WorldWideScience

Sample records for regulates key processes

  1. Regulation and optimization of the biogas process: Propionate as a key parameter

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2007-01-01

    .6 to 2.9 mM. A process disturbance caused by overloading with industrial waste was reflected by a significant increase in all VFA concentrations. During the recovery of the process, the return of propionate back to the steady-state level was 2-3 days slower than any other VFA and propionate could best......, a process breakdown caused by organic overloading with meat and bone meal and lipids was indicated by changes in propionate concentration 12-18 days before a decrease in methane production was observed. Furthermore, a more efficient and stable utilization of the substrate was observed when propionate...

  2. Regulation and optimization of the biogas process: Propionate as a key parameter

    International Nuclear Information System (INIS)

    Nielsen, Henrik Bangso; Uellendahl, Hinrich; Ahring, Birgitte Kiaer

    2007-01-01

    The use of volatile fatty acids (VFA) as process indicators in biogas reactors treating manure together with industrial waste was studied. At a full-scale biogas plant, an online VFA sensor was installed in order to study VFA dynamics during stable and unstable operation. During stable operation acetate increased significantly during the feeding periods from a level of 2-4 to 12-17 mM, but the concentration generally dropped to about the same level as before feeding. The fluctuations in the propionate were more moderate than for acetate but the average level rose during 1 week of operation from 0.6 to 2.9 mM. A process disturbance caused by overloading with industrial waste was reflected by a significant increase in all VFA concentrations. During the recovery of the process, the return of propionate back to the steady-state level was 2-3 days slower than any other VFA and propionate could best describe the normalizing of the process. In a lab-scale continuously stirred tank reactor experiment, with manure as main substrate, the prospective of using either propionate concentration or methane production as single process indicators was studied. Propionate was found to be the best indicator. Thus, a process breakdown caused by organic overloading with meat and bone meal and lipids was indicated by changes in propionate concentration 12-18 days before a decrease in methane production was observed. Furthermore, a more efficient and stable utilization of the substrate was observed when propionate was used as process indicator

  3. Polypyrimidine Tract Binding Protein Homologs from Arabidopsis Are Key Regulators of Alternative Splicing with Implications in Fundamental Developmental Processes[W

    Science.gov (United States)

    Rühl, Christina; Stauffer, Eva; Kahles, André; Wagner, Gabriele; Drechsel, Gabriele; Rätsch, Gunnar; Wachter, Andreas

    2012-01-01

    Alternative splicing (AS) generates transcript variants by variable exon/intron definition and massively expands transcriptome diversity. Changes in AS patterns have been found to be linked to manifold biological processes, yet fundamental aspects, such as the regulation of AS and its functional implications, largely remain to be addressed. In this work, widespread AS regulation by Arabidopsis thaliana Polypyrimidine tract binding protein homologs (PTBs) was revealed. In total, 452 AS events derived from 307 distinct genes were found to be responsive to the levels of the splicing factors PTB1 and PTB2, which predominantly triggered splicing of regulated introns, inclusion of cassette exons, and usage of upstream 5′ splice sites. By contrast, no major AS regulatory function of the distantly related PTB3 was found. Dependent on their position within the mRNA, PTB-regulated events can both modify the untranslated regions and give rise to alternative protein products. We find that PTB-mediated AS events are connected to diverse biological processes, and the functional implications of selected instances were further elucidated. Specifically, PTB misexpression changes AS of PHYTOCHROME INTERACTING FACTOR6, coinciding with altered rates of abscisic acid–dependent seed germination. Furthermore, AS patterns as well as the expression of key flowering regulators were massively changed in a PTB1/2 level-dependent manner. PMID:23192226

  4. The four key characteristics of interpersonal emotion regulation.

    Science.gov (United States)

    Niven, Karen

    2017-10-01

    Emotion researchers are increasingly interested in processes by which people influence others' feelings. Although one such process, interpersonal emotion regulation, has received particular attention in recent years, there remains confusion about exactly how to define this process. The present article aims to distinguish interpersonal emotion regulation from other, related processes by outlining its four key characteristics. Specifically, interpersonal emotion regulation is presented as a process of (i) regulation, that (ii) has an affective target, (iii) is deliberate, and (iv) has a social target. Considering these characteristics raises questions for future research concerning factors that may influence the process of interpersonal emotion regulation, why interpersonal emotion regulation sometimes fails, and whether interventions can improve people's use of interpersonal emotion regulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mediator: A key regulator of plant development.

    Science.gov (United States)

    Buendía-Monreal, Manuel; Gillmor, C Stewart

    2016-11-01

    Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ethylene, a key factor in the regulation of seed dormancy

    Directory of Open Access Journals (Sweden)

    Françoise eCORBINEAU

    2014-10-01

    Full Text Available Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA and gibberellins (GAs. Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L-1. Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1 demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a cross-talk between hormones and other signals will be discussed.

  7. Attachment and Dyadic Regulation Processes.

    Science.gov (United States)

    Overall, Nickola C; Simpson, Jeffry A

    2015-02-01

    Insecurely attached people have relatively unhappy and unstable romantic relationships, but the quality of their relationships depends on how their partners regulate them. Some partners find ways to regulate the emotional and behavioral reactions of insecurely attached individuals, which promotes greater relationship satisfaction and security. We discuss attachment theory and interdependence dilemmas, and then explain how and why certain responses by partners assuage the cardinal concerns of insecure individuals in key interdependent situations. We then review recent studies illustrating how partners can successfully regulate the reactions of anxiously and avoidantly attached individuals, yielding more constructive interactions. We finish by considering how these regulation processes can create a more secure dyadic environment, which helps to improve relationships and attachment security across time.

  8. A ''master key'' to chemical separation processes

    International Nuclear Information System (INIS)

    Madic, Ch.; Hill, C.

    2002-01-01

    One of the keys to sorting nuclear waste is extracting minor actinides - the most troublesome long-lived elements - from the flow of waste by separating them from lanthanides, which have very similar chemical properties to actinides, for possible transmutation into shorter-lived elements. Thanks to a European initiative coordinated by CEA, this key is now available: its name is Sanex. There now remains to develop tough, straightforward industrial processes to integrate it into a new nuclear waste management approach by 2005. Sanex joins the Diamex process, used for the combined separation of lanthanides and minor actinides from fission products. A third process, Sesame, designed to separate americium, completes the list of available separation processes. (authors)

  9. Talent Management: Working lines and key processes

    Directory of Open Access Journals (Sweden)

    Alvaro Alonso

    2014-12-01

    ways are established talent management as the treatment of these dimensions. Furthermore, we conclude that any talent plan includes processes or phases: attraction, selection, identification, development and retention.Value: Unlike other proposals, we consider it necessary to incorporate an additional referral study around key positions in the organization. Thus, characterization and cataloging of the previous literature is provided, as well as comparative analysis of heterogeneous definitions of talent and talent management. Furthermore, we propose that talent management is not just a tool for the implementation of the strategy, but it is situate since the start of the strategic process, that is, from strategic formulation. Thus, we focus on the approach advocated from the third line of study.

  10. The key role of extracellular vesicles in the metastatic process.

    Science.gov (United States)

    Zhao, Hongyun; Achreja, Abhinav; Iessi, Elisabetta; Logozzi, Mariantonia; Mizzoni, Davide; Di Raimo, Rossella; Nagrath, Deepak; Fais, Stefano

    2018-01-01

    Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    2016-01-01

    Full Text Available Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI. The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: 1 describe the fMRI neuroimaging methodology for assessment of autonomic neural control, 2 outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, 3 illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and 4 highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with

  12. Rab proteins: The key regulators of intracellular vesicle transport

    International Nuclear Information System (INIS)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-01-01

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future

  13. Rab proteins: The key regulators of intracellular vesicle transport

    Energy Technology Data Exchange (ETDEWEB)

    Bhuin, Tanmay [Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag 713104 (India); Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in [Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India)

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.

  14. Socialization as key process in knowledge management

    Directory of Open Access Journals (Sweden)

    Francisco José GARCÍA-PEÑALVO

    2016-07-01

    Full Text Available The editorial of this second issue of volume 17,corresponding to 2016, is devoted to socialization process in the knowledge management in order to complement the special section about Social Networks and Education.

  15. Liver physiological polyploidization: MicroRNA-122 a key regulator.

    Science.gov (United States)

    Celton-Morizur, Séverine; Desdouets, Chantal

    2017-03-01

    Polyploidy is defined as an increase in genome DNA content and is observed in all mammalian species. Polyploidy is a common characteristic of hepatocytes. Polyploidization occurs mainly during liver development, but also in adults with increasing age or due to cellular stress. During liver development, hepatocytes polyploidization occurs through cytokinesis failure leading to the genesis of binucleate hepatocytes. Recently, Hsu et al. demonstrated that miR-122 is a key regulator of hepatic binucleation. In fact, during liver development, miR-122 directly antagonizes procytokinesis targets and thus induces cytokinesis failure leading to the genesis of binucleate hepatocytes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. The regulation, the key for the development of renewable energies

    International Nuclear Information System (INIS)

    Saez de Miera, G.

    2007-01-01

    Regulation, rather than mere availability of resources-water, wind, sun-, is the key factor for an appropriate development of the renewable energies. A comparative analysis of the main regulatory support schemes feed-in-tariffs, green certificates and auctions is done in this paper, concluding that systems based on feed-in-tariff are more efficient and effective. Finally, we describe and analyze the regulatory arrangements in place to support wind energy in Spain, a well-known worldwide success, which is based on three basic foundations: predictability, stability and sufficiency. (Author)

  17. Key processes from tree to stand level

    International Nuclear Information System (INIS)

    Hinckley, T.; Ford, D.; Segura, G.; Sprugel, D.

    1991-01-01

    Changes in six factors have been identified as having potential major future impacts on the productivity and survival of forest trees and stands. These factors are atmospheric carbon dioxide concentration, tropospheric ozone concentration, mean annual air temperature and precipitation, extremes in temperature and precipitation, and levels of ultraviolet radiation. Except for precipitation, all of these factors are expected to increase with climatic change. However, the likelihood of their increase or change ranges from the given to the unknown. The way in which one or more of these factors might individually or in combination affect the productivity and survival of trees is discussed, and particularly sensitive physiological processes are identified. For example, increases in winter temperature and a doubling of CO 2 will result in early budburst in many species and therefore increase the risk of frost damage. In other species or locations, warm winters may mean insufficient chilling hours and the requirements for release from bud dormancy may not be met. The interaction of these processes with current species distribution, genotype selection, and management alternatives is reviewed. 52 refs., 1 fig., 1 tab

  18. The microbiome: A key regulator of stress and neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kieran Rea

    2016-10-01

    In this review, the involvement of the gastrointestinal microbiota in stress-mediated and immune-mediated modulation of neuroendocrine, immune and neurotransmitter systems and the consequential behaviour is considered. We also focus on the mechanisms by which commensal gut microbiota can regulate neuroinflammation and further aim to exploit our understanding of their role in stress-related disorders as a consequence of neuroinflammatory processes.

  19. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease.

    Science.gov (United States)

    Zhang, Yan; Liu, Dianming; Wang, Lihong; Wang, Shuyuan; Yu, Xuexin; Dai, Enyu; Liu, Xinyi; Luo, Shanshun; Jiang, Wei

    2015-12-01

    Coronary artery disease (CAD) is the most common type of heart disease. However, the molecular mechanisms of CAD remain elusive. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, inferring risk regulatory pathways is an important step toward elucidating the mechanisms underlying CAD. With advances in high-throughput data, we developed an integrated systems approach to identify CAD risk regulatory pathways and key regulators. Firstly, a CAD-related core subnetwork was identified from a curated transcription factor (TF) and microRNA (miRNA) regulatory network based on a random walk algorithm. Secondly, candidate risk regulatory pathways were extracted from the subnetwork by applying a breadth-first search (BFS) algorithm. Then, risk regulatory pathways were prioritized based on multiple CAD-associated data sources. Finally, we also proposed a new measure to prioritize upstream regulators. We inferred that phosphatase and tensin homolog (PTEN) may be a key regulator in the dysregulation of risk regulatory pathways. This study takes a closer step than the identification of disease subnetworks or modules. From the risk regulatory pathways, we could understand the flow of regulatory information in the initiation and progression of the disease. Our approach helps to uncover its potential etiology. We developed an integrated systems approach to identify risk regulatory pathways. We proposed a new measure to prioritize the key regulators in CAD. PTEN may be a key regulator in dysregulation of the risk regulatory pathways.

  20. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  1. Key Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  2. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    Science.gov (United States)

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  3. 76 FR 68314 - Special Local Regulations; Key West World Championship, Atlantic Ocean; Key West, FL

    Science.gov (United States)

    2011-11-04

    ... are available online by going to http://www.regulations.gov , inserting USCG-2011-0942 in the... emphasizes the importance of quantifying both costs and benefits, of reducing costs, of harmonizing rules... Executive Order 13211, Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution...

  4. A novel family of katanin-like 2 protein isoforms (KATNAL2), interacting with nucleotide-binding proteins Nubp1 and Nubp2, are key regulators of different MT-based processes in mammalian cells.

    Science.gov (United States)

    Ververis, Antonis; Christodoulou, Andri; Christoforou, Maria; Kamilari, Christina; Lederer, Carsten W; Santama, Niovi

    2016-01-01

    Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression.

  5. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taschner, M.; Ogram, G.L.

    1994-01-01

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  6. Key processes and input parameters for environmental tritium models

    Energy Technology Data Exchange (ETDEWEB)

    Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.

  7. The autoregulatory loop: A common mechanism of regulation of key ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated ...

  8. PPARα is a key regulator of hepatic FGF21

    International Nuclear Information System (INIS)

    Lundasen, Thomas; Hunt, Mary C.; Nilsson, Lisa-Mari; Sanyal, Sabyasachi; Angelin, Bo; Alexson, Stefan E.H.; Rudling, Mats

    2007-01-01

    The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPARα). Fasting or treatment of mice with the PPARα agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively. In contrast, FGF21 mRNA was low in PPARα deficient mice, and fasting or treatment with Wy-14,643 did not induce FGF21. Obese ob/ob mice, known to have increased PPARα levels, displayed 12-fold increased hepatic FGF21 mRNA levels. The potential importance of PPARα for FGF21 expression also in human liver was shown by Wy-14,643 induction of FGF21 mRNA in human primary hepatocytes, and PPARα response elements were identified in both the human and mouse FGF21 promoters. Further studies on the mechanisms of regulation of FGF21 by PPARα in humans will be of great interest

  9. Enhancing the tourist attraction visiting process with gamification: key concepts

    Directory of Open Access Journals (Sweden)

    Swacha Jakub

    2017-12-01

    Full Text Available The main purpose of this paper is to describe key gamification techniques that can be applied to enhance the tourist attraction visiting process. The paper is based on the methodology of design patterns; particularly it adopts the definition and classification schemes originally proposed and developed in the context of gamification of work to specify gamification techniques related to various aspects of the tourist attraction visiting process. The main result is the selection of twelve gamification techniques for enhancing the tourist attraction visiting process, four for each of the three phases of the visiting process (before, during and after the visit. The paper shows that gamification techniques can be applied to enhance the tourist attraction visiting process. Implementation of the proposed gamification techniques is supposed to both improve visitor experience and give the tourist attraction managers a tool for boosting interest in less popular exhibitions and events.

  10. Oxidative stress: a key regulator of leiomyoma cell survival.

    Science.gov (United States)

    Fletcher, Nicole M; Abusamaan, Mohammed S; Memaj, Ira; Saed, Mohammed G; Al-Hendy, Ayman; Diamond, Michael P; Saed, Ghassan M

    2017-06-01

    To determine the effects of attenuating oxidative stress with the use of dichloroacetate (DCA) on the expression of key redox enzymes myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) as well as on apoptosis. Prospective experimental study. University medical center. Cells established from myometrium and uterine fibroid from the same patients. Cells were exposed to normal (20% O 2 ) or hypoxic (2% O 2 ) conditions for 24 hours with or without DCA (20 μg/mL), a metabolic modulator that shifts anaerobic to aerobic metabolism. Nitrate/nitrite (iNOS activity indicator), iNOS, Bcl-2/Bax ratio, MPO, and caspase-3 activities and levels were determined by means of Greiss assay, real-time reverse-transcription polymerase chain reaction, and ELISA. Data were analyzed with the use of SPSS by means of one-way analysis of variance with Tukey post hoc analysis and independent t tests. MPO, iNOS, and nitrate/nitrite expression were higher in leiomyoma than in myometrial cells, and they were further enhanced by hypoxia in myometrial cells. Treatment with the use of DCA decreased MPO, iNOS, and nitrate/nitrite levels and negated the effect of hypoxia in both types of cells. Leiomyoma cells showed less apoptosis, as indicated by both caspase-3 activity and the Bcl-2/Bax ratio, than myometrial cells. Hypoxia further decreased apoptosis in myometrial cells with no further effect on leiomyoma cells. Treatment with DCA resulted in increased apoptosis in both types of cells, even in the presence of hypoxia. Shifting anaerobic to aerobic metabolism with the use of DCA resulted in an increase in apoptosis in leiomyoma cells and protected myometrial cells from the acquisition of the leiomyoma-like phenotype. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Evaluation criteria for dialogue processes: key findings from RISCOM II

    International Nuclear Information System (INIS)

    Atherton, Elizabeth

    2003-01-01

    As part of Work Package 4 (undertaken by a consortium of partners from the United Kingdom) in the joint European project RISCOM II, work was undertaken on evaluation criteria for determining the success of dialogue processes; this note outlines its key findings as, in order to continue the development of dialogue processes, it is important to evaluate and learn from the experience of engaging with stakeholders. Criteria can be developed to evaluate how successful a process has been, these can range from very practical criteria relating to how well the process worked or be linked to more subjective criteria developed from the aims of the dialogue process itself. Some criteria are particularly relevant to dialogue processes that aim to encourage deliberation and the development of stakeholders' views through participation in the dialogue process: transparency, legitimacy, equality of access, 'being able to speak', a deliberative environment, openness of framing, developing insight into range of issues (new meanings are generated), inclusive and 'best' knowledge elicited, producing acceptable/tolerable and usable outcomes/decisions, improvement of trust and understanding between participants, developing a sense of shared responsibility and common good. Evaluation will incur a cost in terms of time and money, but will help practitioners to be able to develop processes that meet the needs of those who participate and improve the way that we try to engage people in the debate

  12. NAD+ : A key metabolic regulator with great therapeutic potential.

    Science.gov (United States)

    Sultani, G; Samsudeen, A F; Osborne, B; Turner, N

    2017-10-01

    Nicotinamide adenine dinucleotide (NAD + ) is a ubiquitous metabolite that serves an essential role in the catabolism of nutrients. Recently, there has been a surge of interest in NAD + biology, with the recognition that NAD + influences many biological processes beyond metabolism, including transcription, signalling and cell survival. There are a multitude of pathways involved in the synthesis and breakdown of NAD + , and alterations in NAD + homeostasis have emerged as a common feature of a range of disease states. Here, we provide an overview of NAD + metabolism and summarise progress on the development of NAD + -related therapeutics. © 2017 British Society for Neuroendocrinology.

  13. GPU: the biggest key processor for AI and parallel processing

    Science.gov (United States)

    Baji, Toru

    2017-07-01

    Two types of processors exist in the market. One is the conventional CPU and the other is Graphic Processor Unit (GPU). Typical CPU is composed of 1 to 8 cores while GPU has thousands of cores. CPU is good for sequential processing, while GPU is good to accelerate software with heavy parallel executions. GPU was initially dedicated for 3D graphics. However from 2006, when GPU started to apply general-purpose cores, it was noticed that this architecture can be used as a general purpose massive-parallel processor. NVIDIA developed a software framework Compute Unified Device Architecture (CUDA) that make it possible to easily program the GPU for these application. With CUDA, GPU started to be used in workstations and supercomputers widely. Recently two key technologies are highlighted in the industry. The Artificial Intelligence (AI) and Autonomous Driving Cars. AI requires a massive parallel operation to train many-layers of neural networks. With CPU alone, it was impossible to finish the training in a practical time. The latest multi-GPU system with P100 makes it possible to finish the training in a few hours. For the autonomous driving cars, TOPS class of performance is required to implement perception, localization, path planning processing and again SoC with integrated GPU will play a key role there. In this paper, the evolution of the GPU which is one of the biggest commercial devices requiring state-of-the-art fabrication technology will be introduced. Also overview of the GPU demanding key application like the ones described above will be introduced.

  14. XRD is the main key to the mechanochemical processing

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian, J.

    2000-01-01

    Mechanochemical processing is a process that makes use of chemical reactions mechanically activated by high-energy ball milling (HEBM). This technique has been the subject of great interest in recent years due to its promise for producing improved novel materials. Ultra fine powders in the range 10-100 nm can be obtained by mixing the right ratio of the components, appropriate for a desired phase. These raw materials together with several hardened-steel vial and milled for an optimum time using Spex or Planetary mills. In this process 2 factors, milling time and the ball to powder mass ratio, should carefully be optimized. These will be checked by successive XRD patterns. To see the ability of XRD in this technique, some single phase Ni-Al and Mn ferrites were prepared. The main key to the formation of different phases at any stage of processing was XRD patterns. Also by using Scherrer formula it was possible to measure the particle size of the milled powders. (Author)

  15. Dnmt3a in the dorsal dentate gyrus is a key regulator of fear renewal.

    Science.gov (United States)

    Gong, Zhiting; Zhou, Qiang

    2018-03-23

    Renewal of extinguished fear memory in an altered context is widely believed to be a major limiting issue for exposure therapy in treating various psychiatric diseases. Effective prevention of fear renewal will significantly improve the efficacy of exposure therapy. DNA methyltransferase (DNMTs) mediated epigenetic processes play critical roles in long term memory, but little is known about their functions in fear memory extinction or renewal. Here we investigated whether DNMTs regulate fear renewal after extinction. We found that elevated Dnmt3a level in the dorsal dentate gyrus (dDG) of hippocampus was associated with the absence of fear renewal in an altered context after extinction training. Overexpression and knockdown of Dnmt3a in the dDG regulated the occurrence of fear renewal in a bi-directional manner. In addition, Dnmt3a overexpression was associated with elevated expression of c-Fos in the dDG during extinction training. Furthermore, we found that renewal of remote fear memory can be prevented, and the absence of renewal was concurrent with an elevated Dnmt3a level. Our results indicate that Dnmt3a in the dDG is a key regulator of fear renewal after extinction, and Dnmt3a may play a critical role in controlling fear memory return and thus has therapeutic values.

  16. Keys to effective third-party process safety audits

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, John C. [Tourgee and Associates Inc., 11459 Cronhill Drive, Suite A, Owings Mills, MD 21117 (United States)]. E-mail: jbirkmire@taiengineering.com; Lay, James R. [5644 High Tor Hill, Columbia, MD 21045 (United States)]. E-mail: jim.lay21045@gmail.com; McMahon, Mona C. [General Physics Corporation, 6095 Marshalee Drive, Suite 300, Elkridge, MD 21075 (United States)]. E-mail: mmcmahon@gpworldwide.com

    2007-04-11

    The Occupational Safety and Health Administration's (OSHA's) Process Safety Management (PSM) regulation was promulgated in 1992. The U.S. Environmental Protection Agency's (EPA's) corresponding Risk Management Program (RMP) rule followed in 1996. Both programs include requirements for triennial compliance audits. Effective compliance audits are critical in identifying program weaknesses and ensuring the safety of facility personnel and the surrounding public. Large companies with corporate and facility health, safety, and environmental groups typically have the resources and experience to conduct audits internally, either through a corporate audit team or the sharing of personnel between multiple facilities. Small to medium sized businesses frequently do not have the expertise or the resources to perform compliance audits, and rely on third-party consultants to provide these services. This paper will discuss the observations of the authors in performing audits and working with PSM/RMP programs across a number of market sectors (e.g. chemical, petrochemical, pharmaceutical, food and beverage, water treatment), including effective practices, hurdles to successful implementation and execution of programs, and typical program shortcomings. The paper will also discuss steps to improve the audit process and increase effectiveness whether performed by a third party or internally.

  17. Keys to effective third-party process safety audits

    International Nuclear Information System (INIS)

    Birkmire, John C.; Lay, James R.; McMahon, Mona C.

    2007-01-01

    The Occupational Safety and Health Administration's (OSHA's) Process Safety Management (PSM) regulation was promulgated in 1992. The U.S. Environmental Protection Agency's (EPA's) corresponding Risk Management Program (RMP) rule followed in 1996. Both programs include requirements for triennial compliance audits. Effective compliance audits are critical in identifying program weaknesses and ensuring the safety of facility personnel and the surrounding public. Large companies with corporate and facility health, safety, and environmental groups typically have the resources and experience to conduct audits internally, either through a corporate audit team or the sharing of personnel between multiple facilities. Small to medium sized businesses frequently do not have the expertise or the resources to perform compliance audits, and rely on third-party consultants to provide these services. This paper will discuss the observations of the authors in performing audits and working with PSM/RMP programs across a number of market sectors (e.g. chemical, petrochemical, pharmaceutical, food and beverage, water treatment), including effective practices, hurdles to successful implementation and execution of programs, and typical program shortcomings. The paper will also discuss steps to improve the audit process and increase effectiveness whether performed by a third party or internally

  18. Key processes at the stand to landscape scale

    International Nuclear Information System (INIS)

    Perry, D.A.

    1991-01-01

    The smooth transition from one mature community type to another during climate change depends on the rate of climate change, the speed of migration, and the stability of extant communities as they become increasingly maladapted to local climates. The expected increase in natural disturbances will probably be the most important factor influencing forests over the next century, and has the potential to convert many forests to early successional, perhaps weedy vegetation. Protecting key structures and processes at both the stand and landscape scale will be critically important to easing the transition from one mature forest type to another and preventing site capture by weeds. Two general steps are necessary at the landscape scale: maintain migration corridors, and promote landscape patterns that dampen, rather than magnify, the spread of disturbances. At the stand level, it will be important to protect photosynthetic capacity and soil fertility. Steps to accomplish these goals include: protection of habitats required by natural enemies of forest pests; maintenance or restoration of natural biological diversity; maintenance or restoration of individual tree vigor through practices such as aggressive thinning; and moving from clearcutting to shelterwoods and/or group selections, thereby keeping some cover of mature green trees on sites at all times. 28 refs

  19. Modeling key processes causing climate change and variability

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, S.

    2013-09-01

    Greenhouse gas warming, internal climate variability and aerosol climate effects are studied and the importance to understand these key processes and being able to separate their influence on the climate is discussed. Aerosol-climate model ECHAM5-HAM and the COSMOS millennium model consisting of atmospheric, ocean and carbon cycle and land-use models are applied and results compared to measurements. Topics at focus are climate sensitivity, quasiperiodic variability with a period of 50-80 years and variability at other timescales, climate effects due to aerosols over India and climate effects of northern hemisphere mid- and high-latitude volcanic eruptions. The main findings of this work are (1) pointing out the remaining challenges in reducing climate sensitivity uncertainty from observational evidence, (2) estimates for the amplitude of a 50-80 year quasiperiodic oscillation in global mean temperature ranging from 0.03 K to 0.17 K and for its phase progression as well as the synchronising effect of external forcing, (3) identifying a power law shape S(f) {proportional_to} f-{alpha} for the spectrum of global mean temperature with {alpha} {approx} 0.8 between multidecadal and El Nino timescales with a smaller exponent in modelled climate without external forcing, (4) separating aerosol properties and climate effects in India by season and location (5) the more efficient dispersion of secondary sulfate aerosols than primary carbonaceous aerosols in the simulations, (6) an increase in monsoon rainfall in northern India due to aerosol light absorption and a probably larger decrease due to aerosol dimming effects and (7) an estimate of mean maximum cooling of 0.19 K due to larger northern hemisphere mid- and high-latitude volcanic eruptions. The results could be applied or useful in better isolating the human-caused climate change signal, in studying the processes further and in more detail, in decadal climate prediction, in model evaluation and in emission policy

  20. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    Energy Technology Data Exchange (ETDEWEB)

    Viglizzo, E.F., E-mail: evigliz@cpenet.com.ar [INTA, EEA Anguil, Grupo de Investigaciones en Gestión Ambiental (GIGA), Av. Spinetto 785, 6300 Santa Rosa, La Pampa (Argentina); INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Jobbágy, E.G. [CONICET, Andes 950, 5700 San Luis, San Luis (Argentina); Grupo de Estudios Ambientales IMASL, Ejército de los, Andes 950, 5700 San Luis, San Luis (Argentina); Ricard, M.F. [INCITAP-CONICET, Ruta 35, km 335, 6300 Santa Rosa, La Pampa (Argentina); UNLPam, Facultad de Ciencias Exactas y Naturales, Av. Uruguay 151, 6300 Santa Rosa, La Pampa (Argentina); Paruelo, J.M. [Laboratorio de Análisis Regional y Teledetección, Departamento de Métodos Cuantitativos Sistemas de información, Facultad de Agronomía and IFEVA, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417 Buenos Aires (Argentina)

    2016-08-15

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  1. Partition of some key regulating services in terrestrial ecosystems: Meta-analysis and review

    International Nuclear Information System (INIS)

    Viglizzo, E.F.; Jobbágy, E.G.; Ricard, M.F.; Paruelo, J.M.

    2016-01-01

    Our knowledge about the functional foundations of ecosystem service (ES) provision is still limited and more research is needed to elucidate key functional mechanisms. Using a simplified eco-hydrological scheme, in this work we analyzed how land-use decisions modify the partition of some essential regulatory ES by altering basic relationships between biomass stocks and water flows. A comprehensive meta-analysis and review was conducted based on global, regional and local data from peer-reviewed publications. We analyzed five datasets comprising 1348 studies and 3948 records on precipitation (PPT), aboveground biomass (AGB), AGB change, evapotranspiration (ET), water yield (WY), WY change, runoff (R) and infiltration (I). The conceptual framework was focused on ES that are associated with the ecological functions (e.g., intermediate ES) of ET, WY, R and I. ES included soil protection, carbon sequestration, local climate regulation, water-flow regulation and water recharge. To address the problem of data normality, the analysis included both parametric and non-parametric regression analysis. Results demonstrate that PPT is a first-order biophysical factor that controls ES release at the broader scales. At decreasing scales, ES are partitioned as result of PPT interactions with other biophysical and anthropogenic factors. At intermediate scales, land-use change interacts with PPT modifying ES partition as it the case of afforestation in dry regions, where ET and climate regulation may be enhanced at the expense of R and water-flow regulation. At smaller scales, site-specific conditions such as topography interact with PPT and AGB displaying different ES partition formats. The probable implications of future land-use and climate change on some key ES production and partition are discussed. - Highlights: • The partition of regulatory services in ecosystems poses a major policy challenge. • We examined how partitions occur at the hydrosphere

  2. Conceptualizing the key processes of Mindful Parenting and its application to youth mental health.

    Science.gov (United States)

    Townshend, Kishani

    2016-12-01

    Youth mental health disorders are rising across the world. Mindful Parenting could be a potential tool to promote youth mental health. The primary distinction between Mindful Parenting programs and other behavioral parenting programs is the focus on emotional literacy and compassion. However, this emerging field has gaps in its theory and evidence. In order to objectively evaluate the impact of Mindful Parenting, it is important to identify how it promotes change. This theoretical paper aims to articulate the key change processes of Mindful Parenting that promote positive outcomes. A literature review was conducted to synthesize the change processes outlined by different authors in the field. Key processes argued to promote Mindful Parenting were aligned with five main categories, namely attention, intention, attitude, attachment and emotion. More specifically the change processes were listening, emotional awareness, emotional regulation, attentional regulation, attunement, attention to variability, intentionality, reperceiving, compassion and non-judgmental acceptance. This preliminary analysis attempted to understand how Mindful Parenting fosters change and transformation. Whilst there are numerous change processes, the essence of Mindful Parenting appears to be the ability to be responsive to a child's needs. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  3. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis.

    Science.gov (United States)

    Hirota, Simon A; Ng, Jeffrey; Lueng, Alan; Khajah, Maitham; Parhar, Ken; Li, Yan; Lam, Victor; Potentier, Mireille S; Ng, Kelvin; Bawa, Misha; McCafferty, Donna-Marie; Rioux, Kevin P; Ghosh, Subrata; Xavier, Ramnik J; Colgan, Sean P; Tschopp, Jurg; Muruve, Daniel; MacDonald, Justin A; Beck, Paul L

    2011-06-01

    Attenuated innate immune responses to the intestinal microbiota have been linked to the pathogenesis of Crohn's disease (CD). Recent genetic studies have revealed that hypofunctional mutations of NLRP3, a member of the NOD-like receptor (NLR) superfamily, are associated with an increased risk of developing CD. NLRP3 is a key component of the inflammasome, an intracellular danger sensor of the innate immune system. When activated, the inflammasome triggers caspase-1-dependent processing of inflammatory mediators, such as IL-1β and IL-18. In the current study we sought to assess the role of the NLRP3 inflammasome in the maintenance of intestinal homeostasis through its regulation of innate protective processes. To investigate this role, Nlrp3(-/-) and wildtype mice were assessed in the dextran sulfate sodium and 2,4,6-trinitrobenzenesulfonic acid models of experimental colitis. Nlrp3(-/-) mice were found to be more susceptible to experimental colitis, an observation that was associated with reduced IL-1β, reduced antiinflammatory cytokine IL-10, and reduced protective growth factor TGF-β. Macrophages isolated from Nlrp3(-/-) mice failed to respond to bacterial muramyl dipeptide. Furthermore, Nlrp3-deficient neutrophils exhibited reduced chemotaxis and enhanced spontaneous apoptosis, but no change in oxidative burst. Lastly, Nlrp3(-/-) mice displayed altered colonic β-defensin expression, reduced colonic antimicrobial secretions, and a unique intestinal microbiota. Our data confirm an essential role for the NLRP3 inflammasome in the regulation of intestinal homeostasis and provide biological insight into disease mechanisms associated with increased risk of CD in individuals with NLRP3 mutations. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  4. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis.

    Science.gov (United States)

    Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L

    2018-05-21

    The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  5. Self-regulated learning: A key learning effect of feedback in a ...

    African Journals Online (AJOL)

    Background. Problem-based learning (PBL) has been adopted across many health professions training institutions. Small-group student tutorials are a major component of PBL. Facilitator feedback during a tutorial is a key activity to promote self-regulated learning. Objective. To explore ways in which students use feedback ...

  6. 75 FR 72655 - Marine Sanitation Device Discharge Regulations for the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    2010-11-26

    ... National Marine Sanctuary AGENCY: Office of National Marine Sanctuaries (ONMS), National Oceanic and... the regulations for the Florida Keys National Marine Sanctuary (FKNMS or sanctuary) by eliminating the exemption that allows discharges from within the boundary of the sanctuary of biodegradable effluent...

  7. Macrophages and fibroblasts : key regulators in wound healing, fibrosis and the foreign body reaction

    NARCIS (Netherlands)

    Ploeger, Diana

    2017-01-01

    Macrophages and fibroblasts are key regulators in wound healing, fibrosis and foreign body reaction (FBR). After injury macrophages migrate through the extracellular matrix (ECM) towards the wounded area, and adopt a M1 or M2 phenotype. M1 macrophages are associated with tissue injury and

  8. Regulations and the licensing process in Austria

    International Nuclear Information System (INIS)

    Matulla, Herbert U.

    1979-01-01

    A review of the licensing process which took place from 1971 to 1978 shows which laws, regulations and standards were used in checking the safety aspects of the nuclear power plant and which organisations participated in the licensing process. The internal organisation of the Austrian main-expert in the procedure is illustrated. Examples of detail-work are explained. The importance of intensive co-operation of the different technical groups and the problems of comparable examination depth are underlined. (author)

  9. The unique process for the Key Lake project, Canada

    International Nuclear Information System (INIS)

    Floeter, W.

    1983-01-01

    The paper describes the Key Lake plant and its cost controls. The plant is unlike any other previously put into operation so a detailed accounting system has had to be developed to itemize all capital and operating costs. This cost system is described in detail and a distribution of capital and operating costs between major areas is given

  10. Organizational agility key factors for dynamic business process management

    OpenAIRE

    Triaa , Wafa; Gzara , Lilia; Verjus , Hervé

    2016-01-01

    International audience; For several years, Business Process Management (BPM) is recognized as a holistic management approach that promotes business effectiveness and efficiency. Increasingly, corporates find themselves, operating in business environments filled with unpredictable, complex and continuous change. Driven by these dynamic competitive conditions, they look for a dynamic management of their business processes to maintain their processes performance. To be competitive, companies hav...

  11. Supply capability creation process: Key milestone criteria and activities

    Energy Technology Data Exchange (ETDEWEB)

    Verrollot, J.; Tolonen, A.; Harkonen, J.; Haapasalo, H.

    2017-07-01

    The article focuses on supply capability creation (SCC) within the new product development (NPD). The purpose is to establish an SCC process describing the main SCC activities and milestone criteria in preparing the supply process for new products Design/methodology/approach: The article analyses the earlier research, carries out current state analysis of six case companies regarding the SCC areas, and proposes a SCC process. Findings: The developed SCC process aims at preparing the operational supply capability for a developed new product based on the preferred, qualified and contracted suppliers and materials along the NPD process, and ultimately at the product ramp-up. Originality/value: This paper introduces a SCC process that has not been presented earlier in the literature, highlighting the important role of the SCC for successful product ramp-ups.

  12. Supply capability creation process: Key milestone criteria and activities

    Directory of Open Access Journals (Sweden)

    Jordan Verrollot

    2017-09-01

    Full Text Available Purpose: The article focuses on supply capability creation (SCC within the new product development (NPD. The purpose is to establish an SCC process describing the main SCC activities and milestone criteria in preparing the supply process for new products Design/methodology/approach: The article analyses the earlier research, carries out current state analysis of six case companies regarding the SCC areas, and proposes a SCC process. Findings: The developed SCC process aims at preparing the operational supply capability for a developed new product based on the preferred, qualified and contracted suppliers and materials along the NPD process, and ultimately at the product ramp-up. Originality/value: This paper introduces a SCC process that has not been presented earlier in the literature, highlighting the important role of the SCC for successful product ramp-ups.

  13. Key factors regulating the mass delivery of macromolecules to model cell membranes

    DEFF Research Database (Denmark)

    Campbell, Richard A.; Watkins, Erik B.; Jagalski, Vivien

    2014-01-01

    We show that both gravity and electrostatics are key factors regulating interactions between model cell membranes and self-assembled liquid crystalline aggregates of dendrimers and phospholipids. The system is a proxy for the trafficking of reservoirs of therapeutic drugs to cell membranes for slow...... of the aggregates to activate endocytosis pathways on specific cell types is discussed in the context of targeted drug delivery applications....

  14. Is nanotechnology the key to unravel and engineer biological processes?

    Science.gov (United States)

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  15. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  16. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Dan-Dan Cao

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  17. Key Process Parameters Affecting Performance of Electro-Coagulation.

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Tito, Duarte Novaes

    2017-01-01

    Roč. 117, JUL (2017), s. 106-112 ISSN 0255-2701 R&D Projects: GA TA ČR TA04020130 Institutional support: RVO:67985858 Keywords : electrocoagulation * dosing concentration * current density Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.234, year: 2016

  18. Process understanding and cooperative design. Keys to high quality automation

    International Nuclear Information System (INIS)

    Tommila, T.; Heinonen, R.

    1995-01-01

    A systematic approach to the specification of process control systems, and four practical methods supporting user participation and interdisciplinary co-operation are described. The main steps of the design approach are: (1) hierarchical decomposition of the plant to process items of different types; (2) analysis and definition of requirements and control strategies associated with each process item; (3) definition of automation degree; and (4) functional specification of the control system and its user interface. The specification language used for this step is a combination of principles found in object oriented design, structured analysis as well as new language standards for programmable controllers and open information systems. The design review methods presented include structured control strategy meetings, safety analysis of sequential controls, review of graphic displays, and a usability questionnaire for existing plants. These methods can be used to elicit users' needs and operational experience, to gain a common understanding of the process functionality, or to detect errors in design specifications or in existing systems. (8 refs., 9 figs.)

  19. A key to success: optimizing the planning process

    Science.gov (United States)

    Turk, Huseyin; Karakaya, Kamil

    2014-05-01

    By adopting The NATO Strategic Concept Document in 2010, some important changes in the perception of threat and management of crisis were introduced. This new concept, named ''Comprehensive Approach'', includes the precautions of pre-crisis management, applications of crisis-duration management and reconstruction phase of post-intervention management. NATO will be interested in not only the political and military options , but also social, economical and informational aspects of crisis. NATO will take place in all phases of conflict. The conflicts which occur outside the borders of NATO's nations and terrorism are perceived as threat sources for peace and stability. In addition to conventional threats, cyber attacks which threaten network-supported communication systems, preventing applications from accessing to space that will be used in different fields of life. On the other hand, electronic warfare capabilities which can effect us negatively are added to threat list as new threats. In the process in which military is thought as option, a harder planning phase is waiting for NATO's decision makers who struggle for keeping peace and security. Operation planning process which depends on comprehensive approach, contains these steps: Situational awareness of battlefield, evaluation of the military intervention options, orientation, developing an operation plan, reviewing the plan and transition phases.1 To be successful in theater which is always changing with the technological advances, there has to be an accurate and timely planning on the table. So, spending time for planning can be shown as one of the biggest problem. In addition, sustaining situational awareness which is important for the whole operation planning process, technical command and control hitches, human factor, inability to determine the center of gravity of opponent in asymmetrical threat situations can be described as some of the difficulties in operation planning. In this study, a possible air

  20. Key technologies of drilling process with raise boring method

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2015-08-01

    Full Text Available This study presents the concept of shaft constructed by raise boring in underground mines, and the idea of inverse construction can be extended to other fields of underground engineering. The conventional raise boring methods, such as the wood support method, the hanging cage method, the creeping cage method, and the deep-hole blasting method, are analyzed and compared. In addition, the raise boring machines are classified into different types and the characteristics of each type are described. The components of a raise boring machine including the drill rig, the drill string and the auxiliary system are also presented. Based on the analysis of the raise boring method, the rock mechanics problems during the raise boring process are put forward, including rock fragmentation, removal of cuttings, shaft wall stability, and borehole deviation control. Finally, the development trends of raise boring technology are described as follows: (i improvement of rock-breaking modes to raise drilling efficiency, (ii development of an intelligent control technique, and (iii development of technology and equipment for nonlinear raise boring.

  1. The E2F transcription factors: key regulators of cell proliferation

    DEFF Research Database (Denmark)

    Müller, H; Helin, K

    2000-01-01

    Ever since its discovery, the RB-1 gene and the corresponding protein, pRB, have been a focal point of cancer research. The isolation of E2F transcription factors provided the key to our current understanding of RB-1 function in the regulation of the cell cycle and in tumor suppression....... It is becoming more and more evident that the regulatory circuits governing the cell cycle are very complex and highly interlinked. Certain aspects of RB-1 function, for instance its role in differentiation, cannot be easily explained by the current models of pRB-E2F interaction. One reason is that pRB has...

  2. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore

  3. Self-regulation – the key to progress in clinical reasoning? | Postma ...

    African Journals Online (AJOL)

    Both groups lauded the scaffolding that the case-based curriculum provided. Strategic thinking, goal orientation and self-regulation ability were identified in group 1. A lack of diligence, poor data-processing ability and a possible lack of interest were identified in group 2 students, who were unaware of learning opportunities.

  4. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.

    LENUS (Irish Health Repository)

    Martin, Ronny

    2011-04-01

    The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.

  5. Secured Session-key Distribution using control Vector Encryption / Decryption Process

    International Nuclear Information System (INIS)

    Ismail Jabiullah, M.; Abdullah Al-Shamim; Khaleqdad Khan, ANM; Lutfar Rahman, M.

    2006-01-01

    Frequent key changes are very much desirable for the secret communications and are thus in high demand. A session-key distribution technique has been designed and implemented using the programming language C on which the communication between the end-users is encrypted is used for the duration of a logical connection. Each session-key is obtained from the key distribution center (KDC) over the same networking facilities used for end-user communication. The control vector is cryptographically coupled with the session-key at the time of key generation in the KDC. For this, the generated hash function, master key and the session-key are used for producing the encrypted session-key, which has to be transferred. All the operations have been performed using the C programming language. This process can be widely applicable to all sorts of electronic transactions online or offline; commercially and academically.(authors)

  6. Information Processing in Auto-regulated Systems

    Directory of Open Access Journals (Sweden)

    Karl Javorszky

    2003-06-01

    Full Text Available Abstract: We present a model of information processing which is based on two concurrent ways of describing the world, where a description in one of the languages limits the possibilities for realisations in the other language. The two describing dimensions appear in our common sense as dichotomies of perspectives: subjective - objective; diversity - similarity; individual - collective. We abstract from the subjective connotations and treat the test theoretical case of an interval on which several concurrent categories can be introduced. We investigate multidimensional partitions as potential carriers of information and compare their efficiency to that of sequenced carriers. We regard the same assembly once as a contemporary collection, once as a longitudinal sequence and find promising inroads towards understanding information processing by auto-regulated systems. Information is understood to point out that what is the case from among alternatives, which could be the case. We have translated these ideas into logical operations on the set of natural numbers and have found two equivalence points on N where matches between sequential and commutative ways of presenting a state of the world can agree in a stable fashion: a flip-flop mechanism is envisioned. By following this new approach, a mathematical treatment of some poignant biomathematical problems is allowed. Also, the concepts presented in this treatise may well have relevance and applications within the information processing and the theory of language fields.

  7. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia

    Science.gov (United States)

    Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-01-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  8. Converting the Key Lake mill process for McArthur River ore

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [McArthur River Operation, Cameco Corporation, Saskatoon, Saskatchewan (Canada)

    2000-07-01

    The Key Lake mill was commissioned in 1983 to process the two Key Lake ore deposits. With the depletion of these ore bodies in 1999, the plant was converted to mill the exceptionally rich McArthur River deposit located seventy eight kilometers northeast of the Key Lake mine site. This paper describes in detail the Key Lake milling process. The mill consists of a grinding circuit, a leach/counter current decantation circuit, a solvent extraction circuit, a yellowcake precipitation/calciner circuit, an ammonium sulphate crystallization circuit, and a waste treatment circuit. The paper also describes process changes to handle McArthur River ore, including the ore receiving station. (author)

  9. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration.

    Science.gov (United States)

    Arneson, Douglas; Bhattacharya, Anindya; Shu, Le; Mäkinen, Ville-Petteri; Yang, Xia

    2016-09-09

    Human diseases are commonly the result of multidimensional changes at molecular, cellular, and systemic levels. Recent advances in genomic technologies have enabled an outpour of omics datasets that capture these changes. However, separate analyses of these various data only provide fragmented understanding and do not capture the holistic view of disease mechanisms. To meet the urgent needs for tools that effectively integrate multiple types of omics data to derive biological insights, we have developed Mergeomics, a computational pipeline that integrates multidimensional disease association data with functional genomics and molecular networks to retrieve biological pathways, gene networks, and central regulators critical for disease development. To make the Mergeomics pipeline available to a wider research community, we have implemented an online, user-friendly web server ( http://mergeomics. idre.ucla.edu/ ). The web server features a modular implementation of the Mergeomics pipeline with detailed tutorials. Additionally, it provides curated genomic resources including tissue-specific expression quantitative trait loci, ENCODE functional annotations, biological pathways, and molecular networks, and offers interactive visualization of analytical results. Multiple computational tools including Marker Dependency Filtering (MDF), Marker Set Enrichment Analysis (MSEA), Meta-MSEA, and Weighted Key Driver Analysis (wKDA) can be used separately or in flexible combinations. User-defined summary-level genomic association datasets (e.g., genetic, transcriptomic, epigenomic) related to a particular disease or phenotype can be uploaded and computed real-time to yield biologically interpretable results, which can be viewed online and downloaded for later use. Our Mergeomics web server offers researchers flexible and user-friendly tools to facilitate integration of multidimensional data into holistic views of disease mechanisms in the form of tissue-specific key regulators

  10. A single cis element maintains repression of the key developmental regulator Gata2.

    Directory of Open Access Journals (Sweden)

    Jonathan W Snow

    2010-09-01

    Full Text Available In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional regulation, or individually to control specific aspects of activation or repression, such as initiation versus maintenance. Here, we have analyzed cis element regulation of the critical hematopoietic factor Gata2, which is expressed in early precursors and repressed as GATA-1 levels rise during terminal differentiation. We engineered mice lacking a single cis element -1.8 kb upstream of the Gata2 transcriptional start site. Although Gata2 is normally repressed in late-stage erythroblasts, the -1.8 kb mutation unexpectedly resulted in reactivated Gata2 transcription, blocked differentiation, and an aberrant lineage-specific gene expression pattern. Our findings demonstrate that the -1.8 kb site selectively maintains repression, confers a specific histone modification pattern and expels RNA Polymerase II from the locus. These studies reveal how an individual cis element establishes a normal developmental program via regulating specific steps in the mechanism by which a critical transcription factor is repressed.

  11. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803.

    Directory of Open Access Journals (Sweden)

    Dan Cheng

    Full Text Available Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter, feoB (encoding a ferrous iron transporter, bfr genes (encoding bacterioferritins, ho genes (encoding heme oxygenases, isiA (encoding a chlorophyll-binding protein, and furA (encoding a ferric uptake regulator. The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.

  12. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling.

    Directory of Open Access Journals (Sweden)

    Philip M Tan

    2017-11-01

    Full Text Available Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search.

  13. Antibiotic distribution channels in Thailand: results of key-informant interviews, reviews of drug regulations and database searches.

    Science.gov (United States)

    Sommanustweechai, Angkana; Chanvatik, Sunicha; Sermsinsiri, Varavoot; Sivilaikul, Somsajee; Patcharanarumol, Walaiporn; Yeung, Shunmay; Tangcharoensathien, Viroj

    2018-02-01

    To analyse how antibiotics are imported, manufactured, distributed and regulated in Thailand. We gathered information, on antibiotic distribution in Thailand, in in-depth interviews - with 43 key informants from farms, health facilities, pharmaceutical and animal feed industries, private pharmacies and regulators- and in database and literature searches. In 2016-2017, licensed antibiotic distribution in Thailand involves over 700 importers and about 24 000 distributors - e.g. retail pharmacies and wholesalers. Thailand imports antibiotics and active pharmaceutical ingredients. There is no system for monitoring the distribution of active ingredients, some of which are used directly on farms, without being processed. Most antibiotics can be bought from pharmacies, for home or farm use, without a prescription. Although the 1987 Drug Act classified most antibiotics as "dangerous drugs", it only classified a few of them as prescription-only medicines and placed no restrictions on the quantities of antibiotics that could be sold to any individual. Pharmacists working in pharmacies are covered by some of the Act's regulations, but the quality of their dispensing and prescribing appears to be largely reliant on their competences. In Thailand, most antibiotics are easily and widely available from retail pharmacies, without a prescription. If the inappropriate use of active pharmaceutical ingredients and antibiotics is to be reduced, we need to reclassify and restrict access to certain antibiotics and to develop systems to audit the dispensing of antibiotics in the retail sector and track the movements of active ingredients.

  14. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    Science.gov (United States)

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x106 cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a

  15. Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis.

    Science.gov (United States)

    Mo, Charlie Y; Birdwell, L Dillon; Kohli, Rahul M

    2014-05-20

    Bacteria utilize the tightly regulated stress response (SOS) pathway to respond to a variety of genotoxic agents, including antimicrobials. Activation of the SOS response is regulated by a key repressor-protease, LexA, which undergoes autoproteolysis in the setting of stress, resulting in derepression of SOS genes. Remarkably, genetic inactivation of LexA's self-cleavage activity significantly decreases acquired antibiotic resistance in infection models and renders bacteria hypersensitive to traditional antibiotics, suggesting that a mechanistic study of LexA could help inform its viability as a novel target for combating acquired drug resistance. Despite structural insights into LexA, a detailed knowledge of the enzyme's protease specificity is lacking. Here, we employ saturation and positional scanning mutagenesis on LexA's internal cleavage region to analyze >140 mutants and generate a comprehensive specificity profile of LexA from the human pathogen Pseudomonas aeruginosa (LexAPa). We find that the LexAPa active site possesses a unique mode of substrate recognition. Positions P1-P3 prefer small hydrophobic residues that suggest specific contacts with the active site, while positions P5 and P1' show a preference for flexible glycine residues that may facilitate the conformational change that permits autoproteolysis. We further show that stabilizing the β-turn within the cleavage region enhances LexA autoproteolytic activity. Finally, we identify permissive positions flanking the scissile bond (P4 and P2') that are tolerant to extensive mutagenesis. Our studies shed light on the active site architecture of the LexA autoprotease and provide insights that may inform the design of probes of the SOS pathway.

  16. Key Economic Parameters for an Optimal Pharmacy Network in a Regulated Environment

    Directory of Open Access Journals (Sweden)

    Franjo MLINARIC

    2016-10-01

    Full Text Available Pharmacies are an integral part of the modern healthcare system which strives for a holistic and effi cient care. General practitioners and pharmacists are held in high esteem among local communities as they are the fi rst point of contact when people have health issues. However, a strong demand for health services in developed countries and its present fi nancing schemes undermined the sustainability of the whole health system (8.9% of GDP in 2013 and growing. According to WHO and EU recommendations, the whole healthcare system shall accept a holistic approach and focus on education, prevention and proper medicine consume. Part of this strategy is a seamless care concept, where medical doctors and pharmacists build a team around the well-being of a patient. Financing scheme incentives and KPI’s (key performance indicators will be focused on keeping people healthy, instead of paying for procedures. The future healthcare ecosystem obliges pharmacists to optimize network coverage and to extend health services. Nevertheless, their growth strategy needs to be gradual, considering the present level of network coverage, the low pace of private and public expenditures for medicine and services, and the fact that a new fi nancing model for pharmacies is still unknown. Thus, we expect the development of pharmacy network in regulated environment to be fi nanced predominantly from retained earnings in publicly owned pharmacies and by awarding pharmacy concessions.

  17. Regulation of transport processes across the tonoplast

    Science.gov (United States)

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  18. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.

    Science.gov (United States)

    Boden, Scott A; Cavanagh, Colin; Cullis, Brian R; Ramm, Kerrie; Greenwood, Julian; Jean Finnegan, E; Trevaskis, Ben; Swain, Steve M

    2015-01-26

    The domestication of cereal crops such as wheat, maize, rice and barley has included the modification of inflorescence architecture to improve grain yield and ease harvesting(1). Yield increases have often been achieved through modifying the number and arrangement of spikelets, which are specialized reproductive branches that form part of the inflorescence. Multiple genes that control spikelet development have been identified in maize, rice and barley(2-5). However, little is known about the genetic underpinnings of this process in wheat. Here, we describe a modified spikelet arrangement in wheat, termed paired spikelets. Combining comprehensive QTL and mutant analyses, we show that Photoperiod-1 (Ppd-1), a pseudo-response regulator gene that controls photoperiod-dependent floral induction, has a major inhibitory effect on paired spikelet formation by regulating the expression of FLOWERING LOCUS T (FT)(6,7). These findings show that modulated expression of the two important flowering genes, Ppd-1 and FT, can be used to form a wheat inflorescence with a more elaborate arrangement and increased number of grain producing spikelets.

  19. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males.

    Science.gov (United States)

    Neumann, I D

    2008-06-01

    In addition to various reproductive stimuli, the neuropeptide oxytocin (OXT) is released both from the neurohypophysial terminal into the blood stream and within distinct brain regions in response to stressful or social stimuli. Brain OXT receptor-mediated actions were shown to be significantly involved in the regulation of a variety of behaviours. Here, complementary methodological approaches are discussed which were utilised to reveal, for example, anxiolytic and anti-stress effects of OXT, both in females and in males, effects that were localised within the central amygdala and the hypothalamic paraventricular nucleus. Also, in male rats, activation of the brain OXT system is essential for the regulation of sexual behaviour, and increased OXT system activity during mating is directly linked to an attenuated anxiety-related behaviour. Moreover, in late pregnancy and during lactation, central OXT is involved in the establishment and fine-tuned maintenance of maternal care and maternal aggression. In monogamous prairie voles, brain OXT is important for mating-induced pair bonding, especially in females. Another example of behavioural actions of intracerebral OXT is the promotion of social memory processes and recognition of con-specifics, as revealed in rats, mice, sheep and voles. Experimental evidence suggests that, in humans, brain OXT exerts similar behavioural effects. Thus, the brain OXT system seems to be a potential target for the development of therapeutics to treat anxiety- and depression-related diseases or abnormal social behaviours including autism.

  20. Tetraspanin CD9: A Key Regulator of Cell Adhesion in the Immune System

    Directory of Open Access Journals (Sweden)

    Raquel Reyes

    2018-04-01

    Full Text Available The tetraspanin CD9 is expressed by all the major subsets of leukocytes (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, granulocytes, monocytes and macrophages, and immature and mature dendritic cells and also at a high level by endothelial cells. As a typical member of the tetraspanin superfamily, a prominent feature of CD9 is its propensity to engage in a multitude of interactions with other tetraspanins as well as with different transmembrane and intracellular proteins within the context of defined membranal domains termed tetraspanin-enriched microdomains (TEMs. Through these associations, CD9 influences many cellular activities in the different subtypes of leukocytes and in endothelial cells, including intracellular signaling, proliferation, activation, survival, migration, invasion, adhesion, and diapedesis. Several excellent reviews have already covered the topic of how tetraspanins, including CD9, regulate these cellular processes in the different cells of the immune system. In this mini-review, however, we will focus particularly on describing and discussing the regulatory effects exerted by CD9 on different adhesion molecules that play pivotal roles in the physiology of leukocytes and endothelial cells, with a particular emphasis in the regulation of adhesion molecules of the integrin and immunoglobulin superfamilies.

  1. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  2. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    and enhanced expressions of ethanol-tolerance genes associated with heat shock proteins, trehalose-glycolysis-pentose phosphate pathways and PDR gene family are accountable for the tolerant yeast to withstand the ethanol stress, maintain active metabolisms, and complete ethanol fermentation under the ethanol stress. Transcription factor Msn4p appeared to be a key regulator of gene interactions for ethanol-tolerance in the tolerant yeast Y-50316.

  3. Sox9b is a key regulator of pancreaticobiliary ductal system development.

    Directory of Open Access Journals (Sweden)

    Marion Delous

    Full Text Available The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9b(fh313, to dissect its function in the morphogenesis of this structure. Strikingly, sox9b(fh313 homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9b(fh313 mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9b(fh313 mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9b(fh313 mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the

  4. Role of key-regulator genes in melanoma susceptibility and pathogenesis among patients from South Italy

    International Nuclear Information System (INIS)

    Casula, Milena; Sini, MariaCristina; Palomba, Grazia; The Italian Melanoma Intergroup; Palmieri, Giuseppe; Muggiano, Antonio; Cossu, Antonio; Budroni, Mario; Caracò, Corrado; Ascierto, Paolo A; Pagani, Elena; Stanganelli, Ignazio; Canzanella, Sergio

    2009-01-01

    Several genetic alterations have been demonstrated to contribute to the development and progression of melanoma. In this study, we further investigated the impact of key-regulator genes in susceptibility and pathogenesis of such a disease. A large series (N = 846) of sporadic and familial cases originating from South Italy was screened for germline mutations in p16 CDKN2A , BRCA2, and MC1R genes by DHPLC analysis and automated DNA sequencing. Paired primary melanomas and lymph node metastases from same patients (N = 35) as well as melanoma cell lines (N = 18) were analyzed for somatic mutations in NRAS, BRAF, and p16 CDKN2A genes. For melanoma susceptibility, investigations at germline level indicated that p16 CDKN2A was exclusively mutated in 16/545 (2.9%) non-Sardinian patients, whereas BRCA2 germline mutations were observed in 4/91 (4.4%) patients from North Sardinia only. Two MC1R germline variants, Arg151Cys and Asp294His, were significantly associated with melanoma in Sardinia. Regarding genetic events involved in melanoma pathogenesis at somatic level, mutually-exclusive mutations of NRAS and BRAF genes were observed at quite same rate (about two thirds) in cultured and in vivo melanomas (either primary or metastatic lesions). Conversely, p16 CDKN2A gene alterations were observed at increased rates moving from primary to metastatic melanomas and melanoma cell lines. Activation of the ERK gene product was demonstrated to be consistently induced by a combination of molecular alterations (NRAS/BRAF mutations and p16 CDKN2A silencing). Our findings further clarified that: a) mutation prevalence in melanoma susceptibility genes may vary within each specific geographical area; b) multiple molecular events are accumulating during melanomagenesis

  5. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration

    Science.gov (United States)

    Dinan, Timothy G.

    2016-01-01

    Abstract There is a growing realisation that the gut–brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age‐related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long‐term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics. PMID:27641441

  6. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes

    Science.gov (United States)

    McNay, Ewan C.; Recknagel, Andrew K.

    2011-01-01

    Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cogntive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients. PMID:21907815

  7. The Key Principles of Process Manager Motivation in Production and Administration Processes in an Industrial Enterprise

    Directory of Open Access Journals (Sweden)

    Chromjakova Felicita

    2016-03-01

    Full Text Available The basic premise of sustainable development is that companies should completely re-evaluate their enterprise work logic and process organization. Most of the necessary changes concern employee stimulation and motivation. If we are truly interested in improving business results and the effectiveness of business processes – there would be no progress otherwise – we have to strive to break down the barriers between company management (leadership and employees in order to establish effective relationships between firms and customers. This paper presents research results of process manager activities in modern industrial enterprises, connected with a methodology proposal for the systematically-oriented process manager motivation of employees in accordance with the increased competitiveness of production and administration processes. It also presents an effective methodology of how to increase the positive effects of welldefined employee motivations from the process manager´s perspective. The core benefit of this methodology lies in the design of a systematic approach to the motivation process from the process manager side, allowing for radical performance improvement via production and administrative processes and the increased competitiveness of enterprise processes.

  8. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Li, Bo; Fang, Lusheng; Li, Bo

    2011-01-01

    To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  9. Brand I Feel Slovenia: Inclusion of the Key Areas’ Representatives in the Branding Process

    Directory of Open Access Journals (Sweden)

    Maja Konecnik Ruzzier

    2011-12-01

    Full Text Available The paper presents the part of the process of I feel Slovenia brand developmentin which we investigated 707 respondents from key stakeholdergroups. Respondents were representatives of all key stakeholdergroups in the country who, along with the other two target groups (opinionleaders and local inhabitants, represented the most importantstakeholders in the process of country brand development. A strongagreement regarding brand identity elements is evident from researchresults, which imply that identity elements shared by representativesfrom different internal stakeholder groups should form the basis of astrong country brand. Such brand foundation represents a strong preconditionfor a country brand, which could through hard and systematicwork become a strong and successful brand.

  10. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas

    2015-11-01

    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.

  11. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death

    DEFF Research Database (Denmark)

    Fortin, A; Cregan, S P; MacLaurin, J G

    2001-01-01

    p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulati...

  12. Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival

    International Nuclear Information System (INIS)

    Rubert, Joëlle; Qian, Zhiyan; Andraos, Rita; Guthy, Daniel A; Radimerski, Thomas

    2011-01-01

    The JAK2 V617F mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1. Pharmacological inhibition of JAK2/STAT5 signaling in JAK2 V617F mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins. Treatment of JAK2 V617F mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2 V617F mutant cell viability and sensitized the cells to JAK2 inhibition. We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2 V617F cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential

  13. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases.

    Science.gov (United States)

    Zhang, Kuan; Zhu, Lingling; Fan, Ming

    2011-01-01

    Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076-7.6 mmHg) and in adult brain (11.4-53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2-152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8-76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  14. Oxygen, a key factor regulating cell behaviour during neurogenesis and cerebral diseases

    Directory of Open Access Journals (Sweden)

    Kuan eZhang

    2011-04-01

    Full Text Available Oxygen is vital to maintain the normal functions of alomost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.01%- 1% and in adult brain (1.5%-7%, decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs in vitro cultures at different oxygen concentration (2%-20% and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (3%-10% is known can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, BMP and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  15. A proactive public information policy: a key element for regulator independence and credibility

    International Nuclear Information System (INIS)

    Kindelan, J.M.

    2001-01-01

    The future of the nuclear industry will depend to a large extent on the perception that the members of the public have of it. However, our mission as regulatory bodies is not to change the pro-or anti- nuclear feelings of the public, but to set in them the confidence that the use currently made of nuclear energy is carried out with the greatest guarantees of safety. We should continue to avoid their feeling of fear without reasons or their perception of uncertainty regarding processes that are duly controlled and supervised. I am convinced that whatever progress we make in increasing transparency will lead to an increase in the public credibility of the organisations that we represent. The reason underlying our need for this credibility, this reputation for autonomy and efficiency, for good performance, is that without it we will not have sufficient authority in the eyes of the regulated sector or other private political and economic interests, and will not, therefore, be in a position to provide a sensation of confidence to the members of the public, whose tranquillity and interests are our obligation. (author)

  16. When a regulation becomes a learning process

    DEFF Research Database (Denmark)

    Nunez, Heilyn Camacho; Cespedes, Paula

    systems. It influences the business processes, and therefore a business practice should be redeveloped and redefined, furthermore the control over the ICT practice has become very important in the recent years. Some frameworks, methodologies and bodies of knowledge have been developed to support......, a small consulting company from Costa Rica, is using action learning to implement COBIT in the financial sector in Costa Rica....

  17. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

    Directory of Open Access Journals (Sweden)

    Feng Qian

    2017-04-01

    Full Text Available Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④ life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

  18. Agricultural and food processing byproducts from the Balearic Islands: key and traditional production processes

    International Nuclear Information System (INIS)

    Femenia, A.; Gonzalez-Centeno, M. R.; Garau, M. C.; Sastre-Serrano, G.; Rosello, C.

    2009-01-01

    The amounts of residues and byproducts, obtained from agricultural processes, in the Balearic Islands has undergone a marked increase during the last years. for economics as well as environmental reasons, there is a continuous pressure to exploit such residues and to identify products with attractive properties and with potential markets. (Author)

  19. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    Directory of Open Access Journals (Sweden)

    Violeta Calle-Guisado

    2017-01-01

    Full Text Available AMP-activated kinase (AMPK, a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work′s aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS in the presence or absence of the AMPK inhibitor compound C (CC. AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.

  20. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    Science.gov (United States)

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied. PMID:27678462

  1. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    , the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes......Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  2. Process for producing vegetative and tuber growth regulator

    Science.gov (United States)

    Stutte, Gary W. (Inventor); Yorio, Neil C. (Inventor)

    1999-01-01

    A process of making a vegetative and tuber growth regulator. The vegetative and tuber growth regulator is made by growing potato plants in a recirculating hydroponic system for a sufficient time to produce the growth regulator. Also, the use of the vegetative and growth regulator on solanaceous plants, tuber forming plants and ornamental seedlings by contacting the roots or shoots of the plant with a sufficient amount of the growth regulator to regulate the growth of the plant and one more of canopy size, plant height, stem length, internode number and presence of tubers in fresh mass. Finally, a method for regulating the growth of potato plants using a recirculating hydroponic system is described.

  3. Self-tuning regulator for an interacting CSTR process

    Science.gov (United States)

    Rajendra Mungale, Niraj; Upadhyay, Akshay; Jaganatha Pandian, B.

    2017-11-01

    In the paper we have laid emphasis on STR that is Self Tuning Regulator and its application for an interacting process. CSTR has a great importance in Chemical Process when we deal with controlling different parameters of a process using CSTR. Basically CSTR is used to maintain a constant liquid temperature in the process. The proposed method called self-tuning regulator, is a different scheme where process parameters are updated and the controller parameters are obtained from the solution of a design problem. The paper deals with STR and methods associated with it.

  4. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr-/-.Leiden Mice: A Translational Gene Profiling Study.

    Science.gov (United States)

    Morrison, Martine C; Kleemann, Robert; van Koppen, Arianne; Hanemaaijer, Roeland; Verschuren, Lars

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic mechanisms requires the use of pre-clinical models, for instance for time-resolved studies. Such models must reflect molecular disease processes of importance in patients. Herein we characterized inflammation in NASH patients on the molecular level by transcriptomics and investigated whether key human disease pathways can be recapitulated experimentally in Ldlr -/- .Leiden mice, an established pre-clinical model of NASH. Methods: Human molecular inflammatory processes were defined using a publicly available NASH gene expression profiling dataset (GSE48452) allowing the comparison of biopsy-confirmed NASH patients with normal controls. Gene profiling data from high-fat diet (HFD)-fed Ldlr -/- .Leiden mice (GSE109345) were used for assessment of the translational value of these mice. Results: In human NASH livers, we observed regulation of 65 canonical pathways of which the majority was involved in inflammation (32%), lipid metabolism (16%), and extracellular matrix/remodeling (12%). A similar distribution of pathways across these categories, inflammation (36%), lipid metabolism (24%) and extracellular matrix/remodeling (8%) was observed in HFD-fed Ldlr -/- .Leiden mice. Detailed evaluation of these pathways revealed that a substantial proportion (11 out of 13) of human NASH inflammatory pathways was recapitulated in Ldlr -/- .Leiden mice. Furthermore, the activation state of identified master regulators of inflammation (i.e., specific transcription factors, cytokines, and growth factors) in human NASH was largely reflected in Ldlr -/- .Leiden mice, further substantiating its translational value. Conclusion: Human NASH is characterized by upregulation of specific

  5. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr−/−.Leiden Mice: A Translational Gene Profiling Study

    Science.gov (United States)

    Morrison, Martine C.; Kleemann, Robert; van Koppen, Arianne; Hanemaaijer, Roeland; Verschuren, Lars

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic mechanisms requires the use of pre-clinical models, for instance for time-resolved studies. Such models must reflect molecular disease processes of importance in patients. Herein we characterized inflammation in NASH patients on the molecular level by transcriptomics and investigated whether key human disease pathways can be recapitulated experimentally in Ldlr−/−.Leiden mice, an established pre-clinical model of NASH. Methods: Human molecular inflammatory processes were defined using a publicly available NASH gene expression profiling dataset (GSE48452) allowing the comparison of biopsy-confirmed NASH patients with normal controls. Gene profiling data from high-fat diet (HFD)-fed Ldlr−/−.Leiden mice (GSE109345) were used for assessment of the translational value of these mice. Results: In human NASH livers, we observed regulation of 65 canonical pathways of which the majority was involved in inflammation (32%), lipid metabolism (16%), and extracellular matrix/remodeling (12%). A similar distribution of pathways across these categories, inflammation (36%), lipid metabolism (24%) and extracellular matrix/remodeling (8%) was observed in HFD-fed Ldlr−/−.Leiden mice. Detailed evaluation of these pathways revealed that a substantial proportion (11 out of 13) of human NASH inflammatory pathways was recapitulated in Ldlr−/−.Leiden mice. Furthermore, the activation state of identified master regulators of inflammation (i.e., specific transcription factors, cytokines, and growth factors) in human NASH was largely reflected in Ldlr−/−.Leiden mice, further substantiating its translational value. Conclusion: Human NASH is characterized by upregulation of specific

  6. Network-Guided Key Gene Discovery for a Given Cellular Process

    DEFF Research Database (Denmark)

    He, Feng Q; Ollert, Markus

    2018-01-01

    Identification of key genes for a given physiological or pathological process is an essential but still very challenging task for the entire biomedical research community. Statistics-based approaches, such as genome-wide association study (GWAS)- or quantitative trait locus (QTL)-related analysis...... have already made enormous contributions to identifying key genes associated with a given disease or phenotype, the success of which is however very much dependent on a huge number of samples. Recent advances in network biology, especially network inference directly from genome-scale data...

  7. 77 FR 23425 - Revisions of Boundaries, Regulations and Zoning Scheme for Florida Keys National Marine Sanctuary...

    Science.gov (United States)

    2012-04-19

    .... Increase abundance and condition of selected key species including corals, queen conch, long spined sea..., Rooms 165 C and D, 2295 Victoria Ave., Fort Myers, FL 33901. Consultation Under National Historic...

  8. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Keaton M.; Taillefert, Martial

    2016-07-01

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  9. The key actor: a qualitative study of patient participation in the handover process in Europe

    Science.gov (United States)

    Flink, Maria; Hesselink, Gijs; Pijnenborg, Loes; Wollersheim, Hub; Vernooij-Dassen, Myrra; Dudzik-Urbaniak, Ewa; Orrego, Carola; Toccafondi, Giulio; Schoonhoven, Lisette; Gademan, Petra J; Johnson, Julie K; Öhlén, Gunnar; Hansagi, Helen; Olsson, Mariann; Barach, Paul

    2012-01-01

    Background Patient safety experts have postulated that increasing patient participation in communications during patient handovers will improve the quality of patient transitions, and that this may reduce hospital readmissions. Choosing strategies that enhance patient safety through improved handovers requires better understanding of patient experiences and preferences for participation. Objective The aim of this paper is to explore the patients’ experiences and perspectives related to the handovers between their primary care providers and the inpatient hospital. Methods A qualitative secondary analysis was performed, based on individual and focus group patient interviews with 90 patients in five European countries. Results The analysis revealed three themes: patient positioning in the handover process; prerequisites for patient participation and patient preferences for the handover process. Patients’ participation ranged from being the key actor, to sharing the responsibility with healthcare professional(s), to being passive participants. For active participation patients required both personal and social resources as well as prerequisites such as information and respect. Some patients preferred to be the key actor in charge; others preferred their healthcare professionals to be the key actors in the handover. Conclusions Patients’ participation is related to the healthcare system, the activity of healthcare professionals’ and patients’ capacity for participation. Patients prefer a handover process where the responsibility is clear and unambiguous. Healthcare organisations need a clear and well-considered system of responsibility for handover processes, that takes into account the individual patient's need of clarity, and support in relation to his/hers own recourses. PMID:23112290

  10. Regulation of Neph3 gene in podocytes - key roles of transcription factors NF-kappaB and Sp1

    LENUS (Irish Health Repository)

    Ristola, Mervi

    2009-08-24

    Abstract Background Neph3 (filtrin) is expressed in the glomerular podocytes where it localizes at the specialized cell adhesion structures of the foot processes called slit diaphragms which form the outermost layer of the glomerular filtration barrier. Neph3 protein shows homology and structural similarity to Neph1, Neph2 and nephrin, which all are crucial for maintaining the normal glomerular ultrafiltration function. The exact function of Neph3 in the kidney is not known but we have previously shown that the level of Neph3 mRNA is decreased in proteinuric diseases. This suggests that Neph3 may play a role in the pathogenesis of kidney damage, and emphasizes the need to analyze the regulatory mechanisms of Neph3 gene. In this study we investigated the transcriptional regulation of Neph3 gene by identifying transcription factors that control Neph3 expression. Results We cloned and characterized approximately 5 kb fragment upstream of the Neph3 gene. Neph3 proximal promoter near the transcription start site was found to be devoid of TATA and CAAT boxes, but to contain a highly GC-rich area. Using promoter reporter gene constructs, we localized the main activating regulatory region of Neph3 gene in its proximal promoter region from -105 to -57. Within this region, putative transcription factor binding sites for NF-κB and Sp1 were found by computational analysis. Mutational screening indicated that NF-κB and Sp1 response elements are essential for the basal transcriptional activity of the Neph3 promoter. Co-transfection studies further showed that NF-κB and Sp1 regulate Neph3 promoter activity. In addition, overexpression of NF-κB increased endogenous Neph3 gene expression. Chromatin immunoprecipitation assay using cultured human podocytes demonstrated that both NF-κB and Sp1 interact with the Neph3 promoter. Conclusion Our results show that NF-κB and Sp1 are key regulators of Neph3 expression at the basal level in podocytes, therefore providing new insight

  11. THE ACCOUNTING REGULATION PROCESS IN THE FIELD OF FINANCIAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Coroiu Sorina Ioana

    2010-07-01

    Full Text Available Our paper develops an analysis on the accounting regulation process by considering the field of financial instruments as one of the most controversial areas of financial reporting. After a brief introduction, comprising aspects related to the accounting regulation process, we first stop upon the historical evolution of the two main accounting referential that currently collaborate through the convergence process. Our analysis focuses both on standards first issuance and on their amendment process. A special emphasize is given to the international accounting referential. The obtained results enhance the complexity of the approached field and indicate significant steps still needed to be taken.

  12. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  13. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    CERN Document Server

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  14. The cell cycle regulator CCDC6 is a key target of RNA-binding protein EWS.

    Directory of Open Access Journals (Sweden)

    Sujitha Duggimpudi

    Full Text Available Genetic translocation of EWSR1 to ETS transcription factor coding region is considered as primary cause for Ewing sarcoma. Previous studies focused on the biology of chimeric transcription factors formed due to this translocation. However, the physiological consequences of heterozygous EWSR1 loss in these tumors have largely remained elusive. Previously, we have identified various mRNAs bound to EWS using PAR-CLIP. In this study, we demonstrate CCDC6, a known cell cycle regulator protein, as a novel target regulated by EWS. siRNA mediated down regulation of EWS caused an elevated apoptosis in cells in a CCDC6-dependant manner. This effect was rescued upon re-expression of CCDC6. This study provides evidence for a novel functional link through which wild-type EWS operates in a target-dependant manner in Ewing sarcoma.

  15. NLRC5: a key regulator of MHC class I-dependent immune responses.

    Science.gov (United States)

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  16. Same pattern, different mechanism: Locking onto the role of key species in seafloor ecosystem process.

    Science.gov (United States)

    Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F

    2016-05-27

    Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.

  17. Expression of Peroxisome Proliferator-Activated Receptor-γ in Key Neuronal Subsets Regulating Glucose Metabolism and Energy Homeostasis

    OpenAIRE

    Sarruf, David A.; Yu, Fang; Nguyen, Hong T.; Williams, Diana L.; Printz, Richard L.; Niswender, Kevin D.; Schwartz, Michael W.

    2008-01-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-γ agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARγ is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARγ distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spa...

  18. Rho proteins − the key regulators of cytoskeleton in the progression of mitosis and cytokinesis

    Directory of Open Access Journals (Sweden)

    Anna Klimaszewska

    2011-11-01

    Full Text Available The Rho proteins are members of the Ras superfamily of small GTPases. They are thought to be crucial regulators of multiple signal transduction pathways that influence a wide range of cellular functions, including migration, membrane trafficking, adhesion, polarity and cell shape changes. Thanks to their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho GTPases are known to regulate mitosis and cytokinesis progression. These proteins are required for formation and rigidity of the cortex during mitotic cell rounding, mitotic spindle formation and attachment of the spindle microtubules to the kinetochore. In addition, during cytokinesis, they are involved in promoting division plane determination, contractile ring and cleavage furrow formation and abscission. They are also known as regulators of cell cycle progression at the G1/S and G2/M transition. Thus, the signal transduction pathways in which Rho proteins participate, appear to connect dynamics of actin and microtubule cytoskeletons to cell cycle progression. We review the current state of knowledge concerning the molecular mechanisms by which Rho GTPase signaling regulates remodeling of actin and microtubule cytoskeletons in order to control cell division progression.

  19. Applying Statistical and Complex Network Methods to Explore the Key Signaling Molecules of Acupuncture Regulating Neuroendocrine-Immune Network

    Directory of Open Access Journals (Sweden)

    Kuo Zhang

    2018-01-01

    Full Text Available The mechanisms of acupuncture are still unclear. In order to reveal the regulatory effect of manual acupuncture (MA on the neuroendocrine-immune (NEI network and identify the key signaling molecules during MA modulating NEI network, we used a rat complete Freund’s adjuvant (CFA model to observe the analgesic and anti-inflammatory effect of MA, and, what is more, we used statistical and complex network methods to analyze the data about the expression of 55 common signaling molecules of NEI network in ST36 (Zusanli acupoint, and serum and hind foot pad tissue. The results indicate that MA had significant analgesic, anti-inflammatory effects on CFA rats; the key signaling molecules may play a key role during MA regulating NEI network, but further research is needed.

  20. An Efficient Secret Key Homomorphic Encryption Used in Image Processing Service

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2017-01-01

    Full Text Available Homomorphic encryption can protect user’s privacy when operating on user’s data in cloud computing. But it is not practical for wide using as the data and services types in cloud computing are diverse. Among these data types, digital image is an important personal data for users. There are also many image processing services in cloud computing. To protect user’s privacy in these services, this paper proposed a scheme using homomorphic encryption in image processing. Firstly, a secret key homomorphic encryption (IGHE was constructed for encrypting image. IGHE can operate on encrypted floating numbers efficiently to adapt to the image processing service. Then, by translating the traditional image processing methods into the operations on encrypted pixels, the encrypted image can be processed homomorphically. That is, service can process the encrypted image directly, and the result after decryption is the same as processing the plain image. To illustrate our scheme, three common image processing instances were given in this paper. The experiments show that our scheme is secure, correct, and efficient enough to be used in practical image processing applications.

  1. The RNA chaperone, Hfq, controls two luxR-type regulators and plays a key role in pathogenesis and production of antibiotics in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Williamson, Neil R; Ramsay, Joshua P; Poulter, Simon; Bandyra, Kasia J; Salmond, George P C

    2011-10-01

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes, pectate lyase and cellulase. A complex regulatory network that includes quorum sensing (QS) controls production of prodigiosin. While many aspects of the regulation of the metabolites and exoenzymes are well understood, the potential role in this network of the RNA chaperone Hfq and dependent small regulatory RNAs has not been characterized. Hfq is an RNA chaperone involved in post-transcriptional regulation that plays a key role in stress response and virulence in diverse bacterial species. To explore whether Hfq-dependent processes might contribute to the regulation of antibiotic production we constructed an S39006 Δhfq mutant. Production of prodigiosin and carbapenem was abolished in this mutant strain, while production of the QS signalling molecule, butanoyl homoserine lactone (BHL), was unaffected. Using transcriptional fusions, we found that Hfq regulates the QS response regulators, SmaR and CarR. Additionally, exoenzyme production and swimming motility were decreased in a Δhfq mutant, and virulence was attenuated in potato and C. elegans models. These results suggest that an Hfq-dependent pathway is involved in the regulation of virulence and secondary metabolite production in S39006. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Tissue Factor–Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes

    OpenAIRE

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are...

  3. Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Biensø, Rasmus Sjørup; Hassing, Helle Adser

    2015-01-01

    As the demand for hepatic glucose production increases during exercise, regulation of liver substrate choice and gluconeogenic activity becomes essential. The aim of the present study was to investigate the effect of a single exercise bout on gluconeogenic protein content and regulation of enzymes...... involved in substrate utilization in the liver. Mice were subjected to 1 h of treadmill exercise, and livers were removed immediately, 4 or 10 h after exercise. Glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxylase (PEPCK) mRNA contents in the liver increased immediately after exercise, while...... phosphorylation decreased immediately after exercise may indicate that carbohydrates rather than fatty acids are utilized for oxidation in the liver during non-exhaustive exercise....

  4. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.

    Science.gov (United States)

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2016-01-01

    Most microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin. These results supported quite well our previous conclusion that TOR is a central regulator of TAG accumulation in microalgae.

  5. Regulative change targeting energy performance of buildings in Sweden. Key drivers and main implications

    Energy Technology Data Exchange (ETDEWEB)

    Fuglseth, Bente Beckstroem

    2009-02-15

    This report has explored changes in two regulations targeting energy performance of buildings in Sweden, energy requirements and certification of buildings. The objective has been to investigate the effect of the implementation of the EU directive on energy performance of buildings (EPBD) on these two regulations and to what degree the directive can explain the regulative changes. The analytical framework has also included domestic factors; the influence of the national government and the organizational field. The analysis revealed that whereas the EPBD has acted only as facilitator in connection with the changes in energy requirements, it has been the sole driver of some of the changes in Sweden's new certification system. Several of the changes during the period studied can however be traced to the national government and the organizational field. But the EPBD has also worked as a facilitator of the changes promoted by domestic actors. The directive has been used to legitimize radical changes that would have been difficult to implement in other ways. (Author). 40 refs., 2 tabs

  6. In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer

    Science.gov (United States)

    Colaprico, Antonio; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-01

    Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC. PMID:29562723

  7. Solution scanning as a key policy tool: identifying management interventions to help maintain and enhance regulating ecosystem services

    Directory of Open Access Journals (Sweden)

    William J. Sutherland

    2014-06-01

    Full Text Available The major task of policy makers and practitioners when confronted with a resource management problem is to decide on the potential solution(s to adopt from a range of available options. However, this process is unlikely to be successful and cost effective without access to an independently verified and comprehensive available list of options. There is currently burgeoning interest in ecosystem services and quantitative assessments of their importance and value. Recognition of the value of ecosystem services to human well-being represents an increasingly important argument for protecting and restoring the natural environment, alongside the moral and ethical justifications for conservation. As well as understanding the benefits of ecosystem services, it is also important to synthesize the practical interventions that are capable of maintaining and/or enhancing these services. Apart from pest regulation, pollination, and global climate regulation, this type of exercise has attracted relatively little attention. Through a systematic consultation exercise, we identify a candidate list of 296 possible interventions across the main regulating services of air quality regulation, climate regulation, water flow regulation, erosion regulation, water purification and waste treatment, disease regulation, pest regulation, pollination and natural hazard regulation. The range of interventions differs greatly between habitats and services depending upon the ease of manipulation and the level of research intensity. Some interventions have the potential to deliver benefits across a range of regulating services, especially those that reduce soil loss and maintain forest cover. Synthesis and applications: Solution scanning is important for questioning existing knowledge and identifying the range of options available to researchers and practitioners, as well as serving as the necessary basis for assessing cost effectiveness and guiding implementation strategies. We

  8. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    Science.gov (United States)

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  9. Highlights from panel discussion on key issues for future developments in microwave processing

    International Nuclear Information System (INIS)

    Gac, F.D.; Iskander, M.F.

    1992-01-01

    This paper reports on highlights from a panel discussion on Key Issues for Future Development in Microwave Processing. Although the panelists represented a mix of individuals from government, academia, and industry, only one aspect of industry was represented, namely microwave system manufacturers. For further panel discussions, it is recommended that the materials manufacturing (i.e., microwave user) sector also be represented. Three important points emerged from the panel discussion. The first deals with the credibility and usability of information, be it dielectric property measurements, experimental procedures, or microwave processing results. Second, a considerable communication and education gap continues to exist between the materials community and microwave engineers. Finally, a more realistic approach should be taken in identifying where microwave processing makes sense

  10. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  11. Key role of the kidney in the regulation of fibroblast growth factor 23

    DEFF Research Database (Denmark)

    Mace, Maria L; Gravesen, Eva; Hofman-Bang, Jacob

    2015-01-01

    was significantly increased in BNX rats. The rapid rise in FGF23 after BNX was independent of parathyroid hormone or FGF receptor signaling. No evidence of early stimulation of FGF23 gene expression in the bone was found. Furthermore, acute severe hyperphosphatemia or hypercalcemia had no impact on intact FGF23......High circulating levels of fibroblast growth factor 23 (FGF23) have been demonstrated in kidney failure, but mechanisms of this are not well understood. Here we examined the impact of the kidney on the early regulation of intact FGF23 in acute uremia as induced by bilateral or unilateral...

  12. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    DEFF Research Database (Denmark)

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control. We therefore investigated whether MRTF is regulated by hyperosmotic stress. Here we show that hypertonicity induces robust, rapid, and transient translocation of MRTF from the cytosol to the nucleus...... in kidney tubular cells. We found that the hyperosmolarity-triggered MRTF translocation is mediated by the RhoA/Rho kinase (ROK) pathway. Moreover, the Rho guanine nucleotide exchange factor GEF-H1 is activated by hyperosmotic stress, and it is a key contributor to the ensuing RhoA activation and MRTF...

  13. Proteolysis of proBDNF is a key regulator in the formation of memory.

    Directory of Open Access Journals (Sweden)

    Philip Barnes

    2008-09-01

    Full Text Available It is essential to understand the molecular processes underlying long-term memory to provide therapeutic targets of aberrant memory that produce pathological behaviour in humans. Under conditions of recall, fully-consolidated memories can undergo reconsolidation or extinction. These retrieval-mediated memory processes may rely on distinct molecular processes. The cellular mechanisms initiating the signature molecular events are not known. Using infusions of protein synthesis inhibitors, antisense oligonucleotide targeting brain-derived neurotrophic factor (BDNF mRNA or tPA-STOP (an inhibitor of the proteolysis of BDNF protein into the hippocampus of the awake rat, we show that acquisition and extinction of contextual fear memory depended on the increased and decreased proteolysis of proBDNF (precursor BDNF in the hippocampus, respectively. Conditions of retrieval that are known to initiate the reconsolidation of contextual fear memory, a BDNF-independent memory process, were not correlated with altered proBDNF cleavage. Thus, the processing of BDNF was associated with the acquisition of new information and the updating of information about a salient stimulus. Furthermore, the differential requirement for the processing of proBDNF by tPA in distinct memory processes suggest that the molecular events actively engaged to support the storage and/or the successful retrieval of memory depends on the integration of ongoing experience with past learning.

  14. Impacting key performance indicators in an academic MR imaging department through process improvement.

    Science.gov (United States)

    Recht, Michael; Macari, Michael; Lawson, Kirk; Mulholland, Tom; Chen, David; Kim, Danny; Babb, James

    2013-03-01

    The aim of this study was to evaluate all aspects of workflow in a large academic MRI department to determine whether process improvement (PI) efforts could improve key performance indicators (KPIs). KPI metrics in the investigators' MR imaging department include daily inpatient backlogs, on-time performance for outpatient examinations, examination volumes, appointment backlogs for pediatric anesthesia cases, and scan duration relative to time allotted for an examination. Over a 3-week period in April 2011, key members of the MR imaging department (including technologists, nurses, schedulers, physicians, and administrators) tracked all aspects of patient flow through the department, from scheduling to examination interpretation. Data were analyzed by the group to determine where PI could improve KPIs. Changes to MRI workflow were subsequently implemented, and KPIs were compared before (January 1, 2011, to April 30, 2011) and after (August 1, 2011, to December 31, 2011) using Mann-Whitney and Fisher's exact tests. The data analysis done during this PI led to multiple changes in the daily workflow of the MR department. In addition, a new sense of teamwork and empowerment was established within the MR staff. All of the measured KPIs showed statistically significant changes after the reengineering project. Intradepartmental PI efforts can significantly affect KPI metrics within an MR imaging department, making the process more patient centered. In addition, the process allowed significant growth without the need for additional equipment or personnel. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. MicroRNA-301a mediated regulation of Kv4.2 in diabetes: identification of key modulators.

    Directory of Open Access Journals (Sweden)

    Siva K Panguluri

    Full Text Available Diabetes is a metabolic disorder that ultimately results in major pathophysiological complications in the cardiovascular system. Diabetics are predisposed to higher incidences of sudden cardiac deaths (SCD. Several studies have associated diabetes as a major underlying risk for heart diseases and its complications. The diabetic heart undergoes remodeling to cope up with the underlying changes, however ultimately fails. In the present study we investigated the changes associated with a key ion channel and transcriptional factors in a diabetic heart model. In the mouse db/db model, we identified key transcriptional regulators and mediators that play important roles in the regulation of ion channel expression. Voltage-gated potassium channel (Kv4.2 is modulated in diabetes and is down regulated. We hypothesized that Kv4.2 expression is altered by potassium channel interacting protein-2 (KChIP2 which is regulated upstream by NFkB and miR-301a. We utilized qRT-PCR analysis and identified the genes that are affected in diabetes in a regional specific manner in the heart. At protein level we identified and validated differential expression of Kv4.2 and KChIP2 along with NFkB in both ventricles of diabetic hearts. In addition, we identified up-regulation of miR-301a in diabetic ventricles. We utilized loss and gain of function approaches to identify and validate the role of miR-301a in regulating Kv4.2. Based on in vivo and in vitro studies we conclude that miR-301a may be a central regulator for the expression of Kv4.2 in diabetes. This miR-301 mediated regulation of Kv4.2 is independent of NFkB and Irx5 and modulates Kv4.2 by direct binding on Kv4.2 3'untranslated region (3'-UTR. Therefore targeting miR-301a may offer new potential for developing therapeutic approaches.

  16. MicroRNAs: not ‘fine-tuners’ but key regulators of neuronal development and function

    Directory of Open Access Journals (Sweden)

    Gregory eDavis

    2015-11-01

    Full Text Available microRNAs (miRNAs are a class of short non-coding RNAs that operate as prominent post-transcriptional regulators of eukaryotic gene expression. miRNAs are abundantly expressed in the brain of most animals and exert diverse roles. The anatomical and functional complexity of brain requires the precise coordination of multi-layered gene regulatory networks. The flexibility, speed and reversibility of miRNA function provide precise temporal and spatial gene regulatory capabilities that are crucial for the correct functioning of the brain. Studies have shown that the underlying molecular mechanisms controlled by miRNAs in the nervous systems of invertebrate and vertebrate models are remarkably conserved in humans. We endeavour to provide insight into the roles of miRNAs in the nervous systems of these model organisms and discuss how such information may be used to inform regarding diseases of the human brain.

  17. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality

    DEFF Research Database (Denmark)

    Withers, Sarah B.; Forman, Ruth; Meza-Perez, Selene

    2017-01-01

    Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils...... in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability...... of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed β3 adrenoceptors by catecholamines, and identified eosinophils as a novel source...

  18. Response regulator heterodimer formation controls a key stage in Streptomyces development.

    Directory of Open Access Journals (Sweden)

    Mahmoud M Al-Bassam

    2014-08-01

    Full Text Available The orphan, atypical response regulators BldM and WhiI each play critical roles in Streptomyces differentiation. BldM is required for the formation of aerial hyphae, and WhiI is required for the differentiation of these reproductive structures into mature spores. To gain insight into BldM function, we defined the genome-wide BldM regulon using ChIP-Seq and transcriptional profiling. BldM target genes clustered into two groups based on their whi gene dependency. Expression of Group I genes depended on bldM but was independent of all the whi genes, and biochemical experiments showed that Group I promoters were controlled by a BldM homodimer. In contrast, Group II genes were expressed later than Group I genes and their expression depended not only on bldM but also on whiI and whiG (encoding the sigma factor that activates whiI. Additional ChIP-Seq analysis showed that BldM Group II genes were also direct targets of WhiI and that in vivo binding of WhiI to these promoters depended on BldM and vice versa. We go on to demonstrate that BldM and WhiI form a functional heterodimer that controls Group II promoters, serving to integrate signals from two distinct developmental pathways. The BldM-WhiI system thus exemplifies the potential of response regulator heterodimer formation as a mechanism to expand the signaling capabilities of bacterial cells.

  19. Screening key parameters related to passive system performance based on Analytic Hierarchy Process

    International Nuclear Information System (INIS)

    Ma, Guohang; Yu, Yu; Huang, Xiong; Peng, Yuan; Ma, Nan; Shan, Zuhua; Niu, Fenglei; Wang, Shengfei

    2015-01-01

    Highlights: • An improved AHP method is presented for screening key parameters used in passive system reliability analysis. • We take the special bottom parameters as criterion for calculation and the abrupt change of the results are verified. • Combination weights are also affected by uncertainty of input parameters. - Abstract: Passive safety system is widely used in the new generation nuclear power plant (NPP) designs such as AP1000 to improve the reactor safety benefitting from its simple construction and less request for human intervene. However, the functional failure induced by uncertainty in the system thermal–hydraulic (T–H) performance becomes one of the main contributors to system operational failure since the system operates based on natural circulation, which should be considered in the system reliability evaluation. In order to improve the calculation efficiency the key parameters which significantly affect the system T–H characteristics can be screened and then be analyzed in detail. The Analytical Hierarchy Process (AHP) is one of the efficient methods to analyze the influence of the parameters on a passive system based on the experts’ experience. The passive containment cooling system (PCCS) in AP1000 is one of the typical passive safety systems, nevertheless too many parameters need to be analyzed and the T–H model itself is more complicated, so the traditional AHP method should be mended to use for screening key parameters efficiently. In this paper, we adapt the improved method in hierarchy construction and experts’ opinions integration, some parameters at the bottom justly in the traditional hierarchy are studied as criterion layer in improved AHP, the rationality of the method and the effect of abrupt change with the data are verified. The passive containment cooling system (PCCS) in AP1000 is evaluated as an example, and four key parameters are selected from 49 inputs

  20. Predictor of regulation of uranium dioxide powder pressing process

    International Nuclear Information System (INIS)

    Motta, Eduardo Souza; Araujo, Victor Hugo Leal de; Bernardelli, Sergio Henrique

    2007-01-01

    One of the most important steps of the uranium dioxide pellets fabrication used in the nuclear fuel elements is the green pellets pressing. The target density of the pellets after the sintering process determines the density of the green pellet. To meet the same sintered target density the green density may vary according to the powder characteristics. These variations implies in changing the regulation of the press for different powder's patches. The regulation done empirically imply in productivity loss and necessity of reprocessing the pellets pressed during the press regulation and also depends on the operator experience. At this work, was developed an artificial neural network feed forward back propagation to predict the press regulation, depending on the powder characteristics and the green pellet's target density. The results obtained at INB - Industrias Nucleares do Brasil S. A. during the fabrication of the fifth recharge of Angra II nuclear power plant are presented. (author)

  1. Improving quality of care in substance abuse treatment using five key process improvement principles

    Science.gov (United States)

    Hoffman, Kim A.; Green, Carla A.; Ford, James H.; Wisdom, Jennifer P.; Gustafson, David H.; McCarty, Dennis

    2012-01-01

    Process and quality improvement techniques have been successfully applied in health care arenas, but efforts to institute these strategies in alcohol and drug treatment are underdeveloped. The Network for the Improvement of Addiction Treatment (NIATx) teaches participating substance abuse treatment agencies to use process improvement strategies to increase client access to, and retention in, treatment. NIATx recommends five principles to promote organizational change: 1) Understand and involve the customer; 2) Fix key problems; 3) Pick a powerful change leader; 4) Get ideas from outside the organization; and 5) Use rapid-cycle testing. Using case studies, supplemented with cross-agency analyses of interview data, this paper profiles participating NIATx treatment agencies that illustrate application of each principle. Results suggest that the most successful organizations integrate and apply most, if not all, of the five principles as they develop and test change strategies. PMID:22282129

  2. Stellar neutron capture rates – key data for the s process

    Directory of Open Access Journals (Sweden)

    Käppeler F.

    2013-12-01

    Full Text Available Neutron reactions are responsible for the formation of the elements heavier than iron. The corresponding scenarios relate to the He- and C- burning phases of stellar evolution (s process and to supernova explosions (r and p processes. The s process, which is characterized by low neutron densities, operates in or near the valley of β stability and has produced about half of the elemental abundances between Fe and Bi in the solar system and in the Universe. Because the s abundances are essentially determined by the (n, γ cross sections along the reaction path, accurate neutron data constitute the key input for s process studies. Important constraints for the physical conditions at the stellar sites can be inferred by comparison of the abundance patterns from current s-process models with solar system material or presolar grains. The experimental methods for the determination of stellar (n, γ rates are outlined at the example of recent cross section measurements and remaining quests will be discussed with respect to existing laboratory neutron sources and new developments.

  3. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the α-hemolysin autophagic response.

    Directory of Open Access Journals (Sweden)

    María Belén Mestre

    Full Text Available Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla is the S. aureus-secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus-containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell.

  4. Tissue Factor–Factor VII Complex as a Key Regulator of Ovarian Cancer Phenotypes

    Directory of Open Access Journals (Sweden)

    Shiro Koizume

    2015-01-01

    Full Text Available Tissue factor (TF is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF–fVII complex. Here, we discuss the roles of the TF–fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF–fVII function.

  5. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.

    Science.gov (United States)

    Koizume, Shiro; Miyagi, Yohei

    2015-01-01

    Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.

  6. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma

    Directory of Open Access Journals (Sweden)

    Asoka Banno

    2018-01-01

    Full Text Available Asthma affects approximately 300 million people worldwide, significantly impacting quality of life and healthcare costs. While current therapies are effective in controlling many patients' symptoms, a large number continue to experience exacerbations or treatment-related adverse effects. Alternative therapies are thus urgently needed. Accumulating evidence has shown that the peroxisome proliferator-activated receptor (PPAR family of nuclear hormone receptors, comprising PPARα, PPARβ/δ, and PPARγ, is involved in asthma pathogenesis and that ligand-induced activation of these receptors suppresses asthma pathology. PPAR agonists exert their anti-inflammatory effects primarily by suppressing pro-inflammatory mediators and antagonizing the pro-inflammatory functions of various cell types relevant to asthma pathophysiology. Experimental findings strongly support the potential clinical benefits of PPAR agonists in the treatment of asthma. We review current literature, highlighting PPARs' key role in asthma pathogenesis and their agonists' therapeutic potential. With additional research and rigorous clinical studies, PPARs may become attractive therapeutic targets in this disease.

  7. p38 mitogen-activated protein kinase plays a key role in regulating MAPKAPK2 expression

    International Nuclear Information System (INIS)

    Sudo, Tatsuhiko; Kawai, Kayoko; Matsuzaki, Hiroshi; Osada, Hiroyuki

    2005-01-01

    One of three major families of the mitogen-activated kinases (MAPK), p38 as well as JNK, has been shown to transduce extracellular stress stimuli into cellular responses by phospho-relay cascades. Among p38 families, p38α is a widely characterized isoform and the biological phenomena are explained by its kinase activity regulating functions of its downstream substrates. However, its specific contributions to each phenomenon are yet not fully elucidated. For better understanding of the role of MAPKs, especially p38α, we utilized newly established mouse fibroblast cell lines originated from a p38α null mouse, namely, a parental cell line without p38α gene locus, knockout of p38α (KOP), Zeosin-resistant (ZKOP), revertant of p38α (RKOP), and Exip revertant (EKOP). EKOP is smaller in size but grows faster than the others. Although comparable amounts of ERK and JNK are expressed in each cell line, ERK is highly phosphorylated in EKOP even in normal culture conditions. Serum stimulation after serum starvation led to ERK phosphorylation in RKOP and ZKOP, but not in EKOP as much. On the contrary, relative phosphorylation level of JNK to total JNK in response to UV was low in RKOP. And its phosphorylation as well as total JNK is slightly lower in EKOP. RKOP is less sensitive to UV irradiation as judged by the survival rate. Stress response upon UV or sorbitol stimuli, leading to mitogen activate protein kinase activated kinase 2 (MAPKAPK2) phosphorylation, was only observed in RKOP. Further experiments reveal that MAPKAPK2 expression is largely suppressed in ZKOP and EKOP. Its expression was recovered by re-introduction of p38α. The loss of MAPKAPK2 expression accompanied by the defect of p38α is confirmed in an embryonic extract prepared from p38α null mice. These data demonstrate that p38 signal pathway is regulated not only by phosphorylation but also by modulation of the expression of its component. Together, we have established cell lines that can be used in

  8. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light.

    Science.gov (United States)

    Armbruster, Ute; Correa Galvis, Viviana; Kunz, Hans-Henning; Strand, Deserah D

    2017-06-01

    Plants use sunlight as their primary energy source. During photosynthesis, absorbed light energy generates reducing power by driving electron transfer reactions. These are coupled to the transfer of protons into the thylakoid lumen, generating a proton motive force (pmf) required for ATP synthesis. Sudden alterations in light availability have to be met by regulatory mechanisms to avoid the over-accumulation of reactive intermediates and maximize energy efficiency. Here, the acidification of the lumen, as an intermediate product of photosynthesis, plays an important role by regulating photosynthesis in response to excitation energy levels. Recent findings reveal pmf regulation and the modulation of its composition as key determinants for efficient photosynthesis, plant growth, and survival in fluctuating light environments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance

    DEFF Research Database (Denmark)

    Menzel, Tobias; Nähse-Kumpf, Viola; Kousholt, Arne Nedergaard

    2011-01-01

    To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2......, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main...

  10. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis.

    Science.gov (United States)

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-01-01

    The main function of the immune system is to protect the host against pathogens. However, unlike the systemic immune system, the gut immune system does not eliminate, but instead nourishes complex bacterial communities and establishes advanced symbiotic relationships. Immunoglobulin A (IgA) is the most abundant antibody isotype in mammals, produced mainly in the gut. The primary function of IgA is to maintain homeostasis at mucosal surfaces, and studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Dynamic diversification and constant adaptation of IgA responses to local microbiota require expression of activation-induced cytidine deaminase by B cells and control from T follicular helper and Foxp3(+) T cells in germinal centers (GCs). We discuss the finely tuned regulatory mechanisms for IgA synthesis in GCs of Peyer's patches and emphasize the roles of CD4(+) T cells for IgA selection and the maintenance of appropriate gut microbial communities required for immune homeostasis.

  11. Oxygen, a key factor regulating cell behaviour during neurogenesis and cerebral diseases

    OpenAIRE

    Kuan eZhang; Lingling eZhu; Ming eFan

    2011-01-01

    Oxygen is vital to maintain the normal functions of alomost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases or in the ...

  12. Influence of postharvest processing and storage conditions on key antioxidants in pūhā (Sonchus oleraceus L.)

    DEFF Research Database (Denmark)

    Ou, Zong-Quan; Schmierer, David M; Strachan, Clare J

    2014-01-01

    To investigate effects of different postharvest drying processes and storage conditions on key antioxidants in Sonchus oleraceus L. leaves.......To investigate effects of different postharvest drying processes and storage conditions on key antioxidants in Sonchus oleraceus L. leaves....

  13. Sphingolipids: Key Regulators of Apoptosis and Pivotal Players in Cancer Drug Resistance

    Directory of Open Access Journals (Sweden)

    Paola Giussani

    2014-03-01

    Full Text Available Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8αNeu5Ac(2-3βGal(1-4βGlc(1-1Cer or N-glycolyl GM3 (αNeu5Ac (2-3βGal(1-4βGlc(1-1Cer and de-N-acetyl GM3 (NeuNH(2βGal(1-4βGlc(1-1Cer endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.

  14. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.

    Science.gov (United States)

    Figtree, Gemma A; Liu, Chia-Chi; Bibert, Stephanie; Hamilton, Elisha J; Garcia, Alvaro; White, Caroline N; Chia, Karin K M; Cornelius, Flemming; Geering, Kaethi; Rasmussen, Helge H

    2009-07-17

    Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitrite (ONOO(-)), paraquat, or activation of NADPH oxidase by Ang II. Increased glutathionylation was associated with decreased alpha(1)/beta(1) subunit coimmunoprecipitation. Glutathionylation was reversed after addition of superoxide dismutase. Glutaredoxin 1, which catalyzes deglutathionylation, coimmunoprecipitated with beta(1) subunit and, when included in patch pipette solutions, abolished paraquat-induced inhibition of myocyte Na(+)-K(+) pump current (I(p)). Cysteine (Cys46) of the beta(1) subunit was the likely candidate for glutathionylation. We expressed Na(+)-K(+) pump alpha(1) subunits with wild-type or Cys46-mutated beta(1) subunits in Xenopus oocytes. ONOO(-) induced glutathionylation of beta(1) subunit and a decrease in Na(+)-K(+) pump turnover number. This was eliminated by mutation of Cys46. ONOO(-) also induced glutathionylation of the Na(+)-K(+) ATPase beta(1) subunit from pig kidney. This was associated with a approximately 2-fold decrease in the rate-limiting E(2)-->E(1) conformational change of the pump, as determined by RH421 fluorescence. We propose that kinase-dependent regulation of the Na(+)-K(+) pump occurs via glutathionylation of its beta(1) subunit at Cys46. These findings have implications for pathophysiological conditions characterized by neurohormonal dysregulation, myocardial oxidative stress and raised myocyte Na(+) levels.

  15. MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma

    Science.gov (United States)

    Hussein, Mohammad H.; Al-Qahtani, Saeed Awad M.; Shaalan, Aly A. M.

    2017-01-01

    Renal cell carcinoma (RCC) incidence has increased over the past two decades. Recent studies reported microRNAs as promising biomarkers for early cancer detection, accurate prognosis, and molecular targets for future treatment. This study aimed to evaluate the expression levels of miR-34a and 11 of its bioinformatically selected target genes and proteins to test their potential dysregulation in RCC. Quantitative real-time PCR for miR-34a and its targets; MET oncogene; gene-regulating apoptosis (TP53INP2 and DFFA); cell proliferation (E2F3); and cell differentiation (SOX2 and TGFB3) as well as immunohistochemical assay for VEGFA, TP53, Bcl2, TGFB1, and Ki67 protein expression have been performed in 85 FFPE RCC tumor specimens. Clinicopathological parameter correlation and in silico network analysis have also implicated. We found RCC tissues displayed significantly higher miR-34a expression level than their corresponding noncancerous tissues, particularly in chromophobic subtype. MET and E2F3 were significantly upregulated, while TP53INP2 and SOX2 were downregulated. ROC analysis showed high diagnostic performance of miR-34a (AUC = 0.854), MET (AUC = 0.765), and E2F3 (AUC = 0.761). The advanced pathological grade was associated with strong TGFB1, VEGFA, and Ki67 protein expression and absent Tp53 staining. These findings indicate miR-34a along with its putative target genes could play a role in RCC tumorigenesis and progression. PMID:29104726

  16. MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Eman A. Toraih

    2017-01-01

    Full Text Available Renal cell carcinoma (RCC incidence has increased over the past two decades. Recent studies reported microRNAs as promising biomarkers for early cancer detection, accurate prognosis, and molecular targets for future treatment. This study aimed to evaluate the expression levels of miR-34a and 11 of its bioinformatically selected target genes and proteins to test their potential dysregulation in RCC. Quantitative real-time PCR for miR-34a and its targets; MET oncogene; gene-regulating apoptosis (TP53INP2 and DFFA; cell proliferation (E2F3; and cell differentiation (SOX2 and TGFB3 as well as immunohistochemical assay for VEGFA, TP53, Bcl2, TGFB1, and Ki67 protein expression have been performed in 85 FFPE RCC tumor specimens. Clinicopathological parameter correlation and in silico network analysis have also implicated. We found RCC tissues displayed significantly higher miR-34a expression level than their corresponding noncancerous tissues, particularly in chromophobic subtype. MET and E2F3 were significantly upregulated, while TP53INP2 and SOX2 were downregulated. ROC analysis showed high diagnostic performance of miR-34a (AUC = 0.854, MET (AUC = 0.765, and E2F3 (AUC = 0.761. The advanced pathological grade was associated with strong TGFB1, VEGFA, and Ki67 protein expression and absent Tp53 staining. These findings indicate miR-34a along with its putative target genes could play a role in RCC tumorigenesis and progression.

  17. Key processes shaping the current role and operation of higher education institutions in society

    Directory of Open Access Journals (Sweden)

    Piróg Danuta

    2016-03-01

    Full Text Available The concurrent processes of globalisation, computerisation, and integration shape and constantly modify developmental factors and generate multidirectional social changes. Among social life fields, one of them has been particularly sensitive to the impact of those processes and has remained in clear feedback relationship with them is education, including university-level education. This article aims to present some reflections on the key processes which influence the environment of higher education institutions’ activity and on what their impact specifically is. The factors taken into account include: the transformation of the political and economic system, integration with the European higher education area, the market shift of education, evolving social demands towards higher education institutions and society’s attitude towards work. As knowledge has become an asset largely affecting the quality of life of people and society, universities have changed their focus from searching for and exploring truth, good and beauty in the world towards becoming innovation centres, transferring knowledge as offering their educational services. In this article, those trends have been exemplified in relation to geography degree programmes, and shown through an evolution of the model of the university. Based on a review of the literature, it seems that the processes discussed also concern geography degree programmes, and the future operation of these programmes closely depends on whether they can maintain their care for high quality education coupled with genuine efforts to ensure the smooth transition of graduates into the labour market.

  18. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    Science.gov (United States)

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  19. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    Directory of Open Access Journals (Sweden)

    Kiviluoto Santeri

    2011-04-01

    Full Text Available Abstract Stromal interaction molecules (STIM were identified as the endoplasmic-reticulum (ER Ca2+ sensor controlling store-operated Ca2+ entry (SOCE and Ca2+-release-activated Ca2+ (CRAC channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an

  20. The regulator's stake in a multi-stakeholder process

    International Nuclear Information System (INIS)

    Jensen, Mikael; Larsson, Carl-Magnus; Norrby, Soeren; Westerlind, Magnus

    1999-01-01

    The siting of a repository for spent nuclear fuel poses a number of challenges to a broad range of stakeholders, e.g. implementers, regulators, potential host municipalities, environmental groups, political decision-makers on different levels and the public. This paper presents some regulatory challenges as experienced and approached by the Swedish regulators most involved in nuclear waste management (the Swedish Radiation Protection Institute, SSI, and the Swedish Nuclear Power Inspectorate, SKI). First the regulatory framework is outlined with emphasis on decision-making processes and environmental impact assessment. Then a short background is given to the current status of the ongoing programme for repository siting. The main part of the paper discusses some conclusions from the so-called RISCOM pilot project, which was concluded in 1998. The paper also contains some findings from other projects as well as some experiences from the ongoing siting process. It is important to have independent regulators, with the capacity to review the safety assessment of the implementer. The regulators also have the challenging task to be people's experts in stretching the implementer. At the same time they should expose themselves to the being stretched by other stakeholders and the public at large. Experience also shows that regulators should engage early in the pre-licensing phase, e.g. in EIA and siting, and that this can be done without compromising the independence and integrity needed in the licensing phase. The regulator must be present at all levels, and observant of the participants' different needs and roles played on the national, regional and local level. A well structured, but flexible, EIA appear to be an efficient 'vehicle' for public participation. However, it is believed that the EIA should be complemented with hearings, in both the pre-licensing and licensing phases, since this is believed to increase the transparency of the decision making process. Such

  1. The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes

    Institute of Scientific and Technical Information of China (English)

    Zi-Yu Li; Bin Li; Ai-Wu Dong

    2012-01-01

    Plant cells frequently undergo endoreduplication,a modified cell cycle in which genome is repeatedly replicated without cytokinesis.As the key step to achieve final size and function for cells,endoreduplication is prevalent during plant development.However,mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood.Here,we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes,as well as in rapidly dividing and vascular tissues.Expression of AtTCP15SRDX,AtTCP15 fused with a SRDX repressor domain,induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis.On the contrary,overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells.Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation.AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes,which play key roles in endoreduplication.Taken together,AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.

  2. Piezo proteins: regulators of mechanosensation and other cellular processes.

    Science.gov (United States)

    Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G

    2014-11-14

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    Science.gov (United States)

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018

  4. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals.

    Science.gov (United States)

    Nautiyal, Jaya; Steel, Jennifer H; Mane, Meritxell Rosell; Oduwole, Olayiwola; Poliandri, Ariel; Alexi, Xanthippi; Wood, Nicholas; Poutanen, Matti; Zwart, Wilbert; Stingl, John; Parker, Malcolm G

    2013-03-01

    Nuclear receptor interacting protein (Nrip1), also known as RIP140, is a co-regulator for nuclear receptors that plays an essential role in ovulation by regulating the expression of the epidermal growth factor-like family of growth factors. Although several studies indicate a role for RIP140 in breast cancer, its role in the development of the mammary gland is unclear. By using RIP140-null and RIP140 transgenic mice, we demonstrate that RIP140 is an essential factor for normal mammary gland development and that it functions by mediating oestrogen signalling. RIP140-null mice exhibit minimal ductal elongation with no side-branching, whereas RIP140-overexpressing mice show increased cell proliferation and ductal branching with age. Tissue recombination experiments demonstrate that RIP140 expression is required in both the mammary epithelial and stromal compartments for ductal elongation during puberty and that loss of RIP140 leads to a catastrophic loss of the mammary epithelium, whereas RIP140 overexpression augments the mammary basal cell population and shifts the progenitor/differentiated cell balance within the luminal cell compartment towards the progenitors. For the first time, we present a genome-wide global view of oestrogen receptor-α (ERα) binding events in the developing mammary gland, which unravels 881 ERα binding sites. Unbiased evaluation of several ERα binding sites for RIP140 co-occupancy reveals selectivity and demonstrates that RIP140 acts as a co-regulator with ERα to regulate directly the expression of amphiregulin (Areg), the progesterone receptor (Pgr) and signal transducer and activator of transcription 5a (Stat5a), factors that influence key mitogenic pathways that regulate normal mammary gland development.

  5. The polyadenylation factor subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A key factor of programmed cell death and a regulator of immunity in arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2014-04-04

    Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. Indeed, incompatible plant-pathogen interactions are well known to induce the hypersensitive response, a localized cell death. Mutational analyses have identified several key PCD components, and we recently identified the mips1 mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for the key enzyme catalyzing the limiting step of myoinositol synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD by screening for mutants that display transcriptomic profiles opposing that of the mips1 mutant. Our screen identified the oxt6 mutant, which has been described previously as being tolerant to oxidative stress. In the oxt6 mutant, a transfer DNA is inserted in the CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30 (CPSF30) gene, which encodes a polyadenylation factor subunit homolog. We show that CPSF30 is required for lesion formation in mips1 via SA-dependent signaling, that the prodeath function of CPSF30 is not mediated by changes in the glutathione status, and that CPSF30 activity is required for Pseudomonas syringae resistance. We also show that the oxt6 mutation suppresses cell death in other lesion-mimic mutants, including lesion-simulating disease1, mitogen-activated protein kinase4, constitutive expressor of pathogenesis-related genes5, and catalase2, suggesting that CPSF30 and, thus, the control of messenger RNA 3′ end processing, through the regulation of SA production, is a key component of plant immune responses. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Information processing in bacteria: memory, computation, and statistical physics: a key issues review

    International Nuclear Information System (INIS)

    Lan, Ganhui; Tu, Yuhai

    2016-01-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in

  7. Parasites as drivers of key processes in aquatic ecosystems: Facts and future directions.

    Science.gov (United States)

    Sures, B; Nachev, M; Pahl, M; Grabner, D; Selbach, C

    2017-09-01

    Despite the advances in our understanding of the ecological importance of parasites that we have made in recent years, we are still far away from having a complete picture of the ecological implications connected to parasitism. In the present paper we highlight key issues that illustrate (1) important contributions of parasites to biodiversity, (2) their integral role in ecosystems, (3) as well as their ecological effects as keystone species (4) and in biological invasion processes. By using selected examples from aquatic ecosystems we want to provide an insight and generate interest into the topic, and want to show directions for future research in the field of ecological parasitology. This may help to convince more parasitologists and ecologists contributing and advancing our understanding of the complex and fascinating interplay of parasites, hosts and ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Study of the Influence of Key Process Parameters on Furfural Production.

    Science.gov (United States)

    Fele Žilnik, Ljudmila; Grilc, Viktor; Mirt, Ivan; Cerovečki, Željko

    2016-01-01

    The present work reports the influence of key process variables on the furfural formation from leached chestnut-wood chips in a pressurized reactor. Effect of temperature, pressure, type and concentration of the catalyst solution, the steam flow rate or stripping module, the moisture content of the wood particles and geometric characteristics such as size and type of the reactor, particle size and bed height were considered systematically. One stage process was only taken into consideration. Lab-scale and pilot-scale studies were performed. The results of the non-catalysed laboratory experiments were compared with an actual non-catalysed (auto-catalysed) industrial process and with experiments on the pilot scale, the latter with 28% higher furfural yield compared to the others. Application of sulphuric acid as catalyst, in an amount of 0.03-0.05 g (H2SO4 100%)/g d.m. (dry material), enables a higher production of furfural at lower temperature and pressure of steam in a shorter reaction time. Pilot scale catalysed experiments have revealed very good performance for furfural formation under less severe operating conditions, with a maximum furfural yield as much as 88% of the theoretical value.

  9. Development of balanced key performance indicators for emergency departments strategic dashboards following analytic hierarchical process.

    Science.gov (United States)

    Safdari, Reza; Ghazisaeedi, Marjan; Mirzaee, Mahboobeh; Farzi, Jebrail; Goodini, Azadeh

    2014-01-01

    Dynamic reporting tools, such as dashboards, should be developed to measure emergency department (ED) performance. However, choosing an effective balanced set of performance measures and key performance indicators (KPIs) is a main challenge to accomplish this. The aim of this study was to develop a balanced set of KPIs for use in ED strategic dashboards following an analytic hierarchical process. The study was carried out in 2 phases: constructing ED performance measures based on balanced scorecard perspectives and incorporating them into analytic hierarchical process framework to select the final KPIs. The respondents placed most importance on ED internal processes perspective especially on measures related to timeliness and accessibility of care in ED. Some measures from financial, customer, and learning and growth perspectives were also selected as other top KPIs. Measures of care effectiveness and care safety were placed as the next priorities too. The respondents placed least importance on disease-/condition-specific "time to" measures. The methodology can be presented as a reference model for development of KPIs in various performance related areas based on a consistent and fair approach. Dashboards that are designed based on such a balanced set of KPIs will help to establish comprehensive performance measurements and fair benchmarks and comparisons.

  10. Assessment of Radioactivity Inventory - a key parameter in the clearance for recycling process

    International Nuclear Information System (INIS)

    Larsson, Arne; Lundgren, Klas

    2014-01-01

    Decommissioning studies for nuclear power reactors are to be performed in order to assess the decommissioning costs and the waste volumes, as well as to provide data for the licensing and construction of the LILW repositories. An important part of this work is to estimate the amount of radioactivity in the different types of decommissioning waste. Studsvik has performed these assessments for all Swedish NPPs as well as other nuclear facilities in Sweden using thorough on-site sampling and robust calculations developed by Studsvik's team of senior experts. Precision has been found to be relatively high close to the reactor cores, but then declines as distance from the core increases. The decommissioning waste from a LWR can be separated into different categories such as: - Material affected by the neutron flux from the reactor core, - Process systems, - Waste handling systems, - Contaminated structures. The determined specific activities for different systems (or part of systems) are combined with data on weights and contaminated surface areas in order to assess the total activity. A key issue in the assessments has been efforts to reduce the uncertainties. Combining the unique knowledge in assessment of radioactivity inventories, the large data bank the waste processing represents and the knowledge and records from the laboratories, the activity determination codes can be validated and the waste processing analysis supported with additional data. (authors)

  11. CEQ regulations called peril to nuclear licensing process

    International Nuclear Information System (INIS)

    O'Neill, J.V.

    1979-01-01

    Court challenges are expected over regulations of the Council on Environmental Quality (CEQ) that were designed to improve nuclear-licensing decisions, but that have actually changed the meanings of National Environmental Policy Act (NEPA) regulations. The legal implications of these changes could, unless resolved, make the licensing process for nuclear facilities even more uncertain. Agency comments are thought to be critical, although the CEQ has declined to release them, and some question the Council's legality. The Nuclear Regulatory Commission faults the CEQ regulations for revising existing law, being inconsistent with the responsibilities of an independent regulatory body, and extending the CEQ's authority beyond the role assigned by NEPA and the President's Executive Order

  12. Key composition optimization of meat processed protein source by vacuum freeze-drying technology

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2018-05-01

    Full Text Available Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined. Keywords: Ham, Tenderloin, Vacuum freeze-dry, Processing, Optimization

  13. Childhood trauma exposure disrupts the automatic regulation of emotional processing.

    Science.gov (United States)

    Marusak, Hilary A; Martin, Kayla R; Etkin, Amit; Thomason, Moriah E

    2015-03-13

    Early-life trauma is one of the strongest risk factors for later emotional psychopathology. Although research in adults highlights that childhood trauma predicts deficits in emotion regulation that persist decades later, it is unknown whether neural and behavioral changes that may precipitate illness are evident during formative, developmental years. This study examined whether automatic regulation of emotional conflict is perturbed in a high-risk urban sample of trauma-exposed children and adolescents. A total of 14 trauma-exposed and 16 age-, sex-, and IQ-matched comparison youth underwent functional MRI while performing an emotional conflict task that involved categorizing facial affect while ignoring an overlying emotion word. Engagement of the conflict regulation system was evaluated at neural and behavioral levels. Results showed that trauma-exposed youth failed to dampen dorsolateral prefrontal cortex activity and engage amygdala-pregenual cingulate inhibitory circuitry during the regulation of emotional conflict, and were less able to regulate emotional conflict. In addition, trauma-exposed youth showed greater conflict-related amygdala reactivity that was associated with diminished levels of trait reward sensitivity. These data point to a trauma-related deficit in automatic regulation of emotional processing, and increase in sensitivity to emotional conflict in neural systems implicated in threat detection. Aberrant amygdala response to emotional conflict was related to diminished reward sensitivity that is emerging as a critical stress-susceptibility trait that may contribute to the emergence of mental illness during adolescence. These results suggest that deficits in conflict regulation for emotional material may underlie heightened risk for psychopathology in individuals that endure early-life trauma.

  14. Pou1f1, the key transcription factor related to somatic growth in tilapia (Orechromis niloticus), is regulated by two independent post-transcriptional regulation mechanisms.

    Science.gov (United States)

    Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng

    2017-01-29

    This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Process and device for regulating an electromagnetic filter

    International Nuclear Information System (INIS)

    Dolle, Lucien.

    1980-01-01

    Process for regulating the operation of an electromagnetic filter and, in particular, for keeping the efficiency of the filter at a sufficiently high level irrespective of the degree of filter clogging, fluid flow rate and temperature of the fluid. The filter includes an envelope containing a filling that can be magnetized by a coil activated by a d.c. supply arranged around the envelope. The regulating process includes the following stages: - activating the coil by a current of lower intensity than that of the saturation current of the filling, - determining the pressure drop of the filter, fluid flow rate and fluid temperature, - increasing the intensity of the current activating the coil when the efficiency of the filter corresponding to the measured values drops below a given level [fr

  16. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  17. Implicit Processes, Self-Regulation, and Interventions for Behavior Change.

    Science.gov (United States)

    St Quinton, Tom; Brunton, Julie A

    2017-01-01

    The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior.

  18. Compliance with Environmental Regulations through Complex Geo-Event Processing

    OpenAIRE

    Federico Herrera; Laura González; Daniel Calegari; Bruno Rienzi

    2017-01-01

    In a context of e-government, there are usually regulatory compliance requirements that support systems must monitor, control and enforce. These requirements may come from environmental laws and regulations that aim to protect the natural environment and mitigate the effects of pollution on human health and ecosystems. Monitoring compliance with these requirements involves processing a large volume of data from different sources, which is a major challenge. This volume is also increased with ...

  19. Design of Linear-Quadratic-Regulator for a CSTR process

    Science.gov (United States)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  20. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    OpenAIRE

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular deve...

  1. Key Process Uncertainties in Soil Carbon Dynamics: Comparing Multiple Model Structures and Observational Meta-analysis

    Science.gov (United States)

    Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.

    2016-12-01

    Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over

  2. Key Performance Indicators for the Impact of Cognitive Assembly Planning on Ramp-Up Process

    Directory of Open Access Journals (Sweden)

    Christian Buescher

    2012-01-01

    Full Text Available Within the ramp-up phase of highly automated assembly systems, the planning effort forms a large part of production costs. Due to shortening product lifecycles, changing customer demands, and therefore an increasing number of ramp-up processes, these costs even rise. So assembly systems should reduce these efforts and simultaneously be flexible for quick adaption to changes in products and their variants. A cognitive interaction system in the field of assembly planning systems is developed within the Cluster of Excellence “Integrative production technology for high-wage countries” at RWTH Aachen University which integrates several cognitive capabilities according to human cognition. This approach combines the advantages of automation with the flexibility of humans. In this paper the main principles of the system's core component—the cognitive control unit—are presented to underline its advantages with respect to traditional assembly systems. Based on this, the actual innovation of this paper is the development of key performance indicators. These refer to the ramp-up process as a main objective of such a system is to minimize the planning effort during ramp-up. The KPIs are also designed to show the impact on the main idea of the Cluster of Excellence in resolving the so-called Polylemma of Production.

  3. iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development

    Directory of Open Access Journals (Sweden)

    Irene Faravelli

    2014-10-01

    Full Text Available Motor neuron diseases (MNDs are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs and/or lower motor neurons (LMNs. The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Adult MNDs include sporadic and familial amyotrophic lateral sclerosis (sALS-fALS, while the most common infantile MND is represented by spinal muscular atrophy (SMA. No effective treatment is ccurrently available for MNDs, as for the vast majority of neurodegenerative disorders, and cures are limited to supportive care and symptom relief. The lack of a deep understanding of MND pathogenesis accounts for the difficulties in finding a cure, together with the scarcity of reliable in vitro models. Recent progresses in stem cell field, in particular in the generation of induced Pluripotent Stem Cells (iPSCs has made possible for the first time obtaining substantial amounts of human cells to recapitulate in vitro some of the key pathogenetic processes underlying MNDs. In the present review, recently published studies involving the use of iPSCs to unravel aspects of ALS and SMA pathogenesis are discussed with an overview of their implications in the process of finding a cure for these still orphan disorders.

  4. Information processing in bacteria: memory, computation, and statistical physics: a key issues review

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in

  5. Information processing in bacteria: memory, computation, and statistical physics: a key issues review.

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in

  6. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  7. A natural language processing program effectively extracts key pathologic findings from radical prostatectomy reports.

    Science.gov (United States)

    Kim, Brian J; Merchant, Madhur; Zheng, Chengyi; Thomas, Anil A; Contreras, Richard; Jacobsen, Steven J; Chien, Gary W

    2014-12-01

    Natural language processing (NLP) software programs have been widely developed to transform complex free text into simplified organized data. Potential applications in the field of medicine include automated report summaries, physician alerts, patient repositories, electronic medical record (EMR) billing, and quality metric reports. Despite these prospects and the recent widespread adoption of EMR, NLP has been relatively underutilized. The objective of this study was to evaluate the performance of an internally developed NLP program in extracting select pathologic findings from radical prostatectomy specimen reports in the EMR. An NLP program was generated by a software engineer to extract key variables from prostatectomy reports in the EMR within our healthcare system, which included the TNM stage, Gleason grade, presence of a tertiary Gleason pattern, histologic subtype, size of dominant tumor nodule, seminal vesicle invasion (SVI), perineural invasion (PNI), angiolymphatic invasion (ALI), extracapsular extension (ECE), and surgical margin status (SMS). The program was validated by comparing NLP results to a gold standard compiled by two blinded manual reviewers for 100 random pathology reports. NLP demonstrated 100% accuracy for identifying the Gleason grade, presence of a tertiary Gleason pattern, SVI, ALI, and ECE. It also demonstrated near-perfect accuracy for extracting histologic subtype (99.0%), PNI (98.9%), TNM stage (98.0%), SMS (97.0%), and dominant tumor size (95.7%). The overall accuracy of NLP was 98.7%. NLP generated a result in report. This novel program demonstrated high accuracy and efficiency identifying key pathologic details from the prostatectomy report within an EMR system. NLP has the potential to assist urologists by summarizing and highlighting relevant information from verbose pathology reports. It may also facilitate future urologic research through the rapid and automated creation of large databases.

  8. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.

    Science.gov (United States)

    Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana

    2016-05-01

    Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

  9. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    Science.gov (United States)

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  10. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats.

    Directory of Open Access Journals (Sweden)

    Yinghua Shi

    Full Text Available To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC and total bile acids (TBA levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1 The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group (P<0.05. (2 Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05. TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05. (3 mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05, as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05. The activities of these enzymes also paralleled the observed changes in mRNA levels. (4 There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1 the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2 the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia.

  11. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  12. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  13. Key Biodiversity Areas in the Indo-Burma Hotspot: Process, Progress and Future Directions

    Directory of Open Access Journals (Sweden)

    A.W. Tordoff

    2012-08-01

    Full Text Available Key Biodiversity Areas (KBAs provide geographic targets for the expansion of protected area coverage, and identify sites for urgent conservation action. Identification of KBAs in the Indo-Burma Hotspot was undertaken during 2003, for a region of analysis comprising Cambodia, Lao PDR, Myanmar (Burma, Thailand and Vietnam, plus parts of southern China. The starting point was information on 282 Important Bird Areas identified by BirdLife International and collaborators. These data were then overlaid with point locality data on globally threatened mammals, reptiles, amphibians, freshwater fish and plants, with additional KBAs identified as required. Through this process, a total of 438 KBAs were identified, covering 258,085km2 or 11.5 percent of the region of analysis. Only 58 percent of the KBAs are wholly or partly included within protected areas, suggesting that there may be a need for further expansion of protected area networks, particularly in Myanmar and Vietnam. The criteria for KBA identification are triggered by 812 species, of which 23 are believed only to occur at a single KBA globally. The KBAs have proven to be a useful conservation priority setting tool in Indo-Burma, helping to guide investments by various donors and application of environmental safeguard policies by international financial institutions. There are fewer examples of KBAs being used to guide expansion of protected area systems in Indo-Burma. In large part, this is because the period of rapid expansion of protected areas in most hotspot countries predated the KBA identification process, and political support for further significant expansion is currently limited.

  14. The Importance of Representing Certain Key Vegetation Canopy Processes Explicitly in a Land Surface Model

    Science.gov (United States)

    Napoly, A.; Boone, A. A.; Martin, E.; Samuelsson, P.

    2015-12-01

    Land surface models are moving to more detailed vegetation canopy descriptions in order to better represent certain key processes, such as Carbon dynamics and snowpack evolution. Since such models are usually applied within coupled numerical weather prediction or spatially distributed hydrological models, these improvements must strike a balance between computational cost and complexity. The consequences of simplified or composite canopy approaches can be manifested in terms of increased errors with respect to soil temperatures, estimates of the diurnal cycle of the turbulent fluxes or snow canopy interception and melt. Vegetated areas and particularly forests are modeled in a quite simplified manner in the ISBA land surface model. However, continuous developments of surface processes now require a more accurate description of the canopy. A new version of the the model now includes a multi energy balance (MEB) option to explicitly represent the canopy and the forest floor. It will be shown that certain newly included processes such as the shading effect of the vegetation, the explicit heat capacity of the canopy, and the insulating effect of the forest floor turn out to be essential. A detailed study has been done for four French forested sites. It was found that the MEB option significantly improves the ground heat flux (RMSE decrease from 50W/m2 to 10W/m2 on average) and soil temperatures when compared against measurements. Also the sensible heat flux calculation was improved primarily owing to a better phasing with the solar insulation owing to a lower vegetation heat capacity. However, the total latent heat flux is less modified compared to the classical ISBA simulation since it is more related to water uptake and the formulation of the stomatal resistance (which are unchanged). Next, a benchmark over 40 Fluxnet sites (116 cumulated years) was performed and compared with results from the default composite soil-vegetation version of ISBA. The results show

  15. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    Science.gov (United States)

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic

  16. Legal frameworks and key concepts regulating diversion and treatment of mentally disordered offenders in European Union member states.

    Science.gov (United States)

    Dressing, Harald; Salize, Hans Joachim; Gordon, Harvey

    2007-10-01

    There is only limited research on the various legal regulations governing assessment, placement and treatment of mentally ill offenders in European Union member states (EU-member states). To provide a structured description and cross-boundary comparison of legal frameworks regulating diversion and treatment of mentally disordered offenders in EU-member states before the extension in May 2004. A special focus is on the concept of criminal responsibility. Information on legislation and practice concerning the assessment, placement and treatment of mentally ill offenders was gathered by means of a detailed, structured questionnaire which was filled in by national experts. The legal regulations relevant for forensic psychiatry in EU-member states are outlined. Definitions of mental disorders given within these acts are introduced and compared with ICD-10 diagnoses. Finally the application of the concept of criminal responsibility by the law and in routine practice is presented. Legal frameworks for the processing and placement of mentally disordered offenders varied markedly across EU-member states. Since May 2004 the European Union has expanded to 25 member states and in January 2007 it will reach 27. With increasing mobility across Europe, the need for increasing trans-national co-operation is becoming apparent in which great variation in legal tradition pertains.

  17. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain

    Directory of Open Access Journals (Sweden)

    Vanesa eNieto-Estévez

    2016-02-01

    Full Text Available The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs. This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP and the subventricular zone-olfactory bulb (SVZ-OB. By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also, by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis and neuron integration in synaptic circuits.

  18. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    Science.gov (United States)

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  19. Regulable process for sawage electrochemical treatment from heavy metals

    International Nuclear Information System (INIS)

    Covaliov, V.; Covaliova, O.

    2004-01-01

    The invention relates to a process for sewage treatment and may be used in the protection for metal working, in particular, for electroplating. The disperse magnetic particle are obtaining in the comminution of the sintered spheric particle into a magnetilique faction block at the electrolyser at the outlet from the electrolyzer it is determined the suspension magnetization value concentration of the solid phase and the redox potential of the values it is automatically regulated the feed of magnetic particles and the current intensity correspondingly

  20. Cognitive and metacognitive processes in self-regulation of learning

    Directory of Open Access Journals (Sweden)

    Erika Tomec

    2006-08-01

    Full Text Available The purpose of the present study was to investigate differences among secondary school students in cognitive and metacognitive processes in self-regulated learning (SRL according to year of education, learning program, sex and achievement. Beside this, the autors were interested in the relationship between (metacognitive components of self-regulated learning. The theoretical framework of the research was the four-component model of self-regulated learning by Hofer, Yu and Pintrich (1998. The focus was on the first part of the model which is about cognitive structure and cognitive strategies.Metacognitive awareness inventory (Shraw and Sperling Dennison, 1994 and Cognitive strategies awareness questionnaire (Pečjak, 2000, in Peklaj and Pečjak, 2002 were applied. In a sample of 321 students, differences in perception of importance of cognitive strategies among students attending different grades (1st and 4th, students attending different learning programs, students of different gender and students with different achievements emerged. Students' achievement in the whole sample was related to amount of metacognitive awareness. In the sample of 4-year students and students attending professional secondary schools, students' achievement was additionally related to appraisal of importance elaboration and organizational strategies. Further statistical analyses of relationship between components in SRL showed high positive correlation between cognitive and metacognitive components.

  1. Transcriptome Analysis of Ullrich Congenital Muscular Dystrophy Fibroblasts Reveals a Disease Extracellular Matrix Signature and Key Molecular Regulators.

    Directory of Open Access Journals (Sweden)

    Sonia Paco

    Full Text Available Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts.In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays.We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases.

  2. Wnt-inducible protein (WISP-1 is a key regulator of alveolar epithelial cell hyperplasia in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    2006-12-01

    Full Text Available Fibrotic lung disease is characterized by distorted lung architecture and severe loss of respiratory function secondary to alveolar epithelial cell (AEC hyperplasia, enhanced extracellular matrix (ECM deposition and fibroblast proliferation. Repetitive epithelial injuries with impaired alveolar wound healing and altered AEC gene expression represent a trigger mechanism for development of fibrosis. To reveal gene regulatory networks in lung fibrosis, we compared gene expression profiles of freshly isolated AEC obtained from mice 14 days after saline or bleomycin (BM instillation using whole genome microarray analysis. Several genes of the Wnt signaling pathway, in particular WISP-1, a member of the CCN family, were highly regulated. WISP-1 protein expression was demonstrated in proliferating AEC in BM-treated lungs by immunofluorescence. When analyzing all six CCN family members, WISP-1 was upregulated the most 14 days after BM challenge, as analyzed by qRT-PCR. To elucidate WISP-1 function, cultured primary mouse AEC were stimulated with WISP-1 and demonstrated a 230% increase in proliferation, analyzed by 3H-thymidine incorporation. This was mediated through enhanced phosphorylation, but not expression of protein kinase B (PKB/Akt, as detected by immunoblot. Finally, increased expression of WISP-1 was detected in lung homogenates and isolated AEC from IPF patients, using qRT-PCR. Immunohistochemical analysis of WISP-1 and Ki67 verified the existence of hyperplastic and proliferative AEC expressing WISP-1 in vivo. Our study thus identifies WISP-1 as a novel regulator of AEC injury and repair, and suggests that WISP-1 is a key mediator in pulmonary fibrosis.

  3. [PRODUCT OF THE BMI1--A KEY COMPONENT OF POLYCOMB--POSITIVELY REGULATES ADIPOCYTE DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Petrov, N S; Vereschagina, N A; Sushilova, E N; Kropotov, A V; Miheeva, N F; Popov, B V

    2016-01-01

    Bmil is a key component of Polycomb (PcG), which in mammals controls the basic functions of mammalian somatic stem cells (SSC) such as self-renewal and differentiation. Bmi1 supports SSC via transcriptional suppression of genes associated with cell cycle and differentiation. The most studied target genes of Bmi1 are the genes of Ink4 locus, CdkI p16(Ink4a) and p1(Arf), suppression of which due to activating mutations of the BMI1 results in formation of cancer stem cells (CSC) and carcinomas in various tissues. In contrast, inactivation of BMI1 results in cell cycle arrest and cell senescence. Although clinical phenomena of hypo- and hyperactivation of BMI1 are well known, its targets and mechanisms of regulation of tissue specific SSC are still obscure. The goal of this study was to evaluate the regulatory role of BMI1 in adipocyte differentiation (AD) of mouse mesenchymal stem cells (MSC). Induction of AD in mouse MSC of the C3H10T1/2 cell line was associated with an increase in the expression levels of BMI1, the genes of pRb family (RB, p130) and demethylase UTX, but not methyltransferase EZH2, whose products regulate the methylation levels of H3K27. It was observed earlier that H3K27me3 may play the role of the epigenetic switch by promoting AD of human MSC via activating expression of the PPARγ2, the master gene of AD (Hemming et al., 2014). Here we show that inactivation of BMI1 using specific siRNA slows and decreases the levels of AD, but does not abolish it. This is associated with a complete inhibition of the expression of adipogenic marker genes--PPARγ2, ADIPOQ and a decrease in the expression of RB, p130, but not UTX. The results obtained give evidence that the epigenetic mechanism regulating AD differentiation in mouse and human MSC is different.

  4. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  5. Compliance with Environmental Regulations through Complex Geo-Event Processing

    Directory of Open Access Journals (Sweden)

    Federico Herrera

    2017-11-01

    Full Text Available In a context of e-government, there are usually regulatory compliance requirements that support systems must monitor, control and enforce. These requirements may come from environmental laws and regulations that aim to protect the natural environment and mitigate the effects of pollution on human health and ecosystems. Monitoring compliance with these requirements involves processing a large volume of data from different sources, which is a major challenge. This volume is also increased with data coming from autonomous sensors (e.g. reporting carbon emission in protected areas and from citizens providing information (e.g. illegal dumping in a voluntary way. Complex Event Processing (CEP technologies allow processing large amount of event data and detecting patterns from them. However, they do not provide native support for the geographic dimension of events which is essential for monitoring requirements which apply to specific geographic areas. This paper proposes a geospatial extension for CEP that allows monitoring environmental requirements considering the geographic location of the processed data. We extend an existing platform-independent, model-driven approach for CEP adding the geographic location to events and specifying patterns using geographic operators. The use and technical feasibility of the proposal is shown through the development of a case study and the implementation of a prototype.

  6. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  7. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  8. Neural processing of emotional-intensity predicts emotion regulation choice.

    Science.gov (United States)

    Shafir, Roni; Thiruchselvam, Ravi; Suri, Gaurav; Gross, James J; Sheppes, Gal

    2016-12-01

    Emotional-intensity is a core characteristic of affective events that strongly determines how individuals choose to regulate their emotions. Our conceptual framework suggests that in high emotional-intensity situations, individuals prefer to disengage attention using distraction, which can more effectively block highly potent emotional information, as compared with engagement reappraisal, which is preferred in low emotional-intensity. However, existing supporting evidence remains indirect because prior intensity categorization of emotional stimuli was based on subjective measures that are potentially biased and only represent the endpoint of emotional-intensity processing. Accordingly, this study provides the first direct evidence for the role of online emotional-intensity processing in predicting behavioral regulatory-choices. Utilizing the high temporal resolution of event-related potentials, we evaluated online neural processing of stimuli's emotional-intensity (late positive potential, LPP) prior to regulatory-choices between distraction and reappraisal. Results showed that enhanced neural processing of intensity (enhanced LPP amplitudes) uniquely predicted (above subjective measures of intensity) increased tendency to subsequently choose distraction over reappraisal. Additionally, regulatory-choices led to adaptive consequences, demonstrated in finding that actual implementation of distraction relative to reappraisal-choice resulted in stronger attenuation of LPPs and self-reported arousal. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Regulation of amyloid precursor protein processing by its KFERQ motif.

    Science.gov (United States)

    Park, Ji-Seon; Kim, Dong-Hou; Yoon, Seung-Yong

    2016-06-01

    Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer's disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy. [BMB Reports 2016; 49(6): 337-342].

  10. Occupational exposures to uranium: processes, hazards, and regulations

    International Nuclear Information System (INIS)

    Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

    1981-04-01

    The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry

  11. Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRNA Production

    Directory of Open Access Journals (Sweden)

    Andjela Rodic

    2017-11-01

    Full Text Available Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from Escherichia coli, is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in E. coli are cooperative transcription repression of cas gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA. In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for cas expression activation, where cas genes are put under transcription control typical for a restriction-modification (R-M system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic

  12. Investigation of different cage designs and mechano-regulation algorithms in the lumbar interbody fusion process - a finite element analysis.

    Science.gov (United States)

    Postigo, Sergio; Schmidt, Hendrik; Rohlmann, Antonius; Putzier, Michael; Simón, Antonio; Duda, Georg; Checa, Sara

    2014-04-11

    Lumbar interbody fusion cages are commonly used to treat painful spinal degeneration and instability by achieving bony fusion. Many different cage designs exist, however the effect of cage morphology and material properties on the fusion process remains largely unknown. This finite element model study aims to investigate the influence of different cage designs on bone fusion using two mechano-regulation algorithms of tissue formation. It could be observed that different cages play a distinct key role in the mechanical conditions within the fusion region and therefore regulate the time course of the fusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Proposed system for measuring project performance using process-based key performance indicators

    NARCIS (Netherlands)

    Haponava, T.; Al-Jibouri, Saad H.S.

    2012-01-01

    Despite some evidence of its usefulness, performance measurement by using Key Performance Indicators (KPIs) in the construction industry also has its critics. Among the shortcomings attributed to existing KPIs is the fact that almost all of them are product oriented. This means that the indicators

  14. Social Responsibility as a Key Performance Indicator for the Quality of Educational Processes

    OpenAIRE

    Gueorguiev, Tzvetelin

    2015-01-01

    Quality of education is a key issue in providing a sustainable future. University rankings have remarkable reputation among various stakeholders but they lack personality. This paper raises questions and proposes alternatives for possible solution for the problem. The change for the better is seen as implementing and in the same time adapting international standards to different regional, national and cultural settings

  15. Photoperiod Regulates vgf-Derived Peptide Processing in Siberian Hamsters.

    Directory of Open Access Journals (Sweden)

    Barbara Noli

    Full Text Available VGF mRNA is induced in specific hypothalamic areas of the Siberian hamster upon exposure to short photoperiods, which is associated with a seasonal decrease in appetite and weight loss. Processing of VGF generates multiple bioactive peptides, so the objective of this study was to determine the profile of the VGF-derived peptides in the brain, pituitary and plasma from Siberian hamsters, and to establish whether differential processing might occur in the short day lean state versus long day fat. Antisera against short sequences at the C- or N- termini of proVGF, as well as against NERP-1, TPGH and TLQP peptides, were used for analyses of tissues, and both immunohistochemistry and enzyme linked immunosorbent assay (ELISA coupled with high-performance liquid (HPLC or gel chromatography were carried out. VGF peptide immunoreactivity was found within cortex cholinergic perikarya, in multiple hypothalamic nuclei, including those containing vasopressin, and in pituitary gonadotrophs. ELISA revealed that exposure to short day photoperiod led to a down-regulation of VGF immunoreactivity in the cortex, and a less pronounced decrease in the hypothalamus and pituitary, while the plasma VGF levels were not affected by the photoperiod. HPLC and gel chromatography both confirmed the presence of multiple VGF-derived peptides in these tissues, while gel chromatography showed the presence of the VGF precursor in all tissues tested except for the cortex. These observations are consistent with the view that VGF-derived peptides have pleiotropic actions related to changing photoperiod, possibly by regulating cholinergic systems in the cortex, vasopressin hypothalamic pathways, and the reproductive axis.

  16. FOREIGN EXPERIENCE OF STATE REGULATION OF MIGRATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Ekaterina Nikolaevna Tarasenko

    2018-05-01

    State regulation of migration processes and the identification of the main centers of attraction of labor by analyzing the immigration policies of developed countries. Method or methodology of work: article used statistical methods of analysis, economic and mathematical methods, as well as empirical research methods, such as monitoring and comparison. Results: Informative reasons for population migration were received, mechanisms for state regulation of migration were established showing some aspects of the analysis of the migration policy of the main centers of labor attraction. Scope of application of the results: it is advisable to apply the results in public administration bodies when developing migration policies and mechanisms for its implementation, researchers of migration processes for the development of scientific discussion.

  17. Research on key technologies of data processing in internet of things

    Science.gov (United States)

    Zhu, Yangqing; Liang, Peiying

    2017-08-01

    The data of Internet of things (IOT) has the characteristics of polymorphism, heterogeneous, large amount and processing real-time. The traditional structured and static batch processing method has not met the requirements of data processing of IOT. This paper studied a middleware that can integrate heterogeneous data of IOT, and integrated different data formats into a unified format. Designed a data processing model of IOT based on the Storm flow calculation architecture, integrated the existing Internet security technology to build the Internet security system of IOT data processing, which provided reference for the efficient transmission and processing of IOT data.

  18. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.

    Directory of Open Access Journals (Sweden)

    Izabella Baranowska Körberg

    Full Text Available The white spotting locus (S in dogs is colocalized with the MITF (microphtalmia-associated transcription factor gene. The phenotypic effects of the four S alleles range from solid colour (S to extreme white spotting (s(w. We have investigated four candidate mutations associated with the s(w allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.

  19. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Sarruf, David A; Yu, Fang; Nguyen, Hong T; Williams, Diana L; Printz, Richard L; Niswender, Kevin D; Schwartz, Michael W

    2009-02-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.

  20. cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli.

    Science.gov (United States)

    Nosho, Kazuki; Fukushima, Hiroko; Asai, Takehiro; Nishio, Masahiro; Takamaru, Reiko; Kobayashi-Kirschvink, Koseki Joseph; Ogawa, Tetsuhiro; Hidaka, Makoto; Masaki, Haruhiko

    2018-03-01

    A variety of bacteria, including Escherichia coli, are known to enter the viable but non-culturable (VBNC) state under various stress conditions. During this state, cells lose colony-forming activities on conventional agar plates while retaining signs of viability. Diverse environmental stresses including starvation induce the VBNC state. However, little is known about the genetic mechanism inducing this state. Here, we aimed to reveal the genetic determinants of the VBNC state of E. coli. We hypothesized that the VBNC state is a process wherein specific gene products important for colony formation are depleted during the extended period of stress conditions. If so, higher expression of these genes would maintain colony-forming activities, thereby restraining cells from entering the VBNC state. From an E. coli plasmid-encoded ORF library, we identified genes that were responsible for maintaining high colony-forming activities after exposure to starvation condition. Among these, cpdA encoding cAMP phosphodiesterase exhibited higher performance in the maintenance of colony-forming activities. As cpdA overexpression decreases intracellular cAMP, cAMP or its complex with cAMP-receptor protein (CRP) may negatively regulate colony-forming activities under stress conditions. We confirmed this using deletion mutants lacking adenylate cyclase or CRP. These mutants fully maintained colony-forming activities even after a long period of starvation, while wild-type cells lost most of this activity. Thus, we concluded that the lack of cAMP-CRP effectively retains high colony-forming activities, indicating that cAMP-CRP acts as a positive regulator necessary for the induction of the VBNC state in E. coli.

  1. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.

    Science.gov (United States)

    Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao

    2018-04-17

    MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.

  2. Business process maturity assessment : state of the art and key characteristics

    NARCIS (Netherlands)

    Tarhan, A.; Turetken, O.; Ilisu, F.

    2015-01-01

    Business processes are basic enablers in sustaining an organization's existence in delivering high-quality products and services. A maturity model is an instrument to assess and continually improve business processes. For example, Capability Maturity Model Integration for Development (CMMI-Dev) in

  3. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  4. Vitamin A as a key regulator of obesity & its associated disorders: Evidences from an obese rat model

    Directory of Open Access Journals (Sweden)

    Shanmugam M Jeyakumar

    2015-01-01

    Full Text Available During the last century, vitamin A has evolved from its classical role as a fat-soluble vitamin and attained the status of para-/autocrine hormone. Besides its well-established role in embryogenesis, growth and development, reproduction and vision, vitamin A has also been implicated in several other physiological processes. Emerging experimental evidences emphasize adipose tissue as an active endocrine organ with great propensity to continuous growth (throughout life. Due to various genetic and lifestyle factors, excess energy accumulates in adipose tissue as fat, resulting in obesity and other complications such as type 2 diabetes, hypertension, and cardiovascular disease. Recent in vitro and in vivo studies have shed light on vitamin A metabolites; retinaldehyde and retinoic acid and participation of their pathway proteins in the regulation of adipose tissue metabolism and thus, obesity. In this context, we discuss here some of our important findings, which establish the role of vitamin A (supplementation in obesity and its associated disorders by employing an obese rat model; WNIN/Ob strain.

  5. Theoretical foundations of international migration process studies: analysis of key migration theories development

    Directory of Open Access Journals (Sweden)

    Shymanska K.V.

    2017-03-01

    Full Text Available The need for transformation of Ukraine's migration policy based on globalized world development trends and in response to the challenges of European integration transformations causes the need of researching the theoretical and methodological basis of migration studies, and the regulations of existing theories of international migration. The bibliometric analysis of scientific publications on international migration in cites indexes found that the recent researches on these problems acquire interdisciplinary character. It necessitates the transformation of migration study approaches basing on economic, social, institutional theories and concepts synthesis. The article is devoted to the study of theoretical regulations of existing international migration theories in the context of the evolution of scientists’ views on this phenomenon. The author found that the existing theories of international migration should be divided into three categories (microeconomic, macroeconomic, globalizational that contributes to their understanding in the context of implementation possibilities in migrational public administration practice. It allows to determine the theories which should be used for Ukrainian state migration policy constructing and eliminating or reducing the external migration negative effects.

  6. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  7. UCXp camera imaging principle and key technologies of data post-processing

    Science.gov (United States)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  8. UCXp camera imaging principle and key technologies of data post-processing

    International Nuclear Information System (INIS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-01-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects

  9. Lactate produced by glycogenolysis in astrocytes regulates memory processing.

    Science.gov (United States)

    Newman, Lori A; Korol, Donna L; Gold, Paul E

    2011-01-01

    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.

  10. Electromagnetic processes during phase commutation in field regulated reluctance machine

    Science.gov (United States)

    Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.

    2018-03-01

    The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.

  11. Demystifying process mapping: a key step in neurosurgical quality improvement initiatives.

    Science.gov (United States)

    McLaughlin, Nancy; Rodstein, Jennifer; Burke, Michael A; Martin, Neil A

    2014-08-01

    Reliable delivery of optimal care can be challenging for care providers. Health care leaders have integrated various business tools to assist them and their teams in ensuring consistent delivery of safe and top-quality care. The cornerstone to all quality improvement strategies is the detailed understanding of the current state of a process, captured by process mapping. Process mapping empowers caregivers to audit how they are currently delivering care to subsequently strategically plan improvement initiatives. As a community, neurosurgery has clearly shown dedication to enhancing patient safety and delivering quality care. A care redesign strategy named NERVS (Neurosurgery Enhanced Recovery after surgery, Value, and Safety) is currently being developed and piloted within our department. Through this initiative, a multidisciplinary team led by a clinician neurosurgeon has process mapped the way care is currently being delivered throughout the entire episode of care. Neurosurgeons are becoming leaders in quality programs, and their education on the quality improvement strategies and tools is essential. The authors present a comprehensive review of process mapping, demystifying its planning, its building, and its analysis. The particularities of using process maps, initially a business tool, in the health care arena are discussed, and their specific use in an academic neurosurgical department is presented.

  12. Strengthening a consolidated memory: the key role of the reconsolidation process.

    Science.gov (United States)

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2014-01-01

    The reconsolidation hypothesis posits that the presentation of a specific cue, previously associated with a life event, makes the stored memory pass from a stable to a reactivated state. In this state, memory is again labile and susceptible to different agents, which may either damage or improve the original memory. Such susceptibility decreases over time and leads to a re-stabilization phase known as reconsolidation process. This process has been assigned two biological roles: memory updating, which suggests that destabilization of the original memory allows the integration of new information into the background of the original memory; and memory strengthening, which postulates that the labilization-reconsolidation process strengthens the original memory. The aim of this review is to analyze the strengthening as an improvement obtained only by triggering such process without any other treatment. In our lab, we have demonstrated that when triggering the labilization-reconsolidation process at least once the original memory becomes strengthened and increases its persistence. We have also shown that repeated labilization-reconsolidation processes strengthened the original memory by enlarging its precision, and said reinforced memories were more resistant to interference. Finally, we have shown that the strengthening function is not operative in older memories. We present and discuss both our findings and those of others, trying to reveal the central role of reconsolidation in the modification of stored information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Process and key points of clinical literature evaluation of post-marketing traditional Chinese medicine].

    Science.gov (United States)

    Liu, Huan; Xie, Yanming

    2011-10-01

    The clinical literature evaluation of the post-marketing traditional Chinese medicine is a comprehensive evaluation by the comprehensive gain, analysis of the drug, literature of drug efficacy, safety, economy, based on the literature evidence and is part of the evaluation of evidence-based medicine. The literature evaluation in the post-marketing Chinese medicine clinical evaluation is in the foundation and the key position. Through the literature evaluation, it can fully grasp the information, grasp listed drug variety of traditional Chinese medicines second development orientation, make clear further clinical indications, perfect the medicines, etc. This paper discusses the main steps and emphasis of the clinical literature evaluation. Emphasizing security literature evaluation should attach importance to the security of a comprehensive collection drug information. Safety assessment should notice traditional Chinese medicine validity evaluation in improving syndrome, improveing the living quality of patients with special advantage. The economics literature evaluation should pay attention to reliability, sensitivity and practicability of the conclusion.

  14. Influence of material choice on cost estimation of some key components of the Sulfur Iodine thermochemical process

    International Nuclear Information System (INIS)

    Gilardi, T.; Rodriguez, G.; Gomez, A.; Leybros, J.; Borgard, J.M.; Carles, P.; Anzieu, P.

    2006-01-01

    In the frame of the preliminary design of an sulfur/iodine thermochemical plant coupled with a 600 MWth Helium cooled High Temperature Reactor, CEA has pre-designed all the components of the I/S plant and has started to the cost estimation of all the key components with some industrial cost evaluation methods proposed by CHAUVEL or PETER and TIMMERHAUS. The purpose of the paper is to present the strong influence of material choice on final cost estimation of these key components by comparing price with standard material (steel) and the most appropriate material selected to support the strong corrosion involved by several chemical reactions of the I/S process. These results reinforce the fact that material selection must be done with the best accuracy and that it will be a key factor in the global economy of these plant investment. (authors)

  15. Individual Differences in Trajectories of Emotion Regulation Processes: The Effects of Maternal Depressive Symptomatology and Children's Physiological Regulation

    Science.gov (United States)

    Blandon, Alysia Y.; Calkins, Susan D.; Keane, Susan P.; O'Brien, Marion

    2008-01-01

    Trajectories of emotion regulation processes were examined in a community sample of 269 children across the ages of 4 to 7 using hierarchical linear modeling. Maternal depressive symptomatology (Symptom Checklist-90) and children's physiological reactivity (respiratory sinus arrhythmia [RSA]) and vagal regulation ([delta]RSA) were explored as…

  16. Processes linking cultural ingroup bonds and mental health: the roles of social connection and emotion regulation.

    Science.gov (United States)

    Roberts, Nicole A; Burleson, Mary H

    2013-01-01

    Cultural and ethnic identities influence the relationships individuals seek out and how they feel and behave in these relationships, which can strongly affect mental and physical health through their impacts on emotions, physiology, and behavior. We proposed and tested a model in which ethnocultural identifications and ingroup affiliations were hypothesized explicitly to enhance social connectedness, which would in turn promote expectancy for effective regulation of negative emotions and reduce self-reported symptoms of depression and anxiety. Our sample comprised women aged 18-30 currently attending college in the Southwestern US, who self-identified as Hispanic of Mexican descent (MAs; n = 82) or as non-Hispanic White/European American (EAs; n = 234) and who completed an online survey. In the full sample and in each subgroup, stronger ethnocultural group identity and greater comfort with mainstream American culture were associated with higher social connectedness, which in turn was associated with expectancy for more effective regulation of negative emotions, fewer depressive symptoms, and less anxiety. Unexpectedly, preference for ingroup affiliation predicted lower social connectedness in both groups. In addition to indirect effects through social connection, direct paths from mainstream comfort and preference for ingroup affiliation to emotion regulation expectancy were found for EAs. Models of our data underscore that social connection is a central mechanism through which ethnocultural identities-including with one's own group and the mainstream cultural group-relate to mental health, and that emotion regulation may be a key aspect of this linkage. We use the term ethnocultural social connection to make explicit a process that, we believe, has been implied in the ethnic identity literature for many years, and that may have consequential implications for mental health and conceptualizations of processes underlying mental disorders.

  17. Processes linking cultural ingroup bonds and mental health: the roles of social connection and emotion regulation

    Science.gov (United States)

    Roberts, Nicole A.; Burleson, Mary H.

    2013-01-01

    Cultural and ethnic identities influence the relationships individuals seek out and how they feel and behave in these relationships, which can strongly affect mental and physical health through their impacts on emotions, physiology, and behavior. We proposed and tested a model in which ethnocultural identifications and ingroup affiliations were hypothesized explicitly to enhance social connectedness, which would in turn promote expectancy for effective regulation of negative emotions and reduce self-reported symptoms of depression and anxiety. Our sample comprised women aged 18–30 currently attending college in the Southwestern US, who self-identified as Hispanic of Mexican descent (MAs; n = 82) or as non-Hispanic White/European American (EAs; n = 234) and who completed an online survey. In the full sample and in each subgroup, stronger ethnocultural group identity and greater comfort with mainstream American culture were associated with higher social connectedness, which in turn was associated with expectancy for more effective regulation of negative emotions, fewer depressive symptoms, and less anxiety. Unexpectedly, preference for ingroup affiliation predicted lower social connectedness in both groups. In addition to indirect effects through social connection, direct paths from mainstream comfort and preference for ingroup affiliation to emotion regulation expectancy were found for EAs. Models of our data underscore that social connection is a central mechanism through which ethnocultural identities—including with one's own group and the mainstream cultural group—relate to mental health, and that emotion regulation may be a key aspect of this linkage. We use the term ethnocultural social connection to make explicit a process that, we believe, has been implied in the ethnic identity literature for many years, and that may have consequential implications for mental health and conceptualizations of processes underlying mental disorders. PMID:23450647

  18. Processes linking cultural ingroup bonds and mental health: The roles of social connection and emotion regulation

    Directory of Open Access Journals (Sweden)

    Nicole A Roberts

    2013-02-01

    Full Text Available Cultural and ethnic identities influence the relationships individuals seek out and how they feel and behave in these relationships, which can strongly affect mental and physical health through their impacts on emotions, physiology, and behavior. We proposed and tested a model in which ethnocultural identifications and ingroup affiliations were hypothesized explicitly to enhance social connectedness, which would in turn promote expectancy for effective regulation of negative emotions and reduce self-reported symptoms of depression and anxiety. Our sample comprised women aged 18 to 30 currently attending college in the Southwestern US, who self-identified as Hispanic of Mexican descent (n=82; MAs or as non-Hispanic White/European American (EAs; n=234 and who completed an online survey. In the full sample and in each subgroup, stronger ethnocultural group identity and greater comfort with mainstream American culture were associated with higher social connectedness, which in turn was associated with expectancy for more effective regulation of negative emotions, fewer depressive symptoms, and less anxiety. Unexpectedly, preference for ingroup affiliation predicted lower social connectedness in both groups. In addition to indirect effects through social connection, direct paths from mainstream comfort and preference for ingroup affiliation to emotion regulation expectancy were found for EAs. Models of our data underscore that social connection is a central mechanism through which ethnocultural identities—including with one’s own group and the mainstream cultural group—relate to mental health, and that emotion regulation may be a key aspect of this linkage. We use the term ethnocultural social connection to make explicit a process that, we believe, has been implied in the ethnic identity literature for many years, and that may have consequential implications for mental health and conceptualizations of processes underlying mental disorders.

  19. Visual control as a key factor in a production process of a company from automotive branch

    Directory of Open Access Journals (Sweden)

    Stanisław Borkowski

    2013-04-01

    Full Text Available This article presents a theoretical basis for one type of control in enterprises – visual control. It presents the meaning of visual control in the Toyota Production System and BOST researches as a tool of measure, among other things, the importance of visual control in production companies. The level of importance of visual control usage as one of the production process elements in the analysed company was indicated. The usage of visual control is a main factor in a production process of the analyzed company, the factor which provides continuous help to employees to check whether the process differs from the standard. The characteristic progression of production process elements was indicated and the SW factor (the use of visual control took the third place, PE factor (interruption of production when it detects a problem of quality turned out to be the most important one, while the least important was the EU factor (granting power of attorney down. The main tools for this evaluation: an innovative BOST survey - Toyota's management principles in questions, in particular, the Pareto-Lorenz diagram, radar graph and series of importance as graphical interpretation tools, were used to present the importance of each factor in relation to individual assessments.

  20. Coupling process-based models and plant architectural models: A key issue for simulating crop production

    NARCIS (Netherlands)

    Reffye, de P.; Heuvelink, E.; Guo, Y.; Hu, B.G.; Zhang, B.G.

    2009-01-01

    Process-Based Models (PBMs) can successfully predict the impact of environmental factors (temperature, light, CO2, water and nutrients) on crop growth and yield. These models are used widely for yield prediction and optimization of water and nutrient supplies. Nevertheless, PBMs do not consider

  1. Selection processes in a Delphi study about key qualifications in Senior Secondary Vocational Education

    NARCIS (Netherlands)

    Zolingen, S.J. van; Klaassen, C.A.C.

    2003-01-01

    The focus of this study is the Delphi method. First, a short history of the Delphi method is given. Then, different types of the Delphi method are described, and the validity and reliability of the Delphi method are discussed. Finally, this study reports on the selection processes and assessments

  2. Parental Regulation of Teenagers' Time: Processes and Meanings

    Science.gov (United States)

    Sarre, Sophie

    2010-01-01

    Parental regulation of teenagers' time is pervasive. Parents attempt to constrain, well into adolescence, what their children do with their time, when they do it and how long they do it for. This article draws on interviews with 14- to 16-year-olds in the UK to explore teenagers' experiences of parents' temporal regulation, and whether their…

  3. Self-regulation and selective exposure: the impact of depleted self-regulation resources on confirmatory information processing.

    Science.gov (United States)

    Fischer, Peter; Greitemeyer, Tobias; Frey, Dieter

    2008-03-01

    In the present research, the authors investigated the impact of self-regulation resources on confirmatory information processing, that is, the tendency of individuals to systematically prefer standpoint-consistent information to standpoint-inconsistent information in information evaluation and search. In 4 studies with political and economic decision-making scenarios, it was consistently found that individuals with depleted self-regulation resources exhibited a stronger tendency for confirmatory information processing than did individuals with nondepleted self-regulation resources. Alternative explanations based on processes of ego threat, cognitive load, and mood were ruled out. Mediational analyses suggested that individuals with depleted self-regulation resources experienced increased levels of commitment to their own standpoint, which resulted in increased confirmatory information processing. In sum, the impact of ego depletion on confirmatory information search seems to be more motivational than cognitive in nature.

  4. Modelling management process of key drivers for economic sustainability in the modern conditions of economic development

    Directory of Open Access Journals (Sweden)

    Pishchulina E.S.

    2017-01-01

    Full Text Available The text is about issues concerning the management of driver for manufacturing enterprise economic sustainability and manufacturing enterprise sustainability assessment as the key aspect of the management of enterprise economic sustainability. The given issues become topical as new requirements for the methods of manufacturing enterprise management in the modern conditions of market economy occur. An economic sustainability model that is considered in the article is an integration of enterprise economic growth, economic balance of external and internal environment and economic sustainability. The method of assessment of economic sustainability of a manufacturing enterprise proposed in the study allows to reveal some weaknesses in the enterprise performance, and untapped reserves, which can be further used to improve the economic sustainability and efficiency of the enterprise. The management of manufacturing enterprise economic sustainability is one of the most important factors of business functioning and development in modern market economy. The relevance of this trend is increasing in accordance with the objective requirements of the growing volumes of production and sale, the increasing complexity of economic relations, changing external environment of an enterprise.

  5. First-principles flocculation as the key to low energy algal biofuels processing.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Wyatt, Nicholas B.; Pierce, Flint; Brady, Patrick Vane; Dwyer, Brian P.; Grillet, Anne; Hankins, Matthew G; Hughes, Lindsey Gloe; Lechman, Jeremy B.; Mondy, Lisa Ann; Murton, Jaclyn K.; O' Hern, Timothy J; Parchert, Kylea Joy; Pohl, Phillip Isabio; Williams, Cecelia Victoria; Zhang, Xuezhi; Hu, Qiang; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton

    2012-09-01

    This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

  6. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion

    Science.gov (United States)

    House, Carrie D.; Vaske, Charles J.; Schwartz, Arnold M.; Obias, Vincent; Frank, Bryan; Luu, Truong; Sarvazyan, Narine; Irby, Rosalyn; Strausberg, Robert L.; Hales, Tim G.; Stuart, Joshua M.; Lee, Norman H.

    2010-01-01

    Voltage-gated Na+ channels (VGSCs) have been implicated in the metastatic potential of human breast, prostate and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Nav1.5 has been defined as a key driver of human cancer cell invasion. In this study, we examined the expression and function of VGSCs in a panel of colon cancer cell lines by electrophysiological recordings. Na+ channel activity and invasive potential were inhibited pharmacologically by tetrodotoxin or genetically by siRNAs specifically targeting SCN5A. Clinical relevance was established by immunohistochemistry of patient biopsies, where there was strong Nav1.5 protein staining in colon cancer specimens but little to no staining in matched-paired normal colon tissues. We explored the mechanism of VGSC-mediated invasive potential on the basis of reported links between VGSC activity and gene expression in excitable cells. Probabilistic modeling of loss-of-function screens and microarray data established an unequivocal role of VGSC SCN5A as a high level regulator of a colon cancer invasion network, involving genes that encompass Wnt signaling, cell migration, ectoderm development, response to biotic stimulus, steroid metabolic process and cell cycle control. siRNA-mediated knockdown of predicted downstream network components caused a loss of invasive behavior, demonstrating network connectivity and its function in driving colon cancer invasion. PMID:20651255

  7. Meeting points in the VPL process - a key challenge for VPL activities

    DEFF Research Database (Denmark)

    Aagaard, Kirsten; Enggaard, Ellen

    2014-01-01

    , a step up the career ladder, personal development or threat of losing his job and the work place’s demand for new competences? There are three main players on this scene: the individual, the (HE) educational institution and the work place. There may be more players involved in the process......The right to have your competences recognized and validated as a mean to gain access to or exemptions of a higher education has existed since 2007, but the knowledge of this opportunity is still not very well spread and the potentials of the law are not exploited. This goes for individuals as well...... the individual in his or her individual career strategies benefit from the option of VPL in the process of managing his or her career strategy? What are the main barriers and obstacles the individual might meet in his or her attempt to move on in his career whether the motivation is change of career direction...

  8. Key Performance Indicators for the Impact of Cognitive Assembly Planning on Ramp-Up Process

    OpenAIRE

    Buescher, Christian; Hauck, Eckart; Schilberg, Daniel; Jeschke, Sabina

    2012-01-01

    Within the ramp-up phase of highly automated assembly systems, the planning effort forms a large part of production costs. Due to shortening product lifecycles, changing customer demands, and therefore an increasing number of ramp-up processes, these costs even rise. So assembly systems should reduce these efforts and simultaneously be flexible for quick adaption to changes in products and their variants. A cognitive interaction system in the field of assembly planning systems is developed wi...

  9. The Relationship Between Key Supply Chain Management Process Implementation, Competitive Advantage and Organizational Performance

    Science.gov (United States)

    2012-03-01

    with inputs from 3M; CEMEX; The Coca - Cola Company; CSX Corporation; Fletcher-Challenge; Goodyear Tire and Rubber Company; Hewlett-Packard Company...customer’s expectations. Ultimately, CSM process metrics should reflect the impact of CSM on the organization’s efficiency and financial performance...order fulfillment solutions, the associated benefits to the customer, and the impact on the financial performance of the firm, its customers and

  10. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol

    OpenAIRE

    Maurya, Devendra Prasad; Singla, Ankit; Negi, Sangeeta

    2015-01-01

    Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. P...

  11. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    Science.gov (United States)

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  12. Key processes for Cheirolophus (Asteraceae diversification on oceanic islands inferred from AFLP data.

    Directory of Open Access Journals (Sweden)

    Daniel Vitales

    Full Text Available The radiation of the genus Cheirolophus (Asteraceae in Macaronesia constitutes a spectacular case of rapid diversification on oceanic islands. Twenty species - nine of them included in the IUCN Red List of Threatened Species - have been described to date inhabiting the Madeiran and Canarian archipelagos. A previous phylogenetic study revealed that the diversification of Cheirolophus in Macaronesia started less than 2 Ma. As a result of such an explosive speciation process, limited phylogenetic resolution was reported, mainly due to the low variability of the employed molecular markers. In the present study, we used highly polymorphic AFLP markers to i evaluate species' boundaries, ii infer their evolutionary relationships and iii investigate the patterns of genetic diversity in relation to the potential processes likely involved in the radiation of Cheirolophus. One hundred and seventy-two individuals representing all Macaronesian Cheirolophus species were analysed using 249 AFLP loci. Our results suggest that geographic isolation played an important role in this radiation process. This was likely driven by the combination of poor gene flow capacity and a good ability for sporadic long-distance colonisations. In addition, we also found some traces of introgression and incipient ecological adaptation, which could have further enhanced the extraordinary diversification of Cheirolophus in Macaronesia. Last, we hypothesize that current threat categories assigned to Macaronesian Cheirolophus species do not reflect their respective evolutionary relevance, so future evaluations of their conservation status should take into account the results presented here.

  13. Key processes for Cheirolophus (Asteraceae) diversification on oceanic islands inferred from AFLP data.

    Science.gov (United States)

    Vitales, Daniel; García-Fernández, Alfredo; Pellicer, Jaume; Vallès, Joan; Santos-Guerra, Arnoldo; Cowan, Robyn S; Fay, Michael F; Hidalgo, Oriane; Garnatje, Teresa

    2014-01-01

    The radiation of the genus Cheirolophus (Asteraceae) in Macaronesia constitutes a spectacular case of rapid diversification on oceanic islands. Twenty species - nine of them included in the IUCN Red List of Threatened Species - have been described to date inhabiting the Madeiran and Canarian archipelagos. A previous phylogenetic study revealed that the diversification of Cheirolophus in Macaronesia started less than 2 Ma. As a result of such an explosive speciation process, limited phylogenetic resolution was reported, mainly due to the low variability of the employed molecular markers. In the present study, we used highly polymorphic AFLP markers to i) evaluate species' boundaries, ii) infer their evolutionary relationships and iii) investigate the patterns of genetic diversity in relation to the potential processes likely involved in the radiation of Cheirolophus. One hundred and seventy-two individuals representing all Macaronesian Cheirolophus species were analysed using 249 AFLP loci. Our results suggest that geographic isolation played an important role in this radiation process. This was likely driven by the combination of poor gene flow capacity and a good ability for sporadic long-distance colonisations. In addition, we also found some traces of introgression and incipient ecological adaptation, which could have further enhanced the extraordinary diversification of Cheirolophus in Macaronesia. Last, we hypothesize that current threat categories assigned to Macaronesian Cheirolophus species do not reflect their respective evolutionary relevance, so future evaluations of their conservation status should take into account the results presented here.

  14. Food nanotechnology: water is the key to lowering the energy density of processed foods.

    Science.gov (United States)

    Robson, A A

    2011-01-01

    It is crucial that emergent technologies create foods that help prevent the causal mechanisms of the diet induced disease epidemic. Food nanotechnology could create modem convenience foods that mimic and improve on the nutritional value of the most nutritious cooked wild foods for humans. Structuring a solid processed food similar to a celery stalk using self-assembled, water-filled, edible nanocells or nanotubes would substantially lower its energy density (Food technologists could harness the natural turgor force to produce a firm chocolate bar, biscuit or breakfast cereal with a good bite, without altering the appearance or taste of the product. Water carries flavour with few calories, and taste sensation per mouthful could be improved by processing food on the nanoscale to increase the surface area that is in contact with taste and smell receptors. The bioavailable nutrient content (including cofactors) of processed foods could be increased by existing bioactive nanoencapsulation. This would allow people to continue to consume modern convenience food on a mass scale, while simultaneously and significantly increasing nutrient intake and reducing energy intake per day. Thus, helping to reduce mental ill health, obesity and other postprandial insults.

  15. [Effects and mechanism of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem].

    Science.gov (United States)

    Wang, Li-qin; Qi, Yu-chun; Dong, Yun-she; Peng, Qin; Guo, Shu-fang; He, Yun-long; Yan, Zhong-qing

    2015-11-01

    As a widespread natural phenomenon in the soil of middle and high latitude as well as high altitude, freeze-thawing cycles have a great influence on the nitrogen cycle of terrestrial ecosystem in non-growing season. Freeze-thawing cycles can alter the physicochemical and biological properties of the soil, which thereby affect the migration and transformation of soil nitrogen. The impacts of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem found in available studies remain inconsistent, the mechanism is still not clear, and the research methods also need to be further explored and innovated. So it is necessary to sum up and analyze the existing achievements in order to better understand the processes of soil nitrogen cycle subjected to freeze-thawing cycles. This paper reviewed the research progress in China and abroad about the effects and mechanisms of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem, including mineralization, immobilization, nitrification and denitrification, N leakage and gaseous loss, and analyzed the deficiencies of extant research. The possible key research topics that should be urgently paid more attention to in the future were also discussed.

  16. Toward a cognitive-affective model of goal-setting in rehabilitation: is self-regulation theory a key step?

    Science.gov (United States)

    Siegert, Richard J; McPherson, Kathryn M; Taylor, William J

    2004-10-21

    The aim of this article is to argue that self-regulation theory might offer a useful model for clinical practice, theory-building and empirical research on goal-setting in rehabilitation. Relevant literature on goal-setting and motivation in rehabilitation is considered and some problematic issues for current practice and future research are highlighted. Carver and Scheier's self-regulation theory and its application to rehabilitation research is examined. It is argued that self-regulation theory offers a robust theoretical framework for goal-setting and one in which the salient concepts of motivation and emotion are prominent. Self-regulation theory offers a potentially useful heuristic framework for rehabilitation research.

  17. Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's β-secretase

    Science.gov (United States)

    Scholefield, Zoe; Yates, Edwin A.; Wayne, Gareth; Amour, Augustin; McDowell, William; Turnbull, Jeremy E.

    2003-01-01

    Cleavage of amyloid precursor protein (APP) by the Alzheimer's β-secretase (BACE1) is a key step in generating amyloid β-peptide, the main component of amyloid plaques. Here we report evidence that heparan sulfate (HS) interacts with β-site APP-cleaving enzyme (BACE) 1 and regulates its cleavage of APP. We show that HS and heparin interact directly with BACE1 and inhibit in vitro processing of peptide and APP substrates. Inhibitory activity is dependent on saccharide size and specific structural characteristics, and the mechanism of action involves blocking access of substrate to the active site. In cellular assays, HS specifically inhibits BACE1 cleavage of APP but not alternative cleavage by α-secretase. Endogenous HS immunoprecipitates with BACE1 and colocalizes with BACE1 in the Golgi complex and at the cell surface, two of its putative sites of action. Furthermore, inhibition of cellular HS synthesis results in enhanced BACE1 activity. Our findings identify HS as a natural regulator of BACE1 and suggest a novel mechanism for control of APP processing. PMID:14530380

  18. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers

    Directory of Open Access Journals (Sweden)

    Sun J

    2015-12-01

    Full Text Available Jing Sun,1 Yidi Guo,1 Xueqi Fu,1–3 Yongsen Wang,1 Ye Liu,1 Bo Huo,1 Jun Sheng,4 Xin Hu1–3 1School of Life Sciences, 2Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, 3National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 4Yunnan Research Centre for Advance Tea Processing, Yunnan Agricultural University, Kunming, People’s Republic of China Background: Breast cancer is one of the most frequently occurring cancers in women. In recent years, Dendrobium candidum has played a part in antihyperthyroidism and anticancer drugs. This study aims to examine the antitumor effect of D. candidum on breast cancer. Methods: Human breast cancer cell line MCF-7 and normal breast epithelial cell line MCF10A were used to observe the effects of D. candidum treatment on human breast cancer. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was employed to examine the cell proliferation of the MCF-7 and MCF10A cells. Western blot analysis and reverse transcription polymerase chain reaction were used to detect the key molecules and biomarkers in breast cancer pathology. Cell cycle was analyzed by using Becton Dickinson FACScan cytofluorometer. Results: The results indicated that D. candidum significantly decreased cell viability at different concentrations compared to the control group (P<0.05. D. candidum-treated MCF-7 cells in the G2/M phase was significantly increased compared to the control group (P<0.05. The messenger RNA levels of estrogen receptor alpha, IGFBP2, IGFBP4, and GATA3 were significantly decreased, and the messenger RNA and protein levels of ELF5, p53, p21, p18, CDH1, CDH2, and p12 were significantly increased, compared to the control group (P<0.05. The protein levels of estrogen receptor alpha, PGR, GATA3, and Ki67 were significantly decreased and the protein levels of p53 and ELF5 were significantly increased compared to the control group (P

  19. The key network communication technology in large radiation image cooperative process system

    International Nuclear Information System (INIS)

    Li Zheng; Kang Kejun; Gao Wenhuan; Wang Jingjin

    1998-01-01

    Large container inspection system (LCIS) based on radiation imaging technology is a powerful tool for the customs to check the contents inside a large container without opening it. An image distributed network system is composed of operation manager station, image acquisition station, environment control station, inspection processing station, check-in station, check-out station, database station by using advanced network technology. Mass data, such as container image data, container general information, manifest scanning data, commands and status, must be on-line transferred between different stations. Advanced network communication technology is presented

  20. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements

    DEFF Research Database (Denmark)

    Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika

    2014-01-01

    of proprioceptive-only and of multi-sensory information about hand position when reaching for a visual target. TMS over two distinct stimulation sites elicited differential effects: TMS applied over the posterior part of the medial intraparietal sulcus (mIPS) compromised reaching accuracy when proprioception...... was the only sensory information available for correcting the reaching error. When visual feedback of the hand was available, TMS over the anterior intraparietal sulcus (aIPS) prolonged reaching time. Our results show for the first time the causal involvement of the posterior mIPS in processing proprioceptive...

  1. Categorisation of Practices and Sources- A Key Issue in Licensing Process

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.; Vokal, B.; Petrovic, Z.

    2004-01-01

    The analysis of a radioactive sources inventory in countries with a nuclear programme usually comprises nearly all possible man-made sources available today, from sources related to nuclear power plants to calibration sources used for educational purposes. The risk based licensing process of radiation sources and exposures is a demanding task which could be internationally harmonised by introducing sources and practice related categorisation. The detailed categorisation of radioisotopes, replacing [1], was recently published [2]. The activity ratio (A/D ratio) is used as a basic parameter which is proportional to a risk involved in a use of a radioisotope. Radioisotopes as well as related practices are categorised. No categorisation of ionising sources related to electrical apparatus producing ionising radiation without radioisotopes has been given in literature. In addition, licensees usually perform many different activities with a specific source, so the categorisation of practice should be done, based on a risk involved with a specific practice. The risk is related to the probability of a specific event as well as to the consequences of that event. It is strongly related to the categorisation of source. The main issues related to a licensing process of sources and practices are presented. The review of possible categorisation of radioisotopes and related practices is given and a proposal of a combined harmonised approach of categorisation of sources and practices, based on risk, is given. (Author) 19 refs

  2. BPR implementation process: an analysis of key success and failure factors

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Khoshlafz

    2016-08-01

    Full Text Available This paper investigates the effects of different factors influencing on the successful implementation of the business process re-engineering (BPR in Iran. The study selects 386 experts randomly and using some statistical tests examines the effects of four groups of factors including strategic, organizational, methodologic and technological & educational issues on the success of the BPR implementation in Iran. The study designs a questionnaire in Likert scale and distributes it among some experts where Cronbach alpha was calculated as 0.71. The implementation of Pearson correlation ratio has confirmed that technological and educational factors marinated the highest effects (r = 0.523, Sig. = 0.000 followed by strategic (r = 0.505, Sig. = 0.000, organizational (r = 0.352, Sig. = 0.000 and methodologic issues (r = 0.267, Sig. = 0.000. In addition, the implementation of Stepwise regression has confirmed that technological & educational, strategic and methodologic factors influence on BPR in Iran.

  3. ORGANIZATIONAL CULTURE AND LEADERSHIP STYLE: KEY FACTORS IN THE ORGANIZATIONAL ADAPTATION PROCESS

    Directory of Open Access Journals (Sweden)

    Ivona Vrdoljak Raguž

    2017-01-01

    Full Text Available This paper intends to theorize about how the specific leadership style affects the organizational adaptation in terms of its external environment through fostering the desired organizational culture. Adaptation success, the dimensions of organizational culture and the executive leadership role in fostering the desired corporate culture conducive to the organizational adaptation process are discussed in this paper. The objective of this paper is to highlight the top executive managers’ crucial role and their leadership style in creating such an internal climate within an organization that, in turn, encourages and strengthens the implementation of changes and adaptation to its environment. The limitations of this paper lie in the consideration that this subject matter is discussed only at a theoretical level and that its validity should be proved through practical application.

  4. MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES

    International Nuclear Information System (INIS)

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material-regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ∼10 5 years, the outer embryo can migrate ∼6 AU and grow to roughly 30 M + . This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  5. Key issues in food processing by irradiation in developing countries and the ensuing regulatory aspects

    Energy Technology Data Exchange (ETDEWEB)

    Mossel, D A. A

    1986-12-31

    Food irradiation offers tremendous potential as a means of food preservation, particularly for developing countries. Irradiating food on a commercial scale has distinct advantages. Through irradiation, the keeping quality of a variety of food will be increased, insect infestation will be controlled, and dangerous intestinal pathogens will be eliminated. It will also facilitate export of food, which will aid national economic development, provide employment opportunities and foster the development of personnel trained in the technology. While food irradiation may be of importance and use in developing countries, it is equally important that developing countries are not used as `testing grounds` for commercial food irradiation. By and large, public reluctance to accept food irradiation is deep-rooted. Fears need to be allayed through exposure to research results and extensive talks by experts and individuals from research institutions and the United Nations. If such attempts fail, it may be necessary for the government to embark on a program of introducing alternative food processes or technologies, e.g. food dehydration, fermentation, thermal or chemical treatments. In the eventual adoption of food irradiation, inspection of plants and manufacturing and distribution practices, monitoring of production lines, and testing of final product samples will be necessary

  6. Key process parameters involved in the treatment of olive mill wastewater by membrane bioreactor.

    Science.gov (United States)

    Jaouad, Y; Villain-Gambier, M; Mandi, L; Marrot, B; Ouazzani, N

    2018-04-18

    The Olive Mill Wastewater (OMWW) biodegradation in an external ceramic membrane bioreactor (MBR) was investigated with a starting acclimation step with a Ultrafiltration (UF) membrane (150 kDa) and no sludge discharge in order to develop a specific biomass adapted to OMWW biodegradation. After acclimation step, UF was replaced by an Microfiltration (MF) membrane (0.1 µm). Sludge Retention Time (SRT) was set around 25 days and Food to Microorganisms ratio (F/M) was fixed at 0.2 kg COD  kg MLVSS -1  d -1 . At stable state, removal of the main phenolic compounds (hydroxytyrosol and tyrosol) and Chemical Oxygen Demand (COD) were successfully reached (95% both). Considered as a predominant fouling factor, but never quantified in MBR treated OMWW, Soluble Microbial Products (SMP) proteins, polysaccharides and humic substances concentrations were determined (80, 110 and 360 mg L -1 respectively). At the same time, fouling was easily managed due to favourable hydraulic conditions of external ceramic MBR. Therefore, OMWW could be efficiently and durably treated by an MF MBR process under adapted operating parameters.

  7. Key issues in food processing by irradiation in developing countries and the ensuing regulatory aspects

    International Nuclear Information System (INIS)

    Mossel, D. A. A.

    1985-01-01

    Food irradiation offers tremendous potential as a means of food preservation, particularly for developing countries. Irradiating food on a commercial scale has distinct advantages. Through irradiation, the keeping quality of a variety of food will be increased, insect infestation will be controlled, and dangerous intestinal pathogens will be eliminated. It will also facilitate export of food, which will aid national economic development, provide employment opportunities and foster the development of personnel trained in the technology. While food irradiation may be of importance and use in developing countries, it is equally important that developing countries are not used as 'testing grounds' for commercial food irradiation. By and large, public reluctance to accept food irradiation is deep-rooted. Fears need to be allayed through exposure to research results and extensive talks by experts and individuals from research institutions and the United Nations. If such attempts fail, it may be necessary for the government to embark on a program of introducing alternative food processes or technologies, e.g. food dehydration, fermentation, thermal or chemical treatments. In the eventual adoption of food irradiation, inspection of plants and manufacturing and distribution practices, monitoring of production lines, and testing of final product samples will be necessary

  8. Ripple scalings in geothermal facilities, a key to understand the scaling process

    Science.gov (United States)

    Köhl, Bernhard; Grundy, James; Baumann, Thomas

    2017-04-01

    Scalings are a widespread problem among geothermal plants which exploit the Malm Aquifer in the Bavarian Molasse Zone. They effect the technical and economic efficiency of geothermal plants. The majority of the scalings observed at geothermal facilities exploring the Malm aquifer in the Bavarian Molasse Basin are carbonates. They are formed due to a disruption of the lime-carbonic-acid equilibrium during production caused by degassing of CO2. These scalings are found in the production pipes, at the pumps and at filters and can nicely be described using existing hydrogeochemical models. This study proposes a second mechanism for the formation of scalings in ground-level facilities. We investigated scalings which accumulated at the inlet to the heat exchanger. Interestingly, the scalings were recovered after the ground level facilities had been cleaned. The scalings showed distinct ripple structures, which is likely a result of solid particle deposition. From the ripple features the the flow conditions during their formation were calculated based on empirical equations (Soulsby, 2012). The calculations suggest that the deposits were formed during maintenance works. Thin section images of the sediments indicate a two-step process: deposition of sediment grains, followed by stabilization with a calcite layer. The latter likely occured during maintenance. To prevent this type of scalings blocking the heat exchangers, the maintenance procedure has to be revised. References: Soulsby, R. L.; Whitehouse, R. J. S.; Marten, K. V.: Prediction of time-evolving sand ripples in shelf seas. Continental Shelf Research 2012, 38, 47-62

  9. Key elements of successful care process of patients with heart symptoms in an emergency care - could an ERP system help?

    Science.gov (United States)

    Kontio, Elina; Korvenranta, Heikki; Lundgren-Laine, Heljä; Salanterä, Sanna

    2009-01-01

    The aim of the study was to identify key elements of successful care process of patients with heart symptoms from the nursing management viewpoint in an emergency care. Through these descriptions, we aimed at identifying possibilities for using enterprise resource planning (ERP) systems to support decision making in emergency care. Hospitals are increasingly moving to process-based workings and at the same time new information system in healthcare are developed and therefore it is essential to understand the strengths and weaknesses of current processes better. A qualitative descriptive design using critical incident technique was employed. Critical Incidents were collected with an open-ended questionnaire. The sample (n=50), 13 head nurses and 37 registered nurses, was purposeful selected from three acute hospitals in southern Finland. The process of patients with heart symptoms in emergency care was described. We identified three competence categories where special focus should be placed to achieve successful process of patients with heart symptoms: process-oriented competencies, personal/management competencies and logistics oriented competencies. Improvement of decision making requires that the care processes are defined and modeled. The research showed that there are several happenings in emergency care where an ERP system could help and support decision making. These happenings can be categorized in two groups: 1) administrative related happenings and 2) patient processes related happenings.

  10. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala A.; Mariappan, Kiruthiga; Bigeard, Jean; Manickam, Prabhu; Blilou, Ikram; Guo, Xiujie; Al-Babili, Salim; Pflieger, Delphine; Hirt, Heribert; Rayapuram, Naganand

    2018-01-01

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  11. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala Abdulaziz Hussien

    2018-05-31

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  12. Deciphering the function and regulation of SbCAD2: A key lignin gene to improve sorghum biomass degradability

    Science.gov (United States)

    Genetic modification of lignin biosynthesis in the cell wall of biofuel feedstocks is likely one of the most effective ways to improve the conversion efficiency of cellulosic biomass to biofuel for the bioenergy industry. As a key enzyme that catalyzes the last step of monolignol synthesis, cinnamy...

  13. Boundary-layer processes: key findings from MATERHORN-X field campaigns

    Science.gov (United States)

    Di Sabatino, Silvana; Leo, Laura S.; Pardyjak, Eric R.; Fernando, Harindra JS

    2017-04-01

    Understanding of atmospheric boundary-layer processes in complex terrain continues to be an active area of research considering its profound implications on numerical weather prediction (WP). It is largely recognized that nocturnal circulation, non-stationary processes involved in evening and morning transitions as well gusty conditions near mountains are poorly captured by current WP models. The search for novel understanding of boundary-layer phenomena especially in critical conditions for WP models has been one of the goals of the interdisciplinary Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program (2011-2016). The program developed with four main pillars: modelling (MATERHORN-M), experiments (MATERHORN-X), technology (MATERHORN-T), and parameterizations (MATERHORN-P), all synergistically working to meet new scientific challenges, address them effectively through dedicated field and laboratory studies, and transfer the acquired knowledge for model improvements. Specifically, MATERHORN-X is at the core of the MATERHORN program. It was built upon two major field experiments carried out in 31 September-October 2012 and in May 2013 at the Granite Mountain Atmospheric Science Testbed 32 (GMAST) of the Dugway Proving Ground (DPG). In this talk we will focus on results of data analyses from MATERHORN-X with emphasis on several aspects of the nocturnal circulation under low synoptic forcing when stable stratification occurs. The first part of the talk will discuss the evolution of nocturnal flows including both evening transitions on slopes and valleys as well as the occurrence of isolated flow bursts under very stable conditions. As far as the former is concerned we report on our latest understanding of mechanisms leading to evening transitions (e.g. shadow front, slab flow, and transitional front). As far as the latter is concerned, it is hypothesized that a link exists between isolated bursts in turbulent kinetic energy and low-level jets

  14. Some key techniques of SPOT-5 image processing in new national land and resources investigation project

    Science.gov (United States)

    Xue, Changsheng; Li, Qingquan; Li, Deren

    2004-02-01

    In 1988, the detail information on land resource was investigated in China. Fourteen years later, it has changed a lot. It is necessary that the second land resource detailed investigation should be implemented. On this condition, the New National Land and Resources Investigation Project in China, which will last 12 years, has been started since 1999. The project is directly under the administration of the Ministry of Land and Resource (MLR). It was organized and implemented By China Geological, China Land Surveying and Planning Institute (CLSPI) and Information Center of MLR. It is a grand and cross century project supported by the Central Finance, based on State and public interests and strategic characteristics. Up to now, "Land Use Dynamic Monitoring By Remote Sensing," "Arable Land Resource Investigation," "Rural Collective Land Property Right Investgiation," "Establishment of Public Consulting Standardization of Cadastral Information," "Land Resource Fundamental Maps and Data Updating," "Urban Land Price Investigation and Intensive Utilization Potential Capacity Evaluation," "Farmland Classification, Gradation, and Evaluation," "Land Use Database Construction at City or County Level" 8 subprojects have had the preliminary achievements. In this project, SPOT-1/2/4 and Landsat-7 TM data were always applied to monitor land use dynamic change as the main data resource. Certainly, IRS, CBERS-2, and IKONOS data also were tested in small areas. In 2002, the SPOT-5 data, whose spatial resolution of the panchromatic image is 2.5 meters and the spectral one is 10 meters, were applied into update the land use base map at the 1:10000 scale in 26 Chinese cities. The purpose in this paper is to communicate the experience of SPOT-5 image processing with the colleagues.

  15. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  16. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    Science.gov (United States)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.

  17. Dissociative Recombination - a Key Process in Ionospheres of Giant Planets and their Satellites

    Science.gov (United States)

    Geppert, W. D.; Vigren, E.; Hamberg, M.; Thomas, R. D.; Semaniak, J.; Österdahl, F.; Zhaunerchyk, V.; Kaminska, M.; Hellberg, F.; Larsson, M.

    2007-08-01

    Ion reactions are amongst the most crucial processes in upper layers of planetary atmospheres. Dissociative recombination (DR) plays a particularly important role, since it usually is a barier-less process and thus feasible at the low collision energies prevalent in colder plasmas like the ones encountered in planetary ionospheres. Because of this fact it constitutes the only destruction mechanism for some ionospheric ions. DR processes are therefore included in model calculation of reaction networks for such environments, which greatly depend on the quality of the input data. Unfortunately, very often experimental results on these reactions are lacking even for the most important species. This is aggravated by the fact that, due to their exoergicity, DR reactions usually can have several pathways leading to very different products and the relative importance of these channels has often proven quite surprising. The CRYRING ion storage ring, located at the Manne Siegbahn laboratory at Stockholm University, allows measurement of DR branching ratios and cross sections at collision energies relevant to planetary ionospheres. We present such data for two different ions that are crucial for the chemistry of Io's and Titan's atmosphere, respectively: SO+2 and CH3CNH+. The DR of the SO+2 ion deserves special attention since it has been detected in both the exosphere and ionosphere of the Jovian satellite Io, by both the Voyager and Galileo missions (Bridge et al., 1979, Blanco-Cano et al., 2001). Io is especially interesting in this respect since its atmosphere is actually dominated by sulfur dioxide and, consequently, its ionosphere is particularly rich in SO+2 ions. The branching ratio of the S18O+2 + e- ! S18O + 18O channel amounts to 61%, whilst the three body breakup S18O+2 + e- ! S + 218O accounts for the remaining 39 % of the total reaction (the 18O isotopomere was used for experimental reasons in the present study). The thermal reaction rate obtained followed the

  18. The Process of Legal Drafting Regulation in the Development of the Nuclear Power Plant in Indonesia

    OpenAIRE

    Mardha, Amil

    2009-01-01

    THE PROCESS OF LEGAL DRAFTING REGULATION IN THE DEVELOPMENT OF THE NUCLEAR POWER PLANT IN INDONESIA. In Indonesia, the process of legal drafting to establish the regulation is based on the Act No. 10 Year 2004 on the Establishment of Legislation. The process shall comply with the constitutional and institutional requirements of national political and legal system. In drafting the development of the regulation of nuclear energy, BAPETEN has been involving some other agencies or other related g...

  19. Corporate governance – research of key indicators on market of processing industry in the Czech Republic via cluster analysis

    Directory of Open Access Journals (Sweden)

    Iveta Šimberová

    2012-01-01

    Full Text Available The discussion on corporate governance has oriented on practical problems, including corporate fraud, the abuse of managerial power and social irresponsibility. Contemporary cognition implicates the fact that the questions regarding to corporate governance are very actual especially in relation to company competitiveness, company performance and sustainability of success (long term viability. Paper is focused to the current questions regarding to the definition of corporate governance, looking for the appropriate conceptual framework and identification of key corporate governance indicators in selected industrial market in the Czech Republic via cluster analysis. The scientific aim is looking for the appropriate key indicators in processing industry as a base for the corporate governance performance measurement. The presentations of the results in the paper are just part of selected results in the framework of the elaborated research project titled “Construction of Methods for Multifactor Assessment of Company Complex Performance in Selected Sectors”.

  20. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity

    DEFF Research Database (Denmark)

    Burbage, Marianne; Keppler, Selina J; Gasparrini, Francesca

    2015-01-01

    The small Rho GTPase Cdc42, known to interact with Wiskott-Aldrich syndrome (WAS) protein, is an important regulator of actin remodeling. Here, we show that genetic ablation of Cdc42 exclusively in the B cell lineage is sufficient to render mice unable to mount antibody responses. Indeed Cdc42-de...

  1. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  2. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Rui-Yun Peng

    2016-01-01

    With key roles in essential brain functions ranging from the long-term potentiation (LTP) to synaptic plasticity,the N-methyl-D-aspartic acid receptor (NMDAR) can be considered as one of the fundamental glutamate receptors in the central nervous system.The role of NMDA R was first identified in synaptic plasticity and has been extensively studied.Some molecules,such as Ca2+,postsynaptic density 95 (PSD-95),calcium/calmodulin-dependent protein kinase Ⅱ (CaMK Ⅱ),protein kinase A (PKA),mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB),are of special importance in learning and memory.This review mainly focused on the new research of key molecules connected with learning and memory,which played important roles in the NMDAR signaling pathway.

  3. Self-Regulation Processes and Thriving in Childhood and Adolescence: A View of the Issues

    Science.gov (United States)

    Lerner, Richard M.; Lerner, Jacqueline V.; Bowers, Edmond P.; Lewin-Bizan, Selva; Gestsdottir, Steinunn; Urban, Jennifer Brown

    2011-01-01

    Both organismic and intentional self-regulation processes must be integrated across childhood and adolescence for adaptive developmental regulations to exist and for the developing person to thrive, both during the first two decades of life and through the adult years. To date, such an integrated, life-span approach to self-regulation during…

  4. Expert Voices in Learning Improvisation: Shaping Regulation Processes through Experiential Influence

    Science.gov (United States)

    de Bruin, Leon R.

    2017-01-01

    Interpersonal and collaborative activity plays an important role in the social aspects of self-regulated learning (SRL) development. Peer, teacher and group interactions facilitate support for self-regulation, co-regulation and socially shared regulatory processes. Situated and experiential interplay facilitates personal, co-constructed and…

  5. Effects of Self-Regulated Vocabulary Learning Process on Self-Efficacy

    Science.gov (United States)

    Mizumoto, Atsushi

    2013-01-01

    Researchers, especially in the field of educational psychology, have argued that self-efficacy plays an important role in self-regulated learning. As such, teaching of self-regulated learning often focuses on enhancing self-efficacy. However, few studies have examined how the process of self-regulated learning might lead to the enhancement of…

  6. Key decisions in a generic process for disposition of buildings that have actual or potential radiological contamination

    International Nuclear Information System (INIS)

    Spesard, A.; Donavan, K.; Bowden, B.; Crane, L.; Jensen, G.; Fox, K.L.; Goodwin, R.; Vandegrift, R.

    1997-01-01

    The Cleanup Standards Committee, formed within the Ohio Federal Facilities Forum, focuses on addressing issues related to cleanup levels and standards. To facilitate decision-making for the disposition of buildings that have potential or actual radiological contamination, the Cleanup Standards Committee developed a process to support building disposition decisions. This process is needed for two reasons: (1) due to changing missions, an increasing number of buildings on federal properties require disposition, and (2) current federal initiatives encourage the transfer of buildings and land for reuse and economic redevelopment. Since the committee developed this process using a teaming effort, the process reflects the experience, expertise, and opinions of committee members and other individuals with a broad range of experience and knowledge. The Generic Process for the Disposition of Buildings that have Potential or Actual Radiological Contamination is intended for use by Federal Facilities responsible for the cleanup of buildings at sites that have radiological process history. This process provides (1) a framework and supporting implementation guidelines for evaluating buildings that have actual or potential radiological contamination, and (2) a process for making building disposition decisions. This paper outlines on the key decision points and the associated data requirements of the process. Specifically, this paper focuses on the following decisions: Which decision-makers are appropriate to involve in the building disposition process; What is the preferred disposition of a building; What criteria are applicable for unconditional release; Is there sufficient existing information to proceed with disposition of a building; What level of survey is appropriate to determine and/or implement a preferred disposition of a building; and how are uncertainties addressed when implementing a building disposition

  7. Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice.

    Science.gov (United States)

    Laperrousaz, Elise; Moullé, Valentine S; Denis, Raphaël G; Kassis, Nadim; Berland, Chloé; Colsch, Benoit; Fioramonti, Xavier; Philippe, Erwann; Lacombe, Amélie; Vanacker, Charlotte; Butin, Noémie; Bruce, Kimberley D; Wang, Hong; Wang, Yongping; Gao, Yuanqing; Garcia-Caceres, Cristina; Prévot, Vincent; Tschöp, Matthias H; Eckel, Robert H; Le Stunff, Hervé; Luquet, Serge; Magnan, Christophe; Cruciani-Guglielmacci, Céline

    2017-07-01

    Regulation of energy balance involves the participation of many factors, including nutrients, among which are circulating lipids, acting as peripheral signals informing the central nervous system of the energy status of the organism. It has been shown that neuronal lipoprotein lipase (LPL) participates in the control of energy balance by hydrolysing lipid particles enriched in triacylglycerols. Here, we tested the hypothesis that LPL in the mediobasal hypothalamus (MBH), a well-known nucleus implicated in the regulation of metabolic homeostasis, could also contribute to the regulation of body weight and glucose homeostasis. We injected an adeno-associated virus (AAV) expressing Cre-green fluorescent protein into the MBH of Lpl-floxed mice (and wild-type mice) to specifically decrease LPL activity in the MBH. In parallel, we injected an AAV overexpressing Lpl into the MBH of wild-type mice. We then studied energy homeostasis and hypothalamic ceramide content. The partial deletion of Lpl in the MBH in mice led to an increase in body weight compared with controls (37.72 ± 0.7 g vs 28.46 ± 0.12, p < 0.001) associated with a decrease in locomotor activity. These mice developed hyperinsulinaemia and glucose intolerance. This phenotype also displayed reduced expression of Cers1 in the hypothalamus as well as decreased concentration of several C18 species of ceramides and a 3-fold decrease in total ceramide intensity. Conversely, overexpression of Lpl specifically in the MBH induced a decrease in body weight. Our study shows that LPL in the MBH is an important regulator of body weight and glucose homeostasis.

  8. Intracellular Calreticulin Regulates Multiple Steps in Fibrillar Collagen Expression, Trafficking, and Processing into the Extracellular Matrix*

    OpenAIRE

    Van Duyn Graham, Lauren; Sweetwyne, Mariya T.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2009-01-01

    Calreticulin (CRT), a chaperone and Ca2+ regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts defi...

  9. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    Science.gov (United States)

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  10. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  11. The match-mismatch model of emotion processing styles and emotion regulation strategies in fibromyalgia.

    NARCIS (Netherlands)

    Geenen, R.; Ooijen-van der Linden, L. van; Lumley, M.A.; Bijlsma, J.W.J.; Middendorp, H. van

    2012-01-01

    OBJECTIVE: Individuals differ in their style of processing emotions (e.g., experiencing affects intensely or being alexithymic) and their strategy of regulating emotions (e.g., expressing or reappraising). A match-mismatch model of emotion processing styles and emotion regulation strategies is

  12. Writing Regulation Processes in Higher Education: A Review of Two Decades of Empirical Research

    Science.gov (United States)

    Sala-Bubaré, Anna; Castelló, Montserrat

    2018-01-01

    In Higher Education (HE), writers need to regulate their writing processes in order to achieve their communicative goals. Although critical for academic success and knowledge construction, writing regulation processes have been mainly researched in compulsory education rather than in HE, with no systematic review focused on this context. The…

  13. Control of PNG kinase, a key regulator of mRNA translation, is coupled to meiosis completion at egg activation.

    Science.gov (United States)

    Hara, Masatoshi; Petrova, Boryana; Orr-Weaver, Terry L

    2017-05-30

    The oocyte-to-embryo transition involves extensive changes in mRNA translation, regulated in Drosophila by the PNG kinase complex whose activity we show here to be under precise developmental control. Despite presence of the catalytic PNG subunit and the PLU and GNU activating subunits in the mature oocyte, GNU is phosphorylated at Cyclin B/CDK1sites and unable to bind PNG and PLU. In vitro phosphorylation of GNU by CyclinB/CDK1 blocks activation of PNG. Meiotic completion promotes GNU dephosphorylation and PNG kinase activation to regulate translation. The critical regulatory effect of phosphorylation is shown by replacement in the oocyte with a phosphorylation-resistant form of GNU, which promotes PNG-GNU complex formation, elevation of Cyclin B, and meiotic defects consistent with premature PNG activation. After PNG activation GNU is destabilized, thus inactivating PNG. This short-lived burst in kinase activity links development with maternal mRNA translation and ensures irreversibility of the oocyte-to-embryo transition.

  14. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Luisa Berná

    2017-03-01

    Full Text Available American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions.

  15. Key indicators for tracking 2030 strategies towards decarbonization in the EU: which indicators, why and what process for using them?

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2016-09-01

    Decarbonizing national economies will require significant structural transformations of national energy systems and a number of emissions intensive sectors. Policy makers will therefore need to identify a comprehensive and coherent set of goals for each key aspect of the transition and monitor progress towards achieving these goals using indicators. But which specific goals and indicators should they focus on? And how can we be sure that the approach is consistent with achieving deep transformation change? This paper attempts to answer this question. This question is particularly relevant for current policy debate in Europe, where EU Member States have agreed to develop a set of 'key indicators' to track progress towards decarbonization as part of the new Energy Union governance mechanism. The EU is currently in the process of developing a 'new governance mechanism' to ensure the effective implementation of the EU's Energy Union project and the achievement of the EU's targets under the 2030 Climate and Energy Framework. The new governance mechanism will have far- reaching consequences for the way that the EU and its Member States plan, monitor and coordinate on energy and climate policy post-2020. Key indicators will have a crucial role to play in this mechanism. The purpose of indicators for climate and energy policy is to monitor progress towards EU climate and energy goals. However, since the bulk of policy action towards these goals generally takes place at the Member State level, these goals must also be adopted at Member State level for the indicators to track the success of policy implementation. For this, the goals that indicators track need to be included in national climate and energy plans. The EU has proposed to make this the case for some EU goals contained in the Energy Union project, but not for other ones. A closer integration of European indictors and national plans and targets set by Member States is needed. A singular use of indicators only to

  16. Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica).

    Science.gov (United States)

    Petersen, Romina; Krost, Clemens

    2013-07-01

    Plant architecture is regulated by a complex interplay of some key players (often transcription factors), phytohormones and other signaling molecules such as microRNAs. The columnar growth habit of apple trees is a unique form of plant architecture characterized by thick and upright stems showing a compaction of internodes and carrying short fruit spurs instead of lateral branches. The molecular basis for columnar growth is a single dominant allele of the gene Columnar, whose identity, function and gene product are unknown. As a result of marker analyses, this gene has recently been fine-mapped to chromosome 10 at 18.51-19.09 Mb [according to the annotation of the apple genome by Velasco (2010)], a region containing a cluster of quantitative trait loci associated with plant architecture, but no homologs to the well-known key regulators of plant architecture. Columnar apple trees have a higher auxin/cytokinin ratio and lower levels of gibberellins and abscisic acid than normal apple trees. Transcriptome analyses corroborate these results and additionally show differences in cell membrane and cell wall function. It can be expected that within the next year or two, an integration of these different research methodologies will reveal the identity of the Columnar gene. Besides enabling breeders to efficiently create new apple (and maybe related pear, peach, cherry, etc.) cultivars which combine desirable characteristics of commercial cultivars with the advantageous columnar growth habit using gene technology, this will also provide new insights into an elevated level of plant growth regulation.

  17. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  18. The Process of Legal Drafting Regulation in the Development of the Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Amil Mardha

    2009-01-01

    In Indonesia, the process of legal drafting to establish the regulation is based on the Act No. 10 Year 2004 on the Establishment of Legislation. The process shall comply with the constitutional and institutional requirements of national political and legal system. In drafting the development of the regulation of nuclear energy, BAPETEN has been involving some other agencies or other related government agencies, and stakeholders such as utility, academic institutions, and publics. In general, in the process of legal drafting, international publications or other country regulations can be a reference and adopted. In the establishment of the regulations of nuclear energy, BAPETEN has issued some Government Regulations and Chairman Regulations of BAPETEN. For nuclear safety of NPP, the regulations have not been completed yet, but some regulations related in the area of siting of NPP have been already available. In this paper, it is discussed the process of the establishment of legislation and of the legal drafting nuclear regulation of NPP, and the current status of NPP regulations. (author)

  19. Dynamical Processes in Ageing, Gene Regulation and Communication

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss

    is that unstable activation and stable repression is a requirement for the motif to produce oscillations. The last part of this thesis studies the emergence of communication networks. In this study we constructed a simple e-mail game. E-mails from two session with 16 players, who had never met before, showed how......My thesis consists of three parts. The first part covers ageing phenomena. In the first project I measured the mobility of two DNA repair proteins. Contrasting diffusion coefficients from literature I was able to classify DNA repair protein into either "scanners" or "responders". In a second...... project we constructed a mathematical model and showed that if DNA damage is primarily caused by geno-toxic agents, it would be advantageous for cells to have a fragile DNA repair mechanism. The second part of my Ph.D. thesis covers gene regulation. In the first project we show how RNA polymerase can...

  20. Regulation of health information processing in an outsourcing environment.

    Science.gov (United States)

    2004-06-01

    Policy makers must consider the work force, technology, cost, and legal implications of their legislative proposals. AHIMA, AAMT, CHIA, and MTIA urge lawmakers to craft regulatory solutions that enforce HIPAA and support advancements in modern health information processing practices that improve the quality and cost of healthcare. We also urge increased investment in health information work force development and implementation of new technologies to advance critical healthcare outcomes--timely, accurate, accessible, and secure information to support patient care. It is essential that state legislatures reinforce the importance of improving information processing solutions for healthcare and not take actions that will produce unintended and detrimental consequences.

  1. Chemical camouflage: a key process in shaping an ant-treehopper and fig-fig wasp mutualistic network.

    Science.gov (United States)

    Wang, Bo; Lu, Min; Cook, James M; Yang, Da-Rong; Dunn, Derek W; Wang, Rui-Wu

    2018-01-30

    Different types of mutualisms may interact, co-evolve and form complex networks of interdependences, but how species interact in networks of a mutualistic community and maintain its stability remains unclear. In a mutualistic network between treehoppers-weaver ants and fig-pollinating wasps, we found that the cuticular hydrocarbons of the treehoppers are more similar to the surface chemical profiles of fig inflorescence branches (FIB) than the cuticular hydrocarbons of the fig wasps. Behavioral assays showed that the cuticular hydrocarbons from both treehoppers and FIBs reduce the propensity of weaver ants to attack treehoppers even in the absence of honeydew rewards, suggesting that chemical camouflage helps enforce the mutualism between weaver ants and treehoppers. High levels of weaver ant and treehopper abundances help maintain the dominance of pollinating fig wasps in the fig wasp community and also increase fig seed production, as a result of discriminative predation and disturbance by weaver ants of ovipositing non-pollinating fig wasps (NPFWs). Ants therefore help preserve this fig-pollinating wasp mutualism from over exploitation by NPFWs. Our results imply that in this mutualistic network chemical camouflage plays a decisive role in regulating the behavior of a key species and indirectly shaping the architecture of complex arthropod-plant interactions.

  2. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    Science.gov (United States)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D'Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  3. Serotoninergic regulation of emotional and behavioural control processes.

    NARCIS (Netherlands)

    Cools, R.; Roberts, A.C.; Robbins, T.W.

    2008-01-01

    5-Hydroxytryptamine (5-HT, serotonin) has long been implicated in a wide variety of emotional, cognitive and behavioural control processes. However, its precise contribution is still not well understood. Depletion of 5-HT enhances behavioural and brain responsiveness to punishment or other aversive

  4. Incorporating Human Factors into design change processes - a regulator's perspective

    International Nuclear Information System (INIS)

    Staples, L.; McRobbie, H.

    2003-01-01

    Nuclear power plants in Canada must receive written approval from the Canadian Nuclear Safety Commission (CNSC) when making certain changes that are defined in their licenses. The CNSC expects the design change process to include a method for ensuring that the human-machine interface and workplace design support the safe and reliable performance of required tasks. When reviewing design changes for approval, the CNSC looks for evidence of analysis work, use of appropriate human factors design guide-lines, and verification and validation testing of the design. In addition to reviewing significant design changes, evaluations are conducted to ensure design change processes adequately address human performance. Findings from reviews and evaluations highlight the need to integrate human factors into the design change process, provide human factors training and support to engineering staff, establish processes to ensure coordination between the various groups with a vested interest in human factors, and develop more rigorous methods to validate changes to maintenance, field operations and testing interfaces. (author)

  5. PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity.

    Science.gov (United States)

    Tepper, Ronald G; Ashraf, Jasmine; Kaletsky, Rachel; Kleemann, Gunnar; Murphy, Coleen T; Bussemaker, Harmen J

    2013-08-01

    Reduced insulin/IGF-1-like signaling (IIS) extends C. elegans lifespan by upregulating stress response (class I) and downregulating other (class II) genes through a mechanism that depends on the conserved transcription factor DAF-16/FOXO. By integrating genome-wide mRNA expression responsiveness to DAF-16 with genome-wide in vivo binding data for a compendium of transcription factors, we discovered that PQM-1 is the elusive transcriptional activator that directly controls development (class II) genes by binding to the DAF-16-associated element (DAE). DAF-16 directly regulates class I genes only, through the DAF-16-binding element (DBE). Loss of PQM-1 suppresses daf-2 longevity and further slows development. Surprisingly, the nuclear localization of PQM-1 and DAF-16 is controlled by IIS in opposite ways and was also found to be mutually antagonistic. We observe progressive loss of nuclear PQM-1 with age, explaining declining expression of PQM-1 targets. Together, our data suggest an elegant mechanism for balancing stress response and development. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions.

    Science.gov (United States)

    Wang, Ludi; Clarke, Lisa A; Eason, Russell J; Parker, Christopher C; Qi, Baoxiu; Scott, Rod J; Doughty, James

    2017-01-01

    The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Should we use a direct regulation to implement the Healthy Prisons Agenda in England? A qualitative study among prison key policy makers.

    Science.gov (United States)

    Ismail, N; de Viggiani, N

    2017-08-31

    The Healthy Prisons Agenda seeks to reduce prisoners' health risks, balance prisoners' rights with a security regime, ensure equivalent prison health service provisions to community health services, and facilitate the whole-prison approach. There is an established assumption that legislation will ensure better implementation of health promotion programmes. This study aimed to examine whether a legislative framework, via a direct regulation, could lead to enhanced implementation of the Healthy Prisons Agenda in England. A qualitative study design was conducted using semi-structured interviews with 30 key prison policy makers in England. Our findings contradict the established assumption that legislation improves the implementation of health promotion programmes. A direct regulation was perceived as restrictive, manifesting excessive compliance and encouraging a risk-averse culture, whilst preoccupation with security, order and discipline amongst prison governors and custody staff was deemed an internal institutional barrier to implementing the Healthy Prisons Agenda. External barriers included diminishing resources, lengthier or delayed sentencing, and an unsympathetic public and political stance towards prisoner rehabilitation. A direct regulation should not be used to operationalize the Healthy Prisons Agenda. Rather, self-regulation, along with proactive solutions for the identified barriers to implementing the Agenda, is the most appropriate path forward. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  8. Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    Lemoine, N. P.; Valentine, J. F.

    2012-09-01

    The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.

  9. Granule protein processing and regulated secretion in neutrophils

    Directory of Open Access Journals (Sweden)

    Avinash eSheshechalam

    2014-09-01

    Full Text Available Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.

  10. Serotoninergic regulation of emotional and behavioural control processes.

    Science.gov (United States)

    Cools, Roshan; Roberts, Angela C; Robbins, Trevor W

    2008-01-01

    5-Hydroxytryptamine (5-HT, serotonin) has long been implicated in a wide variety of emotional, cognitive and behavioural control processes. However, its precise contribution is still not well understood. Depletion of 5-HT enhances behavioural and brain responsiveness to punishment or other aversive signals, while disinhibiting previously rewarded but now punished behaviours. Findings suggest that 5-HT modulates the impact of punishment-related signals on learning and emotion (aversion), but also promotes response inhibition. Exaggerated aversive processing and deficient response inhibition could underlie distinct symptoms of a range of affective disorders, namely stress- or threat-vulnerability and compulsive behaviour, respectively. We review evidence from studies with human volunteers and experimental animals that begins to elucidate the neurobiological systems underlying these different effects.

  11. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    Science.gov (United States)

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Review: Dairy foods, red meat and processed meat in the diet: implications for health at key life stages.

    Science.gov (United States)

    Givens, D I

    2018-04-02

    Social and health care provision have led to substantial increases in life expectancy. In the UK this has become higher than 80 years with an even greater proportional increase in those aged 85 years and over. The different life stages give rise to important nutritional challenges and recent reductions in milk consumption have led to sub-optimal intakes of calcium by teenage females in particular when bone growth is at its maximum and of iodine during pregnancy needed to ensure that supply/production of thyroid hormones to the foetus is adequate. Many young and pre-menopausal women have considerably sub-optimal intakes of iron which are likely to be associated with reduced consumption of red meat. A clear concern is the low intakes of calcium especially as a high proportion of the population is of sub-optimal vitamin D status. This may already have had serious consequences in terms of bone development which may not be apparent until later life, particularly in post-menopausal women. This review aims to examine the role of dairy foods and red meat at key life stages in terms of their ability to reduce or increase chronic disease risk. It is clear that milk and dairy foods are key sources of important nutrients such as calcium and iodine and the concentration of some key nutrients, notably iodine can be influenced by the method of primary milk production, in particular, the iodine intake of the dairy cow. Recent meta-analyses show no evidence of increased risk of cardiovascular diseases from high consumption of milk and dairy foods but increasing evidence of a reduction in the risk of type 2 diabetes associated with fermented dairy foods, yoghurt in particular. The recently updated reports from the World Cancer Research Fund International/American Institute for Cancer Research on the associations between dairy foods, red meat and processed meat and various cancers provide further confidence that total dairy products and milk, are associated with a reduced risk of

  13. Overview of the current National Primary Drinking Water Regulations and regulation development process

    International Nuclear Information System (INIS)

    Cotruvo, J.A.; Regelski, M.

    1989-01-01

    The promulgation of the National Primary Drinking Water Regulations (NPDWR) follows specific steps. First, the Advance Notice of Proposed Rule Making (ANPRM) is published. Second, the EPA, as mandated by the SDWA Amendments, proposes maximum contaminant levels (MCLs), (enforceable standards) and maximum contaminant level goals (MCLGs) simultaneously. The Office of Drinking Water developed a six-phase schedule that has attempted to parallel the SDWA-specified deadlines: Phase I - Voltile organic chemicals - July 8, 1987; Phase II - Synthetic organic chemicals and inorganic chemicals - June 1989, microbials and surface water treatment - June 1989, and Lead/copper - December 1988; Phase III - Radionuclides - December 1988; Phase IV - Disinfectants and disinfection by-products - June 1989; Phase V - Other inorganic chemicals, synthetic organic chemicals, and pesticides - June 1989; and Phase VI - 25 additional chemicals - January 199. In selecting contaminants for regulation, the most relevant criteria are (1) potential health risk; (2) ability to detect a contaminant in the drinking water; and (3) occurrence or potential occurrence in drinking water. The EPA uses a three category approach for setting maximum contaminant level goals for carcinogens: Category I, strong evidence of carcinogenicity-zero; Category II, equivocal evidence - reference dose (RfD) approach or 0.00001 to 0.000001 cancer risk range; and Category III, inadequate or no evidence from animal studies - RfD approach. 10 refs., 5 tabs

  14. Identification of key processes ruling environmental behaviour of naturally occurring radionuclides on example of Polish Observatory Site

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, Boguslaw [Silesian Centre for Environmental Radioactivity, Glowny Instytut Gornictwa, Plac Gwarkow 1, 40-166 Katowice (Poland)

    2014-07-01

    Developing a sufficient understanding of environmental processes and exposure pathways that permit observations to be explained and robust predictions to be made over spatial and temporal scales is a clear challenge that radioecology needs to address. This scientific challenge has been developed as a separate section of the Strategic Research Agenda (SRA) a document produced by the STAR Network of Excellence in Radioecology that outlines a suggested prioritisation of research topics in radioecology. Reality is that in order to bring the SRA to fruition, besides considerable resources and time, an available proving ground is required. The sole sources of such data are areas affected by nuclear accidents but the conditions provided do not follow requirements for scientific experiment. On the other hand, it is hard to imagine anyone deliberately releasing substantial amount of radioactivity into environment in order to observe what would happen- Some of coal mines at Upper Silesia Coal Basin have discharged radium reach brines continuously for many years. The total amount of radium released to inland water is quite well known and varies with time or exploitation conditions. This phenomenon has been observed for more than 30 years and many contaminated sites being in different state were identified. Natural radionuclides (mainly radium isotopes) present in mine water after its release into the environment are subject to different chemical and/or physical processes influencing their final fate. The processes of concern are e.g. precipitation, sedimentation, adsorption, absorption, ion exchange, desorption, leaching, erosion, sequential decay etc. Based on physical and chemical rules, available data and real environmental conditions the key processes that govern radium and its progeny behaviour after discharge with mine water, associated transfers among environmental compartments and resulting exposures of both non-human and humans populations have been identified. The

  15. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5

    OpenAIRE

    Zhang, Duanwu; Tomisato, Wataru; Su, Lijing; Sun, Lei; Choi, Jin Huk; Zhang, Zhao; Wang, Kuan-wen; Zhan, Xiaoming; Choi, Mihwa; Li, Xiaohong; Tang, Miao; Castro-Perez, Jose M.; Hildebrand, Sara; Murray, Anne R.; Moresco, Eva Marie Y.

    2017-01-01

    We discovered a previously unrecognized regulator of cholesterol biosynthesis, glycerol kinase 5 (GK5), which functions exclusively in the skin independently of cholesterol regulation in other tissues. GK5 negatively regulates the processing and nuclear localization of sterol regulatory element binding proteins, transcription factors that control expression of virtually all cholesterol synthesis enzymes. Excessive amounts of cholesterol, triglycerides, and ceramides were found in the skin of ...

  16. Emotion Regulation and Aggressive Behavior in Preschoolers: The Mediating Role of Social Information Processing

    Science.gov (United States)

    Helmsen, Johanna; Koglin, Ute; Petermann, Franz

    2012-01-01

    This study examined whether the relation between maladaptive emotion regulation and aggression was mediated by deviant social information processing (SIP). Participants were 193 preschool children. Emotion regulation and aggression were rated by teachers. Deviant SIP (i.e., attribution of hostile intent, aggressive response generation, aggressive…

  17. Developing the support business-processes information system for self-regulation institute

    Directory of Open Access Journals (Sweden)

    Kravchenko Anatoly Vasilevich

    2011-11-01

    Full Text Available Studying the methods of sructurization, optimization and the automation for modern self-regulation institute business-processes are considered in the article. The aim of the text is to show the strategy of modeling self-regulation information system and the strategy of the membership dues accounting and agency compensation.

  18. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    Energy Technology Data Exchange (ETDEWEB)

    Myrold, David D. [Oregon State Univ., Corvallis, OR (United States); Bottomely, Peter J. [Oregon State Univ., Corvallis, OR (United States); Jumpponen, Ari [Kansas State Univ., Manhattan, KS (United States); Rice, Charles W. [Kansas State Univ., Manhattan, KS (United States); Zeglin, Lydia H. [Kansas State Univ., Manhattan, KS (United States); David, Maude M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jansson, Janet K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestat, Emmanuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-17

    biology approach, considering the complex soil microbial community as a functioning system and using state-of-the-art metatranscriptomic, metaproteomic, and metabolomic approaches. These omics tools were refined, applied to field experiments, and confirmed with controlled laboratory studies. Our experiments were designed to specifically identify microbial community members and processes that are instrumental players in processing of C in the prairie soils and how these processes are impacted by wetting and drying events. This project addresses a key ecosystem in the United States that current climate models predict will be subjected to dramatic changes in rainfall patterns as a result of global warming. Currently Mollisols, such as those of the tallgrass prairie, are thought to sequester more C than is released into the atmosphere, but it is not known what changes in rainfall patterns will have on future C fluxes. Through an analysis of the molecular response of the soil microbial community to shifts in precipitation cycles that are accompanied by phenologically driven changes in quality of plant C rhizodeposits, we gained deeper insight into how the metabolism of microbes has adapted to different precipitation regimes and the impact of this adaption on the fate of C deposited into soil. In doing so, we addressed key questions about the microbial cycling of C in soils that have been identified by the DOE.

  19. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  20. Redox regulation of fertilisation and the spermatogenic process

    Institute of Scientific and Technical Information of China (English)

    Junichi Fujii; Satoshi Tsunoda

    2011-01-01

    Oxidative stress is one of the major causes of male infertility; it damages spermatogenic cells, the spermatogenic process and sperm function. Recent advances in redox biology have revealed the signalling role of reactive oxygen species (ROS) that are generated by cells. While highly reactive oxidants, such as the hydroxyl radical, exert largely deleterious effects, hydrogen peroxide can feasibly serve as a signal mediator because it is moderately reactive and membrane permeable and because it can oxidize only limited numbers of functional groups of biological molecules. The amino acid side chain most sensitive to oxidation is cysteine sulphydryl, which is commonly involved in the catalysis of some enzymes. Although the reactivity of cysteine sulphhydryl is not very high in ordinary proteins, some phosphatases possess a highly reactive sulphydryl group at their catalytic centre and are thereby oxidatively inactivated by transiently elevated hydrogen peroxide levels after extracellular stimuli and under certain environmental conditions. Peroxiredoxins, in turn, show moderate hydrogen peroxide-reducing activity, and their role in the modulation of ROS-mediated signal transduction in ordinary cells, mediated by protecting phosphatases from oxidative inactivation, has attracted much attention. Although knowledge of the signalling role of ROS in the male reproductive system is limited at present, its significance is becoming a focal issue. Here, we present a review of the emerging signalling role of hydrogen peroxide in testes.

  1. Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin

    Science.gov (United States)

    Thakur, Ram Krishna; Yadav, Vinod Kumar; Kumar, Akinchan; Singh, Ankita; Pal, Krishnendu; Hoeppner, Luke; Saha, Dhurjhoti; Purohit, Gunjan; Basundra, Richa; Kar, Anirban; Halder, Rashi; Kumar, Pankaj; Baral, Aradhita; Kumar, MJ Mahesh; Baldi, Alfonso; Vincenzi, Bruno; Lorenzon, Laura; Banerjee, Rajkumar; Kumar, Praveen; Shridhar, Viji; Mukhopadhyay, Debabrata; Chowdhury, Shantanu

    2014-01-01

    Tumor metastasis refers to spread of a tumor from site of its origin to distant organs and causes majority of cancer deaths. Although >30 metastasis suppressor genes (MSGs) that negatively regulate metastasis have been identified so far, two issues are poorly understood: first, which MSGs oppose metastasis in a tumor type, and second, which molecular function of MSG controls metastasis. Herein, integrative analyses of tumor-transcriptomes (n = 382), survival data (n = 530) and lymph node metastases (n = 100) in lung cancer patients identified non-metastatic 2 (NME2) as a key MSG from a pool of >30 metastasis suppressors. Subsequently, we generated a promoter-wide binding map for NME2 using chromatin immunoprecipitation with promoter microarrays (ChIP-chip), and transcriptome profiling. We discovered novel targets of NME2 which are involved in focal adhesion signaling. Importantly, we detected binding of NME2 in promoter of focal adhesion factor, vinculin. Reduced expression of NME2 led to enhanced transcription of vinculin. In comparison, NME1, a close homolog of NME2, did not bind to vinculin promoter nor regulate its expression. In line, enhanced metastasis of NME2-depleted lung cancer cells was found in zebrafish and nude mice tumor models. The metastatic potential of NME2-depleted cells was remarkably diminished upon selective RNA-i-mediated silencing of vinculin. Together, we demonstrate that reduced NME2 levels lead to transcriptional de-repression of vinculin and regulate lung cancer metastasis. PMID:25249619

  2. P38 pathway as a key downstream signal of connective tissue growth factor to regulate metastatic potential in non-small-cell lung cancer.

    Science.gov (United States)

    Kato, Shinichiro; Yokoyama, Satoru; Hayakawa, Yoshihiro; Li, Luhui; Iwakami, Yusuke; Sakurai, Hiroaki; Saiki, Ikuo

    2016-10-01

    Although the secretory matricellular protein connective tissue growth factor (CTGF) has been reported to be related to lung cancer metastasis, the precise mechanism by which CTGF regulates lung cancer metastasis has not been elucidated. In the present study, we show the molecular link between CTGF secretion and the p38 pathway in the invasive and metastatic potential of non-small-cell lung cancer (NSCLC). Among three different human NSCLC cell lines (PC-14, A549, and PC-9), their in vitro invasiveness was inversely correlated with the level of CTGF secretion. By supplementing or reducing CTGF secretion in NSCLC culture, dysregulation of the invasive and metastatic potential of NSCLC cell lines was largely compensated. By focusing on the protein kinases that are known to be regulated by CTGF, we found that the p38 pathway is a key downstream signal of CTGF to regulate the metastatic potential of NSCLC. Importantly, a negative correlation between CTGF and phosphorylation status of p38 was identified in The Cancer Genome Atlas lung adenocarcinoma dataset. In the context of the clinical importance of our findings, we showed that p38 inhibitor, SB203580, reduced the metastatic potential of NSCLC secreting low levels of CTGF. Collectively, our present findings indicate that the CTGF/p38 axis is a novel therapeutic target of NSCLC metastasis, particularly NSCLC secreting low levels of CTGF. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. STRATEGIC PRIORITIES FOR THE INTERNAL MIGRATION PROCESSES REGULATION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Olga Balueva

    2018-01-01

    implementation ought to be approved by the strategic migration model for Ukraine’s internal migration aimed at promoting the implementation of the basic IDPs and internally displaced businesses rights; ensuring the social and economic integration of the IDPs into the host society; promotion of country territories’ social and economic development; reducing the level of social and psychological tension in host communities; creating new jobs; improvement of the investment climate; increasing the efficiency of using the country intellectual potential and its human resources. Value / originality. Solving the urgent issues associated with forced displacement processes, including integration and adaptation to host communities.

  4. Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows.

    Science.gov (United States)

    Locher, L; Häussler, S; Laubenthal, L; Singh, S P; Winkler, J; Kinoshita, A; Kenéz, Á; Rehage, J; Huber, K; Sauerwein, H; Dänicke, S

    2015-02-01

    In response to negative energy balance, overconditioned cows mobilize more body fat than thin cows and subsequently are prone to develop metabolic disorders. Changes in adipose tissue (AT) metabolism are barely investigated in overconditioned cows. Therefore, the objective was to investigate the effect of increasing body condition on key regulator proteins of fat metabolism in subcutaneous AT and circulation of dairy cows. Nonlactating, nonpregnant dairy cows (n=8) investigated in the current study served as a model to elucidate the changes in the course of overcondition independent from physiological changes related to gestation, parturition, and lactation. Cows were fed diets with increasing portions of concentrate during the first 6wk of the experiment until 60% were reached, which was maintained for 9wk. Biopsy samples from AT of the subcutaneous tailhead region were collected every 8wk, whereas blood was sampled monthly. Within the experimental period cows had an average BW gain of 243±33.3 kg. Leptin and insulin concentrations were increased until wk 12. Based on serum concentrations of glucose, insulin, and nonesterified fatty acids, the surrogate indices for insulin sensitivity were calculated. High-concentrate feeding led to decreased quantitative insulin sensitivity check index and homeostasis model assessment due to high insulin and glucose concentrations indicating decreased insulin sensitivity. Adiponectin, an adipokine-promoting insulin sensitivity, decreased in subcutaneous AT, but remained unchanged in the circulation. The high-concentrate diet affected key enzymes reflecting AT metabolism such as AMP-activated protein kinase and hormone-sensitive lipase, both represented as the proportion of the phosphorylated protein to total protein, as well as fatty acid synthase. The extent of phosphorylation of AMP-activated protein kinase and the protein expression of fatty acid synthase were inversely regulated throughout the experimental period, whereas

  5. Influence of postharvest processing and storage conditions on key antioxidants in pūhā (Sonchus oleraceus L.).

    Science.gov (United States)

    Ou, Zong-Quan; Schmierer, David M; Strachan, Clare J; Rades, Thomas; McDowell, Arlene

    2014-07-01

    To investigate effects of different postharvest drying processes and storage conditions on key antioxidants in Sonchus oleraceus L. leaves. Fresh leaves were oven-dried (60°C), freeze-dried or air-dried (∼25°C) for 6 h, 24 h and 3 days, respectively. Design of experiments (DOE) was applied to study the stability of antioxidants (caftaric, chlorogenic and chicoric acids) in S. oleraceus leaves and leaf extracts stored at different temperatures (4, 25 and 50°C) and relative humidities (15%, 43% and 75%) for 180 days. The concentration of antioxidants was quantified by a HPLC-2,2'-diphenylpicrylhydrazyl post-column derivatisation method. Antioxidant activity was assessed by a cellular antioxidant activity assay. The three antioxidants degraded to unquantifiable levels after oven-drying. More than 90% of the antioxidants were retained by freeze-drying and air-drying. Both leaf and extract samples retained >90% of antioxidants, except those stored at 75% relative humidity. Leaf material had higher antioxidant concentrations and greater cellular antioxidant activity than corresponding extract samples. Freeze-drying and air-drying preserved more antioxidants in S. oleraceus than oven-drying. From DOE analysis, humidity plays an important role in degradation of antioxidants during storage. To preserve antioxidant activity, it is preferable to store S. oleraceus as dried leaf material. © 2014 Royal Pharmaceutical Society.

  6. RAISING INFORMATION AND COMMUNICATION TECHNOLOGIES COMPETENCE OF SCIENTIFIC AND PEDAGOGICAL EMPLOYEES - A KEY REQUIREMENT OF THE QUALITY OF EDUCATIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    Nataliia V. Morze

    2017-06-01

    Full Text Available In the article it was analyzed one of the basic conditions of providing the quality of higher education according to the system of internal quality assurance standards ESG (European quality assurance standards and guidelines to increase the ICT competence of scientific-pedagogical staff of the University. It was described the modular system of training for scientific and pedagogical staff of the Borys Grinchenko Kyiv University. Special attention is paid to the description of the system of raising the level of formation the ICT competence as one of the key competences of the modern teacher. The system of professional development, which is based on creating mixed studying and technology of "flipped classroom", formative assessment, innovative educational and ICT technologies according to the specially designed informative module "Informational and communication technologies", which allows scientific-pedagogical staff to use modern ICT and educational technologies effectively for their further applying in the provision of educational services and the development of quality of open educational content and open educational e-environment available to the student at any convenient time, which will significantly improve the quality of the educational process.

  7. In a situation of incomprehension, a very opened process is necessary where the local dimension is the key

    International Nuclear Information System (INIS)

    Le Bars, Y.

    2003-01-01

    First and foremost, it is important to note the largely diverging opinions between specialists and the public on the current state of radioactive-waste management. The lack of a common understanding of what may constitute a waste-induced risk complicates any social negotiation pertaining to risk. In order to proceed towards solutions that are respectful of the long term, the countries concerned have implemented procedures that share many features in common. By selecting a stepwise approach - that is fully in line with the reversibility principle - it is possible to structure the different levels and policies, while allowing for ongoing observation and apprenticeship. The clear identification of the role of the different actors, as well as their behaviours, constitute the key elements for reinforcing their confidence. The local dimension of the procedure is essential and, even more in France, since she remains the only country in the world to investigate the feasibility of waste repositories outside areas that are already familiar with nuclear energy. Three guarantees must be provided: understanding the safety of the facilities, applying equity in the site-selection process while integrating development incentives in the projects, and ensuring an open local debate. Under those conditions, it is likely that appropriate means will be defined to manage radioactive waste over the long term while respecting the principle of sustainable development. (author)

  8. Enhancing Critical Infrastructure and Key Resources (CIKR) Level-0 Physical Process Security Using Field Device Distinct Native Attribute Features

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liefer, Nathan C. [Wright-Patterson AFB, Dayton, OH (United States); Busho, Colin R. [Wright-Patterson AFB, Dayton, OH (United States); Temple, Michael A. [Wright-Patterson AFB, Dayton, OH (United States)

    2017-12-04

    Here, the need for improved Critical Infrastructure and Key Resource (CIKR) security is unquestioned and there has been minimal emphasis on Level-0 (PHY Process) improvements. Wired Signal Distinct Native Attribute (WS-DNA) Fingerprinting is investigated here as a non-intrusive PHY-based security augmentation to support an envisioned layered security strategy. Results are based on experimental response collections from Highway Addressable Remote Transducer (HART) Differential Pressure Transmitter (DPT) devices from three manufacturers (Yokogawa, Honeywell, Endress+Hauer) installed in an automated process control system. Device discrimination is assessed using Time Domain (TD) and Slope-Based FSK (SB-FSK) fingerprints input to Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML) and Random Forest (RndF) classifiers. For 12 different classes (two devices per manufacturer at two distinct set points), both classifiers performed reliably and achieved an arbitrary performance benchmark of average cross-class percent correct of %C > 90%. The least challenging cross-manufacturer results included near-perfect %C ≈ 100%, while the more challenging like-model (serial number) discrimination results included 90%< %C < 100%, with TD Fingerprinting marginally outperforming SB-FSK Fingerprinting; SB-FSK benefits from having less stringent response alignment and registration requirements. The RndF classifier was most beneficial and enabled reliable selection of dimensionally reduced fingerprint subsets that minimize data storage and computational requirements. The RndF selected feature sets contained 15% of the full-dimensional feature sets and only suffered a worst case %CΔ = 3% to 4% performance degradation.

  9. The Process Model of Group-Based Emotion: Integrating Intergroup Emotion and Emotion Regulation Perspectives.

    Science.gov (United States)

    Goldenberg, Amit; Halperin, Eran; van Zomeren, Martijn; Gross, James J

    2016-05-01

    Scholars interested in emotion regulation have documented the different goals and strategies individuals have for regulating their emotions. However, little attention has been paid to the regulation of group-based emotions, which are based on individuals' self-categorization as a group member and occur in response to situations perceived as relevant for that group. We propose a model for examining group-based emotion regulation that integrates intergroup emotions theory and the process model of emotion regulation. This synergy expands intergroup emotion theory by facilitating further investigation of different goals (i.e., hedonic or instrumental) and strategies (e.g., situation selection and modification strategies) used to regulate group-based emotions. It also expands emotion regulation research by emphasizing the role of self-categorization (e.g., as an individual or a group member) in the emotional process. Finally, we discuss the promise of this theoretical synergy and suggest several directions for future research on group-based emotion regulation. © 2015 by the Society for Personality and Social Psychology, Inc.

  10. Personality and self-regulation: trait and information-processing perspectives.

    Science.gov (United States)

    Hoyle, Rick H

    2006-12-01

    This article introduces the special issue of Journal of Personality on personality and self-regulation. The goal of the issue is to illustrate and inspire research that integrates personality and process-oriented accounts of self-regulation. The article begins by discussing the trait perspective on self-regulation--distinguishing between temperament and personality accounts--and the information-processing perspective. Three approaches to integrating these perspectives are then presented. These range from methodological approaches, in which constructs representing the two perspectives are examined in integrated statistical models, to conceptual approaches, in which the two perspectives are unified in a holistic theoretical model of self-regulation. The article concludes with an overview of the special issue contributions, which are organized in four sections: broad, integrative models of personality and self-regulation; models that examine the developmental origins of self-regulation and self-regulatory styles; focused programs of research that concern specific aspects or applications of self-regulation; and strategies for increasing the efficiency and effectiveness of self-regulation.

  11. Dealing with emotions when the ability to cry is hampered: emotion processing and regulation in patients with primary Sjögren's syndrome.

    Science.gov (United States)

    van Leeuwen, Ninke; Bossema, Ercolie R; van Middendorp, Henriët; Kruize, Aike A; Bootsma, Hendrika; Bijlsma, Johannes W J; Geenen, Rinie

    2012-01-01

    The hampered ability to cry in patients with Sjögren's syndrome may affect their ways of dealing with emotions. The aim of this study was to examine differences in emotion processing and regulation between people with and without Sjögren's syndrome and correlations of emotion processing and regulation with mental well-being. In 300 patients with primary Sjögren's syndrome and 100 demographically matched control participants (mean age 56.8 years, 93% female), emotion processing (affect intensity and alexithymia, i.e. difficulty identifying and describing feelings), emotion regulation (cognitive reappraisal, suppression and expression of emotions), and mental well-being were assessed. Criteria for clinical alexithymia applied to 22% of the patients and 12% of the control participants; patients had significantly more difficulty identifying feelings than control participants. No other significant differences in emotion processing and emotion regulation were found. In patients, the emotion processing styles affect intensity and alexithymia (0.32emotion regulation strategy suppression of emotions (r=0.13) significantly correlated with worse mental well-being, which is about similar to control participants. Processing and regulating emotions in patients with Sjögren's syndrome does not deviate from normal with one exception: a relatively large number of patients is alexithymic. As in the general population, in patients with Sjögren's syndrome the more intense and deficient processing and regulation of emotions is associated with worse mental well-being. This study indicates that, except for selected patients, processing and regulation of emotions is not a key therapeutic issue for the majority of patients with Sjögren's syndrome.

  12. The Impact of Metacognitive Strategies and Self-Regulating Processes of Solving Math Word Problems

    Science.gov (United States)

    Vula, Eda; Avdyli, Rrezarta; Berisha, Valbona; Saqipi, Blerim; Elezi, Shpetim

    2017-01-01

    This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners' achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems.…

  13. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    2010-05-01

    Full Text Available Cyclic AMP-dependent pathways mediate the communication between external stimuli and the intracellular signaling machinery, thereby influencing important aspects of cellular growth, morphogenesis and differentiation. Crucial to proper function and robustness of these signaling cascades is the strict regulation and maintenance of intracellular levels of cAMP through a fine balance between biosynthesis (by adenylate cyclases and hydrolysis (by cAMP phosphodiesterases. We functionally characterized gene-deletion mutants of a high-affinity (PdeH and a low-affinity (PdeL cAMP phosphodiesterase in order to gain insights into the spatial and temporal regulation of cAMP signaling in the rice-blast fungus Magnaporthe oryzae. In contrast to the expendable PdeL function, the PdeH activity was found to be a key regulator of asexual and pathogenic development in M. oryzae. Loss of PdeH led to increased accumulation of intracellular cAMP during vegetative and infectious growth. Furthermore, the pdeHDelta showed enhanced conidiation (2-3 fold, precocious appressorial development, loss of surface dependency during pathogenesis, and highly reduced in planta growth and host colonization. A pdeHDelta pdeLDelta mutant showed reduced conidiation, exhibited dramatically increased (approximately 10 fold cAMP levels relative to the wild type, and was completely defective in virulence. Exogenous addition of 8-Br-cAMP to the wild type simulated the pdeHDelta defects in conidiation as well as in planta growth and development. While a fully functional GFP-PdeH was cytosolic but associated dynamically with the plasma membrane and vesicular compartments, the GFP-PdeL localized predominantly to the nucleus. Based on data from cAMP measurements and Real-Time RTPCR, we uncover a PdeH-dependent biphasic regulation of cAMP levels during early and late stages of appressorial development in M. oryzae. We propose that PdeH-mediated sustenance and dynamic regulation of cAMP signaling

  14. Supporting the self-regulatory resource: does conscious self-regulation incidentally prime nonconscious support processes?

    Science.gov (United States)

    Dorris, Derek C

    2009-11-01

    Ego-depletion (depletion of self-regulatory strength) can impair conscious efforts at self-regulation. Research into nonconscious self-regulation has demonstrated that preconscious automaticity and implementation intentions can automatically carry out regulatory tasks during times of ego-depletion. However, preconscious automaticity can only emerge during well-practiced tasks while implementation intentions can only support tasks that have been explicitly planned. Thus, when it comes to supporting the conscious self-regulation of nonroutine and unplanned behaviour during times of ego-depletion these processes should be ineffective. However, it is argued here that because the conscious self-regulation of nonroutine and unplanned behaviour can incidentally prime the underlying mental representations those primed representations can be postconsciously re-activated to support that behaviour during times of ego-depletion. Postconscious self-regulation might, therefore, support a type of self-regulatory behaviour that has, thus far, not been associated with any form of support.

  15. Regulation of Emotions in Socially Challenging Learning Situations: An Instrument to Measure the Adaptive and Social Nature of the Regulation Process

    Science.gov (United States)

    Jarvenoja, Hanna; Volet, Simone; Jarvela, Sanna

    2013-01-01

    Self-regulated learning (SRL) research has conventionally relied on measures, which treat SRL as an aptitude. To study self-regulation and motivation in learning contexts as an ongoing adaptive process, situation-specific methods are needed in addition to static measures. This article presents an "Adaptive Instrument for Regulation of Emotions"…

  16. Development of an analogue multiplexed regulation for periodic 1. order delayed processes

    International Nuclear Information System (INIS)

    Amblard, J.C.

    1967-07-01

    The present note deals with the study regulations of the sampled type, for 1. order process with simple delay. In order to obtain a good stability in such regulations, together with acceptable performances, it is interesting to use polynomial type correctors acting directly on the sampled error signals. The active elements of these correctors can be shared by all the channels to be controlled. Furthermore, the determination of the correction parameters results from an optimal study of the system. In the second part is described the construction of a multiplexed regulation for diffusion ovens. (author) [fr

  17. The process of self-regulation in adolescents: A narrative approach.

    Science.gov (United States)

    Conover, Kelly; Daiute, Colette

    2017-06-01

    This qualitative study utilized a narrative approach to explore the process of self-regulation in adolescents and to examine the functions of various relational genres on psychological state and context expressions in this process. Nineteen participants, who live in high-risk settings were recruited from a youth development and life skills program located at an urban public high school in the United States. The goal of this project is to craft a process method for research and practice on adolescents' self-regulation while providing evidence for self-regulation being a complex process. This research uses an exploratory study design with a narrative approach, utilizing text message based activities in the method. Findings from the plot analysis suggest that for adolescents, the process of self-regulation begins as highly emotional and then becomes a more emotionally and cognitively balanced process. In addition, adolescents utilize different strategies to resolve conflict situations across different contexts and relational genres. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. IMPROVEMENT OF KEY PROCESSES THROUGH THE ANALYSIS OF VALUE ADDED IN TECHNOLOGY- BASED COMPANIES A SINGLE PROJECT PRODUCTIONS OF THE WATER SECTOR IN CUBA

    Directory of Open Access Journals (Sweden)

    Reina Maylín, Hernández Oro

    2012-01-01

    Full Text Available In this paper, we present the main results of research designed to improve key business processes, using a procedure designed for this purpose, and which includes among its main stages, the analysis of value added by activity, adapting to technology based companies’ productions by one of the water sector project in Cuba. The procedure consistently combines different techniques such as multi-criteria decision analysis for selection of the key processes and analysis of value added by activity to identify key processes to improve and identify opportunities for improvement. The main results are able to identify, classify and relate the processes taking place in the organization, and represent them in a process map, and then determine the key processes for improvement, based on the analysis of value added at each process of each of the activities in it. Derived from the results obtained are proposed and implemented a set of organizational improvements had a positive economic impact for the company under study, allowing a positive conclusion on the feasibility of implementation, flexibility and robustness of the procedure developed in technology-based companies single project productions of the water sector in Cuba to support their business management.

  19. Characterization of Key Aroma Compounds in Raw and Thermally Processed Prawns and Thermally Processed Lobsters by Application of Aroma Extract Dilution Analysis.

    Science.gov (United States)

    Mall, Veronika; Schieberle, Peter

    2016-08-24

    Application of aroma extract dilution analysis (AEDA) to an aroma distillate of blanched prawn meat (Litopenaeus vannamei) (BPM) revealed 40 odorants in the flavor dilution (FD) factor range from 4 to 1024. The highest FD factors were assigned to 2-acetyl-1-pyrroline, 3-(methylthio)propanal, (Z)-1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, (E)-3-heptenoic acid, and 2-aminoacetophenone. To understand the influence of different processing conditions on odorant formation, fried prawn meat was investigated by means of AEDA in the same way, revealing 31 odorants with FD factors between 4 and 2048. Also, the highest FD factors were determined for 2-acetyl-1-pyrroline, 3-(methylthio)propanal, and (Z)-1,5-octadien-3-one, followed by 4-hydroxy-2,5-dimethyl-3(2H)-furanone, (E)-3-heptenoic acid, and 2-aminoacetophenone. As a source of the typical marine, sea breeze-like odor attribute of the seafood, 2,4,6-tribromoanisole was identified in raw prawn meat as one of the contributors. Additionally, the aroma of blanched prawn meat was compared to that of blanched Norway and American lobster meat, respectively (Nephrops norvegicus and Homarus americanus). Identification experiments revealed the same set of odorants, however, with differing FD factors. In particular, 3-hydroxy-4,5-dimethyl-2(5H)-furanone was found as the key aroma compound in blanched Norway lobster, whereas American lobster contained 3-methylindole with a high FD factor.

  20. Energy Flexibility Potential of Industrial Processes in the Regulating Power Market

    DEFF Research Database (Denmark)

    Ma, Zheng; Aabjerg Friis, Henrik Tønder; Gravers Mostrup, Christopher

    2017-01-01

    , and electric heating in replacement of conventional technologies. To enable the use of demand response, the consumers must have economical and practical incentives without loss of convenience. This study aims to investigate the demand-response market potential of a flexible industrial process in the current...... electricity market structure. The Danish West regulating power market is selected in this study with an ideal process simulation of an industrial roller press. By analysing market data, the value of flexible electricity consumption by the roller press in the regulating power market is demonstrated by an ideal...

  1. Іnformation and communication technologies and their integration in the teaching process regulations

    Directory of Open Access Journals (Sweden)

    Oksana Chekan

    2017-03-01

    Full Text Available In the article the role and place of ICT in the educational process of modern preschoolinstitutions have been outlined. The ways of integration the ICT into the educational process ofpreschool institutions have been specified. Psychological and educational literature about ICTin upbringing process have been analyzed. Theoretical foundations of information andcommunication technologies and their integration into the educational process of preschoolshave been studied. The key goals and objectives of the problem have been determined. Theterms of use the ICT in the preschools have been grounded. The didactic capabilities ofmultimedia technologies have been verified. Computer games as a factor of child’sdevelopment have been determined.Key words: information technologies, information and communication technologies,information society, computer games, multimedia.

  2. ANALISIS PEMBOBOTAN KEY PERFORMANCE INDICATOR (KPI DENGAN SCOR MODEL MENGGUNAKAN METODE ANALITICAL HIERARCHY PROCESS (AHP PRODUK KEJU MOZZARELLA DI CV BRAWIJAYA DAIRY INDUSTRY, JUNREJO KOTA BATU

    Directory of Open Access Journals (Sweden)

    Ariani Ariani

    2017-06-01

    Full Text Available Penelitian ini bertujuan untuk menganalisis pembobotan Key performance Indicator dengan model SCOR menggunakan metode Analitical Hierarchy Process (AHP produk keju mozzarella di CV Brawijaya Dairy Industry. Hasil penelitian di peroleh 36 Key Performance Indicator yang disesuikan dengan model SCOR yaitu plan, source, deliver, make (process, dan return. Hasil pembobotan dengan menggunakan pembobotan AHP pada hierarki tingkat 1 yang memiliki bobot tertinggi adalah make (process dengan nilai bobot 0,534. Hal ini dikarenakan perusahaan mementingkan kualitas produk yang dipengaruhi oleh proses produksi. Pada hierarki tingkat 2 bobot tertinggi terdapat pada variabel reliability dengan total bobot 0,739. Sedangkan nilai bobot tertinggi pada hierarki tingkat 3 (Key Performance Indicator  adalah pada KPI 24 Kehandalan kinerja karyawan dalam mengolah menjadi produk jadi dengan total bobot 0,180.

  3. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  4. Expression of StAR and Key Genes Regulating Cortisol Biosynthesis in Near Term Ovine Fetal Adrenocortical Cells: Effects of Long-Term Hypoxia.

    Science.gov (United States)

    Vargas, Vladimir E; Myers, Dean A; Kaushal, Kanchan M; Ducsay, Charles A

    2018-02-01

    We previously demonstrated decreased expression of key genes regulating cortisol biosynthesis in long-term hypoxic (LTH) sheep fetal adrenals compared to controls. We also showed that inhibition of the extracellular signal-regulated kinases (ERKs) with the mitogen-activated protein kinase (MEK)/ERK inhibitor UO126 limited adrenocorticotropic (ACTH)-induced cortisol production in ovine fetal adrenocortical cells (FACs), suggesting a role for ERKs in cortisol synthesis. This study was designed to determine whether the previously observed decrease in LTH cytochrome P45011A1/cytochrome P450c17 (CYP11A1/CYP17) in adrenal glands was maintained in vitro, and whether ACTH alone with or without UO126 treatment had altered the expression of CYP11A1, CYP17, and steroidogenic acute regulatory protein (StAR) in control versus LTH FACs. Ewes were maintained at high altitude (3820 m) from ∼40 days of gestation (dG). At 138 to 141 dG, fetal adrenal glands were collected from LTH (n = 5) and age-matched normoxic controls (n = 6). Fetal adrenocortical cells were challenged with ACTH (10 -8 M) with or without UO126 (10 µM) for 18 hours. Media samples were collected for cortisol analysis and messenger RNA (mRNA) for CYP11A1, CYP17, and StAR was quantified by quantitative real-time polymerase chain reaction. Cortisol was higher in the LTH versus control ( P StAR mRNA was decreased in LTH versus control ( P StAR expression.

  5. In Situ Analysis of Metabolic Characteristics Reveals the Key Yeast in the Spontaneous and Solid-State Fermentation Process of Chinese Light-Style Liquor

    Science.gov (United States)

    Kong, Yu; Wu, Qun; Zhang, Yan

    2014-01-01

    The in situ metabolic characteristics of the yeasts involved in spontaneous fermentation process of Chinese light-style liquor are poorly understood. The covariation between metabolic profiles and yeast communities in Chinese light-style liquor was modeled using the partial least square (PLS) regression method. The diversity of yeast species was evaluated by sequence analysis of the 26S ribosomal DNA (rDNA) D1/D2 domains of cultivable yeasts, and the volatile compounds in fermented grains were analyzed by gas chromatography (GC)-mass spectrometry (MS). Eight yeast species and 58 volatile compounds were identified, respectively. The modulation of 16 of these volatile compounds was associated with variations in the yeast population (goodness of prediction [Q2] > 20%). The results showed that Pichia anomala was responsible for the characteristic aroma of Chinese liquor, through the regulation of several important volatile compounds, such as ethyl lactate, octanoic acid, and ethyl tetradecanoate. Correspondingly, almost all of the compounds associated with P. anomala were detected in a pure culture of this yeast. In contrast to the PLS regression results, however, ethyl lactate and ethyl isobutyrate were not detected in the same pure culture, which indicated that some metabolites could be generated by P. anomala only when it existed in a community with other yeast species. Furthermore, different yeast communities provided different volatile patterns in the fermented grains, which resulted in distinct flavor profiles in the resulting liquors. This study could help identify the key yeast species involved in spontaneous fermentation and provide a deeper understanding of the role of individual yeast species in the community. PMID:24727269

  6. Key Inflammatory Processes in Human NASH Are Reflected in Ldlr−/−.Leiden Mice: A Translational Gene Profiling Study

    NARCIS (Netherlands)

    Morrison, M.C.; Kleemann, R.; Koppen, A. van; Hanemaaijer, R.; Verschuren, L.

    2018-01-01

    Introduction: It is generally accepted that metabolic inflammation in the liver is an important driver of disease progression in NASH and associated matrix remodeling/fibrosis. However, the exact molecular inflammatory mechanisms are poorly defined in human studies. Investigation of key pathogenic

  7. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process

    Czech Academy of Sciences Publication Activity Database

    Lin, Qiang; De Vrieze, J.; Li, Ch.; Li, J.; Li, J.; Yao, M.; Heděnec, Petr; Li, H.; Li, T.; Rui, J.; Frouz, Jan; Li, X.

    2017-01-01

    Roč. 123, October (2017), s. 134-143 ISSN 0043-1354 Institutional support: RVO:60077344 Keywords : anaerobic digestion * deterministic process * microbial interactions * modularity * temperature gradient Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Water resources Impact factor: 6.942, year: 2016

  8. Frizzled 2 is a key component in the regulation of TOR signaling-mediated egg production in the mosquito Aedes aegypti.

    Science.gov (United States)

    Weng, Shih-Che; Shiao, Shin-Hong

    2015-06-01

    The Wnt signaling pathway was first discovered as a key event in embryonic development and cell polarity in Drosophila. Recently, several reports have shown that Wnt stimulates translation and cell growth by activating the mTOR pathway in mammals. Previous studies have demonstrated that the Target of Rapamycin (TOR) pathway plays an important role in mosquito vitellogenesis. However, the interactions between these two pathways are poorly understood in the mosquito. In this study, we hypothesized that factors from the TOR and Wnt signaling pathways interacted synergistically in mosquito vitellogenesis. Our results showed that silencing Aedes aegypti Frizzled 2 (AaFz2), a transmembrane receptor of the Wnt signaling pathway, decreased the fecundity of mosquitoes. We showed that AaFz2 was highly expressed at the transcriptional and translational levels in the female mosquito 6 h after a blood meal, indicating amino acid-stimulated expression of AaFz2. Notably, the phosphorylation of S6K, a downstream target of the TOR pathway, and the expression of vitellogenin were inhibited in the absence of AaFz2. A direct link was found in this study between Wnt and TOR signaling in the regulation of mosquito reproduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Interrelation of hormonal regulation parameters and metabolic processes in children from the families with radiation risk

    International Nuclear Information System (INIS)

    Korenjev, M.M.; Kashkalda, D.A.; Borisko, G.O.; Cherevatova, S.Kh.; Bondarenko, V.A.; Kalmikova, N.V.; Spyivak, T.V.

    2010-01-01

    Interrelations of the indices of lipid peroxidation and antioxidant system with hormone level were investigated in teenagers born from the parents who participated in Chornobyl accident clean-up. Multiple inter-systemic relations indicating participation of hormonal regulation mechanisms in promotion of redox processes were revealed. In girls from the families of Chornobyl accident clean-up participants, LP and AOP processes dependent significantly on the level of steroid hormones. In boys, the relations with thyroid system dominated.

  10. Processes of self-regulated learning in music theory in elementary music schools in Slovenia

    OpenAIRE

    Peklaj, Cirila; Smolej-Fritz, Barbara

    2015-01-01

    The aim of our study was determine how students regulate their learning in music theory (MT). The research is based on the socio-cognitive theory of learning. The aim of our study was twofold: first, to design the instruments for measuring (meta)cognitive and affective-motivational processes in learning MT, and, second, to examine the relationship between these processes. A total of 457 fifth- and sixth- grade students from 10 different elementary music schools in Slovenia participated in the...

  11. The impact of metacognitive strategies and self-regulating processes of solving math word problems

    OpenAIRE

    Eda Vula; Rrezarta Avdyli; Valbona Berisha; Blerim Saqipi; Shpetim Elezi

    2017-01-01

    This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners’ achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems. Two hundred sixty-three learners, of three classes of third graders (N=130) and four classes of fifth ...

  12. Dealing with feelings: characterization of trait alexithymia on emotion regulation strategies and cognitive-emotional processing.

    Directory of Open Access Journals (Sweden)

    Marte Swart

    Full Text Available BACKGROUND: Alexithymia, or "no words for feelings", is a personality trait which is associated with difficulties in emotion recognition and regulation. It is unknown whether this deficit is due primarily to regulation, perception, or mentalizing of emotions. In order to shed light on the core deficit, we tested our subjects on a wide range of emotional tasks. We expected the high alexithymics to underperform on all tasks. METHOD: Two groups of healthy individuals, high and low scoring on the cognitive component of the Bermond-Vorst Alexithymia Questionnaire, completed questionnaires of emotion regulation and performed several emotion processing tasks including a micro expression recognition task, recognition of emotional prosody and semantics in spoken sentences, an emotional and identity learning task and a conflicting beliefs and emotions task (emotional mentalizing. RESULTS: The two groups differed on the Emotion Regulation Questionnaire, Berkeley Expressivity Questionnaire and Empathy Quotient. Specifically, the Emotion Regulation Quotient showed that alexithymic individuals used more suppressive and less reappraisal strategies. On the behavioral tasks, as expected, alexithymics performed worse on recognition of micro expressions and emotional mentalizing. Surprisingly, groups did not differ on tasks of emotional semantics and prosody and associative emotional-learning. CONCLUSION: Individuals scoring high on the cognitive component of alexithymia are more prone to suppressive emotion regulation strategies rather than reappraisal strategies. Regarding emotional information processing, alexithymia is associated with reduced performance on measures of early processing as well as higher order mentalizing. However, difficulties in the processing of emotional language were not a core deficit in our alexithymic group.

  13. Ethical issues in engineering design processes ; regulative frameworks for safety and sustainability

    NARCIS (Netherlands)

    Gorp, A. van

    2007-01-01

    The ways designers deal with ethical issues that arise in their consideration of safety and sustainability in engineering design processes are described. In the case studies, upon which this article is based, a difference can be seen between normal and radical design. Designers refer to regulative

  14. Processes of Self-Regulated Learning in Music Theory in Elementary Music Schools in Slovenia

    Science.gov (United States)

    Fritz, Barbara Smolej; Peklaj, Cirila

    2011-01-01

    The aim of our study was determine how students regulate their learning in music theory (MT). The research is based on the socio-cognitive theory of learning. The aim of our study was twofold: first, to design the instruments for measuring (meta)cognitive and affective-motivational processes in learning MT, and, second, to examine the relationship…

  15. Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma

    NARCIS (Netherlands)

    Kluiver, J.; van den Berg, Anke; de Jong, Doetje; Blokzijl, T.; Harms, G.; Bouwman, E.; Jacobs, Susan; Poppema, Sibrand; Kroesen, Bart-Jan

    2007-01-01

    BIC is a primary microRNA (pri-miR-155) that can be processed to mature miR-155. In this study, we show the crucial involvement of protein kinase C (PKC) and nuclear factor-kappa B (NF-kappa B) in the regulation of BIC expression upon B-cell receptor triggering. Surprisingly, Northern blot analysis

  16. 77 FR 2682 - Defense Federal Acquisition Regulation Supplement; DoD Voucher Processing

    Science.gov (United States)

    2012-01-19

    ... provisional payment and sent to the disbursing office after a pre- payment review. Interim vouchers not... after a pre-payment review. Interim vouchers not selected for a pre-payment review will be considered to...] RIN 0750-AH52 Defense Federal Acquisition Regulation Supplement; DoD Voucher Processing AGENCY...

  17. Emotion processing and regulation in women with morbid obesity who apply for bariatric surgery

    NARCIS (Netherlands)

    Zijlstra, H.; Middendorp, H. van; Devaere, L.; Larsen, J.K.; van Ramshorst, B.; Geenen, R.

    2012-01-01

    Emotional eating, the tendency to eat when experiencing negative affect, is prevalent in morbid obesity and may indicate that ways to deal with emotions are disturbed. Our aim was to compare emotion processing and regulation between 102 women with morbid obesity who apply for bariatric surgery and

  18. Social Information Processing, Security of Attachment, and Emotion Regulation in Children with Learning Disabilities

    Science.gov (United States)

    Bauminger, Nirit; Kimhi-Kind, Ilanit

    2008-01-01

    This study examined the contribution of attachment security and emotion regulation (ER) to the explanation of social information processing (SIP) in middle childhood boys with learning disabilities (LD) and without LD matched on age and grade level. Children analyzed four social vignettes using Dodge's SIP model and completed the Kerns security…

  19. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Science.gov (United States)

    Valledor, Luis; Pascual, Jesús; Meijón, Mónica; Escandón, Mónica; Cañal, María Jesús

    2015-01-01

    Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA) and competence and stress response (PrCSDP2 and PrSHMT4) during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP). The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  20. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Directory of Open Access Journals (Sweden)

    Luis Valledor

    Full Text Available Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA and competence and stress response (PrCSDP2 and PrSHMT4 during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP. The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  1. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis.

    Science.gov (United States)

    Dong, Pan; Xiong, Fangjie; Que, Yumei; Wang, Kai; Yu, Lihua; Li, Zhengguo; Ren, Maozhi

    2015-01-01

    Target of rapamycin (TOR) acts as a master regulator to control cell growth by integrating nutrient, energy, and growth factors in all eukaryotic species. TOR plays an evolutionarily conserved role in regulating the transcription of genes associated with anabolic and catabolic processes in Arabidopsis, but little is known about the functions of TOR in photosynthesis and phytohormone signaling, which are unique features of plants. In this study, AZD8055 (AZD) was screened as the strongest active-site TOR inhibitor (asTORi) in Arabidopsis compared with TORIN1 and KU63794 (KU). Gene expression profiles were evaluated using RNA-seq after treating Arabidopsis seedlings with AZD. More than three-fold differentially expressed genes (DEGs) were identified in AZD-treated plants relative to rapamycin-treated plants in previous studies. Most of the DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in cell wall elongation, ribosome biogenesis, and cell autophagy were common to both AZD- and rapamycin-treated samples, but AZD displayed much broader and more efficient inhibition of TOR compared with rapamycin. Importantly, the suppression of TOR by AZD resulted in remodeling of the expression profile of the genes associated with photosynthesis and various phytohormones, indicating that TOR plays a crucial role in modulating photosynthesis and phytohormone signaling in Arabidopsis. These newly identified DEGs expand the understanding of TOR signaling in plants. This study elucidates the novel functions of TOR in photosynthesis and phytohormone signaling and provides a platform to study the downstream targets of TOR in Arabidopsis.

  2. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    Science.gov (United States)

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders, such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and suggests that TH is a good candidate to be a modulator of memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism. PMID:22437199

  3. The Formation of the Brazilian State and the Uses of its Foreign Policy in the Light of the Process of Identity Construction. Definition of Key Situations

    Directory of Open Access Journals (Sweden)

    Gisela Pereyra-Doval

    2013-12-01

    Full Text Available Depending on its construction of identity, a State defines key situations. The aim of this paper is to analyze those milestones in the process of identity construction in Brazil, which caused its early differentiation from other Latin American countries. Consequently, we divide it into four sections. The first explains the differentiating aspect of identity. The second analyzes the process of independence. The third makes the difference from consolidation process of the national space, also going through the development process of this space. Finally, the Brazilian option is described as being closer to the United States as a reference center while it left the European area.

  4. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    Science.gov (United States)

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  5. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    Science.gov (United States)

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  6. THEORETICAL APPROACHES TO ASSESS EFFICIENCY OF THE TRANSFORMATION OF THE KEY BUSINESS PROCESSES IN THE PUBLISHING AND PRINTING ACTIVITIES IN THE REGION

    Directory of Open Access Journals (Sweden)

    Volodymyr Bazyliuk

    2016-11-01

    Full Text Available The purpose of the paper is the theoretical study and the analysis of the basic methodological approaches to assess the effectiveness of the transformation of key business processes in the PPA (publishing and printing activity in the region in order to choose the best option. Methodology. The overview of the main assessment methods of the effectiveness of business processes: EVA (Economic value added; ABC (Activity-based costing; Tableau of bord and BSC (Balanced Scorecard is provided. In order to ensure the formalization of the intergrated assessment of the effectiveness of the business process in the publishing and printing activities in the region it is suggested to apply to the methodological apparatus of the fuzzy sets. Statistical analysis, comparison and synthesis are necessary to study the efficiency of the transformation of the key business processes in the PPA in the region. Results. The review and analysis of the most common methods for evaluating the effectiveness of the transformation of key business processes were conducted; the basic advantages and disadvantages of each of the proposed methods in the light of PPA were studied. It was proved that a single business process involves the use of a scorecard that is specific and peculiar for it only whereas completeness of its analysis depends on the kind of the business process: basic, developmental, managing or providing one. The approach to the formalization of the integrated assememnt of the effectiveness of business process in PPA in the region, based on the theory of fuzzy sets was formulated. Practical significance. The mathematical formulation of the problem, an integrated assessment of the efficiency of the business process for each of the possible options for its implementation was developed, and the algorithm of assessing the effectiveness of the business process in the PPA in the region was generated by the apparatus of fuzzy sets. Value/originality. Implementing the

  7. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor

    Directory of Open Access Journals (Sweden)

    Tian Hui

    2014-12-01

    Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.

  8. Development of neural mechanisms of conflict and error processing during childhood: implications for self-regulation.

    Science.gov (United States)

    Checa, Purificación; Castellanos, M C; Abundis-Gutiérrez, Alicia; Rosario Rueda, M

    2014-01-01

    Regulation of thoughts and behavior requires attention, particularly when there is conflict between alternative responses or when errors are to be prevented or corrected. Conflict monitoring and error processing are functions of the executive attention network, a neurocognitive system that greatly matures during childhood. In this study, we examined the development of brain mechanisms underlying conflict and error processing with event-related potentials (ERPs), and explored the relationship between brain function and individual differences in the ability to self-regulate behavior. Three groups of children aged 4-6, 7-9, and 10-13 years, and a group of adults performed a child-friendly version of the flanker task while ERPs were registered. Marked developmental changes were observed in both conflict processing and brain reactions to errors. After controlling by age, higher self-regulation skills are associated with smaller amplitude of the conflict effect but greater amplitude of the error-related negativity. Additionally, we found that electrophysiological measures of conflict and error monitoring predict individual differences in impulsivity and the capacity to delay gratification. These findings inform of brain mechanisms underlying the development of cognitive control and self-regulation.

  9. Development of neural mechanisms of conflict and error processing during childhood: Implications for self-regulation

    Directory of Open Access Journals (Sweden)

    Purificación eCheca

    2014-04-01

    Full Text Available Regulation of thoughts and behavior requires attention, particularly when there is conflict between alternative responses or when errors are to be prevented or corrected. Conflict monitoring and error processing are functions of the executive attention network, a neurocognitive system that greatly matures during childhood. In this study, we examined the development of brain mechanisms underlying conflict and error processing with event-related potentials (ERPs, and explored the relationship between brain function and individual differences in the ability to self-regulate behavior. Three groups of children aged 4 to 6, 7 to 9, and 10 to 13 years, and a group of adults performed a child-friendly version of the flanker task while ERPs were registered. Marked developmental changes were observed in both conflict processing and brain reactions to errors. After controlling by age, higher self-regulation skills are associated with smaller amplitude of the conflict effect but greater amplitude of the error-related negativity. Additionally, we found that electrophysiological measures of conflict and error monitoring predict individual differences in impulsivity and the capacity to delay gratification. These findings inform of brain mechanisms underlying the development of cognitive control and self-regulation.

  10. Development of neural mechanisms of conflict and error processing during childhood: implications for self-regulation

    Science.gov (United States)

    Checa, Purificación; Castellanos, M. C.; Abundis-Gutiérrez, Alicia; Rosario Rueda, M.

    2014-01-01

    Regulation of thoughts and behavior requires attention, particularly when there is conflict between alternative responses or when errors are to be prevented or corrected. Conflict monitoring and error processing are functions of the executive attention network, a neurocognitive system that greatly matures during childhood. In this study, we examined the development of brain mechanisms underlying conflict and error processing with event-related potentials (ERPs), and explored the relationship between brain function and individual differences in the ability to self-regulate behavior. Three groups of children aged 4–6, 7–9, and 10–13 years, and a group of adults performed a child-friendly version of the flanker task while ERPs were registered. Marked developmental changes were observed in both conflict processing and brain reactions to errors. After controlling by age, higher self-regulation skills are associated with smaller amplitude of the conflict effect but greater amplitude of the error-related negativity. Additionally, we found that electrophysiological measures of conflict and error monitoring predict individual differences in impulsivity and the capacity to delay gratification. These findings inform of brain mechanisms underlying the development of cognitive control and self-regulation. PMID:24795676

  11. Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes

    International Nuclear Information System (INIS)

    Neelis, Maarten; Patel, Martin; Blok, Kornelis; Haije, Wim; Bach, Pieter

    2007-01-01

    We prepared energy and carbon balances for 68 petrochemical processes in the petrochemical industry for Western Europe, the Netherlands and the world. We analysed the process energy use in relation to the heat effects of the chemical reactions and quantified in this way the sum of all energy inputs into the processes that do not end up in the useful products of the process, but are lost as waste heat to the environment. We showed that both process energy use and heat effects of reaction contribute significantly to the overall energy loss of the processes studied and recommend addressing reaction effects explicitly in energy-efficiency studies. We estimated the energy loss in Western Europe in the year 2000 at 1620 PJ of final energy and 1936 PJ of primary energy, resulting in a total of 127 Mt CO 2 . The losses identified can be regarded as good approximations of the theoretical energy-saving potentials of the processes analysed. The processes with large energy losses in relative (per tonne of product) and absolute (in PJ per year) terms are recommended for more detailed analysis taking into account further thermodynamic, economic, and practical considerations to identify technical and economic energy-saving potentials

  12. Calcium plays a key role in paraoxon-induced apoptosis in EL4 cells by regulating both endoplasmic reticulum- and mitochondria-associated pathways.

    Science.gov (United States)

    Li, Lan; Du, Yi; Ju, Furong; Ma, Shunxiang; Zhang, Shengxiang

    2016-01-01

    Paraoxon (POX) is one of the most toxic organophosphorus pesticides, but its toxic mechanisms associated with apoptosis remain unclear. The aim of this study was to investigate calcium-associated mechanisms in POX-induced apoptosis in EL4 cells. EL4 cells were exposed to POX for 0-16 h. EGTA was used to chelate Ca(2+ ) in extracellular medium, and heparin and procaine were used to inhibit Ca(2+ )efflux from the endoplasmic reticulum (ER). Z-ATAD-FMK was used to inhibit caspase-12 activity. The apoptotic rate assay, western blotting and immunocytochemistry (ICC) were used to reveal the mechanisms of POX-induced apoptosis. POX significantly increased the expression and activation of caspase-12 and caspase-3, enhanced expression of calpain 1 and calpain 2, and induced the release of cyt c, but did not change the expression of Grp 78. Inhibiting caspase-12 activity alleviated POX-induced upregulation of calpain 1 and caspase-3, promoted POX-induced upregulation of calpain 2, and reduced POX-induced cyt c release, suggesting that there was a cross-talk between the ER-associated pathway and mitochondria-associated apoptotic signals. Attenuating intracellular calcium concentration with EGTA, heparin or procaine decreased POX-induced upregulation of calpain 1, calpain 2, caspase-12 and caspase-3, and reduced POX-induced cyt c release. After pretreatment with EGTA or procaine, POX significantly promoted expression of Grp 78. Calcium played a key role in POX-induced apoptosis in EL4 cells by regulating both ER- and mitochondria-associated pathways. The cross-talk of ER- and mitochondria-associated pathways was accomplished through calcium signal.

  13. Linking children's neuropsychological processing of emotion with their knowledge of emotion expression regulation.

    Science.gov (United States)

    Watling, Dawn; Bourne, Victoria J

    2007-09-01

    Understanding of emotions has been shown to develop between the ages of 4 and 10 years; however, individual differences exist in this development. While previous research has typically examined these differences in terms of developmental and/or social factors, little research has considered the possible impact of neuropsychological development on the behavioural understanding of emotions. Emotion processing tends to be lateralised to the right hemisphere of the brain in adults, yet this pattern is not as evident in children until around the age of 10 years. In this study 136 children between 5 and 10 years were given both behavioural and neuropsychological tests of emotion processing. The behavioural task examined expression regulation knowledge (ERK) for prosocial and self-presentational hypothetical interactions. The chimeric faces test was given as a measure of lateralisation for processing positive facial emotion. An interaction between age and lateralisation for emotion processing was predictive of children's ERK for only the self-presentational interactions. The relationships between children's ERK and lateralisation for emotion processing changes across the three age groups, emerging as a positive relationship in the 10-year-olds. The 10-years-olds who were more lateralised to the right hemisphere for emotion processing tended to show greater understanding of the need for regulating negative emotions during interactions that would have a self-presentational motivation. This finding suggests an association between the behavioural and neuropsychological development of emotion processing.

  14. An Age-Related Mechanism of Emotion Regulation: Regulating Sadness Promotes Children's Learning by Broadening Information Processing

    Science.gov (United States)

    Davis, Elizabeth L.

    2016-01-01

    Emotion regulation predicts positive academic outcomes like learning, but little is known about "why". Effective emotion regulation likely promotes learning by broadening the scope of what may be attended to after an emotional event. One hundred twenty-six 6- to 13-year-olds' (54% boys) regulation of sadness was examined for changes in…

  15. Maintaining activity engagement: individual differences in the process of self-regulating motivation.

    Science.gov (United States)

    Sansone, Carol; Thoman, Dustin B

    2006-12-01

    Typically, models of self-regulation include motivation in terms of goals. Motivation is proposed to differ among individuals as a consequence of the goals they hold as well as how much they value those goals and expect to attain them. We suggest that goal-defined motivation is only one source of motivation critical for sustained engagement. A second source is the motivation that arises from the degree of interest experienced in the process of goal pursuit. Our model integrates both sources of motivation within the goal-striving process and suggests that individuals may actively monitor and regulate them. Conceptualizing motivation in terms of a self-regulatory process provides an organizing framework for understanding how individuals might differ in whether they experience interest while working toward goals, whether they persist without interest, and whether and how they try to create interest. We first present the self-regulation of motivation model and then review research illustrating how the consideration of individual differences at different points in the process allows a better understanding of variability in people's choices, efforts, and persistence over time.

  16. Self-Regulated Learning from Illustrated Text: Eye Movement Modelling to Support Use and Regulation of Cognitive Processes during Learning from Multimedia

    Science.gov (United States)

    Scheiter, Katharina; Schubert, Carina; Schüler, Anne

    2018-01-01

    Background: When learning with text and pictures, learners often fail to adequately process the materials, which can be explained as a failure to self-regulate one's learning by choosing adequate cognitive learning processes. Eye movement modelling examples (EMME) showing how to process multimedia instruction have improved elementary school…

  17. Theorizing and researching levels of processing in self-regulated learning.

    Science.gov (United States)

    Winne, Philip H

    2018-03-01

    Deep versus surface knowledge is widely discussed by educational practitioners. A corresponding construct, levels of processing, has received extensive theoretical and empirical attention in learning science and psychology. In both arenas, lower levels of information and shallower levels of processing are predicted and generally empirically demonstrated to limit knowledge learners gain, curtail what they can do with newly acquired knowledge, and shorten the life span of recently acquired knowledge. I recapitulate major accounts of levels or depth of information and information processing to set a stage for conceptualizing, first, self-regulated learning (SRL) from this perspective and, second, how a "levels-sensitive" approach might be implemented in research about SRL. I merge the levels construct into a model of SRL (Winne, 2011, Handbook of self-regulation of learning and performance (pp. 15-32), New York: Routledge; Winne, 2017b, Handbook of self-regulation of learning and performance (2 nd ed.), New York: Routledge; Winne & Hadwin, 1998, Metacognition in educational theory and practice (pp. 277-304). Mahwah, NJ: Lawrence Erlbaum) conceptually and with respect to operationally defining the levels construct in the context of SRL in relation to each of the model's four phases - surveying task conditions, setting goals and planning, engaging the task, and composing major adaptations for future tasks. Select illustrations are provided for each phase of SRL. Regarding phase 3, a software system called nStudy is introduced as state-of-the-art instrumentation for gathering fine-grained, time-stamped trace data about information learners select for processing and operations they use to process that information. Self-regulated learning can be viewed through a lens of the levels construct, and operational definitions can be designed to research SRL with respect to levels. While information can be organized arbitrarily deeply, the levels construct may not be particularly

  18. A new window of opportunity to reject process-based biotechnology regulation.

    Science.gov (United States)

    Marchant, Gary E; Stevens, Yvonne A

    2015-01-01

    The question of whether biotechnology regulation should be based on the process or the product has long been debated, with different jurisdictions adopting different approaches. The European Union has adopted a process-based approach, Canada has adopted a product-based approach, and the United States has implemented a hybrid system. With the recent proliferation of new methods of genetic modification, such as gene editing, process-based regulatory systems, which are premised on a binary system of transgenic and conventional approaches, will become increasingly obsolete and unsustainable. To avoid unreasonable, unfair and arbitrary results, nations that have adopted process-based approaches will need to migrate to a product-based approach that considers the novelty and risks of the individual trait, rather than the process by which that trait was produced. This commentary suggests some approaches for the design of such a product-based approach.

  19. Interpretation and Regulation of Electronic Defects in IGZO TFTs Through Materials & Processes

    Science.gov (United States)

    Mudgal, Tarun

    The recent rise in the market for consumer electronics has fueled extensive research in the field of display. Thin-Film Transistors (TFTs) are used as active matrix switching devices for flat panel displays such as LCD and OLED. The following investigation involves an amorphous metal-oxide semiconductor that has the potential for improved performance over current technology, while maintaining high manufacturability. Indium-Gallium-Zinc-Oxide (IGZO) is a semiconductor material which is at the onset of commercialization. The low-temperature large-area deposition compatibility of IGZO makes it an attractive technology from a manufacturing standpoint, with an electron mobility that is 10 times higher than current amorphous silicon technology. The stability of IGZO TFTs continues to be a challenge due to the presence of defect states and problems associated with interface passivation. The goal of this dissertation is to further the understanding of the role of defect states in IGZO, and investigate materials and processes needed to regulate defects to the level at which the associated influence on device operation is controlled. The relationships between processes associated with IGZO TFT operation including IGZO sputter deposition, annealing conditions and back-channel passivation are established through process experimentation, materials analysis, electrical characterization, and modeling of electronic properties and transistor behavior. Each of these components has been essential in formulating and testing several hypotheses on the mechanisms involved, and directing efforts towards achieving the goal. Key accomplishments and quantified results are summarized as follows: • XPS analysis identified differences in oxygen vacancies in samples before and after oxidizing ambient annealing at 400 °C, showing a drop in relative integrated area of the O-1s peak from 32% to 19%, which experimentally translates to over a thousand fold decrease in the channel free electron

  20. The RB/E2F pathway and regulation of RNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Ahlander, Joseph [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States); Bosco, Giovanni, E-mail: gbosco@email.arizona.edu [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States)

    2009-07-03

    The retinoblastoma tumor suppressor protein (RB) is inactivated in a majority of cancers. RB restricts cell proliferation by inhibiting the E2F family of transcription factors. The current model for RB/E2F function describes its role in regulating transcription at gene promoters. Whether the RB or E2F proteins might play a role in gene expression beyond transcription initiation is not well known. This review describes evidence that points to a novel role for the RB/E2F network in the regulation of RNA processing, and we propose a model as a framework for future research. The elucidation of a novel role of RB in RNA processing will have a profound impact on our understanding of the role of this tumor suppressor family in cell and developmental biology.

  1. Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development

    DEFF Research Database (Denmark)

    Edwards, Alistair V G; Schwämmle, Veit; Larsen, Martin Røssel

    2014-01-01

    UNLABELLED: Brain development is a process requiring precise control of many different cell types. One method to achieve this is through specific and temporally regulated modification of proteins in order to alter structure and function. Post-translational modification (PTM) of proteins is known...... on protein-level events, this study also provides significant insight into detailed roles for individual modified proteins in the developing brain, helping to advance the understanding of the complex protein-driven processes that underlie development. Finally, the use of a novel bioinformatic analytical tool...... provides one of the most comprehensive sets of individual PTM site regulation data for mammalian brain tissue. This will provide a valuable resource for those wishing to perform comparisons or meta-analyses of large scale PTMomic data, as are becoming increasingly common. Furthermore, being focussed...

  2. Key issues

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1980-01-01

    Successful modeling of the thermo-mechanical and hydrochemical behavior of radioactive waste repositories in hard rock is possible in principle. Because such predictions lie outside the realm of experience, their adequacy depends entirely upon a thorough understanding of three fundamental questions: an understanding of the chemical and physical processess that determine the behavior of rock and all its complexities; accurate and realistic numerical models of the geologic media within which a repository may be built; and sufficient in-situ data covering the entire geologic region affected by, or effecting the behavior of a repository. At present sufficient is known to be able to identify most of those areas which require further attention. These areas extend all the way from a complete understanding of the chemical and physical processes determining the behavior of rock through to the exploration mapping and testing that must be done during the development of any potential repository. Many of the techniques, laboratory equipment, field instrumentation, and numerical methods needed to accomplish this do not exist at present. Therefore it is necessary to accept that a major investment in scientific research is required to generate this information over the next few years. The spectrum of scientific and engineering activities is wide extending from laboratory measurements through the development of numerical models to the measurement of data in-situ, but there is every prospect that sufficient can be done to resolve these key issues. However, to do so requires overt recognition of the many gaps which exist in our knowledge and abilities today, and of the need to bridge these gaps and of the significant costs involved in doing so

  3. Employee's satisfaction with integration process as a key to success of the company. Case: Radisson Blu hotel Latvija.

    OpenAIRE

    Cipruse, Dagnija

    2011-01-01

    The purpose of this thesis is to clarify how the employee’s satisfaction with integration process can make impact on the success of the company. As employees are the most important resources of the company, good care have to be taken of them. Even more, depending on employee’s knowledge, skills and work satisfaction, company’s results can differ. To ensure the success and development of the company, the integration process has to be implemented carefully. The theoretical part of the thesi...

  4. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    Science.gov (United States)

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  5. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    Science.gov (United States)

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  6. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Kloezen, W.; Pronk, J.T.; Van Maris, A.J.A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process

  7. Environmental Scan: A Summary of Key Issues Facing California Community Colleges Pertinent to the Strategic Planning Process

    Science.gov (United States)

    Research and Planning Group for California Community Colleges (RP Group), 2005

    2005-01-01

    As part of the Statewide Strategic Planning Process for California Community Colleges, the Center for Student Success, the research and evaluation organization of the Research and Planning Group for California Community Colleges (RP/CSS) was asked to develop a series of overview documents that would outline both internal and external trends that…

  8. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    Science.gov (United States)

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  9. Interpretation keys in the process of sensitization and education of the Chinese consumer as to the consumption of wine

    Directory of Open Access Journals (Sweden)

    Trotta Alessandro

    2015-01-01

    Full Text Available China’ wine consumption has ever and ever increased during the last decade but there are still difficulties in the communication of this product. This is caused by the great social, cultural and economical diversities among Chinese themselves and between eastern and western culture. In fact, the diversities between the population of urban areas of greater development and the rural ones and the differences between the profound and radical eastern culture and the western culture outline a very different consumer-type compared to the western one. For this reason, for years, the marketing strategies in the wine sector have not brought about the attended results. The Chinese wine consumer reveals much instability caused by cultural reasons, which have emerged in this work, joined by an experimental analysis that could bring into light reliable evaluative results. The output of the analysis of these results is a list of interpretation key points that can be used as a tool to improve the education and the communication towards Chinese wine consumer.

  10. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    Directory of Open Access Journals (Sweden)

    Jinyi Liu

    Full Text Available Growth regulating factors (GRFs are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  11. Harmonized biosafety regulations are key to trust building in regional agbiotech partnerships: the case of the Bt cotton project in East Africa

    Directory of Open Access Journals (Sweden)

    Ezezika Obidimma C

    2012-11-01

    Full Text Available Abstract Background The Bacillus thuringiensis (Bt cotton public-private partnership (PPP project in East Africa was designed to gather baseline data on the effect of Bt cotton on biodiversity and the possibility of gene flow to wild cotton varieties. The results of the project are intended to be useful for Kenya, Uganda, and Tanzania when applying for biosafety approvals. Using the backdrop of the different biosafety regulations in the three countries, we investigate the role of trust in the Bt cotton partnership in East Africa. Methods Data were collected by reviewing relevant project documents and peer-reviewed articles on Bt cotton in Tanzania, Kenya and Uganda; conducting face-to-face interviews with key informants of the project; and conducting direct observations of the project. Data were analyzed based on recurring and emergent themes to create a comprehensive narrative on how trust is understood and built among the partners and with the community. Results We identified three factors that posed challenges to building trust in the Bt cotton project in East Africa: different regulatory regimes among the three countries; structural and management differences among the three partner institutions; and poor public awareness of GM crops and negative perceptions of the private sector. The structural and management differences were said to be addressed through joint planning, harmonization of research protocols, and management practices, while poor public awareness of GM crops and negative perceptions of the private sector were said to be addressed through open communication, sharing of resources, direct stakeholder engagement and awareness creation. The regulatory differences remained outside the scope of the project. Conclusions To improve the effectiveness of agbiotech PPPs, there is first a need for a regulatory regime that is acceptable to both the public and private sector partners. Second, early and continuous joint planning; sharing of

  12. Increased Circulating Endothelial Microparticles Associated with PAK4 Play a Key Role in Ventilation-Induced Lung Injury Process

    Directory of Open Access Journals (Sweden)

    Shuming Pan

    2017-01-01

    Full Text Available Inappropriate mechanical ventilation (MV can result in ventilator-induced lung injury (VILI. Probing mechanisms of VILI and searching for effective methods are current areas of research focus on VILI. The present study aimed to probe into mechanisms of endothelial microparticles (EMPs in VILI and the protective effects of Tetramethylpyrazine (TMP against VILI. In this study, C57BL/6 and TLR4KO mouse MV models were used to explore the function of EMPs associated with p21 activated kinases-4 (PAK-4 in VILI. Both the C57BL/6 and TLR4 KO groups were subdivided into a mechanical ventilation (MV group, a TMP + MV group, and a control group. After four hours of high tidal volume (20 ml/kg MV, the degree of lung injury and the protective effects of TMP were assessed. VILI inhibited the cytoskeleton-regulating protein of PAK4 and was accompanied by an increased circulating EMP level. The intercellular junction protein of β-catenin was also decreased accompanied by a thickening alveolar wall, increased lung W/D values, and neutrophil infiltration. TMP alleviated VILI via decreasing circulating EMPs, stabilizing intercellular junctions, and alleviating neutrophil infiltration.

  13. Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel function, a hybrid kernel function combing merits of Gaussian kernel function and polynomial kernel function is constructed. To design optimal parameters of this kernel function, the particle swarm optimization (PSO algorithm is applied. The proposed modeling method is used to predict the value of cell concentration in the Lysine fermentation process. Simulation results show that the presented hybrid-kernel RVM model has a better accuracy and performance than the single kernel RVM model.

  14. Automated microscopic characterization of metallic ores with image analysis: a key to improve ore processing. I: test of the methodology

    International Nuclear Information System (INIS)

    Berrezueta, E.; Castroviejo, R.

    2007-01-01

    Ore microscopy has traditionally been an important support to control ore processing, but the volume of present day processes is beyond the reach of human operators. Automation is therefore compulsory, but its development through digital image analysis, DIA, is limited by various problems, such as the similarity in reflectance values of some important ores, their anisotropism, and the performance of instruments and methods. The results presented show that automated identification and quantification by DIA are possible through multiband (RGB) determinations with a research 3CCD video camera on reflected light microscope. These results were obtained by systematic measurement of selected ores accounting for most of the industrial applications. Polarized light is avoided, so the effects of anisotropism can be neglected. Quality control at various stages and statistical analysis are important, as is the application of complementary criteria (e.g. metallogenetic). The sequential methodology is described and shown through practical examples. (Author)

  15. Cognitive regulation of smoking behavior within a cigarette: Automatic and nonautomatic processes.

    Science.gov (United States)

    Motschman, Courtney A; Tiffany, Stephen T

    2016-06-01

    There has been limited research on cognitive processes governing smoking behavior in individuals who are tobacco dependent. In a replication (Baxter & Hinson, 2001) and extension, this study examined the theory (Tiffany, 1990) that drug use may be controlled by automatic processes that develop over repeated use. Heavy and occasional cigarette smokers completed a button-press reaction time (RT) task while concurrently smoking a cigarette, pretending to smoke a lit cigarette, or not smoking. Slowed RT during the button-press task indexed the cognitive disruption associated with nonautomatic control of behavior. Occasional smokers' RTs were slowed when smoking or pretending to smoke compared with when not smoking. Heavy smokers' RTs were slowed when pretending to smoke versus not smoking; however, their RTs were similarly fast when smoking compared with not smoking. The results indicated that smoking behavior was more highly regulated by controlled, nonautomatic processes among occasional smokers and by automatic processes among heavy smokers. Patterns of RT across the interpuff interval indicated that occasional smokers were significantly slowed in anticipation of and immediately after puffing onset, whereas heavy smokers were only slowed significantly after puffing onset. These findings suggest that the entirety of the smoking sequence becomes automatized, with the behaviors leading up to puffing becoming more strongly regulated by automatic processes with experience. These results have relevance to theories on the cognitive regulation of cigarette smoking and support the importance of interventions that focus on routinized behaviors that individuals engage in during and leading up to drug use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Hippocampal structure and human cognition: key role of spatial processing and evidence supporting the efficiency hypothesis in females

    Science.gov (United States)

    Colom, Roberto; Stein, Jason L.; Rajagopalan, Priya; Martínez, Kenia; Hermel, David; Wang, Yalin; Álvarez-Linera, Juan; Burgaleta, Miguel; Quiroga, MªÁngeles; Shih, Pei Chun; Thompson, Paul M.

    2014-01-01

    Here we apply a method for automated segmentation of the hippocampus in 3D high-resolution structural brain MRI scans. One hundred and four healthy young adults completed twenty one tasks measuring abstract, verbal, and spatial intelligence, along with working memory, executive control, attention, and processing speed. After permutation tests corrected for multiple comparisons across vertices (p related to hippocampal structural differences. PMID:25632167

  17. Solution-Processable Balanced Ambipolar Field-Effect Transistors Based on Carbonyl-Regulated Copolymers.

    Science.gov (United States)

    Yang, Chengdong; Fang, Renren; Yang, Xiongfa; Chen, Ru; Gao, Jianhua; Fan, Hanghong; Li, Hongxiang; Hu, Wenping

    2018-04-04

    It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole- and electron-transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron-withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm 2  V -1  s -1 , which suggested that these copolymers are promising ambipolar semiconductor materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Directory of Open Access Journals (Sweden)

    Groscurth Peter

    2007-06-01

    Full Text Available Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522 were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generation of granulysin in lymphokine activated killer (LAK cells and antigen (Listeria specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. Conclusion This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.

  19. Public debates - key issue in the environmental licensing process for the completion of the Cernavoda NPP Unit 2

    International Nuclear Information System (INIS)

    Rotaru, Ioan; Jelev, Adrian

    2003-01-01

    SN 'NUCLEARELECTRICA' S.A., the owner of Cernavoda NPP, organized, in 2001, several public consultations related to environmental impact of the completion of the Cernavoda NPP Unit 2, as required by the Romanian environmental law, part of project approval. Public consultations on the environmental assessment for the completion of the Cernavoda NPP - Unit 2 took place in 2001 between August 15 and September 21 in accordance with the provisions of Law No. 137/95 and Order No. 125/96. Romanian environmental legislation, harmonization of national environmental legislation with European Union, Romanian legislative requirements, information distributed to the public, issues raised and follow-up, they all are topics highlighted by this paper and they are addressing the environmental licensing process of the Cernavoda 2 NPP. The public consultation process described fulfils all the Romanian requirements for carrying out meaningful consultation with its relevant shareholders. The process also satisfies EDC (Export Development Corporation - Canada) requirements for public consultation and disclosure with relevant shareholders in the host country. SNN is fully committed to consulting as necessary with relevant shareholders throughout the construction and operation of the Project. Concerns of the public have been taken into account with the operations of Unit 1 and will continue to be addressed during the Unit 2 Project

  20. Permafrost sub-grid heterogeneity of soil properties key for 3-D soil processes and future climate projections

    Directory of Open Access Journals (Sweden)

    Christian Beer

    2016-08-01

    Full Text Available There are massive carbon stocks stored in permafrost-affected soils due to the 3-D soil movement process called cryoturbation. For a reliable projection of the past, recent and future Arctic carbon balance, and hence climate, a reliable concept for representing cryoturbation in a land surface model (LSM is required. The basis of the underlying transport processes is pedon-scale heterogeneity of soil hydrological and thermal properties as well as insulating layers, such as snow and vegetation. Today we still lack a concept of how to reliably represent pedon-scale properties and processes in a LSM. One possibility could be a statistical approach. This perspective paper demonstrates the importance of sub-grid heterogeneity in permafrost soils as a pre-requisite to implement any lateral transport parametrization. Representing such heterogeneity at the sub-pixel size of a LSM is the next logical step of model advancements. As a result of a theoretical experiment, heterogeneity of thermal and hydrological soil properties alone lead to a remarkable initial sub-grid range of subsoil temperature of 2 deg C, and active-layer thickness of 150 cm in East Siberia. These results show the way forward in representing combined lateral and vertical transport of water and soil in LSMs.

  1. Processing and regulation of negative emotions in anorexia nervosa: An fMRI study

    Directory of Open Access Journals (Sweden)

    Maria Seidel

    Full Text Available Theoretical models and recent advances in the treatment of anorexia nervosa (AN have increasingly focused on the role of alterations in the processing and regulation of emotions. To date, however, our understanding of these changes is still limited and reports of emotional dysregulation in AN have been based largely on self-report data, and there is a relative lack of objective experimental evidence or neurobiological data.The current functional magnetic resonance imaging (fMRI study investigated the hemodynamic correlates of passive viewing and voluntary downregulation of negative emotions by means of the reappraisal strategy detachment in AN patients. Detachment is regarded as adaptive regulation strategy associated with a reduction in emotion-related amygdala activity and increased recruitment of prefrontal brain regions associated with cognitive control processes. Emotion regulation efficacy was assessed via behavioral arousal ratings and fMRI activation elicited by an established experimental paradigm including negative images. Participants were instructed to either simply view emotional pictures or detach themselves from feelings triggered by the stimuli.The sample consisted of 36 predominantly adolescent female AN patients and a pairwise age-matched healthy control group. Behavioral and neuroimaging data analyses indicated a reduction of arousal and amygdala activity during the regulation condition for both patients and controls. However, compared with controls, individuals with AN showed increased activation in the amygdala as well as in the right dorsolateral prefrontal cortex (dlPFC during the passive viewing of aversive compared with neutral pictures.These results extend previous findings indicative of altered processing of salient emotional stimuli in AN, but do not point to a general deficit in the voluntary regulation of negative emotions. Increased dlPFC activation in AN during passive viewing of negative stimuli is in line with

  2. The regulator's stake in a multi-stakeholder process

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mikael; Larsson, Carl-Magnus [Swedish Radiation Protection Inst., Stockholm (Sweden); Norrby, Soeren; Westerlind, Magnus [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    1999-12-01

    The siting of a repository for spent nuclear fuel poses a number of challenges to a broad range of stakeholders, e.g. implementers, regulators, potential host municipalities, environmental groups, political decision-makers on different levels and the public. This paper presents some regulatory challenges as experienced and approached by the Swedish regulators most involved in nuclear waste management (the Swedish Radiation Protection Institute, SSI, and the Swedish Nuclear Power Inspectorate, SKI). First the regulatory framework is outlined with emphasis on decision-making processes and environmental impact assessment. Then a short background is given to the current status of the ongoing programme for repository siting. The main part of the paper discusses some conclusions from the so-called RISCOM pilot project, which was concluded in 1998. The paper also contains some findings from other projects as well as some experiences from the ongoing siting process. It is important to have independent regulators, with the capacity to review the safety assessment of the implementer. The regulators also have the challenging task to be people's experts in stretching the implementer. At the same time they should expose themselves to the being stretched by other stakeholders and the public at large. Experience also shows that regulators should engage early in the pre-licensing phase, e.g. in EIA and siting, and that this can be done without compromising the independence and integrity needed in the licensing phase. The regulator must be present at all levels, and observant of the participants' different needs and roles played on the national, regional and local level. A well structured, but flexible, EIA appear to be an efficient 'vehicle' for public participation. However, it is believed that the EIA should be complemented with hearings, in both the pre-licensing and licensing phases, since this is believed to increase the transparency of the decision making

  3. The Key Lake project

    International Nuclear Information System (INIS)

    1991-01-01

    Key Lake is located in the Athabasca sand stone basin, 640 kilometers north of Saskatoon, Saskatchewan, Canada. The three sources of ore at Key Lake contain 70 100 tonnes of uranium. Features of the Key Lake Project were described under the key headings: work force, mining, mill process, tailings storage, permanent camp, environmental features, worker health and safety, and economic benefits. Appendices covering the historical background, construction projects, comparisons of western world mines, mining statistics, Northern Saskatchewan surface lease, and Key Lake development and regulatory agencies were included

  4. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  5. Credible decision-making regarding the management of spent nuclear fuel -four key questions concerning the decision-making process

    Energy Technology Data Exchange (ETDEWEB)

    Kaaberger, T. [Swedish Society for Nature Conservation (Sweden)

    1995-12-01

    The author starts by questioning the need for an EIA, since he sees a common attitude that the EIA is a tool for getting the community to accept the implementation of decisions that have already been made, and not a rational, organized way of achieving a basis for decision-making. A question of decisive importance for the relevancy of an EIA is whether (or not) the decisions already have been made, and the author points at indications which he believes support this view. Finally, arguments for delegating the EIA process to an external body are given.

  6. Credible decision-making regarding the management of spent nuclear fuel -four key questions concerning the decision-making process

    International Nuclear Information System (INIS)

    Kaaberger, T.

    1995-01-01

    The author starts by questioning the need for an EIA, since he sees a common attitude that the EIA is a tool for getting the community to accept the implementation of decisions that have already been made, and not a rational, organized way of achieving a basis for decision-making. A question of decisive importance for the relevancy of an EIA is whether (or not) the decisions already have been made, and the author points at indications which he believes support this view. Finally, arguments for delegating the EIA process to an external body are given

  7. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement.

    Science.gov (United States)

    Mosser, Mathilde; Kapel, Romain; Chevalot, Isabelle; Olmos, Eric; Marc, Ivan; Marc, Annie; Oriol, Eric

    2015-01-01

    Yeast extract (YE) is known to greatly enhance mammalian cell culture performances, but its undefined composition decreases process reliability. Accordingly, in the present study, the nature of YE compounds involved in the improvement of recombinant CHO cell growth and IgG production was investigated. First, the benefits of YE were verified, revealing that it increased maximal concentrations of viable cells and IgG up to 73 and 60%, respectively compared to a reference culture. Then, the analyses of YE composition highlighted the presence of molecules such as amino acids, vitamins, salts, nucleobase, and glucose that were contained in reference medium, while others including peptides, trehalose, polysaccharides, and nucleic acids were not. Consequently, YE was fractionated by a nanofiltration process to deeper evaluate its effects on CHO cell cultures. The YE molecules already contained in reference medium were mainly isolated in the permeate fraction together with trehalose and short peptides, while other molecules were concentrated in the retentate. Permeate, which was free of macromolecules, exhibited a similar positive effect than raw YE on maximal concentrations. Additional studies on cell energetic metabolism underlined that dipeptides and tripeptides in permeate were used as an efficient source of nitrogenous substrates. © 2015 American Institute of Chemical Engineers.

  8. The polyadenylation factor subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A key factor of programmed cell death and a regulator of immunity in arabidopsis

    KAUST Repository

    Bruggeman, Quentin; Garmier, Marie; De Bont, Linda; Soubigou-Taconnat, Ludivine; Mazubert, Christelle; Benhamed, Moussa; Raynaud, Cé cile; Bergounioux, Catherine; Delarue, Marianne

    2014-01-01

    striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD

  9. MicroRNAs (MiRs) Precisely Regulate Immune System Development and Function in Immunosenescence Process.

    Science.gov (United States)

    Aalaei-Andabili, Seyed Hossein; Rezaei, Nima

    2016-01-01

    Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human.

  10. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.; Li, Minjing; Liu, Chongxuan; Song, Xuehang; Chen, Xingyuan; Fredrickson, Jim K.; Zachara, John M.; Scheibe, Timothy D.

    2017-09-29

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accounted for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.

  11. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease.

    Science.gov (United States)

    Ordovas-Montanes, Jose; Rakoff-Nahoum, Seth; Huang, Siyi; Riol-Blanco, Lorena; Barreiro, Olga; von Andrian, Ulrich H

    2015-10-01

    The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.

    Science.gov (United States)

    Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W

    2004-10-01

    The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.

  13. Gas process technology for fuel cells. Desulfurization and other key problems; Gasprozesstechnik fuer Brennstoffzellen. Entschwefelung und andere Kernfragen

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, A.; Kalk, T.; Kvasnicka, A.; Roes, J.; Steffen, M.; Witzany, R. [Duisburg-Essen Univ., (Germany). ZBT Duisburg

    2008-07-01

    Fuel cells as Micro-CHP units for residential energy supply are one important technology option to improve energy efficiency and reduce emissions. Starting from natural gas as energy carrier, hydrogen is generated by catalytic processes. Prototypes are operated in field test in the meanwhile, but there are still important technical and scientific questions to deal with, as there are e.g. the desulfurisation of natural gas, the optimisation of heat integration in order to improve the efficiency of the complete system, the realisation of a closed water loop and last but not least the formation and impact of ammonia. At the same time, cost aspects and production technology have to be considered. (orig.)

  14. Academic motivation, self-concept, engagement, and performance in high school: key processes from a longitudinal perspective.

    Science.gov (United States)

    Green, Jasmine; Liem, Gregory Arief D; Martin, Andrew J; Colmar, Susan; Marsh, Herbert W; McInerney, Dennis

    2012-10-01

    The study tested three theoretically/conceptually hypothesized longitudinal models of academic processes leading to academic performance. Based on a longitudinal sample of 1866 high-school students across two consecutive years of high school (Time 1 and Time 2), the model with the most superior heuristic value demonstrated: (a) academic motivation and self-concept positively predicted attitudes toward school; (b) attitudes toward school positively predicted class participation and homework completion and negatively predicted absenteeism; and (c) class participation and homework completion positively predicted test performance whilst absenteeism negatively predicted test performance. Taken together, these findings provide support for the relevance of the self-system model and, particularly, the importance of examining the dynamic relationships amongst engagement factors of the model. The study highlights implications for educational and psychological theory, measurement, and intervention. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  15. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  16. Osteoarthritis: Control of human cartilage hypertrophic differentiation. Research highlight van: Gremlin1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Buckland, J.; Leijten, Jeroen Christianus Hermanus; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Disruption of articular cartilage homeostasis is important in osteoarthritis (OA) pathogenesis, key to which is activation of articular chondrocyte hypertrophic differentiation. Healthy articular cartilage is resistant to hypertrophic differentiation, whereas growth-plate cartilage is destined to

  17. THE STUDY OPPORTUNITIES OF SELF-OSCILLATIONS IN THE SYSTEM OF AUTOMATIC REGULATION OF THE VOLTAGE OF THE RINGS CONTROL WITH RELAY CONTROLLER BASED ON POWER KEY

    Directory of Open Access Journals (Sweden)

    D. S. Biluhin

    2009-03-01

    Full Text Available The possibility of application of the modern power semiconductor keys is considered for realization of asynchronous method of control of voltage level for circuits of on-board feeding of electric locomotives.

  18. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    Science.gov (United States)

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  19. The impact of metacognitive strategies and self-regulating processes of solving math word problems

    Directory of Open Access Journals (Sweden)

    Eda Vula

    2017-09-01

    Full Text Available This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners’ achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems. Two hundred sixty-three learners, of three classes of third graders (N=130 and four classes of fifth graders (N=133 of the elementary cycle from two urban schools of Kosovo, participated in the study. Almost half of the total number of the third and fifth-graderswere exposed to metacognitive instruction. The rest of the learners were included in control classes in which they performed tasks without having been given any specific guidance, based exclusively on traditional methods and respective textbooks. All the learners were tested in math word problems twice, before the intervention and after it. Research findings have shown that metacognitive strategies and self-regulating processes that learners use to control their actions, to reason, and to reflect, are one of the main resources that influence their success in solving a math word problem. Although the difference between the pre-test and the post-test resultswas statistically significant solely with the fifth-grade experimental classes, yet an improved performance was observed in third-grade experimental learners’ classes compared to control classes. Theoretical and practical implications of the research are discussed in the end of the study.

  20. Biogeochemical processes in a clay formation in situ experiment: Part G - Key interpretations and conclusions. Implications for repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Stroes-Gascoyne, S. [Atomic Energy of Canada Limited (AECL), Whiteshell Laboratories, Pinawa, Manitoba, Canada R0E 1L0 (Canada); Pearson, F.J. [Ground-Water Geochemistry, 5108 Trent Woods Drive, New Bern, NC 28562 (United States); Tournassat, C. [BRGM, French Geological Survey, 3 Avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Leupin, O.X.; Schwyn, B. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2011-06-15

    Highlights: > From the results of the PC experiment it can be inferred that degradation of organic compounds may induce. > Changes in pH and Eh which may affect the mobility of radionuclides eventually released from the waste. > Such changes will be limited in space and time because of large buffering capacity and low permeability of clay. > Nevertheless, amount of organic material in high level waste repositories should be kept small. > This will ensure achievement of background concentrations within short time period after repository closure. - Abstract: The in situ porewater chemistry (PC) experiment carried out in the Opalinus Clay formation at the Mont Terri Rock Laboratory, Switzerland for a period of 5 a allowed the identification and quantification of the biogeochemical processes resulting from and affected by an anaerobic microbial disturbance. The unintentional release of degradable organic compounds (mainly glycerol) induced microbially-mediated SO{sub 4} reduction in the borehole with concomitant significant geochemical changes in the circulating water and the adjacent porewater. These changes included a decrease in SO{sub 4}{sup 2-} concentration and pH and an increase in pCO{sub 2} and alkalinity relative to the non-affected formation water. However, the cation composition of the water and the mineralogy of the clay close to the borehole wall showed very little change. This is explained by (1) the strong chemical buffering processes in the clay and (2) by the diffusion-limited flux of solutes. With the aid of a reactive transport model with a minimum set of kinetic parameters for the hypothesised degradation reactions, the evolution of solutes in the borehole could be modelled adequately. The model was also applied to the prediction of restoration times upon depletion of the C source and results indicated restoration times to undisturbed conditions of about 15 a, but also highlighted the rather large uncertainties inherent in the geochemical model

  1. Integration and acceleration of virtual microscopy as the key to successful implementation into the routine diagnostic process.

    Science.gov (United States)

    Wienert, Stephan; Beil, Michael; Saeger, Kai; Hufnagl, Peter; Schrader, Thomas

    2009-01-09

    The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images) have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel). If the image parts are stored after JPEG compression

  2. Integration and acceleration of virtual microscopy as the key to successful implementation into the routine diagnostic process

    Directory of Open Access Journals (Sweden)

    Hufnagl Peter

    2009-01-01

    Full Text Available Abstract Background The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. Methods In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. Results The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel

  3. Infant Responding to Joint Attention, Executive Processes, and Self-Regulation in Preschool Children

    Science.gov (United States)

    Van Hecke, Amy Vaughan; Mundy, Peter; Block, Jessica J.; Delgado, Christine E. F.; Parlade, Meaghan V.; Pomares, Yuly B.; Hobson, Jessica A.

    2011-01-01

    Infant joint attention is related to behavioral and social outcomes, as well as language in childhood. Recent research and theory suggests that the relations between joint attention and social-behavioral outcomes may reflect the role of executive self-regulatory processes in the development of joint attention. To test this hypothesis two- studies were conducted. The first, cross-sectional study examined the development of responding to joint attention skill (RJA) in terms of increasing executive efficiency of responding between 9 and 18 months of age. The results indicated that development of RJA was characterized by a decreased latency to shift attention in following another person’s gaze and head turn, as well as an increase in the proportion of correct RJA responses exhibited by older infants. The second study examined the longitudinal relations between 12-month measures of responding to joint attention (RJA) and 36-month attention regulation in a delay of gratification task. The results indicated that responding to joint attention at 12-months was significantly related to children’s use of three types of self-regulation behaviors while waiting for a snack reward at 36 months of age. These observations are discussed in light of a developmental theory of attention regulation and joint attention in infancy. PMID:22206892

  4. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  5. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    International Nuclear Information System (INIS)

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-01-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  6. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  7. Emotion regulation in children with behavior problems: linking behavioral and brain processes.

    Science.gov (United States)

    Granic, Isabela; Meusel, Liesel-Ann; Lamm, Connie; Woltering, Steven; Lewis, Marc D

    2012-08-01

    Past studies have shown that aggressive children exhibit rigid (rather than flexible) parent-child interactions; these rigid repertoires may provide the context through which children fail to acquire emotion-regulation skills. Difficulties in regulating emotion are associated with minimal activity in dorsal systems in the cerebral cortex, for example, the anterior cingulate cortex. The current study aimed to integrate parent-child and neurocognitive indices of emotion regulation and examine their associations for the first time. Sixty children (8-12 years old) referred for treatment for aggression underwent two assessments. Brain processes related to emotion regulation were assessed using dense-array EEG with a computerized go/no-go task. The N2 amplitudes thought to tap inhibitory control were recorded, and a source analysis was conducted. In the second assessment, parents and children were videotaped while trying to solve a conflict topic. State space grids were used to derive two dynamic flexibility parameters from the coded videotapes: (a) the number of transitions between emotional states and (b) the dispersion of emotional states, based on proportional durations in each state. The regression results showed that flexibility measures were not related to N2 amplitudes. However, flexibility measures were significantly associated with the ratio of dorsal to ventral source activation: for transitions, ΔR 2 = .27, F (1, 34) = 13.13, p = .001; for dispersion, ΔR 2 = .29, F (1, 35) = 14.76, p < .001. Thus, in support of our main hypothesis, greater dyadic flexibility was associated with a higher ratio of dorsomedial to ventral activation, suggesting that children with more flexible parent-child interactions are able to recruit relatively more dorsomedial activity in challenging situations.

  8. Fiscal 1998 research achievement report. Development of key technology for high-efficiency semiconductor manufacturing process; 1998 nendo kokoritsu handotai seizo process kiban gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    In the development of large-aperture/high-density plasma technology, research and development was carried out for balanced electron drift plasma technologies for uniform control of plasma density and the like, such as an excited plasma source and plasma drift to enable wide-range plasma generation in a chamber. In the development of high-efficiency exposure technology, studies were made for stable generation and control of short wavelength excimer laser and for higher-speed large-aperture mask writing by use of an electron beam. In the development of higher-speed processing and energy-efficient technologies, research and development was conducted involving probe card technology for increasing the speed of semiconductor inspection, software-aided virtual tester technology, local energy-efficient cleaning technology in wafer processing and transportation, sheet-type flexible manufacturing system, and the like. (NEDO)

  9. Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability.

    Science.gov (United States)

    Lee, Joonyeob; Shin, Seung Gu; Han, Gyuseong; Koo, Taewoan; Hwang, Seokhwan

    2017-12-01

    In this study, four different mesophilic and thermophilic full-scale anaerobic digesters treating food wastewater (FWW) were monitored for 1-2years in order to investigate: 1) microbial communities underpinning anaerobic digestion of FWW, 2) significant factors shaping microbial community structures, and 3) potential microbial indicators of process instability. Twenty-seven bacterial genera were identified as abundant bacteria underpinning the anaerobic digestion of FWW. Methanosaeta harundinacea, M. concilii, Methanoculleus bourgensis, M. thermophilus, and Methanobacterium beijingense were revealed as dominant methanogens. Bacterial community structures were clearly differentiated by digesters; archaeal community structures of each digester were dominated by one or two methanogen species. Temperature, ammonia, propionate, Na + , and acetate in the digester were significant factors shaping microbial community structures. The total microbial populations, microbial diversity, and specific bacteria genera showed potential as indicators of process instability in the anaerobic digestion of FWW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process

    International Nuclear Information System (INIS)

    Park, Jeehye; Lee, Gina; Chung, Jongkyeong

    2009-01-01

    The two Parkinson's disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.

  11. The Role of Emotion Regulation in the Predictive Association between Social Information Processing and Aggressive Behavior in Adolescents

    Science.gov (United States)

    Calvete, Esther; Orue, Izaskun

    2012-01-01

    The primary aim of this study was to assess the moderating role of emotion regulation in the relationship between some components of social information processing (hostile interpretation and anger) and aggressive behavior. The secondary aim was to assess whether emotion regulation, hostile interpretation, and anger account for gender differences…

  12. 50 CFR 92.12 - Relationship to the process for developing national hunting regulations for migratory game birds.

    Science.gov (United States)

    2010-10-01

    ... national hunting regulations for migratory game birds. 92.12 Section 92.12 Wildlife and Fisheries UNITED... MIGRATORY BIRD SUBSISTENCE HARVEST IN ALASKA Program Structure § 92.12 Relationship to the process for developing national hunting regulations for migratory game birds. (a) Flyway councils. (1) Proposed annual...

  13. Dealing with Feeling: A Meta-Analysis of the Effectiveness of Strategies Derived from the Process Model of Emotion Regulation

    Science.gov (United States)

    Webb, Thomas L.; Miles, Eleanor; Sheeran, Paschal

    2012-01-01

    The present meta-analysis investigated the effectiveness of strategies derived from the process model of emotion regulation in modifying emotional outcomes as indexed by experiential, behavioral, and physiological measures. A systematic search of the literature identified 306 experimental comparisons of different emotion regulation (ER)…

  14. Individual Distinctive Features of Self-Regulation Processes Peculiar to Students of Different Profiles of Lateral Organization

    Science.gov (United States)

    Korneeva, Svetlana A.; Zherebnenko, Oksana A.; Mukhamedzyanova, Flera G.; Moskalenko, Svetlana V.; Gorelikova, Olga N.

    2016-01-01

    The research paper presents an analysis of the interrelation between the lateral organisation profiles' indicators and self-regulation features. The existence of significant distinctions in the processes of self-regulation among respondents with different variants of lateral profiles of the interhemispheric asymmetry is proved, as well as the…

  15. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats.

    Science.gov (United States)

    Sun, Dong; Wang, Kexin; Yan, Zhibo; Zhang, Guangyong; Liu, Shaozhuang; Liu, Fengjun; Hu, Chunxiao; Hu, Sanyuan

    2013-11-01

    Duodenal-jejunal bypass (DJB), which is not routinely applied in metabolic surgery, is an effective surgical procedure in terms of type 2 diabetes mellitus resolution. However, the underlying mechanisms are still undefined. Our aim was to investigate the diabetic improvement by DJB and to explore the changes in hepatic insulin signaling proteins and regulatory enzymes of gluconeogenesis after DJB in a non-obese diabetic rat model. Sixteen adult male Goto-Kakizaki rats were randomly divided into DJB and sham-operated groups. The body weight, food intake, hormone levels, and glucose metabolism were measured. The levels of protein expression and phosphorylation of insulin receptor-beta (IR-β) and insulin receptor substrate 2 (IRS-2) were evaluated in the liver. We also detected the expression of key regulatory enzymes of gluconeogenesis [phosphoenoylpyruvate carboxykinase-1 (PCK1), glucose-6-phosphatase-alpha (G6Pase-α)] in small intestine and liver. DJB induced significant diabetic improvement with higher postprandial glucagons-like peptide 1, peptide YY, and insulin levels, but without weight loss. The DJB group exhibited increased expression and phosphorylation of IR-β and IRS-2 in liver, up-regulated the expression of PCK1 and G6Pase-α in small intestine, and down-regulated the expression of these enzymes in liver. DJB is effective in up-regulating the expression of the key proteins in the hepatic insulin signaling pathway and the key regulatory enzymes of intestinal gluconeogenesis and down-regulating the expression of the key regulatory enzymes of hepatic gluconeogenesis without weight loss. Our study helps to reveal the potential role of hepatic insulin signaling pathway and intestinal gluconeogenesis in ameliorating insulin resistance after metabolic surgery.

  16. Modern limnology, sediment accumulation and varve formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record

    Directory of Open Access Journals (Sweden)

    Alicja Bonk

    2014-12-01

    Full Text Available Reconstructions of paleoclimatic and paleoenvironmental data from sediment records require a thorough knowledge of the physical, chemical and biological factors that influence sediment-formation processes and signal preservation in lake sediments. Lake Żabińskie, an eutrophic hardwater lake located in northeastern Poland (Masurian Lake District, provides an unique environment for the investigation of processes that lead to the varve formation. During a two-year long observation period we investigated limnological and hydrochemical conditions within the water column, recent sediment fluxes and laminations preserved in the sediments of this lake to understand the relationship between the lake water properties and the sediment formation processes. We demonstrate that different mixing patterns may occur in Lake Żabińskie, from dimictic to meromictic depending on the meteorological conditions. Regardless of the water mixing pattern, the lake was stratified during much of the year which led to significant differences between surface and near-bottom water environments. The hypolimnion was characterized by higher conductivity and anoxic conditions with only short periods of better oxygenation, which created conditions ideal for the formation and preservation of biogenic varves. The material collected from the sediment trap revealed notable changes in sediment fluxes with characteristic spring maxima and, optionally, a second late fall maxima. Considerable variability was also observed for the fluxes of total organic carbon, biogenic silica and calcite. Microscopic investigation of the topmost sediments revealed a complex structure of the varves showing a distinct spring calcite lamina followed by several fine calcite laminae interbedded with diatom-rich laminae and, finally, by an organic-rich lamina with minerogenic admixtures deposited during winter. This seasonal variability was also reflected in the chemical composition inferred from high

  17. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis

    NARCIS (Netherlands)

    Curaba, J.; Moritz, T.; Blervaque, R.; Parcy, F.; Raz, V.; Herzog, M.; Vachon, G.

    2004-01-01

    Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin

  18. Translational control and differential RNA decay are key elements regulating postsegregational expression of the killer protein encoded by the parB locus of plasmid R1

    DEFF Research Database (Denmark)

    Gerdes, K; Helin, K; Christensen, O W

    1988-01-01

    The parB locus of plasmid R1, which mediates plasmid stability via postsegregational killing of plasmid-free cells, encodes two genes, hok and sok. The hok gene product is a potent cell-killing protein. The hok gene is regulated at the translational level by the sok gene-encoded repressor, a small...

  19. Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling?

    Science.gov (United States)

    Gems, David; McElwee, Joshua J

    2005-03-01

    Our recent survey of genes regulated by insulin/IGF-1 signaling (IIS) in Caenorhabditis elegans suggests a role for a number of gene classes in longevity assurance. Based on these findings, we propose a model for the biochemistry of longevity assurance and ageing, which is as follows. Ageing results from molecular damage from highly diverse endobiotic toxins. These are stochastic by-products of diverse metabolic processes, of which reactive oxygen species (ROS) are likely to be only one component. Our microarray analysis suggests a major role in longevity assurance of the phase 1, phase 2 detoxification system involving cytochrome P450 (CYP), short-chain dehydrogenase/reductase (SDR) and UDP-glucuronosyltransferase (UGT) enzymes. Unlike superoxide and hydrogen peroxide detoxification, this system is energetically costly, and requires the excretion from the cell of its products. Given such costs, its activity may be selected against, as predicted by the disposable soma theory. CYP and UGT enzymes target lipophilic molecular species; insufficient activity of this system is consistent with age-pigment (lipofuscin) accumulation during ageing. We suggest that IIS-regulated longevity assurance involves: (a) energetically costly detoxification and excretion of molecular rubbish, and (b) conservation of existing proteins via molecular chaperones. Given the emphasis in this theory on investment in cellular waste disposal, and on protein conservation, we have dubbed it the green theory.

  20. Simulating the Emergence and Survival of Mutations Using a Self Regulating Multitype Branching Processes

    Directory of Open Access Journals (Sweden)

    Charles J. Mode

    2011-01-01

    Full Text Available It is difficult for an experimenter to study the emergence and survival of mutations, because mutations are rare events so that large experimental population must be maintained to ensure a reasonable chance that a mutation will be observed. In his famous book, The Genetical Theory of Natural Selection, Sir R. A. Fisher introduced branching processes into evolutionary genetics as a framework for studying the emergence and survival of mutations in an evolving population. During the lifespan of Fisher, computer technology had not advanced to a point at which it became an effective tool for simulating the phenomenon of the emergence and survival of mutations, but given the wide availability of personal desktop and laptop computers, it is now possible and financially feasible for investigators to perform Monte Carlo Simulation experiments. In this paper all computer simulation experiments were carried out within a framework of self regulating multitype branching processes, which are part of a stochastic working paradigm. Emergence and survival of mutations could also be studied within a deterministic paradigm, which raises the issue as to what sense are predictions based on the stochastic and deterministic models are consistent. To come to grips with this issue, a technique was used such that a deterministic model could be embedded in a branching process so that the predictions of both the stochastic and deterministic compared based on the same assigned values of parameters.

  1. Cognitive and Emotion Regulation Change Processes in Cognitive Behavioural Therapy for Social Anxiety Disorder.

    Science.gov (United States)

    O'Toole, Mia S; Mennin, Douglas S; Hougaard, Esben; Zachariae, Robert; Rosenberg, Nicole K

    2015-01-01

    The objective of the study was to investigate variables, derived from both cognitive and emotion regulation conceptualizations of social anxiety disorder (SAD), as possible change processes in cognitive behaviour therapy (CBT) for SAD. Several proposed change processes were investigated: estimated probability, estimated cost, safety behaviours, acceptance of emotions, cognitive reappraisal and expressive suppression. Participants were 50 patients with SAD, receiving a standard manualized CBT program, conducted in groups or individually. All variables were measured pre-therapy, mid-therapy and post-therapy. Lower level mediation models revealed that while a change in most process measures significantly predicted clinical improvement, only changes in estimated probability and cost and acceptance of emotions showed significant indirect effects of CBT for SAD. The results are in accordance with previous studies supporting the mediating role of changes in cognitive distortions in CBT for SAD. In addition, acceptance of emotions may also be a critical component to clinical improvement in SAD during CBT, although more research is needed on which elements of acceptance are most helpful for individuals with SAD. The study's lack of a control condition limits any conclusion regarding the specificity of the findings to CBT. Change in estimated probability and cost, and acceptance of emotions showed an indirect effect of CBT for SAD. Cognitive distortions appear relevant to target with cognitive restructuring techniques. Finding acceptance to have an indirect effect could be interpreted as support for contemporary CBT approaches that include acceptance-based strategies. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene.

    Science.gov (United States)

    Sharon-Asa, Liat; Shalit, Moshe; Frydman, Ahuva; Bar, Einat; Holland, Doron; Or, Etti; Lavi, Uri; Lewinsohn, Efraim; Eyal, Yoram

    2003-12-01

    Citrus fruits possess unique aromas rarely found in other fruit species. While fruit flavor is composed of complex combinations of soluble and volatile compounds, several low-abundance sesquiterpenes, such as valencene, nootkatone, alpha-sinensal, and beta-sinensal, stand out in citrus as important flavor and aroma compounds. The profile of terpenoid volatiles in various citrus species and their importance as aroma compounds have been studied in detail, but much is still lacking in our understanding of the physiological, biochemical, and genetic regulation of their production. Here, we report on the isolation, functional expression, and developmental regulation of Cstps1, a sesquiterpene synthase-encoding gene, involved in citrus aroma formation. The recombinant enzyme encoded by Cstps1 was shown to convert farnesyl diphosphate to a single sesquiterpene product identified as valencene by gas chromatography-mass spectrometry (GC-MS). Phylogenetic analysis of plant terpene synthase genes localized Cstps1 to the group of angiosperm sesquiterpene synthases. Within this group, Cstps1 belongs to a subgroup of citrus sesquiterpene synthases. Cstps1 was found to be developmentally regulated: transcript was found to accumulate only towards fruit maturation, corresponding well with the timing of valencene accumulation in fruit. Although citrus fruits are non-climacteric, valencene accumulation and Cstps1 expression were found to be responsive to ethylene, providing further evidence for the role of ethylene in the final stages of citrus fruit ripening. Isolation of the gene encoding valencene synthase provides a tool for an in-depth study of the regulation of aroma compound biosynthesis in citrus and for metabolic engineering for fruit flavor characteristics.

  3. The Impact of the nuclear critics on the development of the regulating process

    International Nuclear Information System (INIS)

    Roser, Thomas.

    1978-01-01

    The impact of nuclear critics on the regulating process is difficult to analyse as the question is to identify them and to define their aim. In the United States it is generally considered that such critics are the new class of liberal intellectuals who have been politically jolted by Vietnam and Watergate. On this side of the Atlantic, the anti-nuclear movement seems different, less coherent and more complex: the local opposition, the environmentalists and the militant radicals. All these opponents can intervene at three levels: technically they attack the technical standards applied and propose other energy sources. At regulatory level they can influence decision-making provided they are in a majority; politically they take action on behalf of the basic respect of democracy for minorities and individual rights. (NEA) [fr

  4. Postgraduate education and research in Brazil: regulation and reconfiguration processes of academic work formation and production

    Directory of Open Access Journals (Sweden)

    João Ferreira de Oliveira

    2015-07-01

    Full Text Available This text analyses some of the processes of formation and production regulation and reconfiguration of the scholarly work in Brazil. Initially we examine the context and meaning of knowledge production in times of flexible accumulation, as well as the current landscape of Postgraduate education in the country. We seek to understand how public policies in the area, particularly the actions of evaluation and promotion, and the new modus operandi of the Postgraduate study and research organization have been reconfiguring the work production of teaching and students within the programs, especially in education. Above all, we seek to highlight the role of promotion and evaluation agencies, increasingly committed to a vision of expansion that drives the production of knowledge associated with demands of economic-productivity, rather than a consistent formative project that would result in a significant advancement in the production and dissemination of knowledge in the different areas.

  5. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    2016-05-01

    Full Text Available Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H, and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium.

  6. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster.

    Science.gov (United States)

    Verma, Puja; Tapadia, Madhu G

    2015-08-01

    In insects, humoral response to injury is accomplished by the production of antimicrobial peptides (AMPs) which are secreted in the hemolymph to eliminate the pathogen. Drosophila Malpighian tubules (MTs), however, are unique immune organs that show constitutive expression of AMPs even in unchallenged conditions and the onset of immune response is developmental stage dependent. Earlier reports have shown ecdysone positively regulates immune response after pathogenic challenge however, a robust response requires prior potentiation by the hormone. Here we provide evidence to show that MTs do not require prior potentiation with ecdysone hormone for expression of AMPs and they respond to ecdysone very fast even without immune challenge, although the different AMPs Diptericin, Cecropin, Attacin, Drosocin show differential expression in response to ecdysone. We show that early gene Broad complex (BR-C) could be regulating the IMD pathway by activating Relish and physically interacting with it to activate AMPs expression. BR-C depletion from Malpighian tubules renders the flies susceptible to infection. We also show that in MTs ecdysone signaling is transduced by EcR-B1 and B2. In the absence of ecdysone signaling the IMD pathway associated genes are down regulated and activation and translocation of transcription factor Relish is also affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Regulation of protein phosphatase 2A during embryonic diapause process in the silkworm, Bombyx mori.

    Science.gov (United States)

    Gu, Shi-Hong; Hsieh, Hsiao-Yen; Lin, Pei-Ling

    2017-11-01

    Regulation of protein phosphorylation requires coordinated interactions between protein kinases and protein phosphatases. In the present study, we investigated regulation of protein phosphatase 2A (PP2A) during the embryonic diapause process of B. mori. An immunoblotting analysis showed that Bombyx eggs contained a catalytic C subunit, a major regulatory B subunit (B55/PR55 subunit), and a structural A subunit, with the A and B subunits undergoing differential changes between diapause and non-diapause eggs during embryonic process. In non-diapause eggs, eggs whose diapause initiation was prevented by HCl, and eggs in which diapause had been terminated by chilling of diapausing eggs at 5°C for 70days and then were transferred to 25°C, protein levels of the A and B subunits of PP2A gradually increased toward embryonic development. However, protein levels of the A and B subunits in diapause eggs remained at low levels during the first 8days after oviposition. The direct determination of PP2A enzymatic activity showed that the activity remained at low levels in diapause eggs during the first 8days after oviposition. However, in non-diapause eggs, eggs whose diapause initiation was prevented by HCl, and eggs in which diapause had been terminated by chilling, PP2A enzymatic activity sharply increased during the first several days, reached a peak during the middle embryonic development, and then greatly decreased 3 or 4days before hatching. Examination of temporal changes in mRNA expression levels of the catalytic β subunit and regulatory subunit of PP2A showed high levels in eggs whose diapause initiation was prevented by HCl compared to those in diapause eggs. These results demonstrate that the higher PP2A gene expression and PP2A A and B subunit protein levels and increased enzymatic activity are related to embryonic development of B. mori. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Key process issues in Cognitive Behavioral Analysis System of Psychotherapy (CBASP): translation of an evidence-based model into clinical practice and training.

    Science.gov (United States)

    Vivian, Dina; Salwen, Jessica

    2013-09-01

    Our "desired outcome" in writing this article was to present not only key process issues stemming from the Cognitive Behavioral Analysis System of Psychotherapy (CBASP; McCullough, 2000), but to highlight those therapy maneuvers that we, a "seasoned" clinician/supervisor and a clinical trainee, find most useful in delivering treatment and in conducting supervision. We strongly believe that it is only through the translation of evidence-based therapeutic models, such as CBASP, into effective training that a true integration of science and practice can be obtained. Thus, the congruence of trainer's and trainee's views on what constitute top process issues in therapy is important in evaluating the reliability of a therapy model; with this in mind, we focus on three process issues, as follows: (1) problems are anchored to the "here and now" and to specific situational outcomes; (2) patients are encouraged to identify the role they play in affecting their distressing outcomes and to take responsibility for "fixing" them; and (3) the therapist planfully engages in the process of change via disciplined personal involvement. Research and theory supporting these maneuvers are presented, in conjunction with clinical examples. 2013 APA, all rights reserved

  9. Self-regulated learning processes of medical students during an academic learning task.

    Science.gov (United States)

    Gandomkar, Roghayeh; Mirzazadeh, Azim; Jalili, Mohammad; Yazdani, Kamran; Fata, Ladan; Sandars, John

    2016-10-01

    This study was designed to identify the self-regulated learning (SRL) processes of medical students during a biomedical science learning task and to examine the associations of the SRL processes with previous performance in biomedical science examinations and subsequent performance on a learning task. A sample of 76 Year 1 medical students were recruited based on their performance in biomedical science examinations and stratified into previous high and low performers. Participants were asked to complete a biomedical science learning task. Participants' SRL processes were assessed before (self-efficacy, goal setting and strategic planning), during (metacognitive monitoring) and after (causal attributions and adaptive inferences) their completion of the task using an SRL microanalytic interview. Descriptive statistics were used to analyse the means and frequencies of SRL processes. Univariate and multiple logistic regression analyses were conducted to examine the associations of SRL processes with previous examination performance and the learning task performance. Most participants (from 88.2% to 43.4%) reported task-specific processes for SRL measures. Students who exhibited higher self-efficacy (odds ratio [OR] 1.44, 95% confidence interval [CI] 1.09-1.90) and reported task-specific processes for metacognitive monitoring (OR 6.61, 95% CI 1.68-25.93) and causal attributions (OR 6.75, 95% CI 2.05-22.25) measures were more likely to be high previous performers. Multiple analysis revealed that similar SRL measures were associated with previous performance. The use of task-specific processes for causal attributions (OR 23.00, 95% CI 4.57-115.76) and adaptive inferences (OR 27.00, 95% CI 3.39-214.95) measures were associated with being a high learning task performer. In multiple analysis, only the causal attributions measure was associated with high learning task performance. Self-efficacy, metacognitive monitoring and causal attributions measures were associated

  10. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    International Nuclear Information System (INIS)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-01-01

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  11. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Yang, Hongying, E-mail: yanghongying@suda.edu.cn [School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Institute of Radiotherapy & Oncology, Soochow University (China)

    2015-10-15

    Highlights: • After co-culture with α-irradiated HaCaT cells, WS1 cells displayed oxidative stress and DNA damage. • Increased miR-21 expression in bystander cells was critical to the occurrence of RIBEs. • SOD2 of bystander cells played an important role in bystander responses. • miR-21 mediated bystander effects through its regulation on SOD2. - Abstract: Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30 min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3 h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects

  12. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    2010-04-01

    Full Text Available Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored.We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation.Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance.

  13. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    Science.gov (United States)

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  14. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  15. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  16. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes.

    Science.gov (United States)

    Tian, Wenqian; Yin, Xiaoming; Wang, Longxiao; Wang, Jingdong; Zhu, Wei; Cao, Jianping; Yang, Hongying

    2015-10-01

    Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects, overexpression of SOD2 abolished the bystander oxidative stress and DNA damage, indicating that SOD2 was critical to the induction of RIBEs. Moreover, we found that miR-21 regulated SOD2, suggesting that miR-21 might mediate bystander responses through its regulation on SOD2. In conclusion, this study revealed a profound role of miR-21-regulated SOD2 of unirradiated WS1

  17. Preschool classroom processes as predictors of children's cognitive self-regulation skills development.

    Science.gov (United States)

    Fuhs, Mary Wagner; Farran, Dale C; Nesbitt, Kimberly Turner

    2013-12-01

    This research focuses on the associations between interactive processes of early childhood classrooms and gains in children's cognitive self-regulation (CSR) across the preschool year. Data from 803 children (45.8% female; M = 54 months; 39.1% Caucasian, 26.3% African American, 24.6% Hispanic, 9.9% Other) were collected at fall and spring of the preschool year, and classroom observations were conducted three times throughout the year. Multilevel models tested associations between classroom behaviors of teachers and students using the Classroom Observation in Preschool and the Teacher Observation in Preschool and gains children made in a CSR composite score (Dimensional Change Card Sort, Peg Tapping, Head Toes Knees Shoulders, Copy Design, and Corsi Blocks) across the preschool year. After controlling for demographic covariates and children's pretest scores, both affective and cognitive classroom processes were associated with gains. More teacher behavior approving, less disapproving, and more positive emotional tone were associated with gains. The proportion of observed time teachers spent delivering instruction as well as the proportion of time children were involved with mathematics and literacy were also related to CSR gains, as was the quality of teacher instruction. Although exploratory, these results highlight the potential for modifications in classroom practices to aid in children's CSR development. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  18. A Key Role of Xanthophylls That Are Not Embedded in Proteins in Regulation of the Photosynthetic Antenna Function in Plants, Revealed by Monomolecular Layer Studies.

    Science.gov (United States)

    Welc, Renata; Luchowski, Rafal; Grudzinski, Wojciech; Puzio, Michal; Sowinski, Karol; Gruszecki, Wieslaw I

    2016-12-29

    The main physiological function of LHCII (light-harvesting pigment-protein complex of photosystem II), the largest photosynthetic antenna complex of plants, is absorption of light quanta and transfer of excitation energy toward the reaction centers, to drive photosynthesis. However, under strong illumination, the photosynthetic apparatus faces the danger of photodegradation and therefore excitations in LHCII have to be down-regulated, e.g., via thermal energy dissipation. One of the elements of the regulatory system, operating in the photosynthetic apparatus under light stress conditions, is a conversion of violaxanthin, the xanthophyll present under low light, to zeaxanthin, accumulated under strong light. In the present study, an effect of violaxanthin and zeaxanthin on the molecular organization and the photophysical properties of LHCII was studied in a monomolecular layer system with application of molecular imaging (atomic force microscopy, fluorescence lifetime imaging microscopy) and spectroscopy (UV-Vis absorption, FTIR, fluorescence spectroscopy) techniques. The results of the experiments show that violaxanthin promotes the formation of supramolecular LHCII structures preventing dissipative excitation quenching while zeaxanthin is involved in the formation of excitonic energy states able to quench chlorophyll excitations in both the higher (B states) and lower (Q states) energy levels. The results point to a strategic role of xanthophylls that are not embedded in a protein environment, in regulation of the photosynthetic light harvesting activity in plants.

  19. Contribution of l-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes.

    Science.gov (United States)

    Guo, Xiangyang; Song, Chuankui; Ho, Chi-Tang; Wan, Xiaochun

    2018-10-15

    l-Theanine, the most abundant amino acid in tea, is widely believed to be associated with the tea taste, however, its contribution to the formation of tea aroma is still unknown. Volatiles were determined and nitrogen-containing compounds formed during manufacturing processes were quantified. Lower levels of total sugar and l-theanine were detected in the Oolong tea product undergoing full fire processing (FFOT) suggesting that l-theanine probably involved in the volatile formation during manufacturing processes. Methylpyrazine and 2,5-dimethylpyrazine, two newly formed compounds in FFOT, together with other volatiles were successfully detected in a model thermal reaction of d-glucose and l-theanine (GT-MTR) but not detectable in thermal reactions with single d-glucose (G-MTR) or l-theanine (T-MTR). The concentration of 2,5-dimethylpyrazine increased significantly by adding additional l-theanine to 2nd roasted tea. Our study demonstrated that l-theanine, at least partly, contributed to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea. Copyright © 2018. Published by Elsevier Ltd.

  20. Dealing with emotions when the ability to cry is hampered: emotion processing and regulation in patients with primary Sjogren's syndrome

    NARCIS (Netherlands)

    Leeuwen, N. van; Bossema, E.R.; Middendorp, H. van; Kruize, A.A.; Bootsma, H.; Bijlsma, J.W.J.; Geenen, R.

    2012-01-01

    OBJECTIVES: The hampered ability to cry in patients with Sjogren's syndrome may affect their ways of dealing with emotions. The aim of this study was to examine differences in emotion processing and regulation between people with and without Sjogren's syndrome and correlations of emotion processing

  1. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-07-01

    Full Text Available Long noncoding RNAs (lncRNAs are emerging as new players in gene regulation, but whether lncRNAs operate in the processing of miRNA primary transcript is unclear. Also, whether lncRNAs are involved in the regulation of the mitochondrial network remains to be elucidated. Here, we report that a long noncoding RNA, named mitochondrial dynamic related lncRNA (MDRL, affects the processing of miR-484 primary transcript in nucleus and regulates the mitochondrial network by targeting miR-361 and miR-484. The results showed that miR-361 that predominantly located in nucleus can directly bind to primary transcript of miR-484 (pri-miR-484 and prevent its processing by Drosha into pre-miR-484. miR-361 is able to regulate mitochondrial fission and apoptosis by regulating miR-484 levels. In exploring the underlying molecular mechanism by which miR-361 is regulated, we identified MDRL and demonstrated that it could directly bind to miR-361 and downregulate its expression levels, which promotes the processing of pri-miR-484. MDRL inhibits mitochondrial fission and apoptosis by downregulating miR-361, which in turn relieves inhibition of miR-484 processing by miR-361. Our present study reveals a novel regulating model of mitochondrial fission program which is composed of MDRL, miR-361 and miR-484. Our work not only expands the function of the lncRNA pathway in gene regulation but also establishes a new mechanism for controlling miRNA expression.

  2. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.

    Science.gov (United States)

    Wei, Hai-Lei; Collmer, Alan

    2017-12-25

    Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  3. The Process Model of Group-Based Emotion : Integrating Intergroup Emotion and Emotion Regulation Perspectives

    NARCIS (Netherlands)

    Goldenberg, Amit; Halperin, Eran; van Zomeren, Martijn; Gross, James J.

    Scholars interested in emotion regulation have documented the different goals and strategies individuals have for regulating their emotions. However, little attention has been paid to the regulation of group-based emotions, which are based on individuals' self-categorization as a group member and

  4. Evolution and regulation of cellular periodic processes: a role for paralogues

    DEFF Research Database (Denmark)

    Trachana, Kalliopi; Jensen, Lars Juhl; Bork, Peer

    2010-01-01

    performed the first systematic comparison in three organisms (Homo sapiens, Arabidopsis thaliana and Saccharomyces cerevisiae) by using public microarray data. We observed that although diurnal-regulated and ultradian-regulated genes are not generally cell-cycle-regulated, they tend to have cell...

  5. A process evaluation: does recruitment for an exercise program through ethnically specific channels and key figures contribute to its reach and receptivity in ethnic minority mothers?

    Science.gov (United States)

    Hartman, Marieke A; Nierkens, Vera; Cremer, Stephan W; Stronks, Karien; Verhoeff, Arnoud P

    2013-08-19

    Ethnic minority women from low-income countries who live in high-income countries are more physically inactive than ethnic majority women in those countries. At the same time, they can be harder to reach with health promotion programs. Targeting recruitment channels and execution to ethnic groups could increase reach and receptivity to program participation. We explored using ethnically specific channels and key figures to reach Ghanaian, Antillean, and Surinamese mothers with an invitation for an exercise program, and subsequently, to determine the mothers' receptivity and participation. We conducted a mixed methods process evaluation in Amsterdam, The Netherlands. To recruit mothers, we employed ethnically specific community organizations and ethnically matched key figures as recruiters over Dutch health educators. Reach and participation were measured using reply cards and the attendance records from the exercise programs. Observations were made of the recruitment process. We interviewed 14 key figures and 32 mothers to respond to the recruitment channel and recruiter used. Content analysis was used to analyze qualitative data. Recruitment through ethnically specific community channels was successful among Ghanaian mothers, but less so among Antillean and Surinamese mothers. The more close-knit an ethnic community was, retaining their own culture and having poorer comprehension of the Dutch language, the more likely we were to reach mothers through ethnically specific organizations. Furthermore, we found that using ethnically matched recruiters resulted in higher receptivity to the program and, among the Ghanaian mothers in particular, in greater participation. This was because the ethnically matched recruiter was a familiar, trusted person, a translator, and a motivator who was enthusiastic, encouraging, and able to adapt her message (targeting/tailoring). Using a health expert was preferred in order to increase the credibility and professionalism of the

  6. Coordinated transcriptional regulation of two key genes in the lignin branch pathway--CAD and CCR--is mediated through MYB- binding sites.

    Science.gov (United States)

    Rahantamalala, Anjanirina; Rech, Philippe; Martinez, Yves; Chaubet-Gigot, Nicole; Grima-Pettenati, Jacqueline; Pacquit, Valérie

    2010-06-28

    Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. Our assignment of functional roles to the identified cis-elements clearly demonstrates the

  7. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?

    International Nuclear Information System (INIS)

    Alewell, C.; Paul, S.; Lischeid, G.; Storck, F.R.

    2008-01-01

    Wetlands have important filter functions in landscapes but are considered to be the biggest unknowns regarding their element dynamics under global climate change. Information on sink and source function of sulphur, nitrogen, organic matter and acidity in wetlands is crucial for freshwater regeneration. Recent results indicate that redox processes are not completely controlled by the sequential reduction chain (that is electron acceptor availability) but that electron donor availability may be an important regulator. Our hypothesis was that only sites which are limited in their electron donor availability (low concentrations of dissolved organic carbon (DOC)) follow the concept of the sequential reduction chain. We compared the results of two freshwater wetland systems: 1) three forested fens within a boreal spruce catchment in a low mountain range in southern Germany (high DOC regime) and 2) three floodplain soils within a groundwater enrichment area in the Rhein valley in northwest Switzerland (low DOC regime). Micro scale investigations (a few cm 3 ) with dialyse chambers as well as soil solution and groundwater concentrations at the forested fens (high DOC regime) indicated simultaneous consumption of nitrate and sulphate with release of iron, manganese and methane (CH 4 ) as well as an enrichment in stable sulphur isotopes indicating a co-existence of processes attributed to different redox gradients. Soil and aquifer gas measurements down to 4.6 m at the groundwater enrichment site (low DOC regime and carbon limitation) showed extreme high rates of metabolism with carbon dioxide (CO 2 ) , dinitrous oxide (N 2 O) and CH 4 concentrations reaching fifty, thirty and three times atmospheric concentrations, respectively. Simultaneously, groundwater oxygen (O 2 ) saturation was between 50 and 95%. We concluded that independent of DOC regime the sequential reduction chain was not a suitable concept in our systems. Instead of electron acceptor or donor availability

  8. Ayahuasca and the process of regulation in Brazil and internationally: implications and challenges.

    Science.gov (United States)

    Labate, Beatriz Caiuby; Feeney, Kevin

    2012-03-01

    This paper provides a summary and analysis of the regulation of ayahuasca in Brazil, from its prohibition in the mid-eighties to the recent adoption of CONAD's (Conselho Nacional de Políticas sobre Drogas) 2010 Resolution, which established a set of rules, norms and ethical principles to be applied to religious and ritual uses of ayahuasca. Brazil's regulatory process is used as a starting point to explore emerging international regulatory themes as various nations respond to the global expansion of the Santo Daime and UDV (União do Vegetal) ayahuasca religions. The text reviews the primary legislative and court documents, academic literature, as well as solicited expert opinions. Three prominent themes have emerged internationally. The first concerns the scope of international treaties regarding plant-based psychoactive substances, as well as the responsibilities of individual nations to adhere to said treaties. The second concerns the scope of religious liberty and how to determine religious legitimacy. The final theme addresses the potential dangers of ayahuasca to health and public safety. Over the past 20 years the Brazilian ayahuasca religions have established a global presence, with congregations in the USA, Canada, Japan, South Africa, Australia, and throughout Europe and Latin America. As a result, many nations are faced with the predicament of balancing the interests of these religious minorities with the international "war on drugs." The regulatory process applied in Brazil exemplifies a progressive approach, one which considered issues of anthropology and involved representatives of ayahuasca religions, and which provided a degree of deference to the principle of religious liberty. The Brazilian process has influenced judicial and administrative decisions internationally, and stands as a model worthy of further consideration. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation.

    Science.gov (United States)

    Cui, J G; Zhao, Y; Sethi, P; Li, Y Y; Mahta, A; Culicchia, F; Lukiw, W J

    2010-07-01

    High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.

  10. Regulation of EphA4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function

    DEFF Research Database (Denmark)

    Egea, Joaquim; Nissen, Ulla Vig; Dufour, Audrey

    2005-01-01

    Signaling by receptor tyrosine kinases (RTKs) is mediated by their intrinsic kinase activity. Typically, kinase-activating mutations result in ligand-independent signaling and gain-of-function phenotypes. Like other RTKs, Ephs require kinase activity to signal, but signaling by Ephs in vitro also...... requires clustering by their membrane bound ephrin ligands. The relative importance of Eph kinase activity and clustering for in vivo functions is unknown. We find that knockin mice expressing a mutant form of EphA4 (EphA4 EE), whose kinase is constitutively activated in the absence of ephrinB ligands......, are deficient in the development of thalamocortical projections and some aspects of central pattern generator rhythmicity. Surprisingly, other functions of EphA4 were regulated normally by EphA4EE, including midline axon guidance, hindlimb locomotion, in vitro growth cone collapse, and phosphorylation...

  11. The Micro-RNA172c-APETALA2-1 Node as a Key Regulator of the Common Bean-Rhizobium etli Nitrogen Fixation Symbiosis1[OPEN

    Science.gov (United States)

    Nova-Franco, Bárbara; Íñiguez, Luis P.; Valdés-López, Oswaldo; Leija, Alfonso; Fuentes, Sara I.; Ramírez, Mario; Paul, Sujay

    2015-01-01

    Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption. PMID:25739700

  12. Regulation by sliding operation of a denitrification process; Regulation par regime glissant d`un procede de denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Babary, J.P.; Bourrel, S.

    1995-12-31

    Biotechnological processing of waste waters is made through fixed bed bioreactors. Biochemical reaction kinetics can be modelled by non linear differential equations. The model is used to develop control laws. As an application, a denitrification bioreactor is modelled. Then control algorithm is checked through mathematical simulation of nitrogen compounds concentration ratio. (D.L.)

  13. The micro-RNA72c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis.

    Science.gov (United States)

    Nova-Franco, Bárbara; Íñiguez, Luis P; Valdés-López, Oswaldo; Alvarado-Affantranger, Xochitl; Leija, Alfonso; Fuentes, Sara I; Ramírez, Mario; Paul, Sujay; Reyes, José L; Girard, Lourdes; Hernández, Georgina

    2015-05-01

    Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Developmentally regulated expression and complex processing of barley pri-microRNAs

    Directory of Open Access Journals (Sweden)

    Kruszka Katarzyna

    2013-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19. However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely. Results To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3′ UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element. Conclusions Seven of the

  15. Comprehensive analysis of miRNAs expression profiles revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell self-renewal.

    Science.gov (United States)

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-05-20

    Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood. Recently, miRNAs are reported to be relevant to the self-renewal ability of cancer stem cells. In this study, we first isolated colorectal cancer stem cell from colorectal cancer cell line HCT-116 by 1% low serum culture. Then we conducted a comprehensive analysis based on the miRNAs profiles data of both colorectal cancer stem cells and normal cultured colorectal cancer cells. Pathway analysis revealed multiple pathways including Jak-STAT, TGF-beta, PI3K-Akt and MAPK signaling pathway that are correlated to colorectal cancer. Further, we constructed a miRNA-mRNA network, based on which, several miRNA/mRNA pairs were ranked according to their impact index to the self-renewal of colorectal cancer stem cells. Further biological experiment showed that up-regulation of miR-92a-3p led to cell cycle arrest and reduced colony formation. This work provides clues to find the new potential biomarkers for colorectal cancer stem cell diagnosis and select effective miRNAs for targeted therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Riwaldt

    2015-11-01

    Full Text Available We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: “NanoRacks-CellBox-Thyroid Cancer”. The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1 mediated cell–cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids.

  17. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.

    Science.gov (United States)

    Vyas, Sheela; Maatouk, Layal

    2013-12-01

    Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.

  18. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Science.gov (United States)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  19. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Directory of Open Access Journals (Sweden)

    Haluk eBeyenal

    2015-09-01

    Full Text Available Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA. We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl (cathodic mat system and +300 mVAg/AgCl (anodic mat system and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both anodic and cathodic mat systems. Interestingly, the cathodic mats generated the highest reducing current at the same time points that the anodic mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the cathodic mats than in the anodic mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the cathodic mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that

  20. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    Science.gov (United States)

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  1. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment.

    LENUS (Irish Health Repository)

    Rogan, Mark P

    2012-02-01

    Recent advances in basic science have greatly expanded our understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the chloride and bicarbonate channel that is encoded by the gene, which is mutated in patients with CF. We review the structure, function, biosynthetic processing, and intracellular trafficking of CFTR and discuss the five classes of mutations and their impact on the CF phenotype. The therapeutic discussion is focused on the significant progress toward CFTR mutation-specific therapies. We review the results of encouraging clinical trials examining orally administered therapeutics, including agents that promote read-through of class I mutations (premature termination codons); correctors, which overcome the CFTR misfolding that characterizes the common class II mutation F508del; and potentiators, which enhance the function of class III or IV mutated CFTR at the plasma membrane. Long-term outcomes from successful mutation-specific treatments could finally answer the question that has been lingering since and even before the CFTR gene discovery: Will therapies that specifically restore CFTR-mediated chloride secretion slow or arrest the deleterious cascade of events leading to chronic infection, bronchiectasis, and end-stage lung disease?

  2. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5

    Science.gov (United States)

    Zhang, Duanwu; Tomisato, Wataru; Su, Lijing; Sun, Lei; Choi, Jin Huk; Zhang, Zhao; Wang, Kuan-wen; Zhan, Xiaoming; Choi, Mihwa; Li, Xiaohong; Tang, Miao; Castro-Perez, Jose M.; Hildebrand, Sara; Murray, Anne R.; Moresco, Eva Marie Y.; Beutler, Bruce

    2017-01-01

    The recessive N-ethyl-N-nitrosourea–induced phenotype toku is characterized by delayed hair growth, progressive hair loss, and excessive accumulation of dermal cholesterol, triglycerides, and ceramides. The toku phenotype was attributed to a null allele of Gk5, encoding glycerol kinase 5 (GK5), a skin-specific kinase expressed predominantly in sebaceous glands. GK5 formed a complex with the sterol regulatory element-binding proteins (SREBPs) through their C-terminal regulatory domains, inhibiting SREBP processing and activation. In Gk5toku/toku mice, transcriptionally active SREBPs accumulated in the skin, but not in the liver; they were localized to the nucleus and led to elevated lipid synthesis and subsequent hair growth defects. Similar defective hair growth was observed in kinase-inactive GK5 mutant mice. Hair growth defects of homozygous toku mice were partially rescued by treatment with the HMG-CoA reductase inhibitor simvastatin. GK5 exists as part of a skin-specific regulatory mechanism for cholesterol biosynthesis, independent of cholesterol regulation elsewhere in the body. PMID:28607088

  3. Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime.

    Science.gov (United States)

    Kaya, Cengiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2018-02-21

    In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.

  4. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis.

    Science.gov (United States)

    Niso-Santano, Mireia; González-Polo, Rosa A; Bravo-San Pedro, José M; Gómez-Sánchez, Rubén; Lastres-Becker, Isabel; Ortiz-Ortiz, Miguel A; Soler, Germán; Morán, José M; Cuadrado, Antonio; Fuentes, José M

    2010-05-15

    Although oxidative stress is fundamental to the etiopathology of Parkinson disease, the signaling molecules involved in transduction after oxidant exposure to cell death are ill-defined, thus making it difficult to identify molecular targets of therapeutic relevance. We have addressed this question in human dopaminergic neuroblastoma SH-SY5Y cells exposed to the parkinsonian toxin paraquat (PQ). This toxin elicited a dose-dependent increase in reactive oxygen species and cell death that correlated with activation of ASK1 and the stress kinases p38 and JNK. The relevance of these kinases in channeling PQ neurotoxicity was demonstrated with the use of interference RNA for ASK1 and two well-established pharmaceutical inhibitors for JNK and p38. The toxic effect of PQ was substantially attenuated by preincubation with vitamin E, blocking ASK1 pathways and preventing oxidative stress and cell death. In a search for a physiological pathway that might counterbalance PQ-induced ASK1 activation, we analyzed the role of the transcription factor Nrf2, master regulator of redox homeostasis, and its target thioredoxin (Trx), which binds and inhibits ASK1. Trx levels were undetectable in Nrf2-deficient mouse embryo fibroblasts (MEFs), whereas they were constitutively high in Keap1-deficient MEFs as well as in SH-SY5Y cells treated with sulforaphane (SFN). Consistent with these data, Nrf2-deficient MEFs were more sensitive and Keap1-deficient MEFs and SH-SY5Y cells incubated with SFN were more resistant to PQ-induced cell death. This study identifies ASK1/JNK and ASK1/p38 as two critical pathways involved in the activation of cell death under oxidative stress conditions and identifies the Nrf2/Trx axis as a new target to block these pathways and protect from oxidant exposure such as that found in Parkinson and other neurodegenerative diseases. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    Science.gov (United States)

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  6. Regulator process for the authorization of an amendment to the operation license of a nuclear power plant in Mexico

    International Nuclear Information System (INIS)

    Perez, R.; Espinosa V, J.M.; Salgado, J.R.; Mamani, Y.R.

    2005-01-01

    The regulator process by which an authorization is granted from an amendment to the License of Operation of a nuclear power station in Mexico is described. It makes an appointment the effective legal mark, the technical characteristics of the modification, the evaluation process and deposition upon oath of tests and finally the elaboration of the Safety report and the Technical Verdict that is a correspondent for the regulator organism to the Secretary of Energy, the one that in turn is the responsible of granting the amendment the License just as it establishes it the Law. (Author)

  7. Epigenetic Regulation of Monocyte and Macrophage Function

    NARCIS (Netherlands)

    Hoeksema, Marten A.; de Winther, Menno P. J.

    2016-01-01

    Monocytes and macrophages are key players in tissue homeostasis and immune responses. Epigenetic processes tightly regulate cellular functioning in health and disease. Recent Advances: Recent technical developments have allowed detailed characterizations of the transcriptional circuitry underlying

  8. Design and analysis of modified Smith predictors for self-regulating and non-self regulating processes with dead time

    CERN Document Server

    Saravanakumar, G; Nayak, C G

    2007-01-01

    A modification of Smith predictor for controlling the higher order processes with integral action ad long dead-time is proposed in this paper. The controller used in this Smith predictor is an Integral-Proportional Derivative controller, where the Integrator is in the forward path and the Proportional and Derivative control are in the feedback, acting on the feedback signal. The main objective of this paper is to design a Dead Time Compensator(DTC), which has minimum tuning parameters, simple controller tuning, robust performance of tuning formulae and to obtain a critically damped system which is as fast as possible in its setpoint and load disturbance rejection performance. The controller in this paper is tuned by an adaptive method. This paper also presents a survey of various dead time compensators and their performance analysis.

  9. Process optimization by decoupled control of key microbial populations: distribution of activity and abundance of polyphosphate-accumulating organisms and nitrifying populations in a full-scale IFAS-EBPR plant

    DEFF Research Database (Denmark)

    Onnis-Hayden, Annalisa; Majed, Nehreen; Schramm, Andreas

    2011-01-01

    This study investigated the abundance and distribution of key functional microbial populations and their activities in a full-scale integrated fixed film activated sludgeeenhanced biological phosphorus removal (IFAS-EBPR) process. Polyphosphate accumulating organisms (PAOs) including Accumulibacter...

  10. Dealing with Feelings : Characterization of Trait Alexithymia on Emotion Regulation Strategies and Cognitive-Emotional Processing

    NARCIS (Netherlands)

    Swart, M.; Kortekaas, R; Aleman, A.

    2009-01-01

    Background: Alexithymia, or "no words for feelings'', is a personality trait which is associated with difficulties in emotion recognition and regulation. It is unknown whether this deficit is due primarily to regulation, perception, or mentalizing of emotions. In order to shed light on the core