (author)

  2. Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis

    Directory of Open Access Journals (Sweden)

    McGuire Abigail

    2012-03-01

    Full Text Available Abstract Background The sequence of the pathogen Mycobacterium tuberculosis (Mtb strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org, including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. Results Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. Conclusions Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.

  3. Comparative analysis of Mycobacterium and related Actinomycetes yields insight into the evolution of Mycobacterium tuberculosis pathogenesis.

    Science.gov (United States)

    McGuire, Abigail Manson; Weiner, Brian; Park, Sang Tae; Wapinski, Ilan; Raman, Sahadevan; Dolganov, Gregory; Peterson, Matthew; Riley, Robert; Zucker, Jeremy; Abeel, Thomas; White, Jared; Sisk, Peter; Stolte, Christian; Koehrsen, Mike; Yamamoto, Robert T; Iacobelli-Martinez, Milena; Kidd, Matthew J; Maer, Andreia M; Schoolnik, Gary K; Regev, Aviv; Galagan, James

    2012-03-28

    The sequence of the pathogen Mycobacterium tuberculosis (Mtb) strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.

  4. Mycobacterium komaniense sp. nov., a rapidly growing non-tuberculous Mycobacterium species detected in South Africa.

    Science.gov (United States)

    Gcebe, Nomakorinte; Rutten, Victor P M G; van Pittius, Nicolaas Gey; Naicker, Brendon; Michel, Anita L

    2018-05-01

    Some species of non-tuberculous mycobacteria (NTM) have been reported to be opportunistic pathogens of animals and humans. Recently there has been an upsurge in the number of cases of NTM infections, such that some NTM species are now recognized as pathogens of humans and animals. From a veterinary point of view, the major significance of NTM is the cross-reactive immune response they elicit against Mycobacterium bovis antigens, leading to misdiagnosis of bovine tuberculosis. Four NTM isolates were detected from a bovine nasal swab, soil and water, during an NTM survey in South Africa. These were all found using 16S rRNA gene sequence analysis to be closely related to Mycobacterium moriokaense. The isolates were further characterised by sequence analysis of the partial fragments of hsp65, rpoB and sodA. The genome of the type strain was also elucidated. Gene (16S rRNA, hsp65, rpoB and sodA) and protein sequence data analysis of 6 kDa early secretory antigenic target (ESAT 6) and 10 kDa culture filtrate protein (CFP-10) revealed that these isolates belong to a unique Mycobacterium species. Differences in phenotypic and biochemical traits between the isolates and closely related species further supported that these isolates belong to novel Mycobacterium species. We proposed the name Mycobacterium komaniense sp. nov. for this new species. The type strain is GPK 1020 T (=CIP 110823T=ATCC BAA-2758).

  5. Mycobacterium ahvazicum sp. nov., the nineteenth species of the Mycobacterium simiae complex.

    Science.gov (United States)

    Bouam, Amar; Heidarieh, Parvin; Shahraki, Abodolrazagh Hashemi; Pourahmad, Fazel; Mirsaeidi, Mehdi; Hashemzadeh, Mohamad; Baptiste, Emeline; Armstrong, Nicholas; Levasseur, Anthony; Robert, Catherine; Drancourt, Michel

    2018-03-07

    Four slowly growing mycobacteria isolates were isolated from the respiratory tract and soft tissue biopsies collected in four unrelated patients in Iran. Conventional phenotypic tests indicated that these four isolates were identical to Mycobacterium lentiflavum while 16S rRNA gene sequencing yielded a unique sequence separated from that of M. lentiflavum. One representative strain AFP-003 T was characterized as comprising a 6,121,237-bp chromosome (66.24% guanosine-cytosine content) encoding for 5,758 protein-coding genes, 50 tRNA and one complete rRNA operon. A total of 2,876 proteins were found to be associated with the mobilome, including 195 phage proteins. A total of 1,235 proteins were found to be associated with virulence and 96 with toxin/antitoxin systems. The genome of AFP-003 T has the genetic potential to produce secondary metabolites, with 39 genes found to be associated with polyketide synthases and non-ribosomal peptide syntases and 11 genes encoding for bacteriocins. Two regions encoding putative prophages and three OriC regions separated by the dnaA gene were predicted. Strain AFP-003 T genome exhibits 86% average nucleotide identity with Mycobacterium genavense genome. Genetic and genomic data indicate that strain AFP-003 T is representative of a novel Mycobacterium species that we named Mycobacterium ahvazicum, the nineteenth species of the expanding Mycobacterium simiae complex.

  6. Mycobacterium bovis and Other Uncommon Members of the Mycobacterium tuberculosis Complex.

    Science.gov (United States)

    Esteban, Jaime; Muñoz-Egea, Maria-Carmen

    2016-12-01

    Since its discovery by Theobald Smith, Mycobacterium bovis has been a human pathogen closely related to animal disease. At present, M. bovis tuberculosis is still a problem of importance in many countries and is considered the main cause of zoonotic tuberculosis throughout the world. Recent development of molecular epidemiological tools has helped us to improve our knowledge about transmission patterns of this organism, which causes a disease indistinguishable from that caused by Mycobacterium tuberculosis. Diagnosis and treatment of this mycobacterium are similar to those for conventional tuberculosis, with the important exceptions of constitutive resistance to pyrazinamide and the fact that multidrug-resistant and extremely drug-resistant M. bovis strains have been described. Among other members of this complex, Mycobacterium africanum is the cause of many cases of tuberculosis in West Africa and can be found in other areas mainly in association with immigration. M. bovis BCG is the currently available vaccine for tuberculosis, but it can cause disease in some patients. Other members of the M. tuberculosis complex are mainly animal pathogens with only exceptional cases of human disease, and there are even some strains, like "Mycobacterium canettii," which is a rare human pathogen that could have an important role in the knowledge of the evolution of tuberculosis in the history.

  7. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents... used to identify Mycobacterium tuberculosis directly from clinical specimens. The identification aids...

  8. A single or multistage mycobacterium avium subsp. paratuberculosis subunit vaccine

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention provides one or more immunogenic polypeptides for use in a preventive or therapeutic vaccine against latent or active infection in a human or animal caused by a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Furthermore a single or multi-phase vaccine...... comprising the one or more immunogenic polypeptides is provided for administration for the prevention or treatment of infection with a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Additionally, nucleic acid vaccines, capable of in vivo expression of the multi-phase vaccine...

  9. Infection caused by Mycobacterium tuberculosis.

    Science.gov (United States)

    Peloquin, C A; Berning, S E

    1994-01-01

    To update readers on the clinical management of infections caused by Mycobacterium tuberculosis, to provide a general description of the organism, culture and susceptibility testing, and clinical manifestations of the disease, and to provide several aspects of the treatment of the disease, including historical perspective, current approaches, and research opportunities for the future. The current medical literature, including abstracts presented at recent international meetings, is reviewed. References were identified through MEDLINE, MEDLARS II, Current Contents, and published meeting abstracts. Data regarding the epidemiology, clinical manifestations, culture and susceptibility testing, and treatment of tuberculosis are cited. Specific attention has been focused on the clinical management of patients with noncontagious infection and potentially contagious active disease (TB) caused by M. tuberculosis. Information contributing to the discussion of the topics selected by the authors is reviewed. Data supporting and disputing specific conclusions are presented. The incidence of TB is increasing in the US, despite the fact that available technologies are capable of controlling the vast majority of existing cases. Fueling the fire is the problem of coinfection with HIV and M. tuberculosis. Very few drugs are available for the treatment of TB, and few of these approach the potency of isoniazid and rifampin. Preventive therapy of patients exposed to multiple-drug-resistant M. tuberculosis (MDR-TB) is controversial and of unknown efficacy. Treatment of active disease caused by MDR-TB requires up to four times longer, is associated with increased toxicity, and is far less successful than the treatment of drug-susceptible TB. Strategies for the management of such cases are presented. The rising incidence of TB in the US reflects a breakdown in the healthcare systems responsible for controlling the disease, which reflects the past budgetary reductions. Although TB control

  10. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks

    Science.gov (United States)

    Flentie, Kelly; Garner, Ashley L.

    2016-01-01

    Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population. PMID:26883824

  11. [Identification and drug susceptibility testing of Mycobacterium thermoresistibile and Mycobacterium elephantis isolated from a cow with mastitis].

    Science.gov (United States)

    Li, W B; Ji, L Y; Xu, D L; Liu, H C; Zhao, X Q; Wu, Y M; Wan, K L

    2018-05-10

    Objective: To understand the etiological characteristics and drug susceptibility of Mycobacterium thermoresistibile and Mycobacterium elephantis isolated from a cow with mastitis and provide evidence for the prevention and control of infectious mastitis in cows. Methods: The milk sample was collected from a cow with mastitis, which was pretreated with 4 % NaOH and inoculated with L-J medium for Mycobacterium isolation. The positive cultures were initially identified by acid-fast staining and multi-loci PCR, then Mycobacterium species was identified by the multiple loci sequence analysis (MLSA) with 16S rRNA , hsp65 , ITS and SodA genes. The drug sensitivity of the isolates to 27 antibiotics was tested by alamar blue assay. Results: Two anti-acid stain positive strains were isolated from the milk of a cow with mastitis, which were identified as non- tuberculosis mycobacterium by multi-loci PCR, and multi-loci nucleic acid sequence analysis indicated that one strain was Mycobacterium thermoresistibile and another one was Mycobacterium elephantis . The results of the drug susceptibility test showed that the two strains were resistant to most antibiotics, including rifampicin and isoniazid, but they were sensitive to amikacin, moxifloxacin, levofloxacin, ethambutol, streptomycin, tobramycin, ciprofloxacin and linezolid. Conclusions: Mycobacterium thermoresistibile and Mycobacterium elephantis were isolated in a cow with mastitis and the drug susceptibility spectrum of the pathogens were unique. The results of the study can be used as reference for the prevention and control the infection in cows.

  12. Nitazoxanide is active against Mycobacterium leprae

    Science.gov (United States)

    Bailey, Mai Ann; Na, Hana; Duthie, Malcolm S.; Gillis, Thomas P.; Lahiri, Ramanuj

    2017-01-01

    Nitazoxanide (NTZ) is an anti-parasitic drug that also has activity against bacteria, including Mycobacterium tuberculosis. Our data using both radiorespirometry and live-dead staining in vitro demonstrate that NTZ similarly has bactericidal against M. leprae. Further, gavage of M. leprae-infected mice with NTZ at 25mg/kg provided anti-mycobacterial activity equivalent to rifampicin (RIF) at 10 mg/kg. This suggests that NTZ could be considered for leprosy treatment. PMID:28850614

  13. Comparative Mycobacteriology of the Mycobacterium tuberculosis complex

    OpenAIRE

    Gordon, Stephen V.; Behr, Marcel A.

    2015-01-01

    The Mycobacterium tuberculosis complex (MTBC) is a group of highly genetically related pathogens that cause tuberculosis (TB) in mammalian species. However, the very name of the complex underlines the fact that our knowledge of these pathogens is dominated by studies on the human pathogen, M. tuberculosis. Of course this is entirely justified; M. tuberculosis is a major global pathogen that exacts a horrendous burden in terms of mortality and morbidity so it is appropriate that it is...

  14. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    International Nuclear Information System (INIS)

    Badr, Hesham M.

    2011-01-01

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4±1 o C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria. - Highlights: → We examined the effectiveness of gamma irradiation on inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese. → Irradiation at dose of 2 kGy was sufficient for complete inactivation of these mycobacteria. → Irradiation of cheese samples induced no significant alterations on their sensory properties.

  15. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Hesham M., E-mail: heshambadr_aea@yahoo.co.uk [Atomic Energy Authority, Nuclear Research Center, Abou Zaabal, P.O. Box 13759 Cairo (Egypt)

    2011-11-15

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4{+-}1 {sup o}C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria. - Highlights: > We examined the effectiveness of gamma irradiation on inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese. > Irradiation at dose of 2 kGy was sufficient for complete inactivation of these mycobacteria. > Irradiation of cheese samples induced no significant alterations on their sensory properties.

  16. A Dermal Piercing Complicated by Mycobacterium fortuitum

    Science.gov (United States)

    Scroggins-Markle, Leslie; Kelly, Brent

    2013-01-01

    Background. Dermal piercings have recently become a fashion symbol. Common complications include hypertrophic scarring, rejection, local infection, contact allergy, and traumatic tearing. We report a rare case of Mycobacterium fortuitum following a dermal piercing and discuss its medical implications and treatments. Case. A previously healthy 19-year-old woman presented complaining of erythema and edema at the site of a dermal piercing on the right fourth dorsal finger. She was treated with a 10-day course of trimethoprim-sulfamethoxazole and one course of cephalexin by her primary care physician with incomplete resolution. The patient stated that she had been swimming at a local water park daily. A punch biopsy around the dermal stud was performed, and cultures with sensitivities revealed Mycobacterium fortuitum. The patient was treated with clarithromycin and ciprofloxacin for two months receiving full resolution. Discussion. Mycobacterium fortuitum is an infrequent human pathogen. This organism is a Runyon group IV, rapidly growing nontuberculous mycobacteria, often found in water,soil, and dust. Treatment options vary due to the size of the lesion. Small lesions are typically excised, while larger lesions require treatment for 2–6 months with antibiotics. We recommend a high level of suspicion for atypical mycobacterial infections in a piercing resistant to other therapies. PMID:24073343

  17. A Dermal Piercing Complicated by Mycobacterium fortuitum

    Directory of Open Access Journals (Sweden)

    Trisha Patel

    2013-01-01

    Full Text Available Background. Dermal piercings have recently become a fashion symbol. Common complications include hypertrophic scarring, rejection, local infection, contact allergy, and traumatic tearing. We report a rare case of Mycobacterium fortuitum following a dermal piercing and discuss its medical implications and treatments. Case. A previously healthy 19-year-old woman presented complaining of erythema and edema at the site of a dermal piercing on the right fourth dorsal finger. She was treated with a 10-day course of trimethoprim-sulfamethoxazole and one course of cephalexin by her primary care physician with incomplete resolution. The patient stated that she had been swimming at a local water park daily. A punch biopsy around the dermal stud was performed, and cultures with sensitivities revealed Mycobacterium fortuitum. The patient was treated with clarithromycin and ciprofloxacin for two months receiving full resolution. Discussion. Mycobacterium fortuitum is an infrequent human pathogen. This organism is a Runyon group IV, rapidly growing nontuberculous mycobacteria, often found in water,soil, and dust. Treatment options vary due to the size of the lesion. Small lesions are typically excised, while larger lesions require treatment for 2–6 months with antibiotics. We recommend a high level of suspicion for atypical mycobacterial infections in a piercing resistant to other therapies.

  18. Mycobacterium marinum infections in Denmark from 2004 to 2017

    DEFF Research Database (Denmark)

    Holden, Inge K.; Kehrer, Michala; Andersen, Aase B.

    2018-01-01

    Mycobacterium marinum (M. marinum) is a slowly growing nontuberculous mycobacterium. The incidence of M. marinum infections in Denmark is unknown. We conducted a retrospective nationwide study including all culture confirmed cases of M. marinum from 2004 to 2017 in Denmark. All available medical ...

  19. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.; Adroub, S. A.; Abadi, Maram; Al Alwan, B.; Alkhateeb, R.; Gao, G.; Ragab, A.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab; Abdallah, A. M.

    2012-01-01

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  20. Mycobacterium marinum kan være vanskelig at diagnosticere

    DEFF Research Database (Denmark)

    Lønnberg, Ann Sophie; Seersholm, Niels; Nielsen, Signe Ledou

    2012-01-01

    The diagnosis of cutaneous Mycobacterium marinum infection is often delayed for months after presentation. In this case the diagnosis and correct treatment was delayed for ten months resulting in possible irreversible damage to the patient's infected finger. The main reason for the delay is lack...... of knowledge of the mycobacterium....

  1. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.

    2012-10-26

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  2. Risk factors for Mycobacterium tuberculosis infection among children in Greenland

    DEFF Research Database (Denmark)

    Søborg, Bolette; Andersen, Aase Bengaard; Melbye, Mads

    2011-01-01

    To examine the risk factors for Mycobacterium tuberculosis infection (MTI) among Greenlandic children for the purpose of identifying those at highest risk of infection.......To examine the risk factors for Mycobacterium tuberculosis infection (MTI) among Greenlandic children for the purpose of identifying those at highest risk of infection....

  3. Draft Genome Sequence of Mycobacterium chimaera Type Strain Fl-0169

    Science.gov (United States)

    We report the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169T, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, though Fl-016...

  4. A PULMONARY INFECTION CAUSED BY MYCOBACTERIUM PEREGRINUM– A CASE REPORT.

    Directory of Open Access Journals (Sweden)

    Tatina T. Todorova

    2015-12-01

    Full Text Available Mycobacterium peregrinum is a member of the group of rapidly growing Nontuberculous Mycobacteria (NTM. It can be found in high frequency in natural and laboratory environments and is considered to be uncommonrare pathogen for both immunocompetent and immunosuppressed individuals. Currently, pulmonary infections caused by Mycobacterium peregrinum are unusual and diagnosed only in limited number of cases. Here, we present a clinical case of elderly man (72 years with 1 month history of non-specific respiratory symptomatic. The patient was without underlying immunosuppressive condition or lung disease. Chest X-ray demonstrated persistent pleural effusion, opacities and cavitations in the right lobe. One of the sputum culturesgrewa rapidly growing mycobacterium and the isolated strain was found to be Mycobacterium peregrinumas identified by molecular genetic detection (PCR and DNA strip technology. To our knowledge, this is the third case in the world to report Mycobacterium peregrinumas a possible causative agent of pulmonary infection.

  5. Comparative Proteomic Profiling of Mycobacterium bovis and BCG Vaccine Strains

    KAUST Repository

    Gao, Ge

    2013-09-01

    BCG is the only licensed human vaccine currently available against TB. Derived from a virulent strain of M. bovis, the vaccine was thought to have struck a balance between reduced virulence and preserved immunogenicity. Nowadays, BCG vaccine strains used in different countries and vaccination programs show clear variations in their genomes and immune protective properties. The aim of this study was to characterize the proteomic profile on Mycobacterium bovis and five BCG strains Pasteur, Tokyo, Danish, Phipps and Birkhaug by Tandem Mass Tag® (TMT®)-labeling quantitative proteomic approach. In total, 420 proteins were identified and 377 of them were quantitated for their relative abundance. We reported the number and relationship of differential expressed proteins in BCG strains compared to M. bovis and investigated their functions by bioinformatics analysis. Several interesting up-regulated and down-regulated protein targets were found. The identified proteins and their quantitative expression profiles provide a basis for further understanding of the cellular biology of M. bovis and BCG vaccine strains, and hopefully would assist in the design of better anti-TB vaccine and drugs.

  6. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization

    CSIR Research Space (South Africa)

    Gcebe, N

    2017-04-01

    Full Text Available Journal of Systematic and Evolutionary Microbiology: DOI 10.1099/ijsem.0.001678 Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization Gcebe N Rutten V Gey...

  7. Immunological crossreactivity of the Mycobacterium leprae CFP-10 with its homologue in Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Geluk, A.; van Meijgaarden, K. E.; Franken, K. L. M. C.; Wieles, B.; Arend, S. M.; Faber, W. R.; Naafs, B.; Ottenhoff, T. H. M.

    2004-01-01

    Mycobacterium tuberculosis culture filtrate protein-10 (CFP-10) (Rv3874) is considered a promising antigen for the immunodiagnosis of tuberculosis (TB) together with early secreted antigens of M. tuberculosis (ESAT-6). Both ESAT-6 and CFP-10 are encoded by the RD1 region that is deleted from all

  8. Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae.

    Science.gov (United States)

    Gormley, E; Corner, L A L; Costello, E; Rodriguez-Campos, S

    2014-10-01

    The primary isolation of a Mycobacterium sp. of the Mycobacterium tuberculosis complex from an infected animal provides a definitive diagnosis of tuberculosis. However, as Mycobacterium bovis and Mycobacterium caprae are difficult to isolate, particularly for animals in the early stages of disease, success is dependent on the optimal performance of all aspects of the bacteriological process, from the initial choice of tissue samples at post-mortem examination or clinical samples, to the type of media and conditions used to cultivate the microorganism. Each step has its own performance characteristics, which can contribute to sensitivity and specificity of the procedure, and may need to be optimized in order to achieve the gold standard diagnosis. Having isolated the slow-growing mycobacteria, species identification and fine resolution strain typing are keys to understanding the epidemiology of the disease and to devise strategies to limit transmission of infection. New technologies have emerged that can now even discriminate different isolates from the same animal. In this review we highlight the key factors that contribute to the accuracy of bacteriological diagnosis of M. bovis and M. caprae, and describe the development of advanced genotyping techniques that are increasingly used in diagnostic laboratories for the purpose of supporting detailed epidemiological investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Characterization of bovine gamma delta T cells phenotype during post-natal development and following Mycobacterium bovis vaccination or virulent infection

    Science.gov (United States)

    Bovine tuberculosis caused by Mycobacterium bovis is a globally significant veterinary health problem. Gamma delta T cells are known to participate in the immune control of mycobacterial infections. Data in human and non-human primates suggest that mycobacterial infection regulates memory/effector p...

  10. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea.

    Science.gov (United States)

    Tran, Phuong M; Dahl, John L

    2016-11-01

    Several fast- to intermediate-growing, acid-fast, scotochromogenic bacteria were isolated from Sarracenia purpurea pitcher waters in Minnesota sphagnum peat bogs. Two strains (DL734T and DL739T) were among these isolates. On the basis of 16S rRNA gene sequences, the phylogenetic positions of both strains is in the genus Mycobacterium with no obvious relation to any characterized type strains of mycobacteria. Phenotypic characterization revealed that neither strain was similar to the type strains of known species of the genus Mycobacterium in the collective properties of growth, pigmentation or fatty acid composition. Strain DL734T grew at temperatures between 28 and 32 °C, was positive for 3-day arylsulfatase production, and was negative for Tween 80 hydrolysis, urease and nitrate reduction. Strain DL739T grew at temperatures between 28 and 37 °C, and was positive for Tween 80 hydrolysis, urea, nitrate reduction and 3-day arylsulfatase production. Both strains were catalase-negative while only DL739T grew with 5 % NaCl. Fatty acid methyl ester profiles were unique for each strain. DL739T showed an ability to survive at 8 °C with little to no cellular replication and is thus considered to be psychrotolerant. Therefore, strains DL734T and DL739T represent two novel species of the genus Mycobacterium with the proposed names Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., respectively. The type strains are DL734T (=JCM 30395T=NCCB 100519T) and DL739T (=JCM 30396T=NCCB 100520T), respectively.

  11. The crystal and solution structure of a putative transcriptional antiterminator from Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Morth, J.P.; Feng, V.; Perry, L.J.

    2004-01-01

    We describe the crystal structure of Rv1626 from Mycobacterium tuberculosis at 1.48 A resolution and the corresponding solution structure determined from small angle X-ray scattering. The N-terminal domain shows structural homology to the receiver domains found in bacterial two-component systems....... regulators, so far only found in bacteria, and includes NasT, a protein from the assimilatory nitrate/nitrite reductase operon of Azetobacter vinelandii....

  12. Mesotherapy and cutaneous Mycobacterium fortuitum infection.

    Science.gov (United States)

    Difonzo, Elisa Margherita; Campanile, Grazia Lucia; Vanzi, Laura; Lotti, Lorena

    2009-06-01

    Cutaneous infections caused by Mycobacterium fortuitum usually are a complication of trauma or postsurgical wounds. A 41-year-old woman presented with numerous dusky red nodules, abscesses and sinuses on the right buttock and on the lateral surfaces of both thighs. The lesions developed at the injection sites of mesotherapy treatment. M. fortuitum was cultured from a biopsy specimen and purulent fluid drained from lesions. The lesions had cleared completely with ciprofloxacin 500 mg b.d. for 3 weeks, and then 250 mg b.d. for another 3 weeks. This case demonstrates the importance of suspecting mycobacterial etiology in patients with nodules and abscesses in the areas of mesotherapy treatment.

  13. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  14. Mycobacterium chimaera left ventricular assist device infections.

    Science.gov (United States)

    Balsam, Leora B; Louie, Eddie; Hill, Fred; Levine, Jamie; Phillips, Michael S

    2017-06-01

    A global outbreak of invasive Mycobacterium chimaera infections after cardiac surgery has recently been linked to bioaerosols from contaminated heater-cooler units. The majority of cases have occurred after valvular surgery or aortic graft surgery and nearly half have resulted in death. To date, infections in patients with left ventricular assist devices (LVADs) have not been characterized in the literature. We report two cases of device-associated M. chimaera infection in patients with continuous-flow LVADs and describe challenges related to diagnosis and management in this population. © 2017 Wiley Periodicals, Inc.

  15. Skin granulomas due to Mycobacterium gordonae.

    Science.gov (United States)

    Gengoux, P; Portaels, F; Lachapelle, J M; Minnikin, D E; Tennstedt, D; Tamigneau, P

    1987-04-01

    A 38-year-old woman presented with small, ulcerated, red or bluish nodules on the right hand, clinically resembling mycobacterial granulomas; these appeared a few months after a bite by a rat, while the patient was collecting frogs in a pond in the Belgian Ardennes. The histopathologic picture was compatible with a diagnosis of mycobacterial infection and rare acid-fast bacilli could be found. Repeated bacteriologic investigations were performed and these led to the identification of a strain displaying characteristics of Mycobacterium gordonae. The skin condition responded well to rifampicin (300 mg/day) within 6 months.

  16. Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin-binding protein PonA1 reveal potential mechanisms of antibiotic resistance.

    Science.gov (United States)

    Filippova, Ekaterina V; Kieser, Karen J; Luan, Chi-Hao; Wawrzak, Zdzislaw; Kiryukhina, Olga; Rubin, Eric J; Anderson, Wayne F

    2016-06-01

    Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic-resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin-binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor-free form and in complex with penicillin V are reported. We used site-directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β-lactams. Structural comparison of the PonA1 apo-form and the antibiotic-bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4'-α3 surrounding the penicillin-binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β-lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall-targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  17. Mycobacterium spp. in wild game in Slovenia.

    Science.gov (United States)

    Pate, Mateja; Zajc, Urška; Kušar, Darja; Žele, Diana; Vengušt, Gorazd; Pirš, Tina; Ocepek, Matjaž

    2016-02-01

    Wildlife species are an important reservoir of mycobacterial infections that may jeopardise efforts to control and eradicate bovine tuberculosis (bTB), caused by Mycobacterium bovis. Slovenia is officially free of bTB, but no data on the presence of mycobacteria in wild animals has been reported. In this study, samples of liver and lymph nodes were examined from 306 apparently healthy free-range wild animals of 13 species in Slovenia belonging to the families Cervidae, Suidae, Canidae, Mustelidae and Bovidae. Mycobacteria were isolated from 36/306 (11.8%) animals (red deer, roe deer, fallow deer, wild boar and jackal) and identified by PCR, commercial diagnostic kits and sequencing. Non-tuberculous mycobacteria identified in five species were Mycobacterium peregrinum, M. avium subsp. hominissuis, M. intracellulare, M. confluentis, M. fortuitum, M. terrae, M. avium subsp. avium, M. celatum, M. engbaekii, M. neoaurum, M. nonchromogenicum and M. vaccae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mycobacterium canettii Infection of Adipose Tissues.

    Science.gov (United States)

    Bouzid, Fériel; Brégeon, Fabienne; Poncin, Isabelle; Weber, Pascal; Drancourt, Michel; Canaan, Stéphane

    2017-01-01

    Adipose tissues were shown to host Mycobacterium tuberculosis which is persisting inside mature adipocytes. It remains unknown whether this holds true for Mycobacterium canettii , a rare representative of the M. tuberculosis complex responsible for lymphatic and pulmonary tuberculosis. Here, we infected primary murine white and brown pre-adipocytes and murine 3T3-L1 pre-adipocytes and mature adipocytes with M. canettii and M. tuberculosis as a positive control. Both mycobacteria were able to infect 18-22% of challenged primary murine pre-adipocytes; and to replicate within these cells during a 7-day experiment with the intracellular inoculums being significantly higher in brown than in white pre-adipocytes for M. canettii ( p = 0.02) and M. tuberculosis ( p = 0.03). Further in-vitro infection of 3T3-L1 mature adipocytes yielded 9% of infected cells by M. canettii and 17% of infected cells by M. tuberculosis ( p = 0.001). Interestingly, M. canettii replicated and accumulated intra-cytosolic lipid inclusions within mature adipocytes over a 12-day experiment; while M. tuberculosis stopped replicating at day 3 post-infection. These results indicate that brown pre-adipocytes could be one of the potential targets for M. tuberculosis complex mycobacteria; and illustrate differential outcome of M. tuberculosis complex mycobacteria into adipose tissues. While white adipose tissue is an unlikely sanctuary for M. canettii , it is still an open question whether M. canettii and M. tuberculosis could persist in brown adipose tissues.

  19. Dry-heat inactivation of "Mycobacterium canettii".

    Science.gov (United States)

    Aboubaker Osman, Djaltou; Garnotel, Eric; Drancourt, Michel

    2017-06-09

    "Mycobacterium canettii" is responsible for non-transmissible lymph node and pulmonary tuberculosis in persons exposed in the Horn of Africa. In the absence of direct human transmission, contaminated water and foodstuffs could be sources of contamination. We investigated the dry-heat inactivation of "M. canettii" alone and mixed into mock-infected foodstuffs by inoculating agar cylinders and milk with 10 4 colony-forming units of "M. canettii" CIPT140010059 and two "M. canettii" clinical strains with Mycobacterium tuberculosis H37Rv as a control. Exposed to 35 °C, M. tuberculosis H37Rv, "M canettii" CIPT140010059 and "M. canettii" 157 exhibited a survival rate of 108, 95 and 81%, which is significantly higher than that of "M. canettii" 173. However, all tested mycobacteria tolerated a 90-min exposure at 45 °C. In the foodstuff models set at 70 °C, no growing mycobacteria were visualized. This study supports the premise that "M. canettii" may survive up to 45 °C; and suggests that contaminated raw drinks and foodstuffs but not cooked ones may be sources of infection for populations.

  20. Images of mycobacterium for nuclear reactions

    International Nuclear Information System (INIS)

    Lima, C.T.S.; Crispim, V.R.; Silva, M.G.

    2007-01-01

    According to the World Health Organization (WHO) tuberculosis is responsible for 2.9 million deaths annually worldwide. The necessity for optimizing time to detect the tuberculosis bacillus (mycobacterium tuberculosis) in the sputum samples of affected individuals (TB patients) led to the development of a methodology based on the doping with boron of the bacillus, submission of the samples to thermal neutron beam and ionizing particles, generating nuclear reactions of the types: 10 B (n,α) 7 Li and 10 B(α, p) 13 C. Images of these bacilli are obtained by means of the nuclear tracks produced in the CR-39 detector for particles products of these nuclear reactions, α and p. When the CR-39 is submitted to a chemical attack the traces are developed and the images of the microorganisms registered in the detector can be observed with a conventional light microscope, characterizing them by morphology. The use of this methodology results in images of the mycobacterium tuberculosis becoming more defined and enlarged than those obtained by bacilloscopy, in which the sample is submitted to the method of coloration of Ziehl-Neelsen (ZN) and observed in light microscopy. (author)

  1. Radiometric assessment of the sensitivity to antituberculotics of Mycobacterium avium-intracellulare and Mycobacterium xenopi

    International Nuclear Information System (INIS)

    Kubin, M.; Lindholm-Levy, P.; Heifets, L. B.

    1994-01-01

    The macrodilution radiometric method using Middlebrook's 7H12 liquid medium enriched with 14 C-palmitic acid, where the growth activity is monitored by measuring liberated 14 CO 2 , was applied to 25 strains of the Mycobacterium avium complex and to 20 strains of Mycobacterium xenopi to determine the minimal inhibitory concentrations of the following chemotherapeutical agents: ciprofloxacine, clofazimine, rifampin, cycloserine, kanamycin, etionamide, ethambutol, and amikacin. In the case of the M. avium complex, slightly or completely resistant strains were found for the majority of drugs. The sensitive strain proportion was highest with clofazimine and amikacin. The M. xenopis strains exhibited generally lower minimal inhibitory concentrations than the avian mycobacteria for all drugs except for cycloserine and ethambutol. The radiometric method using the BACTEC system was found suitable for the determination of the sensitivity of mycobacteria to chemotherapeutic agents: the results are obtained rapidly, within 8 days following inoculation, and the minimal inhibitory concentrations can be evaluated quantitatively. 1 tab., 8 refs

  2. A Case of False-Positive Mycobacterium tuberculosis Caused by Mycobacterium celatum

    Directory of Open Access Journals (Sweden)

    Edward Gildeh

    2016-01-01

    Full Text Available Mycobacterium celatum is a nontuberculous mycobacterium shown to cause symptoms similar to pulmonary M. tuberculosis. Certain strains have been shown to cross-react with the probes used to detect M. tuberculosis, making this a diagnostic challenge. We present a 56-year-old gentleman who developed signs and symptoms of lung infection with computed tomography scan of the chest showing right lung apex cavitation. Serial sputum samples were positive for acid-fast bacilli and nucleic acid amplification testing identified M. tuberculosis ribosomal RNA, resulting in treatment initiation. Further testing with high performance liquid chromatography showed a pattern consistent with M. celatum. This case illustrates the potential for M. celatum to mimic M. tuberculosis in both its clinical history and laboratory testing due to the identical oligonucleotide sequence contained in both. An increasing number of case reports suggest that early reliable differentiation could reduce unnecessary treatment and public health intervention associated with misdiagnosed tuberculosis.

  3. [Cutaneous infection by Mycobacterium fortuitum]  Infeccion cutanea por Mycobacterium fortuitum

    Directory of Open Access Journals (Sweden)

    Verónica Rotela

    2017-10-01

    Full Text Available Mycobacteria are aerobic, non-spore forming, gram positive, acid-fast bacilli, which affect skin, subcutaneous tissue, and other organs and systems. Mycobacterium fortuitum produces cellulitis, abscesses, papules-pustules, nodules and ulcers with serosanguinolent, purulent material, and subcutaneous necrosis. A 61-year-old woman, presents a case of two months of evolution that begins with reddish grain from an insect sting. After immersion in the Mexican Sea, it worsens, increases in quantity, is blistered and has brownish secretion; Physical examination shows erythematous plaque, with punctate orifices with hematic and meliceric crusts; Pustules and satellite papules, on the anterior aspect of the right leg. Histopathology: Suppurative dermal granulomas, centered by acute leukocyte infiltrate, with liquefactive tissue necrosis, surrounded by chronic inflammation with macrophages, plasma cells, lymphocytes, multinucleated giant cells. The first skin culture returns negative; in the second skin culture, fast-growing, non-pigmented atypical mycobacteria. Molecular detection is performed by Polymerase Chain Reaction: Mycobacterium fortuitum. Treatment with Ciprofloxacin 500 mg every 12 hours, with resolution of the table to the eighth month. A case of cutaneous infection by Mycobacterium fortuitum, related to the immersion in the sea and corals, whose diagnostic process has been difficult and was achieved by techniques of advanced molecular biology.

  4. Chronic breast abscess due to Mycobacterium fortuitum: a case report

    Directory of Open Access Journals (Sweden)

    MacNeill Fiona A

    2011-05-01

    Full Text Available Abstract Introduction Mycobacterium fortuitum is a rapidly growing group of nontuberculous mycobacteria more common in patients with genetic or acquired causes of immune deficiency. There have been few published reports of Mycobacterium fortuitum associated with breast infections mainly associated with breast implant and reconstructive surgery. Case presentation We report a case of a 51-year-old Caucasian woman who presented to our one-stop breast clinic with a two-week history of left breast swelling and tenderness. Following triple assessment and subsequent incision and drainage of a breast abscess, the patient was diagnosed with Mycobacterium fortuitum and treated with antibiotic therapy and surgical debridement. Conclusion This is a rare case of a spontaneous breast abscess secondary to Mycobacterium fortuitum infection. Recommended treatment is long-term antibacterial therapy and surgical debridement for extensive infection or when implants are involved.

  5. Buoyant density of Mycobacterium tuberculosis: implications for sputum processing

    NARCIS (Netherlands)

    den Hertog, A. L.; Klatser, P. R.; Anthony, R. M.

    2009-01-01

    A tuberculosis (TB) research laboratory in the Netherlands. The concentration of Mycobacterium tuberculosis cells from sputum is almost universally performed by centrifugation after chemical liquefaction. These methods are thus dependent on the effective sedimentation of mycobacterial cells, and the

  6. Variable host-pathogen compatibility in Mycobacterium tuberculosis.

    NARCIS (Netherlands)

    Gagneux, Sebastien; DeRiemer, Kathryn; Van, Tran; Kato-Maeda, Midori; Jong, Bouke C de; Narayanan, Sujatha; Nicol, Mark; Niemann, Stefan; Kremer, Kristin; Gutierrez, M Cristina; Hilty, Markus; Hopewell, Philip C; Small, Peter M

    2006-01-01

    Mycobacterium tuberculosis remains a major cause of morbidity and mortality worldwide. Studies have reported human pathogens to have geographically structured population genetics, some of which have been linked to ancient human migrations. However, no study has addressed the potential evolutionary

  7. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    Science.gov (United States)

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  8. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    KAUST Repository

    Coll, Francesc; McNerney, Ruth; Guerra-Assunç ã o, José Afonso; Glynn, Judith R.; Perdigã o, Joã o; Viveiros, Miguel; Portugal, Isabel; Pain, Arnab; Martin, Nigel; Clark, Taane G.

    2014-01-01

    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed

  9. Drug susceptibility testing of Mycobacterium tuberculosis to fluoroquinolones

    DEFF Research Database (Denmark)

    Johansen, I S; Larsen, A R; Sandven, P

    2003-01-01

    In the first attempt to establish a quality assurance programme for susceptibility testing of Mycobacterium tuberculosis to fluoroquinolones, 20 strains with different fluoroquinolone susceptibility patterns were distributed by the Supranational Reference Laboratory in Stockholm to the other...

  10. Bloodstream Infections with Mycobacterium tuberculosis among HIV patients

    Centers for Disease Control (CDC) Podcasts

    This podcast looks at bloodstream infections with Mycobacterium tuberculosis and other pathogens among outpatients infected with HIV in Southeast Asia. CDC health scientist Kimberly McCarthy discusses the study and why bloodstream infections occur in HIV-infected populations.

  11. Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367

    KAUST Repository

    Abdallah, A. M.; Rashid, M.; Adroub, S. A.; Elabdalaoui, H.; Ali, Shahjahan; van Soolingen, D.; Bitter, W.; Pain, Arnab

    2012-01-01

    Mycobacterium xenopi is a slow-growing, thermophilic, water-related Mycobacterium species. Like other nontuberculous mycobacteria, M. xenopi more commonly infects humans with altered immune function, such as chronic obstructive pulmonary disease patients. It is considered clinically relevant in a significant proportion of the patients from whom it is isolated. We report here the whole genome sequence of M. xenopi type strain RIVM700367.

  12. Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium xenopi is a slow-growing, thermophilic, water-related Mycobacterium species. Like other nontuberculous mycobacteria, M. xenopi more commonly infects humans with altered immune function, such as chronic obstructive pulmonary disease patients. It is considered clinically relevant in a significant proportion of the patients from whom it is isolated. We report here the whole genome sequence of M. xenopi type strain RIVM700367.

  13. Mycobacterium chelonae empyema with bronchopleural fistula in an immunocompetent patient

    International Nuclear Information System (INIS)

    Wali, Siraj

    2009-01-01

    Mycobacterium Calhoun is one of the rapidly growing mycobacteria that rarely cause lung disease. M chelonae more commonly causes skin and soft tissue infections primarily in immunosuppressed individuals. Thoracic empyema caused by rapidly growing mycobacteria and complicated with bronchopleural fistula is rarely reported, especially in immunocompetent patients. In this article we report the first immunocompetent Arabian patient presented with M chelonae- related empyema with bronchopleural fistula which mimics, clinically and radiologically, empyema caused by Mycobacterium tuberculosis. (author)

  14. Mycobacterium Diversity and Pyrene Mineralization in Petroleum-Contaminated Soils

    OpenAIRE

    Cheung, Pui-Yi; Kinkle, Brian K.

    2001-01-01

    Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the ...

  15. Mycobacterium arupense, Mycobacterium heraklionense, and a Newly Proposed Species, “Mycobacterium virginiense” sp. nov., but Not Mycobacterium nonchromogenicum, as Species of the Mycobacterium terrae Complex Causing Tenosynovitis and Osteomyelitis

    Science.gov (United States)

    Vasireddy, Sruthi; Brown-Elliott, Barbara A.; Wengenack, Nancy L.; Eke, Uzoamaka A.; Benwill, Jeana L.; Turenne, Christine; Wallace, Richard J.

    2016-01-01

    Mycobacterium terrae complex has been recognized as a cause of tenosynovitis, with M. terrae and Mycobacterium nonchromogenicum reported as the primary etiologic pathogens. The molecular taxonomy of the M. terrae complex causing tenosynovitis has not been established despite approximately 50 previously reported cases. We evaluated 26 isolates of the M. terrae complex associated with tenosynovitis or osteomyelitis recovered between 1984 and 2014 from 13 states, including 5 isolates reported in 1991 as M. nonchromogenicum by nonmolecular methods. The isolates belonged to three validated species, one new proposed species, and two novel related strains. The majority of isolates (20/26, or 77%) belonged to two recently described species: Mycobacterium arupense (10 isolates, or 38%) and Mycobacterium heraklionense (10 isolates, or 38%). Three isolates (12%) had 100% sequence identity to each other by 16S rRNA and 99.3 to 100% identity by rpoB gene region V sequencing and represent a previously undescribed species within the M. terrae complex. There were no isolates of M. terrae or M. nonchromogenicum, including among the five isolates reported in 1991. The 26 isolates were susceptible to clarithromycin (100%), rifabutin (100%), ethambutol (92%), and sulfamethoxazole or trimethoprim-sulfamethoxazole (70%). The current study suggests that M. arupense, M. heraklionense, and a newly proposed species (“M. virginiense” sp. nov.; proposed type strain MO-233 [DSM 100883, CIP 110918]) within the M. terrae complex are the major causes of tenosynovitis and osteomyelitis in the United States, with little change over 20 years. Species identification within this complex requires sequencing methods. PMID:26962085

  16. Mycobacterium Tuberculosis Pyomyositis in an Infant

    Science.gov (United States)

    Malik, ZA; Shehab, M

    2013-01-01

    Mycobacterium tuberculosis is endemic to many parts of the world. It may have variable clinical presentations, especially in the pediatric age group. Presented here is the case of a 9-month old infant who was referred for infectious disease opinion when his thigh induration failed to improve after surgical drainage and a course of oral antibiotic therapy. Mycobacterial PCR on the operative sample fluid was found to be positive; and mycobacterial culture grew M. tuberculosis. He received 9 months of treatment with anti-TB medications, with excellent results and complete recovery. This is the first report of TB pyomyositis in an infant; and highlights the need to have a high index of suspicion for unusual organisms when conventional therapy fails to demonstrate expected results. PMID:23919207

  17. Virulence factors of the Mycobacterium tuberculosis complex

    Science.gov (United States)

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  18. MYCOBACTERIUM AVIUM SUSP. PARATUBERCULOSIS IN DAIRY PRODUCTION

    Directory of Open Access Journals (Sweden)

    G. Marchetti

    2012-08-01

    Full Text Available Mycobacterium avium subsp. paratuberculosis (MAP is the etiologic agent of paratuberculosis. The disease affects cows and other ruminants and causes high economic losses, mainly for dairy production. MAP may also have a role in the development of Crohn’s disease in humans. Infected animals shed viable MAP with milk and faeces and humans may assume MAP via the consumption of contaminated milk and dairy products. Current methods of milk pasteurization are not sufficient to kill all MAP cells present in milk and MAP has been found in raw or pasteurized milk and isolated from cheese. The aim of this paper is to review the current knowledge about MAP in dairy production. We analyzed studies on milk contamination, effect of pasteurization and methods for identification of MAP that can be applied to dairy products.

  19. Advances in Proteomics of Mycobacterium leprae.

    Science.gov (United States)

    Parkash, O; Singh, B P

    2012-04-01

    Although Mycobacterium leprae was the first bacterial pathogen identified causing human disease, it remains one of the few that is non-cultivable. Understanding the biology of M. leprae is one of the primary challenges in current leprosy research. Genomics has been extremely valuable, nonetheless, functional proteins are ultimately responsible for controlling most aspects of cellular functions, which in turn could facilitate parasitizing the host. Furthermore, bacterial proteins provide targets for most of the vaccines and immunodiagnostic tools. Better understanding of the proteomics of M. leprae could also help in developing new drugs against M. leprae. During the past nearly 15 years, there have been several developments towards the identification of M. leprae proteins employing contemporary proteomics tools. In this review, we discuss the knowledge gained on the biology and pathogenesis of M. leprae from current proteomic studies. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  20. Mycobacterium leprae: genes, pseudogenes and genetic diversity

    Science.gov (United States)

    Singh, Pushpendra; Cole, Stewart T

    2011-01-01

    Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636

  1. Consequences of genomic diversity in Mycobacterium tuberculosis

    Science.gov (United States)

    Coscolla, Mireia; Gagneux, Sebastien

    2014-01-01

    The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions. PMID:25453224

  2. Associations between Mycobacterium tuberculosis Strains and Phenotypes

    Science.gov (United States)

    Brown, Timothy; Nikolayevskyy, Vladyslav; Velji, Preya

    2010-01-01

    To inform development of tuberculosis (TB) control strategies, we characterized a total of 2,261 Mycobacterium tuberculosis complex isolates by using multiple phenotypic and molecular markers, including polymorphisms in repetitive sequences (spoligotyping and variable-number tandem repeats [VNTRs]) and large sequence and single-nucleotide polymorphisms. The Beijing family was strongly associated with multidrug resistance (p = 0.0001), and VNTR allelic variants showed strong associations with spoligotyping families: >5 copies at exact tandem repeat (ETR) A, >2 at mycobacterial interspersed repetitive unit 24, and >3 at ETR-B associated with the East African–Indian and M. bovis strains. All M. tuberculosis isolates were differentiated into 4 major lineages, and a maximum parsimony tree was constructed suggesting a more complex phylogeny for M. africanum. These findings can be used as a model of pathogen global diversity. PMID:20113558

  3. Mycobacterium abscessus Complex Infections in Humans.

    Science.gov (United States)

    Lee, Meng-Rui; Sheng, Wang-Huei; Hung, Chien-Ching; Yu, Chong-Jen; Lee, Li-Na; Hsueh, Po-Ren

    2015-09-01

    Mycobacterium abscessus complex comprises a group of rapidly growing, multidrug-resistant, nontuberculous mycobacteria that are responsible for a wide spectrum of skin and soft tissue diseases, central nervous system infections, bacteremia, and ocular and other infections. M. abscessus complex is differentiated into 3 subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. abscessus subsp. bolletii. The 2 major subspecies, M. abscessus subsp. abscessus and M. abscessus subsp. massiliense, have different erm(41) gene patterns. This gene provides intrinsic resistance to macrolides, so the different patterns lead to different treatment outcomes. M. abscessus complex outbreaks associated with cosmetic procedures and nosocomial transmissions are not uncommon. Clarithromycin, amikacin, and cefoxitin are the current antimicrobial drugs of choice for treatment. However, new treatment regimens are urgently needed, as are rapid and inexpensive identification methods and measures to contain nosocomial transmission and outbreaks.

  4. Autoradiographic and metabolic studies of Mycobacterium leprae

    International Nuclear Information System (INIS)

    Khanolkar, S.R.; Ambrose, E.J.; Chulawala, R.G.; Bapat, C.V.

    1978-01-01

    Highly purified suspensions of Mycobacterium leprae show a progressive increase in incorporation of [ 3 H]thymidine and [ 3 H]DOPA in short-term cultures as shown by scintillation counting. The intact bacilli are known to have a high permeability barrier. The experiments described suggest that [ 3 H]DOPA becomes trapped within this barrier and oxidized inside the bacilli. Tests by pre-treatment with diethyl dithiocarbamate (DDC inhibitor of DOPA), cold DOPA or hyaluronidase distinguish the uptake of [ 3 H]DOPA by bacilli from the effects of connective tissue contamination. Similar increases in labelling of bacilli by scintillation counting of cultures, have been observed by autoradiography of the organisms. The scintillation method shows promise for rapidly identifying drug resistance in lepromatous patients relapsing while on treatment with dapsone (DDS) rifampicin, clofazimine or other anti-leprosy drugs. (author)

  5. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    Science.gov (United States)

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  6. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    OpenAIRE

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine.

  7. Fatty Acyl Chains of Mycobacterium marinum Lipooligosaccharides

    Science.gov (United States)

    Rombouts, Yoann; Alibaud, Laeticia; Carrère-Kremer, Séverine; Maes, Emmanuel; Tokarski, Caroline; Elass, Elisabeth; Kremer, Laurent; Guérardel, Yann

    2011-01-01

    We have recently established the fine structure of the glycan backbone of lipooligosaccharides (LOS-I to LOS-IV) isolated from Mycobacterium marinum, a close relative of Mycobacterium tuberculosis. These studies culminated with the description of an unusual terminal N-acylated monosaccharide that confers important biological functions to LOS-IV, such as macrophage activation, that may be relevant to granuloma formation. It was, however, also suggested that the lipid moiety was required for LOSs to exert their immunomodulatory activity. Herein, using highly purified LOSs from M. marinum, we have determined through a combination of mass spectrometric and NMR techniques, the structure and localization of the fatty acids composing the lipid moiety. The occurrence of two distinct polymethyl-branched fatty acids presenting specific localizations is consistent with the presence of two highly related polyketide synthases (Pks5 and Pks5.1) in M. marinum and presumably involved in the synthesis of these fatty acyl chains. In addition, a bioinformatic search permitted us to identify a set of enzymes potentially involved in the biosynthesis or transfer of these lipids to the LOS trehalose unit. These include MMAR_2343, a member of the Pap (polyketide-associated protein) family, that acylates trehalose-based glycolipids in M. marinum. The participation of MMAR_2343 to LOS assembly was demonstrated using a M. marinum mutant carrying a transposon insertion in the MMAR_2343 gene. Disruption of MMAR_2343 resulted in a severe LOS breakdown, indicating that MMAR_2343, hereafter designated PapA4, fulfills the requirements for LOS acylation and assembly. PMID:21803773

  8. Multinucleated giant cell cytokine expression in pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis

    Science.gov (United States)

    Pathogenic mycobacteria of the Mycobacterium tuberculosis complex such as Mycobacterium bovis, induce a characteristic lesion known as a granulomas. Granulomas represent a specific host response to chronic antigenic stimuli, such as foreign bodies, certain bacterial components, or persistent pathoge...

  9. Pott's disease: a case of Mycobacterium xenopi infection of the spine.

    Science.gov (United States)

    Alfreijat, Majd; Ononiwu, Chiagozie; Sexton, Carlton

    2012-01-01

    Pott's disease is an infection of the spine with Mycobacterium tuberculosis that causes destruction of the spine elements resulting in progressive kyphosis. We are describing a rare case of Pott's disease where Mycobacterium xenopi was the inculpated organism.

  10. IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis.

    Science.gov (United States)

    Ahsan, Fadhil; Maertzdorf, Jeroen; Guhlich-Bornhof, Ute; Kaufmann, Stefan H E; Moura-Alves, Pedro

    2018-01-24

    Mycobacterium tuberculosis (Mtb) is a life-threatening pathogen in humans. Bacterial infection of macrophages usually triggers strong innate immune mechanisms, including IL-1 cytokine secretion. The newer member of the IL-1 family, IL-36, was recently shown to be involved in cellular defense against Mtb. To unveil the underlying mechanism of IL-36 induced antibacterial activity, we analyzed its role in the regulation of cholesterol metabolism, together with the involvement of Liver X Receptor (LXR) in this process. We report that, in Mtb-infected macrophages, IL-36 signaling modulates cholesterol biosynthesis and efflux via LXR. Moreover, IL-36 induces the expression of cholesterol-converting enzymes and the accumulation of LXR ligands, such as oxysterols. Ultimately, both IL-36 and LXR signaling play a role in the regulation of antimicrobial peptides expression and in Mtb growth restriction. These data provide novel evidence for the importance of IL-36 and cholesterol metabolism mediated by LXR in cellular host defense against Mtb.

  11. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Vikram Saini

    2016-01-01

    Full Text Available The mechanisms by which Mycobacterium tuberculosis (Mtb maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT and mycothiol (MSH are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.

  12. Complete Genome Sequence of the Frog Pathogen Mycobacterium ulcerans Ecovar Liflandii

    NARCIS (Netherlands)

    Tobias, Nicholas J.; Doig, Kenneth D.; Medema, Marnix H.; Chen, Honglei; Haring, Volker; Moore, Robert; Seemann, Torsten; Stinear, Timothy P.

    In 2004, a previously undiscovered mycobacterium resembling Mycobacterium ulcerans (the agent of Buruli ulcer) was reported in an outbreak of a lethal mycobacteriosis in a laboratory colony of the African clawed frog Xenopus tropicalis. This mycobacterium makes mycolactone and is one of several

  13. Two novel species of rapidly growing mycobacteria: Mycobacterium lehmannii sp. nov. and Mycobacterium neumannii sp. nov.

    Science.gov (United States)

    Nouioui, Imen; Sangal, Vartul; Carro, Lorena; Teramoto, Kanae; Jando, Marlen; Montero-Calasanz, Maria Del Carmen; Igual, José Mariano; Sutcliffe, Iain; Goodfellow, Michael; Klenk, Hans-Peter

    2017-12-01

    Two rapidly growing mycobacteria with identical 16S rRNA gene sequences were the subject of a polyphasic taxonomic study. The strains formed a well-supported subclade in the mycobacterial 16S rRNA gene tree and were most closely associated with the type strain of Mycobacterium novocastrense. Single and multilocus sequence analyses based on hsp65, rpoB and 16S rRNA gene sequences showed that strains SN 1900 T and SN 1904 T are phylogenetically distinct but share several chemotaxonomic and phenotypic features that are are consistent with their classification in the genus Mycobacterium. The two strains were distinguished by their different fatty acid and mycolic acid profiles, and by a combination of phenotypic features. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values for strains SN 1900 T and SN 1904 T were 61.0 % and 94.7 %, respectively; in turn, the corresponding dDDH and ANI values with M. novocastrense DSM 44203 T were 41.4 % and 42.8 % and 89.3 % and 89.5 %, respectively. These results show that strains SN1900 T and SN 1904 T form new centres of taxonomic variation within the genus Mycobacterium. Consequently, strains SN 1900 T (40 T =CECT 8763 T =DSM 43219 T ) and SN 1904 T (2409 T =CECT 8766 T =DSM 43532 T ) are considered to represent novel species, for which the names Mycobacteriumlehmannii sp. nov. and Mycobacteriumneumannii sp. nov. are proposed. A strain designated as 'Mycobacteriumacapulsensis' was shown to be a bona fide member of the putative novel species, M. lehmannii.

  14. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    Science.gov (United States)

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  15. Human ULK1 Variation and Susceptibility to Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Horne, David J; Graustein, Andrew D; Shah, Javeed A; Peterson, Glenna; Savlov, Meg; Steele, Sergio; Narita, Masahiro; Hawn, Thomas R

    2016-10-15

    Unlike tuberculosis, few studies have evaluated a host genetic basis for variability in susceptibility to latent Mycobacterium tuberculosis infection (LTBI). We performed a candidate gene association study of autophagy-related genes and LTBI. We enrolled close contacts of individuals with pulmonary tuberculosis, assessed LTBI status, and determined clinical and sociodemographic risk factors for LTBI. In participants who self-identified as Asian or black, we compared haplotype-tagging single-nucleotide polymorphisms (SNPs) in ULK1 and GABARAP between cases (n = 143) and controls (n = 106). Using CRISPR/Cas9 in U937 monocytes, we investigated the effect of ULK1 deficiency on cytokine expression, autophagy, and M. tuberculosis replication. In Asian participants, we identified 2 ULK1 SNPs (rs12297124 and rs7300908) associated with LTBI. After adjustment for population admixture and clinical risk for LTBI, each rs12297124 minor allele conferred 80% reduction in LTBI risk (odds ratio, 0.18; 95% confidence interval, .07-.46). Compared with controls, ULK1-deficient cells exhibited decreased tumor necrosis factor secretion after stimulation with Toll-like receptor ligands and M. tuberculosis whole-cell lysate, increased M. tuberculosis replication, and decreased selective autophagy. These results demonstrate a strong association of rs12297124, a noncoding ULK1 SNP, with LTBI and a role for ULK1 regulation of TNF secretion, nonspecific and M. tuberculosis-induced autophagy, and M. tuberculosis replication in monocytes. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mamo Gezahagne

    2011-07-01

    Full Text Available Abstract Background Dendritic cells (DCs can take up an array of different antigens, including microorganisms which they can process and present more effectively than any other antigen presenting cell. However, whether the interaction between the human DC and Mycobacterium tuberculosis represents a defense mechanism by the invaded host, or helping the invader to evade the defense mechanism of the host is still not clearly understood. Findings To analyze the interactions between M. tuberculosis and immune cells, human peripheral blood monocyte-derived immature DCs were infected with M. tuberculosis H37Rv wild type strain and flow cytometry was used to analyse cell surface expression markers. The ability of the M. tuberculosis infected DC to induce T cell proliferation using 5 and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE dilution technique was also investigated. DCs were found to internalize the mycobacteria and show dose dependent infection and necrosis with different multiplicity of infection. Flow cytometry analysis of cell surface expression markers CD40, CD54, CD80, CD83, CD86 and HLA DR in infected DC revealed significant (p M. tuberculosis in comparison to immature DC with no stimulation. Lipopolysaccharide (LPS from Salmonella abortus equi, a known DC maturation agent, was used as a positive control and showed a comparable up regulation of cell surface markers as observed with M. tuberculosis infected DC. It was revealed that the M. tuberculosis infected DC induced T cell proliferation. Conclusion These data clearly demonstrate that M. tuberculosis induces activation and maturation of human monocyte-derived immature DC as well as induces T cell proliferation in vitro.

  17. MicroRNA signatures from multidrug-resistant Mycobacterium tuberculosis

    Science.gov (United States)

    REN, NA; GAO, GUIJU; SUN, YUE; ZHANG, LING; WANG, HUIZHU; HUA, WENHAO; WAN, KANGLIN; LI, XINGWANG

    2015-01-01

    Tuberculosis (TB) infections, caused by multi-drug-resistant Mycobacterium tuberculosis (MDR MTB), remain a significant public health concern worldwide. The regulatory mechanisms underlying the emergence of MDR MTB strains remain to be fully elucidated, and further investigation is required in order to develop better strategies for TB control. The present study investigated the expression profile of microRNA (miRNA) in MTB strains, and examined the differences between sensitive MTB and MDR MTB using next generation sequencing (NGS) with Illumina Deep Sequencing technology to better understand the mechanisms of resistance in MDR MTB, A total of 5, 785 and 195, and 6, 290 and 595 qualified Illumina reads were obtained from two MDR MTB strains, and 6, 673 and 665, and 7, 210 and 217 qualified Illumina reads were obtained from two sensitive MTB strains. The overall de novo assembly of miRNA sequence data generated 62 and 62, and 95 and 112 miRNAs between the 18 and 30 bp long from sensitive MTB strains and MDR MTB strains, respectively. Comparative miRNA analysis revealed that 142 miRNAs were differentially expressed in the MDR MTB strain, compared with the sensitive MTB strain, of which 48 were upregulated and 94 were downregulated. There were six similarly expressed miRNAs between the MDR and sensitive MTB strains, and 108 miRNAs were expressed only in the MDR MTB strain. The present study acquired miRNA data from sensitive MTB and MDR MTB strains using NGS techniques, and this identification miRNAs may serve as an invaluable resource for revealing the molecular basis of the regulation of expression associated with the mechanism of drug-resistance in MTB. PMID:26324150

  18. MicroRNA signatures from multidrug‑resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Ren, Na; Gao, Guiju; Sun, Yue; Zhang, Ling; Wang, Huizhu; Hua, Wenhao; Wan, Kanglin; Li, Xingwang

    2015-11-01

    Tuberculosis (TB) infections, caused by multidrug‑resistant Mycobacterium tuberculosis (MDR MTB), remain a significant public health concern worldwide. The regulatory mechanisms underlying the emergence of MDR MTB strains remain to be fully elucidated, and further investigation is required in order to develop better strategies for TB control. The present study investigated the expression profile of microRNA (miRNA) in MTB strains, and examined the differences between sensitive MTB and MDR MTB using next generation sequencing (NGS) with Illumina Deep Sequencing technology to better understand the mechanisms of resistance in MDR MTB, A total of 5, 785 and 195, and 6, 290 and 595 qualified Illumina reads were obtained from two MDR MTB strains, and 6, 673 and 665, and 7, 210 and 217 qualified Illumina reads were obtained from two sensitive MTB strains. The overall de novo assembly of miRNA sequence data generated 62 and 62, and 95 and 112 miRNAs between the 18 and 30 bp long from sensitive MTB strains and MDR MTB strains, respectively. Comparative miRNA analysis revealed that 142 miRNAs were differentially expressed in the MDR MTB strain, compared with the sensitive MTB strain, of which 48 were upregulated and 94 were downregulated. There were six similarly expressed miRNAs between the MDR and sensitive MTB strains, and 108 miRNAs were expressed only in the MDR MTB strain. The present study acquired miRNA data from sensitive MTB and MDR MTB strains using NGS techniques, and this identification miRNAs may serve as an invaluable resource for revealing the molecular basis of the regulation of expression associated with the mechanism of drug‑resistance in MTB.

  19. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation*

    Science.gov (United States)

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  20. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    Directory of Open Access Journals (Sweden)

    Koo Mi-Sun

    2012-01-01

    Full Text Available Abstract Background Tuberculosis (TB, a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of

  1. NCBI nr-aa BLAST: CBRC-OGAR-01-1200 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OGAR-01-1200 ref|YP_885208.1| hypothetical protein MSMEG_0804 [Mycobacterium sme...gmatis str. MC2 155] gb|ABK71723.1| hypothetical protein MSMEG_0804 [Mycobacterium smegmatis str. MC2 155] YP_885208.1 0.20 42% ...

  2. NCBI nr-aa BLAST: CBRC-PABE-09-0037 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PABE-09-0037 ref|YP_890142.1| hypothetical protein MSMEG_5916 [Mycobacterium sme...gmatis str. MC2 155] gb|ABK71889.1| hypothetical protein MSMEG_5916 [Mycobacterium smegmatis str. MC2 155] YP_890142.1 0.033 36% ...

  3. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB a–b-subunit interface and affects multiple steps in the enzyme’s overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  4. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α–β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  5. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  6. Analysis of the leprosy agents Mycobacterium leprae and Mycobacterium lepromatosis in four countries.

    Science.gov (United States)

    Han, Xiang Y; Aung, Fleur M; Choon, Siew Eng; Werner, Betina

    2014-10-01

    To differentiate the leprosy agents Mycobacterium leprae and Mycobacterium lepromatosis and correlate them with geographic distribution and clinicopathologic features. Species-specific polymerase chain reactions were used to detect each bacillus in archived skin biopsy specimens from patients with leprosy from Brazil (n = 52), Malaysia (n = 31), Myanmar (n = 9), and Uganda (n = 4). Findings were correlated with clinical and pathologic data. Etiologic species was detected in 46 of the 52 Brazilian patients, including 36 patients with M leprae, seven with M lepromatosis, and three with both bacilli. The seven patients with sole M lepromatosis all had tuberculoid leprosy, whereas only nine of the 36 patients infected with M leprae exhibited this type, and the rest were lepromatous (P leprae and two with M lepromatosis. Of the Malaysian and Ugandan patients, only M leprae was detected in 27 of the 31 Malaysians and two of the four Ugandans. The leprosy agents vary in geographic distribution. Finding M lepromatosis in Brazil and Myanmar suggests wide existence of this newly discovered species. The leprosy manifestations likely vary with the etiologic agents. Copyright© by the American Society for Clinical Pathology.

  7. [Ecology and transmission of Mycobacterium ulcerans].

    Science.gov (United States)

    Marsollier, L; Aubry, J; Saint-André, J-P; Robert, R; Legras, P; Manceau, A-L; Bourdon, S; Audrain, C; Carbonnelle, B

    2003-10-01

    Mycobacterium ulcerans is an environmental pathogen concerning mainly the tropical countries; it is the causative agent of Buruli ulcer, which has become the third most important mycobacterial disease. In spite of water-linked epidemiological studies to identify the sources of M. ulcerans, the reservoir and the mode of transmission of this organism remain elusive. To determine the ecology and the mode of transmission of M. ulcerans we have set up an experimental model. This experimental model demonstrated that water bugs were able to transmit M. ulcerans by bites. In insects, the bacilli were localized exclusively within salivary glands, where it could both multiply contrary to other mycobacteria species. In another experimental study, we report that the crude extracts from aquatic plants stimulate in vitro the growth of M. ulcerans as much as the biofilm formation by M. ulcerans has been observed on aquatic plants. Given that the water bugs are essentially carnivorous, it is difficult to imagine a direct contact in the contamination of aquatic bugs and plants. It seems very likely that an intermediate host exists. In an endemic area of Daloa in Côte d'Ivoire, our observations were confirmed.

  8. DNA repair in Mycobacterium tuberculosis revisited.

    Science.gov (United States)

    Dos Vultos, Tiago; Mestre, Olga; Tonjum, Tone; Gicquel, Brigitte

    2009-05-01

    Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr - proteins previously presumed to be produced exclusively in mammalian cells - and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.

  9. Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase.

    Science.gov (United States)

    Zhang, Hua; Deng, Jiao-Yu; Bi, Li-Jun; Zhou, Ya-Feng; Zhang, Zhi-Ping; Zhang, Cheng-Gang; Zhang, Ying; Zhang, Xian-En

    2008-02-01

    The nicotinamidase/pyrazinamidase (PncA) of Mycobacterium tuberculosis is involved in the activation of the important front-line antituberculosis drug pyrazinamide by converting it into the active form, pyrazinoic acid. Mutations in the pncA gene cause pyrazinamide resistance in M. tuberculosis. The properties of M. tuberculosis PncA were characterized in this study. The enzyme was found to be a 20.89 kDa monomeric protein. The optimal pH and temperature of enzymatic activity were pH 7.0 and 40 degrees C, respectively. Inductively coupled plasma-optical emission spectrometry revealed that the enzyme was an Mn(2+)/Fe(2+)-containing protein with a molar ratio of [Mn(2+)] to [Fe(2+)] of 1 : 1; furthermore, the external addition of either type of metal ion had no apparent effect on the wild-type enzymatic activity. The activity of the purified enzyme was determined by HPLC, and it was shown that it possessed similar pyrazinamidase and nicotinamidase activity, by contrast with previous reports. Nine PncA mutants were generated by site-directed mutagenesis. Determination of the enzymatic activity and metal ion content suggested that Asp8, Lys96 and Cys138 were key residues for catalysis, and Asp49, His51, His57 and His71 were essential for metal ion binding. Our data show that M. tuberculosis PncA may bind metal ions in a manner different from that observed in the case of Pyrococcus horikoshii PncA.

  10. Lipid Droplets and Mycobacterium leprae Infection

    Science.gov (United States)

    Elamin, Ayssar A.; Stehr, Matthias; Singh, Mahavir

    2012-01-01

    Leprosy is a chronic infectious disease and is a major source of morbidity in developing countries. Leprosy is caused by the obligate intracellular bacterium Mycobacterium leprae, which infects as primary target Schwann cells. Lepromatous leprosy exhibits multiple lesions of the skin, eyes, nerves, and lymph nodes. The sites of infection are characterized by the presence of foamy macrophages, fully packed with lipid droplets (LDs), which are induced by M. leprae. In the last years, it has become evident that M. tuberculosis imports lipids from foamy macrophages and is dependent on fatty acids for growth in infected macrophages. M. leprae seems to have similar mechanisms for scavenging lipids from the host. But due to the inability to culture M. leprae on laboratory media, research progresses only slowly. However, in the last years, substantial progress has been made in the field of lipid metabolism in M. leprae. Herein, we will present and summarize the lipid droplets formation and the metabolism of lipids during M. leprae infection. PMID:23209912

  11. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    Science.gov (United States)

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  12. Phenotypic assays for Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Song, Ok-Ryul; Deboosere, Nathalie; Delorme, Vincent; Queval, Christophe J; Deloison, Gaspard; Werkmeister, Elisabeth; Lafont, Frank; Baulard, Alain; Iantomasi, Raffaella; Brodin, Priscille

    2017-10-01

    Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  13. Inactivation of Mycobacterium avium with free chlorine.

    Science.gov (United States)

    Luh, Jeanne; Mariñas, Benito J

    2007-07-15

    The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.

  14. Mycobacterium abscessus skin infection after tattooing - Case report*

    Science.gov (United States)

    de Sousa, Pétra Pereira; Cruz, Rossilene Conceição da Silva; Schettini, Antonio Pedro Mendes; Westphal, Danielle Cristine

    2015-01-01

    Mycobacterium abscessus is a rapidly growing mycobacterium that has been affecting people undergoing invasive procedures, such as videosurgery and mesotherapy. This bacterium has global distribution, being found in numerous niches. The frequency of published reports of infection by rapidly growing mycobacteria associated with tattooing procedures has increased in recent years. However, in Brazil there were no case reports of M. abscessus after tattooing in the literature until now. In this paper, we describe the case of a patient with a nine-month history of lesion on a tattoo site. The diagnosis of infection with Mycobacterium abscessus was established by correlation between dermatological and histopathological aspects, culture and molecular biology techniques. The patient had significant improvement of symptoms with the use of clarithromycin monotherapy. PMID:26560222

  15. MYCOBACTERIUM GENAVENSE IN AN AFRICAN PENGUIN (SPHENISCUS DEMERSUS).

    Science.gov (United States)

    Krause, Kristian J; Reavill, Drury; Weldy, Scott H; Bradway, Daniel S

    2015-12-01

    A 19-yr-old female African penguin (Spheniscus demersus) presented with labored breathing and anorexia. Radiographs revealed soft-tissue density lesions in the left lung fields and fluid in the right. The penguin died during the night. Postmortem examination demonstrated multiple granulomas in the lungs and air sacs. The right coelom was filled with opaque fluid. Histopathology of the lung, liver, kidney, and spleen identified Mycobacterium as a primary disease etiology. Large numbers of acid fast-positive, rod-shaped bacteria were recognized on tissue staining. Mycobacterium genavense was detected by polymerase chain reaction (PCR) using primers specific for the species. Further confirmation of M. genavense was accomplished using PCR with universal Mycobacterium spp. primers followed by sequencing of the amplicon obtained. To our knowledge, this is the first reported case of mycobacteriosis-and specifically M. genavense -in an African penguin. This case also demonstrates the similarities of presentation between the more commonly suspected and encountered aspergillosis and mycobacteriosis.

  16. Imaging features of mycobacterium in patients with acquired immunodeficiency syndrome

    International Nuclear Information System (INIS)

    Yang Jun; Sun Yue; Wei Liangui; Xu Yunliang; Li Xingwang

    2013-01-01

    Objective: To analyze the imaging features of mycobacterium in AIDS patients. Methods: Twenty-three cases of mycobacterium tuberculosis and 13 patients of non-tuberculous mycobacteria were proved etiologically and included in this study. All patients underwent X-ray and CT examinations, imaging data were analyzed and compared. Results: The imaging findings of mycobacterium tuberculosis in AIDS patients included consolidation (n = 11), pleural effusion (n = 11), mediastinal lymphadenopathy (n = 11). Pulmonary lesions were always diffuse distribution, and 14 patients of extrapulmonary tuberculosis were found. Pulmonary lesions in non-tuberculous mycobacteria tend to be circumscribed. Conclusions: Non-tuberculous mycobacterial infection in AIDS patients is more common and usually combined with other infections. Imaging features are atypical. (authors)

  17. Serovars of Mycobacterium avium Complex isolated from patients in Denmark

    DEFF Research Database (Denmark)

    Askgaard, D. S.; Giese, Steen Bjørck; Thybo, S.

    1994-01-01

    Danish isolates of Mycobacterium avium complex were serotyped by the use of seroagglutination. The most prevalent serovars among patients with AIDS (n = 89) were 4 and 6, while among non-AIDS patients the most prevalent serovars were 1, 6, and 4, with no major differences between those in patients...... with pulmonary disease (n = 65) and those in patients with lymph node infection (n = 58). The results suggest a Scandinavian distribution of serovars with a predominance of serovar 6 and fail to demonstrate any selective protection against different serovars by Mycobacterium bovis ECG vaccination....

  18. Radiographic differentiation of atypical tuberculosis from mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Tarver, R.D.; Pearcy, E.A.; Conces, D.J. Jr.; Mathur, P.N.

    1987-01-01

    The chest radiographs of 95 patients with the new diagnosis of atypical turberculosis were reviewed to determine if any significant differences between atypical tuberculosis and that caused by Mycobacterium tuberculosis could be discerned. Findings included upper lobe involvement in B4 of the 95 patients and cavities in 76, with nearly equal groups having no, moderate, or extensive surrounding alveolar disease. Nodules were common; in six patients a nodule was the sole manifestation of disease. Adenopathy was seen in 12 of the 95 patients, atlectasis in 45, pleural thickening in 90, and effusions in three. These radiographic findings did not allow the radiographic differentiation of atypical tuberculosis from Mycobacterium tuberculosis infection

  19. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections

    Directory of Open Access Journals (Sweden)

    Murphy Dennis J

    2007-07-01

    Full Text Available Abstract Background Mycobacterium tuberculosis, the causative agent of tuberculosis (TB, infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant M. tuberculosis strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections. Methods The availability of M. tuberculosis genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality. Results Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by devR, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (devR/devS, relA, mprAB, enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability

  20. Roles of SigB and SigF in the Mycobacterium tuberculosis Sigma Factor Network▿ †

    OpenAIRE

    Lee, Jong-Hee; Karakousis, Petros C.; Bishai, William R.

    2007-01-01

    To characterize the roles of SigB and SigF in sigma factor regulation in Mycobacterium tuberculosis, we used chemically inducible recombinant strains to conditionally overexpress sigB and sigF. Using whole genomic microarray analysis and quantitative reverse transcription-PCR, we investigated the resulting global transcriptional changes after sigB induction, and we specifically tested the relative expression of other sigma factor genes after knock-in expression of sigB and sigF. Overexpressio...

  1. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  2. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  3. Search for Mycobacterium leprae in wild mammals

    Directory of Open Access Journals (Sweden)

    Sílvia Cristina Barboza Pedrini

    Full Text Available Leprosy is still a worldwide public health problem. Brazil and India show the highest prevalence rates of the disease. Natural infection of armadillos Dasypus novemcinctus with Mycobacterium leprae has been reported in some regions of the United States. Identification of bacilli is difficult, particularly due to its inability to grow in vitro. The use of molecular tools represents a fast and sensitive alternative method for diagnosis of mycobacteriosis. In the present study, the diagnostic methods used were bacilloscopy, histopathology, microbiology, and PCR using specific primers for M. leprae repetitive sequences. PCR were performed using genomic DNA extracted from 138 samples of liver, spleen, lymph nodes, and skin of 44 D. novemcinctus, Euphractus sexcinctus, Cabassous unicinctus, and C. tatouay armadillos from the Middle Western region of the state of São Paulo and from the experimental station of Embrapa Pantanal, located in Pantanal da Nhecolândia of Mato Grosso do Sul state. Also, the molecular analysis of 19 samples from internal organs of other road killed species of wild animals, such as Nasua nasua (ring-tailed coati, Procyon cancrivoros (hand-skinned, Cerdocyon thous (dog-pity-bush, Cavia aperea (restless cavy, Didelphis albiventris (skunk, Sphigurrus spinosus (hedgehog, and Gallictis vittata (ferret showed PCR negative data. None of the 157 analyzed samples had shown natural mycobacterial infection. Only the armadillo inoculated with material collected from untreated multibacillary leprosy patient presented PCR positive and its genomic sequencing revealed 100% identity with M. leprae. According to these preliminary studies, based on the used methodology, it is possible to conclude that wild mammals seem not to play an important role in the epidemiology of leprosy in the Middle Western region of the São Paulo state and in the Pantanal of Mato Grosso do Sul state.

  4. Mycobacterium tuberculosis DNA repair in response to subinhibitory concentrations of ciprofloxacin.

    Science.gov (United States)

    O'Sullivan, D M; Hinds, J; Butcher, P D; Gillespie, S H; McHugh, T D

    2008-12-01

    To investigate how the SOS response, an error-prone DNA repair pathway, is expressed following subinhibitory quinolone treatment of Mycobacterium tuberculosis. Genome-wide expression profiling followed by quantitative RT (qRT)-PCR was used to study the effect of ciprofloxacin on M. tuberculosis gene expression. Microarray analysis showed that 16/110 genes involved in DNA protection, repair and recombination were up-regulated. There appeared to be a lack of downstream genes involved in the SOS response. qRT-PCR detected an induction of lexA and recA after 4 h and of dnaE2 after 24 h of subinhibitory treatment. The pattern of gene expression observed following subinhibitory quinolone treatment differed from that induced after other DNA-damaging agents (e.g. mitomycin C). The expression of the DnaE2 polymerase response was significantly delayed following subinhibitory quinolone exposure.

  5. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors

    Science.gov (United States)

    Bhowmick, Tuhin; Ghosh, Soumitra; Dixit, Karuna; Ganesan, Varsha; Ramagopal, Udupi A.; Dey, Debayan; Sarma, Siddhartha P.; Ramakumar, Suryanarayanarao; Nagaraja, Valakunja

    2014-06-01

    The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.

  6. Effect of chlorine on Mycobacterium gordonae and Mycobacterium chubuense in planktonic and Biofilm State

    Directory of Open Access Journals (Sweden)

    Alejandra Soledad Oriani

    2018-01-01

    Full Text Available Background: There is evidence that drinking water could be a source of infections with pathogenic nontuberculous mycobacteria (NTM potentially risky to human health. The aim was to investigate the resistance of two NTM isolated from drinking water, Mycobacterium gordonae and Mycobacterium chubuense, at different concentrations of chlorine (as sodium hypochlorite, used in drinking water sanitation. Methods: The NTM were grown in suspension and in biofilms and were challenged with biocide for 10 and 60 min. Results: To obtain 7-log reduction from the initial population of M. chubuense, in the planktonic state, there were necessary 20 ppm of chorine and 60 min of exposure. The same effect was achieved in M. gordonae with 10 ppm for the same period. The maximum reduction of both NTM in biofilm was 3-log reduction and was achieved using 30 ppm for 60 min. The chlorine susceptibility of cells in biofilms was significantly lower than that of planktonic cells. The results highlight the resistance of both NTM to the concentrations used in routine water sanitation (0.2 ppm according to Argentine Food Code. Differences in chlorine resistance found between the two NTM in planktonic growth decrease when they are grown in biofilm. Conclusion: This suggests that current water disinfection procedures do not always achieve effective control of NTM in the public supply system, with the consequent health risk to susceptible population, and the need to take into account biofilms, because of their deep consequences in the way to analyze the survival of prokaryotic cells in different environments.

  7. Insights on the Emergence of Mycobacterium tuberculosis from the Analysis of Mycobacterium kansasii

    Science.gov (United States)

    Wang, Joyce; McIntosh, Fiona; Radomski, Nicolas; Dewar, Ken; Simeone, Roxane; Enninga, Jost; Brosch, Roland; Rocha, Eduardo P.; Veyrier, Frédéric J.; Behr, Marcel A.

    2015-01-01

    By phylogenetic analysis, Mycobacterium kansasii is closely related to Mycobacterium tuberculosis. Yet, although both organisms cause pulmonary disease, M. tuberculosis is a global health menace, whereas M. kansasii is an opportunistic pathogen. To illuminate the differences between these organisms, we have sequenced the genome of M. kansasii ATCC 12478 and its plasmid (pMK12478) and conducted side-by-side in vitro and in vivo investigations of these two organisms. The M. kansasii genome is 6,432,277 bp, more than 2 Mb longer than that of M. tuberculosis H37Rv, and the plasmid contains 144,951 bp. Pairwise comparisons reveal conserved and discordant genes and genomic regions. A notable example of genomic conservation is the virulence locus ESX-1, which is intact and functional in the low-virulence M. kansasii, potentially mediating phagosomal disruption. Differences between these organisms include a decreased predicted metabolic capacity, an increased proportion of toxin–antitoxin genes, and the acquisition of M. tuberculosis-specific genes in the pathogen since their common ancestor. Consistent with their distinct epidemiologic profiles, following infection of C57BL/6 mice, M. kansasii counts increased by less than 10-fold over 6 weeks, whereas M. tuberculosis counts increased by over 10,000-fold in just 3 weeks. Together, these data suggest that M. kansasii can serve as an image of the environmental ancestor of M. tuberculosis before its emergence as a professional pathogen, and can be used as a model organism to study the switch from an environmental opportunistic pathogen to a professional host-restricted pathogen. PMID:25716827

  8. Generalized Tuberculosis in Llamas (Lama glama) Due to Mycobacterium microti

    Science.gov (United States)

    Oevermann, A.; Pfyffer, G. E.; Zanolari, P.; Meylan, M.; Robert, N.

    2004-01-01

    Necropsy of two llamas revealed numerous caseous nodules containing abundant acid-fast bacilli (AFB) in various organs. The AFB were identified by spoligotyping as Mycobacterium microti, vole type. Infection caused by M. microti should be considered in the differential diagnosis of debilitating diseases in New World camelids. PMID:15071059

  9. Cytochemical and biological properties of Mycobacterium bovis BCG.

    Science.gov (United States)

    Slosárek, M

    1977-01-01

    It was the aim of the present communication to find a simple test for a reliable discrimination of Mycobacterium bovis BCG from Mycobacterium tuberculosis. A total of 26 BCG strains, out of them 10 Czechoslovak strains (2 lyophilized cultures of BCG of different batch, 6 strains isolated from abscesses of children after BCG-vaccination and 2 strains from fatal cases after BCG-vaccination) and 16 strains obtained from foreign laboratories, were used. Of the tested characteristics a combination of 3 tests, sensitivity to 1 microgram of 2-thiophene carbonylhydrazide (TCH), activity of 3 acylamidases (urease, nicotinamidase and pyrazinamidase) and a quantitative nitrate test, was found to be most advantageous. The Czechoslovak strains of Mycobacterium bovis BCG were fully sensitive to TCH, of the 3 acylamidases mentioned above only urease was positive and nitrate was reduced only little or not at all. On the other hand, strains of Mycobacterium tuberculosis were always resistant to TCH, had positive urease, nicotinamidase and pyrazinamidase and reduced nitrate very intensively.

  10. Mycobacterium tuberculosis infection of domesticated Asian elephants, Thailand.

    OpenAIRE

    2011-01-01

    Four Asian elephants were confirmed to be infected with Mycobacterium tuberculosis by bacterial culture, other diagnostic procedures, and sequencing of 16S–23S rDNA internal transcribed spacer region, 16S rRNA, and gyrase B gene sequences. Genotyping showed that the infectious agents originated from 4 sources in Thailand. To identify infections, a combination of diagnostic assays is essential.

  11. Mycobacterium avium subsp. paratuberculosis infection, immunology and pathology of livestock

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis (MAP) infection in ruminants leads to a chronic and progressive enteric disease (Johne’s disease) that results in loss of intestinal function, poor body condition, and eventual death. Transmission is primarily through a fecal-oral route in neonates but con...

  12. Mycobacterium bovis hip bursitis in a lung transplant recipient.

    Science.gov (United States)

    Dan, J M; Crespo, M; Silveira, F P; Kaplan, R; Aslam, S

    2016-02-01

    We present a report of extrapulmonary Mycobacterium bovis infection in a lung transplant recipient. M. bovis is acquired predominantly by zoonotic transmission, particularly from consumption of unpasteurized foods. We discuss epidemiologic exposure, especially as relates to the Mexico-US border, clinical characteristics, resistance profile, and treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas

    2010-01-01

    Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that sideroc...

  14. Clinical manifestations, diagnosis, and treatment of Mycobacterium haemophilum infections.

    NARCIS (Netherlands)

    Lindeboom, J.A.; Bruijnesteijn van Coppenraet, L.E.; Soolingen, D. van; Prins, J.M.; Kuijper, E.J.

    2011-01-01

    Mycobacterium haemophilum is a slowly growing acid-fast bacillus (AFB) belonging to the group of nontuberculous mycobacteria (NTM) frequently found in environmental habitats, which can colonize and occasionally infect humans and animals. Several findings suggest that water reservoirs are a likely

  15. Clinical manifestations, diagnosis, and treatment of Mycobacterium haemophilum infections

    NARCIS (Netherlands)

    Lindeboom, J.A.; Bruijnesteijn van Coppenraet, L.E.S.; van Soolingen, D.; Prins, J.M.; Kuijper, E.J.

    2011-01-01

    Mycobacterium haemophilum is a slowly growing acid-fast bacillus (AFB) belonging to the group of nontuberculous mycobacteria (NTM) frequently found in environmental habitats, which can colonize and occasionally infect humans and animals. Several findings suggest that water reservoirs are a likely

  16. Sensitivity of Mycobacterium bovis to common beef processing interventions

    Science.gov (United States)

    Objective. Mycobacterium bovis is the causative agent of bovine tuberculosis, a relevant zoonosis that can spread to humans through inhalation or by ingestion. M. bovis multiplies slowly, so infected animals may be sent to slaughter during the early stages of the disease before diagnosis and when ...

  17. Polymerase chain reaction for the detection of Mycobacterium leprae

    NARCIS (Netherlands)

    Hartskeerl, R. A.; de Wit, M. Y.; Klatser, P. R.

    1989-01-01

    A polymerase chain reaction (PCR) using heat-stable Taq polymerase is described for the specific detection of Mycobacterium leprae, the causative agent of leprosy. A set of primers was selected on the basis of the nucleotide sequence of a gene encoding the 36 kDa antigen of M. leprae. With this set

  18. Transmission of Mycobacterium tuberculosis Undetected by Tuberculin Skin Testing

    Czech Academy of Sciences Publication Activity Database

    Anderson, S. T.; Williams, A. J.; Brown, J. R.; Newton, S. M.; Šimšová, Marcela; Nicol, M. P.; Šebo, Peter; Levin, M.; Wilkinson, R. J.; Wilkinson, K. A.

    2006-01-01

    Roč. 173, - (2006), s. 1038-1042 ISSN 1073-449X R&D Projects: GA AV ČR IAA5020406 Institutional research plan: CEZ:AV0Z50200510 Keywords : adenylate cyclase * diagnostic tests and procedures * mycobacterium tuberculosis Subject RIV: EE - Microbiology, Virology Impact factor: 9.091, year: 2006

  19. Microevolution of Mycobacterium tuberculosis in a tuberculosis patient.

    NARCIS (Netherlands)

    Al-Hajoj, S.A.; Akkerman, O.; Parwati, I.; Al-Gamdi, S.; Rahim, Z.; Soolingen, D. van; Ingen, J. van; Supply, P.; Zanden, A.G. van der

    2010-01-01

    Five Mycobacterium tuberculosis isolates were obtained from three body sites from a Dutch patient. The isolates displayed a single genotype by 24-locus MIRU-VNTR typing (except for a single locus not amplified from one isolate) but were differentiated by small variations in IS6110 fingerprints,

  20. Structural studies on Mycobacterium tuberculosis RecA

    Indian Academy of Sciences (India)

    Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP ...

  1. The Use Of Rap-PCR In Studying Mycobacterium tuberculosis ...

    African Journals Online (AJOL)

    Mycobacterium tuberculosis is the second leading cause of death from infectious agent. This study sought to detect M. tuberculosis genes, which were specifically expressed, or upregulated during intracellular infection of. J774 murine macrophages; as such genes may be potential targets for novel drug action. J774 murine ...

  2. Construction of an internal amplification control for Mycobacterium ...

    African Journals Online (AJOL)

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB) which mostly affects the lungs. The disease causes deaths of many people every year. There are different methods to detect MTB such as skin test, staining, culture and molecular techniques. Polymerase chain reaction (PCR) is a ...

  3. Modern lineages of Mycobacterium tuberculosis in Addis Ababa ...

    African Journals Online (AJOL)

    Background: The genotyping of Mycobacterium tuberculosis strains is important to have unique insights into the dissemination dynamics and evolutionary genetics of this pathogen and for TB control as it allows the detection of suspected outbreaks and the tracing of transmission chains. Objective: To characterize M.

  4. Beijing/W genotype Mycobacterium tuberculosis and drug resistance.

    NARCIS (Netherlands)

    Glynn, Judith R; Kremer, Kristin; Borgdorff, Martien W; Rodriguez, Mar Pujades; Soolingen, Dick van

    2006-01-01

    Beijing/W genotype Mycobacterium tuberculosis is widespread, may be increasing, and may have a predilection for drug resistance. Individual-level data on >29,000 patients from 49 studies in 35 countries were combined to assess the Beijing genotype's prevalence worldwide, trends over time and with

  5. Disseminated Mycobacterium avium complex in an immunocompetent host

    Directory of Open Access Journals (Sweden)

    Joseph M Yabes

    2017-01-01

    Full Text Available Disseminated Mycobacterium avium complex (DMAC has historically been described in the immunocompromised. The current epidemiologic research suggests that the incidence of nontuberculous mycobacterial infections is increasing. We present a case of DMAC infection manifesting as hepatic granulomas in a 35-year-old immunocompetent female. This case suggests DMAC infection in a patient without traditional epidemiological risk factors.

  6. The transmission of Mycobacterium tuberculosis in high burden settings

    NARCIS (Netherlands)

    Yates, Tom A.; Khan, Palwasha Y.; Knight, Gwenan M.; Taylor, Jonathon G.; McHugh, Timothy D.; Lipman, Marc; White, Richard G.; Cohen, Ted; Cobelens, Frank G.; Wood, Robin; Moore, David A. J.; Abubakar, Ibrahim

    2016-01-01

    Unacceptable levels of Mycobacterium tuberculosis transmission are noted in high burden settings and a renewed focus on reducing person-to-person transmission in these communities is needed. We review recent developments in the understanding of airborne transmission. We outline approaches to measure

  7. Cloning and expression of mce1A gene from Mycobacterium ...

    African Journals Online (AJOL)

    Background: Tuberculosis remains the leading cause of death in the world, especially wherever poverty, malnutrition and poor housing prevail. Mycobacterium tuberculosis Beijing strain is the most common strain that causes tuberculosis in Indonesia. The wide spread of tuberculosis has been further aggravated by ...

  8. Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water

    Science.gov (United States)

    Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...

  9. Prevalence of Mycobacterium bovis in Cattle Slaughtered at Sokoto ...

    African Journals Online (AJOL)

    This study was undertaken to screen cattle slaughtered at the Sokoto Central Abattoir for antibodies against Mycobacterium bovis. By the lateral flow technique (immunochromatography), using monoclonal antibodies for M. bovis (BioNote, Inc. Gyeonggi-do, Korea) and by post mortem examination. A total of 194 slaughtered ...

  10. Advances in the Laboratory Diagnosis of Mycobacterium Tuberculosis

    African Journals Online (AJOL)

    Mycobacterium tuberculosis (MTB), the agent of human tuberculosis remains a leading cause of mortality globally. Its resurgence during the last two decades is a reflection of its opportunistic relationship with HIV. The challenges associated with the disease are enormous and often debilitating. The role of clinical and ...

  11. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive

  12. BACTEC MGIT 960 TM system for screening of Mycobacterium ...

    African Journals Online (AJOL)

    This study was aimed to evaluate the recent technique (BACTEC MGIT 960 TM system) for screening of Mycobacterium tuberculosis complex among cattle in Egypt. From the 1180 cattle examined in three different Governorates (El-Sharkia, El-Gharbia and El-Monefeia) by single intradermal tuberculin test, 29 animals ...

  13. Degradation of morpholine by Mycobacterium sp. isolated from ...

    African Journals Online (AJOL)

    The biodegradation of morpholine has attracted much interest because morpholine causes environmental pollution. Ten species belonging to nine genera were tested for their abilities to degrade morpholine in mineral salts medium containing morpholine (1 g/l). Mycobacterium sp. isolated from polluted water sample ...

  14. Acanthamoeba Sp. S-11 phagocytotic activity on Mycobacterium ...

    African Journals Online (AJOL)

    Background: Mycobacterium leprae (M. leprae) is a pathogenic bacterium that causes leprosy. The presence of M. leprae in the environment is supported by microorganisms that act as the new host for M. leprae. Acanthamoeba's potential to be a host of M. leprae in the environment. Acanthamoeba sp. is Free Living ...

  15. Transmissie van Mycobacterium bovis tussen mens en dier

    NARCIS (Netherlands)

    Vries, de G.; Beer, de J.; Bakker, D.; Soolingen, D.

    2015-01-01

    Nederland is officieel vrij van rundertuberculose. Toch komt af en toe nog Mycobacterium bovis-tuberculose voor bij relatief jonge autochtone Nederlanders. Ook zijn er recent nog wel boviene-uitbraken geweest. Dat roept de vraag op of er ook nu nog transmissie is van M.bovis tussen mens en dier.

  16. MYCOBACTERIUM AVIUM AND DRINKING WATER WHAT ARE THE CONNECTIONS?

    Science.gov (United States)

    Background: Human Mycobacterium avium infections are only known to be acquired from environmental sources such as water and soil. We compared M. avium isolates from clinical and drinking water sources using molecular tools. Methods: M. avium was isolated from water samples colle...

  17. Tuberkulose forårsaget af Mycobacterium africanum

    DEFF Research Database (Denmark)

    Bek, Dorte; Kjeldsen, Marianne Kirstine; Hansen, Nikolaj Friis

    2010-01-01

    Tuberkulose (TB) forårsages af patogene arter fra Mycobacterium tuberculosis komplekset (MTBC) og har en incidens på cirka 7/100.000 i Danmark. På mistanke om TB hos en akut indlagt 40 årig afrikansk mand initieredes anti-TB behandling. Efter 13 timers indlæggelse afgik patienten ved døden. Fra...

  18. Host immunity to Mycobacterium tuberculosis and risk of tuberculosis

    DEFF Research Database (Denmark)

    Michelsen, Sascha Wilk; Soborg, Bolette; Agger, Else-Marie

    2016-01-01

    BACKGROUND: Human immune responses to latent Mycobacterium tuberculosis (Mtb) infection (LTBI) may enable individuals to control Mtb infection and halt progression to tuberculosis (TB), a hypothesis applied in several novel TB vaccines. We aimed to evaluate whether immune responses to selected LTBI...

  19. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis

    DEFF Research Database (Denmark)

    Makarov, Vadim; Manina, Giulia; Mikusova, Katarina

    2009-01-01

    New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics...

  20. A case of Manila type Mycobacterium tuberculosis infection in Japan

    Science.gov (United States)

    Usami, Osamu; Nakajima, Chie; Endo, Shiro; Inomata, Shinya; Kanamori, Hajime; Hirakata, Yoichi; Uchiyama, Bine; Kaku, Mitsuo; Suzuki, Yasuhiko; Hattori, Toshio

    2015-01-01

    Key Clinical Message A 76-year-old Japanese woman contracted a Mycobacterium tuberculosis (TB, Manila type) infection in Japan, despite never having traveled. However, her son was treated for TB in the Philippines 3 years before he stayed at her house. Spoligotyping allows us to identify the TB genotype and identify the route of infection. PMID:26273455

  1. Detection of Mycobacterium chelonae, Mycobacterium abscessus Group, and Mycobacterium fortuitum Complex by a Multiplex Real-Time PCR Directly from Clinical Samples Using the BD MAX System.

    Science.gov (United States)

    Rocchetti, Talita T; Silbert, Suzane; Gostnell, Alicia; Kubasek, Carly; Campos Pignatari, Antonio C; Widen, Raymond

    2017-03-01

    A new multiplex PCR test was designed to detect Mycobacterium chelonae, Mycobacterium abscessus group, and Mycobacterium fortuitum complex on the BD MAX System. A total of 197 clinical samples previously submitted for mycobacterial culture were tested using the new protocol. Samples were first treated with proteinase K, and then each sample was inoculated into the BD MAX Sample Buffer Tube. Extraction and multiplex PCR were performed by the BD MAX System, using the BD MAX ExK TNA-3 extraction kit and BD TNA Master Mix, along with specific in-house designed primers and probes for each target. The limit of detection of each target, as well as specificity, was evaluated. Of 197 clinical samples included in this study, 133 were positive and 60 were negative for mycobacteria by culture, and another 4 negative samples were spiked with M. chelonae ATCC 35752. The new multiplex PCR on the BD MAX had 97% concordant results with culture for M. abscessus group detection, 99% for M. chelonae, and 100% for M. fortuitum complex. The new multiplex PCR test performed on the BD MAX System proved to be a sensitive and specific test to detect M. chelonae, M. abscessus group, and M. fortuitum complex by real-time PCR on an automated sample-in results-out platform. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Infections with Mycobacterium tuberculosis and Mycobacterium avium among HIV-infected patients after the introduction of highly active antiretroviral therapy. EuroSIDA Study Group JD

    DEFF Research Database (Denmark)

    Kirk, O; Gatell, J M; Mocroft, A

    2000-01-01

    the introduction of HAART, using data from the EuroSIDA study, a European, multicenter observational cohort of more than 7,000 patients. Overall incidences of Mycobacterium tuberculosis (TB) and Mycobacterium avium complex (MAC) were 0.8 and 1.4 cases/100 person-years of follow-up (PYF), decreasing from 1.8 (TB...

  3. Detection of Mycobacterium bovis and Mycobacterium tuberculosis from Cattle: Possible Public Health Relevance

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Sharma, Mandeep; Katoch, Vipin C.

    2012-01-01

    Mycobacterium bovis and Mycobacterium tuberculosis infect both animals and humans. The disease epidemiology by these agents differs in developed and developing countries due to the differences in the implementation of the prevention and control strategies. The present study describes the detectio...

  4. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex : Occurrence of Shared Immunogenic Proteins

    NARCIS (Netherlands)

    Gcebe, Nomakorinte; Michel, Anita; Gey van Pittius, Nicolaas C; Rutten, Victor

    2016-01-01

    The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis,

  5. Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization.

    Science.gov (United States)

    Gcebe, Nomakorinte; Rutten, Victor; Pittius, Nicolaas Gey van; Naicker, Brendon; Michel, Anita

    2017-04-01

    Non-tuberculous mycobacteria (NTM) are ubiquitous in the environment, and an increasing number of NTM species have been isolated and characterized from both humans and animals, highlighting the zoonotic potential of these bacteria. Host exposure to NTM may impact on cross-reactive immune responsiveness, which may affect diagnosis of bovine tuberculosis and may also play a role in the variability of the efficacy of Mycobacterium bovis BCG vaccination against tuberculosis. In this study we characterized 10 NTM isolates originating from water, soil, nasal swabs of cattle and African buffalo as well as bovine tissue samples. These isolates were previously identified during an NTM survey and were all found, using 16S rRNA gene sequence analysis to be closely related to Mycobacterium moriokaense. A polyphasic approach that included phenotypic characterization, antibiotic susceptibility profiling, mycolic acid profiling and phylogenetic analysis of four gene loci, 16S rRNA, hsp65, sodA and rpoB, was employed to characterize these isolates. Sequence data analysis of the four gene loci revealed that these isolates belong to a unique species of the genus Mycobacterium. This evidence was further supported by several differences in phenotypic characteristics between the isolates and the closely related species. We propose the name Mycobacterium malmesburyense sp. nov. for this novel species. The type strain is WCM 7299T (=ATCC BAA-2759T=CIP 110822T).

  6. Mycobacterium angelicum sp. nov., a non-chromogenic, slow-growing species isolated from fish and related to Mycobacterium szulgai.

    Science.gov (United States)

    Pourahmad, Fazel; Pate, Mateja; Ocepek, Matjaž; Borroni, Emanuele; Cabibbe, Andrea M; Capitolo, Eleonora; Cittaro, Davide; Frizzera, Eliana; Jenčič, Vlasta; Mariottini, Alessandro; Marumo, Kenji; Vaggelli, Guendalina; Cirillo, Daniela M; Tortoli, Enrico

    2015-12-01

    The name 'Mycobacterium angelicum' dates back to 2003 when it was suggested for a slowly growing mycobacterium isolated from freshwater angelfish. This name is revived here and the novel species is proposed on the basis of the polyphasic characterization of four strains including the original one. The four strains presented 100 % 16S rRNA gene sequence similarity with Mycobacterium szulgai but clearly differed from M. szulgai for the milky white aspect of the colonies. The sequence similarity with the type strain of M. szulgai ranged, in eight additionally investigated genetic targets, from 78.9 to 94.3 %, an evident contrast with the close relatedness that emerged at the level of 16S rRNA gene. The average nucleotide identity between the genomes of M. szulgai DSM 44166T and strain 126/5/03T (type strain of the novel species) was 92.92 %, and supported the status of independent species. The confirmation of the name Mycobacterium angelicum sp. nov. is proposed, with strain 126/5/03T ( = CIP 109313T = DSM 45057T) as the type strain.

  7. Line probe assay for differentiation within Mycobacterium tuberculosis complex. Evaluation on clinical specimens and isolates including Mycobacterium pinnipedii

    DEFF Research Database (Denmark)

    Kjeldsen, Marianne Kirstine; Bek, Dorte; Rasmussen, Erik Michael

    2009-01-01

    A line probe assay (GenoType MTBC) was evaluated for species differentiation within the Mycobacterium tuberculosis complex (MTBC). We included 387 MTBC isolates, 43 IS6110 low-copy MTBC isolates, 28 clinical specimens with varying microscopy grade, and 30 isolates of non-tuberculous mycobacteria...

  8. Feline leprosy due to Mycobacterium lepraemurium.

    Science.gov (United States)

    O'Brien, Carolyn R; Malik, Richard; Globan, Maria; Reppas, George; McCowan, Christina; Fyfe, Janet A

    2017-07-01

    This paper, the second in a series of three on 'feline leprosy', provides a detailed description of disease referable to Mycobacterium lepraemurium, the most common cause of feline leprosy worldwide. Cases were sourced retrospectively and prospectively for this observational study, describing clinical, geographical and molecular microbiological data for cats definitively diagnosed with M lepraemurium infection. A total of 145 cases of feline leprosy were scrutinised; 114 'new' cases were sourced from the Victorian Infectious Diseases Reference Laboratory records, veterinary pathology laboratories or veterinarians, and 31 cases were derived from six published studies. Sixty-five cats were definitively diagnosed with M lepraemurium infection. Typically, cats were 1-3 years of age when first infected, with a male gender predilection. Affected cats were generally systemically well. All had outdoor access. Lesions tended to consist of one or more cutaneous/subcutaneous nodules, typically located on the head and/or forelimbs, possibly reflecting the most likely locations for a rodent bite as the site of inoculation for organisms. Nodules had the propensity to ulcerate at some stage in the clinical course. The cytological and histological picture varied from tuberculoid, with relatively low bacterial numbers, to lepromatous with moderate to high bacterial numbers. Treatment was varied, although most cats underwent surgical resection of lesions with adjunctive medical therapy, most often using a combination of oral clarithromycin and rifampicin. Prognosis for recovery was generally good, and in two cases there was spontaneous remission without the requirement for medical intervention. Untreated cats continued to enjoy an acceptable quality of life despite persistence of the disease, which extended locally but had no apparent tendency to disseminate to internal organs. M lepraemurium causes high bacterial index (lepromatous) or low bacterial index (tuberculoid) feline

  9. Comparative Genomics and Transcriptomic Analysis of Mycobacterium Kansasii

    KAUST Repository

    Alzahid, Yara

    2014-04-01

    The group of Mycobacteria is one of the most intensively studied bacterial taxa, as they cause the two historical and worldwide known diseases: leprosy and tuberculosis. Mycobacteria not identified as tuberculosis or leprosy complex, have been referred to by ‘environmental mycobacteria’ or ‘Nontuberculous mycobacteria (NTM). Mycobacterium kansasii (M. kansasii) is one of the most frequent NTM pathogens, as it causes pulmonary disease in immuno-competent patients and pulmonary, and disseminated disease in patients with various immuno-deficiencies. There have been five documented subtypes of this bacterium, by different molecular typing methods, showing that type I causes tuberculosis-like disease in healthy individuals, and type II in immune-compromised individuals. The remaining types are said to be environmental, thereby, not causing any diseases. The aim of this project was to conduct a comparative genomic study of M. kansasii types I-V and investigating the gene expression level of those types. From various comparative genomics analysis, provided genomics evidence on why M. kansasii type I is considered pathogenic, by focusing on three key elements that are involved in virulence of Mycobacteria: ESX secretion system, Phospholipase c (plcb) and Mammalian cell entry (Mce) operons. The results showed the lack of the espA operon in types II-V, which renders the ESX- 1 operon dysfunctional, as espA is one of the key factors that control this secretion system. However, gene expression analysis showed this operon to be deleted in types II, III and IV. Furthermore, plcB was found to be truncated in types III and IV. Analysis of Mce operons (1-4) show that mce-1 operon is duplicated, mce-2 is absent and mce-3 and mce-4 is present in one copy in M. kansasii types I-V. Gene expression profiles of type I-IV, showed that the secreted proteins of ESX-1 were slightly upregulated in types II-IV when compared to type I and the secreted forms of ESX-5 were highly down

  10. Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.

    Directory of Open Access Journals (Sweden)

    Jared D Sharp

    Full Text Available Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.

  11. Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.

    Science.gov (United States)

    Sharp, Jared D; Singh, Atul K; Park, Sang Tae; Lyubetskaya, Anna; Peterson, Matthew W; Gomes, Antonio L C; Potluri, Lakshmi-Prasad; Raman, Sahadevan; Galagan, James E; Husson, Robert N

    2016-01-01

    Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.

  12. Revival and emended description of 'Mycobacterium paraffinicum' Davis, Chase and Raymond 1956 as Mycobacterium paraffinicum sp. nov., nom. rev.

    Science.gov (United States)

    Toney, Nadege; Adekambi, Toidi; Toney, Sean; Yakrus, Mitchell; Butler, W Ray

    2010-10-01

    The omission of the name 'Mycobacterium paraffinicum' from the Approved Lists of Bacterial Names was due to phenotypic confusion surrounding a close relationship with Mycobacterium scrofulaceum. Correspondingly, 'M. paraffinicum' strains grew slowly in > 7 days, stained acid-alcohol-fast and produced yellow-pigmented, smooth, waxy colonies in the dark at an optimal temperature of 35°C. However, 'M. paraffinicum' strains demonstrated no activity for urease, nicotinamidase or pyrazinamidase and lacked growth at 42°C, unlike M. scrofulaceum. The mycolic acid pattern, as determined by HPLC, clustered 'M. paraffinicum' with M. scrofulaceum, Mycobacterium avium and Mycobacterium parascrofulaceum. Strains were fully susceptible to linezolid, rifabutin, clarithromycin and amikacin. Examination of the historical reference strain of 'M. paraffinicum', ATCC 12670, and five additional isolates using comparative studies with 16S rRNA, hsp65 and rpoB gene and concatenated sequences showed that they formed a tight taxonomic group that was distinct from similar non-tuberculous mycobacteria. Multilocus enzyme electrophoresis (MEE) analysis confirmed a close association of the five additional isolates with the reference strain of 'M. paraffinicum' with a genetic distance of 0.12 and showed that all six strains were distinct from other closely related species. These genetic results provided unambiguous evidence of the uniqueness of this slowly growing, scotochromogenic species and supported the revival of the name as Mycobacterium paraffinicum (ex Davis, Chase and Raymond 1956) sp. nov., nom. rev. We propose the previously deposited reference strain ATCC 12670(T) =DSM 44181(T) =NCIMB 10420(T), located in collections worldwide, as the type strain.

  13. Real-Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection

    Science.gov (United States)

    2015-05-01

    AWARD NUMBER: W81XWH-13-1-0149 TITLE: “Real-Time Measurement of Host Bioenergetics During Mycobacterium Tuberculosis Infection...successfully adapted metabolic flux analysis using a Seahorse XF96 metabolic flux analyzer to study Mycobacterium tuberculosis energy metabolism in an...Mycobacterium tuberculosis function. In: Systems Biology of Tuberculosis . Editors: J McFadden, D Beste and A Kierzek. 2013. Springer, New York, NY. 2

  14. Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp.

    OpenAIRE

    Falkinham III, Joseph O.; Williams, Myra D.; Kwait, Rebecca; Lande, Leah

    2016-01-01

    Objective/Background: A published survey of bacteria in showerhead biofilm samples revealed that Methylobacterium spp. and Mycobacterium spp. seldom coexisted in biofilms. Method: To confirm that information, biofilm samples were collected from household plumbing of Mycobacterium avium patients and Methylobacterium spp. and M. avium numbers were measured by direct colony counts. Results: The results demonstrated that if Methylobacterium spp. were present, Mycobacterium spp. were absent,...

  15. Cervical Lymphadenitis by Mycobacterium triplex in an Immunocompetent Child: Case Report and Review

    OpenAIRE

    Caruso, G.; Angotti, R.; Molinaro, F.; Benicchi, E.; Cerchia, E.; Messina, M.

    2013-01-01

    Mycobacterium triplex was first described in 1996. This nontuberculous Mycobacterium causes a severe pulmonary disease in immunocompromised patients but it can involve also healthy patients. A literature search was made on the PubMed database and it produced only few cases of children with cervical lymphadenitis due to this Mycobacterium Triplex. We are describing a case of M. triplex cervical lymphadenitis in an immunocompetent child.

  16. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang; Xiao, Shaobo; Chen, Huanchun

    2014-01-01

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  17. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  18. Disseminated Infection by Mycobacterium sherrisii and Histoplasma capsulatum in an African HIV-Infected Patient

    Science.gov (United States)

    Taján, Juan; Espasa, Mateu; Sala, Montserrat; Navarro, Marta; Font, Bernat; González-Martín, Julián; Segura, Ferran

    2013-01-01

    Mycobacterium sherrisii is a new species of opportunistic, slow-growing, non-tuberculous Mycobacterium closely related to Mycobacterium simiae that can currently be identified with the sequence of 16S rARN gene and the heat-shock protein 65. Few cases of patients infected by this Mycobacterium have been reported and all of them were associated with human immunodeficiency virus or other immunosuppressive conditions. Clinical management is complex, because there is not a clear correlation between the in vitro antibiotic susceptibility testing and the patient's clinical outcome. PMID:23419367

  19. Systems Analysis of Early Host Gene Expression Provides Clues for Transient Mycobacterium avium ssp avium vs. Persistent Mycobacterium avium ssp paratuberculosis Intestinal Infections.

    Science.gov (United States)

    Khare, Sangeeta; Drake, Kenneth L; Lawhon, Sara D; Nunes, Jairo E S; Figueiredo, Josely F; Rossetti, Carlos A; Gull, Tamara; Everts, Robin E; Lewin, Harris A; Adams, Leslie Garry

    It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer's patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum

  20. MicroRNA-27b Modulates Inflammatory Response and Apoptosis during Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Liang, Shuxin; Song, Zhigang; Wu, Yongyan; Gao, Yuanpeng; Gao, Mingqing; Liu, Fayang; Wang, Fengyu; Zhang, Yong

    2018-04-16

    Mycobacterium tuberculosis poses a significant global health threat. MicroRNAs play an important role in regulating host anti-mycobacterial defense; however, their role in apoptosis-mediated mycobacterial elimination and inflammatory response remains unclear. In this study, we explored the role of microRNA-27b (miR-27b) in murine macrophage responses to M. tuberculosis infection. We uncovered that the TLR-2/MyD88/NF-κB signaling pathway induced the expression of miR-27b and miR-27b suppressed the production of proinflammatory factors and the activity of NF-κB, thereby avoiding an excessive inflammation during M. tuberculosis infection. Luciferase reporter assay and Western blotting showed that miR-27b directly targeted Bcl-2-associated athanogene 2 (Bag2) in macrophages. Overexpression of Bag2 reversed miR-27b-mediated inhibition of the production of proinflammatory factors. In addition, miR-27b increased p53-dependent cell apoptosis and the production of reactive oxygen species and decreased the bacterial burden. We also showed that Bag2 interacts with p53 and negatively regulates its activity, thereby controlling cell apoptosis and facilitating bacterial survival. In summary, we revealed a novel role of the miR-27b/Bag2 axis in the regulation of inflammatory response and apoptosis and provide a potential molecular host defense mechanism against mycobacteria. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting

    KAUST Repository

    Perdigão, João

    2014-11-18

    Background Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. Results In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM). The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Conclusions Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.

  2. Activity of Scottish plant, lichen and fungal endophyte extracts against Mycobacterium aurum and Mycobacterium tuberculosis.

    Science.gov (United States)

    Gordien, Andréa Y; Gray, Alexander I; Ingleby, Kevin; Franzblau, Scott G; Seidel, Véronique

    2010-05-01

    With tuberculosis the leading bacterial killer worldwide and other mycobacterial diseases on the increase, the search for new antimycobacterial agents is timely. In this study, extracts from plants, lichens and fungal endophytes of Scottish provenance were screened for activity against Mycobacterium aurum and M. tuberculosis H(37)Rv. The best activity against M. aurum was observed for extracts of Juniperus communis roots and Cladonia arbuscula (MIC = 4 microg/mL), and a fungal endophyte isolated from Vaccinium myrtillus (MIC = 8 microg/mL). The best activity against M. tuberculosis was observed for extracts of C. arbuscula, Empetrum nigrum, J. communis roots, Calluna vulgaris aerial parts, Myrica gale roots and stems (93 to 99% inhibition at 100 microg/mL). Potent antitubercular activity (90 to 96% inhibition at 100 microg/mL) was also observed for the ethanol extracts of Xerocomus badius, Chalciporus piperatus, Suillus luteus and of endophytes isolated from C. vulgaris, E. nigrum, Vaccinium vitis-idaea and V. myrtillus. The results obtained this study provide, in part, some scientific basis for the traditional use of some of the selected plants in the treatment of tuberculosis. They also indicate that fungal endophytes recovered from Scottish plants are a source of antimycobacterial agents worthy of further investigation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions.

    Science.gov (United States)

    Hall-Stoodley, L; Keevil, C W; Lappin-Scott, H M

    1998-12-01

    The rapidly growing mycobacteria (RGM) are broadly disbursed in the environment. They have been recovered from freshwater, seawater, wastewater and even potable water samples and are increasingly associated with non-tuberculous mycobacterial disease. There is scant evidence that non-tuberculous mycobacteria (NTM) and RGM form biofilms. Therefore, an experimental system was designed to assess the ability of RGM to form biofilms under controlled laboratory conditions. A flat plate reactor flow cell was attached to either a high or low nutrient reservoir and monitored by image analysis over time. Two surfaces were chosen for assessment of biofilm growth: silastic which is commonly used in medical settings and high density polyethylene (HDPE) which is prevalent in water distribution systems. The results show that Mycobacterium fortuitum and M. chelonae formed biofilms under both high and low nutrient conditions on both surfaces studied. These results suggest that RGM may form biofilms under a variety of conditions in industrial and medical environments. 1998 Society of Applied Microbiology.

  4. Mycobacterium tuberculosis Complex Members Adapted to Wild and Domestic Animals.

    Science.gov (United States)

    Malone, Kerri M; Gordon, Stephen V

    2017-01-01

    The Mycobacterium tuberculosis complex (MTBC) is composed of several highly genetically related species that can be broadly classified into those that are human-host adapted and those that possess the ability to propagate and transmit in a variety of wild and domesticated animals. Since the initial description of the bovine tubercle bacillus, now known as Mycobacterium bovis, by Theobald Smith in the late 1800's, isolates originating from a wide range of animal hosts have been identified and characterized as M. microti, M. pinnipedii, the Dassie bacillus, M. mungi, M. caprae, M. orygis and M. suricattae. This chapter outlines the events resulting in the identification of each of these animal-adapted species, their close genetic relationships, and how genome-based phylogenetic analyses of species-specific variation amongst MTBC members is beginning to unravel the events that resulted in the evolution of the MTBC and the observed host tropism between the human- and animal-adapted member species.

  5. Intraocular manifestations of mycobacterium tuberculosis: A review of the literature

    Directory of Open Access Journals (Sweden)

    Lauren A. Dalvin

    2017-05-01

    Full Text Available Mycobacterium tuberculosis: is most commonly associated with pulmonary infection. However, tuberculosis (TB can also affect the eye. TB can affect nearly any tissue in the eye, and a high index of suspicion is required for accurate diagnosis, as many of the intraocular manifestations of TB can mimic other, more common diseases. Correct diagnosis is critical because systemic anti-tuberculosis treatment may be required, and vision loss or even loss of the affected eye can occur without proper treatment. Thus, it is important for ophthalmologists and infectious disease specialists to work together to accurately diagnose and treat intraocular TB. This article reports the various known presentations of intraocular TB and reviews important elements of diagnosis and treatment. Keywords: Mycobacterium, Tuberculosis, Choroidal granuloma, Retinal vasculitis

  6. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas

    2010-01-01

    Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that sideroc......Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show...... findings are consistent with an important role for siderocalin in protection against M.tb infection and suggest that exogenously administered siderocalin may have therapeutic applications in tuberculosis....

  7. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Al-Saeedi M

    2017-10-01

    Full Text Available Mashael Al-Saeedi, Sahal Al-Hajoj Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Abstract: Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis. Keywords: Mycobacterium tuberculosis, antibiotic resistance, compensatory evolution, epistasis, efflux pumps, fitness cost

  8. Isolation of Mycobacterium paratuberculosis from Milk by Immunomagnetic Separation

    OpenAIRE

    Grant, Irene R.; Ball, Hywel J.; Rowe, Michael T.

    1998-01-01

    An immunomagnetic separation (IMS) technique was developed to facilitate selective isolation of Mycobacterium paratuberculosis cells from milk. Rabbit polyclonal antibodies against radiation-killed intact M. paratuberculosis cells were produced and used to coat sheep anti-rabbit immunoglobulin G (IgG) type M-280 Dynabeads. The rabbit anti-M. paratuberculosis IgG-coated beads (IMB) reacted strongly with laboratory strains of M. paratuberculosis as determined by slide agglutination, and microsc...

  9. Cutaneous Mycobacterium abscessus Infection Associated with Mesotherapy Injection.

    Science.gov (United States)

    Wongkitisophon, Pranee; Rattanakaemakorn, Ploysyne; Tanrattanakorn, Somsak; Vachiramon, Vasanop

    2011-02-18

    Non-tuberculous mycobacterial skin infections have an increasing incidence. In immunocompetent patients, they usually follow local trauma. We present a case of cutaneous Mycobacterium abscessus infection following mesotherapy. The lesions were successfully treated with a combination of clarithromycin, ciprofloxacin, and doxycycline. Atypical mycobacterial infection should be suspected in patients who develop late-onset skin and soft tissue infection after cutaneous injury, injection, and surgical intervention, particularly if they do not respond to conventional antibiotic treatment.

  10. Cutaneous Mycobacterium abscessus Infection Associated with Mesotherapy Injection

    Directory of Open Access Journals (Sweden)

    Pranee Wongkitisophon

    2011-02-01

    Full Text Available Non-tuberculous mycobacterial skin infections have an increasing incidence. In immunocompetent patients, they usually follow local trauma. We present a case of cutaneous Mycobacterium abscessus infection following mesotherapy. The lesions were successfully treated with a combination of clarithromycin, ciprofloxacin, and doxycycline. Atypical mycobacterial infection should be suspected in patients who develop late-onset skin and soft tissue infection after cutaneous injury, injection, and surgical intervention, particularly if they do not respond to conventional antibiotic treatment.

  11. Bloodstream Infections with Mycobacterium tuberculosis among HIV patients

    Centers for Disease Control (CDC) Podcasts

    2010-09-23

    This podcast looks at bloodstream infections with Mycobacterium tuberculosis and other pathogens among outpatients infected with HIV in Southeast Asia. CDC health scientist Kimberly McCarthy discusses the study and why bloodstream infections occur in HIV-infected populations.  Created: 9/23/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 9/23/2010.

  12. Mycobacterium avium-intracellulare: a rare cause of subacromial bursitis.

    Science.gov (United States)

    Sinha, Raj; Tuckett, John; Hide, Geoff; Dildey, Petra; Karsandas, Alvin

    2015-01-01

    Septic subacromial bursitis is an uncommon disorder with only a few reported cases in the literature. The most common causative organism is Staphylococcus aureus. We report the case of a 61-year-old female with a septic subacromial bursitis where the causative organism was found to be Mycobacterium avium-intracellulare (MAI). The diagnosis was only made following a biopsy, and we use this case to highlight the importance of recognising the need to consider a biopsy and aspiration in atypical situations.

  13. Structural and Functional Studies of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis

    Czech Academy of Sciences Publication Activity Database

    Machová, Iva; Snášel, Jan; Dostál, Jiří; Brynda, Jiří; Fanfrlík, Jindřich; Singh, M.; Tarábek, Ján; Vaněk, O.; Bednárová, Lucie; Pichová, Iva

    2015-01-01

    Roč. 10, č. 3 (2015), e0120682/1-e0120682/21 E-ISSN 1932-6203 R&D Projects: GA MŠk LO1302 EU Projects: European Commission(XE) 241587 - SYSTEMTB Institutional support: RVO:61388963 Keywords : crystal structure * noncovalent complexes * Mycobacterium tuberculosis * mechanism Subject RIV: CE - Biochemistry Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120682

  14. Studium role fosfofruktokinasy A a B v metabolismu Mycobacterium tuberculosis

    Czech Academy of Sciences Publication Activity Database

    Machová, Iva; Snášel, Jan; Pichová, Iva

    2014-01-01

    Roč. 108, č. 5 (2014), s. 542 ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /14./. 13.05.2014-16.05.2014, Milovy] Grant - others:European Research Council(XE) FP7-245187 Institutional support: RVO:61388963 Keywords : Mycobacterium tuberculosis * phosphofructokinase Subject RIV: CE - Biochemistry

  15. Tumor necrosis factor blockers influence macrophage responses to Mycobacterium tuberculosis

    OpenAIRE

    HARRIS, JAMES; HARRIS, JAMES

    2008-01-01

    PUBLISHED umor necrosis factor (TNF)?? is a proinflammatory cytokine that mediates inflammation in response to various pathogens, including Mycobacterium tuberculosis, but is also a key factor in the pathogenesis of rheumatoid arthritis and other autoimmune diseases. Three TNF???suppressing drugs have been approved to treat selected autoimmune diseases; 2 are monoclonal antibodies against TNF?? (adalimumab and infliximab), and the other is a soluble TNF receptor/Fc fusion protein (etanerce...

  16. Disseminated Mycobacterium abscessus infection in a peritoneal dialysis patient

    Directory of Open Access Journals (Sweden)

    Vincent H.J.F. Mooren

    2017-01-01

    Full Text Available A disseminated peritoneal dialysis-related Mycobacterium abscessus infection is very rare. M. abscessus belongs to the rapidly growing mycobacteria and can be misidentified as a diphtheroid bacterium, which in our case delayed diagnosis and optimal treatment. Due to intrinsic resistance to most antimicrobials, therapeutic options in M. abscessus infections are limited. Infection often leads to catheter loss. A fatal outcome, like in our case, is not exceptional.

  17. Mycobacterium bovis in milk samples: a preliminary investigation using PCR

    International Nuclear Information System (INIS)

    Achel, D.G.; Gyamfi, O.K.; Broni, F.; Gomda, Y.; Brown, C.A.

    2007-01-01

    PCR was used to screen milk samples (n=41) for Mycobacterium bovis. DNA samples were obtained through concentration by 50% sucrose addition and centrifugation. Sixteen (16) samples (or 39%) were positive for M. Bovis DNA and the rest 25 (or 61%) were negative. All four kraals had some samples testing positive for M. bovis; the highest being 50% (5/10) and the lowest being 13% (2/15). (au)

  18. Triple valve endocarditis by mycobacterium tuberculosis. A case report

    Directory of Open Access Journals (Sweden)

    Shaikh Quratulain

    2012-09-01

    Full Text Available Abstract Background Granulomas caused by Mycobacterium Tuberculosis have been observed at autopsy in the heart, pre-dominantly in the myocardium and endocardium, but rarely involving the coronary vessels and valvular structures. Mycobacterium tuberculosis valvular endocarditis is extremely rare, with most reports coming from autopsy series. Case presentation We report the case of a 17 year old immunocompetent girl who presented with history of fever, malaise, foot gangrene and a left sided hemiparesis. On investigation she was found to have infective endocarditis involving the aortic, mitral and tricuspid valves. She had developed a right middle cerebral artery stroke. She underwent dual valve replacement and tricuspid repair. The vegetations showed granulomatous inflammation but blood cultures and other biological specimen cultures were negative for any organisms. She was started on antituberculous treatment and anticoagulation. Conclusion This is the first reported case of triple valve endocarditis by Mycobacterium Tuberculosis in an immunocompetent host. Especially important is the fact that the right heart is involved which has been historically described in the setting of intravenous drug abuse. This implies that Tuberculosis should be considered in cases of culture negative endocarditis in endemic areas like Pakistan even in immunocompetent hosts.

  19. Infection due to Mycobacterium bovis in common variable immunodeficiency

    Directory of Open Access Journals (Sweden)

    Diana Andrea Herrera-Sánchez

    2015-02-01

    Full Text Available Common variable immunodeficiency (CVID is an heterogeneous group of disorders characterized by impaired antibody production. It shows a wide spectrum of manifestations including severe and recurrent respiratory infections (Streptococcus pneumoniae, Haemophilus and gastrointestinal (Campylobacter jejuni, rotavirus and Giardia lamblia. Viral infections caused by herpes zoster, cytomegalovirus (CMV and hepatitis C are rare. The opportunistic agents such as CMV, Pneumocystis jirovecii, cryptococcus and atypical mycobacteria have been reported as isolated cases. This paper reports the case of a 38-year-old female patient, who began six years before with weight loss of 7 kg in six months, fatigue, weakness, sweating, fever and abdominal pain. Furthermore, patient had intestinal obstruction and abdominal CT showed mesenteric lymph growth. The mesenteric lymph node biopsy revealed positives Mycobacterium PCR, Ziehl-Neelsen staining and culture for M. bovis. In the laparotomy postoperative period was complicated with nosocomial pneumonia, requiring mechanical ventilation and tracheostomy. Two years later, she developed right renal abscess that required surgical drainage, once again with a positive culture for Mycobacterium bovis. She was referred to highly specialized hospital and we documented panhypogammaglobulinemia and lymphopenia. Secondary causes of hypogammaglobulinemia were ruled out and common variable immunodeficiency (CVID was confirmed, we started IVIG replacement. Four years later she developed mixed cellularity Hodgkin’s lymphoma. Until today she continues with IVIG and chemotherapy. This report of a patient with CVID and Mycobacterium bovis infection, a unusual association, shows the cellular immunity susceptibility in this immunodeficiency, additional to the humoral defect.

  20. Mycobacterium stephanolepidis sp. nov., a rapidly growing species related to Mycobacterium chelonae, isolated from marine teleost fish, Stephanolepis cirrhifer.

    Science.gov (United States)

    Fukano, Hanako; Wada, Shinpei; Kurata, Osamu; Katayama, Kinya; Fujiwara, Nagatoshi; Hoshino, Yoshihiko

    2017-08-01

    A previously undescribed rapidly growing, non-pigmented mycobacterium was identified based on biochemical and nucleic acid analyses, as well as growth characteristics. Seven isolates were cultured from samples collected from five thread-sail filefish (Stephanolepis cirrhifer) and two farmed black scraper (Thamnaconus modestus). Bacterial growth occurred at 15-35 °C on Middlebrook 7H11 agar. The bacteria were positive for catalase activity at 68 °C and urease activity, intermediate for iron uptake, and negative for Tween 80 hydrolysis, nitrate reduction, semi-quantitative catalase activity and arylsulfatase activity at day 3. No growth was observed on Middlebrook 7H11 agar supplemented with picric acid, and very little growth was observed in the presence of 5 % NaCl. α- and α'-mycolates were identified in the cell walls, and a unique profile of the fatty acid methyl esters and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiles of the protein and cell-wall lipids were acquired. Sequence analysis revealed that the seven isolates shared identical sequences for the 16S rRNA, rpoB, hsp65, recA and sodA genes. Phylogenetic analysis of the five gene sequences confirmed that the isolates were unique, but closely related to Mycobacterium chelonae. Antibiotic susceptibility testing revealed the minimum inhibitory concentration (MIC) of clarithromycin against this novel species was Mycobacterium salmoniphilum. The hsp65 PCR restriction enzyme analysis pattern differed from those of M. chelonae and M. salmoniphilum. Based on these findings, the name Mycobacterium stephanolepidis sp. nov. is proposed for this novel species, with the type strain being NJB0901 T (=JCM 31611 T =KCTC 39843 T ).

  1. Long-range transcriptional control of an operon necessary for virulence-critical ESX-1 secretion in Mycobacterium tuberculosis.

    Science.gov (United States)

    Hunt, Debbie M; Sweeney, Nathan P; Mori, Luisa; Whalan, Rachael H; Comas, Iñaki; Norman, Laura; Cortes, Teresa; Arnvig, Kristine B; Davis, Elaine O; Stapleton, Melanie R; Green, Jeffrey; Buxton, Roger S

    2012-05-01

    The ESX-1 secretion system of Mycobacterium tuberculosis has to be precisely regulated since the secreted proteins, although required for a successful virulent infection, are highly antigenic and their continued secretion would alert the immune system to the infection. The transcription of a five-gene operon containing espACD-Rv3613c-Rv3612c, which is required for ESX-1 secretion and is essential for virulence, was shown to be positively regulated by the EspR transcription factor. Thus, transcription from the start site, found to be located 67 bp upstream of espA, was dependent upon EspR enhancer-like sequences far upstream (between 884 and 1,004 bp), which we term the espA activating region (EAR). The EAR contains one of the known binding sites for EspR, providing the first in vivo evidence that transcriptional activation at the espA promoter occurs by EspR binding to the EAR and looping out DNA between this site and the promoter. Regulation of transcription of this operon thus takes place over long regions of the chromosome. This regulation may differ in some members of the M. tuberculosis complex, including Mycobacterium bovis, since deletions of the intergenic region have removed the upstream sequence containing the EAR, resulting in lowered espA expression. Consequent differences in expression of ESX-1 in these bacteria may contribute to their various pathologies and host ranges. The virulence-critical nature of this operon means that transcription factors controlling its expression are possible drug targets.

  2. Identification of novel sRNAs in mycobacterial species.

    Directory of Open Access Journals (Sweden)

    Chen-Hsun Tsai

    Full Text Available Bacterial small RNAs (sRNAs are short transcripts that typically do not encode proteins and often act as regulators of gene expression through a variety of mechanisms. Regulatory sRNAs have been identified in many species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Here, we use a computational algorithm to predict sRNA candidates in the mycobacterial species M. smegmatis and M. bovis BCG and confirmed the expression of many sRNAs using Northern blotting. Thus, we have identified 17 and 23 novel sRNAs in M. smegmatis and M. bovis BCG, respectively. We have also applied a high-throughput technique (Deep-RACE to map the 5' and 3' ends of many of these sRNAs and identified potential regulators of sRNAs by analysis of existing ChIP-seq datasets. The sRNAs identified in this work likely contribute to the unique biology of mycobacteria.

  3. Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB.

    Directory of Open Access Journals (Sweden)

    Andaleeb Sajid

    2011-03-01

    Full Text Available The integrated functions of 11 Ser/Thr protein kinases (STPKs and one phosphatase manipulate the phosphorylation levels of critical proteins in Mycobacterium tuberculosis. In this study, we show that the lone Ser/Thr phosphatase (PstP is regulated through phosphorylation by STPKs.PstP is phosphorylated by PknA and PknB and phosphorylation is influenced by the presence of Zn(2+-ions and inorganic phosphate (Pi. PstP is differentially phosphorylated on the cytosolic domain with Thr(137, Thr(141, Thr(174 and Thr(290 being the target residues of PknB while Thr(137 and Thr(174 are phosphorylated by PknA. The Mn(2+-ion binding residues Asp(38 and Asp(229 are critical for the optimal activity of PstP and substitution of these residues affects its phosphorylation status. Native PstP and its phosphatase deficient mutant PstP(c (D38G are phosphorylated by PknA and PknB in E. coli and addition of Zn(2+/Pi in the culture conditions affect the phosphorylation level of PstP. Interestingly, the phosphorylated phosphatase is more active than its unphosphorylated equivalent.This study establishes the novel mechanisms for regulation of mycobacterial Ser/Thr phosphatase. The results indicate that STPKs and PstP may regulate the signaling through mutually dependent mechanisms. Consequently, PstP phosphorylation may play a critical role in regulating its own activity. Since, the equilibrium between phosphorylated and non-phosphorylated states of mycobacterial proteins is still unexplained, understanding the regulation of PstP may help in deciphering the signal transduction pathways mediated by STPKs and the reversibility of the phenomena.

  4. Mycobacterium alsiense, a novel, slowly growing species isolated from two patients with pulmonary disease

    DEFF Research Database (Denmark)

    Richter, Elvira; Tortoli, Enrico; Fischer, Arno

    2007-01-01

    A previously undescribed, slowly growing Mycobacterium species was isolated from pulmonary specimens of two patients, one from Denmark and one from Italy. The isolates showed unique 16S rRNA internal transcribed spacers and hsp65 sequences: the 16S rRNA was most closely related to Mycobacterium...

  5. Comparative genomics of archived pyrazinamide resistant Mycobacterium tuberculosis complex isolates from Uganda

    Science.gov (United States)

    Bovine tuberculosis is a ‘neglected zoonosis’ and its contribution to the proportion of Mycobacterium tuberculosis complex infections in humans is unknown. A retrospective study on archived Mycobacterium tuberculosis complex (MTC) isolates from a reference laboratory in Uganda was undertaken to iden...

  6. Pott's disease: a case of Mycobacterium xenopi infection of the spine

    Directory of Open Access Journals (Sweden)

    Majd Alfreijat

    2013-01-01

    Full Text Available Pott's disease is an infection of the spine with Mycobacterium tuberculosis that causes destruction of the spine elements resulting in progressive kyphosis. We are describing a rare case of Pott's disease where Mycobacterium xenopi was the inculpated organism.

  7. Diffuse Lepromatous Leprosy Due to Mycobacterium lepromatosis in Quintana Roo, Mexico.

    Science.gov (United States)

    Han, Xiang Y; Quintanilla, Marco

    2015-11-01

    A 43-year-old woman of Mayan origin from Quintana Roo, Mexico, was diagnosed with diffuse lepromatous leprosy. The etiologic bacillus was determined to be Mycobacterium lepromatosis instead of Mycobacterium leprae. This case likely represents the first report of this leprosy form and its agent in the southeastern tip of Mexico. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Environmental Mycobacterium avium subsp. paratuberculosis hosted by free-living amoebae

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis is responsible for paratuberculosis in animals. This disease, leading to an inflammation of the gastrointestinal tract, has a high impact on animal health and an important economic burden. The environmental life cycle of Mycobacterium avium subsp. paratube...

  9. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    Science.gov (United States)

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  10. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics.

    Science.gov (United States)

    Das, Sarbashis; Pettersson, B M Fredrik; Behra, Phani Rama Krishna; Ramesh, Malavika; Dasgupta, Santanu; Bhattacharya, Alok; Kirsebom, Leif A

    2015-06-16

    We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia

    NARCIS (Netherlands)

    de Jong, Bouke C.; Hill, Philip C.; Aiken, Alex; Awine, Timothy; Antonio, Martin; Adetifa, Ifedayo M.; Jackson-Sillah, Dolly J.; Fox, Annette; Deriemer, Kathryn; Gagneux, Sebastien; Borgdorff, Martien W.; McAdam, Keith P. W. J.; Corrah, Tumani; Small, Peter M.; Adegbola, Richard A.

    2008-01-01

    BACKGROUND: There is considerable variability in the outcome of Mycobacterium tuberculosis infection. We hypothesized that Mycobacterium africanum was less likely than M. tuberculosis to transmit and progress to tuberculosis disease. METHODS: In a cohort study of patients with tuberculosis and their

  12. Mycobacterium avium-intracellulare cellulitis occurring with septic arthritis after joint injection: a case report

    Directory of Open Access Journals (Sweden)

    Murdoch David M

    2007-02-01

    Full Text Available Abstract Background Cellulitis caused by Mycobacterium avium-intracellulare has rarely been described. Mycobacterium avium-intracellulare is a rare cause of septic arthritis after intra-articular injection, though the causative role of injection is difficult to ascertain in such cases. Case presentation A 57-year-old with rheumatoid arthritis treated with prednisone and azathioprine developed bilateral painful degenerative shoulder arthritis. After corticosteroid injections into both acromioclavicular joints, he developed bilateral cellulitis centered over the injection sites. Skin biopsy showed non-caseating granulomas, and culture grew Mycobacterium avium-intracellulare. Joint aspiration also revealed Mycobacterium avium-intracellulare infection. Conclusion Although rare, skin and joint infections caused by Mycobacterium avium-intracellulare should be considered in any immunocompromised host, particularly after intra-articular injection. Stains for acid-fast bacilli may be negative in pathologic samples even in the presence of infection; cultures of tissue specimens should always be obtained.

  13. Mycobacterium eburneum sp. nov., a non-chromogenic, fast-growing strain isolated from sputum.

    Science.gov (United States)

    Nouioui, Imen; Carro, Lorena; Teramoto, Kanae; Igual, José M; Jando, Marlen; Del Carmen Montero-Calasanz, Maria; Sutcliffe, Iain; Sangal, Vartul; Goodfellow, Michael; Klenk, Hans-Peter

    2017-09-01

    A polyphasic study was undertaken to establish the taxonomic position of a non-chromogenic, rapidly growing Mycobacterium strain that had been isolated from sputum. The strain, CECT 8775T, has chemotaxonomic and cultural properties consistent with its classification in the genus Mycobacterium and was distinguished from the type strains of closely related mycobacterial species, notably from Mycobacterium paraense DSM 46749T, its nearest phylogenetic neighbour, based on 16S rRNA, hsp65 and rpoB gene sequence data. These organisms were also distinguished by a broad range of chemotaxonomic and phenotypic features and by a digital DNA-DNA relatedness value of 22.8 %. Consequently, the strain is considered to represent a novel species of Mycobacterium for which the name Mycobacterium eburneum sp. nov is proposed; the type strain is X82T (CECT 8775T=DSM 44358T).

  14. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response

    Directory of Open Access Journals (Sweden)

    Adriano Queiroz

    Full Text Available Abstract: The lipid-rich cell wall of Mycobacterium tuberculosis is a dynamic structure that is involved in the regulation of the transport of nutrients, toxic host-cell effector molecules, and anti-tuberculosis drugs. It is therefore postulated to contribute to the long-term bacterial survival in an infected human host. Accumulating evidence suggests that M. tuberculosis remodels the lipid composition of the cell wall as an adaptive mechanism against host-imposed stress. Some of these lipid species (trehalose dimycolate, diacylated sulphoglycolipid, and mannan-based lipoglycans trigger an immunopathologic response, whereas others (phthiocerol dimycocerosate, mycolic acids, sulpholipid-1, and di-and polyacyltrehalose appear to dampen the immune responses. These lipids appear to be coordinately expressed in the cell wall of M. tuberculosis during different phases of infection, ultimately determining the clinical fate of the infection. This review summarizes the current state of knowledge on the metabolism, transport, and homeostatic or immunostatic regulation of the cell wall lipids, and their orchestrated interaction with host immune responses that results in bacterial clearance, persistence, or tuberculosis.

  15. Prevaccination with SRL172 (heat-killed Mycobacterium vaccae) inhibits experimental periodontal disease in Wistar rats

    Science.gov (United States)

    Breivik, T; Rook, G A W

    2000-01-01

    Periodontal disease is a bacterial dental plaque-induced destructive inflammatory condition of the tooth-supporting tissues, which is thought to be mediated by T lymphocytes secreting T helper 2 (Th2) cytokines, resulting in recruitment of high numbers of antibody-producing B lymphocytes/plasma cells as well as polymorphonuclear leucocytes (PMN) secreting tissue-destructive components, such at matrix metalloproteinases and reactive oxygen metabolites into the gingival connective tissues. One treatment strategy may be to down-regulate the Th2 response to those dental plaque microorganisms which induce the destructive inflammatory response. In this study we have examined the effects of a potent down-regulator of Th2 responses on ligature-induced periodontal disease in an experimental rat model. A single s.c. injection into Wistar rats of 0·1 or 1 mg of SRL172, a preparation of heat-killed Mycobacterium vaccae (NCTC 11659), 13 days before application of the ligature, significantly reduced the subsequent destruction of the tooth-supporting tissues, as measured by loss of periodontal attachment fibres (P < 0·001) and bone (P < 0·002). This protective effect occurred not only on the experimental (ligatured) side but also on the control unligatured side. SRL172 has undergone extensive toxicological studies and safety assessments in humans, and it is suggested that it may provide a safe and novel therapeutic approach to periodontal disease. PMID:10844524

  16. MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Iwai, Hiroki; Funatogawa, Keiji; Matsumura, Kazunori; Kato-Miyazawa, Masako; Kirikae, Fumiko; Kiga, Kotaro; Sasakawa, Chihiro; Miyoshi-Akiyama, Tohru; Kirikae, Teruo

    2015-05-01

    MicroRNAs (miRNAs) are short, conserved, non-coding RNA molecules that repress translation, followed by the decay of miRNA-targeted mRNAs that encode molecules involved in cell differentiation, development, immunity and apoptosis. At least six miRNAs, including microRNA-155 (miR-155), were up-regulated when born marrow-derived macrophages from C57BL/6 mice were infected with Mycobacterium tuberculosis Erdman. C57BL/6 mice intravenously infected with Erdman showed up-regulation of miR-155 in livers and lungs. Following infection, miR-155-deficient C57BL/6 mice died significantly earlier and had significantly higher numbers of CFU in lungs than wild-type mice. Moreover, fewer CD4(+) T cells, but higher numbers of monocytes and neutrophils, were present in the lungs of Erdman-infected miR-155 knockout (miR-155(-/-)) than of wild-type mice. These findings indicated that miR-155 plays a critical role in immune responses to M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Karen K Y Lam

    Full Text Available Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  18. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Science.gov (United States)

    Lam, Karen K Y; Zheng, Xingji; Forestieri, Roberto; Balgi, Aruna D; Nodwell, Matt; Vollett, Sarah; Anderson, Hilary J; Andersen, Raymond J; Av-Gay, Yossef; Roberge, Michel

    2012-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  19. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  20. Inverted repeats in the promoter as an autoregulatory sequence for TcrX in Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Bhattacharya, Monolekha; Das, Amit Kumar

    2011-01-01

    Highlights: ► The regulatory sequences recognized by TcrX have been identified. ► The regulatory region comprises of inverted repeats segregated by 30 bp region. ► The mode of binding of TcrX with regulatory sequence is unique. ► In silico TcrX–DNA docked model binds one of the inverted repeats. ► Both phosphorylated and unphosphorylated TcrX binds regulatory sequence in vitro. -- Abstract: TcrY, a histidine kinase, and TcrX, a response regulator, constitute a two-component system in Mycobacterium tuberculosis. tcrX, which is expressed during iron scarcity, is instrumental in the survival of iron-dependent M. tuberculosis. However, the regulator of tcrX/Y has not been fully characterized. Crosslinking studies of TcrX reveal that it can form oligomers in vitro. Electrophoretic mobility shift assays (EMSAs) show that TcrX recognizes two regions in the promoter that are comprised of inverted repeats separated by ∼30 bp. The dimeric in silico model of TcrX predicts binding to one of these inverted repeat regions. Site-directed mutagenesis and radioactive phosphorylation indicate that D54 of TcrX is phosphorylated by H256 of TcrY. However, phosphorylated and unphosphorylated TcrX bind the regulatory sequence with equal efficiency, which was shown with an EMSA using the D54A TcrX mutant.

  1. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    Science.gov (United States)

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  2. Mycobacterium shigaense Causes Lymph Node and Cutaneous Lesions as Immune Reconstitution Syndrome in an AIDS Patient: The Third Case Report of a Novel Strain Non-tuberculous Mycobacterium

    Science.gov (United States)

    Koizumi, Yusuke; Shimizu, Kaoru; Shigeta, Masayo; Minamiguchi, Hitoshi; Hodohara, Keiko; Andoh, Akira; Tanaka, Toshihide; Chikamatsu, Kinuyo; Mitarai, Satoshi; Mikamo, Hiroshige

    2016-01-01

    A 40-year-old man complaining of progressive body weight loss was diagnosed to have acquired immunodeficiency syndrome. Within 2 weeks after the initiation of combination antiretroviral therapy, he developed fever, massive cervical lymphadenopathy and a protruding subcutaneous abscess. A lymph node biopsy and abscess drainage revealed non-caseous granuloma and mycobacterium. The mycobacterium belonged to Runyon II group, but it showed no matches to any previously reported species. According to sequence analyses, the strain was identified as Mycobacterium shigaense. After six months of antimycobacterial treatment, the lesions were all successfully cured. This is the third case report of the novel mycobacterium, M. shigaense, presenting in associatioin with immune reconstitution syndrome. PMID:27853087

  3. Role of genotype® mycobacterium common mycobacteria/additional species assay for rapid differentiation between Mycobacterium tuberculosis complex and different species of non-tuberculous mycobacteria

    Directory of Open Access Journals (Sweden)

    Amresh Kumar Singh

    2013-01-01

    Full Text Available Background: Mycobacterium tuberculosis complex (MTBC and non-tuberculous mycobacteria (NTM may or may not have same clinical presentations, but the treatment regimens are always different. Laboratory differentiation between MTBC and NTM by routine methods are time consuming and cumbersome to perform. We have evaluated the role of GenoType® Mycobacterium common mycobacteria/additional species (CM/AS assay for differentiation between MTBC and different species of NTM in clinical isolates from tuberculosis (TB cases. Materials and Methods: A total of 1080 clinical specimens were collected from January 2010 to June 2012. Diagnosis was performed by Ziehl-Neelsen staining followed by culture in BacT/ALERT 3D system (bioMerieux, France. A total of 219 culture positive clinical isolates (BacT/ALERT® MP cultures were selected for differentiation by p-nitrobenzoic acid (PNB sensitivity test as and BIO-LINE SD Ag MPT64 TB test considering as the gold standard test. Final identification and differentiation between MTBC and different species of NTM were further confirmed by GenoType® Mycobacterium CM/AS assay (Hain Lifescience, Nehren, Germany. Results: Out of 219 BacT/ALERT® MP culture positive isolates tested by PNB as 153 MTBC (69.9% and by GenoType® Mycobacterium CM/AS assay as 159 (72.6% MTBC and remaining 60 (27.4% were considered as NTM species. The GenoType® Mycobacterium CM/AS assay was proved 99.3% sensitive and 98.3% specific for rapid differentiation of MTBC and NTM. The most common NTM species were; Mycobacterium fortuitum 20 (33.3% among rapid growing mycobacteria and Mycobacterium intracellulare 11 (18.3% among slow growing mycobacteria. Conclusion: The GenoType® Mycobacterium assay makes rapid and accurate identification of NTM species as compared with different phenotypic and molecular diagnostic tool and helps in management of infections caused by different mycobacteria.

  4. Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.

    Science.gov (United States)

    Gordon, Stephen V; Parish, Tanya

    2018-04-01

    Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.

  5. Mycobacterium marinum infection following contact with reptiles: vivarium granuloma.

    Science.gov (United States)

    Bouricha, Mehdi; Castan, Bernard; Duchene-Parisi, Elisabeth; Drancourt, Michel

    2014-04-01

    A 19-year-old man presented with a 1.5-cm nodule on the first dorsal metacarpal ray. The patient denied having contact with fish tanks or fish, but recalled handling many reptiles without gloves in the vivarium where he worked. A culture of a skin biopsy specimen yielded Mycobacterium marinum. The clinical outcome was favourable after a 2-week course of intramuscular gentamicin (180 mg daily) combined with a 6-week course of oral clarithromycin (500 mg twice a day). Doctors should be aware that vivariums, in addition to fish tanks, can be sources of M. marinum exposure. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Necrotizing Soft Tissue Infection Occurring after Exposure to Mycobacterium marinum

    Directory of Open Access Journals (Sweden)

    Shivani S. Patel

    2014-01-01

    Full Text Available Cutaneous infections caused by Mycobacterium marinum have been attributed to aquarium or fish exposure after a break in the skin barrier. In most instances, the upper limbs and fingers account for a majority of the infection sites. While previous cases of necrotizing soft tissue infections related to M. marinum have been documented, the importance of our presenting case is to illustrate the aggressive nature of M. marinum resulting in a persistent necrotizing soft tissue infection of a finger that required multiple aggressive wound debridements, followed by an amputation of the affected extremity, in order to hasten recovery.

  7. Mycobacterium avium complex disseminated infection in a kidney transplant recipient.

    Science.gov (United States)

    Fadlallah, J; Rammaert, B; Laurent, S; Lanternier, F; Pol, S; Franck, N; Mamzer, M F; Dupin, N; Lortholary, O

    2016-02-01

    Mycobacterium avium-intracellulare complex (MAC) infections are well known in immunocompromised patients, notably in human immunodeficiency virus infection, but remain scarcely described in kidney transplantation. Moreover, cutaneous involvement in this infection is very unusual. We describe here a disseminated infection caused by MAC in a kidney transplant recipient revealed by cutaneous lesions. This case highlights the need for an exhaustive, iterative microbiologic workup in the context of an atypical disease presentation in a renal transplant patient, regardless of the degree of immunosuppression. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Improved method for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide.

    OpenAIRE

    Butler, W R; Kilburn, J O

    1982-01-01

    The acid medium required to test susceptibility of Mycobacterium tuberculosis to pyrazinamide (PZA) is a major problem in obtaining reliable test results. Satisfactory growth is usually obtained on Middlebrook and Cohn 7H10 medium at pH 5.5 if albumin-dextrose-catalase (ADC) supplement rather than oleic acid-albumin-dextrose-catalase is used; however, some lots of ADC supplement still fail to support growth at this low pH. A rapid turbidimetric test was developed to determine the growth-suppo...

  9. Anti-Mycobacterium tuberculosis activity of fungus Phomopsis stipata

    Directory of Open Access Journals (Sweden)

    Karina Andrade de Prince

    2012-03-01

    Full Text Available Our purpose was to determine the anti-Mycobacterium tuberculosis activity of the metabolites produced by the endophitic fungus Phomopsis stipata (Lib. B. Sutton, (Diaporthaceae, cultivated in different media. The antimycobacterial activity was assessed through the Resazurin Microtiter Assay (REMA and the cytotoxicity test performed on macrophage cell line. The extracts derived from fungi grown on Corn Medium and Potato Dextrose Broth presented the smallest values of Minimum Inhibitory Concentration (MIC and low cytotoxicity, which implies a high selectivity index. This is the first report on the chemical composition and antitubercular activity of metabolites of P. stipata, as well as the influence of culture medium on these properties.

  10. Mycobacterium goodii endocarditis following mitral valve ring annuloplasty.

    Science.gov (United States)

    Parikh, Rohan B; Grant, Matthew

    2017-03-21

    Mycobacterium goodii is an infrequent human pathogen which has been implicated in prosthesis related infections and penetrating injuries. It is often initially misidentified as a gram-positive rod by clinical microbiologic laboratories and should be considered in the differential diagnosis. We describe here the second reported case of M. goodii endocarditis. Species level identification was performed by 16S rDNA (ribosomal deoxyribonucleic acid) gene sequencing. The patient was successfully treated with mitral valve replacement and a prolonged combination of ciprofloxacin and trimethoprim/sulfamethoxazole. Confirmation of the diagnosis utilizing molecular techniques and drug susceptibility testing allowed for successful treatment of this prosthetic infection.

  11. Disseminated Mycobacterium celatum disease with prolonged pulmonary involvement

    DEFF Research Database (Denmark)

    Patsche, Cecilie Blenstrup; Svensson, Erik; Wejse, Christian

    2014-01-01

    Mycobacterium celatum is a rare cause of human infection, causing disseminated disease in immunosuppressed individuals. Infections localized to the lungs and the lymph nodes have also been reported in immunocompetent individuals. The existing literature on the subject is limited as are experiences...... with treatment regimens and durations. In the case presented herein, two different treatment regimens were applied to an immunocompromised HIV-negative patient with primary skin involvement and extensive pulmonary involvement due to suspected relapse on isoniazid, ethambutol, and clarithromycin treatment....... The treatment regimen was changed to azithromycin, ciprofloxacin, and pyrazinamide and the treatment duration was prolonged to a total of 24 months, with good effect....

  12. Deciphering the biology of Mycobacterium tuberculosis from thecomplete genome sequence

    DEFF Research Database (Denmark)

    Cole, S.T.; Krogh, Anders Stærmose

    1998-01-01

    Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding....... tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation....

  13. Genome-wide comparison of medieval and modern Mycobacterium leprae

    DEFF Research Database (Denmark)

    Schuenemann, Verena J; Singh, Pushpendra; Mendum, Thomas A

    2013-01-01

    Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly...... origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human...

  14. Mycobacterium tuberculosis Infection in a Domesticated Korean Wild Boar ( Sus scrofa coreanus).

    Science.gov (United States)

    Seo, Min-Goo; Ouh, In-Ohk; Kim, Munki; Lee, Jienny; Kim, Young-Hoan; Do, Jae-Cheul; Kwak, Dongmi

    2017-06-01

    Tuberculosis, a chronic progressive disease, has been reported in bovine, swine, and primate species. Here, we report the first case of Mycobacterium tuberculosis infection in a Korean wild boar ( Sus scrofa coreanus). The owners this domesticated boar brought it to the Gyeongbuk Veterinary Service Laboratory in Korea after it was found dead and severely emaciated. Demarcated yellowish white nodules were found around the larynx and retropharyngeal lymph node during necropsy. The lungs had diffuse fibrinous pleuritis, severe congestion, and scattered nodules. More nodules were found in the spleen. Tuberculosis is characterized by massive macrophage infiltration and central caseous necrosis; both characteristics were found in the lungs. Histopathologic examination revealed that the alveolar lumen had marked fibrosis and exudates. Examination of the fluid revealed extensive macrophage permeation. To confirm a Mycobacterium infection, PCR was performed using two primer sets specific to the rpoB gene of Mycobacterium; Mycobacterium was detected in the lungs and spleen. To identify the species of Mycobacterium, immunohistochemical evaluation was performed using antibodies against Mycobacterium tuberculosis and Mycobacterium bovis . The results revealed immunoreactivity against M. tuberculosis but not against M. bovis . The consumption of undercooked or raw meat from game animals may expose humans and other animals to sylvatic infection. Consequently, Koreans who ingest wild boar may be at risk of a tuberculosis infection. To reduce the risk of foodborne infection and maintain public health, continuous monitoring and control strategies are required.

  15. Description of Mycobacterium chelonae subsp. bovis subsp. nov., isolated from cattle (Bos taurus coreanae), emended description of Mycobacterium chelonae and creation of Mycobacterium chelonae subsp. chelonae subsp. nov.

    Science.gov (United States)

    Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Jeon, Che Ok; Jeong, Joseph; Lee, Seon Ho; Lim, Ji-Hun; Lee, Seung-Heon; Kim, Chang Ki; Kook, Yoon-Hoh; Kim, Bum-Joon

    2017-10-01

    Three rapidly growing mycobacterial strains, QIA-37 T , QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752 T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37 T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752 T (=CCUG 47445 T =CIP 104535 T =DSM 43804 T =JCM 6388 T =NCTC 946 T ) and QIA-37 T (=KCTC 39630 T =JCM 30986 T ) are the type strains of the two novel subspecies.

  16. Purification, crystallization and preliminary X-ray crystallographic studies of the Mycobacterium tuberculosis DNA gyrase ATPase domain

    International Nuclear Information System (INIS)

    Roué, Mélanie; Agrawal, Alka; Volker, Craig; Mossakowska, Danuta; Mayer, Claudine; Bax, Benjamin D.

    2013-01-01

    The ATPase domain of M. tuberculosis DNA gyrase was crystallized using hanging-drop vapour diffusion. The crystals belonged to space groups P1 and P2 1 . Diffraction data were collected to resolutions of 2.9 and 3.3 Å, respectively. Mycobacterium tuberculosis DNA gyrase, a nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and hence is the sole target of fluoroquinolones in the treatment of tuberculosis. The ATPase domain provides the energy required for catalysis by ATP hydrolysis. Two constructs corresponding to this 43 kDa domain, Mtb-GyrB47 C1 and Mtb-GyrB47 C2 , have been overproduced, purified and crystallized. Diffraction data were collected from three crystal forms. The crystals belonged to space groups P1 and P2 1 and diffracted to resolutions of 2.9 and 3.3 Å, respectively

  17. Mycobacterium alsense sp. nov., a scotochromogenic slow grower isolated from clinical respiratory specimens

    DEFF Research Database (Denmark)

    Tortoli, Enrico; Richter, Elvira; Borroni, Emanuele

    2016-01-01

    . Mycobacterium asiaticum is the most closely related species on the basis of the 16S rRNA sequence (similarity 99.3%); the average nucleotide Identity between the genomes of the two species is 80.72%, clearly below the suggested cutoff (95-96%). The name M. alsense is proposed here for the new species......"Mycobacterium alsiense", although reported in 2007, has not been validly published so far. The polyphasic characterization of the three strains available so far led us to the conclusion that they represent a distinct species within the genus Mycobacterium. The proposed new species grows slowly...

  18. Sporotrichoid-Like Spread of Cutaneous Mycobacterium chelonae in an Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Daria Marley Kemp

    2017-01-01

    Full Text Available Mycobacterium chelonae is a rapidly growing mycobacterium found in water and soil that can cause local cutaneous infections in immunocompetent hosts but more frequently affects immunocompromised patients. Typically, patients will present with painful subcutaneous nodules of the joints or soft tissues from traumatic inoculation. However, exhibiting a sporotrichoid-like pattern of these nodules is uncommon. Herein, we report a case of sporotrichoid-like distribution of cutaneous Mycobacterium chelonae in a patient with systemic lupus erythematosus on significant immunosuppressive medications. Clinicians treating immunocompromised patients should be cognizant of their propensity to develop unusual infections and atypical presentations.

  19. An outbreak of Mycobacterium fortuitum cutaneous infection associated with mesotherapy.

    Science.gov (United States)

    Quiñones, C; Ramalle-Gómara, E; Perucha, M; Lezaun, M-E; Fernández-Vilariño, E; García-Morrás, P; Simal, G

    2010-05-01

    We describe an outbreak of Mycobacterium fortuitum cutaneous infections associated with mesotherapy in La Rioja, Spain. Descriptive epidemiology. Private practice. Case subjects were customers of a single beauty salon who were treated with mesotherapy injections. Two skin biopsies were taken from each patient. Over the designated period, 138 women received mesotherapy. Of these women, 39, or 28.3%, developed lesions ultimately thought to be caused by Mycobacterium fortuitum infection. The number of lesions per patient varied from 3 to 20 in the most severe case. Most of the lesions were indurated, erythematous or violaceous papules, some progressing to become fluctuant boils with suppuration, fistulization and scarring. The individual lesions varied in diameter from 0.5 to 6 cm. Two patients (5.1%) developed inguinal or axillary adenopathy. Two others presented with fever. One reported muscular pain. In 12 of the 39 cases, M. fortuitum was isolated from the wound cultures. The patients were all successfully treated with clarithromycin and levofloxacin. We identified a large outbreak of rapidly growing mycobacterial lesions among women who received mesotherapy injections in a single beauty salon.

  20. Circumvention of the Mycobactin Requirement of Mycobacterium paratuberculosis

    Science.gov (United States)

    Morrison, Norman E.

    1965-01-01

    Morrison, Norman E. (Johns Hopkins University-Leonard Wood Memorial Leprosy Research Laboratory, Baltimore, Md.). Circumvention of the mycobactin requirement of Mycobacterium paratuberculosis. J. Bacteriol. 89:762–767. 1965.—The mycobactin growth requirement of Mycobacterium paratuberculosis was circumvented on glucose-containing synthetic medium with an initial pH of 5.5. Mycobactin was required during the first transfer on the synthetic medium. Subsequent transfers have grown in the absence of mycobactin. The growth of mycobactin-“independent” strains of M. paratuberculosis on the synthetic medium was found to be stimulated by low concentrations of mycobactin. The circumvention of the mycobactin requirement appears to depend upon the properties of the medium and not upon having created conditions which promote endogenous mycobactin synthesis. Investigation of the glucose-containing synthetic medium showed that: (i) growth stimulatory compounds were formed during autoclaving, and (ii) compared with neutrality a pH of 5.5 gave markedly increased pellicle yields. It was suggested that the growth-stimulatory compounds formed during autoclaving may in part be responsible for the circumvention of the mycobactin requirement. PMID:14273658