WorldWideScience

Sample records for regulates akt1 activation

  1. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    Science.gov (United States)

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity.

  2. Regulation of mTORC1 Signaling by Src Kinase Activity Is Akt1-Independent in RSV-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Martina Vojtěchová

    2008-02-01

    Full Text Available Increased activity of the Src tyrosine protein kinase that has been observed in a large number of human malignancies appears to be a promising target for drug therapy. In the present study, a critical role of the Src activity in the deregulation of mTOR signaling pathway in Rous sarcoma virus (RSV-transformed hamster fibroblasts, H19 cells, was shown using these cells treated with the Src-specific inhibitor, SU6656, and clones of fibroblasts expressing either the active Src or the dominant-negative Src kinase-dead mutant. Disruption of the Src kinase activity results in substantial reduction of the phosphorylation and activity of the Akt/protein kinase B (PKB, phosphorylation of tuberin (TSC2, mammalian target of rapamycin (mTOR, S6K1, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 4E-BP1. The ectopic, active Akt1 that was expressed in Src-deficient cells significantly enhanced phosphorylation of TSC2 in these cells, but it failed to activate the inhibited components of the mTOR pathway that are downstream of TSC2. The data indicate that the Src kinase activity is essential for the activity of mTOR-dependent signaling pathway and suggest that mTOR targets may be controlled by Src independently of Akt1/TSC2 cascade in cells expressing hyperactive Src protein. These observations might have an implication in drug resistance to mTOR inhibitor-based cancer therapy in certain cell types.

  3. Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/β-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression

    Science.gov (United States)

    Cui, Nan; Yang, Wen-Ting; Zheng, Peng-Sheng

    2016-01-01

    Slug (Snai2) has been demonstrated to act as an oncogene or tumor suppressor in different human cancers, but the function of Slug in cervical cancer remains poorly understood. In this study, we demonstrated that Slug could suppress the proliferation of cervical cancer cells in vitro and tumor formation in vivo. Further experiments found that Slug could trans-suppress the expression of Akt1/p-Akt1 by binding to E-box motifs in the promoter of the Akt1 gene and then inhibit the cell proliferation and tumor formation of cervical cancer cells by up-regulating p21/p27 and/or down-regulating the activity of the Wnt/β-catenin signaling pathway. Therefore, Slug acts as a tumor suppressor during cervical carcinogenesis. PMID:27036045

  4. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  5. Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations.

    Science.gov (United States)

    Green, B D; Jabbour, A M; Sandow, J J; Riffkin, C D; Masouras, D; Daunt, C P; Salmanidis, M; Brumatti, G; Hemmings, B A; Guthridge, M A; Pearson, R B; Ekert, P G

    2013-10-01

    The activation of the Akt signalling in response to cytokine receptor signalling promotes protein synthesis, cellular growth and proliferation. To determine the role of Akt in interleukin-3 (IL-3) signalling, we generated IL-3-dependent myeloid cell lines from mice lacking Akt1, Akt2 or Akt3. Akt1 deletion resulted in accelerated apoptosis at low concentrations of IL-3. Expression of constitutively active Akt1 was sufficient to delay apoptosis in response to IL-3 withdrawal, but not sufficient to induce proliferation in the absence of IL-3. Akt1 prolonged survival of Bim- or Bad-deficient cells, but not cells lacking Puma, indicating that Akt1-dependent repression of apoptosis was in part dependent on Puma and independent of Bim or Bad. Our data show that a key role of Akt1 during IL-3 signalling is to repress p53-dependent apoptosis pathways, including transcriptional upregulation of Puma. Moreover, our data indicate that regulation of BH3-only proteins by Akt is dispensable for Akt-dependent cell survival.

  6. AKT1 Activation Promotes Development of Melanoma Metastases

    Directory of Open Access Journals (Sweden)

    Joseph H. Cho

    2015-11-01

    Full Text Available Metastases are the major cause of melanoma-related mortality. Previous studies implicating aberrant AKT signaling in human melanoma metastases led us to evaluate the effect of activated AKT1 expression in non-metastatic BRAFV600E/Cdkn2aNull mouse melanomas in vivo. Expression of activated AKT1 resulted in highly metastatic melanomas with lung and brain metastases in 67% and 17% of our mice, respectively. Silencing of PTEN in BRAFV600E/Cdkn2aNull melanomas cooperated with activated AKT1, resulting in decreased tumor latency and the development of lung and brain metastases in nearly 80% of tumor-bearing mice. These data demonstrate that AKT1 activation is sufficient to elicit lung and brain metastases in this context and reveal that activation of AKT1 is distinct from PTEN silencing in metastatic melanoma progression. These findings advance our knowledge of the mechanisms driving melanoma metastasis and may provide valuable insights for clinical management of this disease.

  7. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  8. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    Science.gov (United States)

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  9. Dataset to delineate changes in association between Akt1 and its interacting partners as a function of active state of Akt1 protein

    Directory of Open Access Journals (Sweden)

    Nutan Gupta

    2017-08-01

    Full Text Available Akt1 is a multi-functional protein, implicated in multiple human solid tumors. Pertaining to its key role in cell survival, Akt1 is under focus for development of targeted therapies. Functional diversity of Akt1 is a result of its interactions with other proteins; which changes with changing context. This investigation was designed to capture the dynamics of Akt1 Interactome as a function of its active state. Delineating dynamic changes in association of Akt1 with its interactors could help us comprehend how it changes as a function of inhibition of its active form. Similar information on changes in Akt1 interactome as of now is not well explored. Akt1 expressing HEK293 cells were cultured in light and heavy labeled SILAC media. Normal lysine and arginine were incorporated as light labels while for heavy labeling the isotopes were 8 and 10 Da heavier. Light labeled cells represented the indigenous state of Akt1 interactome while heavy labeled cells represented Akt1 interactome in presence of its allosteric inhibitor, MK-2206. Equal number of cells from both conditions were pooled, lysed and subjected to Affinity Purification coupled to Mass Spectroscopy (AP-MS. Additionally, SILAC labeling aided in quantitative estimation of changing association of a number of proteins which were common to the two experimental conditions, with Akt1. Data are available via ProteomeXchange with identifier PXD005976.

  10. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    Science.gov (United States)

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  11. Mechanistic Analysis of AKT1 Regulation by the CBL-CIPK-PP2CA Interactions

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhi Lan; Sung-Chul Lee; Yu-Fen Che; Yuan-Qing Jiang; Sheng Luan

    2011-01-01

    T Arabidopsis K+ transporter 1 (AKT1) participates in K+ uptake in roots, especially under low-K conditions. We recently identified a Ca2+ signaling pathway consisting of multiple calcineurin B-like calcium sensors (CBLs) and multiple target kinases (CBL-interacting protein kinases or CIPKs) that phosphorylate and activate AKT1, whereas a specific PP2C-type phosphatase inactivates CIPK-dependent AKT1 activity. In this study, we analyzed the interactions between PP2Cs and the CBL-CIPK pathway and found previously unsuspected mechanisms underlying the CBL-CIPK-PP2C signaling processes. The interaction between the CIPKs and PP2Cs involves the kinase domain of the CIPK component, in addition to the protein phosphatase interacting motif (PPI) in the regulatory domain. Furthermore, specific CBLs physically interact with and inactivate PP2C phosphatases to recover the CIPK-dependent AKT1 channel activity. These findings provide further insights into the signaling network consisting of CBL-CIPK-PP2C interactions in the activation of the AKT1 channel.

  12. Investigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia

    Directory of Open Access Journals (Sweden)

    Ching-Hsun eHuang

    2015-01-01

    Full Text Available Accumulating evidence from human genetic studies has suggested several functional candidate genes that might contribute to susceptibility to schizophrenia, including AKT1 and neuregulin 1 (NRG1. Recent findings also revealed that NRG1 stimulates the PI3-kinase/AKT signaling pathway, which might be involved in the functional outcomes of some schizophrenic patients. The aim of this study was to evaluate the effect of Akt1-deficiency and Nrg1-deficiency alone or in combination in the regulation of behavioral phenotypes, cognition, and social functions using genetically modified mice as a model. Male Akt1+/-, Nrg1+/-, and double mutant mice were bred and compared with their wild-type littermate controls. In experiment 1, general physical examination revealed that all mutant mice displayed a normal profile of body weight during development and a normal brain activity with microPET scan. In experiment 2, no significant genotypic differences were found in our basic behavioral phenotyping, including locomotion, anxiety-like behavior, and sensorimotor gating. However, both Nrg1+/- and double mutant mice exhibited impaired episodic-like memory. Double mutant mice also had impaired sociability. In experiment 3, a synergistic epistasis between Akt1 and Nrg1 was further confirmed in double mutant mice in that they had impaired social interaction compared to the other 3 groups, especially encountering with a novel male or an ovariectomized female. Double mutant and Nrg1+/- mice also emitted fewer female urine-induced ultrasonic vocalization calls. Collectively, our results indicate that double deficiency of Akt1 and Nrg1 can result in the impairment of social cognitive functions, which might be pertinent to the pathogenesis of schizophrenia-related social cognition.

  13. pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1.

    Science.gov (United States)

    Lindner, Haley Buff; Felmly, Lloyd McPherson; Demcheva, Marina; Seth, Arun; Norris, Russell; Bradshaw, Amy D; Vournakis, John; Muise-Helmericks, Robin C

    2015-01-01

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.

  14. pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1.

    Directory of Open Access Journals (Sweden)

    Haley Buff Lindner

    Full Text Available Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc, a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.

  15. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Science.gov (United States)

    Korkmaz, Yüksel; Klinz, Franz J.; Moghbeli, Mehrnoush; Addicks, Klaus; Raab, Wolfgang H. -M.; Bloch, Wilhelm

    2010-01-01

    The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ) areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit. PMID:20454577

  16. The masticatory contractile load induced expression and activation of Akt1/PKBalpha in muscle fibers at the myotendinous junction within muscle-tendon-bone unit.

    Science.gov (United States)

    Korkmaz, Yüksel; Klinz, Franz J; Moghbeli, Mehrnoush; Addicks, Klaus; Raab, Wolfgang H-M; Bloch, Wilhelm

    2010-01-01

    The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBalpha at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBalpha was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ) areas. In muscle fibers at the MTJ areas, Akt1/PKBalpha is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBalpha as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  17. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Directory of Open Access Journals (Sweden)

    Yüksel Korkmaz

    2010-01-01

    Full Text Available The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  18. Akt1 mediates neuronal differentiation in zebrafish via a reciprocal interaction with notch signaling.

    Directory of Open Access Journals (Sweden)

    Yi-Chuan Cheng

    Full Text Available Akt1 is well known for its role in regulating cell proliferation, differentiation, and apoptosis and is implicated in tumors and several neurological disorders. However, the role of Akt1 in neural development has not been well defined. We have isolated zebrafish akt1 and shown that this gene is primarily transcribed in the developing nervous system, and its spatiotemporal expression pattern suggests a role in neural differentiation. Injection of akt1 morpholinos resulted in loss of neuronal precursors with a concomitant increase in post-mitotic neurons, indicating that knockdown of Akt1 is sufficient to cause premature differentiation of neurons. A similar phenotype was observed in embryos deficient for Notch signaling. Both the ligand (deltaA and the downstream target of Notch (her8a were downregulated in akt1 morphants, indicating that Akt1 is required for Delta-Notch signaling. Furthermore, akt1 expression was downregulated in Delta-Notch signaling-deficient embryos and could be induced by constitutive activation of Notch signaling. In addition, knockdown of Akt1 was able to nullify the inhibition of neuronal differentiation caused by constitutive activation of Notch signaling. Taken together, these results provide in vivo evidence that Akt1 interacts with Notch signaling reciprocally and provide an explanation of why Akt1 is essential for the inhibition of neuronal differentiation.

  19. Annexin A2 Regulates Autophagy in Pseudomonas aeruginosa Infection through the Akt1-mTOR-ULK1/2 Signaling Pathway.

    Science.gov (United States)

    Li, Rongpeng; Tan, Shirui; Yu, Min; Jundt, Michael C; Zhang, Shuang; Wu, Min

    2015-10-15

    Earlier studies reported that a cell membrane protein, Annexin A2 (AnxA2), plays multiple roles in the development, invasion, and metastasis of cancer. Recent studies demonstrated that AnxA2 also functions in immunity against infection, but the underlying mechanism remains largely elusive. Using a mouse infection model, we reveal a crucial role for AnxA2 in host defense against Pseudomonas aeruginosa, as anxa2(-/-) mice manifested severe lung injury, systemic dissemination, and increased mortality compared with wild-type littermates. In addition, anxa2(-/-) mice exhibited elevated inflammatory cytokines (TNF-α, IL-6, IL-1β, and IFN-γ), decreased bacterial clearance by macrophages, and increased superoxide release in the lung. We further identified an unexpected molecular interaction between AnxA2 and Fam13A, which activated Rho GTPase. P. aeruginosa infection induced autophagosome formation by inhibiting Akt1 and mTOR. Our results indicate that AnxA2 regulates autophagy, thereby contributing to host immunity against bacteria through the Akt1-mTOR-ULK1/2 signaling pathway.

  20. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin.

    Science.gov (United States)

    Cheng, Ye; Zhao, Gang; Zhang, Siwen; Nigim, Fares; Zhou, Guangtong; Yu, Zhiyun; Song, Yang; Chen, Yong; Li, Yunqian

    2016-01-01

    AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA). AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.

  1. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung.

    Science.gov (United States)

    Malanga, Donatella; Scrima, Marianna; De Marco, Carmela; Fabiani, Fernanda; De Rosa, Nicla; De Gisi, Silvia; Malara, Natalia; Savino, Rocco; Rocco, Gaetano; Chiappetta, Gennaro; Franco, Renato; Tirino, Virginia; Pirozzi, Giuseppe; Viglietto, Giuseppe

    2008-03-01

    Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wild-type kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).

  2. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1.

    Science.gov (United States)

    Wang, Bei; Zeng, Hesong; Wen, Zheng; Chen, Chen; Wang, Dao Wen

    2016-10-01

    Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5'-AMP-activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p-Akt1), and stimulated nuclear translocation of p-Akt1, to exert their antihypertrophic effects. AMPKα2(-/-) mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild-type mice but not AMPKα2(-/-) mice. The CYP2J2 metabolites, 11,12-EET, activated AMPKα2 to induce nuclear translocation of p-Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co-immunoprecipitation analysis, we found that AMPKα2β2γ1 and p-Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12-EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin

    OpenAIRE

    Cheng, Ye; Zhao, Gang; Zhang, Siwen; Nigim, Fares; Zhou, Guangtong; Yu, Zhiyun; Song, Yang; Chen, Yong; Li, Yunqian

    2016-01-01

    AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human gli...

  4. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells.

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    Full Text Available BACKGROUND: The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. METHODOLOGY AND RESULTS: HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60 by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser(473 and Akt1 substrate Bad (at Ser(136 which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. SIGNIFICANCE: Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.

  5. Metabolic Transition of Milk Lactose Synthesis and Up-regulation by AKT1 in Sows from Late Pregnancy to Lactation.

    Science.gov (United States)

    Chen, Fang; Chen, Baoliang; Guan, Wutai; Chen, Jun; Lv, Yantao; Qiao, Hanzhen; Wang, Chaoxian; Zhang, Yinzhi

    2017-03-01

    Lactose plays a crucial role in controlling milk volume by inducing water toward into the mammary secretory vesicles from the mammary epithelial cell cytoplasm, thereby maintaining osmolality. In current study, we determined the expression of several lactose synthesis related genes, including glucose transporters (glucose transporter 1, glucose transporter 8, sodium-glucose cotransporter 1, sodium-glucose cotransporter 3, and sodium-glucose cotransporter 5), lactose synthases (α-lactalbumin and β1,4-galactosyltransferase), and hexokinases (hexokinase-1 and hexokinase-2) in sow mammary gland tissue at day 17 before delivery, on the 1st day of lactation and at peak lactation. The data showed that glucose transporter 1 was the dominant glucose transporter within sow mammary gland and that expression of each glucose transporter 1, sodium-glucose cotransporter 1, hexokinase-1, hexokinase-2, α-lactalbumin, and β1,4-galactosyltransferase were increased (p lactose synthesis was significantly elevated with the increase of milk production and AKT1 could positively regulate lactose synthesis.

  6. Physical association of PDK1 with AKT1 is sufficient for pathway activation independent of membrane localization and phosphatidylinositol 3 kinase.

    Directory of Open Access Journals (Sweden)

    Zhiyong Ding

    Full Text Available Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1, to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308 to activate AKT. Whether PtdIns(3,4,5Ps (PtdInsP3 binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A and PDK1 (R474A, AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286 but not inhibitors of the downstream TORC1 complex (rapamycin. Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components.

  7. Physical association of PDK1 with AKT1 is sufficient for pathway activation independent of membrane localization and phosphatidylinositol 3 kinase.

    Science.gov (United States)

    Ding, Zhiyong; Liang, Jiyong; Li, Jin; Lu, Yiling; Ariyaratna, Vathsala; Lu, Zhimin; Davies, Michael A; Westwick, John K; Mills, Gordon B

    2010-03-26

    Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns) phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1), to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308) to activate AKT. Whether PtdIns(3,4,5)Ps (PtdInsP3) binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP) to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K) inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A) and PDK1 (R474A), AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286) but not inhibitors of the downstream TORC1 complex (rapamycin). Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components.

  8. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    Science.gov (United States)

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  9. Angiotensin II stimulates thick ascending limb NO production via AT(2) receptors and Akt1-dependent nitric-oxide synthase 3 (NOS3) activation.

    Science.gov (United States)

    Herrera, Marcela; Garvin, Jeffrey L

    2010-05-14

    Angiotensin II (Ang II) acutely stimulates thick ascending limb (TAL) NO via an unknown mechanism. In endothelial cells, activation of Ang II type 2 receptor (AT(2)) stimulates NO. Akt1 activates NOS3 by direct phosphorylation. We hypothesized that Ang II stimulates TAL NO production via AT(2)-mediated Akt1 activation, which phosphorylates NOS3 at serine 1177. We measured NO production by fluorescence microscopy. In isolated TALs, Ang II (100 nm) increased NO production by 1.1 +/- 0.2 fluorescence units/min (p NOS3 at serine 1177 by 130% (p NOS3 phosphorylation. We concluded that Ang II enhances TAL NO production via activation of AT(2) and Akt1-dependent phosphorylation of NOS3 at serines 1177 and 633.

  10. Angiotensin II Stimulates Thick Ascending Limb NO Production via AT2 Receptors and Akt1-dependent Nitric-oxide Synthase 3 (NOS3) Activation*

    Science.gov (United States)

    Herrera, Marcela; Garvin, Jeffrey L.

    2010-01-01

    Angiotensin II (Ang II) acutely stimulates thick ascending limb (TAL) NO via an unknown mechanism. In endothelial cells, activation of Ang II type 2 receptor (AT2) stimulates NO. Akt1 activates NOS3 by direct phosphorylation. We hypothesized that Ang II stimulates TAL NO production via AT2-mediated Akt1 activation, which phosphorylates NOS3 at serine 1177. We measured NO production by fluorescence microscopy. In isolated TALs, Ang II (100 nm) increased NO production by 1.1 ± 0.2 fluorescence units/min (p NOS3 at serine 1177 by 130% (p NOS3 phosphorylation. We concluded that Ang II enhances TAL NO production via activation of AT2 and Akt1-dependent phosphorylation of NOS3 at serines 1177 and 633. PMID:20299462

  11. CYP2J2 and its metabolites (EETs) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1

    Institute of Scientific and Technical Information of China (English)

    WANG Bei; ZENG He-song; WEN Zheng; CHEN Chen; WANG Dao-wen

    2016-01-01

    AIM:Cytochrome P450 epoxygenase 2J2 and epoxyeicosatrienoic acids ( EETs) are known to protect against cardiac hypertrophy and heart failure, which involve activation of 5′-AMP-activated protein kinase ( AMPK) and Akt.Although the functional roles of AMPK and Akt are well established , the significance of crosstalk between them in the development of cardiac hypertrophy and anti -hy-pertrophy of CYP2J2 and EETs remains unclear .Here, we investigated whether CYP 2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1.Moreover, we tested whether EETs enhanced crosstalk between AMPKα2 and phosphorylated Akt1 ( p-Akt1), and stimulated the nuclear translocation of p-Akt1, to exert their anti-hypertrophic effects. METHODS:The recombinant rAAV9 vector was coupled to CYP2J2 and the rAAV9-CYP2J2 construct was injected into the caudal vein of AMPKα2-/-and littermate control mice .AMPKα2 -/-and littermate control mice that overexpressed CYP 2J2 in heart were treated with angiotensin II (Ang II) for 2 weeks.Hemodynamic and cardiac functions were also evaluated after 14 days of infusion with Ang II or saline.RESULTS:Interestingly, the overexpression of CYP2J2 suppressed cardiac hypertrophy , including decreased heart size, cross sectional area of cardiomyocytes , markers of cardiac hypertrophy [ brain natriuretic peptide ( BNP) ,β-myosin heavy chain (β-MHC) and skeletal muscle α-actin (ACTA1)] and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild-type mice but not AMPKα2 -/-mice.Measurement of left ventricular ejection fraction and fractional shortening showed that CYP2J2 overexpression prevented Ang II-induced ventricular systolic dysfunction in mice .Moreover, an Ang II-induced reduction in cardiac function, demonstrated by decreased dp/dtmax and dp/dtmin, was prevented by overexpression of CYP2J2.Mechanistically, the CYP2J2 metabolites 11,12-EET activated AMPKα2 to induce the nuclear

  12. AKT1 Activation is Obligatory for Spontaneous BCC Tumor Growth in a Murine Model that Mimics Some Features of Basal Cell Nevus Syndrome.

    Science.gov (United States)

    Kim, Arianna L; Back, Jung Ho; Zhu, Yucui; Tang, Xiuwei; Yardley, Nathan P; Kim, Katherine J; Athar, Mohammad; Bickers, David R

    2016-10-01

    Patients with basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, develop numerous basal cell carcinomas (BCC) due to germline mutations in the tumor suppressor PTCH1 and aberrant activation of Hedgehog (Hh) signaling. Therapies targeted at components of the Hh pathway, including the smoothened (SMO) inhibitor vismodegib, can ablate these tumors clinically, but tumors recur upon drug discontinuation. Using SKH1-Ptch1(+/-) as a model that closely mimics the spontaneous and accelerated growth pattern of BCCs in patients with BCNS, we show that AKT1, a serine/threonine protein kinase, is intrinsically activated in keratinocytes derived from the skin of newborn Ptch1(+/-) mice in the absence of carcinogenic stimuli. Introducing Akt1 haplodeficiency in Ptch1(+/-) mice (Akt1(+/-) Ptch1(+/-)) significantly abrogated BCC growth. Similarly, pharmacological inhibition of AKT with perifosine, an alkyl phospholipid AKT inhibitor, diminished the growth of spontaneous and UV-induced BCCs. Our data demonstrate an obligatory role for AKT1 in BCC growth, and targeting AKT may help reduce BCC tumor burden in BCNS patients. Cancer Prev Res; 9(10); 794-802. ©2016 AACR.

  13. mTORC2-PKBα/Akt1 Serine 473 phosphorylation axis is essential for regulation of FOXP3 Stability by chemokine CCL3 in psoriasis.

    Science.gov (United States)

    Chen, Ling; Wu, Jinjin; Pier, Eric; Zhao, Yun; Shen, Zhu

    2013-02-01

    The connection between infections and acute guttate psoriasis (AGP) outbreaks/chronic plaque psoriasis (CPP) exacerbation has been known for years. Impaired function of FOXP3+Tregs in psoriasis has been identified. However, the mechanisms behind these two observations have not been fully interpreted. In the present study, we provide evidence to support chemokine CCL3 as one of the vital links between infections and FOXP3 stability in the psoriatic microenvironment. We found that serum CCL3, strongly induced by microorganism infections including streptococcus, was closely correlated with FOXP3 levels in CD4+CD25+T cells of patients with psoriasis. CCL3 manipulated FOXP3 stability in a concentration-dependent bidirectional manner. High-concentration CCL3 decreased FOXP3 stability by promoting FOXP3's degradation through K48-linkage ubiquitination. This degradation was mainly dependent on upregulation of Serine 473 phosphorylation of the PKBα/Akt1 isoform, and almost independent of mTORC1 (mammalian target of rapamycin complex 1) activity. On the other hand, low-concentration CCL3 could enhance FOXP3 stability by the maintenance of the PKC pathway and the restriction of the PKB/Akt pathway. We further demonstrated that enhancing FOXP3 stability by low-concentration CCL3 attributed, at least partly, to the prevention of cytoplasmic Sin1, a vital component of mTORC2, nuclear translocation. Our results suggest vital roles for CCL3-mTORC2-isoform PKB/Akt1 S473 phosphorylation axis in FOXP3+Tregs and the development of psoriasis.

  14. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Che-Yu Chu

    Full Text Available BACKGROUND: Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. METHODOLOGY/PRINCIPAL FINDINGS: Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1(cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1(cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1 can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1(cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1(cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1(cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. CONCLUSION/SIGNIFICANCE: Collectively, the findings of this study provide direct evidence that Akt1

  15. AKT1 loss correlates with episomal HPV16 in vulval intraepithelial neoplasia.

    Directory of Open Access Journals (Sweden)

    Arucha L Ekeowa-Anderson

    Full Text Available Anogenital malignancy has a significant association with high-risk mucosal alpha-human papillomaviruses (alpha-PV, particularly HPV 16 and 18 whereas extragenital SCC has been linked to the presence of cutaneous beta and gamma-HPV types. Vulval skin may be colonised by both mucosal and cutaneous (beta-, mu-, nu- and gamma- PV types, but there are few systematic studies investigating their presence and their relative contributions to vulval malignancy. Dysregulation of AKT, a serine/threonine kinase, plays a significant role in several cancers. Mucosal HPV types can increase AKT phosphorylation and activity whereas cutaneous HPV types down-regulate AKT1 expression, probably to weaken the cornified envelope to promote viral release. We assessed the presence of mucosal and cutaneous HPV in vulval malignancy and its relationship to AKT1 expression in order to establish the corresponding HPV and AKT1 profile of normal vulval skin, vulval intraepithelial neoplasia (VIN and vulval squamous cell carcinoma (vSCC. We show that HPV16 is the principle HPV type present in VIN, there were few detectable beta types present and AKT1 loss was not associated with the presence of these cutaneous HPV. We show that HPV16 early gene expression reduced AKT1 expression in transgenic mouse epidermis. AKT1 loss in our VIN cohort correlated with presence of high copy number, episomal HPV16. Maintained AKT1 expression correlated with low copy number, an increased frequency of integration and increased HPV16E7 expression, a finding we replicated in another untyped cohort of vSCC. Since expression of E7 reflects tumour progression, these findings suggest that AKT1 loss associated with episomal HPV16 may have positive prognostic implications in vulval malignancy.

  16. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation.

  17. Computational Insights into the Inhibitory Mechanism of Human AKT1 by an Orally Active Inhibitor, MK-2206

    OpenAIRE

    Mohd Rehan; Beg, Mohd A.; Shadma Parveen; Ghazi A Damanhouri; Galila F Zaher

    2014-01-01

    The AKT signaling pathway has been identified as an important target for cancer therapy. Among small-molecule inhibitors of AKT that have shown tremendous potential in inhibiting cancer, MK-2206 is a highly potent, selective and orally active allosteric inhibitor. Promising preclinical anticancer results have led to entry of MK-2206 into Phase I/II clinical trials. Despite such importance, the exact binding mechanism and the molecular interactions of MK-2206 with human AKT are not available. ...

  18. Inhibition of mitotic kinase Aurora suppresses Akt-1 activation and induces apoptotic cell death in all-trans retinoid acid-resistant acute promyelocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Long Zi-Jie

    2011-05-01

    Full Text Available Abstract Background Aurora kinase ensures accurate chromosome segregation during cell cycle, maintaining genetic integrity in cell division. VX-680, a small-molecule Aurora kinase inhibitor, interferes with mitotic entry and formation of bipolar spindles. Here, we evaluated VX-680 as a potential agent for treatment of all-trans retinoid acid (ATRA-resistant acute promyelocytic leukemia (APL in vitro. Methods CD11b expression was utilized to assess cell differentiation by flow cytometry. Immunofluorescence staining was conducted to analyze formation of cell monopolar spindle. Cell proliferation was evaluated by MTT assay. Sub-G1 population and Annexin V/PI staining were used to measure cell apoptosis. Hoechst 33342 staining was applied for identifying morphological changes in nucleus of apoptotic cell. Aurora-A (Aur-A activation and the signaling pathways involved in apoptosis were detected by Western blot. JC-1 probe was employed to measure mitochondrial depolarization. Results VX-680 inhibited Aur-A by reducing autophosphorylation at the activation site, Thr288, accompanied by producing monopolar mitotic spindles in APL cell line NB4-R2 that was resistant to ATRA. In addition, we found that VX-680 inhibited cell proliferation as assessed by MTT assay. Flow cytometry showed that VX-680 led to apoptotic cell death in both dose- and time-dependent manners by either Sub-G1 or Annexin V/PI analysis. Hoechst 33342 staining represented typical apoptotic cells with nuclear fragmentation in VX-680 treated cells. Importantly, VX-680 inhibition of Aurora kinase suppressed Akt-1 activation and induced mitochondrial depolarization, which eventually resulted in apoptosis by activation of caspase pathway, as indicated by increasing proteolytic cleavage of procaspase-3 and poly ADP ribose polymerase (PARP in NB4-R2 cells. Conclusions Our study suggested potential clinical use of mitotic Aurora kinase inhibitor in targeting ATRA-resistant leukemic cells.

  19. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1.

    Directory of Open Access Journals (Sweden)

    Xuming Jia

    Full Text Available Methylglyoxal (MG is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5-20 µM of MG stimulated the proliferation of 3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of 3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE breaker alagebrium and Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of obesity.

  20. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  1. Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH domain.

    Directory of Open Access Journals (Sweden)

    Ambuj Kumar

    Full Text Available BACKGROUND: AKT1 (v-akt murine thymoma viral oncogene homologue 1 kinase is one of the most frequently activated proliferated and survival pathway of cancer. Recently it has been shown that E17K mutation in the Pleckstrin Homology (PH domain of AKT1 protein leads to cancer by amplifying the phosphorylation and membrane localization of protein. The mutant has shown resistance to AKT1/2 inhibitor VIII drug molecule. In this study we have demonstrated the detailed structural and molecular consequences associated with the activity regulation of mutant protein. METHODS: The docking score exhibited significant loss in the interaction affinity to AKT1/2 inhibitor VIII drug molecule. Furthermore, the molecular dynamics simulation studies presented an evidence of rapid conformational drift observed in mutant structure. RESULTS: There was no stability loss in mutant as compared to native structure and the major cation-π interactions were also shown to be retained. Moreover, the active residues involved in membrane localization of protein exhibited significant rise in NHbonds formation in mutant. The rise in NHbond formation in active residues accounts for the 4-fold increase in the membrane localization potential of protein. CONCLUSION: The overall result suggested that, although the mutation did not induce any stability loss in structure, the associated pathological consequences might have occurred due to the rapid conformational drifts observed in the mutant AKT1 PH domain. GENERAL SIGNIFICANCE: The methodology implemented and the results obtained in this work will facilitate in determining the core molecular mechanisms of cancer-associated mutations and in designing their potential drug inhibitors.

  2. ChAkt1 involvement in orchestrating the immune and heat shock responses in Crassostrea hongkongensis: Molecular cloning and functional characterization.

    Science.gov (United States)

    Wang, Fuxuan; Xiao, Shu; Zhang, Yang; Zhang, Yuehuan; Liu, Ying; Yan, Yan; Xiang, Zhiming; Yu, Ziniu

    2015-12-01

    G-protein-coupled receptors (GPCRs) are the largest class of cell-surface receptors and play crucial roles in virtually every organ system. As one of the major downstream effectors of GPCRs, Akt can acquire information from the receptors and coordinate intracellular responses for many signaling pathways, through which the serine/threonine kinase masters numerous aspects of biological processes, such as cell survival, growth, proliferation, migration, angiogenesis, and metabolism. In the present study, we have characterized the first Akt1 ortholog in mollusks using the Hong Kong oyster, Crassostrea hongkongensis (designed ChAkt1). The full-length cDNA is 2223 bp and encodes a putative protein of 493 amino acids that contains an amino-terminal pleckstin homology (PH) domain, a central catalytic domain, and a carboxy-terminal regulatory domain. Quantitative real-time PCR analysis showed that ChAkt1 mRNA is broadly expressed in various tissues and during different stages of the oyster's embryonic and larval development. Upon exposure to two stressors (microbial infection and heat shock), the expression level of ChAkt1 mRNA increases significantly. Furthermore, ChAkt1 is located in the cytoplasm in HEK293T cells, where the over-expression of ChAkt1 regulates the transcriptional activities of NF-κB and p53 reporter genes. Taken together, our results indicate that ChAkt1 most likely plays a central role in response to various stimuli in oysters and has a particular response to microbial pathogens and high temperature.

  3. HDAC inhibition elicits myocardial protective effect through modulation of MKK3/Akt-1.

    Directory of Open Access Journals (Sweden)

    Ting C Zhao

    Full Text Available We and others have demonstrated that HDAC inhibition protects the heart against myocardial injury. It is known that Akt-1 and MAP kinase play an essential role in modulation of myocardial protection and cardiac preconditioning. Our recent observations have shown that Akt-1 was activated in post-myocardial infarction following HDAC inhibition. However, it remains unknown whether MKK3 and Akt-1 are involved in HDAC inhibition-induced myocardial protection in acute myocardial ischemia and reperfusion injury. We sought to investigate whether the genetic disruption of Akt-1 and MKK3 eliminate cardioprotection elicited by HDAC inhibition and whether Akt-1 is associated with MKK3 to ultimately achieve protective effects. Adult wild type and MKK3⁻/⁻, Akt-1⁻/⁻ mice received intraperitoneal injections of trichostatin A (0.1 mg/kg, a potent inhibitor of HDACs. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after twenty four hours to elicit pharmacologic preconditioning. Left ventricular function was measured, and infarct size was determined. Acetylation and phosphorylation of MKK3 were detected and disruption of Akt-1 abolished both acetylation and phosphorylation of MKK3. HDAC inhibition produces an improvement in left ventricular functional recovery, but these effects were abrogated by disruption of either Akt-1 or MKK3. Disruption of Akt-1 or MKK3 abolished the effects of HDAC inhibition-induced reduction of infarct size. Trichostatin A treatment resulted in an increase in MKK3 phosphorylation or acetylation in myocardium. Taken together, these results indicate that stimulation of the MKK3 and Akt-1 pathway is a novel approach to HDAC inhibition -induced cardioprotection.

  4. Akt1 is essential for postnatal mammary gland development, function, and the expression of Btn1a1.

    Directory of Open Access Journals (Sweden)

    Jessica LaRocca

    Full Text Available Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays critical roles in the regulation of multiple cellular processes, and has previously been implicated in lactation and breast cancer development. In this study, we utilized Akt1+/+ and Akt1-/- C57/Bl6 female mice to assess the role that Akt1 plays in normal mammary gland postnatal development and function. We examined postnatal morphology at multiple time points, and analyzed gene and protein expression changes that persist into adulthood. Akt1 deficiency resulted in several mammary gland developmental defects, including ductal outgrowth and defective terminal end bud formation. Adult Akt1-/- mammary gland composition remained altered, exhibiting fewer alveolar buds coupled with increased epithelial cell apoptosis. Microarray analysis revealed that Akt1 deficiency altered expression of genes involved in numerous biological processes in the mammary gland, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1-/- mammary glands. Additionally, pseudopregnant Akt1-/- females failed to induce Btn1a1 expression in response to hormonal stimulation compared to their wild-type counterparts. Retroviral-mediated shRNA knockdown of Akt1 and Btn1a1 in MCF-7 human breast epithelial further illustrated the importance of Akt1 in mammary epithelial cell proliferation, as well as in the regulation of Btn1a1 and subsequent expression of ß-casein, a gene that encodes for milk protein. Overall these findings provide mechanistic insight into the role of Akt1 in mammary morphogenesis and function.

  5. Marked reduction of AKT1 expression and deregulation of AKT1-associated pathways in peripheral blood mononuclear cells of schizophrenia patients.

    Directory of Open Access Journals (Sweden)

    Nico J M van Beveren

    Full Text Available BACKGROUND: Recent studies have suggested that deregulated AKT1 signaling is associated with schizophrenia. We hypothesized that if this is indeed the case, we should observe both decreased AKT1 expression as well as deregulation of AKT1 regulated pathways in Peripheral Blood Mononuclear Cells (PBMCs of schizophrenia patients. OBJECTIVES: To examine PBMC expression levels of AKT1 in schizophrenia patients versus controls, and to examine whether functional biological processes in which AKT1 plays an important role are deregulated in schizophrenia patients. METHODS/RESULTS: A case-control study, investigating whole-genome PBMC gene expression in male, recent onset (<5 years schizophrenia patients (N = 41 as compared to controls (N = 29. Genes, differentially expressed between patients and controls were identified using ANOVA with Benjamini-Hochberg correction (false discovery rate (FDR = 0.05. Functional aspects of the deregulated set of genes were investigated with the Ingenuity Pathway Analysis (IPA Software Tool. We found significantly decreased PBMC expression of AKT1 (p<0.001, t = -4.25 in the patients. AKT1 expression was decreased in antipsychotic-free or -naive patients (N = 11, in florid psychotic (N = 20 and in remitted (N = 21 patients. A total of 1224 genes were differentially expressed between patients and controls (FDR = 0.05. Functional analysis of the entire deregulated gene set indicated deregulated canonical pathways involved in a large number of cellular processes: immune system, cell adhesion and neuronal guidance, neurotrophins and (neural growth factors, oxidative stress and glucose metabolism, and apoptosis and cell-cycle regulation. Many of these processes are associated with AKT1. CONCLUSIONS: We show significantly decreased PBMC gene expression of AKT1 in male, recent-onset schizophrenia patients. Our observations suggest that decreased PBMC AKT1 expression is a stable trait in recent onset

  6. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis.

    Science.gov (United States)

    Larson-Casey, Jennifer L; Deshane, Jessy S; Ryan, Alan J; Thannickal, Victor J; Carter, A Brent

    2016-03-15

    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disorder with increasing incidence. Mitochondrial oxidative stress in alveolar macrophages is directly linked to pulmonary fibrosis. Mitophagy, the selective engulfment of dysfunctional mitochondria by autophagasomes, is important for cellular homeostasis and can be induced by mitochondrial oxidative stress. Here, we show Akt1 induced macrophage mitochondrial reactive oxygen species (ROS) and mitophagy. Mice harboring a conditional deletion of Akt1 in macrophages (Akt1(-/-)Lyz2-cre) and Park2(-/-) mice had impaired mitophagy and reduced active transforming growth factor-β1 (TGF-β1). Although Akt1 increased TGF-β1 expression, mitophagy inhibition in Akt1-overexpressing macrophages abrogated TGF-β1 expression and fibroblast differentiation. Importantly, conditional Akt1(-/-)Lyz2-cre mice and Park2(-/-) mice had increased macrophage apoptosis and were protected from pulmonary fibrosis. Moreover, IPF alveolar macrophages had evidence of increased mitophagy and displayed apoptosis resistance. These observations suggest that Akt1-mediated mitophagy contributes to alveolar macrophage apoptosis resistance and is required for pulmonary fibrosis development.

  7. Akt1-mediated fast/glycolytic skeletal muscle growth attenuates renal damage in experimental kidney disease.

    Science.gov (United States)

    Hanatani, Shinsuke; Izumiya, Yasuhiro; Araki, Satoshi; Rokutanda, Taku; Kimura, Yuichi; Walsh, Kenneth; Ogawa, Hisao

    2014-12-01

    Muscle wasting is frequently observed in patients with kidney disease, and low muscle strength is associated with poor outcomes in these patients. However, little is known about the effects of skeletal muscle growth per se on kidney diseases. In this study, we utilized a skeletal muscle-specific, inducible Akt1 transgenic (Akt1 TG) mouse model that promotes the growth of functional skeletal muscle independent of exercise to investigate the effects of muscle growth on kidney diseases. Seven days after Akt1 activation in skeletal muscle, renal injury was induced by unilateral ureteral obstruction (UUO) in Akt1 TG and wild-type (WT) control mice. The expression of atrogin-1, an atrophy-inducing gene in skeletal muscle, was upregulated 7 days after UUO in WT mice but not in Akt1 TG mice. UUO-induced renal interstitial fibrosis, tubular injury, apoptosis, and increased expression of inflammatory, fibrosis-related, and adhesion molecule genes were significantly diminished in Akt1 TG mice compared with WT mice. An increase in the activating phosphorylation of eNOS in the kidney accompanied the attenuation of renal damage by myogenic Akt1 activation. Treatment with the NOS inhibitor L-NAME abolished the protective effect of skeletal muscle Akt activation on obstructive kidney disease. In conclusion, Akt1-mediated muscle growth reduces renal damage in a model of obstructive kidney disease. This improvement appears to be mediated by an increase in eNOS signaling in the kidney. Our data support the concept that loss of muscle mass during kidney disease can contribute to renal failure, and maintaining muscle mass may improve clinical outcome.

  8. Activated α2-macroglobulin binding to cell surface GRP78 induces T-loop phosphorylation of Akt1 by PDK1 in association with Raptor.

    Directory of Open Access Journals (Sweden)

    Uma Kant Misra

    Full Text Available PDK1 phosphorylates multiple substrates including Akt by PIP3-dependent mechanisms. In this report we provide evidence that in prostate cancer cells stimulated with activated α2-macroglobulin (α2M* PDK1 phosphorylates Akt in the T-loop at Thr(308 by using Raptor in the mTORC1 complex as a scaffold protein. First we demonstrate that PDK1, Raptor, and mTOR co-immunoprecipitate. Silencing the expression, not only of PDK1, but also Raptor by RNAi nearly abolished Akt phosphorylation at Akt(Thr308 in Raptor-immunoprecipitates of α2M*-stimulated prostate cancer cells. Immunodepleting Raptor or PDK from cell lysates of cells treated with α2M* drastically reduced Akt phosphorylation at Thr(308, which was recovered by adding the supernatant of Raptor- or PDK1-depleted cell lysates, respectively. Studies of insulin binding to its receptor on prostate cancer cells yielded similar results. We thus demonstrate that phosphorylating the T-loop Akt residue Thr(308 by PDK1 requires Raptor of the mTORC1 complex as a platform or scaffold protein.

  9. Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes.

    Science.gov (United States)

    Choi, J-A; Jung, Y S; Kim, J Y; Kim, H M; Lim, I K

    2016-01-01

    The mammalian homolog of Drosophila diaphanous (mDia), actin nucleator, has been known to participate in the process of invasion and metastasis of cancer cells via regulating a number of actin-related biological processes. We have previously reported that tumor suppressor TIS21(/BTG2/Pc3) (TIS21) inhibits invadopodia formation by downregulating reactive oxygen species (ROS) in MDA-MB-231 cells. We herein report that TIS21(/BTG2/Pc3) downregulates diaphanous-related formin (DRF) expression via reducing NADPH oxidase 4 (Nox4)-derived ROS generation by Akt1 activation and subsequently impairs invasion activity of the highly invasive breast cancer cells. Knockdown of Akt1 by RNA interference recovered the TIS21(/BTG2/Pc3)-inhibited F-actin remodeling and ROS generation by recovering Nox4 expression. Furthermore, Sp1-mediated Nox4 transcription was downregulated by TIS21(/BTG2/Pc3)-Akt1 signals, leading to the inhibition of cancer cell invasion via F-actin remodeling by mDia genes. To our best knowledge, this is the first study to show that TIS21(/BTG2/Pc3)-Akt1 inhibited Sp1-Nox4-ROS cascade, subsequently reducing invasion activity via inhibition of mDia family genes.

  10. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis.

    Science.gov (United States)

    Mancini, Maria L; Lien, Evan C; Toker, Alex

    2016-04-05

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).

  11. Mechanism of Akt1 inhibition of breast cancer cell invasionreveals a protumorigenic role for TSC2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Radisky, Derek C.; Nelson, Celeste M.; Zhang, Hui; Fata, Jimmie; Roth, Richard A.; Bissell, Mina J.

    2006-02-07

    Akt1 is frequently upregulated in human tumors, and has been shown to accelerate cell proliferation and to suppress programmed cell death; consequently, inhibiting the activity of Akt1 has been seen as an attractive target for therapeutic intervention. Paradoxically, hyperactivation of the Akt1 oncogene can also prevent the invasive behavior that underlies progression to metastasis. Here we show that overexpression of activated myr-Akt1 in human breast cancer cells phosphorylates and thereby targets the tumor suppressor tuberous sclerosis complex 2 (TSC2) for degradation, leading to reduced Rho-GTPase activity, decreased actin stress fibers and focal adhesions, and reduced motility and invasion. Overexpression of TSC2 rescues the migration phenotype of myr-Akt1-expressing tumor cells, and high levels of TSC2 in breast cancer patients correlate with increased metastasis and reduced survival. These data indicate that the functional properties of genes designated as oncogenes or tumor suppressor genes depends on the context of the cell type and the tissues studied, and suggest the need for caution in designing therapies targeting the function of individual genes in epithelial tissues.

  12. Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism.

    Science.gov (United States)

    Huang, Jhy-Shrian; Cho, Chun-Yu; Hong, Chih-Chen; Yan, Ming-De; Hsieh, Mao-Chih; Lay, Jong-Ding; Lai, Gi-Ming; Cheng, Ann-Lii; Chuang, Shuang-En

    2013-12-01

    Persistent oxidative stress is common in cancer cells because of abnormal generation of reactive oxygen species (ROS) and has been associated with malignant phenotypes, such as chemotherapy resistance and metastasis. Both overexpression of Axl and abnormal ROS elevation have been linked to cell transformation and increased cell migration. However, the relationship between Axl and ROS in malignant cell migration has not been previously evaluated. Using an in vitro human lung cancer model, we examined the redox state of lung adenocarcinoma cell lines of low metastatic (CL1-0) and high metastatic (CL1-5) potentials. Here we report that Axl activation elicits ROS accumulation through the oxidase-coupled small GTPase Rac1. We also observed that oxidative stress could activate Axl phosphorylation to synergistically enhance cell migration. Further, Axl signaling activated by H2O2 treatment results in enhancement of cell migration via a PI3K/Akt-dependent pathway. The kinase activity of Axl is required for the Axl-mediated cell migration and prolongs the half-life of phospho-Akt under oxidative stress. Finally, downregulation of Akt1, but not Akt2, by RNAi in Axl-overexpressing cells inhibits the amount of activated Rac1 and the ability to migrate induced by H2O2 treatment. Together, these results show that a novel Axl-signaling cascade induced by H2O2 treatment triggers cell migration through the PI3K/Akt1/Rac1 pathway. Elucidation of redox regulation in Axl-related malignant migration may provide new molecular insights into the mechanisms underlying tumor progression.

  13. Genetic Association between Akt1 Polymorphisms and Alzheimer's Disease in a Japanese Population

    Directory of Open Access Journals (Sweden)

    Nobuto Shibata

    2011-01-01

    Full Text Available A recent paper reported that Aβ oligomer causes neuronal cell death through the phosphatidylinositol-3-OH kinase (PI3K-Akt-mTOR signaling pathway. Intraneuronal Aβ, a main pathological finding of Alzheimer's disease (AD, is also known as inhibiting activation of Akt. This study aims to investigate whether single nucleotide polymorphisms (SNPs of the Akt1 gene are associated with AD. SNPs genotyped using TaqMan technology was analyzed using a case-control study design. Our case-control dataset consisted of 180 AD patients and 130 age-matched controls. Although two SNPs showed superficial positive, Hardy-Weinberg equilibrium (HWE tests, and linkage disequilibrium (LD analyses suggested that genetic regions of the gene are highly polymorphic. We failed to detect any synergetic association among Akt1 polymorphisms, Apolipoprotein E (APO E, and AD. Further genetic studies are needed to clarify the relationship between the Akt1 and AD.

  14. Epistatic and functional interactions of catechol-o-methyltransferase (COMT and AKT1 on neuregulin1-ErbB signaling in cell models.

    Directory of Open Access Journals (Sweden)

    Yoshitatsu Sei

    Full Text Available BACKGROUND: Neuregulin1 (NRG1-ErbB signaling has been implicated in the pathogenesis of cancer and schizophrenia. We have previously reported that NRG1-stimulated migration of B lymphoblasts is PI3K-AKT1dependent and impaired in patients with schizophrenia and significantly linked to the catechol-o-methyltransferase (COMT Val108/158Met functional polymorphism. METHODOLOGY/PRINCIPAL FINDINGS: We have now examined AKT1 activation in NRG1-stimulated B lymphoblasts and other cell models and explored a functional relationship between COMT and AKT1. NRG1-induced AKT1 phosphorylation was significantly diminished in Val carriers compared to Met carriers in both normal subjects and in patients. Further, there was a significant epistatic interaction between a putatively functional coding SNP in AKT1 (rs1130233 and COMT Val108/158Met genotype on AKT1 phosphorylation. NRG1 induced translocation of AKT1 to the plasma membrane also was impaired in Val carriers, while PIP(3 levels were not decreased. Interestingly, the level of COMT enzyme activity was inversely correlated with the cells' ability to synthesize phosphatidylserine (PS, a factor that attracts the pleckstrin homology domain (PHD of AKT1 to the cell membrane. Transfection of SH-SY5Y cells with a COMT Val construct increased COMT activity and significantly decreased PS levels as well as NRG1-induced AKT1 phosphorylation and migration. Administration of S-adenosylmethionine (SAM rescued all of these deficits. These data suggest that AKT1 function is influenced by COMT enzyme activity through competition with PS synthesis for SAM, which in turn dictates AKT1-dependent cellular responses to NRG1-mediated signaling. CONCLUSION/SIGNIFICANCE: Our findings implicate genetic and functional interactions between COMT and AKT1 and may provide novel insights into pathogenesis of schizophrenia and other ErbB-associated human diseases such as cancer.

  15. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix

    DEFF Research Database (Denmark)

    Villegas, S Nahuel; Rothová, Michaela; Barrios-Llerena, Martin E

    2013-01-01

    During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentia......During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (m......ESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification. We found that PI3K signalling promotes the transition from naïve endoderm precursors into committed anterior endoderm. PI3K promoted commitment via an atypical activity that delimited epithelial......-to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key...

  16. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  17. Association between AKT1 gene polymorphisms and depressive symptoms in the Chinese Han population with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Chunxia Yang; Ning Sun; Yan Ren; Yan Sun; Yong Xu; Aiping Li; Kewen Wu; Kerang Zhang

    2012-01-01

    For this study, 461 Chinese Han patients with depressive disorder were recruited. The AKT1 genotype and allele distribution were determined by PCR amplification and direct sequencing. UNPHASED software was used to analyze associations between the 17-item Hamilton Depression Rating Scale, total score, four factors and the AKT1 rs2494746 and rs3001371 polymorphisms. The results indicate that there is a significant association between suicidal ideation and anxiety symptoms in depressed patients and the rs2494746 polymorphism. The other AKT1 polymorphism, rs3001371, was significantly associated with work and activities. Patients with the rs3001371-A allele had a significantly more severe illness compared to patients with the rs3001371-G allele. Thus, AKT1 polymorphisms appear to be associated with depression severity, anxiety symptoms, work and activities, and suicide attempts in patients with depressive disorder.

  18. Cannabis and a lower BMI in psychosis : What is the role of AKT1?

    NARCIS (Netherlands)

    Liemburg, Edith J.; Bruins, Jojanneke; van Beveren, Nico; Islam, Md Atiqul; Alizadeh, Behrooz Z.; Bruggeman, R.; Wiersma, D.; Cahn, W.; Kahn, R. S.; de Haan, L.; Meijer, C. J.; Myin-Germeys, I.; van Os, J.

    2016-01-01

    Cannabis use has been associated with favorable outcomes on metabolic risk factors. The cause of this relation is still unknown. In this study we investigated whether this effect is mediated by the AKT1 gene, as activation of the related enzyme by cannabis may cause metabolic changes. Six Single Nuc

  19. Mutant AKT1-E17K is oncogenic in lung epithelial cells

    Science.gov (United States)

    De Marco, Carmela; Malanga, Donatella; Rinaldo, Nicola; De Vita, Fernanda; Scrima, Marianna; Lovisa, Sara; Fabris, Linda; Carriero, Maria Vincenza; Franco, Renato; Rizzuto, Antonia; Baldassarre, Gustavo; Viglietto, Giuseppe

    2015-01-01

    The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorage-dependent and -independent proliferation, increases the ability to migrate, invade as well as to survive and duplicate in stressful conditions, leading to the emergency of cells endowed with the capability to form aggressive tumours at high efficiency. We provide also evidence that the molecular mechanism whereby AKT1-E17K is oncogenic in lung epithelial cells involves phosphorylation and consequent cytoplasmic delocalization of the cyclin-dependent kinase (cdk) inhibitor p27. In agreement with these results, cytoplasmic p27 is preferentially observed in primary NSCLCs with activated AKT and predicts poor survival. PMID:26053093

  20. Cytoplasmic Skp2 expression is associated with p-Akt1 and predicts poor prognosis in human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Jing Liu

    Full Text Available BACKGROUND: S-phase kinase protein 2 (Skp2, an oncogenic protein, is a key regulator in different cellular and molecular processes, through ubiquitin-proteasome degradation pathway. Increased levels of Skp2 are observed in various types of cancer and associated with poor prognosis. However, in human breast carcinomas, the underlying mechanism and prognostic significance of cytoplasmic Skp2 is still undefined. METHODS: To investigate the role of cytoplasmic Skp2 expression in human breast carcinomas, we immnohistochemically assessed cytoplasmic Skp2, p-Akt1, and p27 expression in 251 patients with invasive ductal carcinomas of the breast. Association of cytoplasmic Skp2 expression with p-Akt1 and p27 was analyzed as well as correspondence with other clinicopathological parameters. Disease-free survival and overall survival were determined based on the Kaplan-Meier method and Cox regression models. RESULTS: Cytoplasmic of Skp2 was detected in 165 out of 251 (65.7% patients. Cytoplasmic Skp2 expression was associated with larger tumor size, more advanced histological grade, and positive HER2 expression. Increased cytoplasmic Skp2 expression correlated with p-Akt1 expression, with 54.2% (51/94 of low p-Akt1-expressing breast carcinomas, but 72.6% (114/157 of high p-Akt1-expressing breast carcinomas exhibiting cytoplasmic Skp2 expression. Elevated cytoplasmic Skp2 expression with low p-Akt1 expression was associated with poor disease-free and overall survival (DFS and OS, and Cox regression models demonstrated that cytoplasmic Skp2 expression was an independent prognostic marker for invasive breast carcinomas. CONCLUSION: Cytoplasmic Skp2 expression is associated with aggressive prognostic factors, such as larger tumor size, and advanced histological grade of the breast cancers. Results demonstrate that combined cytoplasmic Skp2 and p-Akt1 expression may be prognostic for patients with invasive breast carcinomas, and cytoplasmic Skp2 may serve as a

  1. AKT1 and BRAF mutations in pediatric aggressive fibromatosis.

    Science.gov (United States)

    Meazza, Cristina; Belfiore, Antonino; Busico, Adele; Settanni, Giulio; Paielli, Nicholas; Cesana, Luca; Ferrari, Andrea; Chiaravalli, Stefano; Massimino, Maura; Gronchi, Alessandro; Colombo, Chiara; Pilotti, Silvana; Perrone, Federica

    2016-06-01

    Aside from the CTNNB1 and adenomatous polyposis coli (APC) mutations, the genetic profile of pediatric aggressive fibromatosis (AF) has remained poorly characterized. The aim of this study was to shed more light on the mutational spectrum of pediatric AF, comparing it with its adult counterpart, with a view to identifying biomarkers for use as prognostic factors or new potential therapeutic targets. CTNNB1, APC, AKT1, BRAF TP53, and RET Sanger sequencing and next-generation sequencing (NGS) with the 50-gene Ion AmpliSeq Cancer Hotspot Panel v2 were performed on formalin-fixed samples from 28 pediatric and 33 adult AFs. The prognostic value of CTNNB1, AKT1, and BRAF mutations in pediatric AF patients was investigated. Recurrence-free survival (RFS) curves were estimated with the Kaplan-Meier method and statistical comparisons were drawn using the log-rank test. In addition to the CTNNB1 mutation (64%), pediatric AF showed AKT1 (31%), BRAF (19%), and TP53 (9%) mutations, whereas only the CTNNB1 mutation was found in adult AF. The polymorphism Q472H VEGFR was identified in both pediatric (56%) and adult (40%) AF. Our results indicate that the mutational spectrum of pediatric AF is more complex than that of adult AF, with multiple gene mutations involving not only CTNNB1 but also AKT1 and BRAF. This intriguing finding may have clinical implications and warrants further investigations. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. Overexpression of MyrAkt1 in endothelial cells leads to erythropoietin- and BMP4-independent splenic erythropoiesis in mice.

    Directory of Open Access Journals (Sweden)

    Rebekah K O'Donnell

    Full Text Available Under steady state conditions, erythropoiesis occurs in the bone marrow. However, in mice, stress or tissue hypoxia results in increased erythropoiesis in the spleen. There is increasing evidence that the hematopoietic microenvironment, including endothelial cells, plays an important role in regulating erythropoiesis. Here, we show that short-term expression of constitutively active Akt in the endothelium of mice results in non-anemic stress erythropoiesis in the spleen. The initiation of this stress response was independent of erythropoietin and BMP4, and was observed in endothelial myrAkt1 mice reconstituted with wild-type bone marrow. Together, these data suggest that endothelial cell hyperactivation is a potentially novel pathway of inducing red cell production under stress.

  3. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping, E-mail: lping@sdu.edu.cn [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Kong, Feng; Wang, Jue [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Lu, Qinghua [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Xu, Haijia [Department of Cardiology, Wendeng Central Hospital of Weihai City, Shandong, Weihai 264400 (China); Qi, Tonggang [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Meng, Juan [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China)

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  4. Potential role of O-GlcNAcylation and involvement of PI3K/Akt1 pathway in the expression of oncogenic phenotypes of gastric cancer cells in vitro.

    Science.gov (United States)

    Zhang, Nuobei; Chen, Xin

    2016-11-01

    O-GlcNAcylation is a monosaccharide modification by a residue of N-acetylglucosamine (GlcNAc) attached to serine or threonine moieties on nuclear and cytoplasmic proteins. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Increasing evidence suggests that O-GlcNAcylation is involved in a variety of human cancers. However, the exact role of O-GlcNAcylation in tumor progression remains unclear. Here, we show that O-GlcNAcylation accelerates oncogenic phenotypes of gastric cancer. First, cell models with increased or decreased O-GlcNAcylation were constructed by OGT overexpression, downregulation of OGA activity with specific inhibitor Thiamet-G, or silence of OGT. MTT assays indicated that O-GlcNAcylation increased proliferation of gastric cancer cells. Soft agar assay and Transwell assays showed that O-GlcNAcylation significantly enhanced cellular colony formation, migration, and invasion in vitro. Akt1 activity was stimulated by upregulation of phosphorylation at Ser473 mediated by elevated O-GlcNAcylation. The enhanced cell invasion by Thiamet-G treatment was suppressed by PI3K inhibitor LY294002. Although the cell invasion induced by Thiamet-G was reduced by Akt1 shRNA, it was still higher in comparison with that to the control (cells with Akt1 shRNA alone). And Akt1 overexpression promoted Thiamet-G-induced cell invasion. These results suggested that O-GlcNAcylation enhanced oncogenic phenotypes possibly partially involving PI3K/Akt signaling pathway.

  5. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  6. Akt1 enhances CA916798 expression through mTOR pathway.

    Directory of Open Access Journals (Sweden)

    Yu-Liang Wang

    Full Text Available Multi-drug resistance leads to the failure of chemotherapy for cancers. Our previous study showed that overexpression of CA916798 led to multi-drug resistance. However, the underlying mechanisms remain unknown. In the current study, we observed that the levels of phosphorylated AKT, phosphorylated mTOR and CA916798 all increased in the drug resistant human adenocarcinoma samples and paralleled with the change of drug resistance. The results of immunofluorescence and Co-IP indicated that the positive correlation of CA916798 expression with AKT1 activation might be associated with drug resistance of lung adenocarcinoma. Furthermore, AKT1 stimulated CA916798 expression through mTOR pathway in both A549 and A549/CDDP cell lines, which was also observed in the xenografted tumor in nude mice. The results showed that CA916798 located in the downstream of PI3K/AKT/mTOR pathway. Inhibition of PI3K by LY294002 could efficiently reduce CA916798 expression and tumor size in vivo as well. Additionally, LY294002 combined with rapamycin inhibited CA916798 expression and tumor size stronger than LY294002 alone. Our findings may also provide a new explanation for synergistic anti-tumor effects of PI3K and mTORC1 inhibitors.

  7. The GIPC1-Akt1 Pathway Is Required for the Specification of the Eye Field in Mouse Embryonic Stem Cells.

    Science.gov (United States)

    La Torre, Anna; Hoshino, Akina; Cavanaugh, Christopher; Ware, Carol B; Reh, Thomas A

    2015-09-01

    During early patterning of the neural plate, a single region of the embryonic forebrain, the eye field, becomes competent for eye development. The hallmark of eye field specification is the expression of the eye field transcription factors (EFTFs). Experiments in fish, amphibians, birds, and mammals have demonstrated largely conserved roles for the EFTFs. Although some of the key signaling events that direct the synchronized expression of these factors to the eye field have been elucidated in fish and frogs, it has been more difficult to study these mechanisms in mammalian embryos. In this study, we have used two different methods for directed differentiation of mouse embryonic stem cells (mESCs) to generate eye field cells and retina in vitro to test for a role of the PDZ domain-containing protein GIPC1 in the specification of the mammalian eye primordia. We find that the overexpression of a dominant-negative form of GIPC1 (dnGIPC1), as well as the downregulation of endogenous GIPC1, is sufficient to inhibit the development of eye field cells from mESCs. GIPC1 interacts directly with IGFR and participates in Akt1 activation, and pharmacological inhibition of Akt1 phosphorylation mimics the dnGIPC1 phenotype. Our data, together with previous studies in Xenopus, support the hypothesis that the GIPC1-PI3K-Akt1 pathway plays a key role in eye field specification in vertebrates.

  8. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells.

    Science.gov (United States)

    Podar, Klaus; Tai, Yu-Tzu; Cole, Craig E; Hideshima, Teru; Sattler, Martin; Hamblin, Angela; Mitsiades, Nicholas; Schlossman, Robert L; Davies, Faith E; Morgan, Gareth J; Munshi, Nikhil C; Chauhan, Dharminder; Anderson, Kenneth C

    2003-02-21

    Caveolae, specialized flask-shaped lipid rafts on the cell surface, are composed of cholesterol, sphingolipids, and structural proteins termed caveolins; functionally, these plasma membrane microdomains have been implicated in signal transduction and transmembrane transport. In the present study, we examined the role of caveolin-1 in multiple myeloma cells. We show for the first time that caveolin-1, which is usually absent in blood cells, is expressed in multiple myeloma cells. Analysis of myeloma cell-derived plasma membrane fractions shows that caveolin-1 is co-localized with interleukin-6 receptor signal transducing chain gp130 and with insulin-like growth factor-I receptor. Cholesterol depletion by beta-cyclodextrin results in the loss of caveola structure in myeloma cells, as shown by transmission electron microscopy, and loss of caveolin-1 function. Interleukin-6 and insulin-like growth factor-I, growth and survival factors in multiple myeloma, induce caveolin-1 phosphorylation, which is abrogated by pre-treatment with beta-cyclodextrin. Importantly, inhibition of caveolin-1 phosphorylation blocks both interleukin-6-induced protein complex formation with caveolin-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. beta-Cyclodextrin also blocks insulin-like growth factor-I-induced tyrosine phosphorylation of insulin-responsive substrate-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. Therefore, cholesterol depletion by beta-cyclodextrin abrogates both interleukin-6- and insulin-like growth factor-I-triggered multiple myeloma cell survival via negative regulation of caveolin-1. Taken together, this study identifies caveolin-1 and other structural membrane components as potential new therapeutic targets in multiple myeloma.

  9. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    Science.gov (United States)

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  10. Detection of the transforming AKT1 mutation E17K in non-small cell lung cancer by high resolution melting

    Directory of Open Access Journals (Sweden)

    Fox Stephen B

    2008-05-01

    Full Text Available Abstract Background A recurrent somatic mutation, E17K, in the pleckstrin homology domain of the AKT1 gene, has been recently described in breast, colorectal, and ovarian cancers. AKT1 is a pivotal mediator of signalling pathways involved in cell survival, proliferation and growth. The E17K mutation stimulates downstream signalling and exhibits transforming activity in vitro and in vivo. Findings We developed a sensitive high resolution melting (HRM assay to detect the E17K mutation from formalin-fixed paraffin-embedded tumours. We screened 219 non-small cell lung cancer biopsies for the mutation using HRM analysis. Four samples were identified as HRM positive. Subsequent sequencing of those samples confirmed the E17K mutation in one of the cases. A rare single nucleotide polymorphism was detected in each of the remaining three samples. The E17K was found in one of the 14 squamous cell carcinomas. No mutations were found in 141 adenocarcinomas and 39 large cell carcinomas. Conclusion The AKT1 E17K mutation is very rare in lung cancer and might be associated with tumorigenesis in squamous cell carcinoma. HRM represents a rapid cost-effective and robust screening of low frequency mutations such as AKT1 mutations in clinical samples.

  11. AKT1 and SELP polymorphisms predict the risk of developing cachexia in pancreatic cancer patients.

    Science.gov (United States)

    Avan, Abolfazl; Avan, Amir; Le Large, Tessa Y S; Mambrini, Andrea; Funel, Niccola; Maftouh, Mina; Ghayour-Mobarhan, Majid; Cantore, Maurizio; Boggi, Ugo; Peters, Godefridus J; Pacetti, Paola; Giovannetti, Elisa

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) patients have the highest risk of developing cachexia, which is a direct cause of reduced quality of life and shorter survival. Novel biomarkers to identify patients at risk of cachexia are needed and might have a substantial impact on clinical management. Here we investigated the prognostic value and association of SELP-rs6136, IL6-rs1800796 and AKT1-rs1130233 polymorphisms with cachexia in PDAC. Genotyping was performed in DNA from blood samples of a test and validation cohorts of 151 and 152 chemo-naive locally-advanced/metastatic PDAC patients, respectively. The association of SELP-rs6136, IL6-rs1800796 and AKT1-rs1130233 polymorphisms with cachexia as well as the correlation between cachexia and the candidate polymorphisms and overall survival were analyzed. Akt expression and phosphorylation in muscle biopsies were evaluated by specific ELISA assays. SELP-rs6136-AA and AKT1-rs1130233-AA/GA genotypes were associated with increased risk of developing cachexia in both cohorts (SELP: p = 0.011 and p = 0.045; AKT1: p = 0.004 and p = 0.019 for the first and second cohorts, respectively), while patients carrying AKT1-rs1130233-GG survived significantly longer (p = 0.002 and p = 0.004 for the first and second cohorts, respectively). In the multivariate analysis AKT1-rs1130233-AA/GA genotypes were significant predictors for shorter survival, with an increased risk of death of 1.7 (p = 0.002) and 1.6 (p = 0.004), in the first and second cohorts, respectively. This might be explained by the reduced phosphorylation of Akt1 in muscle biopsies from patients harboring AKT1-rs1130233-AA/GA (p = 0.003), favoring apoptosis induction. In conclusion, SELP and AKT1 polymorphisms may play a role in the risk of cachexia and death in PDAC patients, and should be further evaluated in larger prospective studies.

  12. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans

    Science.gov (United States)

    Tan, Hao-Yang; Nicodemus, Kristin K.; Chen, Qiang; Li, Zhen; Brooke, Jennifer K.; Honea, Robyn; Kolachana, Bhaskar S.; Straub, Richard E.; Meyer-Lindenberg, Andreas; Sei, Yoshitasu; Mattay, Venkata S.; Callicott, Joseph H.; Weinberger, Daniel R.

    2008-01-01

    AKT1-dependent molecular pathways control diverse aspects of cellular development and adaptation, including interactions with neuronal dopaminergic signaling. If AKT1 has an impact on dopaminergic signaling, then genetic variation in AKT1 would be associated with brain phenotypes related to cortical dopaminergic function. Here, we provide evidence that a coding variation in AKT1 that affects protein expression in human B lymphoblasts influenced several brain measures related to dopaminergic function. Cognitive performance linked to frontostriatal circuitry, prefrontal physiology during executive function, and frontostriatal gray-matter volume on MRI were altered in subjects with the AKT1 variation. Moreover, on neuroimaging measures with a main effect of the AKT1 genotype, there was significant epistasis with a functional polymorphism (Val158Met) in catechol-O-methyltransferase [COMT], a gene that indexes cortical synaptic dopamine. This genetic interaction was consistent with the putative role of AKT1 in dopaminergic signaling. Supportive of an earlier tentative association of AKT1 with schizophrenia, we also found that this AKT1 variant was associated with risk for schizophrenia. These data implicate AKT1 in modulating human prefrontal-striatal structure and function and suggest that the mechanism of this effect may be coupled to dopaminergic signaling and relevant to the expression of psychosis. PMID:18497887

  13. PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms.

    Directory of Open Access Journals (Sweden)

    Laszlo Deres

    Full Text Available Spontaneously hypertensive rat (SHR is a suitable model for studies of the complications of hypertension. It is known that activation of poly(ADP-ribose polymerase enzyme (PARP plays an important role in the development of postinfarction as well as long-term hypertension induced heart failure. In this study, we examined whether PARP-inhibitor (L-2286 treatment could prevent the development of hypertensive cardiopathy in SHRs. 6-week-old SHR animals were treated with L-2286 (SHR-L group or placebo (SHR-C group for 24 weeks. Wistar-Kyoto rats were used as aged-matched, normotensive controls (WKY group. Echocardiography was performed, brain-derived natriuretic peptide (BNP activity and blood pressure were determined at the end of the study. We detected the extent of fibrotic areas. The amount of heat-shock proteins (Hsps and the phosphorylation state of Akt-1(Ser473, glycogen synthase kinase (GSK-3β(Ser9, forkhead transcription factor (FKHR(Ser256, mitogen activated protein kinases (MAPKs, and protein kinase C (PKC isoenzymes were monitored. The elevated blood pressure in SHRs was not influenced by PARP-inhibitor treatment. Systolic left ventricular function and BNP activity did not differ among the three groups. L-2286 treatment decreased the marked left ventricular (LV hypertrophy which was developed in SHRs. Interstitial collagen deposition was also decreased by L-2286 treatment. The phosphorylation of extracellular signal-regulated kinase (ERK1/2(Thr183-Tyr185, Akt-1(Ser473, GSK-3β(Ser9, FKHR(Ser256, and PKC ε(Ser729 and the level of Hsp90 were increased, while the activity of PKC α/βII(Thr638/641, ζ/λ(410/403 were mitigated by L-2286 administration. We could detect signs of LV hypertrophy without congestive heart failure in SHR groups. This alteration was prevented by PARP inhibition. Our results suggest that PARP-inhibitor treatment has protective effect already in the early stage of hypertensive myocardial remodeling.

  14. siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle.

    Science.gov (United States)

    Bouzakri, Karim; Zachrisson, Anna; Al-Khalili, Lubna; Zhang, Bei B; Koistinen, Heikki A; Krook, Anna; Zierath, Juleen R

    2006-07-01

    Type 2 diabetes is associated with defects in insulin signaling and the resulting abnormal glucose and lipid metabolism. The complexity of insulin signaling cascades is highlighted by the existence of multiple isoforms of target proteins implicated in metabolic and gene-regulatory events. We utilized siRNA to decipher the specific role of predominant insulin receptor substrates and Akt isoforms expressed in human skeletal muscle. Gene silencing revealed specialized roles of insulin signaling cascades to metabolic endpoints. IRS-1 and Akt2 were required for myoblast differentiation and glucose metabolism, whereas IRS-2 and Akt1 were dispensable. A key role of IRS-2 and Akt1 in lipid metabolism was revealed, highlighting reciprocal relationships between metabolic pathways. Unraveling the isoform-specific regulation of glucose and lipid metabolism by key elements along insulin signaling cascades through siRNA-mediated gene silencing in human tissues will facilitate the discovery of novel targets for the treatment of diabetes and related metabolic disorders.

  15. Neuroprotection of selenite against ischemic brain injury through negatively regulating early activation of ASK1/JNK cascade via activation of PI3K/AKT pathway

    Institute of Scientific and Technical Information of China (English)

    Qing WANG; Quan-guang ZHANG; Dong-na WU; Xiao-hui YIN; Guang-yi ZHANG

    2007-01-01

    Aim: To investigate whether selenite, a known antioxidant, could decrease the activation of apoptosis signal regulating kinase 1/c-jun N-terminal kinase (ASK1/JNK) signaling cascade in cerebral ischemia/reperfusion (I/R) by activating the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in rat hippocampi, and the neuroprotective effect of selenite against ischemic injury after 15 min of transient brain ischemia. Methods: Transient global brain ischemia was induced by 4-vessel occlusion into adult male Sprague-Dawley rats weighing 250-300 g. The rats were pretreated only with selenite (0.3 mg/kg dissolved in 0.9% saline) every 24 h for 7 d by means of intravenous injection of the tail or combined with LY294002 from d 5 by left cerebral ventricle'injection before surgery. Results: Selenite significantly increased AKT1 activation and decreased the activation of ASK1/JNK cascade via phosphorylating ASK1 at Ser-83 residue by AKT1 during early reperfusion after 15 min transient global brain ischemia. On the contrary, com-bined pretreatment of the rats with LY294002 (a specific PI3K inhibitor) and selen-ite significantly inhibited the effects solely with selenite. Conclusion: The activa-tion of the pro-apoptotic ASK1/JNK cascade, which is closely associated with oxidative stress, could be suppressed by selenite through activating the anti-apoptotic PI3K/AKT pathway during early reperfusion after cerebral ischemia in rat hippocampi.

  16. Sphingosylphosphorylcholine protects cardiomyocytes against ischemic apoptosis via lipid raft/PTEN/Akt1/mTOR mediated autophagy.

    Science.gov (United States)

    Yue, Hong-Wei; Liu, Jing; Liu, Ping-Ping; Li, Wen-Jing; Chang, Fen; Miao, Jun-Ying; Zhao, Jing

    2015-09-01

    Autophagy, evoked by diverse stresses including myocardial ischemia/reperfusion (I/R), profoundly affects the development of heart failure. However, the specific molecular basis of autophagy remains to be elucidated. Here we report that sphingosylphosphorylcholine (SPC), a bioactive sphingolipid, significantly suppressed apoptosis and induced autophagy in cardiomyocytes. Blocking this SPC evoked autophagy by 3-methyladenine (3MA)-sensitized cardiomyocytes to serum deprivation-induced apoptosis. Subsequent studies revealed that SPC downregulated the phosphorylation of p70S6K and 4EBP1 (two substrates of mTOR) but enhanced that of JNK when inducing autophagy. We identified SPC as a switch for the activity of Akt1, a supposed upstream modulator of both mTOR and JNK. Furthermore, β-cyclodextrin, which destroys membrane cholesterol, abolished the SPC-reduced phosphorylation of both Akt and PTEN, thus inhibiting SPC-induced autophagy. In conclusion, SPC is a novel molecule protecting cardiomyocytes against apoptosis by promoting autophagy. The lipid raft/PTEN/Akt1/mTOR signal pathway is the underlying mechanism and might provide novel targets for cardiac failure therapy.

  17. AKT1 fails to replicate as a longevity-associated gene in Danish and German nonagenarians and centenarians

    DEFF Research Database (Denmark)

    Nygaard, Marianne; Soerensen, Mette; Flachsbart, Friederike

    2013-01-01

    In addition to APOE and FOXO3, AKT1 has recently been suggested as a third consistent longevity gene, with variants in AKT1 found to be associated with human lifespan in two previous studies. Here, we evaluated AKT1 as a longevity-associated gene across populations by attempting to replicate the ...... not support AKT1 as a universal longevity-associated gene.European Journal of Human Genetics advance online publication, 29 August 2012; doi:10.1038/ejhg.2012.196....

  18. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings......The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  19. Association of AKT1 gene variants and protein expression in both schizophrenia and bipolar disorder.

    Science.gov (United States)

    Karege, F; Perroud, N; Schürhoff, F; Méary, A; Marillier, G; Burkhardt, S; Ballmann, E; Fernandez, R; Jamain, S; Leboyer, M; La Harpe, R; Malafosse, A

    2010-07-01

    The AKT1 gene has been associated with the genetic aetiology of schizophrenia. Following the overlap model of bipolar disorder and schizophrenia, we aimed to investigate AKT1 genetic variants and protein expression in both diseases. A total of 679 subjects with European ancestry were included: 384 with schizophrenia, 130 with bipolar disorder and 165 controls. Six single nucleotide polymorphisms (SNPs) were investigated for association with the diseases using single- and multi-locus analyses. AKT1 and AKT2 protein levels were measured in post-mortem brain tissues from ante-mortem diagnosed schizophrenia (n = 30) and bipolar disorder subjects (n = 12) and matched controls. The analysis identified a significant global distortion in schizophrenia (P = 0.0026) and a weak association in bipolar disorder (P = 0.046). A sliding window procedure showed a five-SNP haplotype (TCGAG) to be associated with schizophrenia (P = 1.22 x 10(-4)) and bipolar disorder (P = 0.0041) and a four-SNP haplotype (TCGA) with the combined sample (1.73 x 10(-5)). On the basis of selected genotypes, a significant difference in protein expression emerged between subjects (P gene in both schizophrenia and bipolar disorder, support the role of AKT1 in the genetics of both disorders and add support to the view that there is some genetic overlap between them.

  20. Deletion of PKBalpha/Akt1 affects thymic development.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fayard

    Full Text Available BACKGROUND: The thymus constitutes the primary lymphoid organ for the majority of T cells. The phosphatidyl-inositol 3 kinase (PI3K signaling pathway is involved in lymphoid development. Defects in single components of this pathway prevent thymocytes from progressing beyond early T cell developmental stages. Protein kinase B (PKB is the main effector of the PI3K pathway. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether PKB mediates PI3K signaling in the thymus, we characterized PKB knockout thymi. Our results reveal a significant thymic hypocellularity in PKBalpha(-/- neonates and an accumulation of early thymocyte subsets in PKBalpha(-/- adult mice. Using thymic grafting and fetal liver cell transfer experiments, the latter finding was specifically attributed to the lack of PKBalpha within the lymphoid component of the thymus. Microarray analyses show that the absence of PKBalpha in early thymocyte subsets modifies the expression of genes known to be involved in pre-TCR signaling, in T cell activation, and in the transduction of interferon-mediated signals. CONCLUSIONS/SIGNIFICANCE: This report highlights the specific requirements of PKBalpha for thymic development and opens up new prospects as to the mechanism downstream of PKBalpha in early thymocytes.

  1. Molecular regulation of osteoclast activity.

    Science.gov (United States)

    Bruzzaniti, Angela; Baron, Roland

    2006-06-01

    Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed.

  2. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening.

    Science.gov (United States)

    Yilmaz, Oya Gursoy; Olmez, Elif Ozkirimli; Ulgen, Kutlu O

    2014-02-01

    Preclinical data and tumor specimen studies report that AKT kinases are related to many human cancers. Therefore, identification and development of small molecule inhibitors targeting AKT and its signaling pathway can be therapeutic in treatment of cancer. Numerous studies report inhibitors that target the ATP-binding pocket in the kinase domains, but the similarity of this site, within the kinase family makes selectivity a major problem. The sequence identity amongst PH domains is significantly lower than that in kinase domains and developing more selective inhibitors is possible if PH domain is targeted. This in silico screening study is the first time report toward the identification of potential allosteric inhibitors expected to bind the cavity between kinase and PH domains of Akt1. Structural information of Akt1 was used to develop structure-based pharmacophore models comprising hydrophobic, acceptor, donor and ring features. The 3D structural information of previously identified allosteric Akt inhibitors obtained from literature was employed to develop a ligand-based pharmacophore model. Database was generated with drug like subset of ZINC and screening was performed based on 3D similarity to the selected pharmacophore hypotheses. Binding modes and affinities of the ligands were predicted by Glide software. Top scoring hits were further analyzed considering 2D similarity between the compounds, interactions with Akt1, fitness to pharmacophore models, ADME, druglikeness criteria and Induced-Fit docking. Using virtual screening methodologies, derivatives of 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol were proposed as potential leads for allosteric inhibition of Akt1.

  3. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    Science.gov (United States)

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  4. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Donatella Malanga

    Full Text Available The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26 locus (R26-AKT1E17K mice we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.

  5. EGCG经AKT1-Mdm-2-p53途径抑制卵巢癌HO-891O细胞的增殖%Epigallocatechin-3-gallate Inhibits Proliferation of Ovarian Cancer HO-8910 Cells by AKT 1-Mdm-2-p53 Pathway

    Institute of Scientific and Technical Information of China (English)

    李维; 罗瞳; 罗招阳

    2011-01-01

    Objective: To investigate mechanism of Epigallocatechin-3-gallate (EGCG) inhibited the proliferation of ovarian cancer HO-8910 cells. Methods: EGCG inhibited HO-8910 cellular proliferation was observed by the drawing cellular growth curve, plate colony formation and soft agar colony formation. The expressions of AKT1, Mdm-2 and p53 proteins were detected by Western-blotting. Results: 1. The results of cellular growth curve, plate colony formation and soft agar colony formation showed that EGCG active depressed the proliferation of HO-8910 cells with treatment time extended (n=3, P<0.05). 2. The western-blotting results exhibited that the expressions of AKT1 and Mdm-2 proteins in HO-8910 cells obviously decreased, but the expression of p53 protein increased after EGCG dealing with it (P<0.05). Conclusion: EGCG depressed the expressions of AKT1, Mdm-2 proteins in HO-8910 cells and increased the expression of p53 protein to inhibit the cellular proliferation.%初步探讨EGCG对卵巢癌HO-8910细胞增殖的抑制作用及其机制.方法:通过绘制细胞生长曲线、平皿克隆和软琼脂集落形成实验观察EGCG对HO-8910细胞增殖的抑制作用;Western-blotting检测AKT1、Mdm-2与p53蛋白的表达.结果:(1)细胞生长曲线、平皿克隆和软琼脂集落形成实验结果显示,EGCG可有效抑制HO-8910细胞的增殖(n=3,P<0.05).(2)Westemblotting检测结果显示,EGCG处理后AKT1与Mdm-2蛋白表达均降低,而p53蛋白表达升高(P<0.05).结论:EGCG通过抑制HO-8910细胞中AKT1与Mdm-2蛋白表达,促使p53蛋白表达而发挥其对细胞增殖的抑制作用.

  6. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells.

    Science.gov (United States)

    Häggblad Sahlberg, Sara; Mortensen, Anja C; Haglöf, Jakob; Engskog, Mikael K R; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

  7. miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqiang [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China); Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Liu, Zengyan [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Xu, Hao [Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Yang, Qifeng, E-mail: qifengy_sdu1@163.com [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2016-01-08

    Altered levels and functions of microRNAs (miRNAs) are correlated with carcinogenesis. While miR-409-3p has been shown to play important roles in several cancer types, its function in the context of breast cancer (BC) remains unknown. In this study, miR-409-3p was significantly downregulated in BC tissues and cell lines, compared with the corresponding control counterparts. Overexpression of miR-409-3p inhibited BC cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Notably, miR-409-3p induced downregulation of Akt1 protein through binding to its 3′ untranslated region (UTR). Conversely, restoring Akt1 expression rescued the suppressive effects of miR-409-3p. Our data collectively indicate that miR-409-3p functions as a tumor suppressor in BC through downregulating Akt1, supporting the targeting of the novel miR-409-3p/Akt1 axis as a potentially effective therapeutic approach for BC. - Highlights: • miR-409-3p inhibits proliferation, migration and invasion of BC cells. • miR-409-3p suppresses tumor growth in nude mice. • Akt1 is a direct downstream target of miR-409-3p. • Ectopic expression of Akt1 reverses the effects of miR-409-3p on cell proliferation, migration and invasion.

  8. ZxAKT1 is essential for K(+) uptake and K(+) /Na(+) homeostasis in the succulent xerophyte Zygophyllum xanthoxylum.

    Science.gov (United States)

    Ma, Qing; Hu, Jing; Zhou, Xiang-Rui; Yuan, Hui-Jun; Kumar, Tanweer; Luan, Sheng; Wang, Suo-Min

    2017-04-01

    The inward-rectifying K(+) channel AKT1 constitutes an important pathway for K(+) acquisition in plant roots. In glycophytes, excessive accumulation of Na(+) is accompanied by K(+) deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K(+) concentration remains at a relatively constant level despite increased levels of Na(+) under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K(+) and Na(+) homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K(+) -uptake-defective phenotype of yeast strain CY162, suppressed the salt-sensitive phenotype of yeast strain G19, and complemented the low-K(+) -sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward-rectifying K(+) channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1-silenced plants exhibited stunted growth compared to wild-type Z. xanthoxylum. Further experiments showed that ZxAKT1-silenced plants exhibited a significant decline in net uptake of K(+) and Na(+) , resulting in decreased concentrations of K(+) and Na(+) , as compared to wild-type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild-type, the expression levels of genes encoding several transporters/channels related to K(+) /Na(+) homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1-silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K(+) uptake but also functions in modulating Na(+) uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  10. Inhibitory effect of adenovirus-mediated short hairpin RNA targeting P85 and Akt1 on growth of human gastric adenocarcinoma cell%腺病毒介导的靶向P85和Akt1短发夹RNA对人胃腺癌细胞生长抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    张靖; 付彦超; 康春生; 张庆瑜; 王涛; 张洁

    2009-01-01

    expression was identified with real-time PCR and Western blot. The proliferative activity of tumor cells was evaluated with MTr assay and flow cytometry in vitro, rAd5-HK and rAd5-P + A mediated by adenovirus were injected into the established subcutancous SGC-7901 gastric adenocarcinoma in nude mice. During the observation period of 21 days, tumor volume was measured every 3 days to further testify the anti-tumor effect of rAd5-P + A on the SGC-7901 gastric adenocarcinoma cells and cell in situ apoptosis was detected with TUNEL assay. Results The adenovirus vector rAd5-P + A was successfully constructed and it dramatically downregulated P85 and Akt1 mRNA expression in SGC-7901 gastric adenocarcinoma cells. Compared with a control group of SGC-7901 cells and cells transfected with general adenovirus rAd5-HK as control, P85 and Akt1 protein expression 48 h and 72 h after rAd5-P + A transfection was decreased by 57.5% and 63. 7%, 67. 8% and 75.6% with statistical significance(P = 0. 005, P = 0. 003). Cell proliferative activity in rAd5-P + A transfected cells was suppressed from the second day (P <0. 001) and the decreased P85 and Akt1 expression was accompanied by 5.9% -7. 1% decrease of S phase fraction and 12. 1% - 13.7% increase of G0/G1 phase. The tumor volume of rAd5-P + A treated group was smaller than that of the control and rAd.5-HK group with statistical significance (F = 9. 871, P = 0. 025) . Moreover, rAd5-P + A could induce cell in situ apoptosis. Conclusions Adenovirus-mediated targeting P85 and Akt1 shRNA can inhibit the growth of SGC-7901 human gastric adenocarcinoma cells and this may provide a new strategy of combination gene therapy in gastric adenocarcinoma.

  11. Wnt1 Neuroprotection Translates into Improved Neurological Function during Oxidant Stress and Cerebral Ischemia Through AKT1 and Mitochondrial Apoptotic Pathways

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    2010-01-01

    Full Text Available Although essential for the development of the nervous system, Wnt1 also has been associated with neurodegenerative disease and cognitive loss during periods of oxidative stress. Here we show that endogenous expression of Wnt1 is suppressed during oxidative stress in both in vitro and in vivo experimental models. Loss of endogenous Wnt1 signaling directly correlates with neuronal demise and increased functional deficit, illustrating that endogenous neuronal Wnt1 offers a vital level of intrinsic cellular protection against oxidative stress. Furthermore, transient overexpression of Wnt1 or application of exogenous Wnt1 recombinant protein is necessary to preserve neurological function and rescue neurons from apoptotic membrane phosphatidylserine externalization and genomic DNA degradation, since blockade of Wnt1 signaling with a Wnt1 antibody or dickkopf related protein 1 abrogates neuronal protection by Wnt1. Wnt1 ultimately relies upon the activation of Akt1, the modulation of mitochondrial membrane permeability, and the release of cytochrome c to control the apoptotic cascade, since inhibition of Wnt1 signaling, the phosphatidylinositol 3-kinase pathway, or Akt1 activity abrogates the ability of Wnt1 to block these apoptotic components. Our work identifies Wnt1 and its downstream signaling as cellular targets with high clinical potential for novel treatment strategies for multiple disorders precipitated by oxidative stress.

  12. Wnt1 neuroprotection translates into improved neurological function during oxidant stress and cerebral ischemia through AKT1 and mitochondrial apoptotic pathways.

    Science.gov (United States)

    Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling; Maiese, Kenneth

    2010-01-01

    Although essential for the development of the nervous system, Wnt1 also has been associated with neurodegenerative disease and cognitive loss during periods of oxidative stress. Here we show that endogenous expression of Wnt1 is suppressed during oxidative stress in both in vitro and in vivo experimental models. Loss of endogenous Wnt1 signaling directly correlates with neuronal demise and increased functional deficit, illustrating that endogenous neuronal Wnt1 offers a vital level of intrinsic cellular protection against oxidative stress. Furthermore, transient overexpression of Wnt1 or application of exogenous Wnt1 recombinant protein is necessary to preserve neurological function and rescue neurons from apoptotic membrane phosphatidylserine externalization and genomic DNA degradation, since blockade of Wnt1 signaling with a Wnt1 antibody or dickkopf related protein 1 abrogates neuronal protection by Wnt1. Wnt1 ultimately relies upon the activation of Akt1, the modulation of mitochondrial membrane permeability, and the release of cytochrome c to control the apoptotic cascade, since inhibition of Wnt1 signaling, the phosphatidylinositol 3-kinase pathway, or Akt1 activity abrogates the ability of Wnt1 to block these apoptotic components. Our work identifies Wnt1 and its downstream signaling as cellular targets with high clinical potential for novel treatment strategies for multiple disorders precipitated by oxidative stress.

  13. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  14. Expression of AKT1 along with AKT2 in granulosa-lutein cells of hyperandrogenic PCOS patients.

    Science.gov (United States)

    Nekoonam, Saeid; Naji, Mohammad; Nashtaei, Maryam Shabani; Mortezaee, Keywan; Koruji, Morteza; Safdarian, Leili; Amidi, Fardin

    2017-04-01

    AKTs have a pivotal role in the granulosa-lutein cell (GC) proliferation and folliculogenesis, and there is a reciprocal feedback between AKT with androgen. Therefore, we aimed to evaluate the role of AKTs in GCs of hyperandrogenic (+HA) PCOS cases. There were three groups: control, +HA PCOS and -HA (non-hyperandrogenic) PCOS. All groups were subjected to GnRH antagonist protocol for stimulation of ovulation. Follicular fluid was aspirated from large follicles, and GCs were isolated using cell strainer method. AKT1, AKT2, AKT3, and androgen receptor (AR) mRNA expressions were analyzed with quantitative real-time PCR (qRT-PCR), and total-AKT and p-AKT (Ser(473) & Thr(308)) were investigated using western blotting. There were high levels of AKT1, AKT2, and AR mRNA expressions and high levels of p-AKT protein expression in the +HA PCOS group (p ≤ 0.05). There was a direct positive correlation between free testosterone (FT) and total testosterone (TT) with the levels of AKT1, AKT2, and p-AKT (Ser(473)), and also between FT with the levels of AR. High expressions of AKT1 and AKT2 through possible relation with androgen may cause GCs dysfunction in the +HA PCOS patients.

  15. A Mosaic Activating Mutation in AKT1 Associated with the Proteus Syndrome

    NARCIS (Netherlands)

    Lindhurst, Marjorie J.; Sapp, Julie C.; Teer, Jamie K.; Johnston, Jennifer J.; Finn, Erin M.; Peters, Kathryn; Turner, Joyce; Cannons, Jennifer L.; Bick, David; Blakemore, Laurel; Blumhorst, Catherine; Brockmann, Knut; Calder, Peter; Cherman, Natasha; Deardorff, Matthew A.; Everman, David B.; Golas, Gretchen; Greenstein, Robert M.; Kato, B. Maya; Keppler-Noreuil, Kim M.; Kuznetsov, Sergei A.; Miyamoto, Richard T.; Newman, Kurt; Ng, David; O'Brien, Kevin; Rothenberg, Steven; Schwartzentruber, Douglas J.; Singhal, Virender; Tirabosco, Roberto; Upton, Joseph; Wientroub, Shlomo; Zackai, Elaine H.; Hoag, Kimberly; Whitewood-Neal, Tracey; Robey, Pamela G.; Schwartzberg, Pamela L.; Darling, Thomas N.; Tosi, Laura L.; Mullikin, James C.; Biesecker, Leslie G.

    2011-01-01

    BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from

  16. A Mosaic Activating Mutation in AKT1 Associated with the Proteus Syndrome

    NARCIS (Netherlands)

    Lindhurst, Marjorie J.; Sapp, Julie C.; Teer, Jamie K.; Johnston, Jennifer J.; Finn, Erin M.; Peters, Kathryn; Turner, Joyce; Cannons, Jennifer L.; Bick, David; Blakemore, Laurel; Blumhorst, Catherine; Brockmann, Knut; Calder, Peter; Cherman, Natasha; Deardorff, Matthew A.; Everman, David B.; Golas, Gretchen; Greenstein, Robert M.; Kato, B. Maya; Keppler-Noreuil, Kim M.; Kuznetsov, Sergei A.; Miyamoto, Richard T.; Newman, Kurt; Ng, David; O'Brien, Kevin; Rothenberg, Steven; Schwartzentruber, Douglas J.; Singhal, Virender; Tirabosco, Roberto; Upton, Joseph; Wientroub, Shlomo; Zackai, Elaine H.; Hoag, Kimberly; Whitewood-Neal, Tracey; Robey, Pamela G.; Schwartzberg, Pamela L.; Darling, Thomas N.; Tosi, Laura L.; Mullikin, James C.; Biesecker, Leslie G.

    2011-01-01

    BACKGROUND The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state. METHODS We performed exome sequencing of DNA from b

  17. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  18. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  19. [Molecular mechanisms regulating the activity of macrophages].

    Science.gov (United States)

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  20. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  1. Correlation of AKT1 gene polymorphisms with cognitive function in major depressive disorder%AKT1基因多态性与重性抑郁障碍认知功能的关联分析

    Institute of Scientific and Technical Information of China (English)

    李剑虹; 王磊; 张克让; 徐勇; 孙宁; 彭菊意

    2011-01-01

    Objective To investigate the relationship between protein kinase B1 (PKB1. also called AKT1) gene polymorphisms in BDNF-signaling pathways and cognitive function in major depressive disorder (MDD). Methods In a case-control study, 73 Han people with initial episode of major depressive disorder and 73 age- and gendermatched normal controls were measured for cognitive function with Wisconsin Sorting Card Test (WCST). The clinical symptoms in the subjects were evaluated with HAMD. Polymerase chain reaction (PCR) and direct sequencing were used to study the genotypes of AKT1 gene SNP rs2494746, rs2794738, rs3001371 and rs1130214. Results ①The distributions of genotypes in the patients and controls were consistent with Hardy-Weinberg equilibriums (P>0.05) except for the AKT1 rs2794738 (x2=14.19, P=0.001). ②The genotype distribution and allele frequency for AKT1 gene polymorphisms (except the AKT1 rs2794738) did not show any statistical difference between patients with MDD and controls (P>0.05). ③Further analyses revealed a significant association between rs3001371 locus and WCST random errors (x2=6.630, P=0.002). There were significant diferences in WCST random errors among patients with G/G, G/A and A/A genotypes. Conclusion The AKT1 gene polymorphisms are not significantly associated with development of MDD, whereas the AKT1 SNP rs3001371 is conelated with disordered cognitive function in MDD, with more cognitive impairment in patients with G/G genotype.%目的 探讨脑源性神经营养因子(BDNF)信号传导通路中蛋白激酶B1(PKB1,又称AKT1)基因多态性与抑郁障碍及认知功能的关系.方法 采用病例对照研究,选取中国汉族首发重性抑郁患者73例和与之性别、年龄相匹配的健康对照73名.采用威斯康辛分类测验(WCST)评定2组人群的认知功能;并用汉密顿抑郁量表(HAMD)评定患者的临床症状;应用聚合酶链反应技术(PCR)扩增目的 DNA片段,对PCR产物直接测序,检测4个AKT1

  2. New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain.

    Science.gov (United States)

    Shumay, Elena; Wiers, Corinde E; Shokri-Kojori, Ehsan; Kim, Sung Won; Hodgkinson, Colin A; Sun, Hui; Tomasi, Dardo; Wong, Christopher T; Weinberger, Daniel R; Wang, Gene-Jack; Fowler, Joanna S; Volkow, Nora D

    2017-05-10

    The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [(11)C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [(11)C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate (F(2,90) = 8.2, p = 0.001) and putamen (F(2,90) = 6.6, p = 0.002), but not the ventral striatum (p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum (F(2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate (p = 0.1) or putamen (p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation.SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase

  3. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer.

    Science.gov (United States)

    Li, Jiao; Su, Wei; Zhang, Sheng; Hu, Yunhui; Liu, Jingjing; Zhang, Xiaobei; Bai, Jingchao; Yuan, Weiping; Hu, Linping; Cheng, Tao; Zetterberg, Anders; Lei, Zhenmin; Zhang, Jin

    2015-05-01

    The epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway aberrations play significant roles in breast cancer occurrence and development. However, the status of EGFR and AKT1 gene copy numbers remains unclear. In this study, we showed that the rates of EGFR and AKT1 gene copy number alterations were associated with the prognosis of breast cancer. Among 205 patients, high EGFR and AKT1 gene copy numbers were observed in 34.6% and 27.8% of cases by multi-gene fluorescence in situ hybridization, respectively. Co-heightened EGFR/AKT1 gene copy numbers were identified in 11.7% cases. No changes were found in 49.3% of patients. Although changes in EGFR and AKT1 gene copy numbers had no correlation with patients' age, tumor stage, histological grade and the expression status of other molecular makers, high EGFR (P = 0.0002) but not AKT1 (P = 0.1177) gene copy numbers correlated with poor 5-year overall survival. The patients with co-heightened EGFR/AKT1 gene copy numbers displayed a poorer prognosis than those with tumors with only high EGFR gene copy numbers (P = 0.0383). Both Univariate (U) and COX multivariate (C) analyses revealed that high EGFR and AKT1 gene copy numbers (P = 0.000 [U], P = 0.0001 [C]), similar to histological grade (P = 0.001 [U], P = 0.012 [C]) and lymph node metastasis (P = 0.046 [U], P = 0.158 [C]), were independent prognostic indicators of 5-year overall survival. These results indicate that high EGFR and AKT1 gene copy numbers were relatively frequent in breast cancer. Co-heightened EGFR/AKT1 gene copy numbers had a worse outcome than those with only high EGFR gene copy numbers, suggesting that evaluation of these two genes together may be useful for selecting patients for anti-EGFR-targeted therapy or anti-EGFR/AKT1-targeted therapy and for predicting outcomes. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  4. Molecular regulation of telomerase activity in aging

    Institute of Scientific and Technical Information of China (English)

    Craig Nicholls; He Li; Jian-Qiu Wang; Jun-Ping Liu

    2011-01-01

    The process of aging is mitigated by the maintenance and repair of chromosome ends (telomeres),resulting in extended lifespan.This review examines the molecular mechanisms underlying the actions and regulation of the enzyme telomerase reverse transcriptase (TERT),which functions as the primary mechanism of telomere maintenance and regulates cellular life expectancy.Underpinning increased cell proliferation,telomerase is also a key factor in facilitating cancer cell immortalization.The review focuses on aspects of hormonal regulations of telomerase,and the intraceilular pathways that converge to regulate telomerase activity with an emphasis on molecular interactions at protein and gene levels.In addition,the basic structure and function of two key telomerase enzyme components-the catalytic subunit TERT and the template RNA (TERC) are discussed briefly.

  5. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  6. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  7. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  8. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179

    Directory of Open Access Journals (Sweden)

    Eunji Jo

    2015-07-01

    Full Text Available Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT and cell migration induced by transforming growth factor-β1 (TGF-β1. In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213 in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  9. Ack1: activation and regulation by allostery.

    Directory of Open Access Journals (Sweden)

    Ketan S Gajiwala

    Full Text Available The non-receptor tyrosine kinase Ack1 belongs to a unique multi-domain protein kinase family, Ack. Ack is the only family of SH3 domain containing kinases to have an SH3 domain following the kinase domain; others have their SH3 domains preceding the kinase domain. Previous reports have suggested that Ack1 does not require phosphorylation for activation and the enzyme activity of the isolated kinase domain is low relative to other kinases. It has been shown to dimerize in the cellular environment, which augments its enzyme activity. The molecular mechanism of activation, however, remains unknown. Here we present structural and biochemical data on Ack1 kinase domain, and kinase domain+SH3 domain that suggest that Ack1 in its monomeric state is autoinhibited, like EGFR and CDK. The activation of the kinase domain may require N-lobe mediated symmetric dimerization, which may be facilitated by the N-terminal SAM domain. Results presented here show that SH3 domain, unlike in Src family tyrosine kinases, does not directly control the activation state of the enzyme. Instead we speculate that the SH3 domain may play a regulatory role by facilitating binding of the MIG6 homologous region to the kinase domain. We postulate that features of Ack1 activation and regulation parallel those of receptor tyrosine kinase EGFR with some interesting differences.

  10. Regulation of Aicda expression and AID activity.

    Science.gov (United States)

    Zan, Hong; Casali, Paolo

    2013-03-01

    Activation-induced cytidine deaminase (AID) is expressed in a B cell differentiation stage-specific fashion and is essential for immunoglobulin (Ig) gene class switch DNA recombination (CSR) and somatic hypermutation (SHM). CSR and SHM play a central role in the maturation of antibody and autoantibody responses. AID displays a mutagenic activity by catalyzing targeted deamination of deoxycytidine (dC) residues in DNA resulting in dU:dG mismatches, which are processed into point-mutations in SHM or double-strand breaks (DSBs) in CSR. Although AID specifically targets the Ig gene loci (IgH, Igκ and Igλ), it can also home into a wide array of non-Ig genes in B-and non-B-cell backgrounds. Aberrant expression of AID is associated with multiple diseases such as allergy, inflammation, autoimmunity and cancer. In autoimmune systemic lupus erythematosus, dysregulated AID expression underpins increased CSR, SHM and autoantibody production. As a potent mutator, AID is under stringent transcriptional, post-transcriptional and post-translational regulation. AID is also regulated in its targeting and enzymatic function. In resting naïve or memory B cells, AID transcripts and protein are undetectable. These, however, are readily and significantly up-regulated in B cells induced to undergo CSR and/or SHM. Transcription factors, such as HoxC4 and NF-κB, which are up-regulated in a B cell lineage-and/or differentiation stage-specific manner, regulate the induction of AID. HoxC4 induces AID expression by directly binding to the AID gene promoter through an evolutionarily conserved 5'-ATTT-3' motif. HoxC4 is induced by the same stimuli that induce AID and CSR. It is further up-regulated by estrogen through three estrogen responsive elements in its promoter region. The targeting of AID to switch (S) regions is mediated by 14-3-3 adaptor proteins, which specifically bind to 5'-AGCT-3' repeats that are exist at high frequency in S region cores. Like HoxC4, 14-3-3 adaptors are induced

  11. Modelling Proteasome and Proteasome Regulator Activities

    Directory of Open Access Journals (Sweden)

    Juliane Liepe

    2014-06-01

    Full Text Available Proteasomes are key proteases involved in a variety of processes ranging from the clearance of damaged proteins to the presentation of antigens to CD8+ T-lymphocytes. Which cleavage sites are used within the target proteins and how fast these proteins are degraded have a profound impact on immune system function and many cellular metabolic processes. The regulation of proteasome activity involves different mechanisms, such as the substitution of the catalytic subunits, the binding of regulatory complexes to proteasome gates and the proteasome conformational modifications triggered by the target protein itself. Mathematical models are invaluable in the analysis; and potentially allow us to predict the complex interactions of proteasome regulatory mechanisms and the final outcomes of the protein degradation rate and MHC class I epitope generation. The pioneering attempts that have been made to mathematically model proteasome activity, cleavage preference variation and their modification by one of the regulatory mechanisms are reviewed here.

  12. Phosphorylation regulates coilin activity and RNA association

    Directory of Open Access Journals (Sweden)

    Hanna J. Broome

    2013-02-01

    The Cajal body (CB is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.

  13. Cytokinins are central regulators of cambial activity.

    Science.gov (United States)

    Matsumoto-Kitano, Miho; Kusumoto, Takami; Tarkowski, Petr; Kinoshita-Tsujimura, Kaori; Václavíková, Katerina; Miyawaki, Kaori; Kakimoto, Tatsuo

    2008-12-16

    The roots and stems of dicotyledonous plants thicken by the cell proliferation in the cambium. Cambial proliferation changes in response to environmental factors; however, the molecular mechanisms that regulate cambial activity are largely unknown. The quadruple Arabidopsis thaliana mutant atipt1;3;5;7, in which 4 genes encoding cytokinin biosynthetic isopentenyltransferases are disrupted by T-DNA insertion, was unable to form cambium and showed reduced thickening of the root and stem. The atipt3 single mutant, which has moderately decreased levels of cytokinins, exhibited decreased root thickening without any other recognizable morphological changes. Addition of exogenously supplied cytokinins to atipt1;3;5;7 reactivated the cambium in a dose-dependent manner. When an atipt1;3;5;7 shoot scion was grafted onto WT root stock, both the root and shoot grew normally and trans-zeatin-type (tZ-type) cytokinins in the shoot were restored to WT levels, but isopentenyladenine-type cytokinins in the shoot remained unchanged. Conversely, when a WT shoot was grafted onto an atipt1;3;5;7 root, both the root and shoot grew normally and isopentenyladenine-type cytokinins in the root were restored to WT levels, but tZ-type cytokinins were only partially restored. Collectively, it can be concluded that cytokinins are important regulators of cambium development and that production of cytokinins in either the root or shoot is sufficient for normal development of both the root and shoot.

  14. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  15. 76 FR 12364 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Science.gov (United States)

    2011-03-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... Bonded Warehouse Regulations. This request for comment is being made pursuant to the Paperwork Reduction... concerning the following information collection: Title: Bonded Warehouse Regulations. OMB Number:...

  16. Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia.

    Directory of Open Access Journals (Sweden)

    Som Gowda Nanjappa

    2015-09-01

    Full Text Available Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17 are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1 responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients.

  17. Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia.

    Science.gov (United States)

    Nanjappa, Som Gowda; Hernández-Santos, Nydiaris; Galles, Kevin; Wüthrich, Marcel; Suresh, M; Klein, Bruce S

    2015-09-01

    Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients.

  18. ECONOMIC ACTIVITY REGULATION AND COMPETITION ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Berinde Mihai

    2010-07-01

    Full Text Available In a broad sense, the term „competition” defines the relations between economic operators acting on the same market seeking attainment of certain interests in economic freedom conditions. The need for regulations in the area of competition stems from the nature of free, open market economy which is founded on the existence of fair competition between economic agents, competition which must be observed, maintained and protected by the law. Public authorities who issue various regulations should be cautious about how far this role is played in the economy and they way adopted regulations affect competition in the market. Hence, the need for prior assessment relating to the potential effect of a regulation on competition. It was proven in practice that some regulations may lead to measures that may affect competition directly or indirectly by: limiting the number or range of suppliers; limiting supplier capability to compete and reducing interests of suppliers to compete vigorously.

  19. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    Science.gov (United States)

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  20. Activation and Regulation of Cellular Eicosanoid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Thomas G. Brock

    2007-01-01

    Full Text Available There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.

  1. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers.

    Science.gov (United States)

    Leng, Y; Wang, Z; Tsai, L-K; Leeds, P; Fessler, E B; Wang, J; Chuang, D-M

    2015-02-01

    Fibroblast growth factor-21 (FGF-21) is a new member of the FGF super-family and an important endogenous regulator of glucose and lipid metabolism. It has been proposed as a therapeutic target for diabetes and obesity. Its function in the central nervous system (CNS) remains unknown. Previous studies from our laboratory demonstrated that aging primary neurons are more vulnerable to glutamate-induced excitotoxicity, and that co-treatment with the mood stabilizers lithium and valproic acid (VPA) induces synergistic neuroprotective effects. This study sought to identify molecule(s) involved in these synergistic effects. We found that FGF-21 mRNA was selectively and markedly elevated by co-treatment with lithium and VPA in primary rat brain neurons. FGF-21 protein levels were also robustly increased in neuronal lysates and culture medium following lithium-VPA co-treatment. Combining glycogen synthase kinase-3 (GSK-3) inhibitors with VPA or histone deacetylase (HDAC) inhibitors with lithium synergistically increased FGF-21 mRNA levels, supporting that synergistic effects of lithium and VPA are mediated via GSK-3 and HDAC inhibition, respectively. Exogenous FGF-21 protein completely protected aging neurons from glutamate challenge. This neuroprotection was associated with enhanced Akt-1 activation and GSK-3 inhibition. Lithium-VPA co-treatment markedly prolonged lithium-induced Akt-1 activation and augmented GSK-3 inhibition. Akt-1 knockdown markedly decreased FGF-21 mRNA levels and reduced the neuroprotection induced by FGF-21 or lithium-VPA co-treatment. In addition, FGF-21 knockdown reduced lithium-VPA co-treatment-induced Akt-1 activation and neuroprotection against excitotoxicity. Together, our novel results suggest that FGF-21 is a key mediator of the effects of these mood stabilizers and a potential new therapeutic target for CNS disorders.

  2. PI3Kα isoform-dependent activation of RhoA regulates Wnt5a-induced osteosarcoma cell migration.

    Science.gov (United States)

    Zhang, Ailiang; Yan, Ting; Wang, Kun; Huang, Zhihui; Liu, Jinbo

    2017-01-01

    We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway mediated Wnt5a-induced osteosarcoma cell migration. However, the signaling pathways regulating Wnt5a/PI3K/Akt-mediated cell migration remains poorly defined in osteosarcoma cells. We evaluated the activations of RhoA, Rac1 and Cdc42 in osteosarcoma MG-63 and U2OS cells with small G-protein activation assay. Boyden chamber assays were used to confirm the migration of cells transfected indicated constructs or siRNA specific against RhoA. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting and RhoA activation assay were employed to measure the effect of kinase inhibitors and activations of RhoA and Akt. We found that Wnt5a had a potent stimulatory effect on RhoA activation, but not on Rac1 and Cdc42 activations. Wnt5a-induced cell migration was largely abolished by siRNA specific against RhoA. DN-RhoA (GFP-RhoA-N19) was also capable of retarding Wnt5a-induced cell migration, but the overexpression of CA-RhoA (GFP-RhoA-V14) was not able to accelerate cell migration. The Wnt5a-induced activation of RhoA was mostly blocked by pretreatment of LY294002 (PI3K inhibitor) and MK-2206 (Akt inhibitor). Furthermore, we found that the Wnt5a-induced activation of RhoA was mostly blocked by pretreatment of HS-173 (PI3Kα inhibitor). Lastly, the phosphorylation of Akt (p-Ser473) was not altered by transfection with siRNA specific against RhoA or DN-RhoA (GFP-RhoA-N19). Taken together, we demonstrate that RhoA acts as the downstream of PI3K/Akt signaling (specific PI3Kα, Akt1 and Akt2 isoforms) and mediated Wnt5a-induced the migration of osteosarcoma cells.

  3. 50 CFR 404.7 - Regulated activities.

    Science.gov (United States)

    2010-10-01

    ... vessel engine cooling water, weather deck runoff, and vessel engine exhaust; (f) Discharging or... effluent, cooling water, and engine exhaust; (g) Touching coral, living or dead; (h) Possessing fishing... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF...

  4. Sequential Notch activation regulates ventricular chamber development

    OpenAIRE

    D'Amato, Gaetano

    2016-01-01

    Tesis doctoral inédita, leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 15 de enero de 2016 Ventricular chamber morphogenesis is a beautiful example of tissue interactions orchestrating a precise gene regulatory network essential for tissue patterning, cellular proliferation and differentiation that ultimately lead to a fully compacted and functional adult ventricle. The Notch signaling pathway is a crucial regulator ...

  5. Active Power Regulation based on Droop for AC Microgrid

    DEFF Research Database (Denmark)

    Li, Chendan; Coelho, Ernane A. A.; Firoozabadi, Mehdi Savaghebi

    2015-01-01

    In this paper, two different control strategies are proposed to address the active power regulation issue in AC microgrids. The principle of power regulation in the droop controller is firstly introduced. Frequency scheduling and droop gain scheduling on top of droop control is proposed to succes......In this paper, two different control strategies are proposed to address the active power regulation issue in AC microgrids. The principle of power regulation in the droop controller is firstly introduced. Frequency scheduling and droop gain scheduling on top of droop control is proposed...

  6. 肺腺癌中LDH-V、AKT1及Glut1的表达及其与18氟-2-脱氧葡萄糖摄取的相关性研究%Expression of LDH-V, AKT1, Glut1 and Their Relationships with the Uptake of 18F-FDG in Lung Adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    李倩; 黄钢; 刘建军; 孙晓光

    2013-01-01

    目的:探讨肺腺癌中乳酸脱氢酶-V(lactate dehydrogenase V,LDH-V)、丝氨酸/苏氨酸蛋白激酶1(serine-threonine kinase 1,AKT1)及葡萄糖转运蛋白1(glucose transporter 1,Glut1)的表达及它们与18氟-2-脱氧葡萄糖(18F-FDG)摄取的关系.方法:54名肺腺癌患者,术前1周进行PET-CT显像.采用免疫组织化学SP法对LDH-V、AKT1、Glut1的表达进行半定量分析,并与术前PET-CT所得的18 F-FDG最大标准化摄取值(maximal standardized uptake value,SUVmax)进行相关性分析.结果:在肺腺癌中,LDH-V、AKT1及Glut1表达的阳性率为88.89%、88.89%、68.52%,LDH-V表达与AKT1及Glut1表达呈正相关(r分别为0.381和0.270,P<0.01和0.05);SUVmax与肿瘤最大直径(maximal diameter,Dmax)呈正相关(r=0.524,P<0.01),Dmax>2 cm患者(n=30)的SUVmax与Glut1表达呈正相关(r=0.407,P<0.05);SUVmax与病理分级、LDH-V及AKT1表达无关.结论:LDH-V、AKT1及Glut1在肺腺癌中广泛表达且LDH-V表达与AKT1及Glut1表达密切相关,Glut1在肺腺癌18F-FDG摄取中发挥重要作用.

  7. Modern aspects of tax regulation of investment activity

    Directory of Open Access Journals (Sweden)

    E.S. Podakov

    2016-03-01

    Full Text Available The article investigates the tax regulation of investment activity in modern conditions. Scientists studied different views about the impact of tax regulations on the investment activity in the country. The author determines that the tax regulation of investment activity involves the use of state mechanisms taxation of certain measures to improve investment conditions. The subject is the state tax regulations, and the object is the investment activity of individual and institutional investors of any form of ownership including organizational and legal forms. Such regulation is performed by using complex special tools. The possible methods of tax stimulation of investment processes are described. The article deals with the current results of tax reform in Ukraine and predicts its possible consequences for agricultural producers. The rating positions of Ukraine according to international organizations are showed. The systematic analysis has been carried out and the impact of differential tax rates, tax exemption for a specified period, reducing the tax base, elimination of double taxation on investment activity in certain areas have been researched. The special instruments of investment activity tax regulation are considered. The options for improving investment activity by introducing effective tax regulation are determined.

  8. Allosteric regulation of deubiquitylase activity through ubiquitination

    Directory of Open Access Journals (Sweden)

    Serena eFaggiano

    2015-02-01

    Full Text Available Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

  9. Self-regulation as a type of managerial activity.

    Directory of Open Access Journals (Sweden)

    Anna Algazina

    2017-01-01

    Full Text Available УДК 342.9The subject. In the context of the ongoing administrative reform in the Russian Federation the issue of self-regulation is becoming increasingly important.Introduction of Institute of self-regulation is intended to reduce the degree of state intervention in private spheres of professional activity, to eliminate excessive administrative barriers, reduce government expenditures on regulation and control in their respective areas of operation, which is especially important in the current economic conditions.However, in Russian legal science is no recognized definition of "self-regulation", but a unity of views on the question of the relationship between self-regulation and state regulation of business relations.In this regard, the author attempts to examine the concept of "self-regulation" through the prism of knowledge about public administration.The purpose of the article is to identify the essential features and to articulate the concept of self-regulation by comparing it with other varieties of regulation.Methodology. The methodological basis for the study: general scientific methods (analysis, synthesis, comparison, description; private and academic (interpretation, formal-legal.Results, scope. Based on the analysis allocated in the science of administrative law approaches to the system of public administration justifies the conclusion that the notion "regulation" is specific in relation to the generic concept of "management" and is a kind of management, consisting in the drafting of rules of conduct and sanctions for non-compliance or inadequate performance.In addition, the article highlights the problem of the genesis of self-regulation, building a system of principles of self-regulation, comparison of varieties of self-regulatory organizations among themselves.Conclusions. The comparison of self-regulation other types of regulation (such as state regulation and co-regulation highlighted the essential features of this phenomenon

  10. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  11. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  12. Neuronal Activity Regulates Hippocampal miRNA Expression

    NARCIS (Netherlands)

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a re

  13. Insight into Nek2A activity regulation and its pharmacological ...

    African Journals Online (AJOL)

    Ambuj Kumar

    2012-11-28

    Nov 28, 2012 ... 3. Nek2A activity regulation and associated pathological outcomes . .... vide a detailed insight into how they coordinate the cell cycle .... the adenine subpocket creating steric hindrance in the plane of ... Three dimensional.

  14. Regulation of MDM2 Activity by Nucleolin

    Science.gov (United States)

    2007-06-01

    assistance with FACS analysis, Eric Rubin (UMDNJ) for providing the GST-nucleolin expression vectors, Cris- tina Cardoso for the pENeGFP RPA34 plasmid, and...formation, and functional char- acterization. J. Biol. Chem. 269:11121–11132. 25. Huang, W., and R. L. Erikson . 1994. Constitutive activation of Mek1

  15. Fragile phagocytes: FMRP positively regulates engulfment activity.

    Science.gov (United States)

    Logan, Mary A

    2017-03-06

    Defective immune system function is implicated in autism spectrum disorders, including Fragile X syndrome. In this issue, O'Connor et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201607093) demonstrate that phagocytic activity of systemic immune cells is compromised in a Drosophila melanogaster model of Fragile X, highlighting intriguing new mechanistic connections between FMRP, innate immunity, and abnormal development.

  16. Regulation of APC/C activators in mitosis and meiosis.

    Science.gov (United States)

    Pesin, Jillian A; Orr-Weaver, Terry L

    2008-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.

  17. A Small Group Activity About Bacterial Regulation And Complementation

    Directory of Open Access Journals (Sweden)

    Susan M. Merkel

    2010-11-01

    Full Text Available As teachers, we well understand the need for activities that help develop critical-thinking skills in microbiology. In our experience, one concept that students have difficulty understanding is transcriptional regulation of bacterial genes. To help with this, we developed and evaluated a paper-based activity to help students understand and apply the concepts of bacterial transcriptional regulation. While we don't identify it as such, we use a complementation experiment to assess student understanding of how regulation changes when new DNA is introduced. In Part 1 of this activity, students complete an open book, take-home assignment that asks them to define common terminology related to regulation, and draw the regulatory components of different scenarios involving positive and negative regulation. In Part 2, students work in small groups of 3-4 to depict the regulatory components for a different scenario. They are asked to explain the results of a complementation experiment based on this scenario. They then predict the results of a slightly different experiment. Students who completed the Regulation Activity did significantly better on post-test questions related to regulation, compared to pre-test questions.

  18. Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae.

    Science.gov (United States)

    Smith, Kelsy F; Bibb, Lori A; Schmitt, Michael P; Oram, Diana M

    2009-03-01

    Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen.

  19. The Ubiquitin Ligase Siah2 Regulates PPARγ Activity in Adipocytes

    OpenAIRE

    Kilroy, Gail; Kirk-Ballard, Heather; Carter, Lauren E.; Floyd, Z. Elizabeth

    2012-01-01

    Moderate reductions in peroxisome proliferator-activated receptor (PPAR)γ levels control insulin sensitivity as effectively as activation of PPARγ in adipocytes by the thiazolidinediones. That observation suggests that PPARγ activity can be regulated by modulating the amount of PPARγ protein in adipocytes. Activation of PPARγ in adipocytes is linked to changes in PPARγ protein levels via increased degradation of PPARγ proteins by the ubiquitin proteasome system. Identification of the ubiquiti...

  20. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells.

    Science.gov (United States)

    Babagana, Mahamat; Johnson, Sydney; Slabodkin, Hannah; Bshara, Wiam; Morrison, Carl; Kandel, Eugene S

    2017-01-04

    BRAF is a commonly mutated oncogene in various human malignancies and a target of a new class of anti-cancer agents, BRAF-inhibitors (BRAFi). The initial enthusiasm for these agents, based on the early successes in the management of metastatic melanoma, is now challenged by the mounting evidence of intrinsic BRAFi-insensitivity in many BRAF-mutated tumors, by the scarcity of complete responses, and by the inevitable emergence of drug resistance in initially responsive cases. These setbacks put an emphasis on discovering the means to increase the efficacy of BRAFi and to prevent or overcome BRAFi-resistance. We explored the role of p21-activated kinases (PAKs), in particular PAK1, in BRAFi response. BRAFi lowered the levels of active PAK1 in treated cells. An activated form of PAK1 conferred BRAFi-resistance on otherwise sensitive cells, while genetic or pharmacologic suppression of PAK1 had a sensitizing effect. While activation of AKT1 and RAC1 proto-oncogenes increased BRAFi-tolerance, the protective effect was negated in the presence of PAK inhibitors. Furthermore, combining otherwise ineffective doses of PAK- and BRAF-inhibitors synergistically affected intrinsically BRAFi-resistant cells. Considering the high incidence of PAK1 activation in cancers, our findings suggests PAK inhibition as a strategy to augment BRAFi therapy and overcome some of the well-known resistance mechanisms.

  1. Regulation of Activation Induced Deaminase (AID) by Estrogen.

    Science.gov (United States)

    Pauklin, Siim

    2016-01-01

    Regulation of Activation Induced Deaminase (AID) by the hormone estrogen has important implications for understanding adaptive immune responses as well as the involvement of AID in autoimmune diseases and tumorigenesis. This chapter describes the general laboratory techniques for analyzing AID expression and activity induced by estrogen, focusing on the isolation and preparation of cells for hormone treatment and the subsequent analysis of AID responsiveness to estrogen at the RNA level and for determining the regulation of AID activity via estrogen by analyzing Ig switch circle transcripts and mutations in switch region loci.

  2. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  3. EPO relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3β, and β-catenin to foster vascular integrity during experimental diabetes.

    Science.gov (United States)

    Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen; Wang, Shaohui; Maiese, Kenneth

    2011-05-01

    Multiple complications can ensue in the cardiovascular, renal, and nervous systems during diabetes mellitus (DM). Given that endothelial cells (ECs) are susceptible targets to elevated serum D-glucose, identification of novel cellular mechanisms that can protect ECs may foster the development of unique strategies for the prevention and treatment of DM complications. Erythropoietin (EPO) represents one of these novel strategies but the dependence of EPO upon Wnt1 and its downstream signaling in a clinically relevant model of DM with elevated D-glucose has not been elucidated. Here we show that EPO can not only maintain the integrity of EC membranes, but also prevent apoptotic nuclear DNA degradation and the externalization of membrane phosphatidylserine (PS) residues during elevated D-glucose over a 48-hour period. EPO modulates the expression of Wnt1 and utilizes Wnt1 to confer EC protection during elevated D-glucose exposure, since application of a Wnt1 neutralizing antibody, treatment with the Wnt1 antagonist DKK-1, or gene silencing of Wnt1 with Wnt1 siRNA transfection abrogates the protective capability of EPO. EPO through a novel Wnt1 dependent mechanism controls the post-translational phosphorylation of the "pro-apoptotic" forkhead member FoxO3a and blocks the trafficking of FoxO3a to the cell nucleus to prevent apoptotic demise. EPO also employs the activation of protein kinase B (Akt1) to foster phosphorylation of GSK-3β that appears required for EPO vascular protection. Through this inhibition of GSK-3β, EPO maintains β-catenin activity, allows the translocation of β-catenin from the EC cytoplasm to the nucleus through a Wnt1 pathway, and requires β-catenin for protection against elevated D-glucose since gene silencing of β-catenin eliminates the ability of EPO as well as Wnt1 to increase EC survival. Subsequently, we show that EPO requires modulation of both Wnt1 and FoxO3a to oversee mitochondrial membrane depolarization, cytochrome c release, and

  4. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  5. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  6. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    Directory of Open Access Journals (Sweden)

    Lama Tarayrah

    2015-11-01

    Full Text Available Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid maintains germline stem cell (GSC mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities.

  7. Activity-guided fractionation to characterize a coffee beverage that effectively down-regulates mechanisms of gastric acid secretion as compared to regular coffee.

    Science.gov (United States)

    Rubach, Malte; Lang, Roman; Skupin, Carola; Hofmann, Thomas; Somoza, Veronika

    2010-04-14

    In some individuals, the consumption of coffee beverages is related to symptoms of gastric irritation. Hot water steam-treatment of raw coffee beans is hypothesized to reduce the contents of stomach irritating compounds, and products to which this technology is applied are launched as stomach-friendly coffee. However, data on the effect of steam-treated coffee on gastric acid secretion are conflicting and it has not been proven yet as to which coffee components act as pro- or antisecretory stimulants. The work presented here aimed at the characterization of a coffee beverage that effectively down-regulates mechanisms of proton secretion in human gastric cells (HGT-1). At first, a regular coffee beverage was fractionated by using solvents of different polarity: water, ethylacetate, dichloromethane, and pentane. Functional assays on the proton secretory activity (PSA) of these solvent fractions revealed the least pronounced effect for the water fraction, for which quantitative analyses demonstrated the highest distribution of chlorogenic acid (95%), (beta)N-alkanoyl-5-hydroxytryptamides (55%), and N-methylpyridinium (N-MP, >99%) among all fractions. Following experiments demonstrated that HGT-1 cells treated with regular coffee fortified with N-MP at a concentration of about 20 mg/mL N-MP showed a significantly decreased PSA as compared to cells which were exposed to coffee beverages containing higher (32-34 mg/L) or lower (5 mg/L) N-MP concentrations. Results from cellular pathway analyses of transcription (ATF-1 and Akt1) and signaling (cAMP and EGFr) factors and kinases (ERK1/2), and experiments on the gene expression of pro (histamine-HRH2 and acetylcholine-CHRM3)- and anti (somatostatin-SSTR1)-secretory receptors and H(+),K(+)-ATPase verified this antisecretory activity of N-MP in coffee beverages.

  8. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  9. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Science.gov (United States)

    Hwang, Jun-Ha; Byun, Mi Ran; Kim, A Rum; Kim, Kyung Min; Cho, Hang Jun; Lee, Yo Han; Kim, Juwon; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2015-01-01

    Mesenchymal stem cell (MSC) differentiation is regulated by the extracellular matrix (ECM) through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ) was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  10. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    Directory of Open Access Journals (Sweden)

    О. Davydova

    2013-11-01

    Full Text Available In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namely, contracts, production sharing agreement, lease, joint venture. Promising areas of application of the PPP identified the transport sector, housing and utilities, energy and tourism sector. The features of cluster formations in the country and the prospects for tourism clusters.

  11. Pentraxins in the activation and regulation of innate immunity.

    Science.gov (United States)

    Daigo, Kenji; Inforzato, Antonio; Barajon, Isabella; Garlanda, Cecilia; Bottazzi, Barbara; Meri, Seppo; Mantovani, Alberto

    2016-11-01

    Humoral fluid phase pattern recognition molecules (PRMs) are a key component of the activation and regulation of innate immunity. Humoral PRMs are diverse. We focused on the long pentraxin PTX3 as a paradigmatic example of fluid phase PRMs. PTX3 acts as a functional ancestor of antibodies and plays a non-redundant role in resistance against selected microbes in mouse and man and in the regulation of inflammation. This molecule interacts with complement components, thus modulating complement activation. In particular, PTX3 regulates complement-driven macrophage-mediated tumor progression, acting as an extrinsic oncosuppressor in preclinical models and selected human tumors. Evidence collected over the years suggests that PTX3 is a biomarker and potential therapeutic agent in humans, and pave the way to translation of this molecule into the clinic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Neural progenitor cells regulate microglia functions and activity.

    Science.gov (United States)

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  13. Active galactic nuclei activity: self-regulation from backflow

    Science.gov (United States)

    Antonuccio-Delogu, V.; Silk, Joseph

    2010-06-01

    We study the internal circulation within the cocoon carved out by the relativistic jet emanating from an active galactic nucleus (AGN) within the interstellar medium (ISM) of its host galaxy. First, we develop a model for the origin of the internal flow, noticing that a significant increase of large-scale velocity circulation within the cocoon arises as significant gradients in the density and entropy are created near the hotspot (a consequence of Crocco's vorticity generation theorem). We find simple and accurate approximate solutions for the large-scale flow, showing that a backflow towards the few inner parsec region develops. We solve the appropriate fluid dynamic equations, and we use these solutions to predict the mass inflow rates towards the central regions. We then perform a series of 2D simulations of the propagation of jets using FLASH 2.5, in order to validate the predictions of our model. In these simulations, we vary the mechanical input power between 1043 and 1045 ergs-1, and assume a Navarro-Frenk-White (NFW) density profile for the dark matter halo, within which an isothermal diffuse ISM is embedded. The backflows which arise supply the central AGN region with very low angular-momentum gas, at average rates of the order of , the exact value seen to be strongly dependent on the central ISM density (for fixed input jet power). The time-scales of these inflows are apparently weakly dependent on the jet/ISM parameters, and are of the order of . We then argue that these backflows could (at least partially) feed the AGN, and provide a self-regulatory mechanism of AGN activity, that is not directly controlled by, but instead controls, the star formation rate within the central circumnuclear disc.

  14. Signal integration by Ca2+ regulates intestinal stem cell activity

    Science.gov (United States)

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  15. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    discuss the influence of reactive oxygen species produced within the muscle as well as muscle glycogen and TAK1 in regulating AMPK during exercise. Currently, during intensive contraction, activation of alpha2-AMPK seems mainly to rely on AMP accumulating from ATP-hydrolysis whereas calcium signaling may...

  16. Role of PDI in regulating tissue factor: FVIIa activity.

    Science.gov (United States)

    Popescu, Narcis I; Lupu, Cristina; Lupu, Florea

    2010-04-01

    Cell exposed tissue factor (TF) is generally in a low procoagulant ("cryptic") state, and requires an activation step (decryption) to exhibit its full procoagulant potential. Recent data suggest that TF decryption may be regulated by the redox environment through the oxidoreductase activity of protein disulfide isomerase (PDI). In this article we review PDI contribution to different models of TF decryption, namely the disulfide switch model and the phosphatidylserine dynamics, and hypothesize on PDI contribution to TF self-association and association with lipid domains. Experimental evidence debate the disulfide switch model of TF decryption and its regulation by PDI. More recently we showed that PDI oxidoreductase activity regulates the phosphatidylserine equilibrium at the plasma membrane. Interestingly, PDI reductase activity could maintain TF in the reduced monomeric form, while also maintaining low exposure of PS, both states correlated with low procoagulant function. In contrast, PDI inhibition or oxidants may promote the adverse effects with a net increase in coagulation. The relative contribution of disulfide isomerization and PS exposure needs to be further analyzed to understand the redox control of TF procoagulant function. For the moment however TF regulation remains cryptic.

  17. Neuronal Activity Regulates Hippocampal miRNA Expression

    Science.gov (United States)

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  18. Neuronal activity regulates hippocampal miRNA expression.

    Directory of Open Access Journals (Sweden)

    Stephen M Eacker

    Full Text Available Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control.

  19. 76 FR 28801 - Agency Information Collection Activities: Bonded Warehouse Regulations

    Science.gov (United States)

    2011-05-18

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Bonded Warehouse... approval in accordance with the Paperwork Reduction Act: Bonded Warehouse Regulations. This is a proposed..., mechanical, or other technological techniques or other forms of information. Title: Bonded...

  20. AKT1 G205T Genotype Influences Obesity-Related Metabolic Phenotypes and Their Responses to Aerobic Exercise Training in Older Caucasians

    Science.gov (United States)

    McKenzie, Jennifer A.; Witkowski, Sarah; Ludlow, Andrew T.; Roth, Stephen M.; Hagberg, James M.

    2010-01-01

    As part of the insulin signaling pathway, AKT influences growth and metabolism. The AKT1 gene G205T (rs1130214) polymorphism has potential functional effects. Thus, we determined whether the G205T polymorphism influences metabolic variables and their responses to aerobic exercise training. Following dietary stabilization, healthy, sedentary, 50-75 yr old Caucasian men (n = 51) and women (n = 58) underwent 6 months of aerobic exercise training. Before and after completing the intervention, dual-energy x-ray absorptiometry measured percent body fat, computed tomography measured visceral and subcutaneous fat, and oral glucose tolerance testing measured glucose total area under the curve (AUC), insulin AUC, and insulin sensitivity. Taqman assay determined AKT1 G205T genotypes. At baseline, men with the GG genotype (n = 29) had lower VO2max values (p = 0.026), and higher percent body fat (p = 0.046), subcutaneous fat (p = 0.021), and insulin AUC (p = 0.003) values than T allele carriers (n = 22). Despite their rather disadvantageous starting values, men with the GG genotype seemed to respond to exercise training more robustly than men with the T allele, highlighted by significantly greater fold change improvements in insulin AUC (p = 0.012) and glucose AUC (p = 0.035). Although the GG group also significantly improved VO2max with training, the change in VO2max was not as great as that of the T allele carriers (p = 0.037). In contrast, after accounting for hormone replacement therapy use, none of the variables differed in the women at baseline. As a result of exercise training, women with the T allele (n = 20) had greater fold change improvements in fasting glucose (p = 0.011), glucose AUC (p = 0.017), and insulin sensitivity (p = 0.044) than GG genotype women (n = 38). Our results suggest that the AKT1 G205T polymorphism influences metabolic variables and their responses to aerobic exercise training in older previously sedentary individuals. PMID:21097644

  1. AKT1 G205T genotype influences obesity-related metabolic phenotypes and their responses to aerobic exercise training in older Caucasians.

    Science.gov (United States)

    McKenzie, Jennifer A; Witkowski, Sarah; Ludlow, Andrew T; Roth, Stephen M; Hagberg, James M

    2011-03-01

    As part of the insulin signalling pathway, Akt influences growth and metabolism. The AKT1 gene G205T (rs1130214) polymorphism has potential functional effects. Thus, we determined whether the G205T polymorphism influences metabolic variables and their responses to aerobic exercise training. Following dietary stabilization, healthy, sedentary, 50- to 75-year-old Caucasian men (n = 51) and women (n = 58) underwent 6 months of aerobic exercise training. Before and after completing the intervention, dual-energy X-ray absorptiometry was used to measure percentage body fat, computed tomography to measure visceral and subcutaneous fat, and oral glucose tolerance testing to measure glucose total area under the curve (AUC), insulin AUC and insulin sensitivity. Taqman assay was used to determine AKT1 G205T genotypes. At baseline, men with the GG genotype (n = 29) had lower maximal oxygen consumption (VO2 max) values (P = 0.026) and higher percentage body fat (P = 0.046), subcutaneous fat (P = 0.021) and insulin AUC (P = 0.003) values than T allele carriers (n = 22). Despite their rather disadvantageous starting values, men with the GG genotype seemed to respond to exercise training more robustly than men with the T allele, highlighted by significantly greater fold change improvements in insulin AUC (P = 0.012) and glucose AUC (P = 0.035). Although the GG group also significantly improved VO2 max with training, the change in VO2 max was not as great as that of the T allele carriers (P = 0.037). In contrast, after accounting for hormone replacement therapy use, none of the variables differed in the women at baseline. As a result of exercise training, women with the T allele (n = 20) had greater fold change improvements in fasting glucose (P = 0.011), glucose AUC (P = 0.017) and insulin sensitivity (P = 0.044) than GG genotype women (n = 38). Our results suggest that the AKT1 G205T polymorphism influences metabolic variables and their responses to aerobic exercise training in

  2. Commission for Energy regulation (CRE) - Activity report June 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2004 activity report of CRE. Content: A - Opening of the gas and electricity markets for professional customers on 1 July 2004; B - Regulation of the gas market: Gas markets and players (The European environment, The French gas market); Regulation of the gas market (Implementing regulation, Works planned for the coming year; C - Regulation of the electricity market: The electricity markets and players (The European electricity markets, The French electricity market, Monitoring the electricity market); Regulation of the French electricity market (Access to public grid, Cross-border exchanges, Un-bundled accounting principles); The public electricity service in the regulated market (Content of the public service, Public service charges, Electricity production public service financing, Electricity sales tariffs) D - The working of CRE: How CRE exercises its jurisdiction, Tools; E - Appendices: Glossary, Units and conversions, Council of European Energy Regulators, Index of tables and figures.

  3. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix

    DEFF Research Database (Denmark)

    Villegas, S Nahuel; Rothová, Michaela; Barrios-Llerena, Martin E;

    2013-01-01

    During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentia...

  4. Stimulatory Effect of Vascular Endothelial Growth Factor on Proliferation and Migration of Porcine Trophectoderm Cells and Their Regulation by the Phosphatidylinositol-3-Kinase-AKT and Mitogen-Activated Protein Kinase Cell Signaling Pathways.

    Science.gov (United States)

    Jeong, Wooyoung; Kim, Jinyoung; Bazer, Fuller W; Song, Gwonhwa

    2014-03-01

    Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways.

  5. Complement system part I - molecular mechanisms of activation and regulation

    Directory of Open Access Journals (Sweden)

    Nicolas eMerle

    2015-06-01

    Full Text Available Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors.

  6. Cyclin-dependent kinase 9 activity regulates neutrophil spontaneous apoptosis.

    Directory of Open Access Journals (Sweden)

    Keqing Wang

    Full Text Available Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases.

  7. Cbl negatively regulates JNK activation and cell death

    Institute of Scientific and Technical Information of China (English)

    Andrew A Sproul; Zhiheng Xu; Michael Wilhelm; Stephen Gire; Lloyd A Greene

    2009-01-01

    Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apopto-sis--nerve growth factor (NGF) deprivation and DNA damage--cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activa-tion) of c-Cbl. Targeting e-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl pro-teins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK acti-vation and on cell death.

  8. CYLD regulates RhoA activity by modulating LARG ubiquitination.

    Directory of Open Access Journals (Sweden)

    Yunfan Yang

    Full Text Available Rho family guanosine triphosphatases (GTPases, such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs, which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD, a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG. Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.

  9. CYLD regulates RhoA activity by modulating LARG ubiquitination.

    Science.gov (United States)

    Yang, Yunfan; Sun, Lei; Tala; Gao, Jinmin; Li, Dengwen; Zhou, Jun; Liu, Min

    2013-01-01

    Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.

  10. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis.

    Science.gov (United States)

    Ren, Yu; Suzuki, Hitomi; Jagarlamudi, Krishna; Golnoski, Kayla; McGuire, Megan; Lopes, Rita; Pachnis, Vassilis; Rajkovic, Aleksandar

    2015-06-16

    The early stages of ovarian follicle formation-beginning with the breakdown of germ cell cysts and continuing with the formation of primordial follicles and transition to primary and secondary follicles-are critical in determining reproductive life span and fertility. Previously, we discovered that global knockouts of germ cell-specific transcriptional co-regulators Sohlh1, Sohlh2, Lhx8, and Nobox, cause rapid oocyte loss and ovarian failure. Also factors such as Nobox and Sohlh1 are associated with human premature ovarian failure. In this study, we developed a conditional knockout of Lhx8 to study oocyte-specific pathways in postnatal folliculogenesis. The conditional deficiency of Lhx8 in the oocytes of primordial follicles leads to massive primordial oocyte activation, in part, by indirectly interacting with the PI3K-AKT pathway, as shown by synergistic effects on FOXO3 nucleocytoplasmic translocation and rpS6 activation. However, LHX8 does not directly regulate members of the PI3K-AKT pathway; instead, we show that LHX8 represses Lin28a expression, a known regulator of mammalian metabolism and of the AKT/mTOR pathway. LHX8 can bind to the Lin28a promoter, and the depletion of Lin28a in Lhx8-deficient oocytes partially suppresses primordial oocyte activation. Moreover, unlike the PI3K-AKT pathway, LHX8 is critical beyond primordial follicle activation, and blocks the primary to secondary follicle transition. Our results indicate that the LHX8-LIN28A pathway is essential in the earliest stages of primordial follicle activation, and LHX8 is an important oocyte-specific transcription factor in the ovary for regulating postnatal folliculogenesis.

  11. Alexithymia influences brain activation during emotion perception but not regulation.

    Science.gov (United States)

    van der Velde, Jorien; Gromann, Paula M; Swart, Marte; Wiersma, Durk; de Haan, Lieuwe; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-02-01

    Alexithymia is a psychological construct that can be divided into a cognitive and affective dimension. The cognitive dimension is characterized by difficulties in identifying, verbalizing and analysing feelings. The affective dimension comprises reduced levels of emotional experience and imagination. Alexithymia is widely regarded to arise from an impairment of emotion regulation. This is the first functional magnetic resonance imaging (fMRI) study to critically evaluate this by investigating the neural correlates of emotion regulation as a function of alexithymia levels. The aim of the current study was to investigate the neural correlates underlying the two alexithymia dimensions during emotion perception and emotion regulation. Using fMRI, we scanned 51 healthy subjects while viewing, reappraising or suppressing negative emotional pictures. The results support the idea that cognitive alexithymia, but not affective alexithymia, is associated with lower activation in emotional attention and recognition networks during emotion perception. However, in contrast with several theories, no alexithymia-related differences were found during emotion regulation (neither reappraisal nor suppression). These findings suggest that alexithymia may result from an early emotion processing deficit rather than compromised frontal circuits subserving higher-order emotion regulation processes.

  12. Neuronal activity-induced regulation of Lingo-1.

    Science.gov (United States)

    Trifunovski, Alexandra; Josephson, Anna; Ringman, Andreas; Brené, Stefan; Spenger, Christian; Olson, Lars

    2004-10-25

    Axonal regeneration after injury can be limited in the adult CNS by the presence of inhibitory proteins such as Nogo. Nogo binds to a receptor complex that consists of Nogo receptor (NgR), p75NTR, and Lingo-1. Nogo binding activates RhoA, which inhibits axonal outgrowth. Here we assessed Lingo-1 and NgR mRNA levels after delivery of BDNF into the rat hippocampal formation, Lingo-1 mRNA levels in rats subjected to kainic acid (KA) and running in running wheels. Lingo-1 mRNA was not changed by running. However, we found that Lingo-1 mRNA was strongly up-regulated while NgR mRNA was down-regulated in the dentate gyrus in both the BDNF and the KA experiments. Our data demonstrate inverse regulation of NgR and Lingo-1 in these situations, suggesting that Lingo-1 up-regulation is one characteristic of activity-induced neural plasticity responses.

  13. Commission for Energy regulation (CRE) - Activity report June 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets

  14. Regulation of burstiness by network-driven activation

    CERN Document Server

    García-Pérez, Guillermo; Serrano, M Ángeles

    2014-01-01

    We prove that complex networks of interactions have the capacity to regulate and buffer unpredictable fluctuations in production events. We show that non-bursty network-driven activation dynamics can effectively regulate the level of burstiness in the production of nodes, which can be enhanced or reduced. Burstiness can be induced even when the endogenous inter-event time distribution of nodes' production is non-bursty. We found that hubs tend to be less controllable than low degree nodes, which are more susceptible to the networked regulatory effects. Our results have important implications for the analysis and engineering of bursty activity in a range of systems, from telecommunication networks to transcription and translation of genes into proteins in cells.

  15. Shape regulation generates elastic interaction between active force dipoles

    CERN Document Server

    Golkov, Roman

    2016-01-01

    The organization of live cells to tissues is associated with the mechanical interaction between cells, which is mediated through their mechanical environment. We model live cells as spherical active force dipoles surrounded by an infinite elastic matrix, and analytically evaluate their elastic interaction energy for different scenarios of their regulatory behavior. For purely dilational eigenstrains the elastic interaction energy between any two bodies vanishes. We identify mechanical interactions between active cells applying non isotropic displacements with a regulation mechanism designed so that they will preserve their spherical shape. We express the resultant non-isotropic deformation field by a multipole expansion in terms of spherical harmonics. Mechanical self-regulation of live cells is not fully understood, and we compare homeostatic (set point) force applied by the cells on their environment versus homeostatic displacements on their surface. By including or excluding the first term of the expansion...

  16. A Rewriting Framework and Logic for Activities Subject to Regulations

    Science.gov (United States)

    2015-02-28

    Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All About Maude: A High-Performance Logical Framework. Springer , 2007. R. Corin, S. Etalle, P. H...Under consideration for publication in Math. Struct. in Comp. Science A Rewriting Framework and Logic for Activities Subject to Regulations M A X K A...whenever applied. We present a formal semantics of our model based on focused proofs of linear logic with definitions. We also determine the

  17. Harvester ants use interactions to regulate forager activation and availability.

    Science.gov (United States)

    Pinter-Wollman, Noa; Bala, Ashwin; Merrell, Andrew; Queirolo, Jovel; Stumpe, Martin C; Holmes, Susan; Gordon, Deborah M

    2013-07-01

    Social groups balance flexibility and robustness in their collective response to environmental changes using feedback between behavioural processes that operate at different timescales. Here we examine how behavioural processes operating at two timescales regulate the foraging activity of colonies of the harvester ant, Pogonomyrmex barbatus, allowing them to balance their response to food availability and predation. Previous work showed that the rate at which foragers return to the nest with food influences the rate at which foragers leave the nest. To investigate how interactions inside the nest link the rates of returning and outgoing foragers, we observed outgoing foragers inside the nest in field colonies using a novel observation method. We found that the interaction rate experienced by outgoing foragers inside the nest corresponded to forager return rate, and that the interactions of outgoing foragers were spatially clustered. Activation of a forager occurred on the timescale of seconds: a forager left the nest 3-8 s after a substantial increase in interactions with returning foragers. The availability of outgoing foragers to become activated was adjusted on the timescale of minutes: when forager return was interrupted for more than 4-5 min, available foragers waiting near the nest entrance went deeper into the nest. Thus, forager activation and forager availability both increased with the rate at which foragers returned to the nest. This process was checked by negative feedback between forager activation and forager availability. Regulation of foraging activation on the timescale of seconds provides flexibility in response to fluctuations in food abundance, whereas regulation of forager availability on the timescale of minutes provides robustness in response to sustained disturbance such as predation.

  18. PLAP-1/Asporin Positively Regulates FGF-2 Activity.

    Science.gov (United States)

    Awata, T; Yamada, S; Tsushima, K; Sakashita, H; Yamaba, S; Kajikawa, T; Yamashita, M; Takedachi, M; Yanagita, M; Kitamura, M; Murakami, S

    2015-10-01

    PLAP-1 is an extracellular matrix protein that is predominantly expressed in the periodontal ligament within periodontal tissue. It was previously revealed that PLAP-1 negatively regulates bone morphogenetic protein 2 and transforming growth factor β activity through direct interactions. However, the interaction between PLAP-1 and other growth factors has not been defined. Here, we revealed that PLAP-1 positively regulates the activity of fibroblast growth factor 2 (FGF-2), a critical growth factor in tissue homeostasis and repair. In this study, we isolated mouse embryonic fibroblasts (MEFs) from Plap-1(-/-) mice generated in our laboratory. Interestingly, Plap-1(-/-) MEFs exhibited enhanced responses to bone morphogenetic protein 2 but defective responses to FGF-2, and Plap-1 transfection into Plap-1(-/-) MEFs rescued these defective responses. In addition, binding assays revealed that PLAP-1 promotes FGF-2-FGF receptor 1 (FGFR1) complex formation by direct binding to FGF-2. Immunocytochemistry analyses revealed colocalization of PLAP-1 and FGF-2 in wild-type MEFs and reduced colocalization of FGF-2 and FGFR1 in Plap-1(-/-) MEFs compared with wild-type MEFs. Taken together, PLAP-1 positively regulates FGF-2 activity through a direct interaction. Extracellular matrix-growth factor interactions have considerable effects; thus, this approach may be useful in several regenerative medicine applications.

  19. Length regulation of active biopolymers by molecular motors.

    Science.gov (United States)

    Johann, Denis; Erlenkämper, Christoph; Kruse, Karsten

    2012-06-22

    For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.

  20. Regulation of eNOS enzyme activity by posttranslational modification.

    Science.gov (United States)

    Heiss, Elke H; Dirsch, Verena M

    2014-01-01

    The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.

  1. Raf activation is regulated by tyrosine 510 phosphorylation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Fan Xia

    2008-05-01

    Full Text Available The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf, which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved.

  2. ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Li, C; Ramjeesingh, M; Wang, W; Garami, E; Hewryk, M; Lee, D; Rommens, J M; Galley, K; Bear, C E

    1996-11-08

    The gene mutated in cystic fibrosis codes for the cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP-activated chloride channel thought to be critical for salt and water transport by epithelial cells. Plausible models exist to describe a role for ATP hydrolysis in CFTR channel activity; however, biochemical evidence that CFTR possesses intrinsic ATPase activity is lacking. In this study, we report the first measurements of the rate of ATP hydrolysis by purified, reconstituted CFTR. The mutation CFTRG551D resides within a motif conserved in many nucleotidases and is known to cause severe human disease. Following reconstitution the mutant protein exhibited both defective ATP hydrolysis and channel gating, providing direct evidence that CFTR utilizes ATP to gate its channel activity.

  3. Methamphetamine Regulation of Firing Activity of Dopamine Neurons.

    Science.gov (United States)

    Lin, Min; Sambo, Danielle; Khoshbouei, Habibeh

    2016-10-05

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca(2+) homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca(2+)-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane.

  4. Hsp90 regulation of fibroblast activation in pulmonary fibrosis

    Science.gov (United States)

    Sontake, Vishwaraj; Wang, Yunguan; Kasam, Rajesh K.; Sinner, Debora; Reddy, Geereddy B.; Naren, Anjaparavanda P.; McCormack, Francis X.; Jegga, Anil G.; Madala, Satish K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease. PMID:28239659

  5. Commission for Energy regulation (CRE) - Activity report june 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of

  6. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-07-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  7. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis.

    Science.gov (United States)

    El Taghdouini, Adil; van Grunsven, Leo A

    2016-12-01

    Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.

  8. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  9. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    Science.gov (United States)

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation.

  10. 75 FR 5100 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2010-02-01

    ... SECURITY Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... collection requirement concerning the NAFTA Regulations and Certificate of Origin. This request for comment... CBP is soliciting comments concerning the following information collection: Title: NAFTA Regulations...

  11. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    Science.gov (United States)

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  12. The cytoskeletal protein Ndel1 regulates dynamin 2 GTPase activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Chansard

    Full Text Available Cytoskeleton dynamics, membranes trafficking and positioning are essential for the proper functioning of any mammalian cell. The identification of the molecules and mechanisms that allow these cellular processes to interface is vital for understanding cell behaviors. Ndel1, the mammalian homolog of the Aspergillus nidulans NudE, organizes the cytoskeleton and regulates molecular motors, thereby impacting on the positioning of membranes. Hypothetically, Ndel1 can act in concert with enzymes controlling membrane trafficking (vesicle-mediated transport per se, but this idea has never been investigated. We now report that a pool of Ndel1 associates directly with Dynamin 2 (Dyn2, a large cytosolic GTPase involved in the trafficking of the AMPA receptor subunit GluR1. In vitro, Ndel1 enhances Dyn2 GTPase activity in its unassembled and assembled forms, without promoting oligomerization of the enzyme. In cells, gain and loss of function of Ndel1 recapitulate the effects of overexpression of Dyn2 and Dyn2 dominant negative with reduced GTPase activity on the intracellular localization of GluR1, respectively, without affecting the stability of microtubules. Together, these results indicate that Ndel1 regulates Dyn2 GTPase activity and impacts GluR1-containing membranes distribution in a manner reminiscent of Dyn2.

  13. Fbxw7 controls angiogenesis by regulating endothelial Notch activity.

    Directory of Open Access Journals (Sweden)

    Nanae Izumi

    Full Text Available Notch signaling controls fundamental aspects of angiogenic blood vessel growth including the selection of sprouting tip cells, endothelial proliferation and arterial differentiation. The E3 ubiquitin ligase Fbxw7 is part of the SCF protein complex responsible for the polyubiquitination and thereby proteasomal degradation of substrates such as Notch, c-Myc and c-Jun. Here, we show that Fbxw7 is a critical regulator of angiogenesis in the mouse retina and the zebrafish embryonic trunk, which we attribute to its role in the degradation of active Notch. Growth of retinal blood vessel was impaired and the Notch ligand Dll4, which is also a Notch target, upregulated in inducible and endothelial cell-specific Fbxw7(iECKO mutant mice. The stability of the cleaved and active Notch intracellular domain was increased after siRNA knockdown of the E3 ligase in cultured human endothelial cells. Injection of fbxw7 morpholinos interfered with the sprouting of zebrafish intersegmental vessels (ISVs. Arguing strongly that Notch and not other Fbxw7 substrates are primarily responsible for these phenotypes, the genetic inactivation of Notch pathway components reversed the impaired ISV growth in the zebrafish embryo as well as sprouting and proliferation in the mouse retina. Our findings establish that Fbxw7 is a potent positive regulator of angiogenesis that limits the activity of Notch in the endothelium of the growing vasculature.

  14. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  15. Investigating the Role of Akt1 in Prostate Cancer Development Through Phosphorylation-Dependent Regulation of Skp2 Stability and Oncogenic Function

    Science.gov (United States)

    2010-09-01

    mice to cancer development [12]. However, in contrast with known tumor suppressor genes such as p53 or Rb, homozygous loss or silencing of the p27 gene ...cases loss of this differentiated state plays a major role in promoting tumorigenesis, and p27 has been demonstrated to be a critical player. KPC has... Genes Dev 2004, 18(21):2573-2580.Page 6 of 8 (page number not for citation purposes) Cell Division 2009, 4:11 http://www.celldiv.com/content/4/1/115

  16. Dynamic regulation of Polycomb group activity during plant development.

    Science.gov (United States)

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  17. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-08

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  18. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  19. SUMOylation of Argonaute-2 regulates RNA interference activity

    Science.gov (United States)

    Josa-Prado, Fernando; Henley, Jeremy M.; Wilkinson, Kevin A.

    2015-01-01

    Post-translational modification of substrate proteins by small ubiquitin-like modifier (SUMO) regulates a vast array of cellular processes. SUMOylation occurs through three sequential enzymatic steps termed E1, E2 and E3. Substrate selection can be determined through interactions between the target protein and the SUMO E2 conjugating enzyme Ubc9 and specificity can be enhanced by substrate interactions with E3 ligase enzymes. We used the putative substrate recognition (PINIT) domain from the SUMO E3 PIAS3 as bait to identify potential SUMO substrates. One protein identified was Argonaute-2 (Ago2), which mediates RNA-induced gene silencing through binding small RNAs and promoting degradation of complimentary target mRNAs. We show that Ago2 can be SUMOylated in mammalian cells by both SUMO1 and SUMO2. SUMOylation occurs primarily at K402, and mutation of the SUMO consensus site surrounding this lysine reduces Ago2-mediated siRNA-induced silencing in a luciferase-based reporter assay. These results identify SUMOylation as a potential regulator of Ago2 activity and open new avenues for research into the mechanisms underlying the regulation of RNA-induced gene silencing. PMID:26188511

  20. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  1. Estrogen receptor β regulates endometriotic cell survival through serum and glucocorticoid-regulated kinase activation.

    Science.gov (United States)

    Monsivais, Diana; Dyson, Matthew T; Yin, Ping; Navarro, Antonia; Coon, John S; Pavone, Mary Ellen; Bulun, Serdar E

    2016-05-01

    To determine the expression and biological roles of serum and glucocorticoid-regulated kinase (SGK1) in tissues and cells from patients with endometriosis and from healthy control subjects. Case-control. University research setting. Premenopausal women. Endometriotic tissues were obtained from women with ovarian endometriosis, and normal endometrial tissues were obtained from women undergoing hysterectomy for benign conditions. Expression levels of SGK1, the role of SGK1 in endometriosis pathology, and regulation of SGK1 by estrogen receptor (ER) β. Transcript and protein levels of SGK1 were significantly higher in endometriotic tissues and cells compared with normal endometrium. SGK1 mRNA and protein levels were stimulated by E2, by the ERβ-selective agonist diarylpropionitrile, and by prostaglandin E2. SGK1 was transcriptionally regulated by ERβ based on small interfering RNA knockdown and chromatin immunoprecipitation of ERβ followed by quantitative polymerase chain reaction. SGK1 knockdown led to increased cleavage of poly(ADP-ribose) polymerase, and SGK1 activation was correlated with the phosphorylation of FOXO3a, a proapoptotic factor. ERβ leads to SGK1 overexpression in endometriosis, which contributes to the survival of endometriotic lesions through inhibition of apoptosis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Nitric oxide mediates root K+/Na+ balance in a mangrove plant, Kandelia obovata, by enhancing the expression of AKT1-type K+ channel and Na+/H+ antiporter under high salinity.

    Directory of Open Access Journals (Sweden)

    Juan Chen

    Full Text Available It is well known that nitric oxide (NO enhances salt tolerance of glycophytes. However, the effect of NO on modulating ionic balance in halophytes is not very clear. This study focuses on the role of NO in mediating K(+/Na(+ balance in a mangrove species, Kandelia obovata Sheue, Liu and Yong. We first analyzed the effects of sodium nitroprusside (SNP, an NO donor, on ion content and ion flux in the roots of K. obovata under high salinity. The results showed that 100 μM SNP significantly increased K(+ content and Na(+ efflux, but decreased Na(+ content and K(+ efflux. These effects of NO were reversed by specific NO synthesis inhibitor and scavenger, which confirmed the role of NO in retaining K(+ and reducing Na(+ in K. obovata roots. Using western-blot analysis, we found that NO increased the protein expression of plasma membrane (PM H(+-ATPase and vacuolar Na(+/H(+ antiporter, which were crucial proteins for ionic balance. To further clarify the molecular mechanism of NO-modulated K(+/Na(+ balance, partial cDNA fragments of inward-rectifying K(+ channel, PM Na(+/H(+ antiporter, PM H(+-ATPase, vacuolar Na(+/H(+ antiporter and vacuolar H(+-ATPase subunit c were isolated. Results of quantitative real-time PCR showed that NO increased the relative expression levels of these genes, while this increase was blocked by NO synthesis inhibitors and scavenger. Above results indicate that NO greatly contribute to K(+/Na(+ balance in high salinity-treated K. obovata roots, by activating AKT1-type K(+ channel and Na(+/H(+ antiporter, which are the critical components in K(+/Na(+ transport system.

  3. ROMK1 channel activity is regulated by monoubiquitination.

    Science.gov (United States)

    Lin, Dao-Hong; Sterling, Hyacinth; Wang, Zhijian; Babilonia, Elisa; Yang, Baofeng; Dong, Ke; Hebert, Steven C; Giebisch, Gerhard; Wang, Wen-Hui

    2005-03-22

    The ubiquitination of proteins can signal their degradation, modify their activity or target them to specific membranes or cellular organelles. Here, we show that monoubiquitination regulates the plasma membrane abundance and function of the potassium channel, ROMK. Immunoprecipitation of proteins obtained from renal cortex and outer medulla with ROMK antibody revealed that this channel was monoubiquitinated. To determine the ubiquitin binding site on ROMK1, all intracellular lysine (Lys) residues of ROMK1 were individually mutated to arginine (Arg), and a two-electrode voltage clamp was used to measure the ROMK1 channel activity in Xenopus oocytes. ROMK1 channel activity increased from 8.1 to 27.2 microA only when Lys-22 was mutated to Arg. Furthermore, Western blotting failed to detect the ubiquitinated ROMK1 in oocytes injected with R1K22R. Patch-clamp experiments showed that biophysical properties of R1K22R were identical to those of wild-type ROMK1. Although total protein expression levels of GFP-ROMK1 and GFP-R1K22R in oocytes were similar, confocal microscopy showed that the surface fluorescence intensity in oocytes injected with GFP-R1K22R was higher than that of GFP-ROMK1. In addition, biotin labeling of ROMK1 and R1K22R proteins expressed in HEK293 cells showed increased surface expression of the Lys-22 mutant channel. Finally, expression of R1K22R in COS7 cells significantly stimulated the surface expression of ROMK1. We conclude that ROMK1 can be monoubiquitinated and that Lys-22 is an ubiquitin-binding site. Thus, monoubiquitination of ROMK1 regulates channel activity by reducing the surface expression of channel protein. This finding implicates the linking of a single ubiquitin molecule to channels as an important posttranslational regulatory signal.

  4. The regulation of ant colony foraging activity without spatial information.

    Science.gov (United States)

    Prabhakar, Balaji; Dektar, Katherine N; Gordon, Deborah M

    2012-01-01

    Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  5. Regulated O2 activation in flavin-dependent monooxygenases.

    Science.gov (United States)

    Frederick, Rosanne E; Mayfield, Jeffery A; DuBois, Jennifer L

    2011-08-17

    Flavin-dependent monooxygenases (FMOs) are involved in important biosynthetic pathways in diverse organisms, including production of the siderophores used for the import and storage of essential iron in serious pathogens. We have shown that the FMO from Aspergillus fumigatus, an ornithine monooxygenase (Af-OMO), is mechanistically similar to its well-studied distant homologues from mammalian liver. The latter are highly promiscuous in their choice of substrates, while Af-OMO is unusually specific. This presents a puzzle: how do Af-OMO and other FMOs of the biosynthetic classes achieve such specificity? We have discovered substantial enhancement in the rate of O(2) activation in Af-OMO in the presence of L-arginine, which acts as a small molecule regulator. Such protein-level regulation could help explain how this and related biosynthetic FMOs manage to couple O(2) activation and substrate hydroxylation to each other and to the appropriate cellular conditions. Given the essentiality of Fe to Af and the avirulence of the Af-OMO gene knock out, inhibitors of Af-OMO are likely to be drug targets against this medically intractable pathogen.

  6. Osteoblast differentiation and migration are regulated by dynamin GTPase activity.

    Science.gov (United States)

    Eleniste, Pierre P; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W; Bruzzaniti, Angela

    2014-01-01

    Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation.

  7. Activating transcription factor 4 regulates osteoclast differentiation in mice

    Science.gov (United States)

    Cao, Huiling; Yu, Shibing; Yao, Zhi; Galson, Deborah L.; Jiang, Yu; Zhang, Xiaoyan; Fan, Jie; Lu, Binfeng; Guan, Youfei; Luo, Min; Lai, Yumei; Zhu, Yibei; Kurihara, Noriyoshi; Patrene, Kenneth; Roodman, G. David; Xiao, Guozhi

    2010-01-01

    Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4–/– bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4–/– BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity. PMID:20628199

  8. GARP regulates the bioavailability and activation of TGFβ.

    Science.gov (United States)

    Wang, Rui; Zhu, Jianghai; Dong, Xianchi; Shi, Minlong; Lu, Chafen; Springer, Timothy A

    2012-03-01

    Glycoprotein-A repetitions predominant protein (GARP) associates with latent transforming growth factor-β (proTGFβ) on the surface of T regulatory cells and platelets; however, whether GARP functions in latent TGFβ activation and the structural basis of coassociation remain unknown. We find that Cys-192 and Cys-331 of GARP disulfide link to the TGFβ1 prodomain and that GARP with C192A and C331A mutations can also noncovalently associate with proTGFβ1. Noncovalent association is sufficiently strong for GARP to outcompete latent TGFβ-binding protein for binding to proTGFβ1. Association between GARP and proTGFβ1 prevents the secretion of TGFβ1. Integrin α(V)β(6) and to a lesser extent α(V)β(8) are able to activate TGFβ from the GARP-proTGFβ1 complex. Activation requires the RGD motif of latent TGFβ, disulfide linkage between GARP and latent TGFβ, and membrane association of GARP. Our results show that GARP is a latent TGFβ-binding protein that functions in regulating the bioavailability and activation of TGFβ.

  9. Physical Activity Plays an Important Role in Body Weight Regulation

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Chaput

    2011-01-01

    Full Text Available Emerging literature highlights the need to incorporate physical activity into every strategy intended to prevent weight gain as well as to maintain weight loss over time. Furthermore, physical activity should be part of any plan to lose weight. The stimulus of exercise provides valuable metabolic adaptations that improve energy and macronutrient balance regulation. A tight coupling between energy intake and energy expenditure has been documented at high levels of physical exercise, suggesting that exercise may improve appetite control. The regular practice of physical activity has also been reported to reduce the risk of stress-induced weight gain. A more personalized approach is recommended when planning exercise programs in a clinical weight loss setting in order to limit the compensatory changes associated to exercise-induced weight loss. With modern environment promoting overeating and sedentary behavior, there is an urgent need for a concerted action including legislative measures to promote healthy active living in order to curb the current epidemic of chronic diseases.

  10. Activating transcription factor 4 regulates osteoclast differentiation in mice.

    Science.gov (United States)

    Cao, Huiling; Yu, Shibing; Yao, Zhi; Galson, Deborah L; Jiang, Yu; Zhang, Xiaoyan; Fan, Jie; Lu, Binfeng; Guan, Youfei; Luo, Min; Lai, Yumei; Zhu, Yibei; Kurihara, Noriyoshi; Patrene, Kenneth; Roodman, G David; Xiao, Guozhi

    2010-08-01

    Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4-/- bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4-/- BMMs with WT OBLs or a high concentration of RANKL failed to restore the OCL differentiation defect. Conversely, Trap-Atf4-tg mice displayed severe osteopenia with dramatically increased osteoclastogenesis and bone resorption. We further showed that ATF4 was an upstream activator of the critical transcription factor Nfatc1 and was critical for RANKL activation of multiple MAPK pathways in OCL progenitors. Furthermore, ATF4 was crucial for M-CSF induction of RANK expression on BMMs, and lack of ATF4 caused a shift in OCL precursors to macrophages. Finally, ATF4 was largely modulated by M-CSF signaling and the PI3K/AKT pathways in BMMs. These results demonstrate that ATF4 plays a direct role in regulating OCL differentiation and suggest that it may be a therapeutic target for treating bone diseases associated with increased OCL activity.

  11. Neuroligin-1 links neuronal activity to sleep-wake regulation

    Science.gov (United States)

    El Helou, Janine; Bélanger-Nelson, Erika; Freyburger, Marlène; Dorsaz, Stéphane; Curie, Thomas; La Spada, Francesco; Gaudreault, Pierre-Olivier; Beaumont, Éric; Pouliot, Philippe; Lesage, Frédéric; Frank, Marcos G.; Franken, Paul; Mongrain, Valérie

    2013-01-01

    Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation. PMID:23716671

  12. Activation of epithelial STAT3 regulates intestinal homeostasis.

    Science.gov (United States)

    Neufert, Clemens; Pickert, Geethanjali; Zheng, Yan; Wittkopf, Nadine; Warntjen, Moritz; Nikolaev, Alexei; Ouyang, Wenjun; Neurath, Markus F; Becker, Christoph

    2010-02-15

    The intestinal epithelium that lines the mucosal surface along the GI-tract is a key player for the intestinal homeostasis of the healthy individual. In case of a mucosal damage or a barrier defect as seen in patients with inflammatory bowel disease, the balance is disturbed, and translocation of intestinal microbes to the submucosa is facilitated. We recently demonstrated a pivotal role of STAT3 activation in intestinal epithelial cells (IEC) for the restoration of the balance at the mucosal surface of the gut in an experimental colitis model. STAT3 was rapidly induced in intestinal epithelial cells upon challenge of mice in both experimental colitis and intestinal wound healing models. STAT3 activation was found to be dispensable in the steady-state conditions but was important for efficient regeneration of the epithelium in response to injury. Here, we extend our previous findings by showing epithelial STAT3 activation in human patients suffering from IBD and provide additional insights how the activation of epithelial STAT3 by IL-22 regulates intestinal homeostasis and mucosal wound healing. We also demonstrate that antibody-mediated neutralization of IL-22 has little impact on the development of experimental colitis in mice, but significantly delays recovery from colitis. Thus, our data suggest that targeting the STAT3 signaling pathway in IEC is a promising therapeutic approach in situations when the intestinal homeostasis is disturbed, e.g., as seen in Crohn's disease or Ulcerative colitis.

  13. AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. | Office of Cancer Genomics

    Science.gov (United States)

    The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.

  14. Protein kinase C-associated kinase regulates NF-κB activation through inducing IKK activation.

    Science.gov (United States)

    Kim, Sang-Woo; Schifano, Matthew; Oleksyn, David; Jordan, Craig T; Ryan, Daniel; Insel, Richard; Zhao, Jiyong; Chen, Luojing

    2014-10-01

    Activation of the transcription factor NF-κB induced by extracellular stimuli requires IKKα and IKKβ kinase activity. How IKKα and IKKβ are activated by various upstream signaling molecules is not fully understood. We previously showed that protein kinase C-associated kinase (PKK, also known as DIK/RIP4), which belongs to the receptor-interacting protein (RIP) kinase family, mediates the B cell activating factor of the TNF family (BAFF)-induced NF-κB activation in diffuse large B cell lymphoma (DLBCL) cell lines. Here we have investigated the mechanism underlying NF-κB activation regulated by PKK. Our results suggest that PKK can activate both the classical and the alternative NF-κB activation pathways. PKK associates with IKKα and IKKβ in mammalian cells and induces activation of both IKKα and IKKβ via phosphorylation of their serine residues 176/180 and 177/181, respectively. Unlike other members of the RIP family that activate NF-κB through a kinase-independent pathway, PKK appears to activate IKK and NF-κB mainly in a kinase-dependent manner. Suppression of PKK expression by RNA interference inhibits phosphorylation of IKKα and IKKβ as well as activation of NF-κB in human cancer cell lines. Thus, PKK regulates NF-κB activation by modulating activation of IKKα and IKKβ in mammalian cells. We propose that PKK may provide a critical link between IKK activation and various upstream signaling cascades, and may represent a potential target for inhibiting abnormal NF-κB activation in human cancers.

  15. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co

  16. Spatial regulation and the rate of signal transduction activation.

    Directory of Open Access Journals (Sweden)

    Nizar N Batada

    2006-05-01

    Full Text Available Of the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates. To determine which of these two possibilities is more likely, we derive an explicit equation for the rate at which cell surface membrane proteins interact based on a Brownian motion model in the presence of endocytosis and exocytosis. We find that in the absence of any diffusion constraints, cell surface protein interaction rate is extremely high relative to cytoplasmic protein interaction rate even in a large mammalian cell with a receptor abundance of a mere two hundred molecules. Since a larger number of downstream signaling events needs to take place, each occurring at a much slower rate than the initial activation via association of cell surface proteins, we conclude that the role of co-localization is most likely that of cross-talk reduction rather than coupling efficiency enhancement.

  17. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    Science.gov (United States)

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  18. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide MCH

    Science.gov (United States)

    Sears, Robert M.; Liu, Rong-Jian; Narayanan, Nandakumar S.; Sharf, Ruth; Yeckel, Mark F.; Laubach, Mark; Aghajanian, George K.; DiLeone, Ralph J.

    2010-01-01

    The lateral hypothalamus (LH) and the nucleus accumbens shell (AcbSh) are brain regions important for food intake. The AcbSh contains high levels of receptor for melanin-concentrating hormone (MCH), a lateral hypothalamic peptide critical for feeding and metabolism. MCH receptor (MCHR1) activation in the AcbSh increases food intake while AcbSh MCHR1 blockade reduces feeding. Here biochemical and cellular mechanisms of MCH action in the rodent AcbSh are described. A reduction of phosphorylation of GluR1 at Serine 845 (pSer845) is shown to occur after both pharmacological and genetic manipulations of MCHR1 activity. These changes depend upon signaling through Gi/o, and result in decreased surface expression of GluR1-containing AMPA receptors (AMPARs). Electrophysiological analysis of medium spiny neurons (MSNs) in the AcbSh revealed decreased amplitude of AMPAR-mediated synaptic events (mEPSC) with MCH treatment. In addition, MCH suppressed action potential firing MSNs through K+ channel activation. Finally, in vivo recordings confirmed that MCH reduces neuronal cell firing in the AcbSh in freely moving animals. The ability of MCH to reduce cell firing in the AcbSh is consistent with a general model from other pharmacological and electrophysiological studies whereby reduced AcbSh neuronal firing leads to food intake. The current work integrates the hypothalamus into this model, providing biochemical and cellular mechanisms whereby metabolic and limbic signals converge to regulate food intake. PMID:20554878

  19. Substrate regulation of ascorbate transport activity in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.X.; Jaworski, E.M.; Kulaga, A.; Dixon, S.J. (Univ. of Western Ontario, London (Canada))

    1990-10-01

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-(14C)ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-(14C)ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-(3H(G))glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.

  20. BAK1 Directly Regulates Brassinosteroid Perception and BRI1 Activation

    Institute of Scientific and Technical Information of China (English)

    Kai He; Shengbao Xu; Jia Li

    2013-01-01

    Plants utilize plasma membrane-localized receptor-like kinases (RLKs) to sense extracellular signals to coordinate growth, development, and innate immune responses. BAK1 regulates multiple signaling pathways acting as a co-receptor of several distinct ligand-binding RLKs. It has been debated whether BAK1 serves as an essential regulatory component or only a signal amplifier without pathway specificity. This issue has been clarified recently. Genetic and structural analyses indicated that BAK1 and its homologs play indispensible roles in mediating brassinosteroid (BR) signaling pathway by directly perceiving the ligand BR and activating the receptor of BR, BRI1. The mechanism revealed by these studies now serves as a paradigm for how a pair of RLKs can function together in ligand binding and subsequent initiation of signaling.

  1. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.

    Science.gov (United States)

    Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2014-05-15

    Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms.

  2. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  3. Effects of Online Self-Regulation Activities on Physical Activity Among Pregnant and Early Postpartum Women.

    Science.gov (United States)

    Kim, Hye Kyung; Niederdeppe, Jeff; Graham, Meredith; Olson, Christine; Gay, Geri

    2015-01-01

    Physical and psychological changes that occur during pregnancy present a unique challenge for women's physical activity. Using a theory-based prospective design, this study examines the effects of pregnant women's (a) physical activity cognitions (self-efficacy, outcome expectancy, and safety beliefs) and (b) online self-regulation activities (goal-setting and self-monitoring) on subsequent changes in their physical activity intentions and behavior during pregnancy and immediately postpartum. The authors used data from three panel surveys administered to pregnant women enrolled in a web-based intervention to promote healthy pregnancy and postpartum weight, as well as log data on their use of self-regulatory features on the intervention website. Perceived self-efficacy and perceived safety of physical activity in pregnancy enhanced subsequent intentions to be physically active. Repeated goal-setting and monitoring of those goals helped to maintain positive intentions during pregnancy, but only repeated self-monitoring transferred positive intentions into actual behavior. Theoretically, this study offers a better understanding of the roles of self-regulation activities in the processes of goal-striving. The authors also discuss practical implications for encouraging physical activity among pregnant and early postpartum women.

  4. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  5. Carry-over of self-regulation for physical activity to self-regulating eating in women with morbid obesity.

    Science.gov (United States)

    Annesi, James J; Porter, Kandice J; Johnson, Ping H

    2015-01-01

    Poor outcomes from behavioral treatments of severe obesity have led to a dependence on invasive medical interventions, including surgery for morbidly obese individuals. Improved methods to self-regulate eating will be required to reduce obesity. The use of self-regulation methods for completing physical activity may carry over to increased self-regulation for eating through improved feelings of competence (self-efficacy) and mood. The study recruited women (Meanage = 43 years) with morbid obesity (MeanBMI = 44 kg/m(2)) to participate in 26 weeks of cognitive-behavioral support of physical activity paired with either nutrition education (n = 51) or cognitive-behavioral nutrition (n = 51) methods. Data collected were from 2011 and 2012. Significant improvements in self-regulation for physical activity, self-regulation for eating, overall mood, and self-efficacy for eating, with greater improvement in self-regulation for eating, were observed in the cognitive-behavioral nutrition group. Changes in mood and self-efficacy for eating significantly mediated the relationship between changes in self-regulation for physical activity and self-regulation for eating. When subscales of overall mood and self-efficacy were entered into separate regression equations as mediators, the only significant mediators were vigor, and controlling eating when socially pressured and when increased cues to overeat were present.

  6. An atlas of human kinase regulation.

    Science.gov (United States)

    Ochoa, David; Jonikas, Mindaugas; Lawrence, Robert T; El Debs, Bachir; Selkrig, Joel; Typas, Athanasios; Villén, Judit; Santos, Silvia Dm; Beltrao, Pedro

    2016-12-01

    The coordinated regulation of protein kinases is a rapid mechanism that integrates diverse cues and swiftly determines appropriate cellular responses. However, our understanding of cellular decision-making has been limited by the small number of simultaneously monitored phospho-regulatory events. Here, we have estimated changes in activity in 215 human kinases in 399 conditions derived from a large compilation of phosphopeptide quantifications. This atlas identifies commonly regulated kinases as those that are central in the signaling network and defines the logic relationships between kinase pairs. Co-regulation along the conditions predicts kinase-complex and kinase-substrate associations. Additionally, the kinase regulation profile acts as a molecular fingerprint to identify related and opposing signaling states. Using this atlas, we identified essential mediators of stem cell differentiation, modulators of Salmonella infection, and new targets of AKT1. This provides a global view of human phosphorylation-based signaling and the necessary context to better understand kinase-driven decision-making. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Cinnamaldehyde and eugenol change the expression folds of AKT1 and DKC1 genes and decrease the telomere length of human adipose-derived stem cells (hASCs: An experimental and in silico study

    Directory of Open Access Journals (Sweden)

    Abdorrahim Absalan

    2017-03-01

    Full Text Available Objective(s: To investigate the effect of cinnamaldehyde and eugenol on the telomere-dependent senescence of stem cells. In addition, to search the probable targets of mentioned phytochemicals between human telomere interacting proteins (TIPs using in silico studies. Materials and Methods: Human adipose derived stem cells (hASCs were studied under treatments with 2.5 µM/ml cinnamaldehyde, 0.1 µg/ml eugenol, 0.01% DMSO or any additive. The expression of TERT, AKT1 and DKC1 genes and the telomere length were assessed over 48-hr treatment. In addition, docking study was conducted to show probable ways through which phytochemicals interact with TIPs. Results: Treated and untreated hASCs had undetectable TERT expression, but they did affect the AKT1 and DKC1 expression levels (CI=0.95; P

  8. After the slippery slope: Dutch experiences on regulating active euthanasia.

    Science.gov (United States)

    Boer, Theo A

    2003-01-01

    "When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward." If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery slope argument, however, is by definition limited by its reference to future developments which cannot empirically be sustained. Experience in the Netherlands--where a law regulating active euthanasia was accepted in April 2001--may shed light on the strengths as well as the weaknesses of the slippery slope argument in the context of the euthanasia debate. This paper consists of three parts. First, it clarifies the Dutch legislation on euthanasia and explains the cultural context in which it originated. Second, it looks at the argument of the slippery slope. A logical and an empirical version are distinguished, and the latter, though philosophically less interesting, proves to be most relevant in the discussion on euthanasia. Thirdly, it addresses the question whether Dutch experiences in the process of legalizing euthanasia justify the fear of the slippery slope. The conclusion is that Dutch experiences justify some caution.

  9. Activated Type 2 Innate Lymphoid Cells regulate Beige Fat Biogenesis

    Science.gov (United States)

    Lee, Min-Woo; Odegaard, Justin I.; Mukundan, Lata; Qiu, Yifu; Molofsky, Ari B.; Nussbaum, Jesse C.; Yun, Karen; Locksley, Richard M.; Chawla, Ajay

    2014-01-01

    SUMMARY Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2-and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα+ APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PMID:25543153

  10. Sucking pump activity in feeding behaviour regulation in carpenter ants.

    Science.gov (United States)

    Falibene, Agustina; Gontijo, Alberto de Figueiredo; Josens, Roxana

    2009-06-01

    Modulation of liquid feeding-rate would allow insects to ingest more food in the same time when this was required. Ants can vary nectar intake rate by increasing sucking pump frequency according to colony requirements. We analysed electrical signals generated by sucking pump activity of ants during drinking solutions of different sucrose concentrations and under different carbohydrate-deprivation levels. Our aim was to define parameters that characterize the recordings and analyse their relationship with feeding behaviour. Signals showed that the initial and final frequencies of sucking pump activity, as well as the difference between them were higher in sugar-deprived ants. However, these parameters were not influenced by sucrose solution concentration, which affected the number of pump contractions and the volume per contraction. Unexpectedly, we found two different responses in feeding behaviour of starved and non-starved ants depending on concentration. Starved ants drank dilute solutions for the same length of time as non-starved ants but ingested higher volumes. While drinking the concentrated solutions, starved ants drank the same volume, but did so in a shorter time than the non-starved ones. Despite these differences, for each analysed concentration the total number of pump contractions remained constant independently of sugar-deprivation level. These results are discussed in the frame of feeding regulation and decision making in ant foraging behaviour.

  11. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  12. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    Science.gov (United States)

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  13. Hyperphosphorylation regulates the activity of SREBP1 during mitosis.

    Science.gov (United States)

    Bengoechea-Alonso, Maria T; Punga, Tanel; Ericsson, Johan

    2005-08-16

    The sterol regulatory element-binding protein (SREBP) family of transcription factors controls the biosynthesis of cholesterol and other lipids, and lipid synthesis is critical for cell growth and proliferation. We were, therefore, interested in the expression and activity of SREBPs during the cell cycle. We found that the expression of a number of SREBP-responsive promoter-reporter genes were induced in a SREBP-dependent manner in cells arrested in G2/M. In addition, the mature forms of SREBP1a and SREBP1c were hyperphosphorylated in mitotic cells, giving rise to a phosphoepitope recognized by the mitotic protein monoclonal-2 (MPM-2) antibody. In contrast, SREBP2 was not hyperphosphorylated in mitotic cells and was not recognized by the MPM-2 antibody. The MPM-2 epitope was mapped to the C terminus of mature SREBP1, and the mitosis-specific hyperphosphorylation of SREBP1 depended on this domain of the protein. The transcriptional and DNA-binding activity of SREBP1 was enhanced in cells arrested in G2/M, and these effects depended on the C-terminal domain of the protein. In part, these effects could be explained by our observation that mature SREBP1 was stabilized in G2/M. In agreement with these observations, we found that the synthesis of cholesterol was increased in G2/M-arrested cells. Thus, our results demonstrate that the activity of mature SREBP1 is regulated by phosphorylation during the cell cycle, suggesting that SREBP1 may provide a link between lipid synthesis, proliferation, and cell growth.

  14. 22 CFR 143.2 - To what programs or activities do these regulations apply?

    Science.gov (United States)

    2010-04-01

    ... what programs or activities do these regulations apply? These regulations apply to each foreign affairs... 22 Foreign Relations 1 2010-04-01 2010-04-01 false To what programs or activities do these regulations apply? 143.2 Section 143.2 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS NONDISCRIMINATION ON...

  15. Effects of Akt1 gene knockout on pain behaviour induced by chronic constriction injury of sciatic nerve in mice%Akt1基因敲除对坐骨神经结扎小鼠痛行为的影响

    Institute of Scientific and Technical Information of China (English)

    隽立芹; 薄靳华; 马正良; 顾小萍

    2014-01-01

    目的 探讨Akt1基因敲除对坐骨神经结扎小鼠痛行为学的影响.方法 C57BL/6雄性小鼠随机分为Akt1基因敲除组(KO组,n=12)和野生组(WT组,n=12).在小鼠右侧制作坐骨神经慢性挤压(chronic constriction injury,CCI)模型,测试术前1d和术后1d、3d、5d、7d、10d、14d、17d、21 d的机械缩足阈值(paw withdrawal mechanical threshold,PWMT)和热缩足潜伏期(paw withdrawal thermal latency,PWTL).结果 KO组和WT组小鼠的两侧PWMT基础值[右侧:(0.89±0.15)g,(0.87±0.15)g;左侧:(0.97 ±0.19)g,(1.05±0,14)g,P>0.05]和PWTL[右侧:(7.64±0.71)s,(7.56±0.68)s;左侧:(7.67±0.6)s,(7.64±0.64)s,P>0.05]差异无统计学意义.术后各测试时间点KO组/WT组小鼠右侧的PWMT和PWTL与其基础值相比均明显减低(P<0.05),KO组左侧PWMT和PWTL与WT组小鼠相比差异无统计学意义(P>0.05),但是KO组右侧PWMT和PWTL较WT组明显降低(P<0.05).结论 Akt1基因敲除后会加重小鼠坐骨神经结扎所诱发的神经病理性疼痛.%Objective To investigate the effects of Aktl gene knockout on pain behavior induced by chronic constriction injury model of sciatic nerve (CCI).Methods C57BL/6 male mice were randomly divided into Akt1 knockout group (KO group,n=12),wild type group(WT group,n=12).All mice were made model of CCI in the right sciatic nerve.Each mouse received tests of the paw withdrawal mechanical threshold (PWMT) and the paw withdrawal thermal latency(PWTL) at the times of 1d before and 1 d,3 d,5 d,7 d,10 d,14 d,17 d,21 d after surgery.Results For both KO group and WT group,the basic values of PMWT(right(0.89±0.15)g,(0.87±0.15)g; left(0.97±0.19) g,(1.05±0.14) g,P>0.05) and PWTL(right (7.64±0.71) s,(7.56±0.68) s ;left: (7.67±0.6) s,(7.64±0.64) s,P>0.05) showed no significantly statistical difference.Compared with WT group and the basic value,PWMT and PWTL were significantly decreased after surgery in KO group (P<0.05).The PWMT and P WTL of the left paw in KO group

  16. V-1 regulates capping protein activity in vivo.

    Science.gov (United States)

    Jung, Goeh; Alexander, Christopher J; Wu, Xufeng S; Piszczek, Grzegorz; Chen, Bi-Chang; Betzig, Eric; Hammer, John A

    2016-10-25

    Capping Protein (CP) plays a central role in the creation of the Arp2/3-generated branched actin networks comprising lamellipodia and pseudopodia by virtue of its ability to cap the actin filament barbed end, which promotes Arp2/3-dependent filament nucleation and optimal branching. The highly conserved protein V-1/Myotrophin binds CP tightly in vitro to render it incapable of binding the barbed end. Here we addressed the physiological significance of this CP antagonist in Dictyostelium, which expresses a V-1 homolog that we show is very similar biochemically to mouse V-1. Consistent with previous studies of CP knockdown, overexpression of V-1 in Dictyostelium reduced the size of pseudopodia and the cortical content of Arp2/3 and induced the formation of filopodia. Importantly, these effects scaled positively with the degree of V-1 overexpression and were not seen with a V-1 mutant that cannot bind CP. V-1 is present in molar excess over CP, suggesting that it suppresses CP activity in the cytoplasm at steady state. Consistently, cells devoid of V-1, like cells overexpressing CP described previously, exhibited a significant decrease in cellular F-actin content. Moreover, V-1-null cells exhibited pronounced defects in macropinocytosis and chemotactic aggregation that were rescued by V-1, but not by the V-1 mutant. Together, these observations demonstrate that V-1 exerts significant influence in vivo on major actin-based processes via its ability to sequester CP. Finally, we present evidence that V-1's ability to sequester CP is regulated by phosphorylation, suggesting that cells may manipulate the level of active CP to tune their "actin phenotype."

  17. Phosphorylation regulates NCC stability and transporter activity in vivo.

    Science.gov (United States)

    Yang, Sung-Sen; Fang, Yu-Wei; Tseng, Min-Hua; Chu, Pei-Yi; Yu, I-Shing; Wu, Han-Chung; Lin, Shu-Wha; Chau, Tom; Uchida, Shinichi; Sasaki, Sei; Lin, Yuh-Feng; Sytwu, Huey-Kang; Lin, Shih-Hua

    2013-10-01

    A T60M mutation in the thiazide-sensitive sodium chloride cotransporter (NCC) is common in patients with Gitelman's syndrome (GS). This mutation prevents Ste20-related proline and alanine-rich kinase (SPAK)/oxidative stress responsive kinase-1 (OSR1)-mediated phosphorylation of NCC and alters NCC transporter activity in vitro. Here, we examined the physiologic effects of NCC phosphorylation in vivo using a novel Ncc T58M (human T60M) knock-in mouse model. Ncc(T58M/T58M) mice exhibited typical features of GS with a blunted response to thiazide diuretics. Despite expressing normal levels of Ncc mRNA, these mice had lower levels of total Ncc and p-Ncc protein that did not change with a low-salt diet that increased p-Spak. In contrast to wild-type Ncc, which localized to the apical membrane of distal convoluted tubule cells, T58M Ncc localized primarily to the cytosolic region and caused an increase in late distal convoluted tubule volume. In MDCK cells, exogenous expression of phosphorylation-defective NCC mutants reduced total protein expression levels and membrane stability. Furthermore, our analysis found diminished total urine NCC excretion in a cohort of GS patients with homozygous NCC T60M mutations. When Wnk4(D561A/+) mice, a model of pseudohypoaldosteronism type II expressing an activated Spak/Osr1-Ncc, were crossed with Ncc(T58M/T58M) mice, total Ncc and p-Ncc protein levels decreased and the GS phenotype persisted over the hypertensive phenotype. Overall, these data suggest that SPAK-mediated phosphorylation of NCC at T60 regulates NCC stability and function, and defective phosphorylation at this residue corrects the phenotype of pseudohypoaldosteronism type II.

  18. Ubiquitin chain conformation regulates recognition and activity of interacting proteins.

    Science.gov (United States)

    Ye, Yu; Blaser, Georg; Horrocks, Mathew H; Ruedas-Rama, Maria J; Ibrahim, Shehu; Zhukov, Alexander A; Orte, Angel; Klenerman, David; Jackson, Sophie E; Komander, David

    2012-12-13

    Mechanisms of protein recognition have been extensively studied for single-domain proteins, but are less well characterized for dynamic multidomain systems. Ubiquitin chains represent a biologically important multidomain system that requires recognition by structurally diverse ubiquitin-interacting proteins. Ubiquitin chain conformations in isolation are often different from conformations observed in ubiquitin-interacting protein complexes, indicating either great dynamic flexibility or extensive chain remodelling upon binding. Using single-molecule fluorescence resonance energy transfer, we show that Lys 63-, Lys 48- and Met 1-linked diubiquitin exist in several distinct conformational states in solution. Lys 63- and Met 1-linked diubiquitin adopt extended 'open' and more compact 'closed' conformations, and ubiquitin-binding domains and deubiquitinases (DUBs) select pre-existing conformations. By contrast, Lys 48-linked diubiquitin adopts predominantly compact conformations. DUBs directly recognize existing conformations, but may also remodel ubiquitin chains to hydrolyse the isopeptide bond. Disruption of the Lys 48-diubiquitin interface changes conformational dynamics and affects DUB activity. Hence, conformational equilibria in ubiquitin chains provide an additional layer of regulation in the ubiquitin system, and distinct conformations observed in differently linked polyubiquitin may contribute to the specificity of ubiquitin-interacting proteins.

  19. German National Galileo Public Regulated Service (PRS) Testing Activities

    Science.gov (United States)

    Habrich, Heinz; Söhne, Wolfgang

    2013-04-01

    The European Global Navigation System (GNSS) Galileo is going to be established in the near future. Currently, four satellites are in place forming the In-Orbit-Testing (IOT) phase. Within the next years, the constellation will be filled. Full Operational Capability (FOC) will be reached 2019. Beside the Open Service (OS) which is comparable to other OS of existing GNSS, e.g., GPS C/A, there is a so-called Public Regulated Service (PRS) included in the IOT satellites already. The PRS will have improved robustness, i.e. robust signals which will be resistant against involuntary interferences, jamming and spoofing. The PRS signal is encrypted and there will be a restricted access to authorized users, e.g. safety and emergency services, authorities with security task, critical infrastructure organizations etc. The access to the PRS which will be controlled through a special key management will be managed and supervised within the European Union (EU) Member States (MS) by national authorities, the Competent PRS Authority (CPA). But a set of Common Minimum Standards (CMS) will define the minimum requirements applicable to each PRS participant. Nevertheless, each MS is responsible for its national key management. This presentation will inform about the testing activities for Galileo PRS in Germany. The coarse concept for the testing is explained, the schedule is outlined. Finally, the paper will formulate some expectations to the Galileo PRS, e.g. for international cooperation.

  20. AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation.

    Science.gov (United States)

    Bandow, Kenjiro; Kusuyama, Joji; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2015-05-01

    Chondrocytes are derived from mesenchymal stem cells, and play an important role in cartilage formation. Sex determining region Y box (Sox) family transcription factors are essential for chondrogenic differentiation, whereas the intracellular signal pathways of Sox activation have not been clearly elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis. It is known that the catalytic alpha subunit of AMPK is activated by upstream AMPK kinases (AMPKKs) including liver kinase B1 (LKB1). We have previously reported that AMPK is a negative regulator of osteoblastic differentiation. Here, we have explored the role of AMPK in chondrogenic differentiation using in vitro culture models. The phosphorylation level of the catalytic AMPK alpha subunit significantly decreased during chondrogenic differentiation of primary chondrocyte precursors as well as ATDC-5, a well-characterized chondrogenic cell line. Treatment with metformin, an activator of AMPK, significantly reduced cartilage matrix formation and inhibited gene expression of sox6, sox9, col2a1 and aggrecan core protein (acp). Thus, chondrocyte differentiation is functionally associated with decreased AMPK activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells.

    Science.gov (United States)

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa

    2014-01-01

    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.

  2. Collagen I-induced dendritic cells activation is regulated by TNF- production through down-regulation of IRF4

    Indian Academy of Sciences (India)

    Barun Poudel; Hyeon-Hui Ki; Young-Mi Lee; Dae-Ki Kim

    2015-03-01

    Previously we have shown that collagen I enhances the maturation and function of dendritic cells (DCs). Inflammatory mediators such as tumour necrosis factor (TNF)-, interleukin (IL)-1 and lipopolysaccharide (LPS) are also known to activate DCs. Here we investigated the involvement of TNF- on the collagen I-induced DCs activation. TNF-a neutralization inhibited collagen I-induced IL-12 secretions by DCs. Additionally, we observed suppression of collagen I-induced costimulatory molecules expression along with down-regulation of genes involved in DCs activation pathway. Furthermore, TNF- inhibition upon collagen Istimulation up-regulated the expression of interferon regulatory transcription factor IRF4, when compared to collagen I only treated cells. Collectively, our data demonstrate that collagen I induce TNF- production, which is crucial for the activation and function of DCs, through down-regulation of IRF4, and implicates the importance in development of anti- TNF- therapeutics for several inflammatory diseases.

  3. Arabidopsis TTG2 regulates TRY expression through enhancement of activator complex-triggered activation.

    Science.gov (United States)

    Pesch, Martina; Dartan, Burcu; Birkenbihl, Rainer; Somssich, Imre E; Hülskamp, Martin

    2014-10-01

    Trichome patterning in Arabidopsis thaliana is regulated by a regulatory feedback loop of the trichome promoting factors TRANSPARENT TESTA GLABRA1 (TTG1), GLABRA3 (GL3)/ENHANCER OF GL3 (EGL3), and GL1 and a group of homologous R3MYB proteins that act as their inhibitors. Together, they regulate the temporal and spatial expression of GL2 and TTG2, which are considered to control trichome cell differentiation. In this work, we show that TTG2 is a specific activator of TRY (but not CPC or GL2). The WRKY protein TTG2 binds to W-boxes in a minimal promoter fragment of TRY, and these W-boxes are essential for rescue of the try mutant phenotype. We further show that TTG2 alone is not able to activate TRY expression, but rather drastically enhances the activation by TTG1 and GL3. As TTG2 physically interacts with TTG1 and because TTG2 can associate with GL3 through its interaction with TTG1, we propose that TTG2 enhances the activity of TTG1 and GL3 by forming a protein complex.

  4. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity

    Science.gov (United States)

    Burket, Jessica A.; Benson, Andrew D.; Tang, Amy H.; Deutsch, Stephen I.

    2017-01-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORCl in neurons (e.g., cerebellar Purkinje cells). mTORCl is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORCl, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORCl overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORCl activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are “drivers” of mTORCl activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. PMID:25703582

  5. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    Science.gov (United States)

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders.

  6. Potential Genes for Regulation of Milk Protein Synthesis in Dairy Goat Mammary Gland

    Institute of Scientific and Technical Information of China (English)

    Chen Dan; Zhang Na; Nan Xue-mei; Li Qing-zhang; Gao Xue-jun

    2016-01-01

    The lactating mammary gland is a prodigious protein-producing factory, but the milk protein synthesis mechanisms are not well understood. The major objective of this paper was to elucidate which genes and pathways were involved in the regulation of milk protein synthesis in the dairy goat mammary gland. Total 36 primiparous Guanzhong dairy goats were allotted in 12 groups according to their mammary development stages: days 90 and 150 of virgin, days 30, 90, and 150 of pregnancy, days 1, 10, 35, and 60 of lactation and days 3, 7, and 21 of involution (three animals per group). Mammary tissue RNA was isolated for quantitative real-time RT-PCR of four casein genes alpha-s1 casein (CSN1S1), alpha-s2 casein (CSN1S2), beta-casein (CSN2) and casein kappa (CSN3), four whey protein genes lactoglobulin (LGB), lactalbumin (LALBA), lactofarrin (LTF), and Whey acidic protein (WAP) and the genes which were potentially to regulate dairy goat milk protein synthesis at the level of transcription or translation [prolactin receptor (PRLR), AKT1, signal transducers and activators of transcription 5 (STAT5), E74-Like Factor 5 (ELF5), eukaryotic translation initiation factor 4E binding protein 1 (EIF4E-BP1), S6kinase (S6K) and caveolin 1]. The results showed that all genes were up-regulated in lactation period. The expressions of PRLR, AKT1, STAT5, ELF5, and S6K were similar to mRNA expressions of milk proteins. Our results indicated that milk protein synthesis in dairy goat mammary gland was possibly regulated by these genes.

  7. Regulator of complement activation (RCA) gene cluster in Xenopus tropicalis.

    Science.gov (United States)

    Oshiumi, Hiroyuki; Suzuki, Yuzuru; Matsumoto, Misako; Seya, Tsukasa

    2009-05-01

    Genome and expressed sequence tag information of Xenopus tropicalis suggested that short-consensus repeat (SCR)-containing proteins are encoded by three genes that are mapped within a 300-kb downstream of PFKFB2, which is a marker gene for the regulator of complement activation (RCA) loci in human and chicken. Based on this observation, we cloned the three cDNAs of these proteins using 3'- or 5'-RACE technique. Since their primary structures and locations of the proximity to the PFKFB2 locus, we named them amphibian RCA protein (ARC) 1, 2, and 3. Expression in human HEK293 or CHO cells suggested that ARC1 is a soluble protein of Mr approximately 67 kDa, ARC2 is a membrane protein with Mr 44 kDa, and ARC3 a secretary protein with a putative transmembrane region. They were N-glycosylated during maturation. In human and chicken RCA clusters, the order in which genes for soluble, GPI-anchored, and membrane forms of SCR proteins are arranged is from the distant to proximity to the PFKFB2 gene. However, the amphibian ARC1, 2, and 3 resembled one another and did not reflect the same order found in human and chicken RCA genes. This may be due to self-duplication of ARCs to form a family, and it evolved after the amphibia separated from the ancestor of the amniotes, which possessed soluble, GPI-anchored, and membrane forms of SCR protein members. Taken together, frog possesses a RCA locus, but the constitution of the ARC proteins differs from that of the amniotes with a unique self-resemblance.

  8. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize.

    Science.gov (United States)

    Schmelz, Eric A; Kaplan, Fatma; Huffaker, Alisa; Dafoe, Nicole J; Vaughan, Martha M; Ni, Xinzhi; Rocca, James R; Alborn, Hans T; Teal, Peter E

    2011-03-29

    Phytoalexins constitute a broad category of pathogen- and insect-inducible biochemicals that locally protect plant tissues. Because of their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses, which include insect-inducible monoterpene and sesquiterpene volatiles. Rice also produces a complex array of pathogen-inducible diterpenoid phytoalexins. Despite the demonstration of fungal-induced ent-kaur-15-ene production in maize over 30 y ago, the identity of functionally analogous maize diterpenoid phytoalexins has remained elusive. In response to stem attack by the European corn borer (Ostrinia nubilalis) and fungi, we observed the induced accumulation of six ent-kaurane-related diterpenoids, collectively termed kauralexins. Isolation and identification of the predominant Rhizopus microsporus-induced metabolites revealed ent-kaur-19-al-17-oic acid and the unique analog ent-kaur-15-en-19-al-17-oic acid, assigned as kauralexins A3 and B3, respectively. Encoding an ent-copalyl diphosphate synthase, fungal-induced An2 transcript accumulation precedes highly localized kauralexin production, which can eventually exceed 100 μg · g(-1) fresh weight. Pharmacological applications of jasmonic acid and ethylene also synergize the induced accumulation of kauralexins. Occurring at elevated levels in the scutella of all inbred lines examined, kauralexins appear ubiquitous in maize. At concentrations as low as 10 μg · mL(-1), kauralexin B3 significantly inhibited the growth of the opportunistic necrotroph R. microsporus and the causal agent of anthracnose stalk rot, Colletotrichum graminicola. Kauralexins also exhibited significant O. nubilalis antifeedant activity. Our work establishes the presence of diterpenoid defenses in maize and enables a more detailed analysis of their biosynthetic pathways, regulation, and crop defense function.

  9. Termination of the Activating NK Cell Immunological Synapse Is an Active and Regulated Process.

    Science.gov (United States)

    Netter, Petra; Anft, Moritz; Watzl, Carsten

    2017-08-23

    Cellular cytotoxicity is essential for the elimination of virus-infected and cancerous cells by NK cells. It requires a direct cellular contact through the establishment of an immunological synapse (IS) between the NK cell and the target cell. In this article, we show that not only the establishment of the IS, but also its maintenance is a highly regulated process. Ongoing receptor-proximal signaling events from activating NK cell receptors and actin dynamics were necessary to maintain a stable contact in an energy-dependent fashion, even after the IS was formed successfully. More importantly, the initiation of a contact to a new susceptible target cell resulted in accelerated detachment from an old target cell. We propose that the maintenance of an existing IS is a dynamic and regulated process to allow for effective serial killing of NK cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. The Regulation of Matrix Metalloproteinase Expression and the Role of Discoidin Domain Receptor 1/2 Signalling in Zoledronate-treated PC3 Cells.

    Science.gov (United States)

    Reel, Buket; Korkmaz, Ceren Gonen; Arun, Mehmet Zuhuri; Yildirim, Gokce; Ogut, Deniz; Kaymak, Aysegul; Micili, Serap Cilaker; Ergur, Bekir Ugur

    2015-01-01

    Discoidin Domain Receptors (DDR1/DDR2) are tyrosine kinase receptors which are activated by collagen. DDR signalling regulates cell migration, proliferation, apoptosis and matrix metalloproteinase (MMP) production. MMPs degrade extracellular matrix (ECM) and play essential role in tumor growth, invasion and metastasis. Nitrogen-containing bisphosphonates (N-BPs) which strongly inhibit osteoclastic activity are commonly used for osteoporosis treatment. They also have MMP inhibitory effect. In this study, we aimed to investigate the effects of zoledronate in PC3 cells and the possible role of DDR signalling and downstream pathways in these inhibitory effects. We studied messenger RNA (mRNA) and protein expressions of MMP-2,-9,-8, DDR1/DDR2 type I procollagen (TIP) and mRNA levels of PCA-1, MMP-13 and DDR-initiated signalling pathway players including K-Ras oncogene, ERK1, JNK1, p38, AKT-1 and BCLX in PC3 cells in the presence or absence of zoledronate (10-100 μM) for 2-3 days. Zoledronate (100 μM) down-regulated DDR1/ DDR2, TIP mRNAs but did not change MMP-13 (collagenase-3) mRNA. However, zoledronate up-regulated MMP-8 (collagenase-2) mRNA. Zoledronate also inhibited mRNA expressions of K-Ras, ERK1, AKT-1, BCLX and PCA-1; but did not change JNK1, p38 mRNA levels. Zoledronate (100 μM) supressed DDR1/DDR2, TIP expressions; and gelatinase (MMP-2/MMP-9) expressions/activities. Conversely, zoledronate up-regulated MMP-8 expression in PC3 cells. Zoledronate down-regulates MMP-2/-9 expressions in PC3 prostate cancer cells. DDR1/DDR2 signalling and DDR-initiated downstream Ras/Raf/ERK and PI3K/AKT pathways may at least partially responsible for MMP inhibitory effect of zoledronate.

  11. 75 FR 28276 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2010-05-20

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... approval in accordance with the Paperwork Reduction Act: NAFTA Regulations and Certificate of Origin. This.... Title: NAFTA Regulations and Certificate of Origin. OMB Number: 1651-0098. Form Numbers: CBP Forms 434...

  12. 76 FR 76983 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2011-12-09

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... the NAFTA Regulations and Certificate of Origin. This request for comment is being made pursuant to... CBP is soliciting comments concerning the following information collection: Title: NAFTA Regulations...

  13. Nitric oxide regulates neuronal activity via calcium-activated potassium channels.

    Directory of Open Access Journals (Sweden)

    Lei Ray Zhong

    Full Text Available Nitric oxide (NO is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.

  14. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Science.gov (United States)

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  15. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  16. 26 CFR 1.145-2 - Application of private activity bond regulations.

    Science.gov (United States)

    2010-04-01

    ... of the private business use test and the private security or payment test mean “5 percent” and “net... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Application of private activity bond regulations... Bonds § 1.145-2 Application of private activity bond regulations. (a) In general. Except as provided...

  17. Soft Matter-Regulated Active Nanovalves Locally Self-Assembled in Femtoliter Nanofluidic Channels.

    Science.gov (United States)

    Xu, Yan; Shinomiya, Misato; Harada, Atsushi

    2016-03-16

    Well-tailored thermoresponsive polymer brushes locally self-assembled in tiny nanofluidic channels enable the active regulation of femtoliter-scale fluids. Such soft-matter-regulated active nanovalves within nanofluidic channels can be extended to build well-controlled functional nanofluidic systems, allowing complex fluidic processes to be performed at the nanometer scales.

  18. Self-Regulated Learning and Perceived Health among University Students Participating in Physical Activity Classes

    Science.gov (United States)

    McBride, Ron E.; Altunsöz, Irmak Hürmeriç; Su, Xiaoxia; Xiang, Ping; Demirhan, Giyasettin

    2016-01-01

    The purpose of this study was to explore motivational indicators of self-regulated learning (SRL) and the relationship between self-regulation (SR) and perceived health among university students enrolled in physical activity (PA) classes. One hundred thirty-one Turkish students participating in physical education activity classes at two…

  19. Physical Activity, Self-Regulation, and Early Academic Achievement in Preschool Children

    Science.gov (United States)

    Becker, Derek R.; McClelland, Megan M.; Loprinzi, Paul; Trost, Stewart G.

    2014-01-01

    Research Findings: The present study investigated whether active play during recess was associated with self-regulation and academic achievement in a prekindergarten sample. A total of 51 children in classes containing approximately half Head Start children were assessed on self-regulation, active play, and early academic achievement. Path…

  20. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's lymphoma

    NARCIS (Netherlands)

    Plattel, Wouter J.; van den Berg, Anke; Visser, Lydia; van der Graaf, Anne-Marijn; Pruim, Jan; Vos, Hans; Hepkema, Bouke; Diepstra, Arjan; van Imhoff, Gustaaf W.

    2012-01-01

    BACKGROUND: Plasma thymus and activation-regulated chemokine is a potential biomarker for classical Hodgkin's lymphoma. To define its value as a marker to monitor treatment response, we correlated serial plasma thymus and activation-regulated chemokine levels with clinical response in newly diagnose

  1. Dynamics of study strategies and teacher regulation in virtual patient learning activities: a cross sectional survey.

    Science.gov (United States)

    Edelbring, Samuel; Wahlström, Rolf

    2016-04-23

    Students' self-regulated learning becomes essential with increased use of exploratory web-based activities such as virtual patients (VPs). The purpose was to investigate the interplay between students' self-regulated learning strategies and perceived benefit in VP learning activities. A cross-sectional study (n = 150) comparing students' study strategies and perceived benefit of a virtual patient learning activity in a clinical clerkship preparatory course. Teacher regulation varied among three settings and was classified from shared to strong. These settings were compared regarding their respective relations between regulation strategies and perceived benefit of the virtual patient activity. Self-regulation learning strategy was generally associated with perceived benefit of the VP activities (rho 0.27, p study strategies can increase the value of flexible web-based learning resources to students.

  2. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds

    DEFF Research Database (Denmark)

    Bakal, Chris; Linding, Rune; Llense, Flora;

    2008-01-01

    Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have suc...

  3. LEGISLATIVE AND LEGAL REGULATION OF ACTIVITY INTERNATIONAL FINANCIAL CENTER

    Directory of Open Access Journals (Sweden)

    Ju. N. Gusev

    2012-01-01

    Full Text Available What is needed: to improve legislative base of Russian financial markets taking into account the changes brought about by the global crisis; to form coordinated regulation system for financial markets; to create effective judicial system; to strengthen currency and financial cooperation with leading foreign trade partners of Russia.

  4. Polyphosphate - an ancient energy source and active metabolic regulator

    Directory of Open Access Journals (Sweden)

    Achbergerová Lucia

    2011-08-01

    Full Text Available Abstract There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs can currently be categorized into three groups (PPK1, PPK2 and PPK3 according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC. This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate.

  5. Gibberellins negatively regulate light-induced nitrate reductase activity in Arabidopsis seedlings.

    Science.gov (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Rongzhi; Wang, Liguang; Bi, Yurong

    2011-12-15

    In the present study, the role of phytohormone gibberellins (GAs) on regulating the nitrate reductase (NR) activity was tested in Arabidopsis seedlings. The NR activity in light-grown Col-0 seedlings was reduced by exogenous GA₃ (an active form of GAs), but enhanced by exogenous paclobutrazol (PAC, a gibberellin biosynthesis inhibitor), suggesting that GAs negatively regulate the NR activity in light-grown seedlings. Light is known to influence the NR activity through both photosynthesis and phytochromes. When etiolated seedlings were transferred to white or red light, both exogenously applied GA₃ and PAC were found to function on the NR activity only in the presence of sucrose, implying that GAs are not involved in light signaling-induced but negatively regulate photoproducts-induced NR activity. NR is regulated by light mainly at two levels: transcript level and post-translational level. Our reverse transcription (RT)-PCR assays showed that GAs did not affect the transcript levels of NIA1 and NIA2, two genes that encode NR proteins. But the divalent cations (especially Mg²⁺) were required for GAs negative regulation of NR activity, in view of the importance of divalent cations during the process of post-translational regulation of NR activity, which indicates that GAs very likely regulate the NR activity at the post-translational level. In the following dark-light shift analyses, GAs were found to accelerate dark-induced decrease, but retard light-induced increase of the NR activity. Furthermore, it was observed that application of G₃ or PAC could impair diurnal variation of the NR activity. These results collectively indicate that GAs play a negative role during light regulation of NR activity in nature.

  6. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Jong-Seok Moon

    2015-07-01

    Full Text Available The mammalian target of rapamycin complex 1 (mTORC1 regulates activation of immune cells and cellular energy metabolism. Although glycolysis has been linked to immune functions, the mechanisms by which glycolysis regulates NLRP3 inflammasome activation remain unclear. Here, we demonstrate that mTORC1-induced glycolysis provides an essential mechanism for NLRP3 inflammasome activation. Moreover, we demonstrate that hexokinase 1 (HK1-dependent glycolysis, under the regulation of mTORC1, represents a critical metabolic pathway for NLRP3 inflammasome activation. Downregulation of glycolysis by inhibition of Raptor/mTORC1 or HK1 suppressed both pro-IL-1β maturation and caspase-1 activation in macrophages in response to LPS and ATP. These results suggest that upregulation of HK1-dependent glycolysis by mTORC1 regulates NLRP3 inflammasome activation.

  7. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  8. Astragaloside Ⅱ triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity

    Institute of Scientific and Technical Information of China (English)

    Chun-ping WAN; Li-xin GAO; Li-fei HOU; Xiao-qian YANG; Pei-lan HE; Yi-fu YANG; Wei TANG

    2013-01-01

    Aim:To investigate the immunomodulating activity of astragalosides,the active compounds from a traditional tonic herb Astragalus membranaceus Bge,and to explore the molecular mechanisms underlying the actions,focusing on CD45 protein tyrosine phosphatase (CD45 PTPase),which plays a critical role in T lymphocyte activation.Methods:Primary splenocytes and T cells were prepared from mice.CD45 PTPase activity was assessed using a colorimetric assay.Cell proliferation was measured using a [3H]-thymidine incorporation assay.Cytokine proteins and mRNAs were examined with ELISA and RT-PCR,respectively.Activation markers,including CD25 and CD69,were analyzed using flow cytometry.Activation of LCK (Tyr505) was detected using Western blot analysis.Mice were injected with the immunosuppressant cyclophosphamide (CTX,80 mg/kg),and administered astragaloside Ⅱ (50 mg/kg).Results:Astragaloside Ⅰ,Ⅱ,Ⅲ,and Ⅳ concentration-dependently increased the CD45-mediated of pNPP/OMFP hydrolysis with the EC50 values ranged from 3.33 to 10.42 μg/mL.Astragaloside Ⅱ (10 and 30 μg/mL) significantly enhanced the proliferation of primary splenocytes induced by ConA,alloantigen or anti-CD3.Astragaloside Ⅱ (30 μg/mL) significantly increased IL-2 and IFN-y secretion,upregulated the mRNA levels of IFN-y and T-bet in primary splenocytes,and promoted CD25 and CD69 expression on primary CD4+T cells upon TCR stimulation.Furthermore,astragaloside Ⅱ (100 ng/mL) promoted CD45-mediated dephosphorylation of LCK (Tyr505) in primary T cells,which could be blocked by a specific CD45 PTPase inhibitor.In CTX-induced immunosuppressed mice,oral administration of astragaloside Ⅱ restored the proliferation of splenic T cells and the production of IFN-Y and IL-2.However,astragaloside Ⅱ had no apparent effects on B cell proliferation.Conclusion:Astragaloside Ⅱ enhances T cell activation by regulating the activity of CD45 PTPase,which may explain why Astragalus membranaceus Bge is used as a tonic

  9. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  10. Examining "Active" Procrastination from a Self-Regulated Learning Perspective

    Science.gov (United States)

    Cao, Li

    2012-01-01

    This study examined the notion that active procrastinators are a positive type of procrastinators who possess desirable characteristics similar to non-procrastinators, but different from the traditional passive procrastinators. A two-step procedure was followed to categorise university students (N = 125) as active procrastinators, passive…

  11. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 α (PGC-1α) activation coordinates induction of the hepatic fasting response through coactivation of numerous transcription factors and gene programs. In the June 15, 2011, issue of Genes & Development, Lustig and colleagues (pp...

  12. BicaudalD actively regulates microtubule motor activity in lipid droplet transport.

    Directory of Open Access Journals (Sweden)

    Kristoffer S Larsen

    Full Text Available BACKGROUND: A great deal of sub-cellular organelle positioning, and essentially all minus-ended organelle transport, depends on cytoplasmic dynein, but how dynein's function is regulated is not well understood. BicD is established to play a critical role in mediating dynein function-loss of BicD results in improperly localized nuclei, mRNA particles, and a dispersed Golgi apparatus-however exactly what BicD's role is remains unknown. Nonetheless, it is widely believed that BicD may act to tether dynein to cargos. Here we use a combination of biophysical and biochemical studies to investigate BicD's role in lipid droplet transport during Drosophila embryogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Functional loss of BicD impairs the embryo's ability to control the net direction of droplet transport; the developmentally controlled reversal in transport is eliminated. We find that minimal BicD expression (near-BicD(null decreases the average run length of both plus and minus end directed microtubule (MT based transport. A point mutation affecting the BicD N-terminus has very similar effects on transport during cellularization (phase II, but in phase III (gastrulation motion actually appears better than in the wild-type. CONCLUSIONS/SIGNIFICANCE: In contrast to a simple static tethering model of BicD function, or a role only in initial dynein recruitment to the cargo, our data uncovers a new dynamic role for BicD in actively regulating transport. Lipid droplets move bi-directionally, and our investigations demonstrate that BicD plays a critical-and temporally changing-role in balancing the relative contributions of plus-end and minus-end motors to control the net direction of transport. Our results suggest that while BicD might contribute to recruitment of dynein to the cargo it is not absolutely required for such dynein localization, and it clearly contributes to regulation, helping activation/inactivation of the motors.

  13. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    Science.gov (United States)

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  14. Substrate stiffness regulates filopodial activities in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and

  15. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Huang

    Full Text Available Remodelling of the extracellular matrix (ECM and cell surface by matrix metalloproteinases (MMPs is an important function of monocytes and macrophages. Recent work has emphasised the diverse roles of classically and alternatively activated macrophages but the consequent regulation of MMPs and their inhibitors has not been studied comprehensively. Classical activation of macrophages derived in vitro from un-fractionated CD16(+/- or negatively-selected CD16(- macrophages up-regulated MMP-1, -3, -7, -10, -12, -14 and -25 and decreased TIMP-3 steady-state mRNA levels. Bacterial lipopolysaccharide, IL-1 and TNFα were more effective than interferonγ except for the effects on MMP-25, and TIMP-3. By contrast, alternative activation decreased MMP-2, -8 and -19 but increased MMP -11, -12, -25 and TIMP-3 steady-state mRNA levels. Up-regulation of MMPs during classical activation depended on mitogen activated protein kinases, phosphoinositide-3-kinase and inhibitor of κB kinase-2. Effects of interferonγ depended on janus kinase-2. Where investigated, similar effects were seen on protein concentrations and collagenase activity. Moreover, activity of MMP-1 and -10 co-localised with markers of classical activation in human atherosclerotic plaques in vivo. In conclusion, classical macrophage activation selectively up-regulates several MMPs in vitro and in vivo and down-regulates TIMP-3, whereas alternative activation up-regulates a distinct group of MMPs and TIMP-3. The signalling pathways defined here suggest targets for selective modulation of MMP activity.

  16. Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Andrejeva, Diana; Gupta, Rajat;

    2016-01-01

    The Hippo pathway has been identified as a key barrier for tumorigenesis, acting through downregulation of YAP/TAZ activity. Elevated YAP/TAZ activity has been documented in many human cancers. Ubiquitylation has been shown to play a key role in regulating YAP/TAZ activity through downregulation....../TAZ activity. We demonstrate that USPx regulates ubiquitin-mediated turnover of the YAP inhibitor, Angiomotin. USP9x acts to deubiquitylate Angiomotin at lysine 496, resulting in stabilization of Angiomotin and lower YAP/TAZ activity. USP9x mRNA levels were reduced in several cancers. Clinically, USP9x m...

  17. Light-induced regulation of ligand-gated channel activity.

    Science.gov (United States)

    Bregestovski, Piotr; Maleeva, Galyna; Gorostiza, Pau

    2017-08-31

    The control of ligand-gated receptors with light using photochromic compounds has evolved from the first handcrafted examples to accurate, engineered receptors, whose development is supported by rational design, high-resolution protein structures, comparative pharmacology and molecular biology manipulations. Photoswitchable regulators have been designed and characterized for a large number of ligand-gated receptors in the mammalian nervous system, including nicotinic acetylcholine, glutamate and GABA receptors. They provide a well-equipped toolbox to investigate synaptic and neuronal circuits in all-optical experiments. This focused review discusses the design and properties of these photoswitches, their applications and shortcomings and future perspectives in the field. © 2017 The British Pharmacological Society.

  18. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive reappra

  19. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    Science.gov (United States)

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  20. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    Science.gov (United States)

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  1. 78 FR 76851 - Agency Information Collection Activities: BP Regulations Pertaining to Customs Brokers

    Science.gov (United States)

    2013-12-19

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: BP Regulations Pertaining to Customs Brokers AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland... requirement concerning the CBP Regulations Pertaining to Customs Brokers (19 CFR Part 111). This request...

  2. 75 FR 67094 - Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers

    Science.gov (United States)

    2010-11-01

    ... SECURITY Customs and Border Protection Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers AGENCY: U.S. Customs and Border Protection, Department of Homeland Security... concerning the: CBP Regulations Pertaining to Customs Brokers (19 CFR Part 111). This request for comment...

  3. What can Prudent Public Regulators Learn from the United Kingdom Government’s Nanotechnological Regulatory Activities?

    NARCIS (Netherlands)

    Dorbeck-Jung, Bärbel

    2007-01-01

    This contribution discusses the United Kingdom (UK) government’s regulatory activities related to nanotechnological development. The central question is what other prudent public regulation can learn from the UK government’s regulatory strategy, its regulatory attitude and its large variety of regul

  4. Design for mood: Twenty activity-based opportunities to design for mood regulation

    NARCIS (Netherlands)

    Desmet, P.M.A.

    2015-01-01

    This paper introduces a theory-based approach to design for mood regulation. The main proposition is that design can best influence mood by enabling and stimulating people to engage in a broad range of mood-regulating activities. The first part of the manuscript reviews state-of-the art mood-focused

  5. Study on the Model for Regulation of the Allosteric Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    LI,Qian-Zhong(李前忠); LUO,Liao-Fu(罗辽复); ZHANG,Li-Rong(张利绒)

    2002-01-01

    The effects of activator molecule and repressive molecule on binding process between allosteric enzyme and substrate are disused by considering the heterotropic effect of the regulating molecule that binds to allosteric enzyme. A model of allosteric enzyme with heterotropic effect is presented. The cooperativity and anticooperativity in the regulation process are studied.

  6. Evidence for differential human slow-wave activity regulation across the brain

    NARCIS (Netherlands)

    Zavada, Andrei; Strijkstra, Arjen M.; Boerema, Ate S.; Daan, Serge; Beersma, Domien G. M.

    2009-01-01

    The regulation of the timing of sleep is thought to be linked to the temporal dynamics of slow-wave activity [SWA, electroencephalogram (EEG) spectral power in the similar to 0.75-4.5 Hz range] in the cortical non-rapid eye movement (NREM) sleep EEG. In the two-process model of sleep regulation, SWA

  7. The Plasmid-Encoded Regulator Activates Factors Conferring Lysozyme Resistance on Enteropathogenic Escherichia coli Strains▿

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N.

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified. PMID:18997020

  8. The plasmid-encoded regulator activates factors conferring lysozyme resistance on enteropathogenic Escherichia coli strains.

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified.

  9. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive

  10. 77 FR 9954 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2012-02-21

    ...., Mexico and Canada entered into an agreement, ``The North American Free Trade Agreement'' (NAFTA). The... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... review and approval in accordance with the Paperwork Reduction Act: NAFTA Regulations and Certificate of...

  11. Threonine 788 in integrin subunit beta1 regulates integrin activation

    DEFF Research Database (Denmark)

    Nilsson, Stina; Kaniowska, Dorota; Brakebusch, Cord

    2006-01-01

    was identified as a site with major influence on integrin function. The mutation to A788 strongly reduced beta1-dependent cell attachment and exposure of the extracellular 9EG7 epitope, whereas replacement of T789 with alanine did not interfere with the ligand-binding ability. Talin has been shown to mediate......In the present study, the functional role of suggested phosphorylation of the conserved threonines in the cytoplasmic domain of integrin subunit beta1 was investigated. Mutants mimicking phosphorylated and unphosphorylated forms of beta1 were expressed in beta1 deficient GD25 cells. T788 in beta1...... integrin activation, but the talin head domain bound equally well to the wild-type beta1 and the mutants indicating that the T788A mutation caused defect integrin activation by another mechanism. The phosphorylation-mimicking mutation T788D was fully active in promoting cell adhesion. GD25 cells expressing...

  12. [Regulation of G protein-coupled receptor kinase activity].

    Science.gov (United States)

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  13. Symbiotic gut commensal bacteria act as host cathepsin S activity regulators.

    Science.gov (United States)

    Steimle, Alex; Gronbach, Kerstin; Beifuss, Brigitte; Schäfer, Andrea; Harmening, Robin; Bender, Annika; Maerz, Jan Kevin; Lange, Anna; Michaelis, Lena; Maurer, Andreas; Menz, Sarah; McCoy, Kathy; Autenrieth, Ingo B; Kalbacher, Hubert; Frick, Julia-Stefanie

    2016-12-01

    Cathepsin S (CTSS) is a lysosomal protease whose activity regulation is important for MHC-II signaling and subsequent activation of CD4(+) T cell mediated immune responses. Dysregulation of its enzymatic activity or enhanced secretion into extracellular environments is associated with the induction or progression of several autoimmune diseases. Here we demonstrate that commensal intestinal bacteria influence secretion rates and intracellular activity of host CTSS and that symbiotic bacteria, i.e. Bacteroides vulgatus mpk, may actively regulate this process and help to maintain physiological levels of CTSS activities in order to prevent from induction of pathological inflammation. The symbiont-controlled regulation of CTSS activity is mediated by anticipating reactive oxygen species induction in dendritic cells which, in turn, maintains cystatin C (CysC) monomer binding to CTSS. CysC monomers are potent endogenous CTSS inhibitors. This Bacteroides vulgatus caused and CysC dependent CTSS activity regulation is involved in the generation of tolerant intestinal dendritic cells contributing to prevention of T-cell mediated induction of colonic inflammation. Taken together, we demonstrate that symbionts of the intestinal microbiota regulate host CTSS activity and secretion and might therefore be an attractive approach to deal with CTSS associated autoimmune diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Dienger Krista

    2011-09-01

    Full Text Available Abstract Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2; however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient were sensitized using German cockroach (GC feces (frass, the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production, serum IgE levels and airway hyperresponsiveness (AHR were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice

  15. Signal integration by Ca(2+) regulates intestinal stem-cell activity.

    Science.gov (United States)

    Deng, Hansong; Gerencser, Akos A; Jasper, Heinrich

    2015-12-10

    Somatic stem cells maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here we identify Ca(2+) signalling as a central regulator of intestinal stem cell (ISC) activity in Drosophila. We show that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response, and for an associated modulation of cytosolic Ca(2+) oscillations that results in sustained high cytosolic Ca(2+) concentrations. High cytosolic Ca(2+) concentrations induce ISC proliferation by regulating Calcineurin and CREB-regulated transcriptional co-activator (Crtc). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca(2+) oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca(2+) levels allows effective integration of diverse mitogenic signals in ISCs to adapt their proliferative activity to the needs of the tissue.

  16. Effect of histone acetylate modification on the plasminogen activator inhibitor 1 gene regulation in mesangial cells

    Institute of Scientific and Technical Information of China (English)

    刘念

    2013-01-01

    Objective To investigate the effect of histone acetylation change on the transforming growth factor β1(TGF-β1)-associated plasminogen activator inhibitor 1(PAI-1)regulation in mesangial cells(MCs). Methods MCs were

  17. 76 FR 81916 - Agency Information Collection Activities: Notice of Intent To Renew Collection, Regulations...

    Science.gov (United States)

    2011-12-29

    ... From the Federal Register Online via the Government Publishing Office COMMODITY FUTURES TRADING COMMISSION Agency Information Collection Activities: Notice of Intent To Renew Collection, Regulations Governing Bankruptcies of Commodity Brokers AGENCY: Commodity Futures Trading Commission. ACTION:...

  18. Effect of plant growth regulators and activated charcoal on in vitro ...

    African Journals Online (AJOL)

    Administrator

    2011-07-15

    Jul 15, 2011 ... Key words: Activated charcoal, oil palm, plant growth regulators, zygotic embryo. ... all the essential mineral ions, carbon source, vitamins and other organic supplements .... (2010), where MS medium fortified with a low level of ...

  19. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins

    Science.gov (United States)

    Yang, Peng; Subbaiah, Papasani V.

    2015-01-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  20. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by

  1. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by definit

  2. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by definit

  3. Palmitoylation of caspase-6 by HIP14 regulates its activation

    DEFF Research Database (Denmark)

    Skotte, Niels H; Sanders, Shaun S; Singaraja, Roshni R

    2016-01-01

    Caspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased...

  4. Endothelial PI 3-kinase activity regulates lymphocyte diapedesis.

    Science.gov (United States)

    Nakhaei-Nejad, Maryam; Hussain, Amer M; Zhang, Qiu-Xia; Murray, Allan G

    2007-12-01

    Lymphocyte recruitment to sites of inflammation involves a bidirectional series of cues between the endothelial cell (EC) and the leukocyte that culminate in lymphocyte migration into the tissue. Remodeling of the EC F-actin cytoskeleton has been observed after leukocyte adhesion, but the signals to the EC remain poorly defined. We studied the dependence of peripheral blood lymphocyte transendothelial migration (TEM) through an EC monolayer in vitro on EC phosphatidylinositol 3-kinase (PI 3-kinase) activity. Lymphocytes were perfused over cytokine-activated EC using a parallel-plate laminar flow chamber. Inhibition of EC PI 3-kinase activity using LY-294002 or wortmannin decreased lymphocyte TEM (48 +/- 6 or 34 +/- 7%, respectively, vs. control; mean +/- SE; P structure" after intercellular adhesion molecule-1 ligation, whereas this was inhibited by jasplakinolide treatment. A similar fraction of lymphocytes migrated on control or LY-294002-treated EC and localized to interendothelial junctions. However, lymphocytes failed to extend processes below the level of vascular endothelial (VE)-cadherin on LY-294002-treated EC. Together these observations indicate that EC PI 3-kinase activity and F-actin remodeling are required during lymphocyte diapedesis and identify a PI 3-kinase-dependent step following initial separation of the VE-cadherin barrier.

  5. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    Science.gov (United States)

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  6. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  7. BMP-2 up-regulates PTEN expression and induces apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Weifeng Pi

    Full Text Available AIM: To investigate the role of bone morphogenetic protein 2 (BMP-2 in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN and apoptosis of pulmonary artery smooth muscle cells (PASMCs under hypoxia. METHODS: Normal human PASMCs were cultured in growth medium (GM and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2+94% N(2+1% O(2 for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR. Protein expression levels of PTEN, AKT and phosph-AKT (pAKT were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic (PTEN inhibitor and GW9662 (PPARγ antagonist were used to determine the signalling pathways. RESULTS: Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%. BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic and GW9662 (PPARγ inhibitor inhibited PTEN protein expression and recovered PASMCs proliferation rate. CONCLUSION: BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway.

  8. Regulator of G-Protein Signalling-14 (RGS14 Regulates the Activation of αMβ2 Integrin during Phagocytosis.

    Directory of Open Access Journals (Sweden)

    Jenson Lim

    Full Text Available Integrin-mediated phagocytosis, an important physiological activity undertaken by professional phagocytes, requires bidirectional signalling to/from αMβ2 integrin and involves Rap1 and Rho GTPases. The action of Rap1 and the cytoskeletal protein talin in activating αMβ2 integrins, in a RIAM-independent manner, has been previously shown to be critical during phagocytosis in mammalian phagocytes. However, the events downstream of Rap1 are not clearly understood. Our data demonstrate that one potential Rap1 effector, Regulator of G-Protein Signalling-14 (RGS14, is involved in activating αMβ2. Exogenous expression of RGS14 in COS-7 cells expressing αMβ2 results in increased binding of C3bi-opsonised sheep red blood cells. Consistent with this, knock-down of RGS14 in J774.A1 macrophages results in decreased association with C3bi-opsonised sheep red blood cells. Regulation of αMβ2 function occurs through the R333 residue of the RGS14 Ras/Rap binding domain (RBD and the F754 residue of β2, residues previously shown to be involved in binding of H-Ras and talin1 head binding prior to αMβ2 activation, respectively. Surprisingly, overexpression of talin2 or RAPL had no effect on αMβ2 regulation. Our results establish for the first time a role for RGS14 in the mechanism of Rap1/talin1 activation of αMβ2 during phagocytosis.

  9. Prudential regulation and surveillance - essential elements of the banking activity

    Directory of Open Access Journals (Sweden)

    Gheorghe, C. A.

    2012-01-01

    Full Text Available Without being an exhaustive study, the analysis aims to identify the intrinsic correlations of essential notions for the banking field - prudence, prudential supervision, international publishing and sanctions, quartered obviously in risk area. We mention that risk, as related to surveillance and caution, represents the possibility of potential, expected or unexpected events to have a negative impact on the bank capital or the bank revenue. We will not use the notion of control, which seems included in that broader surveillance, but we remind that a prudential supervision aims at preventing internal or external risk at a credit institution level, and at avoiding their spread. Macroeconomic prudential supervision is an internal management activity, given the evolution of constraints that come from outside, the change of activity place or the redefinition of prudential rules at national and international level.

  10. Polyphenol derivatives – potential regulators of neutrophil activity

    OpenAIRE

    2012-01-01

    The study provides new information on the effect of natural polyphenols (derivatives of stilbene – resveratrol, pterostilbene, pinosylvin and piceatannol and derivatives of ferulic acid – curcumin, N-feruloylserotonin) on the activity of human neutrophils in influencing oxidative burst. All the polyphenols tested were found to reduce markedly the production of reactive oxygen species released by human neutrophils on extra-and intracellular levels as well as in cell free system. Moreover, pino...

  11. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    Science.gov (United States)

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  12. Osteoblast differentiation and migration are regulated by Dynamin GTPase activity

    OpenAIRE

    2013-01-01

    Bone formation is controlled by osteoblasts but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0–21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased...

  13. Who watches the watchmen? Regulation of the expression and activity of sirtuins.

    Science.gov (United States)

    Buler, Marcin; Andersson, Ulf; Hakkola, Jukka

    2016-12-01

    Sirtuins (SIRT1-7) are a family of nicotine adenine dinucleotide (NAD(+))-dependent enzymes that catalyze post-translational modifications of proteins. Together, they regulate crucial cellular functions and are traditionally associated with aging and longevity. Dysregulation of sirtuins plays an important role in major diseases, including cancer and metabolic, cardiac, and neurodegerative diseases. They are extensively regulated in response to a wide range of stimuli, including nutritional and metabolic challenges, inflammatory signals or hypoxic and oxidative stress. Each sirtuin is regulated individually in a tissue- and cell-specific manner. The control of sirtuin expression involves all the major points of regulation, including transcriptional and post-translational mechanisms and microRNAs. Collectively, these mechanisms control the protein levels, localization, and enzymatic activity of sirtuins. In many cases, the regulators of sirtuin expression are also their substrates, which lead to formation of intricate regulatory networks and extensive feedback loops. In this review, we highlight the mechanisms mediating the physiologic and pathologic regulation of sirtuin expression and activity. We also discuss the consequences of this regulation on sirtuin function and cellular physiology.-Buler, M., Andersson, U., Hakkola, J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. © FASEB.

  14. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    Science.gov (United States)

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  15. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation.

    Science.gov (United States)

    Norris, Paul C; Gosselin, David; Reichart, Donna; Glass, Christopher K; Dennis, Edward A

    2014-09-02

    Initiation and resolution of inflammation are considered to be tightly connected processes. Lipoxins (LX) are proresolution lipid mediators that inhibit phlogistic neutrophil recruitment and promote wound-healing macrophage recruitment in humans via potent and specific signaling through the LXA4 receptor (ALX). One model of lipoxin biosynthesis involves sequential metabolism of arachidonic acid by two cell types expressing a combined transcellular metabolon. It is currently unclear how lipoxins are efficiently formed from precursors or if they are directly generated after receptor-mediated inflammatory commitment. Here, we provide evidence for a pathway by which lipoxins are generated in macrophages as a consequence of sequential activation of toll-like receptor 4 (TLR4), a receptor for endotoxin, and P2X7, a purinergic receptor for extracellular ATP. Initial activation of TLR4 results in accumulation of the cyclooxygenase-2-derived lipoxin precursor 15-hydroxyeicosatetraenoic acid (15-HETE) in esterified form within membrane phospholipids, which can be enhanced by aspirin (ASA) treatment. Subsequent activation of P2X7 results in efficient hydrolysis of 15-HETE from membrane phospholipids by group IVA cytosolic phospholipase A2, and its conversion to bioactive lipoxins by 5-lipoxygenase. Our results demonstrate how a single immune cell can store a proresolving lipid precursor and then release it for bioactive maturation and secretion, conceptually similar to the production and inflammasome-dependent maturation of the proinflammatory IL-1 family cytokines. These findings provide evidence for receptor-specific and combinatorial control of pro- and anti-inflammatory eicosanoid biosynthesis, and potential avenues to modulate inflammatory indices without inhibiting downstream eicosanoid pathways.

  16. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

    Science.gov (United States)

    Moreno-Arriola, Elizabeth; El Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases.

  17. Regulation of localization and activity of the microtubule depolymerase MCAK.

    Science.gov (United States)

    Tanenbaum, Marvin E; Medema, René H; Akhmanova, Anna

    2011-03-01

    Mitotic Centromere Associated Kinesin (MCAK) is a potent microtubule depolymerizing and catastrophe-inducing factor, which uses the energy of ATP hydrolysis to destabilize microtubule ends. MCAK is localized to inner centromeres, kinetochores and spindle poles of mitotic cells, and is also present in the cytoplasm. Both in interphase and in mitosis, MCAK can specifically accumulate at the growing microtubule ends. Here we discuss the mechanisms, which modulate subcellular localization and activity of MCAK through the interaction with the End Binding (EB) proteins and phosphorylation.

  18. Longitudinal relationships between perceived stress, exercise self-regulation and exercise involvement among physically active adolescents.

    Science.gov (United States)

    Gerber, Markus; Lindwall, Magnus; Brand, Serge; Lang, Christin; Elliot, Catherine; Pühse, Uwe

    2015-01-01

    Stress exposure may undermine exercisers' capability to self-regulate their exercise behaviour. This longitudinal study examined the interplay between perceived stress, exercise self-regulation (assessment of action and coping planning) and participation in vigorous exercise in vocational students. Moreover, this study examined whether high exercise self-regulation moderates the assumed negative relationship between stress and exercise. A sample of 580 physically active vocational students ([Formula: see text] ± s 17.8 ± 1.3 years, 33.8% girls) was assessed. All participants completed two identical validated questionnaires assessing stress, exercise self-regulation and exercise with a span of 10 months in between survey completion periods. The cross-sectional analyses show that high exercise self-regulation attenuated the assumed negative relationship between stress and exercise. In the longitudinal analyses, however, only a non-significant trend was found. Significant longitudinal relationships existed between exercise self-regulation and exercise involvement. Latent difference score models revealed that a drop in the exercise self-regulation was associated with a concurrent decrease in exercise participation. Cross-lagged panel analyses showed that high exercise self-regulation levels positively predicted exercise behaviour, but an inverse relationship was not supported. The findings suggested that higher exercise self-regulation levels were positively associated with future exercise involvement in currently active adolescents. While partial support was found that exercise self-regulation moderated the influence of stress on exercise, the findings demonstrated that higher exercise self-regulation levels had a positive impact on future exercise involvement in already active individuals.

  19. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...ation. Gijon MA, Leslie CC. J Leukoc Biol. 1999 Mar;65(3):330-6. (.png) (.svg) (.html) (.csml) Show Regulation... of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation

  20. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  1. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity.

    Science.gov (United States)

    Zeng, Lingchun; Ehrenreiter, Karin; Menon, Jyotsana; Menard, Ray; Kern, Florian; Nakazawa, Yoko; Bevilacqua, Elena; Imamoto, Akira; Baccarini, Manuela; Rosner, Marsha Rich

    2013-05-01

    MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.

  2. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner.

    Science.gov (United States)

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-04-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.

  3. PDI regulates seizure activity via NMDA receptor redox in rats.

    Science.gov (United States)

    Kim, Ji Yang; Ko, Ah-Rhem; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2017-02-15

    Redox modulation of cysteine residues is one of the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR). Protein disulfide isomerases (PDI), an endoplasmic reticulum (ER) chaperone, plays a crucial role in catalyzing disulfide bond formation, reduction, and isomerization. In the present study, we found that PDI bound to NMDAR in the normal hippocampus, and that this binding was increased in chronic epileptic rats. In vitro thiol reductase assay revealed that PDI increased the amount of thiols on full-length recombinant NR1 protein. PDI siRNA, 5-5'-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin and PDI antibody reduced seizure susceptibility in response to pilocarpine. In addition, PDI knockdown effectively ameliorated spontaneous seizure activity in chronic epileptic rats. Anticonvulsive effects of PDI siRNA were correlated to the reduction of the amount of free- and nitrosothiols on NMDAR, accompanied by the inhibition of PDI activity. However, PDI knockdown did not lead to alteration in basal neurotransmission or ER stress under physiological condition. These findings provide mechanistic insight into sulfhydration of disulfide bonds on NMDAR by PDI, and suggest that PDI may represent a target of potential therapeutics for epilepsy, which avoids a possible side effect on physiological receptor functionality.

  4. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  5. Legal Instruments of Regulation of Development of Banking Activity in Ukraine

    Directory of Open Access Journals (Sweden)

    Senyshch Pavlo M.

    2014-03-01

    Full Text Available The article considers main approaches to identification of essence of legal instruments of regulation of development of the banking activity, identifies the mechanism of legal regulation of the banking activity and its elements and justifies the system and form of legal regulation of the banking activity in Ukraine. It describes subjects of legal regulation of the banking activity at the international level, which are the Basel Committee on Banking Supervision, European Central Bank, IMF, International Financial Reporting Standards Foundation and others. The article considers specific features of the regulatory requirements of Basel II and Basel III and specific features of their introduction into the banking activity. It describes anti-cyclic measures offered by the Basel Committee, which should facilitate formation of such conditions, under which the banking sector could have a lower level of leverage and stability with respect to influence of system risks. Significant attention is paid to international instruments of regulation of the banking activity, which include the following legal acts: Uniform Rules for Collections, Uniform Customs and Practice for Documentary Credits, and Unified Rules for Loan Guarantees. The article shows that the share of subordinate legal acts is significant in the Ukrainian system of banking regulatory and legal acts since the state cannot operatively react to the changing processes in banking at the legislative level and, that is why, basic provisions on carrying out banking activity should be fixed in law.

  6. Regulation and activity of secretory leukoprotease inhibitor (SLPI) is altered in smokers.

    Science.gov (United States)

    Meyer, Megan; Bauer, Rebecca N; Letang, Blanche D; Brighton, Luisa; Thompson, Elizabeth; Simmen, Rosalia C M; Bonner, James; Jaspers, Ilona

    2014-02-01

    A hallmark of cigarette smoking is a shift in the protease/antiprotease balance, in favor of protease activity. However, it has recently been shown that smokers have increased expression of a key antiprotease, secretory leukoprotease inhibitor (SLPI), yet the mechanisms involved in SLPI transcriptional regulation and functional activity of SLPI remain unclear. We examined SLPI mRNA and protein secretion in differentiated nasal epithelial cells (NECs) and nasal lavage fluid (NLF) from nonsmokers and smokers and demonstrated that SLPI expression is increased in NECs and NLF from smokers. Transcriptional regulation of SLPI expression was confirmed using SLPI promoter reporter assays followed by chromatin immunoprecipitation. The role of STAT1 in regulating SLPI expression was further elucidated using WT and stat1(-/-) mice. Our data demonstrate that STAT1 regulates SLPI transcription in epithelial cells and slpi protein in the lungs of mice. Additionally, we reveal that NECs from smokers have increased STAT1 mRNA/protein expression. Finally, we demonstrate that SLPI contained in the nasal mucosa of smokers is proteolytically cleaved but retains functional activity against neutrophil elastase. These results demonstrate that smoking enhances expression of SLPI in NECs in vitro and in vivo, and that this response is regulated by STAT1. In addition, despite posttranslational cleavage of SLPI, antiprotease activity against neutrophil elastase is enhanced in smokers. Together, our findings show that SLPI regulation and activity is altered in the nasal mucosa of smokers, which could have broad implications in the context of respiratory inflammation and infection.

  7. Reciprocal regulation of LXRα activity by ASXL1 and ASXL2 in lipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ui-Hyun; Seong, Mi-ran [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of); Kim, Eun-Joo; Hur, Wonhee; Kim, Sung Woo [Department of Molecular Biology, BK21 Graduate Program, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of); Yoon, Seung Kew [The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University, College of Medicine, Seoul 137-701 (Korea, Republic of); Um, Soo-Jong, E-mail: umsj@sejong.ac.kr [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of)

    2014-01-10

    Highlights: •ASXL1 and ASXL2 directly interact with ligand-bound LXRα. •Ligand-induced LXRα activity is repressed by ASXL1 and activated by ASXL2. •ASXL1 and ASXL2 bind to the LXRE of the LXRα target promoter. •ASXL1 and ASXL2 reciprocally regulate lipogenesis in liver cells. -- Abstract: Liver X receptor alpha (LXRα), a member of the nuclear receptor superfamily, plays a pivotal role in hepatic cholesterol and lipid metabolism, regulating the expression of genes associated with hepatic lipogenesis. The additional sex comb-like (ASXL) family was postulated to regulate chromatin function. Here, we investigate the roles of ASXL1 and ASXL2 in regulating LXRα activity. We found that ASXL1 suppressed ligand-induced LXRα transcriptional activity, whereas ASXL2 increased LXRα activity through direct interaction in the presence of the ligand. Chromatin immunoprecipitation (ChIP) assays showed ligand-dependent recruitment of ASXLs to ABCA1 promoters, like LXRα. Knockdown studies indicated that ASXL1 inhibits, while ASXL2 increases, lipid accumulation in H4IIE cells, similar to their roles in transcriptional regulation. We also found that ASXL1 expression increases under fasting conditions, and decreases in insulin-treated H4IIE cells and the livers of high-fat diet-fed mice. Overall, these results support the reciprocal role of the ASXL family in lipid homeostasis through the opposite regulation of LXRα.

  8. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin.

    Science.gov (United States)

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin; Vogel, Lotte K; Kataoka, Hiroaki; Bugge, Thomas H

    2014-08-01

    The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.

  9. A proteomic view to characterize the effect of chitosan nanoparticle to hepatic cells: is chitosan nanoparticle an enhancer of PI3K/AKT1/mTOR pathway?

    Science.gov (United States)

    Yang, Ming-Hui; Yuan, Shyng-Shiou; Huang, Ying-Fong; Lin, Po-Chiao; Lu, Chi-Yu; Chung, Tze-Wen; Tyan, Yu-Chang

    2014-01-01

    Chitosan nanoparticle, a biocompatible material, was used as a potential drug delivery system widely. Our current investigation studies were the bioeffects of the chitosan nanoparticle uptake by liver cells. In this experiment, the characterizations of chitosan nanoparticles were measured by transmission electron microscopy and particle size analyzer. The average size of the chitosan nanoparticle was 224.6 ± 11.2 nm, and the average zeta potential was +14.08 ± 0.7 mV. Moreover, using proteomic approaches to analyze the differential protein expression patterns resulted from the chitosan nanoparticle uptaken by HepG2 and CCL-13 cells identified several proteins involved in the PI3K/AKT1/mTOR pathway. Our experimental results have demonstrated that the chitosan nanoparticle may involve in the liver cancer cell metastasis and proliferation.

  10. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis.

    Science.gov (United States)

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko

    2009-12-01

    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment.

  11. Emotion Regulation and Excess Weight: Impaired Affective Processing Characterized by Dysfunctional Insula Activation and Connectivity.

    Directory of Open Access Journals (Sweden)

    Trevor Steward

    Full Text Available Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25 and sixteen normal-weight controls (body mass index 18-25 performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures, Maintain (sustain the emotion elicited by negative pictures or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques. When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight.

  12. Emotion Regulation and Excess Weight: Impaired Affective Processing Characterized by Dysfunctional Insula Activation and Connectivity

    Science.gov (United States)

    Mata, Fernanda; Martínez-Zalacaín, Ignacio; Cano, Marta; Contreras-Rodríguez, Oren; Fernández-Aranda, Fernando; Yucel, Murat; Soriano-Mas, Carles; Verdejo-García, Antonio

    2016-01-01

    Emotion-regulation strategies are understood to influence food intake. This study examined the neurophysiological underpinnings of negative emotion processing and emotion regulation in individuals with excess weight compared to normal-weight controls. Fifteen participants with excess-weight (body mass index >25) and sixteen normal-weight controls (body mass index 18–25) performed an emotion-regulation task during functional magnetic resonance imaging. Participants were exposed to 24 negative affective or neutral pictures that they were instructed to Observe (neutral pictures), Maintain (sustain the emotion elicited by negative pictures) or Regulate (down-regulate the emotion provoked by negative pictures through previously trained reappraisal techniques). When instructed to regulate negative emotions by means of cognitive reappraisal, participants with excess weight displayed persistently heightened activation in the right anterior insula. Decreased responsivity was also found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emotion experience in participants with excess weight. Psycho-physiological interaction analyses showed that excess-weight participants had decreased negative functional coupling between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cognitive reappraisal. Our findings support contentions that excess weight is linked to an abnormal pattern of neural activation and connectivity during the experience and regulation of negative emotions, with the insula playing a key role in these alterations. We posit that ineffective regulation of emotional states contributes to the acquisition and preservation of excess weight. PMID:27003840

  13. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-01-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation. PMID:28240314

  14. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Science.gov (United States)

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar

    2017-02-01

    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.

  15. Rubisco activity and regulation as targets for crop improvement.

    Science.gov (United States)

    Parry, Martin A J; Andralojc, P John; Scales, Joanna C; Salvucci, Michael E; Carmo-Silva, A Elizabete; Alonso, Hernan; Whitney, Spencer M

    2013-01-01

    Rubisco (ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase) enables net carbon fixation through the carboxylation of RuBP. However, some characteristics of Rubisco make it surprisingly inefficient and compromise photosynthetic productivity. For example, Rubisco catalyses a wasteful reaction with oxygen that leads to the release of previously fixed CO(2) and NH(3) and the consumption of energy during photorespiration. Furthermore, Rubisco is slow and large amounts are needed to support adequate photosynthetic rates. Consequently, Rubisco has been studied intensively as a prime target for manipulations to 'supercharge' photosynthesis and improve both productivity and resource use efficiency. The catalytic properties of Rubiscos from diverse sources vary considerably, suggesting that changes in turnover rate, affinity, or specificity for CO(2) can be introduced to improve Rubisco performance in specific crops and environments. While attempts to manipulate plant Rubisco by nuclear transformation have had limited success, modifying its catalysis by targeted changes to its catalytic large subunit via chloroplast transformation have been much more successful. However, this technique is still in need of development for most major food crops including maize, wheat, and rice. Other bioengineering approaches for improving Rubisco performance include improving the activity of its ancillary protein, Rubisco activase, in addition to modulating the synthesis and degradation of Rubisco's inhibitory sugar phosphate ligands. As the rate-limiting step in carbon assimilation, even modest improvements in the overall performance of Rubisco pose a viable pathway for obtaining significant gains in plant yield, particularly under stressful environmental conditions.

  16. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    Directory of Open Access Journals (Sweden)

    Anthony J. Robertson

    2013-03-01

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB, which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  17. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.

    2013-03-25

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  18. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.

    Directory of Open Access Journals (Sweden)

    Avery G Frey

    Full Text Available The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.

  19. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  20. 78 FR 19632 - Special Local Regulations; St. Thomas Carnival Watersport Activities, Charlotte Amalie Harbor; St...

    Science.gov (United States)

    2013-04-02

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulations; St. Thomas Carnival... waters of Charlotte Amalie Harbor in St Thomas, USVI during the St. Thomas Carnival Watersport Activities... navigable waters of the United States during the St Thomas Carnival Watersport Activities. On April 21, 2013...

  1. The peroxisome proliferator-activated receptor alpha regulates amino acid metabolism

    NARCIS (Netherlands)

    Kersten, S.; Mandard, S.; Escher, P.; Gonzalez, F.J.; Tafuri, S.; Desvergne, B.; Wahli, W.

    2001-01-01

    The peroxisome proliferator-activated receptor is a ligand-activated transcription factor that plays an important role in the regulation of lipid homeostasis. PPAR mediates the effects of fibrates, which are potent hypolipidemic drugs, on gene expression. To better understand the biological effects

  2. P2X7 receptors regulate engulfing activity of non-stimulated resting astrocytes.

    Science.gov (United States)

    Yamamoto, Mina; Kamatsuka, Yosuke; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki

    2013-09-13

    We previously demonstrated that P2X7 receptors (P2X7Rs) expressed by cultured mouse astrocytes were activated without any exogenous stimuli, but its roles in non-stimulated resting astrocytes remained unknown. It has been reported that astrocytes exhibit engulfing activity, and that the basal activity of P2X7Rs regulates the phagocytic activity of macrophages. In this study, therefore, we investigated whether P2X7Rs regulate the engulfing activity of mouse astrocytes. Uptake of non-opsonized beads by resting astrocytes derived from ddY-mouse cortex time-dependently increased, and the uptaken beads were detected in the intracellular space. The bead uptake was inhibited by cytochalasin D (CytD), an F-actin polymerization inhibitor, and agonists and antagonists of P2X7Rs apparently decreased the uptake. Spontaneous YO-PRO-1 uptake by ddY-mouse astrocytes was reduced by the agonists and antagonists of P2X7Rs, but not by CytD. Down-regulation of P2X7Rs using siRNA decreased the bead uptake by ddY-mouse astrocytes. In addition, compared to in the case of ddY-mouse astrocytes, SJL-mouse astrocytes exhibited higher YO-PRO-1 uptake activity, and their bead uptake was significantly greater. These findings suggest that resting astrocytes exhibit engulfing activity and that the activity is regulated, at least in part, by their P2X7Rs.

  3. Resveratrol inhibits Cdk5 activity through regulation of p35 expression

    Directory of Open Access Journals (Sweden)

    Kulkarni Ashok B

    2011-07-01

    Full Text Available Abstract Background We have previously reported that cyclin-dependent kinase 5 (Cdk5 participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity. Results Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity. Conclusions We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.

  4. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation.

    Science.gov (United States)

    Sharma, Deepika; Kanneganti, Thirumala-Devi

    2016-06-20

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome.

  5. Characterization of Adapter Protein NRBP as a Negative Regulator of T Cell Activation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIN Zhi-xin; WU Jun

    2008-01-01

    Adapter proteins can regulate the gene transcriptions in disparate signaling pathway by interacting with multiple signaling molecules, including T cell activation signaling. Nuclear receptor binding protein (NRBP), a novel adapter protein, represents a small family of evolutionarily conserved proteins with homologs in Caenorhabditis elegans (C. elegans), Drosophila melanogaster (D.melanogaster), mouse and human. Here, we demonstrated that overexpression of NRBP in Jurkat TAg cells specifically impairs T cell receptor (TCR) or phorbol myristate acetate (PMA)/ionomycin-mediated signaling leading to nuclear factor of activated T cells (NFAT) promoter activation. Furthermore, the N-terminal of NRBP is necessary for its regulation of NFAT activation. Finally, we showed that NRBP has minimal effect on both TCR- and PMA-induced CD69 up-regulation in Jurkat TAg cells, which suggests that NRBP may function downstream of protein kinase C (PKC)/Ras pathway.

  6. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2.

    Science.gov (United States)

    Jerrell, Rachel J; Parekh, Aron

    2016-04-01

    ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis.

  7. CDPK1, a calcium-dependent protein kinase, regulates transcriptional activator RSG in response to gibberellins.

    Science.gov (United States)

    Nakata, Masaru; Yuasa, Takashi; Takahashi, Yohsuke; Ishida, Sarahmi

    2009-05-01

    The homeostasis of gibberellins (GAs) is maintained by negative-feedback regulation in plant cells. REPRESSION OF SHOOT GROWTH (RSG) is a transcriptional activator with a basic Leu zipper domain suggested to contribute GA feedback regulation by the transcriptional regulation of genes encoding GA biosynthetic enzymes. The 14-3-3 signaling proteins negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The phosphorylation on Ser-114 of RSG is essential for 14-3-3 binding of RSG; however, the kinase that catalyzes the reaction is unknown. Recently a Ca(2+)-dependent protein kinase (CDPK) was identified as an RSG kinase that promotes 14-3-3 binding of RSG by phosphorylation of the Ser-114 of RSG. Our results suggest that CDPK decodes the Ca(2+) signal produced by GAs and regulates the intracellular localization of RSG in plant cells.

  8. Regulation and function of signal transducer and activator of transcription 3

    Institute of Scientific and Technical Information of China (English)

    Qian-Rong; Qi; Zeng-Ming; Yang

    2014-01-01

    Signal transducer and activator of transcription 3(STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the transcriptional control, posttranslational modification, cellular localization and functional regulation of STAT3. STAT3 can translocate into the nucleus and bind to specific promoter sequences, thereby exerting transcriptional regulation. Recent studies have shown that STAT3 can also translocate into mitochondria, participating in aerobic respiration and apoptosis. In addition, STAT3 plays an important role in inflammation and tumorigenesis by regulating cell proliferation, differentiation and metabolism. Conditional knockout mouse models make it possible to study the physiological function of STAT3 in specific tissues and organs. This review summarizes the latest advances in the understanding of the expression, regulation and function of STAT3 in physiological and tumorigenic processes.

  9. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  10. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  11. Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells.

    Science.gov (United States)

    Filbert, Erin L; Le Borgne, Marie; Lin, Joseph; Heuser, John E; Shaw, Andrey S

    2012-06-01

    Polarization of T cells involves reorientation of the microtubule organizing center (MTOC). Because activated ERK is localized at the immunological synapse, we investigated its role by showing that ERK activation is important for MTOC polarization. Suspecting that ERK phosphorylates a regulator of microtubules, we next focused on stathmin, a known ERK substrate. Our work indicates that during T cell activation, ERK is recruited to the synapse, allowing it to phosphorylate stathmin molecules near the immunological synapse. Supporting an important role of stathmin phosphorylation in T cell activation, we showed that T cell activation results in increased microtubule growth rate dependent on the presence of stathmin. The significance of this finding was demonstrated by results showing that CTLs from stathmin(-/-) mice displayed defective MTOC polarization and defective target cell cytolysis. These data implicate stathmin as a regulator of the microtubule network during T cell activation.

  12. Regulation of DnaA Assembly and Activity: Taking Directions From the Genome

    OpenAIRE

    2011-01-01

    To ensure proper timing of chromosome duplication during the cell cycle, bacteria must carefully regulate the activity of initiator protein, DnaA, and its interactions with the unique replication origin, oriC. Although several protein regulators of DnaA are known, recent evidence suggests that DnaA recognition sites, in multiple genomic locations, also play an important role in controlling assembly of pre-replication complexes. In oriC, closely spaced high and low affinity recognition sites d...

  13. Design for mood: Twenty activity-based opportunities to design for mood regulation

    OpenAIRE

    2015-01-01

    This paper introduces a theory-based approach to design for mood regulation. The main proposition is that design can best influence mood by enabling and stimulating people to engage in a broad range of mood-regulating activities. The first part of the manuscript reviews state-of-the art mood-focused design research initiatives, grouped into four basic intentions, exploring how technology can measure, express, adapt to, or influence mood. The second part provides a functional explanation of th...

  14. Mitochondria-targeted antioxidant enzyme activity regulates radioresistance in human pancreatic cancer cells

    OpenAIRE

    Fisher, Carolyn J.; Goswami, Prabhat C.

    2008-01-01

    In recent years, cellular redox environment gained significant attention as a critical regulator of cellular responses to oxidative stress. Cellular redox environment is a balance between production of reactive oxygen species and their removal by antioxidant enzymes. We investigated the hypothesis that mitochondrial antioxidant enzyme activity regulates radioresistance in human pancreatic cancer cells. Vector-control and manganese superoxide dismutase (MnSOD) overexpressing human pancreatic c...

  15. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism

    OpenAIRE

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala,; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry a...

  16. Relationship between child care centers' compliance with physical activity regulations and children's physical activity, New York City, 2010.

    Science.gov (United States)

    Stephens, Robert L; Xu, Ye; Lesesne, Catherine A; Dunn, Lillian; Kakietek, Jakub; Jernigan, Jan; Khan, Laura Kettel

    2014-10-16

    Physical activity may protect against overweight and obesity among preschoolers, and the policies and characteristics of group child care centers influence the physical activity levels of children who attend them. We examined whether children in New York City group child care centers that are compliant with the city's regulations on child physical activity engage in more activity than children in centers who do not comply. A sample of 1,352 children (mean age, 3.39 years) served by 110 group child care centers in low-income neighborhoods participated. Children's anthropometric data were collected and accelerometers were used to measure duration and intensity of physical activity. Multilevel generalized linear regression modeling techniques were used to assess the effect of center- and child-level factors on child-level physical activity. Centers' compliance with the regulation of obtaining at least 60 minutes of total physical activity per day was positively associated with children's levels of moderate to vigorous physical activity (MVPA); compliance with the regulation of obtaining at least 30 minutes of structured activity was not associated with increased levels of MVPA. Children in centers with a dedicated outdoor play space available also spent more time in MVPA. Boys spent more time in MVPA than girls, and non-Hispanic black children spent more time in MVPA than Hispanic children. To increase children's level of MVPA in child care, both time and type of activity should be considered. Further examination of the role of play space availability and its effect on opportunities for engaging in physical activity is needed.

  17. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    Science.gov (United States)

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  18. Signal transducer and activator of transcription 3 regulation by novel binding partners

    Institute of Scientific and Technical Information of China (English)

    Tadashi; Matsuda; Ryuta; Muromoto; Yuichi; Sekine; Sumihito; Togi; Yuichi; Kitai; Shigeyuki; Kon; Kenji; Oritani

    2015-01-01

    Signal transducers and activators of transcription(STATs) mediate essential signals for various biological processes,including immune responses,hematopoiesis,and neurogenesis. STAT3,for example,is involved in the pathogenesis of various human diseases,including cancers,autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX,zipperinteracting protein kinase,Krüppel-associated box-associated protein 1,Y14,PDZ and LIM domain 2 and signal transducing adaptor protein-2,in the regulation of STAT3-mediated signaling.

  19. Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation and ubiquitination.

    Science.gov (United States)

    Lee, Jiwon; Yang, Dong Joo; Lee, Syann; Hammer, Gary D; Kim, Ki Woo; Elmquist, Joel K

    2016-01-11

    Steroidogenic factor 1 (SF-1) is a transcription factor expressed in the ventral medial nucleus of the hypothalamus that regulates energy homeostasis. However, the molecular mechanisms of SF-1 in the control of energy balance are largely unknown. Here, we show that nutritional conditions, such as the presence or absence of serum, affect SF-1 action. Serum starvation significantly decreased hypothalamic SF-1 levels by promoting ubiquitin-dependent degradation, and sumoylation was required for this process. SF-1 transcriptional activity was also differentially regulated by nutritional status. Under normal conditions, the transcriptional activity of hypothalamic SF-1 was activated by SUMO, but this was attenuated during starvation. Taken together, these results indicate that sumoylation and ubiquitination play crucial roles in the regulation of SF-1 function and that these effects are dependent on nutritional conditions, further supporting the importance of SF-1 in the control of energy homeostasis.

  20. Phosphatidylinositol 4-phosphate 5-kinases in the regulation of T cell activation

    Directory of Open Access Journals (Sweden)

    Loretta eTuosto

    2016-05-01

    Full Text Available Phosphatidylinositol 4,5-biphosphate kinases (PIP5K are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2. PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen presenting cells (APC, spatial organization of the immunological synapse (IS, and costimulation. Moreover, PIP2 serves also as a precursor for the second messengers inositol triphosphate (IP3, diacylglycerol (DAG and phosphatidylinositol 3,4,5-triphosphate (PIP3, which are essential for the activation of signalling pathways regulating cytokine production, cell cycle progression, survival, metabolism and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.

  1. Absence of canonical marks of active chromatin in developmentally regulated genes.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Tilgner, Hagen; Curado, Joao; Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-10-01

    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.

  2. METHODOLOGICAL FEATURES OF REGULATION OF TEACHING ACTIVITIES IN THE INCLUSIVE EDUCATION

    Directory of Open Access Journals (Sweden)

    Yu. N. Sinitsyn

    2016-01-01

    Full Text Available The problem of regulation of the methodological pedagogical activity in the conditions of inclusive education. Inclusion in the educational process of modern school of children and young people with disabilities due to the need to meet regulatory do cuments, as well as the social order on inclusive ed ucation, which is defined as a part of gener al education, implying the availability of education for all. Inclusive education confronts the school a lot of complex issues and new challenges, one of which is to regulate teaching activities in a new environment. Subjects methodological regulation of pedagogical activity in  the  conditions  of inclusive  education  is revealed through three problem areas: understan ding and interpretation of the meaning of the said regulation, value issues in mediating mental pecul iarities and actual problems of the estimate d regulatory framework. Preliminary development of methodological guidelines regulators pedagogical activity in the conditions of inclusive education lining of interpretations  Healthcare  integrity  of  its  content, and the content of knowledge about health, subjectivity, openness, and others. Ascending to postno nclassical methodology.

  3. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    Science.gov (United States)

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.

  4. Motivation and Behavioral Regulation of Physical Activity in Middle-School Students

    Science.gov (United States)

    Dishman, Rod K.; McIver, Kerry L; Dowda, Marsha; Saunders, Ruth P.; Pate, Russell R.

    2015-01-01

    Purpose To examine whether intrinsic motivation and behavioral self-regulation are related to physical activity during middle school. Method Structural equation modeling was applied in cross-sectional and longitudinal tests of self-determination theory. Results Consistent with theory, hypothesized relationships among variables were supported. Integrated regulation and intrinsic motivation were most strongly correlated with moderate-to-vigorous physical activity measured by an accelerometer. Results were independent of a measure of biological maturity. Construct validity and equivalence of measures was confirmed longitudinally between 6th and 7th grades and between boys and girls, non-Hispanic black and white children and overweight and normal weight students. Conclusions Measures of autonomous motivation (identified, integrated, and intrinsic) were more strongly related to physical activity in the 7th grade than measures of controlled motivation (external and introjected), implying that physical activity became more intrinsically motivating for some girls and boys as they moved through middle school. Nonetheless, introjected regulation was related to physical activity in 7th grade, suggesting that internalized social pressures, which can be detrimental to sustained activity and well-being, also became motivating. These results encourage longer prospective studies during childhood and adolescence to clarify how controlled and autonomous motivations for physical activity develop and whether they respond to interventions designed to increase physical activity. PMID:25628178

  5. PAK1 negatively regulates the activity of the Rho exchange factor NET1.

    Science.gov (United States)

    Alberts, Arthur S; Qin, Huajun; Carr, Heather S; Frost, Jeffrey A

    2005-04-01

    Rho family small G-protein activity is controlled by guanine nucleotide exchange factors that stimulate the release of GDP, thus allowing GTP binding. Once activated, Rho proteins control cell signaling through interactions with downstream effector proteins, leading to changes in cytoskeletal organization and gene expression. The ability of Rho family members to modulate the activity of other Rho proteins is also intrinsic to these processes. In this work we show that the Rac/Cdc42hs-regulated protein kinase PAK1 down-regulates the activity of the RhoA-specific guanine nucleotide exchange factor NET1. Specifically, PAK1 phosphorylates NET1 on three sites in vitro: serines 152, 153, and 538. Replacement of serines 152 and 153 with glutamate residues down-regulates the activity of NET1 as an exchange factor in vitro and its ability to stimulate actin stress fiber formation in cells. Using a phospho-specific antibody that recognizes NET1 phosphorylated on serine 152, we show that PAK1 phosphorylates NET1 on this site in cells and that Rac1 stimulates serine 152 phosphorylation in a PAK1-dependent manner. Furthermore, coexpression of constitutively active PAK1 inhibits the ability of NET1 to stimulate actin polymerization only when serines 152 and 153 are present. These data provide a novel mechanism for the control of RhoA activity by Rac1 through the PAK-dependent phosphorylation of NET1 to reduce its activity as a guanine nucleotide exchange factor.

  6. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  7. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Lu, Changxue; Cheng, Sheue-Yann

    2010-03-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis.

  8. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures.

    Science.gov (United States)

    Rutherford, L C; DeWan, A; Lauer, H M; Turrigiano, G G

    1997-06-15

    The excitability of cortical circuits is modulated by interneurons that release the inhibitory neurotransmitter GABA. In primate and rodent visual cortex, activity deprivation leads to a decrease in the expression of GABA. This suggests that activity is able to adjust the strength of cortical inhibition, but this has not been demonstrated directly. In addition, the nature of the signal linking activity to GABA expression has not been determined. Activity is known to regulate the expression of the neurotrophin brain-derived neurotrophic factor (BDNF), and BDNF has been shown to influence the phenotype of GABAergic interneurons. We use a culture system from postnatal rat visual cortex to test the hypothesis that activity is regulating the strength of cortical inhibition through the regulation of BDNF. Cultures were double-labeled against GABA and the neuronal marker MAP2, and the percentage of neurons that were GABA-positive was determined. Blocking spontaneous activity in these cultures reversibly decreased the number of GABA-positive neurons without affecting neuronal survival. Voltage-clamp analysis of inhibitory currents demonstrated that activity blockade also decreased GABA-mediated inhibition onto pyramidal neurons and raised pyramidal neuron firing rates. All of these effects were prevented by incubation with BDNF during activity blockade, but not by neurotrophin 3 or nerve growth factor. Additionally, blockade of neurotrophin signaling mimicked the effects of activity blockade on GABA expression. These data suggest that activity regulates cortical inhibition through a BDNF-dependent mechanism and that this neurotrophin plays an important role in the control of cortical excitability.

  9. AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Isabella Irrcher

    Full Text Available The mechanisms by which PGC-1alpha gene expression is controlled in skeletal muscle remains largely undefined. Thus, we sought to investigate the transcriptional regulation of PGC-1alpha using AICAR, an activator of AMPK, that is known to increase PGC-1alpha expression. A 2.2 kb fragment of the human PGC-1alpha promoter was cloned and sequence analysis revealed that this TATA-less sequence houses putative consensus sites including a GC-box, a CRE, several IRSs, a SRE, binding sites for GATA, MEF2, p 53, NF-kappaB, and EBox binding proteins. AMPK activation for 24 hours increased PGC-1alpha promoter activity with concomitant increases in mRNA expression. The effect of AICAR on transcriptional activation was mediated by an overlapping GATA/EBox binding site at -495 within the PGC-1alpha promoter based on gel shift analyses that revealed increases in GATA/EBox DNA binding. Mutation of the EBox within the GATA/EBox binding site in the promoter reduced basal promoter activity and completely abolished the AICAR effect. Supershift analyses identified USF-1 as a DNA binding transcription factor potentially involved in regulating PGC-1alpha promoter activity, which was confirmed in vivo by ChIP. Overexpression of either GATA-4 or USF-1 alone increased the p851 PGC-1alpha promoter activity by 1.7- and 2.0-fold respectively, while co-expression of GATA-4 and USF-1 led to an additive increase in PGC-1alpha promoter activity. The USF-1-mediated increase in PGC-1alpha promoter activation led to similar increases at the mRNA level. Our data identify a novel AMPK-mediated regulatory pathway that regulates PGC-1alpha gene expression. This could represent a potential therapeutic target to control PGC-1alpha expression in skeletal muscle.

  10. The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie.

    Science.gov (United States)

    Badouel, Caroline; Gardano, Laura; Amin, Nancy; Garg, Ankush; Rosenfeld, Robyn; Le Bihan, Thierry; McNeill, Helen

    2009-03-01

    The Hippo kinase pathway plays a central role in growth regulation and tumor suppression from flies to man. The Hippo/Mst kinase phosphorylates and activates the NDR family kinase Warts/Lats, which phosphorylates and inhibits the transcriptional activator Yorkie/YAP. Current models place the FERM-domain protein Expanded upstream of Hippo kinase in growth control. To understand how Expanded regulates Hippo pathway activity, we used affinity chromatography and mass spectrometry to identify Expanded-binding proteins. Surprisingly we find that Yorkie is the major Expanded-binding protein in Drosophila S2 cells. Expanded binds Yorkie at endogenous levels via WW-domain-PPxY interactions, independently of Yorkie phosphorylation at S168, which is critical for 14-3-3 binding. Expanded relocalizes Yorkie from the nucleus, abrogating its nuclear activity, and it can regulate growth downstream of warts in vivo. These data lead to a new model whereby Expanded functions downstream of Warts, in concert with 14-3-3 proteins to sequester Yorkie in the cytoplasm, inhibiting growth activity of the Hippo pathway.

  11. Allopregnanolone Elevations Following Pregnenolone Administration are Associated with Enhanced Activation of Emotion Regulation Neurocircuits

    Science.gov (United States)

    Sripada, Rebecca K.; Marx, Christine E.; King, Anthony P.; Rampton, Jessica C.; Ho, Shaun; Liberzon, Israel

    2013-01-01

    Background The neurosteroid allopregnanolone is a potent allosteric modulator of the GABA(A) receptor with anxiolytic properties. Exogenous administration of allopregnanolone reduces anxiety, and allopregnanolone blockade impairs social and affective functioning. However, the neural mechanism whereby allopregnanolone improves mood and reduces anxiety is unknown. In particular, brain imaging has not been used to link neurosteroid effects to emotion regulation neurocircuitry. Methods To investigate the brain basis of allopregnanolone’s impact on emotion regulation, participants were administered 400mg of pregnenolone (N=16) or placebo (N=15) and underwent 3T fMRI while performing the Shifted-Attention Emotion Appraisal Task (SEAT), which probes emotional processing and regulation. Results Compared to placebo, allopregnanolone was associated with reduced activity in the amygdala and insula across all conditions. During the appraisal condition, allopregnanolone increased activity in the dorsal medial prefrontal cortex and enhanced connectivity between the amygdala and dorsal medial prefrontal cortex, an effect that was associated with reduced self-reported anxiety. Conclusions These results demonstrate that in response to emotional stimuli, allopregnanolone reduces activity in regions associated with generation of negative emotion. Furthermore, allopregnanolone may enhance activity in regions linked to regulatory processes. Aberrant activity in these regions has been linked to anxiety psychopathology. These results thus provide initial neuroimaging evidence that allopregnanolone may be a target for pharmacological intervention in the treatment of anxiety disorders, and suggest potential future directions for research into neurosteroid effects on emotion regulation neurocircuitry. PMID:23348009

  12. FOXO1 regulates dendritic cell activity through ICAM-1 and CCR7.

    Science.gov (United States)

    Dong, Guangyu; Wang, Yu; Xiao, Wenmei; Pacios Pujado, Sandra; Xu, Fanxing; Tian, Chen; Xiao, E; Choi, Yongwon; Graves, Dana T

    2015-04-15

    The transcription factor FOXO1 regulates cell function and is expressed in dendritic cells (DCs). We investigated the role of FOXO1 in activating DCs to stimulate a lymphocyte response to bacteria. We show that bacteria induce FOXO1 nuclear localization through the MAPK pathway and demonstrate that FOXO1 is needed for DC activation of lymphocytes in vivo. This occurs through FOXO1 regulation of DC phagocytosis, chemotaxis, and DC-lymphocyte binding. FOXO1 induces DC activity by regulating ICAM-1 and CCR7. FOXO1 binds to the CCR7 and ICAM-1 promoters, stimulates CCR7 and ICAM-1 transcriptional activity, and regulates their expression. This is functionally important because transfection of DCs from FOXO1-deleted CD11c.Cre(+)FOXO1(L/L) mice with an ICAM-1-expressing plasmid rescues the negative effect of FOXO1 deletion on DC bacterial phagocytosis and chemotaxis. Rescue with both CCR7 and ICAM-1 reverses impaired DC homing to lymph nodes in vivo when FOXO1 is deleted. Moreover, Ab production following injection of bacteria is significantly reduced with lineage-specific FOXO1 ablation. Thus, FOXO1 coordinates upregulation of DC activity through key downstream target genes that are needed for DCs to stimulate T and B lymphocytes and generate an Ab defense to bacteria.

  13. Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines.

    Science.gov (United States)

    Lai, Aaron Y; Todd, Kathryn G

    2006-06-01

    The tetracycline derivatives minocycline (MINO) and doxycycline (DOXY) have been shown to be neuroprotective in in vivo and in vitro models of stroke. This neuroprotection is thought to be due to the suppression of microglial activation. However, the specific molecular parameters in microglia of the tetracyclines' effect are not understood. We subjected cultured rat microglial and neuronal cells to in vitro hypoxia and examined the effects of MINO and DOXY pre-treatments. Our data showed that MINO and DOXY protect against hypoxia-induced neuronal death by a mechanism dependent on regulation of microglial factors, but likely unrelated to regulation of microglial proliferation/viability. Both MINO and DOXY suppressed the hypoxic activation of ED-1, a marker for microglial activation. Morphological analyses of hypoxic microglia using the microglial marker Iba1 revealed that treatment with MINO and DOXY caused a higher percentage of microglia to remain in a non-activated state. MINO suppressed the hypoxic upregulation of pro-inflammatory agents nitric oxide (NO), interleukin-1 beta (IL-1beta), and tumor necrosis factor alpha (TNF-alpha), while DOXY down-regulated only NO and IL-1beta. In contrast, the hypoxic activation of pro-survival/neuroprotective microglial proteins, such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), were unaffected by tetracycline treatments. Taken together, these results suggest that MINO and DOXY may provide neuroprotection against stroke by selectively down-regulating microglial toxic factors while maintaining functional pro-survival factors.

  14. Geometry and dynamics of activity-dependent homeostatic regulation in neurons.

    Science.gov (United States)

    Olypher, Andrey V; Prinz, Astrid A

    2010-06-01

    To maintain activity in a functional range, neurons constantly adjust membrane excitability to changing intra- and extracellular conditions. Such activity-dependent homeostatic regulation (ADHR) is critical for normal processing of the nervous system and avoiding pathological conditions. Here, we posed a homeostatic regulation problem for the classical Morris-Lecar (ML) model. The problem was motivated by the phenomenon of the functional recovery of stomatogastric neurons in crustaceans in the absence of neuromodulation. In our study, the regulation of the ionic conductances in the ML model depended on the calcium current or the intracellular calcium concentration. We found an asymptotic solution to the problem under the assumption of slow regulation. The solution provides a full account of the regulation in the case of correlated or anticorrelated changes of the maximal conductances of the calcium and potassium currents. In particular, the solution shows how the target and parameters of the regulation determine which perturbations of the conductances can be compensated by the ADHR. In some cases, the sets of compensated initial perturbations are not convex. On the basis of our analysis we formulated specific questions for subsequent experimental and theoretical studies of ADHR.

  15. The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1.

    Science.gov (United States)

    Ritter, Andreas; Sanhaji, Mourad; Steinhäuser, Kerstin; Roth, Susanne; Louwen, Frank; Yuan, Juping

    2015-03-30

    The mitotic centromere-associated kinesin (MCAK), a potent microtubule depolymerase, is involved in regulating microtubule dynamics. The activity and subcellular localization of MCAK are tightly regulated by key mitotic kinases, such as Polo-like kinase 1 (Plk1) by phosphorylating multiple residues in MCAK. Since Plk1 phosphorylates very often different residues of substrates at different stages, we have dissected individual phosphorylation of MCAK by Plk1 and characterized its function in more depth. We have recently shown that S621 in MCAK is the major phosphorylation site of Plk1, which is responsible for regulating MCAK's degradation by promoting the association of MCAK with APC/CCdc20. In the present study, we have addressed another two residues phosphorylated by Plk1, namely S632/S633 in the C-terminus of MCAK. Our data suggest that Plk1 phosphorylates S632/S633 and regulates its catalytic activity in mitosis. This phosphorylation is required for proper spindle assembly during early phases of mitosis. The subsequent dephosphorylation of S632/S633 might be necessary to timely align the chromosomes onto the metaphase plate. Therefore, our studies suggest new mechanisms by which Plk1 regulates MCAK: the degradation of MCAK is controlled by Plk1 phosphorylation on S621, whereas its activity is modulated by Plk1 phosphorylation on S632/S633 in mitosis.

  16. RNAi screen identifies Jarid1b as a major regulator of mouse HSC activity

    Science.gov (United States)

    Cellot, Sonia; Hope, Kristin J.; Chagraoui, Jalila; Sauvageau, Martin; Deneault, Éric; MacRae, Tara; Mayotte, Nadine; Wilhelm, Brian T.; Landry, Josette R.; Ting, Stephen B.; Krosl, Jana; Humphries, Keith; Thompson, Alexander; Sauvageau, Guy

    2017-01-01

    Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain–containing family of demethylases comprises 27 members that target mono-, di-, and trimethylated lysine residues of histone (or nonhistone) proteins. To evaluate their role in regulation of hematopoietic stem cell (HSC) behavior, we performed an in vivo RNAi-based functional screen and demonstrated that Jarid1b and Jhdm1f play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSCs with preserved long-term in vivo lymphomyeloid differentiation potential. Through RNA sequencing analysis, Jarid1b knockdown was associated with increased expression levels of several HSC regulators (Hoxa7, Hoxa9, Hoxa10, Hes1, Gata2) and reduced levels of differentiation-associated genes. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative regulator of HSC activity and Jhdmlf as a positive regulator of HSC activity. PMID:23777767

  17. Functional analysis of non-hotspot AKT1 mutants found in human breast cancers identifies novel driver mutations: implications for personalized medicine

    OpenAIRE

    Yi, Kyung H.; Axtmayer, Jossette; Gustin, John P.; Rajpurohit, Anandita; Lauring, Josh

    2012-01-01

    The phosphatidylinositol 3-kinase (PI3-kinase)-Akt-mTOR pathway is mutated at high frequency in human breast cancer, and this pathway is the focus of active drug discovery and clinical investigation. Trials of personalized cancer therapy seek to leverage knowledge of cancer gene mutations by using mutations to guide the choice of targeted therapies. At the same time, cancer genome sequencing studies are identifying low frequency variants of unknown significance in known cancer genes, as well ...

  18. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem.

    Energy Technology Data Exchange (ETDEWEB)

    Matt Vaughn Greg Harrington Daniel R Bush

    2002-08-06

    This project was based on our discovery that sucrose acts as a signaling molecule that regulates the activity of a proton-sucrose symporter in sugar beet leaf tissue. A major objective here was determining how sucrose transporter activity is being regulated. When sucrose accumulates in the phloem sucrose transport activity drops dramatically. Western blots of plasma membrane proteins isolated from sucrose treated leaves showed that the loss of sucrose transport activity was proportional to a decline in symporter abundance, demonstrating that sucrose transport is regulated by changes in the amount of BvSUT1 protein. BvSUT1 transcript levels decreased in parallel with the loss of sucrose transport activity. Nuclear run-on experiments demonstrated that BvSUT1 gene transcription was repressed significantly in nuclei from leaves fed 100 mM exogenous sucrose, showing that sucrose-dependent modulation of BvSUT1 mRNA levels is mediated by changes in transcription. To identify which secondary messenger systems might be involved in regulating symporter activity, we used a variety of pharmacological agents to probe for a role of calcium or protein phosphorylation in sucrose signaling. In a detailed analysis, only okadaic acid altered sucrose transport activity. These results suggest a protein phosphatase is involved. We hypothesized that protein kinase inhibitors would have a neutral affect or increase symporter transcription. Transpirational feeding of the protein kinase inhibitor staurosporine had no impact on sucrose transport while calphostin C, an inhibitor of protein kinase C, caused a 60% increase. These data provided good evidence that protein phosphorylation plays a central role in regulating sucrose symporter expression and sucrose transport activity. To determine whether protein phosphorylation is involved in sucrose regulation of proton-sucrose symporter activity, we pre-fed leaves with staurosporine for 4 h and then fed the treated leaves water or 100 mM sucrose

  19. Arginine kinase of the flagellate protozoa Trypanosoma cruzi. Regulation of its expression and catalytic activity.

    Science.gov (United States)

    Alonso, G D; Pereira, C A; Remedi, M S; Paveto, M C; Cochella, L; Ivaldi, M S; Gerez de Burgos, N M; Torres, H N; Flawiá, M M

    2001-06-01

    In epimastigotes of Trypanosoma cruzi, the etiological agent of Chagas' disease, arginine kinase activity increased continuously during the exponential phase of growth. A correlation between growth rate, enzyme-specific activity and enzyme protein was observed. Arginine kinase-specific activity, expressed as a function of enzyme protein, remains roughly constant up to 18 days of culture. In the whole range of the culture time mRNA levels showed minor changes indicating that the enzyme activity is post-transcriptionally regulated. Arginine kinase could be proposed as a modulator of energetic reserves under starvation stress condition.

  20. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    DEFF Research Database (Denmark)

    Brandauer, Josef; Vienberg, Sara Gry; Andersen, Marianne Agerholm

    2013-01-01

    for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependant. One-legged knee-extensor exercise training in humans increased Nampt protein......-activated protein kinase (AMPK) increases sirtuin activity by elevating NAD levels. As NAM directly inhibits sirtuins, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary...

  1. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    Directory of Open Access Journals (Sweden)

    Zhen-Xing Wan

    2014-02-01

    Full Text Available PA28γ (also called REGγ, 11Sγ or PSME3 negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  2. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.

    Science.gov (United States)

    Buchanan, R L; Lewis, D F

    1984-08-01

    Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.

  3. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    Directory of Open Access Journals (Sweden)

    Grazia Tundo

    Full Text Available The deposition of β-amyloid (Aβ into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD. Insulin-degrading-enzyme (IDE is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  4. [Effect of plant growth regulators on physiological activity of Bradyrhizobium japonicum ].

    Science.gov (United States)

    Leonova, N O; Tytova, L V; Tantsiurenko, O V; Antypchuk, A F

    2005-01-01

    Influence of plant growth regulators Ivin, Emistim C, Eney and Agrostimulin on the biomass production and exopolymers synthesis of soybean nodule bacteria, which have contrasting symbiotic properties, and glutamine synthetase activity of their cell-free extracts were studied. It was shown that the processes of the biomass and exopolymers accumulation had an opposite direction. Of all preparations only Ivin and Agrostimulin intensificol growth activity of the microorganisms under study. The level of glutamine synthetase activity and this enzymatic reaction specificity to the bivalent metal ions were determined by the special features of Bradyrhizobium strains and nature of the plant growth regulators. Only in the presence of Eney the increase of glutamine synthetase activity of both cultures of Bradyrhizobium japonicum was established.

  5. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism.

    Science.gov (United States)

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry and immunofluorescence microscopy reveal that CYLD increases the ability of noscapine to induce mitotic arrest and apoptosis. Examination of cellular microtubules as well as in vitro assembled microtubules shows that CYLD enhances the effect of noscapine on microtubule polymerization. Microtubule cosedimentation and fluorescence titration assays further reveal that CYLD interacts with microtubule outer surface and promotes noscapine binding to microtubules. These findings thus demonstrate CYLD as a critical regulator of noscapine activity and have important implications for ALL treatment.

  6. The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9.

    Science.gov (United States)

    Gutiérrez-López, Maria Dolores; Gilsanz, Alvaro; Yáñez-Mó, María; Ovalle, Susana; Lafuente, Esther M; Domínguez, Carmen; Monk, Peter N; González-Alvaro, Isidoro; Sánchez-Madrid, Francisco; Cabañas, Carlos

    2011-10-01

    ADAM17/TACE is a metalloproteinase responsible for the shedding of the proinflammatory cytokine TNF-α and many other cell surface proteins involved in development, cell adhesion, migration, differentiation, and proliferation. Despite the important biological function of ADAM17, the mechanisms of regulation of its metalloproteinase activity remain largely unknown. We report here that the tetraspanin CD9 and ADAM17 partially co-localize on the surface of endothelial and monocytic cells. In situ proximity ligation, co-immunoprecipitation, crosslinking, and pull-down experiments collectively demonstrate a direct association between these molecules. Functional studies reveal that treatment with CD9-specific antibodies or neoexpression of CD9 exert negative regulatory effects on ADAM17 sheddase activity. Conversely, CD9 silencing increased the activity of ADAM17 against its substrates TNF-α and ICAM-1. Taken together, our results show that CD9 associates with ADAM17 and, through this interaction, negatively regulates the sheddase activity of ADAM17.

  7. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lixin Liu

    2015-07-01

    Full Text Available As a protective factor for lipopolysaccharide (LPS-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS. Enzyme-linked immunosorbent assay (ELISA analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB and mitogen-activated protein kinase (MAPKs and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK, p38 mitogen-activated protein kinase (p38MAPK and inhibitor of NF-κB (IκB phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR, ribosomal protein S6 kinase 1 (S6K1, serine/threonine protein kinase Akt 1 (AKT1, sterol regulatory element binding protein 1 (SREBP1 and peroxisome proliferator-activated receptor gamma

  8. MicroRNA-4443 regulates mast cell activation by T cell-derived microvesicles.

    Science.gov (United States)

    Shefler, Irit; Salamon, Pazit; Levi-Schaffer, Francesca; Mor, Adam; Hershko, Alon Y; Mekori, Yoseph A

    2017-08-16

    The mechanism by which mast cells (MCs) are activated in T cell-mediated inflammatory processes remains elusive. Recently, we have shown that microvesicles derived from activated T cells (mvT*s) can stimulate MCs to degranulate and release several cytokines. The aim of this study was to characterize the contribution of microRNAs (miRs) delivered by microvesicles to MC activation. miR profiling was performed with NanoString technology and validated by using real-time PCR. The biological role of mvT* miR was verified by overexpression of miRs in MCs using mimic or inhibitory molecules and analyzing the effect on their predicted targets. mvT*s were found to downregulate the expression of the tyrosine phosphatase protein tyrosine phosphatase receptor type J (PTPRJ), a known extracellular signal-regulated kinase inhibitor. Bioinformatics analysis predicted that miR-4443 regulates the PTPRJ gene expression. Indeed, miR-4443, which was present in mvT*s, was also found to be overexpressed in human MCs stimulated with these MVs. α-Amanitin insensitivity confirmed that overexpression of miR-4443 was not due to transcriptional activation. The luciferase reporter assay indicated that the 3' untranslated region of PTPRJ was targeted by this miR. Transfection of MCs with mimic or inhibitor of miR-4443 resulted in decreased or enhanced PTPRJ expression, respectively. Furthermore, miR-4443 regulated extracellular signal-regulated kinase phosphorylation and IL-8 release in MCs activated by mvT*s. These results support a scenario by which T cell-derived microvesicles act as intercellular carriers of functional miR-4443, which might exert heterotypic regulation of PTPRJ gene expression in MCs, leading to their activation in the context of T cell-mediated inflammatory processes. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Voltage regulation and reactive power supply capability of distributed generation : applications in active distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Katiraei, F.; Yazdani, A.; Uluski, R. [Quanta Technology, New York, NY (United States); Vaziri, M. [Pacific Gas and Electric Co., San Fransisco, CA (United States)

    2009-07-01

    Problems regarding voltage regulation on distribution feeders arise when there is a large demand for reactive power. The addition of distributed generation changes the power flow and voltage profile of a power system. The current practice is to use distributed generation passively and perform voltage regulation as before. However, this may not function well with high distributed generation penetration. This presentation discussed voltage regulation and the reactive power supply capability of distributed generation. Several applications in active distribution systems were presented. Specifically, the presentation discussed distributed interconnection challenges; utility practices and limiting factors; and the real and reactive power capabilities of distributed generation. A case study was also presented. It was concluded that in order for distributed generation to actively participate in real and reactive power management of distribution systems, a change is needed in standards and utility guidelines, along with a better understanding of distributed generation technologies and controls. 1 tab., 11 figs.

  10. PI3K{gamma} activation by CXCL12 regulates tumor cell adhesion and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Monterrubio, Maria; Mellado, Mario; Carrera, Ana C. [Department of Immunology and Oncology, Centro Nacional de Biotecnologia/CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain); Rodriguez-Frade, Jose Miguel, E-mail: jmrfrade@cnb.csic.es [Department of Immunology and Oncology, Centro Nacional de Biotecnologia/CSIC, Campus de Cantoblanco, E-28049 Madrid (Spain)

    2009-10-16

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3K{gamma} regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  11. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  12. Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds

    Science.gov (United States)

    Lee, Kang-Lok; Yoo, Ji-Sun; Oh, Gyeong-Seok; Singh, Atul K.; Roe, Jung-Hye

    2017-01-01

    Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor; SoxR that senses reactive compounds directly through oxidation of its [2Fe–2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor. Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p-Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed

  13. Extracellular-regulated kinase 2 is activated by the enhancement of hinge flexibility.

    OpenAIRE

    Sours, Kevin M.; Xiao,Yao; Ahn, Natalie G.

    2014-01-01

    Protein motions underlie conformational and entropic contributions to enzyme catalysis; however, relatively little is known about the ways in which this occurs. Studies of the mitogen-activated protein kinase ERK2 (extracellular-regulated protein kinase 2) by hydrogen-exchange mass spectrometry suggest that activation enhances backbone flexibility at the linker between N- and C-terminal domains while altering nucleotide binding mode. Here, we address the hypothesis that enhanced backbone flex...

  14. p21-activated kinase 4 regulates mitotic spindle positioning and orientation.

    Science.gov (United States)

    Bompard, Guillaume; Morin, Nathalie

    2012-01-01

    During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will specify the two daughter cells. Spindle positioning requires regulation of MT dynamics, involving depolymerase activities together with cortical and kinetochore-mediated pushing and pulling forces acting on astral MTs and kinetochore fibres. These forces rely on MT motor activities. Cortical pulling forces exerted on astral MTs depend upon dynein/dynactin complexes and are essential in both symmetric and asymmetric cell division. A well-established spindle positioning pathway regulating the cortical targeting of dynein/dynactin involves the conserved LGN (Leu-Gly-Asn repeat-enriched-protein) and NuMA (microtubule binding nuclear mitotic apparatus protein) complex. Spindle orientation is also regulated by integrin-mediated cell adhesion and actin retraction fibres that respond to mechanical stress and are influenced by the microenvironment of the dividing cell. Altering the capture of astral MTs or modulating pulling forces affects spindle position, which can impair cell division, differentiation and embryogenesis. In this general scheme, the activity of mitotic kinases such as Auroras and Plk1 (Polo-like kinase 1) is crucial. Recently, the p21-activated kinases (PAKs) emerged as novel important players in mitotic progression. In our recent article, we demonstrated that PAK4 regulates spindle positioning in symmetric cell division. In this commentary, and in light of recent published studies, we discuss how PAK4 could participate in the regulation of mechanisms involved in spindle positioning and orientation.

  15. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism

    DEFF Research Database (Denmark)

    Ard, Ryan; Mulatz, Kirk; Abramovici, Hanan

    2012-01-01

    Rho GTPases share a common inhibitor, Rho guanine nucleotide dissociation inhibitor (RhoGDI), which regulates their expression levels, membrane localization, and activation state. The selective dissociation of individual Rho GTPases from RhoGDI ensures appropriate responses to cellular signals, b...

  16. Cycling for Students with ASD: Self-Regulation Promotes Sustained Physical Activity

    Science.gov (United States)

    Todd, Teri; Reid, Greg; Butler-Kisber, Lynn

    2010-01-01

    Individuals with autism often lack motivation to engage in sustained physical activity. Three adolescents with severe autism participated in a 16-week program and each regularly completed 30 min of cycling at the end of program. This study investigated the effect of a self-regulation instructional strategy on sustained cycling, which included…

  17. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity.

    Directory of Open Access Journals (Sweden)

    Robert W Thompson

    2008-03-01

    Full Text Available Cationic amino acid transporters (CAT are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2(-/- mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2(-/- mice developed stronger IFN-gamma responses, nitric oxide (NO production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2(-/- mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2(-/- mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity.

  18. Cu,Zn Superoxide Dismutase Maturation and Activity Are Regulated by COMMD1

    NARCIS (Netherlands)

    Vonk, Willianne I. M.; Wijmenga, Cisca; Berger, Ruud; van de Sluis, Bart; Klomp, Leo W. J.

    2010-01-01

    The maturation and activation of the anti-oxidant Cu, Zn superoxide dismutase (SOD1) are highly regulated processes that require several post-translational modifications. The maturation of SOD1 is initiated by incorporation of zinc and copper ions followed by disulfide oxidation leading to the forma

  19. 77 FR 477 - Agency Information Collection Activities: Rules Relating to Regulation of Domestic Exchange...

    Science.gov (United States)

    2012-01-05

    ... COMMISSION Agency Information Collection Activities: Rules Relating to Regulation of Domestic Exchange-Traded... solicits comments on rules related to risk disclosure concerning exchange traded commodity options. DATES... introducing brokers: (1) To provide their customers with standard risk disclosure statements concerning the...

  20. A switch from low to high Shh activity regulates establishment of limb progenitors and signaling centers

    Science.gov (United States)

    The patterning and growth of the embryonic vertebrate limb is dependent on Sonic hedgehog (Shh), a morphogen that regulates the activity of Gli transcription factors. However, "Shh" expression is not observed during the first 12 hours of limb development. During this phase, the limb bud is prepatter...

  1. A Kinesthetic Activity Using LEGO Bricks and Buckets for Illustrating the Regulation of Blood Sugar

    Science.gov (United States)

    Urschler, Margaret; Meidl, Katherine; Browning, Samantha; Khan, Basima; Milanick, Mark

    2015-01-01

    This article describes how, when first faced with understanding blood sugar regulation, students often resort to simple memorization.Many students would like to get more involved with the conceptual framework but do not know how to start. The authors have developed an activity based on the Modell approach, a "view from the inside." This…

  2. 78 FR 78375 - Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers

    Science.gov (United States)

    2013-12-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers Correction In notice document 2013-30220 appearing on page 76851 of the...

  3. Effects of ethanol feeding on the activity and regulation of hepatic carnitine palmitoyltransferase I

    NARCIS (Netherlands)

    Guzman, M.; Geelen, M.J.H.

    1988-01-01

    The effects of ethanol administration on activity and regulation of carnitine palmitoyltransferase I (CPT-I) were studied in hepatocytes isolated from rats fed a liquid, high-fat diet containing 36% of total calories as ethanol or an isocaloric amount of sucrose. Cells were isolated at several time

  4. Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons

    Science.gov (United States)

    Kirby, Elizabeth D.; Friedman, Aaron R.; Covarrubias, David; Ying, Carl; Sun, Wayne G.; Goosens, Ki A.; Sapolsky, Robert M.; Kaufer, Daniela

    2014-01-01

    Impaired regulation of emotional memory is a feature of several affective disorders, including depression, anxiety and post-traumatic stress disorder. Such regulation occurs, in part, by interactions between the hippocampus and the basolateral amygdala (BLA). Recent studies have indicated that within the adult hippocampus, newborn neurons may contribute to support of emotional memory, and that regulation of hippocampal neurogenesis is implicated in depressive disorders. How emotional information impacts newborn neurons in adults is not clear. Given the role of the BLA in hippocampus-dependent emotional memory, we investigated whether hippocampal neurogenesis was sensitive to emotional stimuli from the BLA. We show that BLA lesions suppress adult neurogenesis, while lesions of the central nucleus of the amygdala do not. Similarly, we show that reducing BLA activity through viral vector-mediated overexpression of an outwardly rectifying potassium channel suppresses neurogenesis. We also show that BLA lesions prevent selective activation of immature newborn neurons in response to a fear conditioning task. These results demonstrate that BLA activity regulates adult hippocampal neurogenesis and the fear context-specific activation of newborn neurons. Together, these findings denote functional implications for proliferation and recruitment of new neurons into emotional memory circuits. PMID:21670733

  5. Bias in the assessment of regulation activities in studying at the level of higher education

    NARCIS (Netherlands)

    Minnaert, A; Janssen, PJ

    1997-01-01

    This article presents the results of a comparison between two questionnaires about regulation activities related to studying in higher education. The questionnaire developed within a different educational setting appears to be less discriminative and predictive than an equally developed local versio

  6. A Kinesthetic Activity Using LEGO Bricks and Buckets for Illustrating the Regulation of Blood Sugar

    Science.gov (United States)

    Urschler, Margaret; Meidl, Katherine; Browning, Samantha; Khan, Basima; Milanick, Mark

    2015-01-01

    This article describes how, when first faced with understanding blood sugar regulation, students often resort to simple memorization.Many students would like to get more involved with the conceptual framework but do not know how to start. The authors have developed an activity based on the Modell approach, a "view from the inside." This…

  7. 77 FR 5778 - Agency Information Collection Activities: Rules Relating to Regulation of Domestic Exchange...

    Science.gov (United States)

    2012-02-06

    ... COMMISSION Agency Information Collection Activities: Rules Relating to Regulation of Domestic Exchange-Traded... extension of the collection. The collection covers rules related to risk disclosure concerning exchange... INFORMATION: In the notice of Extension of an Existing Collection, FR Doc. 2011-33841, on page 477 in...

  8. GROWTH-REGULATING ACTIVITY OF SOME SALTS OF 1-NAPHTHALENACETIC ACID AND 2-NAPHTHOXYACETIC ACID

    Directory of Open Access Journals (Sweden)

    Maria Laichici

    2001-01-01

    Full Text Available The salts of 1-naphthalene acetic acid and 2-naphthoxyacetic acid with ethanolamine have been synthetized. The two salts have been assessed using Tsibulskaya-Vassiliev biological test using agar-agar as the medium. Statistical processing of the data has been carried out. The good results of the bioassay indicate an auxinic growth-regulating activity of the two salts.

  9. Effects of ethanol feeding on the activity and regulation of hepatic carnitine palmitoyltransferase I

    NARCIS (Netherlands)

    Guzman, M.; Geelen, M.J.H.

    1988-01-01

    The effects of ethanol administration on activity and regulation of carnitine palmitoyltransferase I (CPT-I) were studied in hepatocytes isolated from rats fed a liquid, high-fat diet containing 36% of total calories as ethanol or an isocaloric amount of sucrose. Cells were isolated at several time

  10. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  11. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  12. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility

    Institute of Scientific and Technical Information of China (English)

    Ming ZHENG; Rong HOU; Rui-ping XIAO

    2004-01-01

    AIM: To determine the possible role of pH in mediating activation of p38 mitogen-activated protein kinase (MAPK) and the consequent function of activated p38 MAPK in regulating cardiac contractility. METHODS: Adult rat cardiomyocytes were isolated and cultured. Low pH media was used to induce intracellular acidosis and contraction of single cardiomyocyte was measured. RESULTS: Phosphorylation of p38 MAPK was increased during ischemia, and pHi was decreased. Intracellular acidosis activated p38 MAPK to a similar level as ischemia. Inhibition of p38 MAPK activation by SB203580, a specific inhibitor of p38 MAPK, reversed acidosis-mediated reduction of myocyte contractility. CONCLUSION: In adult rat cardiomyocytes, intracellular acidification activated p38 MAPK and decreased cardiac contractility. Pretreatment of cardiomyocytes with SB203580 completely blocked p38 MAPK activation and partially reversed acidosis-mediated decline of cardiac contractility.

  13. Effectiveness and Student Perceptions of an Active Learning Activity Using a Headline News Story to Enhance In-Class Learning of Cell Cycle Regulation

    Science.gov (United States)

    Dirks-Naylor, Amie J.

    2016-01-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation,…

  14. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody.

    Science.gov (United States)

    Zhong, Y; Brieher, W M; Gumbiner, B M

    1999-01-25

    The regulation of cadherin-mediated adhesion at the cell surface underlies several morphogenetic processes. To investigate the role of cadherin regulation in morphogenesis and to begin to analyze the molecular mechanisms of cadherin regulation, we have screened for monoclonal antibodies (mAbs) that allow us to manipulate the adhesive state of the cadherin molecule. Xenopus C-cadherin is regulated during convergent extension movements of gastrulation. Treatment of animal pole tissue explants (animal caps) with the mesoderm-inducing factor activin induces tissue elongation and decreases the strength of C-cadherin-mediated adhesion between blastomeres (Brieher, W.M., and B.M. Gumbiner. 1994. J. Cell Biol. 126:519-527). We have generated a mAb to C-cadherin, AA5, that restores strong adhesion to activin-treated blastomeres. This C-cadherin activating antibody strongly inhibits the elongation of animal caps in response to activin without affecting mesodermal gene expression. Thus, the activin-induced decrease in C-cadherin adhesive activity appears to be required for animal cap elongation. Regulation of C-cadherin and its activation by mAb AA5 involve changes in the state of C-cadherin that encompass more than changes in its homophilic binding site. Although mAb AA5 elicited a small enhancement in the functional activity of the soluble C-cadherin ectodomain (CEC1-5), it was not able to restore cell adhesion activity to mutant C-cadherin lacking its cytoplasmic tail. Furthermore, activin treatment regulates the adhesion of Xenopus blastomeres to surfaces coated with two other anti-C-cadherin mAbs, even though these antibodies probably do not mediate adhesion through a normal homophilic binding mechanism. Moreover, mAb AA5 restores strong adhesion to these antibodies. mAb AA5 only activates adhesion of blastomeres to immobilized CEC1-5 when it binds to C-cadherin on the cell surface. It does not work when added to CEC1-5 on the substrate. Together these findings suggest

  15. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  16. nifH Promoter Activity Is Regulated by DNA Supercoiling in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    Yan-Jie LIU; Biao HU; Jia-Bi ZHU; Shan-Jiong SHEN; Guan-Qiao YU

    2005-01-01

    In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown cells, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoilingdependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.

  17. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the acti-vation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modifica-tion but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  18. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  19. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  20. MARCH1 down-regulation in IL-10-activated B cells increases MHC class II expression.

    Science.gov (United States)

    Galbas, Tristan; Steimle, Viktor; Lapointe, Réjean; Ishido, Satoshi; Thibodeau, Jacques

    2012-07-01

    IL-10 is vastly studied for its anti-inflammatory properties on most immune cells. However, it has been reported that IL-10 activates B cells, up-regulates their MHC class II molecules and prevents apoptosis. As MARCH1 was shown to be responsible for the intracellular sequestration of MHC class II molecules in dendritic cells and monocytes in response to IL-10, we set out to clarify the role of this ubiquitin ligase in B cells. Here, we demonstrate in mice that splenic follicular B cells represent the major cell population that up-regulate MHC II molecules in the presence of IL-10. Activation of these cells through TLR4, CD40 or the IL-10 receptor caused the down-regulation of MARCH1 mRNA. Accordingly, B cells from MARCH1-deficient mice do not up-regulate I-A(b) in response to IL-10. In all, our results demonstrate that IL-10 can have opposite effects on MARCH1 regulation in different cell types.

  1. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation

    Science.gov (United States)

    Ohno, Yoshikazu; Iguchi, Akira; Shinzato, Chuya; Inoue, Mayuri; Suzuki, Atsushi; Sakai, Kazuhiko; Nakamura, Takashi

    2017-01-01

    Corals build their skeletons using extracellular calcifying fluid located in the tissue–skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H+ could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue.

  2. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Jørgensen, Claus; Petersen, Rasmus K

    2010-01-01

    differentiation has remained enigmatic. Previously, we showed that lipoxygenase (LOX) activity is involved in activation of PPAR gamma during the early stages of adipocyte differentiation. Of the seven known murine LOXs, only the unconventional LOX epidermis-type lipoxygenase 3 (eLOX3) is expressed in 3T3-L1...

  3. Regulation of business activities of petroleum contractors in Cameroon, Congo, Gabon, and Ivory Coast

    Energy Technology Data Exchange (ETDEWEB)

    Frilet, M.; Newman, J.

    1982-03-01

    Foreign companies engaging in business in Cameroon, Congo, Gabon, and Ivory Coast are subject to a broad range of regulations. This article deals only with those aspects of the regulations that are most important to petroleum contractors intending to engage in business in these countries. The regulator scheme actually applicable in a given case will depend on the legal structure through which a corporation operates. An American corporation may envisage engaging in business on a long-term basis through a local subsidiary or branch. On the other hand, it may wish only to perform temporary activities pursuant to one or more fixed-duration contracts with petroleum companies operating in one of countries. Each of these situations is dealt with. Common features of each area of regulation were described and the differences in regulations were presented. These topics were included: exchange control regulation, corporate forms of business association, authorization to engage in business, requirement of government or local participation in capital, investment code incentives, labor law requirements, taxation of corporations, taxation of profits, taxation of income from movable capital, taxation of amounts paid abroad as technical assistance fees, royalties and similar compensation, turnover taxes, payroll taxes, taxation of business performed without forming a local company or branch, taxation of employees and Social Security contributions. (DP)

  4. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  5. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells.

  6. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  7. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  8. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    Science.gov (United States)

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  9. Drosophila ATF-2 regulates sleep and locomotor activity in pacemaker neurons.

    Science.gov (United States)

    Shimizu, Hideyuki; Shimoda, Masami; Yamaguchi, Terumi; Seong, Ki-Hyeon; Okamura, Tomoo; Ishii, Shunsuke

    2008-10-01

    Stress-activated protein kinases such as p38 regulate the activity of transcription factor ATF-2. However, the physiological role of ATF-2, especially in the brain, is unknown. Here, we found that Drosophila melanogaster ATF-2 (dATF-2) is expressed in large ventral lateral neurons (l-LN(v)s) and also, to a much lesser extent, in small ventral lateral neurons, the pacemaker neurons. Only l-LN(v)s were stained with the antibody that specifically recognizes phosphorylated dATF-2, suggesting that dATF-2 is activated specifically in l-LN(v)s. The knockdown of dATF-2 in pacemaker neurons using RNA interference decreased sleep time, whereas the ectopic expression of dATF-2 increased sleep time. dATF-2 knockdown decreased the length of sleep bouts but not the number of bouts. The ATF-2 level also affected the sleep rebound after sleep deprivation and the arousal threshold. dATF-2 negatively regulated locomotor activity, although it did not affect the circadian locomotor rhythm. The degree of dATF-2 phosphorylation was greater in the morning than at night and was enhanced by forced locomotion via the dp38 pathway. Thus, dATF-2 is activated by the locomotor while it increases sleep, suggesting a role for dATF-2 as a regulator to connect sleep with locomotion.

  10. Post-translational regulation of COX2 activity by FYN in prostate cancer cells.

    Science.gov (United States)

    Alexanian, Anna; Miller, Bradley; Chesnik, Marla; Mirza, Shama; Sorokin, Andrey

    2014-06-30

    While increased COX2 expression and prostaglandin levels are elevated in human cancers, the mechanisms of COX2 regulation at the post-translational level are unknown. Initial observation that COX2 forms adduct with non-receptor tyrosine kinase FYN, prompted us to study FYN-mediated post-translational regulation of COX2. We found that FYN increased COX2 activity in prostate cancer cells DU145, independent of changes in COX2 or COX1 protein expression levels. We report that FYN phosphorylates human COX2 on Tyr 446, and while corresponding phospho-mimetic COX2 mutation promotes COX2 activity, the phosphorylation blocking mutation prevents FYN-mediated increase in COX2 activity.

  11. Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials.

    Science.gov (United States)

    Ghosh, Indrajit; König, Burkhard

    2016-06-27

    Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light-color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light-color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible-light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl-halide bonds for C-H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst.

  12. Complement System Part I – Molecular Mechanisms of Activation and Regulation

    Science.gov (United States)

    Merle, Nicolas S.; Church, Sarah Elizabeth; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors. PMID:26082779

  13. The role of nonautomatic processes in activity regulation: from Lipps to Galperin.

    Science.gov (United States)

    Arievitch, Igor M; van der Veer, René

    2004-05-01

    The authors present the historical analysis of one of the central questions in psychology: how and why the nonautomatic, psychological level of regulation (in contrast to automatic physiological processes) emerges both in evolution and in everyday context of activity. They discuss several approaches (by Lipps, Groos, Stern, James, Dewey, Claparède, Pavlov, and Leontiev) that culminated in the system of ideas developed by Galperin, one of the key figures in the cultural -historical activity theory. The authors analyze the relation of Galperin's ideas to Vygotsky's theoretical framework and then focus on Galperin's account of the origin and functions of mental activity. Galperin's contribution is highly relevant for understanding the role of psychological regulation and for contemporary research on cognition, consciousness, and conscious awareness.

  14. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    Science.gov (United States)

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.

  15. Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121[W

    Science.gov (United States)

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François

    2012-01-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  16. A Small GTPase Activator Protein Interacts with Cytoplasmic Phytochromes in Regulating Root Development*

    Science.gov (United States)

    Shin, Dong Ho; Cho, Man-Ho; Kim, Tae-Lim; Yoo, Jihye; Kim, Jeong-Il; Han, Yun-Jeong; Song, Pill-Soon; Jeon, Jong-Seong; Bhoo, Seong Hee; Hahn, Tae-Ryong

    2010-01-01

    Phytochromes enable plants to sense light information and regulate developmental responses. Phytochromes interact with partner proteins to transmit light signals to downstream components for plant development. PIRF1 (phytochrome-interacting ROP guanine-nucleotide exchange factor (RopGEF 1)) functions as a light-signaling switch regulating root development through the activation of ROPs (Rho-like GTPase of plant) in the cytoplasm. In vitro pulldown and yeast two-hybrid assays confirmed the interaction between PIRF1 and phytochromes. PIRF1 interacted with the N-terminal domain of phytochromes through its conserved PRONE (plant-specific ROP nucleotide exchanger) region. PIRF1 also interacted with ROPs and activated them in a phytochrome-dependent manner. The Pr form of phytochrome A enhanced the RopGEF activity of PIRF1, whereas the Pfr form inhibited it. A bimolecular fluorescence complementation analysis demonstrated that PIRF1 was localized in the cytoplasm and bound to the phytochromes in darkness but not in light. PIRF1 loss of function mutants (pirf1) of Arabidopsis thaliana showed a longer root phenotype in the dark. In addition, both PIRF1 overexpression mutants (PIRF1-OX) and phytochrome-null mutants (phyA-211 and phyB-9) showed retarded root elongation and irregular root hair formation, suggesting that PIRF1 is a negative regulator of phytochrome-mediated primary root development. We propose that phytochrome and ROP signaling are interconnected through PIRF1 in regulating the root growth and development in Arabidopsis. PMID:20551316

  17. Hypoxia: A Master Regulator of MicroRNA Biogenesis and Activity

    Science.gov (United States)

    Nallamshetty, Shriram; Chan, Stephen Y.; Loscalzo, Joseph

    2013-01-01

    Hypoxia, or low oxygen tension, is a unique environmental stress that induces global changes in a complex regulatory network of transcription factors and signaling proteins in order to coordinate cellular adaptations in metabolism, proliferation, DNA repair, and apoptosis. Several lines of evidence now establish microRNAs (miRNAs), which are short non-coding RNAs that regulate gene expression through post-transcriptional mechanisms, as key elements in this response to hypoxia. Oxygen deprivation induces a distinct shift in a specific group of miRNAs, termed hypoxamirs, and emerging evidence indicates that hypoxia regulates several facets of hypoxamir transcription, maturation, and function. Transcription factors such as hypoxia-inducible factor (HIF) are upregulated under conditions of low oxygen availability and directly activate the transcription of a subset of hypoxamirs. Conversely, hypoxia selectively represses other hypoxamirs through less well characterized mechanisms. In addition, oxygen deprivation has been directly implicated in epigenetic modifications such as DNA demethylation that control specific miRNA transcription. Finally, hypoxia also modulates the activity of key proteins that control posttranscriptional events in the maturation and activity of miRNAs. Collectively, these findings establish hypoxia as an important proximal regulator of miRNA biogenesis and function. It will be important for future studies to address the relative contributions of transcriptional and posttranscriptional events in the regulation of specific hypoxamirs and how such miRNAs are coordinated order to integrate into the complex hierarchical regulatory network induced by hypoxia. PMID:23712003

  18. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. New regulations relating to systematic follow-up of the working environment in the petroleum activities

    Energy Technology Data Exchange (ETDEWEB)

    Wig, Helge; Wahlen, Mona [Norwegian Petroleum Directorate, Stavanger (Norway)

    1997-12-31

    Detailed statutory provisions under the Working Environment Act have been prepared by the Norwegian Petroleum Directorate. Known as ``Regulations relating to systematic follow-up of the working environment in petroleum activities``, they came into force in August 1995. The background and objectives of the Regulations are summarised with particular reference to the chapters on the documentation to be submitted, preventive safety and environment work, and requirements relating to the working environment. The central element is the necessity for a systematic approach to improving the working environment. (UK)

  20. Post-translational regulation of COX2 activity by FYN in prostate cancer cells

    OpenAIRE

    Alexanian, Anna; Miller, Bradley; Chesnik, Marla; Mirza, Shama; Sorokin, Andrey

    2014-01-01

    While increased COX2 expression and prostaglandin levels are elevated in human cancers, the mechanisms of COX2 regulation at the post-translational level are unknown. Initial observation that COX2 forms adduct with non-receptor tyrosine kinase FYN, prompted us to study FYN-mediated post-translational regulation of COX2. We found that FYN increased COX2 activity in prostate cancer cells DU145, independent of changes in COX2 or COX1 protein expression levels. We report that FYN phosphorylates h...

  1. Considerations on Law no. 78/2014 regarding the Regulation of the Volunteering Activity in Romania

    Directory of Open Access Journals (Sweden)

    Tache BOCĂNIALĂ

    2014-08-01

    Full Text Available In this paper we aim at highlighting the progress in the regulation of volunteering activity in Romania through the recent adoption by the Parliament of the Law no. 78/2014 on the regulation of volunteering in Romania. The new legislative act, which replaced Volunteering Law no. 195 / 2001 (republished tries and we believe that it actually succeeds in providing consistent and harmonized solutions at European level to problems of organizations working with volunteers and thus creating a modern legal framework, appropriately adapted to the national and European context in the field of volunteering.

  2. Role of cathepsin A and cathepsin C in the regulation of glycosidase activity

    Directory of Open Access Journals (Sweden)

    Anna Justyna Milewska

    2012-04-01

    Full Text Available Increased tissue activity of cathepsin A and cathepsin C can be observed in many pathological conditions. It is associated with an enhanced degradation of glycosaminoglycans, proteoglycans, and glycoproteins, and results in their decreased tissue content. Cathepsin C releases the glycosidases from complexes formed with cathepsin A, and reinstates their activity. In this review a current state of knowledge is presented concerning the regulation of selected glycosidases activity by cathepsin A (EC 3.4.16.1 and C (EC 3.4.14.1.

  3. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation

    DEFF Research Database (Denmark)

    Feng, Yunpeng; Vlassis, Arsenios; Roques, Céline

    2016-01-01

    During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators...... recruitment, but not MCM2-7 loading, is impaired in BRPF3-depleted cells, identifying a BRPF3-dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3-HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby...

  4. A role for RNA post-transcriptional regulation in satellite cell activation

    Directory of Open Access Journals (Sweden)

    Farina Nicholas H

    2012-10-01

    Full Text Available Abstract Background Satellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood. Methods Satellite cells isolated by FACS from uninjured skeletal muscle and 12 h post-muscle injury from wild type and Syndecan-4 null mice were probed using Affymetrix 430v2 gene chips and analyzed by Spotfiretm and Ingenuity Pathway analysis to identify gene expression changes and networks associated with satellite cell activation, respectively. Additional analyses of target genes identify miRNAs exhibiting dynamic changes in expression during satellite cell activation. The function of the miRNAs was assessed using miRIDIAN hairpin inhibitors. Results An unbiased gene expression screen identified over 4,000 genes differentially expressed in satellite cells in vivo within 12 h following muscle damage and more than 50% of these decrease dramatically. RNA binding proteins and genes involved in post-transcriptional regulation were significantly over-represented whereas splicing factors were preferentially downregulated and mRNA stability genes preferentially upregulated. Furthermore, six computationally identified miRNAs demonstrated novel expression through muscle regeneration and in satellite cells. Three of the six miRNAs were found to regulate satellite cell fate. Conclusions The quiescent satellite cell is actively maintained in a state poised to activate in response to external signals. Satellite cell activation appears to be regulated by post-transcriptional gene regulation.

  5. Cell Cycle Regulators Guide Mitochondrial Activity in Radiation-Induced Adaptive Response

    Science.gov (United States)

    Alexandrou, Aris T.

    2014-01-01

    Abstract Significance: There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. Recent Advances: Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. Critical Issues: The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. Future Directions: Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk. Antioxid. Redox Signal. 20, 1463–1480. PMID:24180340

  6. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response.

    Science.gov (United States)

    Alexandrou, Aris T; Li, Jian Jian

    2014-03-20

    There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk.

  7. Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin.

    Science.gov (United States)

    Mueller, Patrick J

    2008-09-01

    Physical inactivity is an independent risk factor for cardiovascular disease. Sedentary animals compared to physically active controls exhibit enhanced sympathoexcitatory responses, including arterial baroreflex-mediated sympathoexcitation. Hypotension-induced sympathoexcitation is also associated with the release of vasoactive hormones. We hypothesized that sedentary conditions may enhance release of the vasoactive hormones AVP and ANG II. To test this hypothesis, the humoral response to hypotension was examined in conscious rats after 9-12 wk of sedentary conditions or "normally active" conditions. Normally active conditions were produced by allowing rats access to running wheels in their home cages. Running distance peaked after 4 wk (4.5 +/- 0.7 km/day), and the total distance run after 9 wk was 174 +/- 23 km (n = 25). Similar levels of hypotension were induced in conscious sedentary or physically active animals with the arterial vasodilator, diazoxide (25 mg/kg iv). Control experiments used a saline injection of equivalent volume. Plasma samples were collected and assayed for plasma AVP concentration and plasma renin activity (PRA). Sedentary conditions significantly enhanced resting and hypotension-induced PRA relative to normal physical activity. In contrast, resting and hypotension-induced AVP levels were not statistically different between groups. These data suggest that baroreflex-mediated activation of the renin-angiotensin system, but not AVP secretion, is enhanced by sedentary conditions. We speculate that augmented activation of the renin-angiotensin system may be related to enhanced sympathetic outflow observed in sedentary animals and may contribute to increased risk of cardiovascular disease in the sedentary population.

  8. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  9. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL from Geobacillus kaustophilus HTA426 (GkaP exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  10. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood.

    Science.gov (United States)

    Zhang, Hua; Liu, Kui

    2015-01-01

    The first small follicles to appear in the mammalian ovaries are primordial follicles. The initial pool of primordial follicles serves as the source of developing follicles and oocytes for the entire reproductive lifespan of the animal. Although the selective activation of primordial follicles is critical for female fertility, its underlying mechanisms have remained poorly understood. A search of PubMed was conducted to identify peer-reviewed literature pertinent to the study of mammalian primordial follicle activation, especially recent reports of the role of primordial follicle granulosa cells (pfGCs) in regulating this process. In recent years, molecular mechanisms that regulate the activation of primordial follicles have been elucidated, mostly through the use of genetically modified mouse models. Several molecules and pathways operating in both the somatic pfGCs and oocytes, such as the phosphatidylinositol 3 kinase (PI3K) and the mechanistic target of rapamycin complex 1 (mTORC1) pathways, have been shown to be important for primordial follicle activation. More importantly, recent studies have provided an updated view of how exactly signaling pathways in pfGCs and in oocytes, such as the KIT ligand (KL) and KIT, coordinate in adult ovaries so that the activation of primordial follicles is achieved. In this review, we have provided an updated picture of how mammalian primordial follicles are activated. The functional roles of pfGCs in governing the activation of primordial follicles in adulthood are highlighted. The in-depth understanding of the cellular and molecular mechanisms of primordial follicle activation will hopefully lead to more treatments of female infertility, and the current progress indicates that the use of existing primordial follicles as a source for obtaining fertilizable oocytes as a new treatment for female infertility is just around the corner. © The Author 2015. Published by Oxford University Press on behalf of the European Society of

  11. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  12. Secreted proteases. Regulation of their activity and their possible role in metastasis.

    Science.gov (United States)

    Goldberg, G I; Frisch, S M; He, C; Wilhelm, S M; Reich, R; Collier, I E

    1990-01-01

    Extracellular matrix metalloproteases are secreted by the resident cells of the tissue in a proenzyme form, and their extracellular activity is regulated at the level of gene expression, proenzyme activation, and interaction with inhibitors. To understand the molecular mechanisms that control the activity of ECM metalloproteases and their effect on the cellular phenotype, we have established cell lines in which the transcription of the protease genes is repressed. We also have undertaken a detailed study of the pathway of extracellular activation of interstitial procollagenase. Stable transfection of three human tumor cell lines--H-ras-transformed bronchial epithelial cells TBE-1, fibrosarcoma cells HT1080, and melanoma cells A2058--with the adenovirus E1A gene dramatically repressed the expression of the secreted proteases, type IV and interstitial collagenases, and urokinase-type plasminogen activator. Concomitantly, E1A-expressing cells showed reduced metastatic activity in vivo and reduced ability to traverse a reconstituted basement membrane in vitro. Monospecific anti-type IV collagenase antibody inhibited the invasive activity of parental tumor cell lines in the in vitro system, suggesting a possible causal relationship between the effect of E1A on the expression of secreted proteases and the reduced metastatic potential of the E1A-expressing transformants. We have also studied the mechanism of regulation of metalloprotease activity at the level of extracellular activation by investigating the cascade of proteolytic events that results in the activation of interstitial procollagenase. Cocultivation of the major cellular components of skin, dermal fibroblasts, and epidermal keratinocytes induces activation of interstitial procollagenase and prostromelysin in the presence of plasminogen. This activation occurs through a uPA-plasmin-dependent pathway in which plasmin catalyzes the first step in activation of both collagenase and stromelysin by amino

  13. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii

    Science.gov (United States)

    Fiester, Steven E.; Schmidt, Robert E.; Beckett, Amber C.; Ticak, Tomislav; Carrier, Mary V.; Ghosh, Rajarshi; Ohneck, Emily J.; Metz, Maeva L.; Sellin Jeffries, Marlo K.; Actis, Luis A.

    2016-01-01

    Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC) genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606T plc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen could use during

  14. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.

    Science.gov (United States)

    Fernandez-Fernandez, Carmen; Gonzalez, Diego; Collier, Justine

    2011-01-01

    DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

  15. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Carmen Fernandez-Fernandez

    Full Text Available DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA. We found that the expression of the DnaA(R357A mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

  16. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities.

    Science.gov (United States)

    Alappat, Elizabeth C; Feig, Christine; Boyerinas, Benjamin; Volkland, Jörg; Samuels, Martin; Murmann, Andrea E; Thorburn, Andrew; Kidd, Vincent J; Slaughter, Clive A; Osborn, Stephanie L; Winoto, Astar; Tang, Wei-Jen; Peter, Marcus E

    2005-08-05

    FADD is essential for death receptor (DR)-induced apoptosis. However, it is also critical for cell cycle progression and proliferation, activities that are regulated by phosphorylation of its C-terminal Ser194, which has also been implicated in sensitizing cancer cells to chemotherapeutic drugs and in regulating FADD's intracellular localization. We now demonstrate that casein kinase Ialpha (CKIalpha) phosphorylates FADD at Ser194 both in vitro and in vivo. FADD-CKIalpha association regulates the subcellular localization of FADD, and phosphorylated FADD was found to colocalize with CKIalpha on the spindle poles in metaphase. Inhibition of CKIalpha diminished FADD phosphorylation, prevented the ability of Taxol to arrest cells in mitosis, and blocked mitogen-induced proliferation of mouse splenocytes. In contrast, a low level of cycling splenocytes from mice expressing FADD with a mutated phosphorylation site was insensitive to CKI inhibition. These data suggest that phosphorylation of FADD by CKI is a crucial event during mitosis.

  17. AMPK up-activation reduces motility and regulates other functions of boar spermatozoa.

    Science.gov (United States)

    Hurtado de Llera, A; Martin-Hidalgo, D; Gil, M C; Garcia-Marin, L J; Bragado, M J

    2015-01-01

    We recently demonstrated that AMPK inhibition in spermatozoa regulates motility, plasma membrane organization, acrosome integrity and mitochondrial membrane potential. As AMPK activity varies in different energy conditions induced by sperm environment, this work investigates the functional effects of AMPK activation in boar spermatozoa. Spermatozoa were incubated under non-stimulating (TBM) or Ca(2+) and [Formula: see text]-stimulating (TCM) media in the presence/absence of AMPK activator, A769662, for different times. AMPK activity, evaluated as Thr(172) phosphorylation by western blot, is effectively increased by A769662 in spermatozoa. AMPK activation significantly reduces the percentage of motile spermatozoa under Ca(2+) and/or [Formula: see text]-stimulating conditions. Moreover, AMPK activation in spermatozoa incubated in TBM or TCM significantly reduces curvilinear VCL, straight-line VSL and average VAP velocities, which subsequently lead to a significant decrease in the percentage of rapid spermatozoa (VAP > 80 μm/s). The effect of AMPK activation on motility is intensified by the absence of BSA in the incubation medium. AMPK activation for a short time prevents the decline in cell viability and in the sperm population displaying high mitochondrial membrane potential which is induced by Ca(2+) and [Formula: see text]. Sustained (24 h) AMPK activation under TBM or TCM significantly increases both lipid disorganization and phosphatidylserine externalization in the sperm plasma membrane, and diminishes the acrosome membrane integrity. In summary, AMPK activation modifies essential sperm processes such as motility, viability, mitochondrial membrane potential, acrosome membrane integrity, and organization and fluidity of plasma membrane. As these spermatozoa processes are required under different environmental conditions when transiting through the female reproductive tract to achieve fertilization, we conclude that balanced levels of AMPK activity are

  18. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis.

    Science.gov (United States)

    Senis, Yotis A; Tomlinson, Michael G; Ellison, Stuart; Mazharian, Alexandra; Lim, Jenson; Zhao, Yan; Kornerup, Kristin N; Auger, Jocelyn M; Thomas, Steve G; Dhanjal, Tarvinder; Kalia, Neena; Zhu, Jing W; Weiss, Arthur; Watson, Steve P

    2009-05-14

    Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase-linked and G protein-coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein-coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug target.

  19. Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    ter Schure, E G; Silljé, H H; Raeven, L J; Boonstra, J; Verkleij, A J; Verrips, C T

    1995-05-01

    Variations in the transcription of nitrogen-regulated genes and in the activities of nitrogen-regulated enzymes of the yeast Saccharomyces cerevisiae were studied by changing the carbon and nitrogen fluxes. S. cerevisiae was grown in continuous culture at various dilution rates (D) under nitrogen limitation with NH4Cl as sole nitrogen source. With an increase in D from 0.05 to 0.29 h-1, both the glucose and the ammonia flux increased sixfold. The activities of the two ammonia-incorporating enzymes, NADPH-dependent glutamate dehydrogenase (NADPH-GDH) and glutamine synthetase (GS), encoded by GDH1 and GLN1, respectively, increased with increasing D, while the activity of the glutamate-degrading enzyme, NAD-dependent glutamate dehydrogenase (NAD-GDH), decreased. Surprisingly, no changes were observed in the transcription of GDH1 and GLN1; however increased D was accompanied by an increase in GAP1 transcription. At the metabolite level, the increase in the glucose and nitrogen flux did not result in changes in the intracellular 2-oxoglutarate, glutamate or glutamine concentrations. It is shown that growth on ammonia alone is not sufficient to cause repression of GAP1 and GLN1 transcription and that the regulation of GAP1 transcription and both NADPH-GDH and GS activity is not an on/off switch, but is gradually modulated in correlation with the ammonia concentration.

  20. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength.

    Science.gov (United States)

    Zhang, Peng; Fu, Wing-Yu; Fu, Amy K Y; Ip, Nancy Y

    2015-10-27

    Precise regulation of synaptic strength requires coordinated activity and functions of synaptic proteins, which is controlled by a variety of post-translational modification. Here we report that S-nitrosylation of p35, the activator of cyclin-dependent kinase 5 (Cdk5), by nitric oxide (NO) is important for the regulation of excitatory synaptic strength. While blockade of NO signalling results in structural and functional synaptic deficits as indicated by reduced mature dendritic spine density and surface expression of glutamate receptor subunits, phosphorylation of numerous synaptic substrates of Cdk5 and its activity are aberrantly upregulated following reduced NO production. The results show that the NO-induced reduction in Cdk5 activity is mediated by S-nitrosylation of p35, resulting in its ubiquitination and degradation by the E3 ligase PJA2. Silencing p35 protein in hippocampal neurons partially rescues the NO blockade-induced synaptic deficits. These findings collectively demonstrate that p35 S-nitrosylation by NO signalling is critical for regulating hippocampal synaptic strength.

  1. Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases.

    Science.gov (United States)

    Meharena, Hiruy S; Fan, Xiaorui; Ahuja, Lalima G; Keshwani, Malik M; McClendon, Christopher L; Chen, Angela M; Adams, Joseph A; Taylor, Susan S

    2016-11-01

    Eukaryotic protein kinases regulate most cellular functions by phosphorylating targeted protein substrates through a highly conserved catalytic core. In the active state, the catalytic core oscillates between open, intermediate, and closed conformations. Currently, the intramolecular interactions that regulate the active state mechanics are not well understood. Here, using cAMP-dependent protein kinase as a representative model coupled with biochemical, biophysical, and computational techniques, we define a set of highly conserved electrostatic and hydrophobic interactions working harmoniously to regulate these mechanics. These include the previously identified salt bridge between a lysine from the β3-strand and a glutamate from the αC-helix as well as an electrostatic interaction between the phosphorylated activation loop and αC-helix and an ensemble of hydrophobic residues of the Regulatory spine and Shell. Moreover, for over three decades it was thought that the highly conserved β3-lysine was essential for phosphoryl transfer, but our findings show that the β3-lysine is not required for phosphoryl transfer but is essential for the active state mechanics.

  2. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Bilal Çakir

    Full Text Available BACKGROUND: Insulin-degrading enzyme (IDE is an allosteric Zn(+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD and type 2 diabetes mellitus (T2DM, respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. CONCLUSION/SIGNIFICANCE: This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  3. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Science.gov (United States)

    Çakir, Bilal; Dağliyan, Onur; Dağyildiz, Ezgi; Bariş, İbrahim; Kavakli, Ibrahim Halil; Kizilel, Seda; Türkay, Metin

    2012-01-01

    Insulin-degrading enzyme (IDE) is an allosteric Zn(+2) metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  4. miR-181b negatively regulates activation-induced cytidine deaminase in B cells.

    Science.gov (United States)

    de Yébenes, Virginia G; Belver, Laura; Pisano, David G; González, Susana; Villasante, Aranzazu; Croce, Carlo; He, Lin; Ramiro, Almudena R

    2008-09-29

    Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3' untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.

  5. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination.

    Science.gov (United States)

    Hu, Hongbo; Wang, Hui; Xiao, Yichuan; Jin, Jin; Chang, Jae-Hoon; Zou, Qiang; Xie, Xiaoping; Cheng, Xuhong; Sun, Shao-Cong

    2016-03-07

    Signal transduction from the T cell receptor (TCR) is crucial for T cell-mediated immune responses and, when deregulated, also contributes to the development of autoimmunity. How TCR signaling is regulated is incompletely understood. In this study, we demonstrate a ubiquitin-dependent mechanism in which the deubiquitinase Otud7b has a crucial role in facilitating TCR signaling. Upon TCR ligation, Otud7b is rapidly recruited to the tyrosine kinase Zap70, a central mediator of TCR-proximal signaling. Otud7b deficiency attenuates the activation of Zap70 and its downstream pathways and impairs T cell activation and differentiation, rendering mice refractory to T cell-mediated autoimmune and inflammatory responses. Otud7b facilitated Zap70 activation by deubiquitinating Zap70, thus preventing the association of Zap70 with the negative-regulatory phosphatases Sts1 and Sts2. These findings establish Otud7b as a positive regulator of TCR-proximal signaling and T cell activation, highlighting the importance of deubiquitination in regulating Zap70 function.

  6. GPS2/KDM4A Pioneering Activity Regulates Promoter-Specific Recruitment of PPARγ

    Directory of Open Access Journals (Sweden)

    M. Dafne Cardamone

    2014-07-01

    Full Text Available Timely and selective recruitment of transcription factors to their appropriate DNA-binding sites represents a critical step in regulating gene activation; however, the regulatory strategies underlying each factor’s effective recruitment to specific promoter and/or enhancer regions are not fully understood. Here, we identify an unexpected regulatory mechanism by which promoter-specific binding, and therefore function, of peroxisome proliferator-activator receptor γ (PPARγ in adipocytes requires G protein suppressor 2 (GPS2 to prime the local chromatin environment via inhibition of the ubiquitin ligase RNF8 and stabilization of the H3K9 histone demethylase KDM4A/JMJD2. Integration of genome-wide profiling data indicates that the pioneering activity of GPS2/KDM4A is required for PPARγ-mediated regulation of a specific transcriptional program, including the lipolytic enzymes adipose triglyceride lipase (ATGL and hormone-sensitive lipase (HSL. Hence, our findings reveal that GPS2 exerts a biologically important function in adipose tissue lipid mobilization by directly regulating ubiquitin signaling and indirectly modulating chromatin remodeling to prime selected genes for activation.

  7. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.

    Science.gov (United States)

    Prochazka, Radek; Blaha, Milan

    2015-01-01

    In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.

  8. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  9. Developmental programming of energy balance regulation: is physical activity more 'programmable' than food intake?

    Science.gov (United States)

    Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A

    2016-02-01

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life

  10. Small heterodimer partner-interacting leucine zipper protein inhibits adipogenesis by regulating peroxisome proliferator-activated receptor γ activity.

    Science.gov (United States)

    Jang, Hoon; Kim, Hyoung-Joo; Kim, Dong-Hwan; Park, Jae-Kyung; Sun, Wu-Sheng; Hwang, Seongsoo; Oh, Keon-Bong; Jang, Won-Gu; Lee, Jeong-Woong

    2015-07-01

    Adipocytes play a critical role in energy balance. Growth of fat tissue is achieved via an increase in adipocyte mass and the formation of newly differentiated adipocytes from precursor cells. Understanding the cellular and molecular mechanisms of adipocyte differentiation is crucial for the study of obesity- and fat-related diseases. The present study