WorldWideScience

Sample records for regulates adult articular

  1. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  2. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  3. Nanosized fibers' effect on adult human articular chondrocytes behavior

    International Nuclear Information System (INIS)

    Stenhamre, Hanna; Thorvaldsson, Anna; Enochson, Lars; Walkenström, Pernilla; Lindahl, Anders; Brittberg, Mats; Gatenholm, Paul

    2013-01-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum

  4. Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage

    Science.gov (United States)

    Garrison, Presley; Yue, Shanna; Hanson, Jeffrey; Baron, Jeffrey; Lui, Julian C.

    2017-01-01

    Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers—the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may

  5. Intra-Articular Entrapment of the Medial Epicondyle following a Traumatic Fracture Dislocation of the Elbow in an Adult

    Science.gov (United States)

    Hassan, Youssef G.; Joukhadar, Nabih I.

    2018-01-01

    Medial epicondyle entrapment after an acute fracture dislocation of the elbow is a common finding in the pediatric population, but a rare finding in adults. We present a case of an adult patient diagnosed with a traumatic fracture dislocation of the elbow joint with intra-articular entrapment of the medial epicondyle. After initial evaluation, closed reduction was done. Stability testing after reduction showed an unstable joint; thus, open reduction and internal fixation was decided. PMID:29666736

  6. HIF-1α-induced HSP70 regulates anabolic responses in articular chondrocytes under hypoxic conditions.

    Science.gov (United States)

    Tsuchida, Shinji; Arai, Yuji; Takahashi, Kenji A; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Inoue, Hiroaki; Ikoma, Kazuya; Ueshima, Keiichiro; Matsuki, Tomohiro; Mazda, Osam; Kubo, Toshikazu

    2014-08-01

    We assessed whether heat shock protein 70 (HSP70) is involved in hypoxia inducible factor 1 alpha (HIF-1α)-dependent anabolic pathways in articular chondrocytes under hypoxic conditions. Primary rabbit chondrocytes were cultured under normoxia (20% oxygen condition) or hypoxia (1% oxygen condition). Alternatively, cells cultured under normoxia were treated with CoCl2 , which induces HIF-1α, to simulate hypoxia, or transfected with siRNAs targeting HIF-1α (si-HIF-1α) and HSP70 (si-HSP70) under hypoxia. HSP70 expression was enhanced by the increased expression of HIF-1α under hypoxia or simulated hypoxia, but not in the presence of si-HIF-1α. Hypoxia-induced overexpression of ECM genes was significantly suppressed by si-HIF-1α or si-HSP70. Cell viability positively correlated with hypoxia, but transfection with si-HIF-1α or si-HSP70 abrogated the chondroprotective effects of hypoxia. Although LDH release from sodium nitroprusside-treated cells and the proportion of TUNEL positive cells were decreased under hypoxia, transfection with si-HIF-1α or si-HSP70 almost completely blocked these effects. These findings indicated that HIF-1α-induced HSP70 overexpression increased the expression levels of ECM genes and cell viability, and protected chondrocytes from apoptosis. HIF-1α may regulate the anabolic effects of chondrocytes under hypoxic conditions by regulating HSP70 expression. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Regulation of the friction coefficient of articular cartilage by TGF-beta1 and IL-1beta.

    Science.gov (United States)

    DuRaine, Grayson; Neu, Corey P; Chan, Stephanie M T; Komvopoulos, Kyriakos; June, Ronald K; Reddi, A Hari

    2009-02-01

    Articular cartilage functions to provide a low-friction surface for joint movement for many decades of life. Superficial zone protein (SZP) is a glycoprotein secreted by chondrocytes in the superficial layer of articular cartilage that contributes to effective boundary lubrication. In both cell and explant cultures, TGF-beta1 and IL-1beta have been demonstrated to, respectively, upregulate and downregulate SZP protein levels. It was hypothesized that the friction coefficient of articular cartilage could also be modulated by these cytokines through SZP regulation. The friction coefficient between cartilage explants (both untreated and treated with TGF-beta1 or IL-1beta) and a smooth glass surface due to sliding in the boundary lubrication regime was measured with a pin-on-disk tribometer. SZP was quantified using an enzyme-linked immunosorbant assay and localized by immunohistochemistry. Both TGF-beta1 and IL-1beta treatments resulted in the decrease of the friction coefficient of articular cartilage in a location- and time-dependent manner. Changes in the friction coefficient due to the TGF-beta1 treatment corresponded to increased depth of SZP staining within the superficial zone, while friction coefficient changes due to the IL-1beta treatment were independent of SZP depth of staining. However, the changes induced by the IL-1beta treatment corresponded to changes in surface roughness, determined from the analysis of surface images obtained with an atomic force microscope. These findings demonstrate that the low friction of articular cartilage can be modified by TGF-beta1 and IL-1beta treatment and that the friction coefficient depends on multiple factors, including SZP localization and surface roughness.

  8. Nanosized fibers' effect on adult human articular chondrocytes behavior

    Energy Technology Data Exchange (ETDEWEB)

    Stenhamre, Hanna [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Thorvaldsson, Anna, E-mail: anna.thorvaldsson@swerea.se [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden); Swerea IVF, Mölndal (Sweden); Enochson, Lars [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Walkenström, Pernilla [Swerea IVF, Mölndal (Sweden); Lindahl, Anders [Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg (Sweden); Brittberg, Mats [Cartilage Research Unit, University of Gothenburg, Department Orthopaedics, Kungsbacka Hospital, Kungsbacka (Sweden); Gatenholm, Paul [Biopolymer Technology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2013-04-01

    Tissue engineering with chondrogenic cell based therapies is an expanding field with the intention of treating cartilage defects. It has been suggested that scaffolds used in cartilage tissue engineering influence cellular behavior and thus the long-term clinical outcome. The objective of this study was to assess whether chondrocyte attachment, proliferation and post-expansion re-differentiation could be influenced by the size of the fibers presented to the cells in a scaffold. Polylactic acid (PLA) scaffolds with different fiber morphologies were produced, i.e. microfiber (MS) scaffolds as well as nanofiber-coated microfiber scaffold (NMS). Adult human articular chondrocytes were cultured in the scaffolds in vitro up to 28 days, and the resulting constructs were assessed histologically, immunohistochemically, and biochemically. Attachment of cells and serum proteins to the scaffolds was affected by the architecture. The results point toward nano-patterning onto the microfibers influencing proliferation of the chondrocytes, and the overall 3D environment having a greater influence on the re-differentiation. In the efforts of finding the optimal scaffold for cartilage tissue engineering, studies as the current contribute to the knowledge of how to affect and control chondrocytes behavior. - Highlights: ► Chondrocyte behavior in nanofiber-coated microfiber versus microfiber scaffolds ► High porosity (> 90%) and large pore sizes (a few hundred μm) of nanofibrous scaffolds ► Proliferation enhanced by presence of nanofibers ► Differentiation not significantly affected ► Cell attachment improved in presence of both nanofibers and serum.

  9. Prenatal nicotine exposure induces poor articular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine programming mechanisms.

    Science.gov (United States)

    Tie, Kai; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2016-04-01

    Prenatal nicotine exposure (PNE) induces skeletal growth retardation and dyslipidemia in offspring displaying intrauterine growth retardation (IUGR). Cholesterol accumulation resulting from cholesterol efflux dysfunction may reduce the quality of articular cartilage through fetal programming. This study evaluated the quality of articular cartilage of female adult offspring fed a high-fat diet and explored the mechanisms using a rat IUGR model established by the administration of 2.0mg/kg/d of subcutaneous nicotine from gestational days 11-20. The results demonstrated an increased OARSI (Osteoarthritis Research Society International) score and total cholesterol content, decreased serum corticosterone, and increased IGF1 and dyslipidemia with catch-up growth in PNE adult offspring. Cartilage matrix, IGF1 and cholesterol efflux pathway expression were reduced in PNE fetuses and adult offspring. Therefore, PNE induced poor articular cartilage quality in female adult offspring fed a high-fat diet via a dual programming mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. ACTIVITY OF CANONICAL WNT SIGNAL SYSTEM IN HYALINE CARTILAGE ARTICULAR CHONDROCYTES IN PROCESS OF SYNOVIAL JOINT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A.O. Molotkov

    2009-03-01

    Full Text Available Canonical and non-canonical Wnt systems are essential regulators of chondrogenesis and bone development. However, the roles of these systems in synovial joint development are not well studied. To determine if canonical Wnt system is active in developing articular chondrocytes we used immunohistochemistry for в-galactosidase and doublecortin (cell-type specific marker for articular chondrocytes to double label sections through joint regions of E14.5, E18.5, P10 and adult mice. Here the following results are presented. Canonical Wnt signal system does not work in developing articular chondrocytes at early embryonic stages (E14.5; it is active in the articular chondrocytes at late embryonic stages (E16.5-E18.5 and during postnatal development (P7-P10, but is turned off again in the adult articular chondrocytes. These results suggest that canonical Wnt signaling is being regulated during articular chondrocytes differentiation and joint formation.

  11. Gremlin 1, Frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Emons, J.; Sticht, C.; van Gool, S.; Decker, E.; Uitterlinden, A.; Rappold, G.; Hofman, A.; Rivadeneira, F.; Scherjon, S.; Wit, J.M.; van Meurs, J.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Objective The development of osteoarthritis (OA) may be caused by activation of hypertrophic differentiation of articular chondrocytes. Healthy articular cartilage is highly resistant to hypertrophic differentiation, in contrast to other hyaline cartilage subtypes, such as growth plate cartilage.

  12. Can Double Osteotomy Be a Solution for Adult Hallux Valgus Deformity With an Increased Distal Metatarsal Articular Angle?

    Science.gov (United States)

    Park, Chul Hyun; Cho, Jae Ho; Moon, Jeong Jae; Lee, Woo Chun

    2016-01-01

    No previous study has reported the results of double metatarsal osteotomy for adult hallux valgus deformity with an increased distal metatarsal articular angle (DMAA). The purpose of the present study was to evaluate the results after double metatarsal osteotomy in adult patients with incongruent hallux valgus deformity. We retrospectively reviewed 16 cases of consecutive first metatarsal double metatarsal osteotomy without lateral soft tissue release in 14 patients with symptomatic hallux valgus associated with an increased DMAA (≥15° after proximal chevron osteotomy on intraoperative radiographs). Clinical results were assessed using the American Orthopaedic Foot and Ankle Society scale and the visual analog scale. The radiographic results were assessed over time, and changes in the DMAA and the relative length of the first metatarsal were assessed by measuring each value preoperatively and at the last follow-up visit. The American Orthopaedic Foot and Ankle Society and visual analog scale scores were significantly improved after surgery. The hallux valgus angle and intermetatarsal angle were stabilized >3 months after surgery. The sesamoid position did not increase significantly beyond the immediate postoperative period. The mean DMAA was corrected from 21.6° (range 15° to 29°) preoperatively to 11.1° (range -2° to 17°) at the last follow-up visit. The mean amount of shortening of the first metatarsal after surgery was 5.5 (range 4 to 7) mm. In conclusion, double metatarsal osteotomy without lateral soft tissue release in adult hallux valgus deformity results in high postoperative recurrence and complication rates. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Effect of homologous synovial membrane on adult human articular cartilage in organ culture, and failure to influence it with D-penicillamine.

    OpenAIRE

    Jacoby, R K

    1980-01-01

    Adult human articular cartilage has been maintained in organ culture for 8 days, and the culture medium, which was changed on alternate days, was pooled. Normal and rheumatoid cartilage was obtained from patients and 4 types of culture were prepared: (1) cartilage alone; (2) cartilage + D-penicillamine; (3) cartilage + homologous synovium; (4) cartilage, synovium, and D-penicillamine. The hexosamines and hexuronic acid were measured in the cartilage explants and in the medium. The quantity re...

  14. Osteoarthritis: Control of human cartilage hypertrophic differentiation. Research highlight van: Gremlin1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Buckland, J.; Leijten, Jeroen Christianus Hermanus; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Disruption of articular cartilage homeostasis is important in osteoarthritis (OA) pathogenesis, key to which is activation of articular chondrocyte hypertrophic differentiation. Healthy articular cartilage is resistant to hypertrophic differentiation, whereas growth-plate cartilage is destined to

  15. Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis.

    Science.gov (United States)

    Oh, H; Kwak, J-S; Yang, S; Gong, M-K; Kim, J-H; Rhee, J; Kim, S K; Kim, H-E; Ryu, J-H; Chun, J-S

    2015-12-01

    Hypoxia-inducible factor-2α (HIF-2α) transcriptionally upregulates Nampt in articular chondrocytes. NAMPT, which exhibits nicotinamide phosphoribosyltransferase activity, in turn causes osteoarthritis (OA) in mice by stimulating the expression of matrix-degrading enzymes. Here, we sought to elucidate whether HIF-2α activates the NAMPT-NAD(+)-SIRT axis in chondrocytes and thereby contributes to the pathogenesis of OA. Assays of NAD levels, SIRT activity, reporter gene activity, mRNA, and protein levels were conducted in primary cultured mouse articular chondrocytes. Experimental OA in mice was induced by intra-articular (IA) injection of adenovirus expressing HIF-2α (Ad-Epas1) or NAMPT (Ad-Nampt). The functions of SIRT in OA were examined by IA co-injection of SIRT inhibitors or adenovirus expressing individual SIRT isoforms or shRNA targeting specific SIRT isoforms. HIF-2α activated the NAMPT-NAD(+)-SIRT axis in chondrocytes by upregulating NAMPT, which stimulated NAD(+) synthesis and thereby activated SIRT family members. The activated NAMPT-SIRT pathway, in turn, promoted HIF-2α protein stability by negatively regulating its hydroxylation and 26S proteasome-mediated degradation, resulting in increased HIF-2α transcriptional activity. Among SIRT family members (SIRT1-7), SIRT2 and SIRT4 were positively associated with HIF-2α stability and transcriptional activity in chondrocytes. This reciprocal regulation was required for the expression of catabolic matrix metalloproteinases (MMP3, MMP12, and MMP13) and OA cartilage destruction caused by IA injection of Ad-Epas1 Ad-Nampt. The reciprocal regulation of HIF-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in OA cartilage destruction caused by HIF-2α or NAMPT. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Postnatal development of articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.

    2010-01-01

    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a

  17. Towards Regeneration of Articular Cartilage

    Science.gov (United States)

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  18. Vitamin D prevents articular cartilage erosion by regulating collagen II turnover through TGF-β1 in ovariectomized rats.

    Science.gov (United States)

    Li, S; Niu, G; Wu, Y; Du, G; Huang, C; Yin, X; Liu, Z; Song, C; Leng, H

    2016-02-01

    To explore the effect of vitamin D on turnover of articular cartilage with ovariectomy (OVX) induced OA, and to investigate transforming growth factor-β1 (TGF-β1) as a possible underlying mechanism mediated by 1α,25(OH)2D3. Sixty-six rats were randomly allocated into seven groups: sham plus control diet (SHAM+CTL), OVX+CTL diet, sham plus vitamin D-deficient (VDD) diet, OVX+VDD diet, and three groups of ovariectomized rats treated with different doses of 1α,25(OH)2D3. The cartilage erosion and the levels of serum 17β-estradiol, 1α,25(OH)2D3 and C-telopeptide of type II collagen (CTX-II) were measured. TGF-β1, type II Collagen (CII), matrix metalloproteinases (MMP)-9,-13 in articular cartilage were assessed by immunohistochemistry. TGF-β1 and CTX-II expression were measured in articular cartilage chondrocytes treated with/without tumor necrosis factor (TNF-α), 1α,25(OH)2D3, and TGF-β receptor inhibitor (SB505124) in vitro. Cartilage erosion due to OVX was significantly reduced in a dose-dependent manner by 1α,25(OH)2D3 supplementation, and exacerbated by VDD. The expressions of TGF-β1 and CII in articular cartilage were suppressed by OVX and VDD, and rescued by 1α,25(OH)2D3 supplementation. The expression of MMP-9,-13 in articular cartilage increased with OVX and VDD, and decreased with 1α,25(OH)2D3 supplementation. In vitro experiments showed that 1α,25(OH)2D3 increased the TGF-β1 expression of TNF-α stimulated chondrocytes in a dose-dependent manner. 1α,25(OH)2D3 significantly counteracted the increased CTX-II release due to TNF-α stimulation, and this effect was significantly suppressed by SB505124. VDD aggravated cartilage erosion, and 1α,25(OH)2D3 supplementation showed protective effects in OVX-induced OA partly through the TGF-β1 pathway. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model.

    Science.gov (United States)

    Wang, C C; Guo, L; Tian, F D; An, N; Luo, L; Hao, R H; Wang, B; Zhou, Z H

    2017-03-23

    Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs) are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA) osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4) and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  20. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model

    Directory of Open Access Journals (Sweden)

    C.C. Wang

    Full Text Available Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4 and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  1. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Science.gov (United States)

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes

  2. Intra-articular lignocaine versus intravenous analgesia with or without sedation for manual reduction of acute anterior shoulder dislocation in adults.

    LENUS (Irish Health Repository)

    Wakai, Abel

    2012-01-31

    BACKGROUND: There is conflicting evidence regarding the use of intra-articular lignocaine injection for the closed manual reduction of acute anterior shoulder dislocations. A systematic review may help cohere the conflicting evidence. OBJECTIVES: To compare the clinical efficacy and safety of intra-articular lignocaine and intravenous analgesia (with or without sedation) for reduction of acute anterior shoulder dislocation. SEARCH STRATEGY: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), and EMBASE (1980 to March 2010). We searched Current Controlled Trials metaRegister of Clinical Trials (compiled by Current Science) (March 2010). We imposed no language restriction. SELECTION CRITERIA: Randomized controlled trials comparing intra-articular lignocaine (IAL) with intravenous analgesia with or without sedation (IVAS) in adults aged 18 years and over for reduction of acute anterior shoulder dislocation. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted data. Where possible, data were pooled and relative risks (RR) and mean differences (MD), each with 95% confidence intervals (CI), were computed using the Cochrane Review Manager statistical package (RevMan). MAIN RESULTS: Of 1041 publications obtained from the search strategy, we examined nine studies. Four studies were excluded, and five studies with 211 participants were eligible for inclusion. There was no difference in the immediate success rate of IAL when compared with IVAS in the closed manual reduction of acute anterior shoulder dislocation (RR 0.95; 95% CI 0.83 to 1.10). There were significantly fewer adverse effects associated with IAL compared with IVAS (RR 0.16; 95% CI 0.06 to 0.43). The mean time spent in the emergency department was significantly less with IAL compared with IVAS (MD 109.46 minutes; 95% CI 84.60 to 134.32). One trial reported significantly less time for

  3. IKKα/CHUK regulates extracellular matrix remodeling independent of its kinase activity to facilitate articular chondrocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Eleonora Olivotto

    Full Text Available BACKGROUND: The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase, has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM homeostasis and differentiation towards hypertrophy. METHODOLOGY/PRINCIPAL FINDINGS: IKKα expression was ablated in primary human osteoarthritic (OA chondrocytes and in immature murine articular chondrocytes (iMACs derived from IKKα(f/f:CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively. MMP-10 was identified as a major target of IKKα in chondrocytes by mRNA profiling, quantitative RT-PCR analysis, immunohistochemistry and immunoblotting. ECM integrity, as assessed by type II collagen (COL2 deposition and the lack of MMP-dependent COL2 degradation products, was enhanced by IKKα ablation in mice. MMP-13 and total collagenase activities were significantly reduced, while TIMP-3 (tissue inhibitor of metalloproteinase-3 protein levels were enhanced in IKKα-deficient chondrocytes. IKKα deficiency suppressed chondrocyte differentiation, as shown by the quantitative inhibition of.Alizarin red staining and the reduced expression of multiple chondrocyte differentiation effectors, including Runx2, Col10a1 and Vegfa,. Importantly, the differentiation of IKKα-deficient chondrocytes was rescued by a kinase-dead IKKα protein mutant. CONCLUSIONS/SIGNIFICANCE: IKKα acts independent of its kinase activity to help drive chondrocyte differentiation towards a hypertrophic-like state. IKKα positively modulates ECM remodeling via multiple downstream targets (including MMP-10 and TIMP-3 at the mRNA and post-transcriptional levels, respectively to maintain maximal MMP-13 activity, which is required for ECM

  4. The effect of insulin-like growth factor I on proteoglycan metabolism in immature and adult bovine articular cartilage

    International Nuclear Information System (INIS)

    Barone-Varelas, J.

    1989-01-01

    Explants of articular cartilage from calf (15 weeks old) and steer (18-24 months old) were cultured for up to 19 days in medium containing either insulin-like growth factor (IGF-I) or 20% fetal bovine serum (FBS). Explants cultured in medium alone were controls. 35 S-proteoglycans (PGs) synthesized on day 7 of culture during a 5-hour pulse with 35 S-sulfate were isolated, quantified and characterized. Lower concentrations of IGF-I were required for maximal stimulation of PG synthesis in calf than in steer (10 vs 20 ng/ml). In calf, IGF-I was as effective as 20% FABS in stimulating PG synthesis. In steer, PG synthesis in the presence of IGF-I reached its maximum at a rate that was half that obtained with 20% FBS. The stimulation by IGF-I or FBS was not accompanied at either age by alterations in the size and composition of the aggregating PGs nor by changes in the relative proportions of the CS-rich and CS-poor PG subpopulations. Importantly, the newly synthesized calf and steer PGs retained marked age-related differences in composition regardless of the culture conditions. The effects of exogenously added IGF-I and FBS on the rate of turnover of cartilage PGs was also studied. In calf, IGF-I and FBS did not significantly alter the rate of turnover of either the 35 S-PGs synthesized in vitro or of the unlabeled PGs representing mostly molecules synthesize and organized into the matrix in vivo. In steer, explants cultured in the absence of IGF-I or FBS exhibited very fast rates of turnover which resulted in severe depletion of matrix PG with time. Importantly, IGF-I and FBS were equally effective in reducing the turnover rate of 35 S-PGs and unlabeled PGs and in preventing PG depletion. These results demonstrate age-related differences in the effect of IGF-I on PG synthesis by articular chondrocytes

  5. Imaging of articular cartilage

    Directory of Open Access Journals (Sweden)

    Bhawan K Paunipagar

    2014-01-01

    Full Text Available We tried to review the role of magnetic resonance imaging (MRI in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.

  6. Ionizing Radiation Induces Cellular Senescence of Articular Chondrocytes via Negative Regulation of SIRT1 by p38 Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Hee; Hwang, Sang Gu [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Senescent cells exhibit irreversible growth arrest, large flat morphology, and up-regulated senescence-associated {beta}-galactosidase activity at pH 6.0. Several conditions, including oncogenic stress, oxidative stress, and DNA damage are associated with cellular senescence. Massive acute DNA double-strand breaks occurring as a result of mechanical and chemical stress can be repaired, but some DNA damage persists, eventually triggering premature senescence. Since ionizing radiation directly induces DBS, it is possible that cellular senescence is activated under these conditions. The biological events in chondrocytes following irradiation are poorly understood, and limited information is available on the molecular signal transduction mechanisms of cellular senescence at present. In this study, we identify SIRT1 as a target molecule of p38 kinase and demonstrate that the interactions between p38 kinase and SIRT1 protein play an important role in the regulation of cellular senescence in response to IR.

  7. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment.

    Science.gov (United States)

    Martinez, Inigo; Elvenes, Jan; Olsen, Randi; Bertheussen, Kjell; Johansen, Oddmund

    2008-01-01

    The main purpose of this work has been to establish a new culturing technique to improve the chondrogenic commitment of isolated adult human chondrocytes, with the aim of being used during cell-based therapies or tissue engineering strategies. By using a rather novel technique to generate scaffold-free three-dimensional (3D) structures from in vitro expanded chondrocytes, we have explored the effects of different culture environments on cartilage formation. Three-dimensional chondrospheroids were developed by applying the hanging-drop technique. Cartilage tissue formation was attempted after combining critical factors such as serum-containing or serum-free media and atmospheric (20%) or low (2.5%) oxygen tensions. The quality of the formed microtissues was analyzed by histology, immunohistochemistry, electron microscopy, and real-time PCR, and directly compared with native adult cartilage. Our results revealed highly organized, 3D tissue-like structures developed by the hanging-drop method. All culture conditions allowed formation of 3D spheroids; however, cartilage generated under low oxygen tension had a bigger size, enhanced matrix deposition, and higher quality of cartilage formation. Real-time PCR demonstrated enhanced expression of cartilage-specific genes such us collagen type II and aggrecan in 3D cultures when compared to monolayers. Cartilage-specific matrix proteins and genes expressed in hanging-drop-developed spheroids were comparable to the expression obtained by applying the pellet culture system. In summary, our results indicate that a combination of 3D cultures of chondrocytes in hanging drops and a low oxygen environment represent an easy and convenient way to generate cartilage-like microstructures. We also show that a new specially tailored serum-free medium is suitable for in vitro cartilage tissue formation. This new methodology opens up the possibility of using autogenously produced solid 3D structures with redifferentiated chondrocytes as an

  8. Intra-articular nerve growth factor regulates development, but not maintenance, of injury-induced facet joint pain & spinal neuronal hypersensitivity.

    Science.gov (United States)

    Kras, J V; Kartha, S; Winkelstein, B A

    2015-11-01

    The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Male Holtzman rats underwent painful cervical facet joint distraction (FJD) or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint's mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Neurotransmitter regulation of adult neurogenesis: putative therapeutic targets.

    Science.gov (United States)

    Vaidya, V A; Vadodaria, K C; Jha, S

    2007-10-01

    The evidence that new neuron addition takes place in the mammalian brain throughout adult life has dramatically altered our perspective of the potential for plasticity in the adult CNS. Although several recent reports suggest a latent neurogenic capacity in multiple brain regions, the two major neurogenic niches that retain the ability to generate substantial numbers of new neurons in adult life are the subventricular zone (SVZ) lining the lateral ventricles and the subgranular zone (SGZ) in the hippocampal formation. The discovery of adult neurogenesis has also unveiled a novel therapeutic target for the repair of damaged neuronal circuits. In this regard, understanding the endogenous mechanisms that regulate adult neurogenesis holds promise both for a deeper understanding of this form of structural plasticity, as well as the identification of pathways that can serve as therapeutic targets to manipulate adult neurogenesis. The purpose of the present review is to discuss the regulation of adult neurogenesis by neurotransmitters and to highlight the relevance of these endogenous regulators as targets to modulate adult neurogenesis in a clinical context.

  10. Regulators of articular cartilage homeostasis

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus

    2012-01-01

    Prevention of hypertrophic differentiation is essential for successful cartilage repair strategies. Although this process is essential for longitudinal growth, it also is part of degenerative cartilage diseases such as osteoarthiritis. Moreover, it limits the use of cell types prone to this process

  11. Adult-type hypolactasia and regulation of lactase expression

    DEFF Research Database (Denmark)

    Troelsen, Jesper Thorvald

    2005-01-01

    , the main carbohydrate in milk. Individuals with adult-type hypolactasia lose their lactase expression before adulthood and consequently often become lactose intolerant with associated digestive problems (e.g. diarrhoea). In contrast, lactase persistent individuals have a lifelong lactase expression......A common genetically determined polymorphism in the human population leads to two distinct phenotypes in adults, lactase persistence and adult-type hypolactasia (lactase non-persistence). All healthy newborn children express high levels of lactase and are able to digest large quantities of lactose...... and are able to digest lactose as adults. Lactase persistence can be regarded as the mutant phenotype since other mammals down-regulate their lactase expression after weaning (the postweaning decline). This phenomenon does not occur in lactase persistent individuals. The regulation of lactase expression...

  12. Fundamental study on articular disc with magnetic resonance imagings

    International Nuclear Information System (INIS)

    Chiba, Toyokazu

    1993-01-01

    In order to establish criteria of reading MRI of the temporomandibular joint, a morphological comparison between MRI and the section, and an observation of the articular disc associated with the opening were made. Five temporomandibular joints isolated from 3 human cadavers were subjected to MRI, and sections were prepared to examine criteria of reading MRI. In 20 male adults, 40 temporomandibular joints underwent MRI in three conditions of the intercuspal position, 10 and 20 mm opening positions, and the kinetics of the articular disc were examined. External feature of the head of mandible and that of the articular fossa, the articular tubercule and the postglenoid process were outlined in a row of blacks. The articular disc was outlined in a row of dark ashen areas of the anterior band, the intermediate region, and the posterior band. In the intercuspal position, the head of mandible was rarely covered with the articular disc, and being situated postero-inferiorly, at the most rear point of the posterior band of the articular disc. In the 10 mm-opening position, the head of mandible was practically covered with the articular disc. In the 20 mm-opening position, the intermediate region of the articular disc, and the head of mandible were situated in an approximate position. Quantitative movement of the articular disc was slower than that of the head of mandible. Comparison of various points of the articular disc revealed that movements of the anterior and posterior band varied almost proportionally to the opening distance, but with lesser movement of the intermediate region. (author)

  13. Emotional Regulation in Young Adults with Internet Gaming Disorder

    Directory of Open Access Journals (Sweden)

    Ju-Yu Yen

    2017-12-01

    Full Text Available People diagnosed with Internet gaming disorder (IGD have been frequently reported to experience depression, anxiety, and hostility. Emotional regulation contributes to these mood symptoms. This study evaluated emotional regulation in subjects with IGD and examined relationships between emotional regulation, depression, anxiety, and hostility in young adults with IGD. We recruited 87 people with IGD and a control group of 87 people without a history of IGD. All participants underwent a diagnostic interview based on the IGD criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and they completed a questionnaire on emotional regulation, depression, anxiety, and hostility. We found that subjects with IGD were less likely to practice cognitive reappraisal and were more likely to suppress their emotions. Linear regression revealed the higher cognitive reappraisal and lower expressive suppression associated with depression, anxiety, and hostility among subjects with IGD. The emotional regulation strategies that characterize those with IGD could be contributing factors to the depression and hostility tendencies of these people. When treating patients with IGD, in addition to providing appropriate interventions to relieve depression and hostility, practitioners should effectively assess emotional regulation strategies and provide emotional regulation therapy to prevent a vicious cycle of negative emotions.

  14. Emotional Regulation in Young Adults with Internet Gaming Disorder.

    Science.gov (United States)

    Yen, Ju-Yu; Yeh, Yi-Chun; Wang, Peng-Wei; Liu, Tai-Ling; Chen, Yun-Yu; Ko, Chih-Hung

    2017-12-25

    People diagnosed with Internet gaming disorder (IGD) have been frequently reported to experience depression, anxiety, and hostility. Emotional regulation contributes to these mood symptoms. This study evaluated emotional regulation in subjects with IGD and examined relationships between emotional regulation, depression, anxiety, and hostility in young adults with IGD. We recruited 87 people with IGD and a control group of 87 people without a history of IGD. All participants underwent a diagnostic interview based on the IGD criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and they completed a questionnaire on emotional regulation, depression, anxiety, and hostility. We found that subjects with IGD were less likely to practice cognitive reappraisal and were more likely to suppress their emotions. Linear regression revealed the higher cognitive reappraisal and lower expressive suppression associated with depression, anxiety, and hostility among subjects with IGD. The emotional regulation strategies that characterize those with IGD could be contributing factors to the depression and hostility tendencies of these people. When treating patients with IGD, in addition to providing appropriate interventions to relieve depression and hostility, practitioners should effectively assess emotional regulation strategies and provide emotional regulation therapy to prevent a vicious cycle of negative emotions.

  15. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  16. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  17. STUDY OF THE MORPHOLOGIC AND MORPHOMETRIC PATTERNS OF TALAR ARTICULAR FACETS ON DRY ADULT CALCANEAL BONES IN SOUTH-EASTERN NIGERIAN POPULATION. Estudio de los patrones morfológicos y morfométricos de las facetas articulares talares en huesos calcaneos a

    Directory of Open Access Journals (Sweden)

    Ukoha Ukoha

    2017-08-01

    Full Text Available Background: Calcaneum is the largest and longest tarsal bone in the foot and forms the prominence of the heel. Objective: The aim of the study was to observe the variations in the morphology and morphometry of the talar articular facets on the superior surface of human calcanei in South-Eastern Nigeria. Materials and Methods: The study was carried out on 220 adult non-pathological dry calcanei of unknown sex from bone banks of various medical colleges in South-Eastern Nigeria. Each calcaneum was examined for various patterns of articulating facets. Results: Pattern 1 was 55.4% of the studied population, Pattern II 7.7%, Pattern III 12.7% and Pattern IV 24%. The oval shape was 52.86% and 64.39% in the anterior and middle talar articular facets respectively, oval and convex was 70% in the posterior facet and the elongated shape was 63.12% in the fused anterior and middle facet with elongated oval 27.87% in subtype 2 and elongated constricted 35.25% in subtype 1. The length of the calcanei was recorded at a mean±SD of 7.10±0.70cm (left side and 7.01±0.72cm (right side. The width was 2.77±0.38cm (left side and 2.77±0.37cm (right side. The distance between the anterior and middle facets was 0.50±0.15cm (left side and 0.48±0.15cm (right side; the posterior and middle facets at 0.59±0.20cm (left side and 0.56±0.17cm (right side and that between the anterior and posterior facets at 1.43±0.27cm (left side and 1.42±0.29cm (right side. Conclusion: A good knowledge of the calcaneal facet pattern and shape may be useful in forensic medicine. Antecedentes: El calcáneo es el hueso tarsiano más largo y más largo del pie y forma la prominencia del talón. El tercio medio de la superficie superior del calcáneo proporciona una faceta articular para el hueso del talud. Objetivo: El estudio busca observar las variaciones en la morfología y morfometría de las facetas articulares del talar en la superficie superior de huesos calcánicos secos de

  18. Pendulum mass affects the measurement of articular friction coefficient.

    Science.gov (United States)

    Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C

    2013-02-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Exosomes as novel regulators of adult neurogenic niches

    Directory of Open Access Journals (Sweden)

    Luis Federico Batiz

    2016-01-01

    Full Text Available Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ of the dentate gyrus (DG in the hippocampus, and the sub-ventricular zone (SVZ of the lateral ventricles. SGZ newborn neurons are destined to the granular cell layer of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb. The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs, which reside in a unique and specialized microenvironment known as neurogenic niche. Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs. EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs, proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult

  20. Glucose: an Energy Currency and Structural Precursor in Articular Cartilage and Bone with Emerging Roles as an Extracellular Signalling Molecule and Metabolic Regulator

    Directory of Open Access Journals (Sweden)

    Ali eMobasheri

    2012-12-01

    Full Text Available In the musculoskeletal system glucose serves as an essential source of energy for the development, growth and maintenance of bone and articular cartilage. It is particularly needed for skeletal morphogenesis during embryonic growth and foetal development. Glucose is vital for osteogenesis and chondrogenesis, and is used as a precursor for the synthesis of glycosaminoglycans, glycoproteins and glycolipids. Glucose sensors are present in tissues and organs that carry out bulk glucose fluxes (i.e. intestine, kidney and liver. The beta cells of the pancreatic islets of Langerhans respond to changes in glucose concentration by varying the rate of insulin synthesis and secretion. Neuronal cells in the hypothalamus are also capable of sensing extracellular glucose. Glucosensing neurons use glucose as a signalling molecule to alter their action potential frequency in response to variations in ambient glucose levels. Skeletal muscle and adipose tissue can respond to changes in circulating glucose but much less is known about glucosensing in bone and cartilage. Recent research suggests that bone cells can influence (and be influenced by systemic glucose metabolism. This focused review article discusses what we know about glucose transport and metabolism in bone and cartilage and highlights recent studies that have linked glucose metabolism, insulin signalling and osteocalcin activity in bone and cartilage. These new findings in bone cells raise important questions about nutrient sensing, uptake, storage and processing mechanisms and how they might contribute to overall energy homeostasis in health and disease. The role of glucose in modulating anabolic and catabolic gene expression in normal and osteoarthritic chondrocytes is also discussed. In summary, cartilage and bone cells are sensitive to extracellular glucose and adjust their gene expression and metabolism in response to varying extracellular glucose concentrations.

  1. How do older adult drivers self-regulate? Characteristics of self-regulation classes defined by latent class analysis.

    Science.gov (United States)

    Bergen, Gwen; West, Bethany A; Luo, Feijun; Bird, Donna C; Freund, Katherine; Fortinsky, Richard H; Staplin, Loren

    2017-06-01

    Motor-vehicle crashes were the second leading cause of injury death for adults aged 65-84years in 2014. Some older drivers choose to self-regulate their driving to maintain mobility while reducing driving risk, yet the process remains poorly understood. Data from 729 older adults (aged ≥60years) who joined an older adult ride service program between April 1, 2010 and November 8, 2013 were analyzed to define and describe classes of driving self-regulation. Latent class analysis was employed to characterize older adult driving self-regulation classes using driving frequency and avoidance of seven driving situations. Logistic regression was used to explore associations between characteristics affecting mobility and self-regulation class. Three classes were identified (low, medium, and high self-regulation). High self-regulating participants reported the highest proportion of always avoiding seven risky driving situations and the lowest driving frequency followed by medium and low self-regulators. Those who were female, aged 80years or older, visually impaired, assistive device users, and those with special health needs were more likely to be high self-regulating compared with low self-regulating. Avoidance of certain driving situations and weekly driving frequency are valid indicators for describing driving self-regulation classes in older adults. Understanding the unique characteristics and mobility limitations of each class can guide optimal transportation strategies for older adults. Published by Elsevier Ltd.

  2. Self-reported emotion regulation in adults with Tourette's syndrome.

    Science.gov (United States)

    Drury, Helena; Wilkinson, Verity; Robertson, Mary M; Channon, Shelley

    2016-11-30

    Recent work has reported mild impairments in social and emotional processing in Tourette's syndrome (TS), but deliberate attempts to use specific emotion regulation strategies have not been investigated previously. In the present study, adult participants with TS and no comorbidities (TS-alone) were compared to healthy control participants on several self-report measures assessing habitual use of reappraisal and suppression emotion regulation strategies. There were no group differences on measures of reappraisal, but the TS-alone group reported using suppression more frequently than the control group and this was true across a range of negative emotions. The groups did not differ on symptomatology scores of anxiety or depression, although more frequent use of suppression was associated with higher depressive symptomatology for the TS-alone group only. Further work is needed to examine potential factors that may influence emotion regulation in TS, including increased emotional reactivity or expertise in applying strategies to suppress tic symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging.

    Science.gov (United States)

    Behzadi, Cyrus; Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-08-01

    To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. 30 healthy male adults (18-31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7-154.6 ms] and T2* weighted (24 TEs: 4.6-53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product-moment correlation coefficients and confidence intervals were computed. Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults.

  4. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  5. Postnatal development of collagen structure in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  6. Postnatal development of collagen structure in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Engel, B.; Buist, W.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    BACKGROUND:Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly

  7. Pharmacokinetics of betamethasone in plasma, urine, and synovial fluid following intra-articular administration to exercised thoroughbred horses.

    Science.gov (United States)

    Knych, Heather K; Stanley, Scott D; Harrison, Linda M; Mckemie, Daniel S

    2017-09-01

    The use of corticosteroids, such as betamethasone, in performance horses is tightly regulated. The objective of the current study was to describe the plasma pharmacokinetics of betamethasone as well as time-related urine and synovial fluid concentrations following intra-articular administration to horses. Twelve racing-fit adult Thoroughbred horses received a single intra-articular administration (9 mg) of a betamethasone sodium phosphate and betamethasone acetate injectable suspension into the right antebrachiocarpal joint. Blood, urine, and synovial fluid samples were collected prior to and at various times up to 21 days post drug administration. All samples were analyzed using tandem liquid chromatography-mass spectrometry. Plasma data were analyzed using compartmental pharmacokinetic modeling. Maximum measured plasma betamethasone concentrations were 3.97 ± 0.23 ng/mL at 1.45 ± 0.20 h. The plasma elimination half-life was 7.48 ± 0.39 h. Betamethasone concentrations were below the limit of detection in all horses by 96 h and 7 days in plasma and urine, respectively. Betamethasone fell below the limit of detection in the right antebrachiocarpal joint between 14 and 21 days. Results of this study provide information that can be used to regulate the use of intra-articular betamethasone in the horse. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Postnatal development of collagen structure in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-06-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the

  9. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P

    2011-01-01

    OBJECTIVE: Maintenance of chondrocyte phenotype is a major issue in prevention of degeneration and repair of articular cartilage. Although the critical pathways in chondrocyte maturation and homeostasis have been revealed, the in-depth understanding is deficient and novel modifying components...... subgroups. Cartilage specific expression was highest in proliferating and prehypertrophic zones during development, and in adult articular cartilage, expression was restricted to the uncalcified zone, including chondrocyte clusters in human osteoarthritic cartilage. Studies with experimental chondrogenesis...... chondrocytes and adult articular chondrocytes with possible functions associated with development and maintenance of chondrocyte phenotype....

  10. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  11. Situation Selection and Modification for Emotion Regulation in Younger and Older Adults.

    Science.gov (United States)

    Livingstone, Kimberly M; Isaacowitz, Derek M

    2015-11-01

    This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or "just view" condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation.

  12. MR imaging of articular cartilage

    International Nuclear Information System (INIS)

    Schaefer, F.K.W.; Muhle, C.; Heller, M.; Brossmann, J.

    2001-01-01

    MR imaging has evolved to the best non-invasive method for the evaluation of articular cartilage. MR imaging helps to understand the structure and physiology of cartilage, and to diagnose cartilage lesions. Numerous studies have shown high accuracy and reliability concerning detection of cartilage lesions and early changes in both structure and biochemistry. High contrast-to-noise ratio and high spatial resolution are essential for analysis of articular cartilage. Fat-suppressed 3D-T 1 weighted gradient echo and T 2 -weighted fast spin echo sequences with or without fat suppression are recommended for clinical routine. In this article the anatomy and pathology of hyaline articular cartilage and the complex imaging characteristics of hyaline cartilage will be discussed. (orig.) [de

  13. Regulation of adult neural progenitor cell functions by purinergic signaling.

    Science.gov (United States)

    Tang, Yong; Illes, Peter

    2017-02-01

    Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.

  14. Evaluation of the Thompson articular index

    NARCIS (Netherlands)

    van den Brink, H. R.; van der Heide, A.; Jacobs, J. W.; van der Veen, M. J.; Bijlsma, J. W.

    1993-01-01

    Three articular indices for measuring disease activity are compared. In a cross sectional study the Thompson articular index (a modified Lansbury index) correlated better with laboratory variables than the Ritchie articular index or a swollen joint score (Thompson 0.74-0.77; Ritchie 0.57-0.58;

  15. Widespread epigenomic, transcriptomic and proteomic differences between hip osteophytic and articular chondrocytes in osteoarthritis.

    Science.gov (United States)

    Steinberg, Julia; Brooks, Roger A; Southam, Lorraine; Bhatnagar, Sahir; Roumeliotis, Theodoros I; Hatzikotoulas, Konstantinos; Zengini, Eleni; Wilkinson, J Mark; Choudhary, Jyoti S; McCaskie, Andrew W; Zeggini, Eleftheria

    2018-05-08

    To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.

  16. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on ...

  17. Articular cartilage changes in chondromalacia patellae.

    Science.gov (United States)

    Bentley, G

    1985-11-01

    Full thickness samples of articular cartilage were removed from areas of chondromalacia on the medial and "odd" facets of the patellae of 21 adults and examined by histology, autoradiography and electron microscopy. Surface fibrillation, loss of superficial matrix staining and reduced 35SO4 labelling was seen, with little change in the deep zone. Ten cases showed "fibrous metaplasia" of the superficial cartilage with definite evidence of cell division and apparent smoothing of the surface. Scattered chondrocyte replication appeared to occur in the surrounding intact cartilage. The findings suggest that early lesions in chondromalacia patellae may heal either by cartilage or fibrous metaplasia and that this may account for the resolution of clinical symptoms.

  18. Developmentally regulated expression of reporter gene in adult ...

    Indian Academy of Sciences (India)

    pression of reporter gene in adult brain specific GAL4 enhancer traps of. Drosophila ... genes based on their expression pattern, thus enabling us to overcome the ... order association and storage centres of olfactory learning and memory, and ...

  19. The Older Adult Positivity Effect in Evaluations of Trustworthiness: Emotion Regulation or Cognitive Capacity?

    Science.gov (United States)

    Zebrowitz, Leslie A; Boshyan, Jasmine; Ward, Noreen; Gutchess, Angela; Hadjikhani, Nouchine

    2017-01-01

    An older adult positivity effect, i.e., the tendency for older adults to favor positive over negative stimulus information more than do younger adults, has been previously shown in attention, memory, and evaluations. This effect has been attributed to greater emotion regulation in older adults. In the case of attention and memory, this explanation has been supported by some evidence that the older adult positivity effect is most pronounced for negative stimuli, which would motivate emotion regulation, and that it is reduced by cognitive load, which would impede emotion regulation. We investigated whether greater older adult positivity in the case of evaluative responses to faces is also enhanced for negative stimuli and attenuated by cognitive load, as an emotion regulation explanation would predict. In two studies, younger and older adults rated trustworthiness of faces that varied in valence both under low and high cognitive load, with the latter manipulated by a distracting backwards counting task. In Study 1, face valence was manipulated by attractiveness (low /disfigured faces, medium, high/fashion models' faces). In Study 2, face valence was manipulated by trustworthiness (low, medium, high). Both studies revealed a significant older adult positivity effect. However, contrary to an emotion regulation account, this effect was not stronger for more negative faces, and cognitive load increased rather than decreased the rated trustworthiness of negatively valenced faces. Although inconsistent with emotion regulation, the latter effect is consistent with theory and research arguing that more cognitive resources are required to process negative stimuli, because they are more cognitively elaborated than positive ones. The finding that increased age and increased cognitive load both enhanced the positivity of trustworthy ratings suggests that the older adult positivity effect in evaluative ratings of faces may reflect age-related declines in cognitive capacity rather

  20. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  1. Flow-regulated versus differential pressure-regulated shunt valves for adult patients with normal pressure hydrocephalus

    DEFF Research Database (Denmark)

    Ziebell, Morten; Wetterslev, Jørn; Tisell, Magnus

    2013-01-01

    Since 1965 many ventriculo-peritoneal shunt systems have been inserted worldwide to treat hydrocephalus. The most frequent indication in adults is normal pressure hydrocephalus (NPH), a condition that can be difficult to diagnose precisely. Surgical intervention with flow-regulated and differential...

  2. Self-regulation resources and physical activity participation among adults with type 2 diabetes.

    Science.gov (United States)

    Castonguay, Alexandre; Miquelon, Paule; Boudreau, François

    2018-01-01

    Physical activity plays a crucial role in the prevention and treatment of type 2 diabetes. Therefore, it is important to understand why so few adults with type 2 diabetes regularly engage in physical activity. The role of self-regulation in the context of health-related behavior adherence, especially in terms of physical activity engagement and adherence, has largely been reviewed based on the strength energy model. Building on this line of research, the aim of this theoretical work was to highlight how self-regulation and ego depletion can influence the lower rate of physical activity participation among adults with type 2 diabetes, compared to adults from the general population.

  3. Driving Skills of Young Adults with Developmental Coordination Disorder: Regulating Speed and Coping with Distraction

    Science.gov (United States)

    de Oliveira, Rita F.; Wann, John P.

    2011-01-01

    In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…

  4. Eating pathology, emotion regulation, and emotional overeating in obese adults with Binge Eating Disorder.

    Science.gov (United States)

    Gianini, Loren M; White, Marney A; Masheb, Robin M

    2013-08-01

    The purpose of the current study was to examine the relationship among emotional regulation, emotional overeating, and general eating pathology in a treatment seeking sample of adults with Binge Eating Disorder (BED). The sample was composed of 326 adults (248 women, 78 men) who were obese and met DSM-IV-TR criteria for BED. Prior to treatment, participants completed the Difficulties in Emotion Regulation Scale (DERS), Emotional Overeating Questionnaire (EOQ), Beck Depression Inventory (BDI), and Eating Disorder Examination-Questionnaire (EDE-Q) as part of a larger assessment battery. A series of hierarchical regression analyses indicated that difficulties with emotion regulation accounted for unique variance in both emotional overeating and general eating pathology above and beyond sex and negative affect. Emotion regulation may play a significant role in the maintenance of emotional overeating and eating pathology in obese adults with BED. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Localization of Estrogen Receptors α and β in the Articular Surface of the Rat Femur

    International Nuclear Information System (INIS)

    Oshima, Yasushi; Matsuda, Ken-ichi; Yoshida, Atsuhiko; Watanabe, Nobuyoshi; Kawata, Mitsuhiro; Kubo, Toshikazu

    2007-01-01

    It has been suggested that the degradation of the articular cartilage and osteoarthritis (OA) are associated with gender and the estrogen hormone. Although many investigators have reported the presence of the estrogen receptors (ERs) α and β in the articular cartilage, the localization of these receptors and the difference in their in vivo expression have not yet been clearly demonstrated. We performed immunofluorescence staining of ERα and ERβ to elucidate the localization of the ERs and to note the effects of gender and the aging process on these receptors. The results revealed that ERα and ERβ were expressed in the articular cartilage and subchondral bone layers of adult rats of both sexes. We also observed the high expression of these receptors in immature rats. In contrast, their expression levels decreased in an ovariectomised model, as a simulation of postmenopause, and in aged female rats. Therefore, this study suggests the direct effects of estrogen and ER expression on articular surface metabolism

  6. Intra-articular chondroma of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Talwalkar, S.C.; Kambhampati, S.B.S.; Lang Stevenson, A.I. [Oldchurch Hospital, Romford, Essex (United Kingdom); Whitehouse, R. [Manchester University, Department of Radiology, Manchester (United Kingdom); Freemont, A. [University of Manchester, Department of Osteoarticular Pathology, Manchester (United Kingdom)

    2005-06-01

    Chondromas are tumours that develop in relation to the periosteum and, although they are common around the knee, most reports deal with soft tissue chondromas in para-articular locations or intracortical tumours in extra-articular regions. We report a rare case of an intra-articular chondroma in a 16-year-old boy of Asian origin developing in the region of the medial femoral condyle of the femur and extending into the femoral sulcus and the patellofemoral joint. (orig.)

  7. Intra-articular chondroma of the knee

    International Nuclear Information System (INIS)

    Talwalkar, S.C.; Kambhampati, S.B.S.; Lang Stevenson, A.I.; Whitehouse, R.; Freemont, A.

    2005-01-01

    Chondromas are tumours that develop in relation to the periosteum and, although they are common around the knee, most reports deal with soft tissue chondromas in para-articular locations or intracortical tumours in extra-articular regions. We report a rare case of an intra-articular chondroma in a 16-year-old boy of Asian origin developing in the region of the medial femoral condyle of the femur and extending into the femoral sulcus and the patellofemoral joint. (orig.)

  8. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors

    Directory of Open Access Journals (Sweden)

    Jasmine Kolb

    2018-04-01

    Full Text Available Summary: Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. : A hallmark of adult neurogenesis is its strong dependence on physiological stimuli and environmental signals. Schulte and colleagues show that the nuclear localization and activity of a transcriptional regulator of adult neurogenesis is controlled by posttranslational modification. Their results link intrinsic control over neuron production to external signals and help to explain how adult neurogenesis can occur “on demand.” Keywords: subventricular zone, stem cell niche, posttranslational modification, controlled nuclear import, TALE-homdomain protein, MEIS2, PBX1, CRM1, neurogenesis, stem cell niche

  9. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    Science.gov (United States)

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior.

    Science.gov (United States)

    Sun, Dong; Sun, Xiang-Dong; Zhao, Lu; Lee, Dae-Hoon; Hu, Jin-Xia; Tang, Fu-Lei; Pan, Jin-Xiu; Mei, Lin; Zhu, Xiao-Juan; Xiong, Wen-Cheng

    2018-01-08

    Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.

  11. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuping Luo

    2010-04-01

    Full Text Available Fragile X syndrome (FXS, the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP. FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs. We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  12. bFGF influences human articular chondrocyte differentiation

    DEFF Research Database (Denmark)

    Schmal, H; Zwingmann, J; Fehrenbach, M

    2007-01-01

    BACKGROUND: The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated. METHODS: [EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro......FGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained...... by 53%, which was correlated with diminished mRNA production. Monolayer cultured chondrocytes secreted significant amounts of aggrecan that decreased over time. Secretion of this cartilage-specific marker was further reduced by the addition of bFGF. DISCUSSION: These findings highlight the potential...

  13. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors.

    Science.gov (United States)

    Kolb, Jasmine; Anders-Maurer, Marie; Müller, Tanja; Hau, Ann-Christin; Grebbin, Britta Moyo; Kallenborn-Gerhardt, Wiebke; Behrends, Christian; Schulte, Dorothea

    2018-04-10

    Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A Common Language: How Neuroimmunological Cross Talk Regulates Adult Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Odette Leiter

    2016-01-01

    Full Text Available Immune regulation of the brain is generally studied in the context of injury or disease. Less is known about how the immune system regulates the brain during normal brain function. Recent work has redefined the field of neuroimmunology and, as long as their recruitment and activation are well regulated, immune cells are now known to have protective properties within the central nervous system in maintaining brain health. Adult neurogenesis, the process of new neuron generation in the adult brain, is highly plastic and regulated by diverse extrinsic and intrinsic cues. Emerging research has shown that immune cells and their secreted factors can influence adult neurogenesis, both under baseline conditions and during conditions known to change neurogenesis levels, such as aging and learning in an enriched environment. This review will discuss how, under nonpathological conditions, the immune system can interact with the neural stem cells to regulate adult neurogenesis with particular focus on the hippocampus—a region crucial for learning and memory.

  15. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Directory of Open Access Journals (Sweden)

    Stromberg Arnold J

    2009-09-01

    Full Text Available Abstract Background Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. Methods Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR. Results Statistical analyses revealed 3,327 (35.3% differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. Conclusion The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to

  16. Functional anatomy of the equine temporomandibular joint: Collagen fiber texture of the articular surfaces.

    Science.gov (United States)

    Adams, K; Schulz-Kornas, E; Arzi, B; Failing, K; Vogelsberg, J; Staszyk, C

    2016-11-01

    In the last decade, the equine masticatory apparatus has received much attention. Numerous studies have emphasized the importance of the temporomandibular joint (TMJ) in the functional process of mastication. However, ultrastructural and histological data providing a basis for biomechanical and histopathological considerations are not available. The aim of the present study was to analyze the architecture of the collagen fiber apparatus in the articular surfaces of the equine TMJ to reveal typical morphological features indicating biomechanical adaptions. Therefore, the collagen fiber alignment was visualized using the split-line technique in 16 adult warmblood horses without any history of TMJ disorders. Within the central two-thirds of the articular surfaces of the articular tubercle, the articular disc and the mandibular head, split-lines ran in a correspondent rostrocaudal direction. In the lateral and medial aspects of these articular surfaces, the split-line pattern varied, displaying curved arrangements in the articular disc and punctual split-lines in the bony components. Mediolateral orientated split-lines were found in the rostral and caudal border of the articular disc and in the mandibular fossa. The complex movements during the equine chewing cycle are likely assigned to different areas of the TMJ. The split-line pattern of the equine TMJ is indicative of a relative movement of the joint components in a preferential rostrocaudal direction which is consigned to the central aspects of the TMJ. The lateral and medial aspects of the articular surfaces provide split-line patterns that indicate movements particularly around a dorsoventral axis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    Science.gov (United States)

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  18. Geographic differences in the associations between impaired glucose regulation and cardiovascular risk factors among young adults

    DEFF Research Database (Denmark)

    Oya, J.; Vistisen, D.; Christensen, Dirk Lund

    2015-01-01

    AIMS: To assess geographic differences in the association between BMI, blood pressure and lipid levels with impaired glucose regulation among young adults from various geographical regions. METHODS: This was a cross-sectional study including data from 6987 participants aged ≤ 30 years from India,...

  19. Stress Regulation in Adolescents: Physiological Reactivity during the Adult Attachment Interview and Conflict Interaction

    Science.gov (United States)

    Beijersbergen, Marielle D.; Bakermans-Kranenburg, Marian J.; van IJzendoorn, Marinus H.; Juffer, Femmie

    2008-01-01

    The current study examined whether adolescents' attachment representations were associated with differences in emotion regulation during the Adult Attachment Interview (AAI; C. George, N. Kaplan, & M. Main, 1996) and during a mother-adolescent conflict interaction task (Family Interaction Task [FIT]; J. P. Allen et al., 2003). Participants…

  20. Self-Regulation, Self-Efficacy and Health Behavior Change in Older Adults.

    Science.gov (United States)

    Purdie, Nola; McCrindle, Andrea

    2002-01-01

    Presents an overview of self-regulation models: theory of planned behavior, protection motivation theory, health belief model, action control theory, transtheoretical model of behavior change, health action process, and precaution adoption process. Applies models to health behavior change in older adults with cardiovascular disease or diabetes.…

  1. Affective Self-Regulation Trajectories during Secondary School Predict Substance Use among Urban Minority Young Adults

    Science.gov (United States)

    Griffin, Kenneth W.; Lowe, Sarah R.; Acevedo, Bianca P.; Botvin, Gilbert J.

    2015-01-01

    This study explored the relationship between trajectories of affective self-regulation skills during secondary school and young adult substance use in a large multiethnic, urban sample (N = 995). During secondary school, participants completed a measure of cognitive and behavioral skills used to control negative, unpleasant emotions or perceived…

  2. Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.A.; Naninck, E.F.G.; Fitzsimons, C.P.; van Dam, A.M.; Czeh, B.; Korosi, A.

    2015-01-01

    Exposure to stress is one of the best-known negative regulators of adult neurogenesis (AN). We discuss changes in neurogenesis in relation to exposure to stress, glucocorticoid hormones, and inflammation, with a particular focus on early development and on lasting effects of stress. Although the

  3. Regulating Emotions-Young Children's Views on What Adults Can Do

    OpenAIRE

    Johnson, Mercedes

    2016-01-01

    The purpose of this exploratory study was to understand the emotion regulation experience of young children, aged three to four, attending a nursery school of a Local Authority. This study aimed to reveal young children’s perspectives on emotion regulation and in particular on the way the children see adults playing a part in the children’s emotion regulation. It also aimed to explore ways of engaging young children and eliciting their views.\\ud A sample size of 6 participants together with a...

  4. Disposition of isoflupredone acetate in plasma, urine and synovial fluid following intra-articular administration to exercised Thoroughbred horses.

    Science.gov (United States)

    Knych, Heather K; Harrison, Linda M; White, Alexandria; McKemie, Daniel S

    2016-01-01

    The use of isoflupredone acetate in performance horses and the scarcity of published pharmacokinetic data necessitate further study. The objective of the current study was to describe the plasma pharmacokinetics of isoflupredone acetate as well as time-related urine and synovial fluid concentrations following intra-articular administration to horses. Twelve racing-fit adult Thoroughbred horses received a single intra-articular administration (8 mg) of isoflupredone acetate into the right antebrachiocarpal joint. Blood, urine and synovial fluid samples were collected prior to and at various times up to 28 days post drug administration. All samples were analyzed using liquid chromatography-Mass Spectrometry. Plasma data were analyzed using a population pharmacokinetic compartmental model. Maximum measured plasma isoflupredone concentrations were 1.76 ± 0.526 ng/mL at 4.0 ± 1.31 h and 1.63 ± 0.243 ng/mL at 4.75 ± 0.5 h, respectively, for horses that had synovial fluid collected and for those that did not. The plasma beta half-life was 24.2 h. Isoflupredone concentrations were below the limit of detection in all horses by 48 h and 7 days in plasma and urine, respectively. Isoflupredone was detected in the right antebrachiocarpal and middle carpal joints for 8.38 ± 5.21 and 2.38 ± 0.52 days, respectively. Results of this study provide information that can be used to regulate the use of intra-articular isoflupredone in the horse. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Choir singing and creative writing enhance emotion regulation in adults with chronic mental health conditions.

    Science.gov (United States)

    Dingle, Genevieve A; Williams, Elyse; Jetten, Jolanda; Welch, Jonathon

    2017-11-01

    Adults with mental health conditions commonly experience difficulties with emotion regulation which affect their social functioning. Arts-based groups provide opportunities for shared emotional experiences and emotion regulation. This study explores emotion regulation strategies and the emotional effects of arts-based group participation in adults with mental health problems and in controls. The 62 participants included 39 adults with chronic mental health problems who were members of arts-based groups (ABG) and 23 comparison choir (CC) members who were not specifically experiencing mental health problems. The repeated measures design included self-reports of emotion upon waking (T1), the hour before group (T2), end of the group (T3), and evening (T4), as well as participant notes to explain their emotion ratings at each time. They also completed measures of individual and interpersonal emotion regulation. The ABG participants engaged marginally more in affect worsening strategies than CC (p = .057 and .08), but there were no other group differences. All participants reported a significant increase in positive emotions, F (3, 180) = 28.044, p emotions during the arts-based activity: F (2.637, 155.597) = 21.09, p emotions was short-lived, while the effect on negative emotions lasted until evening. Findings show that participation in arts-based groups benefits the emotions of both healthy adults and those experiencing mental health conditions through individual and interpersonal processes. Individuals with chronic mental health conditions often experience difficulties in emotion processing Participation in arts-based groups was associated with significant increases in positive emotions although these were short-lived Negative emotion was significantly decreased during arts-based group activities, and sustained to the evening assessment Adults with chronic mental health conditions were equally able to derive emotional benefits as healthy adults. © 2017 The

  6. Epigenetic regulation of neural stem cell property from embryo to adult

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    2016-03-01

    Full Text Available Neural stem cells (NSCs have the ability to self-renew and give rise to neurons and glial cells (astrocytes and oligodendrocytes in the mammalian central nervous system. This multipotency is acquired by NSCs during development and is maintained throughout life. Proliferation, fate specification, and maturation of NSCs are regulated by both cell intrinsic and extrinsic factors. Epigenetic modification is a representative intrinsic factor, being involved in many biological aspects of central nervous system development and adult neurogenesis through the regulation of NSC dynamics. In this review, we summarize recent progress in the epigenetic regulation of NSC behavior in the embryonic and adult brain, with particular reference to DNA methylation, histone modification, and noncoding RNAs.

  7. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  8. Current status of imaging of articular cartilage

    International Nuclear Information System (INIS)

    Hodler, J.; Resnick, D.

    1996-01-01

    Various imaging methods have been applied to assessment of articular cartilage. These include standard radiography, arthrography, CT, CT arthrography, ultrasonography, and MR imaging. Radiography remains the initial musculoskeletal imaging method. However, it is insensitive to early stages of cartilage abnormalities. MR imaging has great potential in the assessment of articular cartilage, although high-quality scans are required because imaging signs of cartilage abnormalities may be subtle. The potential and limitations of various sequences and techniques are discussed, including MR arthrography. The role of the other imaging methods in assessment of articular cartilage appears to be limited. (orig.). With 8 figs., 6 tabs

  9. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Lagen, van B.; Zuilhof, H.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the

  10. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    NARCIS (Netherlands)

    Turnhout, van M.C.; Schipper, H.; Lagen, van B.; Zuilhof, H.; Kranenbarg, S.; Leeuwen, van J.L.

    2010-01-01

    Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for

  11. Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain

    Directory of Open Access Journals (Sweden)

    Michalina Respondek

    2015-12-01

    Full Text Available Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC, which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  12. The Relationship of Adult Attachment Theory and Affect Regulation Strategies to Depression

    Directory of Open Access Journals (Sweden)

    Manolya Calisir

    2009-09-01

    Full Text Available According to the attachment theory which is also known as an affect regulation theory, internal working models that are constituted by the interaction between primary care giver and infant in the early period of life. These working models plays an important role how the infant gives a meaning to the world and himself/ herself and it determines the individual’s personality development and by the way the probable psychopathologies that can be observed in the future like depression. In relation with this, many of the empirical studies in the adult literature states on how internal models and cognitive representations have an influence on emotional reactions. According to various studies, reporting different attachment styles and individuals who has probably different internal models, differs in each others’ emotional reactions and how they behave according to these reactions. In view of attachment literature, individual makes a decision in terms of making affect regulation for maintaining proximity seeking and this process evokes the activation of secondary attachment strategies which are named as hyper and deactivating strategies. From the framework of this review, the relationship between major depression and adult attachment styles, affect regulation strategies is examined. Firstly, Bowlby’s attachment theory is mentioned shortly and adult attachment styles are introduced. Secondly, affect regulation strategies, which are thought to be related with major depression as a mood disorder are identified and finally, the empirical research findings relevant to the topic are represented.

  13. Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone

    Directory of Open Access Journals (Sweden)

    Yiu Chung eTse

    2012-03-01

    Full Text Available Stress and corticosteroids dynamically modulate the expression of synaptic plasticity at glutamatergic synapses in the developed brain. Together with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptors (AMPAR, N-methyl-D-aspartate receptors (NMDAR are critical mediators of synaptic function and are essential for the induction of many forms of synaptic plasticity. Regulation of NMDAR function by cortisol/corticosterone (CORT may be fundamental to the effects of stress on synaptic plasticity. Recent reports of the efficacy of NMDAR antagonists in treating certain stress-associated psychopathologies further highlight the importance of understanding the regulation of NMDAR function by CORT. Knowledge of how corticosteroids regulate NMDAR function within the adult brain is relatively sparse, perhaps due to a common belief that NMDAR function is relatively stable in the adult brain. We review recent results from our laboratory and others demonstrating dynamic regulation of NMDAR function by CORT in the adult brain. In addition, we consider the issue of how differences in the early life environment may program differential sensitivity to modulation of NMDAR function by CORT and how this may influence synaptic function during stress. Findings from these studies demonstrate that NMDAR function in the adult hippocampus remains sensitive to even brief exposures to CORT and that the capacity for modulation of NMDAR may be programmed, in part, by the early life environment. Modulation of NMDAR function may contribute to dynamic regulation of synaptic plasticity and adaptation in the face of stress, however enhanced NMDAR function may be implicated in mechanisms of stress related psychopathologies including depression.

  14. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  15. Diverse roles of integrin receptors in articular cartilage.

    Science.gov (United States)

    Shakibaei, M; Csaki, C; Mobasheri, A

    2008-01-01

    Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.

  16. Articular manifestations in patients with Lyme disease.

    Science.gov (United States)

    Vázquez-López, María Esther; Díez-Morrondo, Carolina; Sánchez-Andrade, Amalia; Pego-Reigosa, Robustiano; Díaz, Pablo; Castro-Gago, Manuel

    To determine the percentage of Lyme patients with articular manifestations in NW Spain and to know their evolution and response to treatment. A retrospective study (2006-2013) was performed using medical histories of confirmed cases of Lyme disease showing articular manifestations. Clinical and laboratory characteristics, together with the treatment and evolution of the patients, were analysed. Seventeen out of 108 LD confirmed patients (15.7%) showed articular manifestations. Regarding those 17 patients, 64.7%, 29.4% and 5.9% presented arthritis, arthralgia and bursitis, respectively. The knee was the most affected joint. Articular manifestations were often associated to neurological, dermatological and cardiac pathologies. Otherwise, most patients were in Stage III. The 11.8% of the cases progressed to a recurrent chronic arthritis despite the administration of an appropriate treatment. Lyme disease patients showing articular manifestations should be included in the diagnosis of articular affections in areas of high risk of hard tick bite, in order to establish a suitable and early treatment and to avoid sequels. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  17. Express nothing” as a tendency of emotion regulation in a group of diseased adults

    Czech Academy of Sciences Publication Activity Database

    Poláčková Šolcová, Iva; Šolcová, Iva; Stuchlíková, I.; Mazehoová, Y.; Šerý, M.; Vinokhodova, A.

    2011-01-01

    Roč. 26, č. 2 (2011) ISSN 0887-0446. [European Health Psychology Conference: Engaging with Other Health Professions: Challenges and Perspectives /25./. 20.09.2011-24.09.2011, Hersonissos, Kréta] R&D Projects: GA ČR(CZ) GAP407/11/2226 Institutional research plan: CEZ:AV0Z70250504 Keywords : emotion * emotion regulation * unhealthy adults Subject RIV: AN - Psychology

  18. Attachment, emotion regulation and coping in portuguese emerging adults: a test of a mediation hypothesis

    OpenAIRE

    Joana Cabral; Paula Mena Matos; Wim Beyers; Bart Soenens

    2012-01-01

    Although the quality of parent-adolescent emotional bonds has consistently been proposed as a major influence on young adult's psycho-emotional functioning, the precise means by which these bonds either facilitate or impede adaptive coping are not well-understood. In an effort to advance this inquiry, the present study examined interrelationships among measures of parental attachment, emotion regulation processes, and preferred coping strategies within a sample of 942 college freshmen. Struct...

  19. NeuroD Modulates Opioid Agonist-Selective Regulation of Adult Neurogenesis and Contextual Memory Extinction

    OpenAIRE

    Zheng, Hui; Zhang, Yue; Li, Wen; Loh, Horace H; Law, Ping-Yee

    2013-01-01

    Addictive drugs, including opioids, modulate adult neurogenesis. In order to delineate the probable implications of neurogenesis on contextual memory associated with addiction, we investigated opioid agonist-selective regulation of neurogenic differentiation 1 (NeuroD) activities under the conditioned place preference (CPP) paradigm. Training mice with equivalent doses of morphine and fentanyl produced different CPP extinction rates without measurable differences in the CPP acquisition rate o...

  20. Attitudes towards Potential New Tobacco Control Regulations among U.S. Adults

    OpenAIRE

    Schmidt, Allison M.; Kowitt, Sarah D.; Myers, Allison E.; Goldstein, Adam O.

    2018-01-01

    Favorable attitudes towards tobacco control policies can facilitate their implementation and success. We examined attitudes toward four potential U.S. Federal tobacco regulations (banning menthol from cigarettes, reducing nicotine levels in cigarettes, banning candy and fruit flavored electronic cigarettes, and banning candy and fruit flavored little cigars and cigarillos) and associations with individual and state variables. A nationally representative phone survey of 4337 adults assessed at...

  1. The Variations in Calcaneal Articular Facets In North Indian Population and its Clinical Implication

    Directory of Open Access Journals (Sweden)

    Seema

    2012-01-01

    Full Text Available Aims and Objectives- To know the most common type of calcanei in North Indian population and itsclinical importance. There are three articular facets on superior surface of calcaneus- anterior, middle andposterior. Three types of calcanei are noted according to number and arrangement of the articular facets-type A, B and C. Methodology - The present studywas done on 300 dry adult human calcanei of unknownsex taken from Department of Anatomy Sri Guru Ram Das Institute of Medical Sciences and ResearchVallah (Amritsar. Results- In our study Type B was found as the most common type. Type A is the nextmost common. Interpretation- The talocalcaneal joint is important in arthritis and coalition, flat foot, valgus deformity, congenital anomalies and intra articular fractures.

  2. The effect of self-regulated caffeine use on cognition in young adults.

    Science.gov (United States)

    Harvanko, Arit M; Derbyshire, Katherine L; Schreiber, Liana R N; Grant, Jon E

    2015-03-01

    Based on previous observational studies that have suggested self-regulated caffeine use by older adults may enhance reaction time performance and vigilance on cognitive tasks, the current study sought to examine whether this effect held true for young adults as well. One hundred and four young adults from two major metropolitan areas, ages 18-29 years, not meeting the criteria for a current psychiatric disorder, completed several cognitive tasks related to decision-making (Cambridge Gamble Task), response inhibition and reaction time (stop-signal task), and vigilance and reaction time (Rapid Visual Information Processing). Caffeine usage was self-reported using a reliable quantity and frequency questionnaire. Self-reported caffeine usage was not significantly associated with any of the cognitive measures used in this study after controlling for age, gender, cigarette smoking, alcohol use, cannabis use, and gambling frequency. These data suggest that self-regulated caffeine usage may not have a significant impact on reaction time, vigilance, response inhibition, or decision-making in young adults, or that these effects are contingent upon other variables not accounted for in the current study. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Jesse M Flynn

    2010-10-01

    Full Text Available Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle.

  4. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ana Cañete

    2017-02-01

    Full Text Available Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA, acting through nuclear retinoic acid receptors (RARs, is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.

  5. Eating Self-Regulation in Overweight and Obese Adults: A Concept Analysis.

    Science.gov (United States)

    Reed, Jill R; Yates, Bernice C; Houfek, Julia; Pullen, Carol H; Briner, Wayne; Schmid, Kendra K

    2016-04-01

    Poor eating behaviors greatly influence the development of becoming overweight or obese. Learning to better self-regulate eating is one area in which individuals can positively influence their own health. The purpose of this concept analysis is to provide an in-depth analysis of the concept eating self-regulation as it pertains to overweight and obese adults using Walker and Avant's method. The definition for eating self-regulation formulated as a result of this concept analysis and based on the critical attributes is the ability to initiate goal-related behaviors, to consistently self-monitor dietary intake, to regularly apply willpower to resist temptations, to self-evaluate where one stands in relationship to goal attainment, and finally to maintain motivation to positively change eating behaviors. Cognitive restraint, moderation, mindfulness, disinhibition, delayed gratification, emotions and moods, self-efficacy, social support, the environment, and physical activity are the antecedents that may influence eating self-regulation. Examining an individual's weight, body mass index, lipid levels, or blood pressure are some ways to determine if self-regulation of eating behavior is achieved. With a consistent definition of self-regulation and a better understanding of the critical factors that influence eating behaviors, research can better explore how to help individuals change their eating behaviors more effectively. © 2015 Wiley Periodicals, Inc.

  6. [Basophilic line of the articular cartilage in normal and various pathological states].

    Science.gov (United States)

    Gongadze, L R

    1987-04-01

    Epiphyses of long tubular bones in the man and animals of various age, as well as experimental material of the adjuvant arthritis, with special reference to the basal part of the articular cartilage have been studied by means of histological, histochemical and histometrical methods. The structural-chemical organization of the basophilic line (tidemark) of the articular cartilage ensures its barrier role and participation in regulating selective permeability. Reconstruction of the tidemark in the process of physiological ageing and in cases of the articular pathology is aimed to preserve its integrity and in this way a complete differentiation of the noncalcified and calcified structures is secured. Disturbance of the basophilic line results in changes of the articular selective permeability, in invasion of vessels and structural elements of the bone marrow, and in development of profound distrophic and destructive changes of the cartilage--in deforming artrosis. Deflations in the structural-chemical organization of the tidemark indicate certain disturbances in the state of the system articular cartilage--subchondral bone. These data can be of prognostic importance.

  7. Articular chondrocyte metabolism and osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, H.R.

    1989-01-01

    The three main objectives of this study were: (1) to determine if depletion of proteoglycans from the cartilage matrix that occurs during osteoarthritis causes a measurable increase of cartilage proteoglycan components in the synovial fluid and sera, (2) to observe what effect intracellular cAMP has on the expression of matrix components by chondrocytes, and (3) to determine if freshly isolated chondrocytes contain detectable levels of mRNA for fibronectin. Canine serum keratan sulfate and hyaluronate were measured to determine if there was an elevation of these serum glycosaminoglycans in a canine model of osteoarthritis. A single intra-articular injection of chymopapain into a shoulder joint increased serum keratan sulfate 10 fold and hyaluronate less than 2 fold in 24 hours. Keratan sulfate concentrations in synovial fluids of dogs about one year old were unrelated to the presence of spontaneous cartilage degeneration in the joints. High keratan sulfate in synovial fluids correlated with higher keratan sulfate in serum. The mean keratan sulfate concentration in sera of older dogs with osteoarthritis was 37% higher than disease-free controls, but the difference between the groups was not statistically significant. Treatment of chondrocytes with 0.5 millimolar (mM) dibutyryl cAMP (DBcAMP) caused the cells to adopt a more rounded morphology. There was no difference between the amount of proteins synthesized by cultures treated with DBcAMP and controls. The amount of fibronectin (FN) in the media of DBcAMP treated cultures detected by an ELISA was specifically reduced, and the amount of {sup 35}S-FN purified by gelatin affinity chromatography decreased. Moreover, the percentage of FN containing the extra domain. A sequence was reduced. Concomitant with the decrease in FN there was an increase in the concentration of keratan sulfate.

  8. Body Weight Independently Affects Articular Cartilage Catabolism

    Directory of Open Access Journals (Sweden)

    W. Matt Denning, Jason G. Winward, Michael Becker Pardo, J. Ty Hopkins, Matthew K. Seeley

    2015-06-01

    Full Text Available Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity. The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW, +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP was measured immediately before (baseline and after, and 15 and 30 minutes after the walk. Heart rate (HR and rate of perceived exertion (RPE were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response.

  9. Imaging of the cervical articular pillar

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, E. [Orange Base Hospital, Orange, NSW (Australia)

    1998-12-01

    The cervical articular pillar, due to the complex anatomical structure of the cervical spine, is not well demonstrated in routine plain radiographic views. Dedicated views have been devised to demonstrate the pillar, yet their performance has abated considerably since the inception of Computed Tomography (CT) in the 1970`s. It is the consideration that CT does not image the articular pillar with a 10 per cent accuracy that poses the question: Is there still a need for plain radiography of the cervical articular pillar? This paper studies the anatomy, plain radiography, and incidence of injury to the cervical articular pillar. It discusses (with reference to current and historic literature) the efficacy of current imaging protocols in depicting this injury. It deals with plain radiography, CT, complex tomography, and Magnetic Resonance Imaging (MRI) of the cervical spine to conclude there may still be a position in current imaging protocols for plain radiography of the cervical articular pillar. Copyright (1998) Australian Institute of Radiography 43 refs., 5 figs.

  10. Reelin exerts structural, biochemical and transcriptional regulation over presynaptic and postsynaptic elements in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Carles eBosch

    2016-05-01

    Full Text Available Reelin regulates neuronal positioning and synaptogenesis in the developing brain, and adult brain plasticity. Here we used transgenic mice overexpressing Reelin (Reelin-OE mice to perform a comprehensive dissection of the effects of this protein on the structural and biochemical features of dendritic spines and axon terminals in the adult hippocampus. Electron microscopy (EM revealed both higher density of synapses and structural complexity of both pre- and postsynaptic elements in transgenic mice than in WT mice. Dendritic spines had larger spine apparatuses, which correlated with a redistribution of Synaptopodin. Most of the changes observed in Reelin-OE mice were reversible after blockade of transgene expression, thus supporting the specificity of the observed phenotypes. Western blot and transcriptional analyses did not show major changes in the expression of pre- or postsynaptic proteins, including SNARE proteins, glutamate receptors, and scaffolding and signaling proteins. However, EM immunogold assays revealed that the NMDA receptor subunits NR2a and NR2b, and p-Cofilin showed a redistribution from synaptic to extrasynaptic pools. Taken together with previous studies, the present results suggest that Reelin regulates the structural and biochemical properties of adult hippocampal synapses by increasing their density and morphological complexity and by modifying the distribution and trafficking of major glutamatergic components.

  11. Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.

    Science.gov (United States)

    Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi

    2018-04-15

    In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. [Difficulties in emotion regulation and personal distress in young adults with social anxiety].

    Science.gov (United States)

    Contardi, Anna; Farina, Benedetto; Fabbricatore, Mariantonietta; Tamburello, Stella; Scapellato, Paolo; Penzo, Ilaria; Tamburello, Antonino; Innamorati, Marco

    2013-01-01

    The aim of this study was to assess the association between social anxiety and difficulties in emotion regulation in a sample of Italian young adults. Our convenience sample was composed of 298 Italian young adults (184 women and 114 men) aged 18-34 years. Participants were administered the Interaction Anxiousness Scale (IAS), the Audience Anxiousness Scale (AAS), the Difficulties in Emotion Regulation Scale (DERS), and the Interpersonal Reactivity Index (IRI). A Two Step cluster analysis was used to group subjects according to their level of social anxiety. The cluster analysis indicated a two-cluster solution. The first cluster included 163 young adults with higher scores on the AAS and the IAS than those included in cluster 2 (n=135). A generalized linear model with groups as dependent variable indicated that people with higher social anxiety (compared to those with lower social anxiety) have higher scores on the dimension personal distress of the IRI (p<0.01), and on the DERS non acceptance of negative emotions (p<0.001) and lack of emotional clarity (p<0.05). The results are consistent with models of psychopathology, which hypothesize that people who cannot deal effectively with their emotions may develop depressive and anxious disorders.

  14. Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain

    OpenAIRE

    Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha; Vaidya, Vidita A.

    2011-01-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and...

  15. Systematic development of a self-regulation weight-management intervention for overweight adults

    Directory of Open Access Journals (Sweden)

    Flink Ilse

    2010-10-01

    Full Text Available Abstract Background This paper describes the systematic development of an intervention for the prevention of obesity among overweight adults. Its development was guided by the six steps of Intervention Mapping (IM, in which the establishment of program needs, objectives and methods is followed by development of the intervention and an implementation and evaluation plan. Methods Weight gain prevention can be achieved by making small changes in dietary intake (DI or physical activity (PA. The intervention objectives, derived from self-regulation theory, were to establish goal-oriented behaviour. They were translated into a computer-tailored Internet-delivered intervention consisting of four modules. The intervention includes strategies to target the main determinants of self-regulation, such as feedback and action planning. The first module is intended to ensure adults' commitment to preventing weight gain, choosing behaviour change and action initiation. The second and third modules are intended to evaluate behaviour change, and to adapt action and coping plans. The fourth module is intended to maintain self-regulation of body weight without use of the program. The intervention is being evaluated for its efficacy in an RCT, whose protocol is described in this paper. Primary outcomes are weight, waist circumference and skin-fold thickness. Other outcomes are DI, PA, cognitive mediators and self-regulation skills. Discussion The IM protocol helped us integrating insights from various theories. The performance objectives and methods were guided by self-regulation theory but empirical evidence with regard to the effectiveness of theoretical methods was limited. Sometimes, feasibility issues made it necessary to deviate from the original, theory-based plans. With this paper, we provide transparency with regard to intervention development and evaluation. Trial registration NTR1862

  16. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    Science.gov (United States)

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  17. Attachment, emotion regulation and coping in Portuguese emerging adults: a test of a mediation hypothesis.

    Science.gov (United States)

    Cabral, Joana; Matos, Paula M; Beyers, Wim; Soenens, Bart

    2012-11-01

    Although the quality of parent-adolescent emotional bonds has consistently been proposed as a major influence on young adult's psycho-emotional functioning, the precise means by which these bonds either facilitate or impede adaptive coping are not well-understood. In an effort to advance this inquiry, the present study examined interrelationships among measures of parental attachment, emotion regulation processes, and preferred coping strategies within a sample of 942 college freshmen. Structural Equation Modelling was used to test whether the link between attachment to parents and the use of particular coping strategies is mediated by differences in emotion regulation mechanisms. As hypothesized, differences in attachment to parents predicted differences in the use of emotion regulation mechanisms and coping strategies. More specifically, having a close emotional bond, feeling supported in autonomy processes and having (moderately) low levels of separation anxiety toward parents predict more constructive emotion regulation mechanisms and coping strategies. Additionally emotion regulation was found to (partly or totally) mediate the association between attachment and coping.

  18. [Emotional experience and regulation across the adult lifespan: comparative analysis in three age groups].

    Science.gov (United States)

    Márquez-González, María; Izal Fernández de Trocóniz, María; Montorio Cerrato, Ignacio; Losada Baltar, Andrés

    2008-11-01

    The studies focused on age-related differences in emotional experience are still scarce, and most of them have been conducted with North-American samples. This study explores the presence of age-related differences in some facets of emotional experience (subjective well-being and emotional intensity), as well as in variables related to emotion regulation (subjective emotional control and three emotion-regulation mechanisms: situation selection, emotion suppression, rumination) in the Spanish population. One hundred and sixty people from three age groups (younger, middle-aged and older adults) participated in the study. Older participants reported lower levels of life satisfaction and positive emotional intensity than younger ones, as well as higher levels of perceived emotional control, emotional maturity and leveling of positive affect, and more use of emotion suppression. The results partially support the emotional maturity hypothesis of emotional functioning in old age, but also suggest that older adults' emotional regulation may present important peculiarities which have not yet been addressed in the extant literature, such as the moderation or limitation of emotional experience, especially positive emotions.

  19. Relaxation Therapy and Anxiety, Self-Esteem, and Emotional Regulation among Adults with Intellectual Disabilities: A Randomized Controlled Trial

    Science.gov (United States)

    Bouvet, Cyrille; Coulet, Aurélie

    2016-01-01

    This pilot study is a randomized controlled trial on the effects of relaxation on anxiety, self-esteem, and emotional regulation in adults with intellectual disabilities (ID) working in a center of supported employment in France. We studied 30 adults with mild or moderate ID who were split at random into a relaxation group (RG, 15 subjects), who…

  20. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based sample of Working Adults

    Directory of Open Access Journals (Sweden)

    Cecilia Ulrika Dagsdotter Stenfors

    2016-10-01

    Full Text Available Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD, and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulationThe aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women, from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability measures, including the Standard Deviation of NN, here heart beats (SDNN, root of the mean squares of successive differences (RMSSD, high frequency (HF power band from spectral analyses, and QT variability index (QTVI, a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by 7 neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables and mental health symptoms.Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder, only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer cardiovascular autonomic regulation in terms of lower SDNN & RMSSD and higher QTVI was associated with poorer

  1. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults.

    Science.gov (United States)

    Stenfors, Cecilia U D; Hanson, Linda M; Theorell, Töres; Osika, Walter S

    2016-01-01

    Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity . Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive

  2. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation

    OpenAIRE

    Boopalan, P. R. J. V. C.; Sathishkumar, Solomon; Kumar, Senthil; Chittaranjan, Samuel

    2006-01-01

    Articular cartilage defects have a poor capacity for repair. Most of the current treatment options result in the formation of fibro-cartilage, which is functionally inferior to normal hyaline articular cartilage. We studied the effectiveness of allogenic chondrocyte transplantation for focal articular cartilage defects in rabbits. Chondrocytes were cultured in vitro from cartilage harvested from the knee joints of a New Zealand White rabbit. A 3 mm defect was created in the articular cartilag...

  3. Behavioral self-regulation for weight loss in young adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Wing Rena R

    2009-02-01

    Full Text Available Abstract Objective To determine the feasibility of recruiting and retaining young adults in a brief behavioral weight loss intervention tailored for this age group, and to assess the preliminary efficacy of an intervention that emphasizes daily self-weighing within the context of a self-regulation model. Methods Forty young adults (29.1 ± 3.9 years, range 21–35, average BMI of 33.36 ± 3.4 were randomized to one of two brief behavioral weight loss interventions: behavioral self-regulation (BSR or adapted standard behavioral treatment (SBT. Assessments were conducted at baseline, post-treatment (10 weeks, and follow-up (20 weeks. Intent to treat analyses were conducted using general linear modeling in SPSS version 14.0. Results Participants in both groups attended an average of 8.7 out of 10 group meetings, and retention rates were 93% and 88% for post-treatment and follow-up assessments, respectively. Both groups achieved significant weight losses at post-treatment (BSR = -6.4 kg (4.0; SBT = -6.2 kg (4.5 and follow-up (BSR = -6.6 kg (5.5; SBT = -5.8 kg (5.2, p p = .84. Across groups, there was a positive association between frequency of weighing at follow-up and overall weight change at follow-up (p = .01. Daily weighing was not associated with any adverse changes in psychological symptoms. Conclusion Young adults can be recruited and retained in a behavioral weight loss program tailored to their needs, and significant weight losses can be achieved and maintained through this brief intervention. Future research on the longer-term efficacy of a self-regulation approach using daily self-weighing for weight loss in this age group is warranted. Clinical Trials Registration # NCT00488228

  4. Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint.

    Science.gov (United States)

    Henderson, Christopher E; Higginson, Jill S; Barrance, Peter J

    2011-01-01

    Knee osteoarthritis (OA) detrimentally impacts the lives of millions of older Americans through pain and decreased functional ability. Unfortunately, the pathomechanics and associated deviations from joint homeostasis that OA patients experience are not well understood. Alterations in mechanical stress in the knee joint may play an essential role in OA; however, existing literature in this area is limited. The purpose of this study was to evaluate the ability of an existing magnetic resonance imaging (MRI)-based modeling method to estimate articular cartilage contact area in vivo. Imaging data of both knees were collected on a single subject with no history of knee pathology at three knee flexion angles. Intra-observer reliability and sensitivity studies were also performed to determine the role of operator-influenced elements of the data processing on the results. The method's articular cartilage contact area estimates were compared with existing contact area estimates in the literature. The method demonstrated an intra-observer reliability of 0.95 when assessed using Pearson's correlation coefficient and was found to be most sensitive to changes in the cartilage tracings on the peripheries of the compartment. The articular cartilage contact area estimates at full extension were similar to those reported in the literature. The relationships between tibiofemoral articular cartilage contact area and knee flexion were also qualitatively and quantitatively similar to those previously reported. The MRI-based knee modeling method was found to have high intra-observer reliability, sensitivity to peripheral articular cartilage tracings, and agreeability with previous investigations when using data from a single healthy adult. Future studies will implement this modeling method to investigate the role that mechanical stress may play in progression of knee OA through estimation of articular cartilage contact area.

  5. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    International Nuclear Information System (INIS)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-01-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net 35 SO 4 -labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage

  6. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-07-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net /sup 35/SO/sub 4/-labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage.

  7. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Science.gov (United States)

    Liu, Qiang; Zhang, Juan; Zerbinatti, Celina; Zhan, Yan; Kolber, Benedict J; Herz, Joachim; Muglia, Louis J; Bu, Guojun

    2011-01-11

    Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  8. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2011-01-01

    Full Text Available Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  9. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  10. Energy Density, Energy Intake, and Body Weight Regulation in Adults12345

    Science.gov (United States)

    Karl, J. Philip; Roberts, Susan B.

    2014-01-01

    The role of dietary energy density (ED) in the regulation of energy intake (EI) is controversial. Methodologically, there is also debate about whether beverages should be included in dietary ED calculations. To address these issues, studies examining the effects of ED on EI or body weight in nonelderly adults were reviewed. Different approaches to calculating dietary ED do not appear to alter the direction of reported relations between ED and body weight. Evidence that lowering dietary ED reduces EI in short-term studies is convincing, but there are currently insufficient data to determine long-term effectiveness for weight loss. The review also identified key barriers to progress in understanding the role of ED in energy regulation, in particular the absence of a standard definition of ED, and the lack of data from multiple long-term clinical trials examining the effectiveness of low-ED diet recommendations for preventing both primary weight gain and weight regain in nonobese individuals. Long-term clinical trials designed to examine the impact of dietary ED on energy regulation, and including multiple ED calculation methods within the same study, are still needed to determine the importance of ED in the regulation of EI and body weight. PMID:25398750

  11. Intra-articular therapies for osteoarthritis.

    Science.gov (United States)

    Yu, Shirley P; Hunter, David J

    2016-10-01

    Conventional medical therapies for osteoarthritis are mainly palliative in nature, aiming to control pain and symptoms. Traditional intra-articular therapies are not recommended in guidelines as first line therapy, but are potential alternatives, when conventional therapies have failed. Current and future intra-articular drug therapies for osteoarthritis are highlighted, including corticosteroids, hyaluronate, and more controversial treatments marketed commercially, namely platelet rich plasma and mesenchymal cell therapy. Intraarticular disease modifying osteoarthritis drugs are the future of osteoarthritis treatments, aiming at structural modification and altering the disease progression. Interleukin-1β inhibitor, bone morphogenic protein-7, fibroblast growth factor 18, bradykinin B2 receptor antagonist, human serum albumin, and gene therapy are discussed in this review. The evolution of drug development in osteoarthritis is limited by the ability to demonstrate effect. High quality trials are required to justify the use of existing intra-articular therapies and to advocate for newer, promising therapies. Challenges in osteoarthritis therapy research are fundamentally related to the complexity of the pathological mechanisms of osteoarthritis. Novel drugs offer hope in a disease with limited medical therapy options. Whether these future intra-articular therapies will provide clinically meaningful benefits, remains unknown.

  12. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  13. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    Science.gov (United States)

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. DCC Expression by Neurons Regulates Synaptic Plasticity in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Katherine E. Horn

    2013-01-01

    Full Text Available The transmembrane protein deleted in colorectal cancer (DCC and its ligand, netrin-1, regulate synaptogenesis during development, but their function in the mature central nervous system is unknown. Given that DCC promotes cell-cell adhesion, is expressed by neurons, and activates proteins that signal at synapses, we hypothesized that DCC expression by neurons regulates synaptic function and plasticity in the adult brain. We report that DCC is enriched in dendritic spines of pyramidal neurons in wild-type mice, and we demonstrate that selective deletion of DCC from neurons in the adult forebrain results in the loss of long-term potentiation (LTP, intact long-term depression, shorter dendritic spines, and impaired spatial and recognition memory. LTP induction requires Src activation of NMDA receptor (NMDAR function. DCC deletion severely reduced Src activation. We demonstrate that enhancing NMDAR function or activating Src rescues LTP in the absence of DCC. We conclude that DCC activation of Src is required for NMDAR-dependent LTP and certain forms of learning and memory.

  15. Maternal emotion regulation mediates the association between adult attention-deficit/hyperactivity disorder symptoms and parenting.

    Science.gov (United States)

    Mazursky-Horowitz, Heather; Felton, Julia W; MacPherson, Laura; Ehrlich, Katherine B; Cassidy, Jude; Lejuez, C W; Chronis-Tuscano, Andrea

    2015-01-01

    Mothers with elevated Attention-Deficit/Hyperactivity Disorder (ADHD) symptoms demonstrate parenting deficits, as well as difficulties in emotion regulation (ER), which may further impact their ability to effectively parent. However, no empirical research has examined potential mediators that explain the relations between maternal ADHD symptoms and parenting. This prospective longitudinal study examined difficulties with ER as a mediator of the relation between adult ADHD symptoms and parenting among 234 mothers of adolescents recruited from the community when they were between the ages of nine to twelve. Maternal ratings of adult ADHD symptoms, difficulties with ER, and parenting responses to their adolescents' expressions of negative emotions were collected over the course of three years. We found that maternal ADHD symptoms were negatively associated with positive parenting responses to adolescents' negative emotions, and positively associated with harsh parenting and maternal distress reactions. Moreover, maternal ER mediated the relation between adult ADHD symptoms and harsh parenting responses, while controlling for adolescent ADHD and disruptive behavior symptoms. However, maternal ER did not mediate the relation between ADHD symptoms and positive or distressed parental responses. Thus, it appears that ER is one mechanism by which maternal ADHD symptoms are associated with harsh responses to their adolescents' expressions of negative emotion. These findings may have downstream implications for adolescent adjustment.

  16. [Technique and value of direct MR arthrography applying articular distraction].

    Science.gov (United States)

    Becce, Fabio; Wettstein, Michael; Guntern, Daniel; Mouhsine, Elyazid; Palhais, Nuno; Theumann, Nicolas

    2010-02-24

    Direct MR arthrography has a better diagnostic accuracy than MR imaging alone. However, contrast material is not always homogeneously distributed in the articular space. Lesions of cartilage surfaces or intra-articular soft tissues can thus be misdiagnosed. Concomitant application of axial traction during MR arthrography leads to articular distraction. This enables better distribution of contrast material in the joint and better delineation of intra-articular structures. Therefore, this technique improves detection of cartilage lesions. Moreover, the axial stress applied on articular structures may reveal lesions invisible on MR images without traction. Based on our clinical experience, we believe that this relatively unknown technique is promising and should be further developed.

  17. Intra-articular osteoid osteoma as a differential diagnosis of diffuse mono-articular joint pain.

    Science.gov (United States)

    Rolvien, Tim; Zustin, Jozef; Mussawy, Haider; Schmidt, Tobias; Pogoda, Pia; Ueblacker, Peter

    2016-11-04

    The aim of this retrospective study was to investigate the frequency of intra-articular osteoid osteoma (iaOO) in a large study cohort and to demonstrate its clinical relevance as an important differential diagnosis of non-specific mono-articular joint pain. We searched the registry for bone tumours of the University Medical Centre Hamburg-Eppendorf for osteoid osteomas in the last 42 years. Herein, we present three selected iaOO which were detected in the three major weight-bearing joints. Computed tomography (CT) or magnetic resonance imaging (MRI) scans were performed for initial diagnosis. Out of a total of 367 osteoid osteomas, 19 (5.2 %) tumours were localized intra-articularly. In all three presented tumours, a history of severe mono-articular pain was reported; however, the mean time to correct diagnosis was delayed to 20.7 months. Clearly, the nidus seen in CT and MRI images in combination with inconsistent salicylate-responsive nocturnal pain led to the diagnosis of iaOO. Rarely, osteoid osteoma can occur in an intra-articular location. In cases of diffuse mono-articular pain, iaOO should be considered both in large and smaller joints to avoid delays in diagnosis and therapy of this benign bone tumour.

  18. Susceptibility of Ceraeochrysa cubana larvae and adults to six insect growth-regulator insecticides.

    Science.gov (United States)

    Ono, Éric Kodi; Zanardi, Odimar Zanuzo; Aguiar Santos, Kenia Fernanda; Yamamoto, Pedro Takao

    2017-02-01

    The impacts of six insect growth-regulators were assessed on the predator Ceraeochrysa cubana (Hagen) larvae and adults. Our results showed that diflubenzuron, lufenuron and pyriproxyfen caused 100% larva mortality, whereas buprofezin, methoxyfenozide and tebufenozide were similar to control treatment. In comparison to the control, buprofezin prolonged the duration of larval stage, while methoxyfenozide and tebufenozide reduced the predator larva development time. Buprofezin, methoxyfenozide and tebufenozide did not affect the C. cubana duration and survival of pupal stage, fecundity and fertility. However, methoxyfenozide and tebufenozide reduced predator female and male longevities. Based on a reduction coefficient, diflubenzuron, lufenuron and pyriproxyfen were highly harmful to first instar larvae, while buprofezin, methoxyfenozide and tebufenozide were considered slightly harmful to the predator. Estimating the life table parameters, our results showed that buprofezin, methoxyfenozide and tebufenozide reduced the C. cubana R o , r and λ. In comparison to the control, buprofezin prolonged the T and methoxyfenozide and tebufenozide shortened the predator T. In adults, our results showed that the insecticides did not cause significant mortality, but diflubenzuron, lufenuron and pyriproxyfen reduced the C. cubana fecundity and longevity. Diflubenzuron and lufenuron also reduced the C. cubana fertility. Based on a reduction coefficient, diflubenzuron and lufenuron were highly harmful to C. cubana adults, while pyriproxyfen was slightly harmful and buprofezin, methoxyfenozide and tebufenozide were considered harmless to the predator. Therefore, insect growth-regulators affect the C. cubana biological or populational parameters, and they can harm the integrated pest management programs that aim the predator conservation and/or augmentation in agroecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. NeuroD modulates opioid agonist-selective regulation of adult neurogenesis and contextual memory extinction.

    Science.gov (United States)

    Zheng, Hui; Zhang, Yue; Li, Wen; Loh, Horace H; Law, Ping-Yee

    2013-04-01

    Addictive drugs, including opioids, modulate adult neurogenesis. In order to delineate the probable implications of neurogenesis on contextual memory associated with addiction, we investigated opioid agonist-selective regulation of neurogenic differentiation 1 (NeuroD) activities under the conditioned place preference (CPP) paradigm. Training mice with equivalent doses of morphine and fentanyl produced different CPP extinction rates without measurable differences in the CPP acquisition rate or magnitude. Fentanyl-induced CPP required much longer time for extinction than morphine-induced CPP. We observed a parallel decrease in NeuroD activities and neurogenesis after morphine-induced CPP, but not after fentanyl-induced CPP. Increasing NeuroD activities with NeuroD-lentivirus (nd-vir) injection at the dentate gyrus before CPP training reversed morphine-induced decreases in NeuroD activities and neurogenesis, and prolonged the time required for extinction of morphine-induced CPP. On the other hand, decreasing NeuroD activities via injection of miRNA-190-virus (190-vir) reversed the fentanyl effect on NeuroD and neurogenesis and shortened the time required for extinction of fentanyl-induced CPP. Another contextual memory task, the Morris Water Maze (MWM), was affected similarly by alteration of NeuroD activities. The reduction in NeuroD activities either by morphine treatment or 190-vir injection decreased MWM task retention, while the increase in NeuroD activities by nd-vir prolonged MWM task retention. Thus, by controlling NeuroD activities, opioid agonists differentially regulate adult neurogenesis and subsequent contextual memory retention. Such drug-related memory regulation could have implications in eventual context-associated relapse.

  20. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans.

    Science.gov (United States)

    Fierro-González, Juan Carlos; González-Barrios, María; Miranda-Vizuete, Antonio; Swoboda, Peter

    2011-03-18

    Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose that DR activates TRX-1 in ASJ neurons during aging, which in turn triggers TRX-1-dependent mechanisms to extend adult lifespan in the worm. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    Science.gov (United States)

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  2. Attitudes towards Potential New Tobacco Control Regulations among U.S. Adults

    Directory of Open Access Journals (Sweden)

    Allison M. Schmidt

    2018-01-01

    Full Text Available Favorable attitudes towards tobacco control policies can facilitate their implementation and success. We examined attitudes toward four potential U.S. Federal tobacco regulations (banning menthol from cigarettes, reducing nicotine levels in cigarettes, banning candy and fruit flavored electronic cigarettes, and banning candy and fruit flavored little cigars and cigarillos and associations with individual and state variables. A nationally representative phone survey of 4337 adults assessed attitudes toward potential policies. Weighted logistic regression was used to assess relationships between attitudes and demographic factors, smoking behavior, beliefs about the government (knowledge, trust, and credibility, exposure to tobacco control campaigns, and state variables from the US Centers for Disease Control and Prevention (CDC State Tobacco Activities Tracking and Evaluation (STATE System. Most respondents supported three out of four policies. Respondents that were female, non-white, Latino, living below the poverty line, had less than high school education, were of older age, did not smoke, had higher trust in government, and were exposed to national tobacco control campaigns had higher odds of expressing favorable attitudes toward potential new tobacco regulations than did their counterparts. No state-level effects were found. While differences in attitudes were observed by individual demographic characteristics, behaviors, and beliefs, a majority of participants supported most of the potential new tobacco regulations surveyed.

  3. Age differences among older adults in the use of emotion regulation strategies. What happens among over 85s and centenarians?

    Science.gov (United States)

    Etxeberria, Igone; Etxebarria, Itziar; Urdaneta, Elena; Yanguas, Jose Javier

    2016-09-01

    Past research on emotion regulation strategies has concluded that older adults use more passive strategies than young adults. However, we found scarce research in this field focusing on the oldest old (i.e. those aged 85 and over). The aim of this study was to analyze whether or not differences exist in the way older adults aged 85 and over (centenarians included) use emotion regulation strategies, in comparison with younger age groups (65-74 and 75-84 years old). Participants were 257 older adults from Spain, all aged between 65 and 104. The sample was divided into four age groups: 65-74; 75-84; 85-94; and 95-104 years old. Participants completed the Strategy Questionnaire after reading each of the vignettes designed to elicit feelings of either sadness or anger. The questionnaire measures four types of regulation strategies: Passive, Express, Solve and Seek. The 85-94 age group and centenarians were found to use proactive (Express, Seek) and Solve strategies less in comparison with younger age groups when regulating sadness and anger. In contrast, an increased use of Passive strategies was observed in the regulation of both emotions in the 85-94 age group. Significant differences were also found between centenarians and younger age groups in the use of Passive strategies for sadness, although not for anger. Age differences were observed in the use of emotion regulation strategies, with older age groups using proactive strategies less and passive strategies more.

  4. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding.

    Science.gov (United States)

    Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B

    2018-03-01

    Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats.

    Science.gov (United States)

    Witzmann, Simone R; Turner, Jonathan D; Mériaux, Sophie B; Meijer, Onno C; Muller, Claude P

    2012-11-01

    Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.

  6. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Fierro-Gonzalez, Juan Carlos; Gonzalez-Barrios, Maria; Miranda-Vizuete, Antonio; Swoboda, Peter

    2011-01-01

    Highlights: → First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. → Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. → trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. → Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. → trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose that DR activates TRX-1

  7. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Fierro-Gonzalez, Juan Carlos [Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, S-141 83 Huddinge (Sweden); Gonzalez-Barrios, Maria [Centro Andaluz de Biologia del Desarrollo (CABD-CSIC), Departamento de Fisiologia, Anatomia y Biologia Celular, Universidad Pablo de Olavide, E-41013 Sevilla (Spain); Miranda-Vizuete, Antonio, E-mail: amirviz@upo.es [Centro Andaluz de Biologia del Desarrollo (CABD-CSIC), Departamento de Fisiologia, Anatomia y Biologia Celular, Universidad Pablo de Olavide, E-41013 Sevilla (Spain); Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, E-41013 Sevilla (Spain); Swoboda, Peter, E-mail: peter.swoboda@ki.se [Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, S-141 83 Huddinge (Sweden)

    2011-03-18

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose

  8. Anatomical study of the articular branches innervated the hip and knee joint with reference to mechanism of referral pain in hip joint disease patients.

    Science.gov (United States)

    Sakamoto, Junya; Manabe, Yoshitaka; Oyamada, Joichi; Kataoka, Hideki; Nakano, Jiro; Saiki, Kazunobu; Okamoto, Keishi; Tsurumoto, Toshiyuki; Okita, Minoru

    2018-03-25

    Referred pain in the anterior knee joint is the most common symptom in hip disease patients. The development of referred pain is considered to be related to dichotomizing peripheral sensory fibers. However, no gross anatomical findings identify any dichotomizing fibers innervating both the hip and knee joints. We dissected the femoral and obturator nerves in human cadavers to investigate the distribution of the articular branches in the hip and knee joints. Fourteen embalmed left lower limbs from 14 Japanese adult cadavers (five from females, nine from males, average age 73.8 ± 14.1 years) were observed macroscopically. The articular branches of the femoral and obturator nerves were dissected at the anterior margin of the groin toward the thigh region. After dissections of the articular nerves of the hip joints, the femoral and obturator nerves were exposed from proximally to distally to identify the articular nerves of the knee joints. The branching pattern of the articular branches in the hip and knee joints was recorded. In six of 14 limbs (42.9%), the femoral nerve supplied articular branches to the anteromedial aspect of both the hip and knee joints. These articular branches were derived from the same bundle of femoral nerve. These gross anatomical findings suggested that dichotomizing peripheral sensory fibers innervate the hip and knee joints and these could relate to the referred pain confirmed in the anterior knee joints of patients with hip disease. Clin. Anat., 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2015-08-01

    Full Text Available Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA. Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP/Transforming growth factor-β (TGFβ, Parathyroid hormone-related peptide (PTHrP, Indian hedgehog (IHH, Fibroblast growth factor (FGF, Insulin like growth factor (IGF and Hypoxia-inducible factor (HIF. This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  10. Intra-articular morphine in horses

    DEFF Research Database (Denmark)

    Lindegaard, Casper

    separated by a three week washout period. Before each treatment, radiocarpal synovitis was induced by IA injection of lipopolysaccharide (LPS). For each of the two 168-hours study periods, local and systemic measures of pain and inflammation as well as blood and synovial fluid (SF) samples...... for pharmacological analysis were obtained repeatedly. Pain was evaluated by degree of lameness as well as using a visual analogue scale of pain intensity (VAS) and a composite measure pain scale (CMPS), developed for this purpose. Intra-articular injection of LPS elicited a marked synovitis resulting in lameness...... and pain. Intra-articularly administered morphine showed a significant analgesic effect as measured by reduced lameness scores, less administered rescue analgesia and lower pain scores. A significant anti-inflammatory effect was demonstrated by reduced joint swelling, reduced SF serum amyloid A (SAA...

  11. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  12. In Their Own Words: Young Adults' Menthol Cigarette Initiation, Perceptions, Experiences and Regulation Perspectives.

    Science.gov (United States)

    Wackowski, Olivia A; Evans, Kiameesha R; Harrell, Melissa B; Loukas, Alexandra; Lewis, M Jane; Delnevo, Cristine D; Perry, Cheryl L

    2017-02-17

    Menthol cigarettes are disproportionately used by young people and have been called smoking starter products. However, limited qualitative research exists on young adults' perceptions of and experiences with these products, with much of it based on document reviews of the tobacco industry's research. We conducted six focus groups with young adult (ages 18-24) menthol smokers in New Jersey (half with black smokers) between December 2014 and March 2015. Participants were asked open-ended questions about their menthol smoking initiation, preference reasons, substitution behaviors, and perceptions of menthol cigarette risks and regulation. Participants' menthol cigarette initiation and preference were influenced by their perceived popularity, brand recognition, taste, smoothness, satisfaction and access (including as "loosies," typically available for Newport). Some believed menthol cigarettes were less harmful than non-menthol cigarettes when initiating smoking. Many currently believed menthol cigarettes were more harmful because they contained extra "additives," were stronger (ie, requiring fewer cigarettes to feel satisfied), and/or based on hearsay. Many had tried new brand Camel Crush, which was perceived to be especially minty, fun, and attractive for newer smokers. While some used non-menthol cigarettes when menthols were unavailable, many said they would never or almost never substitute. Many acknowledged a menthol cigarettes ban would likely help them quit smoking, even though they did not support the idea. Menthol cigarette initiation is influenced by an interplay of multiple factors including their sensory properties, marketing, perceived popularity and availability. The FDA should continue to pursue closing this flavored cigarette loophole. In this first qualitative study of menthol cigarette use among young adults, we found further evidence that menthol cigarettes can act as starter products because they are perceived as easier to smoke and taste and smell

  13. Ethical and Regulatory Challenges with Autologous Adult Stem Cells: A Comparative Review of International Regulations.

    Science.gov (United States)

    Lysaght, Tamra; Kerridge, Ian H; Sipp, Douglas; Porter, Gerard; Capps, Benjamin J

    2017-06-01

    Cell and tissue-based products, such as autologous adult stem cells, are being prescribed by physicians across the world for diseases and illnesses that they have neither been approved for or been demonstrated as safe and effective in formal clinical trials. These doctors often form part of informal transnational networks that exploit differences and similarities in the regulatory systems across geographical contexts. In this paper, we examine the regulatory infrastructure of five geographically diverse but socio-economically comparable countries with the aim of identifying similarities and differences in how these products are regulated and governed within clinical contexts. We find that while there are many subtle technical differences in how these regulations are implemented, they are sufficiently similar that it is difficult to explain why these practices appear more prevalent in some countries and not in others. We conclude with suggestions for how international governance frameworks might be improved to discourage the exploitation of vulnerable patient populations while enabling innovation in the clinical application of cellular therapies.

  14. NF-κB Mediated Regulation of Adult Hippocampal Neurogenesis: Relevance to Mood Disorders and Antidepressant Activity

    Directory of Open Access Journals (Sweden)

    Valeria Bortolotto

    2014-01-01

    Full Text Available Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed.

  15. Changes in emotion regulation in adults with and without a history of childhood abuse following posttraumatic stress disorder treatment.

    Science.gov (United States)

    Jerud, Alissa B; Zoellner, Lori A; Pruitt, Larry D; Feeny, Norah C

    2014-08-01

    This study compared changes in emotion regulation and trait affect over the course of PTSD treatment with either prolonged exposure (PE) therapy or sertraline in adults with and without a history of childhood abuse (CA). Two hundred adults with PTSD received 10 weeks of PE or sertraline. Emotion regulation and trait affect were assessed pre- and posttreatment and at 6-month follow-up with the Emotion Regulation Questionnaire (Gross & John, 2003), the Negative Mood Regulation Scale (Catanzaro & Mearns, 1990), and the Positive and Negative Affect Schedule (Watson, Clark, & Tellegen, 1988). Individuals with and without a history of CA did not differ from one another at pretreatment on PTSD severity, emotion regulation, or positive/negative affect. In addition, treatment was effective at improving emotion regulation and trait affect in those with and without a history of CA, and no significant differences in emotion regulation or trait affect emerged posttreatment or at 6-month follow-up between adults with and without a history of CA. Furthermore, noninferiority analyses indicated that the emotion regulation and trait affect outcomes of individuals with a history of CA were no worse than those of individuals without a history of CA. These findings cast doubt on the assumption that CA is associated with worse emotion regulation following PTSD treatment, arguing against assertions that a history of CA itself is a contraindication for traditional PTSD treatment, and that there is a clear necessity for additional interventions designed to target assumed emotion regulation deficits. [Corrected] PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Fluid cognitive ability is a resource for successful emotion regulation in older and younger adults

    Science.gov (United States)

    Opitz, Philipp C.; Lee, Ihno A.; Gross, James J.; Urry, Heather L.

    2014-01-01

    The Selection, Optimization, and Compensation with Emotion Regulation (SOC-ER) framework suggests that (1) emotion regulation (ER) strategies require resources and that (2) higher levels of relevant resources may increase ER success. In the current experiment, we tested the specific hypothesis that individual differences in one internal class of resources, namely cognitive ability, would contribute to greater success using cognitive reappraisal (CR), a form of ER in which one reinterprets the meaning of emotion-eliciting situations. To test this hypothesis, 60 participants (30 younger and 30 older adults) completed standardized neuropsychological tests that assess fluid and crystallized cognitive ability, as well as a CR task in which participants reinterpreted the meaning of sad pictures in order to alter (increase or decrease) their emotions. In a control condition, they viewed the pictures without trying to change how they felt. Throughout the task, we indexed subjective emotional experience (self-reported ratings of emotional intensity), expressive behavior (corrugator muscle activity), and autonomic physiology (heart rate and electrodermal activity) as measures of emotional responding. Multilevel models were constructed to explain within-subjects variation in emotional responding as a function of ER contrasts comparing increase or decrease conditions with the view control condition and between-subjects variation as a function of cognitive ability and/or age group (older, younger). As predicted, higher fluid cognitive ability—indexed by perceptual reasoning, processing speed, and working memory—was associated with greater success using reappraisal to alter emotional responding. Reappraisal success did not vary as a function of crystallized cognitive ability or age group. Collectively, our results provide support for a key tenet of the SOC-ER framework that higher levels of relevant resources may confer greater success at emotion regulation. PMID:24987387

  17. Fluid Cognitive Ability is a Resource for Successful Emotion Regulation in Older and Younger Adults

    Directory of Open Access Journals (Sweden)

    Philipp C. Opitz

    2014-06-01

    Full Text Available The Selection, Optimization, and Compensation with Emotion Regulation (SOC-ER framework suggests that (1 emotion regulation (ER strategies require resources and that (2 higher levels of relevant resources may increase ER success. In the current experiment, we tested the specific hypothesis that individual differences in one internal class of resources, namely cognitive ability, would contribute to greater success using cognitive reappraisal (CR, a form of ER in which one reinterprets the meaning of emotion-eliciting situations. To test this hypothesis, 60 participants (30 younger and 30 older adults completed standardized neuropsychological tests that assess fluid and crystallized cognitive ability, as well as a CR task in which participants reinterpreted the meaning of sad pictures in order to alter (increase or decrease their emotions. In a control condition, they viewed the pictures without trying to change how they felt. Throughout the task, we indexed subjective emotional experience (self-reported ratings of emotional intensity, expressive behavior (corrugator muscle activity, and autonomic physiology (heart rate and electrodermal activity as measures of emotional responding. Multilevel models were constructed to explain within-subjects variation in emotional responding as a function of ER contrasts comparing increase or decrease conditions with the view control condition and between-subjects variation as a function of cognitive ability and/or age group (older, younger. As predicted, higher fluid cognitive ability – indexed by perceptual reasoning, processing speed, and working memory – was associated with greater success using reappraisal to alter emotional responding. Reappraisal success did not vary as a function of crystallized cognitive ability or age group. Collectively, our results provide support for a key tenet of the SOC-ER framework that higher levels of relevant resources may confer greater success at emotion regulation.

  18. Pharmacokinetics of triamcinolone acetonide following intramuscular and intra-articular administration to exercised Thoroughbred horses.

    Science.gov (United States)

    Knych, H K; Vidal, M A; Casbeer, H C; McKemie, D S

    2013-11-01

    The use of triamcinolone acetonide (TA) in performance horses necessitates establishing appropriate withdrawal times prior to performance. To describe the plasma pharmacokinetics of TA and time-related urine and synovial fluid concentrations following i.m. and intra-articular administration to exercised Thoroughbred horses. Block design. Twelve racing fit adult Thoroughbred horses received a single i.m. administration of TA (0.1 mg/kg bwt). After an appropriate washout period, the same horses then received a single intra-articular TA administration (9 mg) into the right antebrachiocarpal joint. Blood, urine and synovial fluid samples were collected prior to, and at various times, up to 60 days post drug administration and analysed using liquid chromatography-mass spectrometry. Plasma data were analysed using noncompartmental analysis. Maximum measured plasma TA concentrations were 0.996 ± 0.391 at 13.2 h and 1.27 ± 0.278 ng/ml at 6.5 h for i.m. and intra-articular administration, respectively. The plasma terminal elimination half-life was 11.4 ± 6.53 and 0.78 ± 1.00 days for i.m. and intra-articular administration, respectively. Following i.m. administration, TA was below the limit of detection (LOD) by Days 52 and 60 in plasma and urine, respectively. Following intra-articular administration TA was undetectable by Day 7 in plasma and Day 8 in urine. Triamcinolone acetonide was also undetectable in any of the joints sampled following i.m. administration and remained above the limit of quantitation (LOQ) for 21 days following intra-articular administration. This study extends previous studies describing the pharmacokinetics of TA following i.m. and intra-articular administration to the horse and suggests that plasma and urine concentrations are not a good indicator of synovial fluid concentrations. Furthermore, results of this study supports an extended withdrawal time for TA given i.m. © 2013 EVJ Ltd.

  19. The Unexplored Role of Intra-articular Adipose Tissue in the Homeostasis and Pathology of Articular Joints

    Directory of Open Access Journals (Sweden)

    Luminita Labusca

    2018-03-01

    Full Text Available Intra-articular adipose tissue deposits known as articular fat pads (AFPs are described to exist within synovial joints. Their assumed role in normal joint biomechanics is increasingly objectivized by means of advanced methods of functional imaging. AFPs possess structural similarity with body subcutaneous white adipose tissue (WAT, however, seems to be regulated by independent metabolic loops. AFP dimension are conserved during extreme WAT states: obesity, metabolic syndrome, lipodystrophy, and cachexia. Hoffa fat pad (HFP in the knee is increasingly recognized as a major player in pathological joint states such as anterior knee pain and osteoarthritis. HFP contains numerous population of mesenchymal and endothelial progenitors; however, the possible role of mature adipocytes in the maintenance of stem cell niche is unknown. We propose that AFP is an active component of the joint organ with multifunctional roles in the maintenance of joint homeostasis. Endowed with a rich network of sensitive nervous fibbers, AFPs may act as a proprioceptive organ. Adipokines and growth factors released by AFP-resident mature adipocytes could participate in the maintenance of progenitor stem cell niche as well as in local immune regulation. AFP metabolism may be locally controlled, correlated with but independent of WAT homeostasis. The identification of AFP role in normal joint turnover and its possible implication in pathological states could deliver diagnostic and therapeutic targets. Drug and/or cell therapies that restore AFP structure and function could become the next step in the design of disease modifying therapies for disabling joint conditions such as osteoarthritis and inflammatory arthritis.

  20. Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface

    Science.gov (United States)

    Alexander, Peter G.; Song, Yingjie; Taboas, Juan M.; Chen, Faye H.; Melvin, Gary M.; Manner, Paul A.

    2013-01-01

    Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration. PMID:26069650

  1. Customized Fabrication of Osteochondral Tissue for Articular Joint Surface Repair

    Science.gov (United States)

    2016-09-01

    AWARD NUMBER: W81XWH-14-1-0217 TITLE: Customized Fabrication of Osteochondral Tissue for Articular Joint Surface Repair PRINCIPAL INVESTIGATOR...4. TITLE AND SUBTITLE Customized Fabrication of Osteochondral Tissue for Articular Joint Surface Repair 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...applicability of these novel osteochondral tissues for articular cartilage repair in rabbit model, using medical imaging-guided PSL. Such an approach may

  2. Knowledge About E-Cigarette Constituents and Regulation: Results From a National Survey of U.S. Young Adults.

    Science.gov (United States)

    Sanders-Jackson, Ashley N; Tan, Andy S L; Bigman, Cabral A; Henriksen, Lisa

    2015-10-01

    To examine young adults' knowledge of e-cigarette constituents and regulation and its association with product use and self-reported exposure to marketing. Young adults (18-34 years, N = 1,247) from a U.S. web panel were surveyed in March 2014. Using multinomial logistic regressions, self-reported exposure to marketing was examined as a predictor of whether participants responded correctly (reference category), incorrectly, or "don't know" to four knowledge items-whether e-cigarettes contain nicotine, contain toxic chemicals, are regulated by government for safety, and are regulated for use as a cessation aid. Analyses adjusted for demographics and smoking status and were weighted to match the U.S. young adult population. Most respondents did not know if e-cigarettes, contain toxic chemicals (48%), are regulated for safety (61%), and are regulated as cessation aids (68%); fewer than 37% answered all of these items correctly. Current users of e-cigarettes (past 30 days) had a lower likelihood of being incorrect about safety testing (p = .006) and being regulated as a cessation aid (p = .017). Higher exposure to e-cigarette marketing was associated with a lower likelihood of responding "don't know" than being correct, and with a higher likelihood of being incorrect as opposed to correct about e-cigarettes containing nicotine. Knowledge about e-cigarette constituents and regulation was low among young adults, who are the largest consumer group for these products. Interventions, such as warning labels or information campaigns, may be necessary to educate and correct misinformation about these products. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Emotion Regulation Difficulties, Youth-Adult Relationships, and Suicide Attempts among High School Students in Underserved Communities

    Science.gov (United States)

    Pisani, Anthony R.; Wyman, Peter A.; Petrova, Mariya; Schmeelk-Cone, Karen; Goldston, David B.; Xia, Yinglin; Gould, Madelyn S.

    2013-01-01

    To develop and refine interventions to prevent youth suicide, knowledge is needed about specific processes that reduce risk at a population level. Using a cross-sectional design, the present study tested hypotheses regarding associations between self-reported suicide attempts, emotion regulation difficulties, and positive youth-adult relationships…

  4. Self-Regulation and Metacognition in Young Children: Does It Matter if Adults Are Present or Not?

    Science.gov (United States)

    Robson, Sue

    2016-01-01

    This paper brings together two areas of considerable interest to researchers, practitioners and policy makers: young children's developing self-regulation and metacognition, and the impact of adult (practitioner) presence or absence on their behaviour and learning. One hundred and twenty-eight observations of 29 children aged 4-5 years in a…

  5. Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development

    Directory of Open Access Journals (Sweden)

    Mekayla A. Storer

    2018-05-01

    Full Text Available Summary: Circulating systemic factors can regulate adult neural stem cell (NSC biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6, since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools. : In this report, Storer and colleagues demonstrate that the circulating cytokine IL-6, which is elevated in humans in different pathological situations, can perturb neural stem cell biology after birth. They show that IL-6 signaling is essential for self-renewal and maintenance of post-natal and adult NSCs in the murine forebrain under normal homeostatic conditions. Keywords: interleukin-6, neural stem cell, adult neurogenesis, CNS cytokines, postnatal brain development, stem cell depletion, neural stem cell niche, circulating stem cell factors, olfactory bulb

  6. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-10-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn and maturity (72 weeks. In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint in the distal metacarpus of a fore leg and a hind leg. Results Collagen density increases from birth to maturity up to our last sample point (72 weeks. Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., n = 48 at 0 weeks to 0.51 g/ml ± 0.10 g/ml (n = 46 at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (n = 48 at 0 weeks to 0.91 g/ml ± 0.13 g/ml (n = 46 at 72 weeks. Most collagen density profiles at 0 weeks (85% show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks. Conclusions Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest

  7. IGFBP-4 regulates adult skeletal growth in a sex-specific manner.

    Science.gov (United States)

    Maridas, David E; DeMambro, Victoria E; Le, Phuong T; Nagano, Kenichi; Baron, Roland; Mohan, Subburaman; Rosen, Clifford J

    2017-04-01

    Insulin-like growth factor-1 (IGF-1) and its binding proteins are critical mediators of skeletal growth. Insulin-like growth factor-binding protein 4 (IGFBP-4) is highly expressed in osteoblasts and inhibits IGF-1 actions in vitro Yet, in vivo studies suggest that it could potentiate IGF-1 and IGF-2 actions. In this study, we hypothesized that IGFBP-4 might potentiate the actions of IGF-1 on the skeleton. To test this, we comprehensively studied 8- and 16-week-old Igfbp4 -/- mice. Both male and female adult Igfbp4 -/- mice had marked growth retardation with reductions in body weight, body and femur lengths, fat proportion and lean mass at 8 and 16 weeks. Marked reductions in aBMD and aBMC were observed in 16-week-old Igfbp4 -/- females, but not in males. Femoral trabecular BV/TV and thickness, cortical fraction and thickness in 16-week-old Igfbp4 -/- females were significantly reduced. However, surprisingly, males had significantly more trabeculae with higher connectivity density than controls. Concordantly, histomorphometry revealed higher bone resorption and lower bone formation in Igfbp4 -/- females. In contrast, Igfbp4 -/- males had lower mineralized surface/bone surface. Femoral expression of Sost and circulating levels of sclerostin were reduced but only in Igfbp4 -/- males. Bone marrow stromal cultures from mutants showed increased osteogenesis, whereas osteoclastogenesis was markedly increased in cells from Igfbp4 -/- females but decreased in males. In sum, our results indicate that loss of Igfbp4 affects mesenchymal stromal cell differentiation, regulates osteoclastogenesis and influences both skeletal development and adult bone maintenance. Thus, IGFBP-4 modulates the skeleton in a gender-specific manner, acting as both a cell autonomous and cell non-autonomous factor. © 2017 The authors.

  8. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  9. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases.

    Science.gov (United States)

    Brady, Scott T; Morfini, Gerardo A

    2017-09-01

    Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Viral articular deformations in a goat

    International Nuclear Information System (INIS)

    Périe, P.; Maillard, R.; Polack, B.; Millemann, Y.

    2006-01-01

    A goat belonging to an animal aid association was presented for bilateral deformation of the tarsus and carpus and signs of high-grade pain. ELISA serology was positive for Caprine Arthritis-Encephalitis Virus. Radiography revealed marked osseous remodelling of the tarsus. The blood fibrinogen concentration was very elevated. On infected commercial farms, it is recommended that both seropositive animals and their offspring are culled when the level of infected is low, or to separate the kids from the mothers at an early age. In this case, palliative treatment was prescribed based on non-steroidal anti-inflammatory drugs, antibiotics and articular puncture-lavages [it

  11. Prevalence and characteristics of articular manifestations in human ...

    African Journals Online (AJOL)

    Prevalence and characteristics of articular manifestations in human immune virus infection. ... Objectives: To determine the prevalence, types and characteristics of articular manifestations in the anti-retroviral treatment naive HIV infected patients. Design: Cross sectional descriptive study. Setting: Comprehensive care clinic ...

  12. Intra Articular Therapeutic Delivery for Post Traumatic Osteoarthritis

    Science.gov (United States)

    2016-10-01

    size distribution therapeutic timepoints EPIC-µCT Articular cartilage Subchondral bone Osteophytes Proteoglycans 3. OVERALL PROJECT SUMMARY: In...joint degeneration induced by MMT. Previously documented in Year 1 annual report: Changes in articular cartilage and subchondral bone morphology...and resulted in increased cartilage thickness at 3 weeks. The majority of alterations to subchondral bone (density, thickness) were detected at 3

  13. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain.

    Science.gov (United States)

    Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A

    2011-05-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.

  14. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells

    OpenAIRE

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively r...

  15. The mammalian adult neurogenesis gene ontology (MANGO provides a structural framework for published information on genes regulating adult hippocampal neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available BACKGROUND: Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. CONCLUSIONS/SIGNIFICANCE: The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a 'bottom-up' community effort complementing the already

  16. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  17. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  18. Intra-articular injection of hyaluronic acid for treatment of osteoarthritis knee: comparative study to intra-articular corticosteroids

    Directory of Open Access Journals (Sweden)

    Soad A Elsawy

    2017-01-01

    Conclusion Both HA and corticosteroid groups showed improvement in pain and knee function, but the intra-articular HA was superior to corticosteroid on long-term follow-up. This supports the potential rate of intra-articular HA as an effective long-term therapeutic option for patients with OA of the knee.

  19. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Imaizumi Yoichi

    2011-01-01

    Full Text Available Abstract Background In the adult mammalian brain, neural stem cells (NSCs proliferate in the dentate gyrus (DG of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.

  20. The development, factor structure and psychometric properties of driving self-regulation scales for older adults: Has self-regulation evolved in the last 15 years?

    Science.gov (United States)

    Wong, Ides Y; Smith, Simon S; Sullivan, Karen A

    2015-07-01

    The term driving self-regulation is typically used to describe the practice of drivers who avoid driving in situations that they regard as unsafe because of perceived physical impairment. Older adults report using this strategy to improve safety while retaining mobility. Self-regulation is typically assessed using the driving avoidance items from the driving habits questionnaire (DHQ) and the driver mobility questionnaire (DMQ-A). However, the psychometric properties of these measures are not well understood. Using data from 277 older drivers, exploratory factor analysis was used to test the homogeneity of three driving self-regulation scales: the DHQ, DMQ-A, and an extended DMQ-A. Good internal consistency for each of the scales was identified (all αs≥.9). A one factor solution was identified for two of the measures (DHQ, DMQ-A) and a two factor solution accounting for over 70% of the score variance was identified for the third measure. The two factors assessed situations that may be avoided while driving because of the "external" (e.g., weather-related) or "internal" (e.g., passenger-related) driving environments, respectively. The findings suggest that the interpretation of an overall summated scale score, or single-item interpretations, may not be appropriate. Instead, driving self-regulation may be a multifaceted construct comprised of distinct dimensions that have not been identified previously but can be reliably measured. These data have implications for our understanding of driving self-regulation by older adults and the way in which this behavior is measured. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy

    Science.gov (United States)

    Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  2. Contrast Agent-Enhanced Computed Tomography of Articular Cartilage: Association with Tissue Composition and Properties

    International Nuclear Information System (INIS)

    Silvast, T. S.; Jurvelin, J.S.; Aula, A.S.; Lammi, M.J.; Toeyraes, J.

    2009-01-01

    Background: Contrast agent-enhanced computed tomography may enable the noninvasive quantification of glycosaminoglycan (GAG) content of articular cartilage. It has been reported that penetration of the negatively charged contrast agent ioxaglate (Hexabrix) increases significantly after enzymatic degradation of GAGs. However, it is not known whether spontaneous degradation of articular cartilage can be quantitatively detected with this technique. Purpose: To investigate the diagnostic potential of contrast agent-enhanced cartilage tomography (CECT) in quantification of GAG concentration in normal and spontaneously degenerated articular cartilage by means of clinical peripheral quantitative computed tomography (pQCT). Material and Methods: In this in vitro study, normal and spontaneously degenerated adult bovine cartilage (n=32) was used. Bovine patellar cartilage samples were immersed in 21 mM contrast agent (Hexabrix) solution for 24 hours at room temperature. After immersion, the samples were scanned with a clinical pQCT instrument. From pQCT images, the contrast agent concentration in superficial as well as in full-thickness cartilage was calculated. Histological and functional integrity of the samples was quantified with histochemical and mechanical reference measurements extracted from our earlier study. Results: Full diffusion of contrast agent into the deep cartilage was found to take over 8 hours. As compared to normal cartilage, a significant increase (11%, P 0.5, P<0.01). Further, pQCT could be used to measure the thickness of patellar cartilage. Conclusion: The present results suggest that CECT can be used to diagnose proteoglycan depletion in spontaneously degenerated articular cartilage with a clinical pQCT scanner. Possibly, the in vivo use of clinical pQCT for CECT arthrography of human joints is feasible

  3. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.

    Directory of Open Access Journals (Sweden)

    Rebecca Williams

    Full Text Available BACKGROUND: Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC, are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. METHODS AND FINDINGS: Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. CONCLUSIONS: In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell

  4. Expression and Immunohistochemical Localisation of the G beta gamma activated and Calcineurin-inhibited Adenylyl Cyclase Isoforms in Rat Articular Chondrocytes

    International Nuclear Information System (INIS)

    Memon, I.; Khan, K.M.; Siddiqui, S.; Perveen, S.; Ishaq, M.

    2016-01-01

    Objective: To determine the expression and localisation of the Gβγ-activated adenylyl cyclase (AC) isoforms 2, 4, and 7 and calcineurin-inhibited AC isoform 9 in rat articular chondrocytes. Study Design: Experimental study. Place and Duration of Study: Jumma Research Laboratory and Histology Laboratory, The Aga Khan University, Karachi, from 2009 to 2011. Methodology: Fresh slices of articular cartilage were taken from various synovial joints of rats of different age groups. The expression of AC isoforms was determined by RT-PCR and immunohistochemistry was performed to localise these isoforms in articular chondrocytes. Tissue sections were processed for immunostaining with respective antibodies. The color was developed by diaminobenzidine. Results: All the studied AC isoforms were found to be differentially expressed in different zones of the rat articular cartilage. Generally, expression of all AC isoforms studied increased with age. The expression of the AC isoforms through PCR was almost consistent with the localisation of these isoforms by immunohistochemistry. Conclusion: These data add to the information about signalling cascades possibly involved in articular chondrocytes. Variable expression of AC isoforms 2, 4, 7, and 9 suggest a role for the signalling cascades regulated by the AC isoforms in articular chondrocytes. (author)

  5. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells.

    Science.gov (United States)

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M; Evans, Ronald M; Gage, Fred H

    2012-02-17

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.

  6. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells*

    Science.gov (United States)

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602

  7. The effects of glucose ingestion and glucose regulation on memory performance in older adults with mild cognitive impairment.

    Science.gov (United States)

    Riby, L M; Marriott, A; Bullock, R; Hancock, J; Smallwood, J; McLaughlin, J

    2009-04-01

    Previous research investigating the impact of glucose ingestion and/or improvements in glucose regulation has found selective cognitive facilitation on episodic memory tasks in successful ageing and dementia. The present study aimed to extend this research to mild cognitive impairment (MCI). In a repeated-measures design, 24 older adults with and 24 older adults without MCI performed a battery of memory and attention tasks after 25 g of glucose or a sweetness matched placebo. In addition, to assess the impact of individual differences in glucose regulation, blood glucose measurements were taken throughout the testing session. Consistent with previous research, cognitive facilitation was observed for episodic memory tasks only in both successful ageing and MCI. Older adults with MCI had a similar glucose regulatory response as controls but their fasting levels were elevated. Notably, higher levels of blood glucose were associated with impaired memory performance in both the glucose and placebo conditions. Importantly, both blood glucose and memory performance indices were significant predictors of MCI status. The utility of glucose supplementation and the use of glucose regulation as a biological marker are discussed in relation to these data.

  8. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain

    Directory of Open Access Journals (Sweden)

    Vanesa eNieto-Estévez

    2016-02-01

    Full Text Available The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs. This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP and the subventricular zone-olfactory bulb (SVZ-OB. By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also, by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis and neuron integration in synaptic circuits.

  9. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    Science.gov (United States)

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  10. Imaging diagnosis of the articular cartilage disorders

    International Nuclear Information System (INIS)

    Liu Sirun; Zhu Tianyuan; Huang Li; Leng Xiaoming

    2003-01-01

    Objective: To evaluate the diagnosis and differential diagnosis among the chronic osteoarthritis, rheumatoid arthritis and other chronic cartilage lesions on the plain films and MR images. Methods: Eighty-nine cases, including 115 joints, underwent plain film and MRI examination, and enhanced MRI scan was performed on 32 of them, including 44 joints. MRI scan sequences consisted of T 1 WI, T 2 WI + PDWI, STIR, and 3D FS SPGR. There were 90 knee joints in this group and each of the articular cartilage was divided into four parts: patella, femoral medial condyle, femoral lateral condyle, and tibia facet on MR images. The cartilage disorders were classified according to the outerbridge method. In addition, 61 cases including 75 joints were observed as a control group on the plain films and MR images. Results: 115 cartilage lesions were found on MR images, in which thinness of the cartilage (58 cases, 50.4%), bone changes under the cartilage (22 cases, 19.7%), medullar edema (22 cases, 19.7%), and synovial hyperplasia (52 cases, 45.2%) were seen. The patella cartilage was the most likely affected part (81/90, 90%). So the patellar cartilage lesions were divided as group 1 (grade I-II) and group 2 (grade III-IV) on MR images, which were compared with the plain film signs. The narrowing of the joint space and saccules under the articular surface were statistically significant with each other, and χ 2 values were 9.349 and 9.885, respectively (P=0.002). Conclusion: No constant signs could be seen on the plain films with grade I-II cartilage disorders. While the narrowing joint space and saccules under the joint surface could be seen on them with grade III-IV cartilage disorders, which were mainly correlated with the cartilage disorders and bone changes under the articular cartilages. A combination of the plain films and MR images is the best imaging method for examining the joints and joint cartilages. Enhanced MRI scan is very helpful on the diagnosis and differential

  11. HIPPOCAMPAL ADULT NEUROGENESIS: ITS REGULATION AND POTENTIAL ROLE IN SPATIAL LEARNING AND MEMORY

    Science.gov (United States)

    Lieberwirth, Claudia; Pan, Yongliang; Liu, Yan; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk). PMID:27174001

  12. A new noninvasive controlled intra-articular ankle distraction technique on a cadaver model.

    Science.gov (United States)

    Aydin, Ahmet T; Ozcanli, Haluk; Soyuncu, Yetkin; Dabak, Tayyar K

    2006-08-01

    Effective joint distraction is crucial in arthroscopic ankle surgery. We describe an effective and controlled intra-articular ankle distraction technique that we have studied by means of a fresh-frozen cadaver model. Using a kyphoplasty balloon, which is currently used in spine surgery, we tried to achieve a controlled distraction. After the fixation of the cadaver model, standard anteromedial and anterolateral portals were used for ankle arthroscopy. From the same portals, the kyphoplasty balloon was inserted and placed in an appropriate position intra-articularly. The necessary amount of distraction was achieved by inflating the kyphoplasty balloon with a pressure regulation pump. All anatomic sites of the ankle joint were easily visualized with the arthroscope during surgery by changing the pressure and the intra-articular position of the kyphoplasty balloon. Ankle distraction was clearly seen on the arthroscopic and image intensifier view. The kyphoplasty balloon is simple to place through the standard portals and the advantage is that it allows easy manipulation of the arthroscopic instruments from the same portal.

  13. SREB2/GPR85, a schizophrenia risk factor, negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent learning and memory.

    Science.gov (United States)

    Chen, Qian; Kogan, Jeffrey H; Gross, Adam K; Zhou, Yuan; Walton, Noah M; Shin, Rick; Heusner, Carrie L; Miyake, Shinichi; Tajinda, Katsunori; Tamura, Kouichi; Matsumoto, Mitsuyuki

    2012-09-01

    SREB2/GPR85, a member of the super-conserved receptor expressed in brain (SREB) family, is the most conserved G-protein-coupled receptor in vertebrate evolution. Previous human and mouse genetic studies have indicated a possible link between SREB2 and schizophrenia. SREB2 is robustly expressed in the hippocampal formation, especially in the dentate gyrus, a structure with an established involvement in psychiatric disorders and cognition. However, the function of SREB2 in the hippocampus remains elusive. Here we show that SREB2 regulates hippocampal adult neurogenesis, which impacts on cognitive function. Bromodeoxyuridine incorporation and immunohistochemistry were conducted in SREB2 transgenic (Tg, over-expression) and knockout (KO, null-mutant) mice to quantitatively assay adult neurogenesis and newborn neuron dendritic morphology. Cognitive responses associated with adult neurogenesis alteration were evaluated in SREB2 mutant mice. In SREB2 Tg mice, both new cell proliferation and new neuron survival were decreased in the dentate gyrus, whereas an enhancement of new neuron survival occurred in SREB2 KO mouse dentate gyrus. Doublecortin staining revealed dendritic morphology deficits of newly generated neurons in SREB2 Tg mice. In a spatial pattern separation task, SREB2 Tg mice displayed a decreased ability to discriminate spatial relationships, whereas SREB2 KO mice had enhanced abilities in this task. Additionally, SREB2 Tg and KO mice had reciprocal phenotypes in a Y-maze working memory task. Our results indicate that SREB2 is a negative regulator of adult neurogenesis and consequential cognitive functions. Inhibition of SREB2 function may be a novel approach to enhance hippocampal adult neurogenesis and cognitive abilities to ameliorate core symptoms of psychiatric patients. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. The mechanobiology of articular cartilage development and degeneration.

    Science.gov (United States)

    Carter, Dennis R; Beaupré, Gary S; Wong, Marcy; Smith, R Lane; Andriacchi, Tom P; Schurman, David J

    2004-10-01

    The development, maintenance, and destruction of cartilage are regulated by mechanical factors throughout life. Mechanical cues in the cartilage fetal endoskeleton influence the expression of genes that guide the processes of growth, vascular invasion, and ossification. Intermittent fluid pressure maintains the cartilage phenotype whereas mild tension (or shear) promotes growth and ossification. The articular cartilage thickness is determined by the position at which the subchondral growth front stabilizes. In mature joints, cartilage is thickest and healthiest where the contact pressure and cartilage fluid pressure are greatest. The depth-dependent histomorphology reflects the local fluid pressure, tensile strain, and fluid exudation. Osteoarthritis represents the final demise and loss of cartilage in the skeletal elements. The initiation and progression of osteoarthritis can follow many pathways and can be promoted by mechanical factors including: (1) reduced loading, which activates the subchondral growth front by reducing fluid pressure; (2) blunt impact, causing microdamage and activation of the subchondral growth front by local shear stress; (3) mechanical abnormalities that increase wear at the articulating surface; and (4) other mechanically related factors. Research should be directed at integrating our mechanical understanding of osteoarthritis pathogenesis and progression within the framework of cellular and molecular events throughout ontogeny.

  15. Early Intra-Articular Complement Activation in Ankle Fractures

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2014-01-01

    Full Text Available Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P<0.001. Furthermore, synovial expressions of both proteins correlated with each other (P<0.001. Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P<0.01 and serological C-reactive protein concentrations 2 days after surgery (P<0.05. Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P<0.02. Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P<0.01. Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures.

  16. Intra-articular corticosteroid for knee osteoarthritis.

    Science.gov (United States)

    Jüni, Peter; Hari, Roman; Rutjes, Anne W S; Fischer, Roland; Silletta, Maria G; Reichenbach, Stephan; da Costa, Bruno R

    2015-10-22

    Knee osteoarthritis is a leading cause of chronic pain, disability, and decreased quality of life. Despite the long-standing use of intra-articular corticosteroids, there is an ongoing debate about their benefits and safety. This is an update of a Cochrane review first published in 2005. To determine the benefits and harms of intra-articular corticosteroids compared with sham or no intervention in people with knee osteoarthritis in terms of pain, physical function, quality of life, and safety. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and EMBASE (from inception to 3 February 2015), checked trial registers, conference proceedings, reference lists, and contacted authors. We included randomised or quasi-randomised controlled trials that compared intra-articular corticosteroids with sham injection or no treatment in people with knee osteoarthritis. We applied no language restrictions. We calculated standardised mean differences (SMDs) and 95% confidence intervals (CI) for pain, function, quality of life, joint space narrowing, and risk ratios (RRs) for safety outcomes. We combined trials using an inverse-variance random-effects meta-analysis. We identified 27 trials (13 new studies) with 1767 participants in this update. We graded the quality of the evidence as 'low' for all outcomes because treatment effect estimates were inconsistent with great variation across trials, pooled estimates were imprecise and did not rule out relevant or irrelevant clinical effects, and because most trials had a high or unclear risk of bias. Intra-articular corticosteroids appeared to be more beneficial in pain reduction than control interventions (SMD -0.40, 95% CI -0.58 to -0.22), which corresponds to a difference in pain scores of 1.0 cm on a 10-cm visual analogue scale between corticosteroids and sham injection and translates into a number needed to treat for an additional beneficial outcome (NNTB) of 8 (95% CI 6 to 13). An I(2) statistic of 68

  17. Associations of Child and Adolescent Mastery Motivation and Self-Regulation With Adult Outcomes: A Longitudinal Study of Individuals With Down Syndrome.

    Science.gov (United States)

    Gilmore, Linda; Cuskelly, Monica

    2017-05-01

    This 20-year prospective longitudinal study focuses on the contribution of mastery motivation and self-regulation to adult outcomes for individuals with Down syndrome. In earlier phases of the research, 25 participants completed measures of cognitive ability, mastery motivation and self-regulation in childhood (4 to 6 years) and adolescence (11 to 15 years). In the adult phase reported here, self-determination and adaptive behavior were assessed in 21 of the original participants at age 23 to 26 years. Mastery motivation and self-regulation made unique contributions to adult outcomes, over and above the effects of cognitive ability. The findings provide powerful evidence about the important role of child and adolescent mastery motivation and self-regulation for the adult lives of individuals with Down syndrome.

  18. A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine

    Directory of Open Access Journals (Sweden)

    Fanju W. Meng

    2015-11-01

    Full Text Available Adult organs and their resident stem cells are constantly facing the challenge of adapting cell proliferation to tissue demand, particularly in response to environmental stresses. Whereas most stress-signaling pathways are conserved between progenitors and differentiated cells, stem cells have the specific ability to respond by increasing their proliferative rate, using largely unknown mechanisms. Here, we show that a member of the Sox family of transcription factors in Drosophila, Sox21a, is expressed in intestinal stem cells (ISCs in the adult gut. Sox21a is essential for the proliferation of these cells during both normal epithelium turnover and repair. Its expression is induced in response to tissue damage, downstream of the Jun N-terminal kinase (JNK and extracellular signal-regulated kinase (ERK pathways, to promote ISC proliferation. Although short-lived, Sox21a mutant flies show no developmental defects, supporting the notion that this factor is a specific regulator of adult stem cell proliferation.

  19. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  20. Fractures of the articular processes of the cervical spine

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, J.H.; Goldstein, S.J.

    1982-08-01

    Fractures of the articular processes occurred in 16 (20.8%) of 77 patients with cervical spine fractures as demonstrated by multidirectional tomography. Plain films demonstrated the fractures in only two patients. Acute cervical radiculopathy occurred in five of the patients with articular process fractures (superior process, two cases; inferior process, three cases). Persistent neck pain occurred in one other patient without radiculopathy. Three patients suffered spinal cord damage at the time of injury, which was not the result of the articular process fracture itself. In the other seven cases, no definite sequelae occurred. However, disruption of the facet joint may predispose to early degenerative joint disease and chronic pain; unilateral or bilateral facet dislocation was present in five patients. In patients with cervical trauma who develop cervical radiculopathy, tomography should be performed to evaluate the articular processes.

  1. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    Directory of Open Access Journals (Sweden)

    Jun Yamada

    2014-01-01

    Full Text Available Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration.

  2. Fractures of the articular processes of the cervical spine

    International Nuclear Information System (INIS)

    Woodring, J.H.; Goldstein, S.J.

    1982-01-01

    Fractures of the articular processes occurred in 16 (20.8%) of 77 patients with cervical spine fractures as demonstrated by multidirectional tomography. Plain films demonstrated the fractures in only two patients. Acute cervical radiculopathy occurred in five of the patients with articular process fractures (superior process, two cases; inferior process, three cases). Persistent neck pain occurred in one other patient without radiculopathy. Three patients suffered spinal cord damage at the time of injury, which was not the result of the articular process fracture itself. In the other seven cases, no definite sequelae occurred. However, disruption of the facet joint may predispose to early degenerative joint disease and chronic pain; unilateral or bilateral facet dislocation was present in five patients. In patients with cervical trauma who develop cervical radiculopathy, tomography should be performed to evaluate the articular processes

  3. Evidence for a Selectively Regulated Prioritization Shift Depending on Walking Situations in Older Adults

    OpenAIRE

    Salkovic, Dina; Hobert, Markus A.; Bellut, Carolin; Funer, Florian; Renno, Sarah; Haertner, Linda; Hasmann, Sandra E.; Staebler, Jana; Geritz, Johanna; Suenkel, Ulrike; Fallgatter, Andreas J.; Eschweiler, Gerhard W.; Berg, Daniela; Maetzler, Walter

    2017-01-01

    Background: Older adults have increased risks of balance issues and falls when walking and performing turns in daily situations. Changes of prioritization during different walking situations associated with dual tasking may contribute to these deficits. The objective of this study was therefore to investigate whether older adults demonstrate changes of prioritization during different walking paths. Methods: In total, 1,054 subjects with an age range from 50 to 83 years were selected from t...

  4. Self-Regulation and Recall: Growth Curve Modeling of Intervention Outcomes for Older Adults

    OpenAIRE

    West, Robin L.; Hastings, Erin C.

    2011-01-01

    Memory training has often been supported as a potential means to improve performance for older adults. Less often studied are the characteristics of trainees that benefit most from training. Using a self-regulatory perspective, the current project examined a latent growth curve model to predict training-related gains for middle-aged and older adult trainees from individual differences (e.g., education), information processing skills (strategy use) and self-regulatory factors such as self-effi...

  5. Cadaveric Study of the Articular Branches of the Shoulder Joint.

    Science.gov (United States)

    Eckmann, Maxim S; Bickelhaupt, Brittany; Fehl, Jacob; Benfield, Jonathan A; Curley, Jonathan; Rahimi, Ohmid; Nagpal, Ameet S

    This cadaveric study investigated the anatomic relationships of the articular branches of the suprascapular (SN), axillary (AN), and lateral pectoral nerves (LPN), which are potential targets for shoulder analgesia. Sixteen embalmed cadavers and 1 unembalmed cadaver, including 33 shoulders total, were dissected. Following dissections, fluoroscopic images were taken to propose an anatomical landmark to be used in shoulder articular branch blockade. Thirty-three shoulders from 17 total cadavers were studied. In a series of 16 shoulders, 16 (100%) of 16 had an intact SN branch innervating the posterior head of the humerus and shoulder capsule. Suprascapular sensory branches coursed laterally from the spinoglenoid notch then toward the glenohumeral joint capsule posteriorly. Axillary nerve articular branches innervated the posterolateral head of the humerus and shoulder capsule in the same 16 (100%) of 16 shoulders. The AN gave branches ascending circumferentially from the quadrangular space to the posterolateral humerus, deep to the deltoid, and inserting at the inferior portion of the posterior joint capsule. In 4 previously dissected and 17 distinct shoulders, intact LPNs could be identified in 14 (67%) of 21 specimens. Of these, 12 (86%) of 14 had articular branches innervating the anterior shoulder joint, and 14 (100%) of 14 LPN articular branches were adjacent to acromial branches of the thoracoacromial blood vessels over the superior aspect of the coracoid process. Articular branches from the SN, AN, and LPN were identified. Articular branches of the SN and AN insert into the capsule overlying the glenohumeral joint posteriorly. Articular branches of the LPN exist and innervate a portion of the anterior shoulder joint.

  6. Intra-Articular Therapeutic Delivery for Post Traumatic Osteoarthritis

    Science.gov (United States)

    2015-10-01

    cartilage Subchondral bone Osteophytes Proteoglycans 3. OVERALL PROJECT SUMMARY: In the first annual funding period (Sept 2014 – Sept 2015...Depiction of medial tibial articular cartilage and subchondral bone quantification regions (medial 1/3 and medial marginal osteophyte ). Figure 7...Conclusions A B C D E 12 Articular cartilage composition, subchondral bone, and osteophyte data showed a beneficial effect of single dHACM injection

  7. Imaging diagnosis of the juxta-articular bone cyst

    International Nuclear Information System (INIS)

    Zhang Zekun; Ren Jinjun; Wang Dongmei; Zhang Wei; Ding Jianping; Ding Yang

    2008-01-01

    Objective: To investigate the imaging features of the juxta-articular bone cyst(intra- osseous ganglia). Methods: The imaging findings of 54 cases histopathologically confirmed were studied retrospectively. X-ray, CT, and MRI were performed in 46 eases, 30 cases, and 14 cases, respectively. Results: Of the 54 cases, 27 arised from the ankle (including multiple lesions), 16 from the knee joint, 7 from the hip joint, 1 from the proximate end of the humerus, ulna, trapezium bone, the first phalange in each, and 1 from the talus and the distal end of the tibia. There were 43 cases (44 lesions) in the ankle and knee joints, with 29 (65.9%) lesions located in the medial articular surface. Fifty-four cases had thinning sclerotic rim, showing a unilocular round osteolytic appearance in 44 cases and a multiloculated-cystic appearance with septa in 10 cases. Discontinuous articular surface were seen in 15 cases, reticular surface collapse in 1, gas density in 3 and fluid-fluid plane in 1. (1) On x-ray films, 46 cases (47 lesions) with well-defined sclerotic rim revealed round, arch or irregular lyric areas at the adjacent articular surface. The fissures were found at the adjacent articular surface in 6 lesions. No joint spaces were abnormal. (2)On CT, 30 cases with sclerotic rim showed round in 19 lesions, arch in 3, and irregular in 8. The fissures were seen at the adjacent articular surface in 14 lesions. The density showed homogeneous in 27 lesions, and gas existed in 3. (3) Fourteen cases (15 lesions)showed hypointense to isointense signal on MR T 1 WI and hyperintense signal on T 2 WI. Fluid-fluid plane was found in 1 case. The fissures were observed at the adjacent articular surface in 8 lesions. 7 cases showed swelling soft tissue. Conclusion: The characteristic locations combined with the typical imaging features may suggest the diagnosis of jaxta-articular bone cyst. (authors)

  8. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function.

    Science.gov (United States)

    Manesia, Javed K; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M

    2017-04-15

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.

  9. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    Directory of Open Access Journals (Sweden)

    Jessberger Sebastian

    2006-11-01

    Full Text Available Abstract Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2 the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3 positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis.

  10. A Case Study on the Impacts of Connective Technology on Self-Efficacy and Self-Regulated Learning of Female Adult Students Managing Work-Life Balance

    Science.gov (United States)

    Sheetz, Tracey L.

    2014-01-01

    Adults frequently define their lives as "hectic" and "overextended;" yet, many make the decision to return to school and add the role of student into their busy lives. This research study explored and explained the impact of connective technology on self-efficacy and self-regulated learning of female adult students balancing…

  11. Adult Beginner Instrumentalists' Practice, Self-Regulation, and Self-Efficacy: A Pilot Study

    Science.gov (United States)

    Ritchie, Laura; Kearney, Phil

    2018-01-01

    The self-regulation of practice behaviour has repeatedly been shown to distinguish between novice and expert performers, however interventions designed to encourage self-regulation by novice musicians have shown limited effectiveness. Guided by successful research in sporting contexts, the present study investigated the behaviours of beginner…

  12. MRI evaluation of acute articular cartilage injury of knee

    International Nuclear Information System (INIS)

    Zhang Jun; Wu Zhenhua; Fan Guoguang; Pan Shinong; Guo Qiyong

    2003-01-01

    Objective: To study the MRI manifestation of acute articular cartilage injury of knee for evaluating the extension and degree of the injury and guiding treatment. Methods: MRI of 34 patients with acute articular cartilage injury of knee within one day to fifteen days confirmed by arthroscopy and arthrotomy was reviewed and analyzed, with emphasis on articular cartilage and subchondral lesion. And every manifestation on MRI and that of arthroscopy and operation was compared. Results: The articular cartilage injury was diagnosed on MRI in 29 of 34 cases. Cartilage signal changes were found only in 4. The changes of cartilage shape were variable. Thinning of focal cartilage was showed in 3, osteochondral impaction in 3, creases of cartilage in 3, disrupted cartilage with fissuring in 13, cracks cartilage in 2, and cracks cartilage with displaced fragment in 1. Bone bruise and occult fracture were found only on MRI. Conclusion: The assessment of MRI and arthroscopy in acute articular cartilage injury are consistent. Combined with arthroscopy, MRI can succeed in assessing the extension and degree of acute articular injury and allowing treatment planning

  13. Loose regulation of medical marijuana programs associated with higher rates of adult marijuana use but not cannabis use disorder.

    Science.gov (United States)

    Williams, Arthur Robin; Santaella-Tenorio, Julian; Mauro, Christine M; Levin, Frances R; Martins, Silvia S

    2017-11-01

    Most US states have passed medical marijuana laws (MMLs), with great variation in program regulation impacting enrollment rates. We aimed to compare changes in rates of marijuana use, heavy use and cannabis use disorder across age groups while accounting for whether states enacted medicalized (highly regulated) or non-medical mml programs. Difference-in-differences estimates with time-varying state-level MML coded by program type (medicalized versus non-medical). Multi-level linear regression models adjusted for state-level random effects and covariates as well as historical trends in use. Nation-wide cross-sectional survey data from the US National Survey of Drug Use and Health (NSDUH) restricted use data portal aggregated at the state level. Participants comprised 2004-13 NSDUH respondents (n ~ 67 500/year); age groups 12-17, 18-25 and 26+ years. States had implemented eight medicalized and 15 non-medical MML programs. Primary outcome measures included (1) active (past-month) marijuana use; (2) heavy use (> 300 days/year); and (3) cannabis use disorder diagnosis, based on DSM-IV criteria. Covariates included program type, age group and state-level characteristics throughout the study period. Adults 26+ years of age living in states with non-medical MML programs increased past-month marijuana use 1.46% (from 4.13 to 6.59%, P = 0.01), skewing towards greater heavy marijuana by 2.36% (from 14.94 to 17.30, P = 0.09) after MMLs were enacted. However, no associated increase in the prevalence of cannabis use disorder was found during the study period. Our findings do not show increases in prevalence of marijuana use among adults in states with medicalized MML programs. Additionally, there were no increases in adolescent or young adult marijuana outcomes following MML passage, irrespective of program type. Non-medical marijuana laws enacted in US states are associated with increased marijuana use, but only among adults aged 26+ years. Researchers and

  14. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis.

    Science.gov (United States)

    Iwamoto, Masahiro; Tamamura, Yoshihiro; Koyama, Eiki; Komori, Toshihisa; Takeshita, Nobuo; Williams, Julie A; Nakamura, Takashi; Enomoto-Iwamoto, Motomi; Pacifici, Maurizio

    2007-05-01

    Articular cartilage and synovial joints are critical for skeletal function, but the mechanisms regulating their development are largely unknown. In previous studies we found that the ets transcription factor ERG and its alternatively-spliced variant C-1-1 have roles in joint formation in chick. Here, we extended our studies to mouse. We found that ERG is also expressed in developing mouse limb joints. To test regulation of ERG expression, beads coated with the joint master regulator protein GDF-5 were implanted close to incipient joints in mouse limb explants; this led to rapid and strong ectopic ERG expression. We cloned and characterized several mammalian ERG variants and expressed a human C-1-1 counterpart (hERG3Delta81) throughout the cartilaginous skeleton of transgenic mice, using Col2a1 gene promoter/enhancer sequences. The skeletal phenotype was severe and neonatal lethal, and the transgenic mice were smaller than wild type littermates and their skeletons were largely cartilaginous. Limb long bone anlagen were entirely composed of chondrocytes actively expressing collagen IX and aggrecan as well as articular markers such as tenascin-C. Typical growth plates were absent and there was very low expression of maturation and hypertrophy markers, including Indian hedgehog, collagen X and MMP-13. The results suggest that ERG is part of molecular mechanisms leading chondrocytes into a permanent developmental path and become joint forming cells, and may do so by acting downstream of GDF-5.

  15. Arthoscopy La artroscopia y las lesiones articulares

    Directory of Open Access Journals (Sweden)

    Raúl J. Naranjo

    1991-01-01

    Full Text Available

    A general view is presented on arthroscopy; its history, indications and limitations are described and analyzed; its advantages in comparison with open surgery are emphasized.

    La artroscopia es un procedimiento que permite, mediante un instrumento óptico, evaluar el Interior de las cavidades articulares. Comenzó a desarrollarse como un procedimiento diagnóstico y pronto sus grandes ventajas frente a las exploraciones abiertas aceleraron el desarrollo de las técnicas y del instrumental. La minimización del trauma a los tejidos y la menor morbilidad posoperatoria permiten que la deambulación y la recuperación funcional sean precoces lo cual, sumado a un mejor resultado estético, ha colocado a la artroscopia como procedimiento de elección para el diagnóstico y el tratamiento de múltiples estados patológicos intraarticulares.

  16. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

  17. The use and evaluation of self-regulation techniques can predict health goal attainment in adults: an explorative study

    Directory of Open Access Journals (Sweden)

    Jolien Plaete

    2016-02-01

    Full Text Available Background. Self-regulation tools are not always used optimally, and implementation intention plans often lack quality. Therefore, this study explored participants’ use and evaluation of self-regulation techniques and their impact on goal attainment. Methods. Data were obtained from 452 adults in a proof of concept (POC intervention of ‘MyPlan’, an eHealth intervention using self-regulation techniques to promote three healthy behaviours (physical activity (PA, fruit intake, or vegetable intake. Participants applied self-regulation techniques to a self-selected health behaviour, and evaluated the self-regulation techniques. The quality of implementation intentions was rated by the authors as a function of instrumentality (instrumental and non-instrumental and specificity (non-specific and medium to highly specific. Logistic regression analyses were conducted to predict goal attainment. Results. Goal attainment was significantly predicted by the motivational value of the personal advice (OR:1.86, by the specificity of the implementation intentions (OR:3.5, by the motivational value of the action plan (OR:1.86, and by making a new action plan at follow-up (OR:4.10. Interaction-effects with behaviour showed that the specificity score of the implementation intention plans (OR:4.59, the motivational value of the personal advice (OR:2.38, selecting hindering factors and solutions(OR:2.00 and making a new action plan at follow-up (OR:7.54 were predictive of goal attainment only for fruit or vegetable intake. Also, when participants in the fruit and vegetable group made more than three plans, they were more likely to attain their goal (OR:1.73, whereas the reverse was the case in the PA group (OR:0.34. Discussion. The chance that adults reach fruit and vegetable goals can be increased by including motivating personal advice, self-formulated action plans, and instructions/strategies to make specific implementation intentions into e

  18. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults

    OpenAIRE

    Riby, Leigh; McLaughlin, Jennifer; Riby, Deborah

    2008-01-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addit...

  19. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    OpenAIRE

    Tessa K Solomon-Lane; Erica J Crespi; Erica J Crespi; Matthew Scott Grober; Matthew Scott Grober

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has ...

  20. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change

    OpenAIRE

    Solomon-Lane, Tessa K.; Crespi, Erica J.; Grober, Matthew S.

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has be...

  1. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    Science.gov (United States)

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Gene regulation in adult neural stem cells : Current challenges and possible applications

    NARCIS (Netherlands)

    Encinas, J.M.; Fitzsimons, C.P.

    2017-01-01

    Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have

  3. Preliminary histopathological study of intra-articular injection of a novel highly cross-linked hyaluronic acid in a rabbit model of knee osteoarthritis.

    Science.gov (United States)

    Iannitti, Tommaso; Elhensheri, Mohamed; Bingöl, Ali O; Palmieri, Beniamino

    2013-04-01

    Osteoarthritis is a degenerative joint disease mostly occurring in the knee and commonly seen in middle-aged and elderly adults. Intra-articular injection of hyaluronic acid has been widely used for treatment of knee osteoarthritis. The aim of this study was to evaluate the efficacy of intra-articular injection of a novel highly cross-linked hyaluronic acid, alone or in combination with ropivacaine hydrochloride and triamcinolone acetonide, on knee articular cartilage in a rabbit model of collagenase-induced knee osteoarthritis. After induction of experimental osteoarthritis by intra-articular injection of collagenase, adult New Zealand white rabbits (n = 12) were divided into 3 groups. Group 1 (control group) received 0.3 ml phosphate buffered saline into the right knee joint. Group 2 received 0.3 ml cross-linked hyaluronic acid (33 mg/ml) into the right knee joint. Group 3 received a mixture of 0.15 ml cross-linked hyaluronic acid (33 mg/ml), 0.05 ml ropivacaine hydrochloride 1 % and 0.1 ml triamcinolone acetonide (10 mg/ml) into the right knee joint. Intra-articular injections were given 4 weeks after first collagenase injection and were administered once a week for 3 weeks. Gross pathology and histological evaluation of rabbits' knee joints were performed after 16 weeks following initial collagenase injection. Histological analysis of sections of right knee joints at lesion sites showed a significant decrease in Mankin's score in groups treated with hyaluronic acid alone or in combination with ropivacaine hydrochloride and triamcinolone acetonide versus control group (p hyaluronic acid, alone or in combination with ropivacaine hydrochloride and triamcinolone acetonide, produces a significant improvement in knee articular cartilage degeneration in a rabbit model of collagenase-induced osteoarthritis.

  4. Is the repair of articular cartilage lesion by costal chondrocyte transplantation donor age-dependent? An experimental study in rabbits.

    Directory of Open Access Journals (Sweden)

    Janusz Popko

    2006-09-01

    Full Text Available The repair of chondral injuries is a very important problem and a subject of many experimental and clinical studies. Different techniques to induce articular cartilage repair are under investigation. In the present study, we have investigated whether the repair of articular cartilage folowing costal chondrocyte transplantation is donor age-dependent. Transplantation of costal chondrocytes from 4- and 24-week old donors, with artificially induced femoral cartilage lesion, was performed on fourteen 20-week-old New Zealand White male rabbits. In the control group, the lesion was left without chondrocyte transplantation. The evaluation of the cartilage repair was performed after 12 weeks of transplantation. We analyzed the macroscopic and histological appearance of the newly formed tissue. Immunohistochemistry was also performed using monoclonal antibodies against rabbit collagen type II. The newly formed tissue had a hyaline-like appearance in most of the lesions after chondrocyte transplantation. Positive immunohistochemical reaction for collagen II was also observed in both groups with transplanted chondrocytes. Cartilage from adult donors required longer isolation time and induced slightly poorer repair. However, hyaline-like cartilage was observed in most specimens from this group, in contrast to the control group, where fibrous connective tissue filled the lesions. Rabbit costal chondrocytes seem to be a potentially useful material for inducing articular cartilage repair and, even more important, they can also be derived from adult, sexually mature animals.

  5. PPARg mRNA in the adult mouse hypothalamus: distribution and regulation in response to dietary challenges

    Directory of Open Access Journals (Sweden)

    Yang eLiu

    2015-09-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARg is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARg signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARg-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARg mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARg mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis, and the subfornical organ. Within the hypothalamus, PPARg was present at moderate levels in the suprachiasmatic nucleus and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARg was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARg mRNA expression was upregulated in the suprachiasmatic nucleus in response to fasting. Double in situ hybridization further demonstrated that PPARg was primarily expressed in neurons. Collectively, our observations provide a comprehensive map of PPARg distribution and regulation in the intact adult mouse hypothalamus.

  6. Relaxation therapy and anxiety, self-esteem, and emotional regulation among adults with intellectual disabilities: A randomized controlled trial.

    Science.gov (United States)

    Bouvet, Cyrille; Coulet, Aurélie

    2016-09-01

    This pilot study is a randomized controlled trial on the effects of relaxation on anxiety, self-esteem, and emotional regulation in adults with intellectual disabilities (ID) working in a center of supported employment in France. We studied 30 adults with mild or moderate ID who were split at random into a relaxation group (RG, 15 subjects), who completed 10 sessions of relaxation therapy, and a control group (CG, 15 subjects), who were on a waiting list. The method used is the pretest and posttest. Variables were assessed by the State-Trait Anxiety Inventory form Y scale, the Rosenberg Self-Esteem scale, and the Emotion Regulation Questionnaire. We found that in the RG, relaxation significantly reduced state anxiety, t(14, 15) = 17.8***, d = -0.72, and improved self-esteem, t(14, 15) = -7.7***, d = 1.03, and cognitive reappraisal, t(14, 15) = -6.3***, d = 1.3, while the CG showed no change for these variables. We conclude that relaxation seems to be an interesting therapeutic option for reducing anxiety in people with ID in a supported employment setting. © The Author(s) 2015.

  7. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  8. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.

    Directory of Open Access Journals (Sweden)

    Anke Popp

    Full Text Available BACKGROUND: GABA (gamma-aminobutyric acid, the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD. GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. METHODOLOGY/PRINCIPAL FINDINGS: QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. CONCLUSIONS/SIGNIFICANCE: Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or

  9. Regulated gene expression in cultured type II cells of adult human lung

    OpenAIRE

    Ballard, Philip L.; Lee, Jae W.; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R.; Fischer, Horst; Illek, Beate; Gonzales, Linda W.; Kolla, Venkatadri; Matthay, Michael A.

    2010-01-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at ∼95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days...

  10. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  11. Changes in self-efficacy for exercise and improved nutrition fostered by increased self-regulation among adults with obesity.

    Science.gov (United States)

    Annesi, James J; Johnson, Ping H; McEwen, Kristin L

    2015-10-01

    Behavioral theory suggests that treatments that increase participants' use of self-regulatory skills and/or their feelings of ability (self-efficacy) will improve exercise and nutrition behaviors. In addition, psychosocial factors associated with increased exercise may carry over to improved eating. Self-regulation might enhance self-efficacy through feelings of ability to manage barriers to maintaining weight-loss behaviors. Sedentary adults with severe or morbid obesity (M age = 43 years; M BMI = 40.1 kg/m(2)) participated in a 6-month study within a community-based YMCA center. We randomly assigned participants to one of the two groups that incorporated the same cognitive-behavioral support of exercise paired with methods for controlled, healthy eating emphasizing either (a) self-efficacy (n = 138), or (b) self-regulation (n = 136) methods. Mixed model repeated measures ANOVAs indicated significant improvements in exercise- and eating-related self-regulation over 3 months, and exercise- and eating-related self-efficacy over 6 months. The Self-Regulation Treatment Group demonstrated greater improvements in self-regulation for eating and fruit and vegetable intake than the Self-Efficacy Group. Regression analyses indicated that for both exercise and eating, self-regulation change significantly predicted self-efficacy change. In separate equations, changes in exercise and fruit and vegetable intake mediated those relationships, and change in self-efficacy and the corresponding behavioral changes demonstrated reciprocal, mutually reinforcing, relationships. There was evidence of carry-over, or generalization, of both self-regulation and self-efficacy changes from an exercise context to an eating context. We discussed findings in terms of leveraging self-regulation to improve self-efficacy, and provide a rationale for why exercise is the strongest predictor of success with weight loss. Results may be used to inform future behavioral weight

  12. Behavioral and neural markers of cigarette-craving regulation in young-adult smokers during abstinence and after smoking.

    Science.gov (United States)

    Ghahremani, Dara G; Faulkner, Paul; M Cox, Chelsea; London, Edythe D

    2018-06-01

    Cigarette craving contributes substantially to the maintenance of tobacco use disorder. Behavioral strategies to regulate craving may facilitate smoking cessation but remain underexplored. We adapted an emotion-regulation strategy, using proximal/distal self-positioning, to the context of cigarette craving to examine craving regulation in 42, daily smokers (18-25 years old). After overnight abstinence from smoking, before and after smoking their first cigarette of the day, participants viewed videos of natural scenes presenting young adults who were either smoking cigarettes ("smoke") or not ("non-smoke"). Before each video, participants were instructed to imagine themselves either immersed in the scene ("close") or distanced from it ("far"). They rated their craving after each video. Task-based fMRI data are presented for a subsample of participants (N = 21). We found main effects of smoking, instruction, and video type on craving-lower ratings after smoking than before, following the "far" vs. "close" instructions, and when viewing non-smoke vs. smoke videos. Before smoking, "smoke" vs. "non-smoke" videos elicited activation in, orbitofrontal cortex, anterior cingulate, lateral parietal cortex, mid-occipital cortex, ventral striatum, dorsal caudate, and midbrain. Smoking reduced activation in anterior cingulate, left inferior frontal gyrus, and bilateral temporal poles. Activation was reduced in the ventral striatum and medial prefrontal cortex after the "far" vs. the "close" instruction, suggesting less engagement with the stimuli during distancing. The results indicate that proximal/distal regulation strategies impact cue-elicited craving, potentially via downregulation of the ventral striatum and medial prefrontal cortex, and that smoking during abstinence may increase cognitive control capacity during craving regulation.

  13. Linking state regulation, brain laterality, and self-reported ADHD symptoms in adults

    NARCIS (Netherlands)

    Mohamed, Saleh

    2016-01-01

    Aim: Difficulties in regulating the motor activation state and atypical brain laterality have been suggested to be key factors in Attention-Deficit/Hyperactivity Disorder (ADHD). So far, the link between the two factors has not been directly tested, which is the aim of the present study. Method:

  14. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton

    Science.gov (United States)

    Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk

    2018-01-01

    The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments. PMID:29551959

  15. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton

    Directory of Open Access Journals (Sweden)

    Philippe Malcolm

    2018-03-01

    Full Text Available The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments.

  16. Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton.

    Science.gov (United States)

    Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk

    2018-01-01

    The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition . Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions . Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments.

  17. Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation.

    Science.gov (United States)

    Ryan, Sinead M; O'Keeffe, Gerard W; O'Connor, Caitriona; Keeshan, Karen; Nolan, Yvonne M

    2013-10-01

    Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    Directory of Open Access Journals (Sweden)

    Tessa K Solomon-Lane

    2013-11-01

    Full Text Available Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis. Through actions of both corticotropin-releasing factor and glucocorticoids (GCs, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli, a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  19. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change.

    Science.gov (United States)

    Solomon-Lane, Tessa K; Crespi, Erica J; Grober, Matthew S

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  20. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    OpenAIRE

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (...

  1. [Mediating role of emotional regulation between impulsive behavior in gambling, Internet and videogame abuse, and dysfunctional symptomatology in young adults and adolescents].

    Science.gov (United States)

    Estévez Gutiérrez, Ana; Herrero Fernández, David; Sarabia Gonzalvo, Izaskun; Jáuregui Bilbao, Paula

    2014-01-01

    The way emotions are regulated might affect the engagement on risk behaviors in adolescents and young adults. Therefore, studying the relationship between these variables could be of great importance. Some of the less studied risky behaviors are pathological gambling, and Internet and videogame abuse. This research aims to analyze the existing relationship between such risky behaviors, emotion regulation, and dysfunctional psychological symptomatology (depression, anxiety, phobic anxiety, somatization, obsessive-–compulsive behavior, interpersonal sensitivity, hostility, paranoid ideation, and psychoticism). In addition, it also looks to assess whether emotional regulation plays a mediating role between pathological gambling, and Internet and videogame abuse, and psychological symptomatology. The sample was composed of 1312 young adults and adolescents, aged between 12 and 30, recruited from scholar centers, universities and free time groups, and from associations and centers associated with FEJAR (Spanish Federation of Rehabilitated Gamblers). Participants completed measurements of impulsive behavior, emotion regulation, and dysfunctional symptomatology. Results showed that there is generally a positive and significant relation between these variables. Moreover, it has been pointed out that emotion regulation mediates the association between impulsive behavior and dysfunctional symptomatology among those young adults and adolescents who engage in these impulsive behaviors, except for the relation between videogame abuse and depressive symptomatology. Training in emotional regulation skills could be useful in dealing with and treating this type of behaviors in adolescents and young adults.

  2. Degenerated human articular cartilage at autopsy represents preclinical osteoarthritic cartilage: comparison with clinically defined osteoarthritic cartilage

    NARCIS (Netherlands)

    van Valburg, A. A.; Wenting, M. J.; Beekman, B.; te Koppele, J. M.; Lafeber, F. P.; Bijlsma, J. W.

    1997-01-01

    To investigate whether macroscopically fibrillated human articular knee cartilage observed at autopsy can be considered an early, preclinical phase of osteoarthritis (OA). Histological and biochemical characteristics of 3 types of articular knee cartilage were compared: macroscopically degenerated

  3. Self-regulation and recall: growth curve modeling of intervention outcomes for older adults.

    Science.gov (United States)

    West, Robin L; Hastings, Erin C

    2011-12-01

    Memory training has often been supported as a potential means to improve performance for older adults. Less often studied are the characteristics of trainees that benefit most from training. Using a self-regulatory perspective, the current project examined a latent growth curve model to predict training-related gains for middle-aged and older adult trainees from individual differences (e.g., education), information processing skills (strategy use) and self-regulatory factors such as self-efficacy, control, and active engagement in training. For name recall, a model including strategy usage and strategy change as predictors of memory gain, along with self-efficacy and self-efficacy change, showed comparable fit to a more parsimonious model including only self-efficacy variables as predictors. The best fit to the text recall data was a model focusing on self-efficacy change as the main predictor of memory change, and that model showed significantly better fit than a model also including strategy usage variables as predictors. In these models, overall performance was significantly predicted by age and memory self-efficacy, and subsequent training-related gains in performance were best predicted directly by change in self-efficacy (text recall), or indirectly through the impact of active engagement and self-efficacy on gains (name recall). These results underscore the benefits of targeting self-regulatory factors in intervention programs designed to improve memory skills.

  4. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    International Nuclear Information System (INIS)

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal

    2006-01-01

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS

  5. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats

    Science.gov (United States)

    Beaudin, Stephane A.; Strupp, Barbara J.; Strawderman, Myla; Smith, Donald R.

    2016-01-01

    Background: Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. Objectives: To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Methods: Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1–21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Results: Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. Conclusions: This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230–237; http://dx.doi.org/10.1289/EHP258 PMID:27384154

  6. Early Postnatal Manganese Exposure Causes Lasting Impairment of Selective and Focused Attention and Arousal Regulation in Adult Rats.

    Science.gov (United States)

    Beaudin, Stephane A; Strupp, Barbara J; Strawderman, Myla; Smith, Donald R

    2017-02-01

    Studies in children and adolescents have associated early developmental manganese (Mn) exposure with inattention, impulsivity, hyperactivity, and oppositional behaviors, but causal inferences are precluded by the correlational nature of the data and generally limited control for potential confounders. To determine whether early postnatal oral Mn exposure causes lasting attentional and impulse control deficits in adulthood, and whether continued lifelong Mn exposure exacerbates these effects, using a rat model of environmental Mn exposure. Neonates were exposed orally to 0, 25 or 50 mg Mn/kg/day during early postnatal life (PND 1-21) or throughout life from PND 1 until the end of the study. In adulthood, the animals were tested on a series of learning and attention tasks using the five-choice serial reaction time task. Early postnatal Mn exposure caused lasting attentional dysfunction due to impairments in attentional preparedness, selective attention, and arousal regulation, whereas associative ability (learning) and impulse control were spared. The presence and severity of these deficits varied with the dose and duration of Mn exposure. This study is the first to show that developmental Mn exposure can cause lasting impairments in focused and selective attention and arousal regulation, and to identify the specific nature of the impairments. Given the importance of attention and arousal regulation in cognitive functioning, these findings substantiate concerns about the adverse effects of developmental Mn exposure in humans. Citation: Beaudin SA, Strupp BJ, Strawderman M, Smith DR. 2017. Early postnatal manganese exposure causes lasting impairment of selective and focused attention and arousal regulation in adult rats. Environ Health Perspect 125:230-237; http://dx.doi.org/10.1289/EHP258.

  7. Intra-Articular Osteotomy for Distal Humerus Malunion

    Directory of Open Access Journals (Sweden)

    René K. Marti

    2009-01-01

    Full Text Available Intra-articular osteotomy is considered in the rare case of malunion after a fracture of the distal humerus to restore humeral alignment and gain a functional arc of elbow motion. Traumatic and iatrogenic disruption of the limited blood flow to the distal end of the humerus resulting in avascular necrosis of capitellum or trochlea is a major pitfall of the this technically challenging procedure. Two cases are presented which illustrate the potential problems of intra-articular osteotomy for malunion of the distal humerus.

  8. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis.

    Science.gov (United States)

    Bozec, Aline; Hannemann, Nicole

    2016-06-03

    Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes.

  9. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    Science.gov (United States)

    Pickarski, Maureen; Hayami, Tadashi; Zhuo, Ya; Duong, Le T

    2011-08-24

    Osteoarthritis (OA) is a debilitating, progressive joint disease. Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT) or ACLT with partial medial meniscectomy (ACLT + MMx) rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the gene expression profiles in articular cartilage and subchondral bone. Local regulation of matrix degradation markers was demonstrated by a significant increase in mRNA levels of aggrecanase-1 and MMP-13 as early as the first week post-surgery, and expression remained elevated throughout the 10 week study. Immunohistochemistry confirmed MMP-13 expression in differentiated chondrocytes and synovial fibroblasts at week-2 and cells within osteophytes at week-10 in the surgically-modified-joints. Concomitant increases in chondrocyte differentiation markers, Col IIA and Sox 9, and vascular invasion markers, VEGF and CD31, peaked around week-2 to -4, and returned to Sham levels at later time points in both models. Indeed, VEGF-positive cells were found in the deep articular chondrocytes adjacent to subchondral bone. Osteoclastic bone resorption markers, cathepsin K and TRAP, were also elevated at week-2. Confirming bone resorption is an early local event in OA progression, cathepsin K positive osteoclasts were found invading the articular cartilage from the subchondral region at week 2. This was followed by late disease events, including subchondral sclerosis and osteophyte formation, as demonstrated by the upregulation of the osteoanabolic markers runx2 and osterix, toward week-4 to 6 post-surgery. In summary, this study demonstrated the temporal and cohesive gene expression changes in articular cartilage and subchondral bone using known markers of OA progression. The findings here support genome-wide profiling

  10. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhuo Ya

    2011-08-01

    Full Text Available Abstract Background Osteoarthritis (OA is a debilitating, progressive joint disease. Methods Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT or ACLT with partial medial meniscectomy (ACLT + MMx rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the gene expression profiles in articular cartilage and subchondral bone. Results Local regulation of matrix degradation markers was demonstrated by a significant increase in mRNA levels of aggrecanase-1 and MMP-13 as early as the first week post-surgery, and expression remained elevated throughout the 10 week study. Immunohistochemistry confirmed MMP-13 expression in differentiated chondrocytes and synovial fibroblasts at week-2 and cells within osteophytes at week-10 in the surgically-modified-joints. Concomitant increases in chondrocyte differentiation markers, Col IIA and Sox 9, and vascular invasion markers, VEGF and CD31, peaked around week-2 to -4, and returned to Sham levels at later time points in both models. Indeed, VEGF-positive cells were found in the deep articular chondrocytes adjacent to subchondral bone. Osteoclastic bone resorption markers, cathepsin K and TRAP, were also elevated at week-2. Confirming bone resorption is an early local event in OA progression, cathepsin K positive osteoclasts were found invading the articular cartilage from the subchondral region at week 2. This was followed by late disease events, including subchondral sclerosis and osteophyte formation, as demonstrated by the upregulation of the osteoanabolic markers runx2 and osterix, toward week-4 to 6 post-surgery. Conclusions In summary, this study demonstrated the temporal and cohesive gene expression changes in articular cartilage and subchondral bone using known markers of

  11. Small-Diameter Awls Improve Articular Cartilage Repair After Microfracture Treatment in a Translational Animal Model.

    Science.gov (United States)

    Orth, Patrick; Duffner, Julia; Zurakowski, David; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Microfracture is the most commonly applied arthroscopic marrow stimulation procedure. Articular cartilage repair is improved when the subchondral bone is perforated by small-diameter microfracture awls compared with larger awls. Controlled laboratory study. Standardized rectangular (4 × 8 mm) full-thickness chondral defects (N = 24) were created in the medial femoral condyle of 16 adult sheep and debrided down to the subchondral bone plate. Three treatment groups (n = 8 defects each) were tested: 6 microfracture perforations using small-diameter awls (1.0 mm; group 1), large-diameter awls (1.2 mm; group 2), or without perforations (debridement control; group 3). Osteochondral repair was assessed at 6 months in vivo using established macroscopic, histological, immunohistochemical, biochemical, and micro-computed tomography analyses. Compared with control defects, histological cartilage repair was always improved after both microfracture techniques (P Subchondral bone cysts and intralesional osteophytes were frequently observed after either microfracture treatment. Macroscopic grading, DNA, proteoglycan, and type I and type II collagen contents as well as degenerative changes within the adjacent cartilage remained unaffected by the awl diameter. Small-diameter microfracture awls improve articular cartilage repair in the translational sheep model more effectively than do larger awls. These data support the use of small microfracture instruments for the surgical treatment of cartilage defects and warrant prolonged clinical investigations. © 2015 The Author(s).

  12. Impact of exercise on articular cartilage: Systematic reviews and meta-analyses of randomised controlled trials

    DEFF Research Database (Denmark)

    Bricca, Alessio

    2018-01-01

    This thesis summarizes the evidence on the impact of exercise on articular cartilage. No evidence was found to support beneficial effects of exercise on articular cartilage, although in people at risk of, or with, knee osteoarthritis, exercise is not harmful for articular cartilage structure and ...

  13. Linking state regulation, brain laterality, and self-reported attention-deficit/hyperactivity disorder (ADHD) symptoms in adults.

    Science.gov (United States)

    Mohamed, Saleh M H; Börger, Norbert A; Geuze, Reint H; van der Meere, Jaap J

    2016-10-01

    Many clinical studies have shown that performance of subjects with attention-deficit/hyperactivity disorder (ADHD) is impaired when stimuli are presented at a slow rate compared to a medium or fast rate. According to the cognitive-energetic model, this finding may reflect difficulty in allocating sufficient effort to regulate the motor activation state. Other studies have shown that the left hemisphere is relatively responsible for keeping humans motivated, allocating sufficient effort to complete their tasks. This leads to a prediction that poor effort allocation might be associated with an affected left-hemisphere functioning in ADHD. So far, this prediction has not been directly tested, which is the aim of the present study. Seventy-seven adults with various scores on the Conners' Adult ADHD Rating Scale performed a lateralized lexical decision task in three conditions with stimuli presented in a fast, a medium, and a slow rate. The left-hemisphere functioning was measured in terms of visual field advantage (better performance for the right than for the left visual field). All subjects showed an increased right visual field advantage for word processing in the slow presentation rate of stimuli compared to the fast and the medium rate. Higher ADHD scores were related to a reduced right visual field advantage in the slow rate only. The present findings suggest that ADHD symptomatology is associated with less involvement of the left hemisphere when extra effort allocation is needed to optimize the low motor activation state.

  14. Finite element analysis of intramedullary nailing and double locking plate for treating extra-articular proximal tibial fractures.

    Science.gov (United States)

    Chen, Fancheng; Huang, Xiaowei; Ya, Yingsun; Ma, Fenfen; Qian, Zhi; Shi, Jifei; Guo, Shuolei; Yu, Baoqing

    2018-01-16

    Proximal tibia fractures are one of the most familiar fractures. Surgical approaches are usually needed for anatomical reduction. However, no single treatment method has been widely established as the standard care. Our present study aims to compare the stress and stability of intramedullary nails (IMN) fixation and double locking plate (DLP) fixation in the treatment of extra-articular proximal tibial fractures. A three-dimensional (3D) finite element model of the extra-articular proximal tibial fracture, whose 2-cm bone gap began 7 cm from the tibial plateau articular surface, was created fixed by different fixation implants. The axial compressive load on an adult knee during single-limb stance was imitated by an axial force of 2500 N with a distribution of 60% to the medial compartment, while the distal end was fixed effectively. The equivalent von Mises stress and displacement of the model was used as the output measures for analysis. The maximal equivalent von Mises stress value of the system in the IMN model was 293.23 MPa, which was higher comparing against that in the DLP fixation model (147.04 MPa). And the mean stress of the model in the IMN model (9.25 MPa) was higher than that of the DLP fixation system in terms of equivalent von Mises stress (EVMS) (P tibial fractures of young patients.

  15. Patterns of triangular fibrocartilage complex (TFCC) injury associated with severely dorsally displaced extra-articular distal radius fractures.

    Science.gov (United States)

    Scheer, Johan H; Adolfsson, Lars E

    2012-06-01

    The aim of the study was to examine triangular fibrocartilage (TFCC) injury patterns associated with unstable, extra-articular dorsally displaced distal radius fractures. Twenty adult patients with an Arbeitsgemeinschaft für Osteosynthesefragen (AO), type A2 or A3, distal radius fracture with an initial dorsal angulation greater than 20° were included. Nine had a tip fracture (distal to the base) of the ulnar styloid and 11 had no such fracture. They were all openly explored from an ulnopalmar approach and TFCC injuries were documented. Eleven patients also underwent arthroscopy and intra-articular pathology was recorded. All patients had TFCC lesions of varying severity, having an extensor carpi ulnaris subsheath avulsion in common. Eighteen out of 20 also displayed deep foveal radioulnar ligament lesions, with decreasingly dorsal fibres remaining. The extent of this foveal injury could not be appreciated by radiocarpal arthroscopy. Severe displacement of an extra-articular radius fracture suggests an ulnar-sided ligament injury to the TFCC. The observed lesions concur with findings in a previous cadaver study. The lesions follow a distinct pattern affecting both radioulnar as well as ulnocarpal stabilisers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    Science.gov (United States)

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights

  17. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    Science.gov (United States)

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  18. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  19. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    Directory of Open Access Journals (Sweden)

    Niurka Trujillo-Paredes

    2016-03-01

    Full Text Available Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs, but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+. These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  20. The Influence of the Openness of an E-Learning Situation on Adult Students’ Self-Regulation

    Directory of Open Access Journals (Sweden)

    Annie Jézégou

    2013-07-01

    Full Text Available This article presents empirical research conducted with French speaking adults studying for a diploma. Their training took place mainly in e-learning. The goal of this research was to identify and explain the processes of influence existing between two specific dimensions: the degree of openness of the components of the e-learning situation and students’ self-regulated behaviors in the management of these components. This research was based on the socio-cognitive theory of self-regulation (Bandura, 1986; Schunk & Zimmerman, 2007; Zimmerman, 2002 and on a theoretical definition of the notion of “openness” (Jézégou, 2005. It applied the “actantial model” (Greimas, 1966; Hiernaux, 1977 for analyzing data collected while using a specific validated instrument of assessment of openness (Jézégou, 2010a. The main results of this empirical work are the role played by three psychological dimensions in the influence processes identified. More empirical study is required to confirm their validity.

  1. The aPKC-CBP Pathway Regulates Adult Hippocampal Neurogenesis in an Age-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ayden Gouveia

    2016-10-01

    Full Text Available While epigenetic modifications have emerged as attractive substrates to integrate environmental changes into the determination of cell identity and function, specific signals that directly activate these epigenetic modifications remain unknown. Here, we examine the role of atypical protein kinase C (aPKC-mediated Ser436 phosphorylation of CBP, a histone acetyltransferase, in adult hippocampal neurogenesis and memory. Using a knockin mouse strain (CbpS436A in which the aPKC-CBP pathway is deficient, we observe impaired hippocampal neuronal differentiation, maturation, and memory and diminished binding of CBP to CREB in 6-month-old CbpS436A mice, but not at 3 months of age. Importantly, elevation of CREB activity rescues these deficits, and CREB activity is reduced whereas aPKC activity is increased in the murine hippocampus as they age from 3 to 6 months regardless of genotype. Thus, the aPKC-CBP pathway is a homeostatic compensatory mechanism that modulates hippocampal neurogenesis and memory in an age-dependent manner in response to reduced CREB activity.

  2. Local intra-articular injection of resveratrol delays cartilage degeneration in C57BL/6 mice by inducing autophagy via AMPK/mTOR pathway.

    Science.gov (United States)

    Qin, Na; Wei, Liwei; Li, Wuyin; Yang, Wei; Cai, Litao; Qian, Zhuang; Wu, Shufang

    2017-07-01

    Autophagy is an essential cellular homeostasis mechanism that was found to be compromised in aging and osteoarthritis (OA) cartilage. Previous studies showed that resveratrol can effectively regulate autophagy in other cells. The purpose of this study was to determine whether the chondroprotective effect of resveratrol was related to chondrocyte autophagy and to elucidate underlying mechanisms. OA model was induced by destabilization of the medial meniscus (DMM) in 10-week-old male mice. OA mice were treated with resveratrol with/without 3-MA for 8 weeks beginning 4 weeks after surgery. The local intra-articular injection of resveratrol delayed articular cartilage degradation in DMM-induced OA by OARSI scoring systems and Safranin O-fast green. Resveratrol treatment increased Unc-51-like kinase1, Beclin1, microtubule-associated protein light chain 3, hypoxia inducible factor-1α, phosphorylated AMPK, collagen-2A1, Aggrecan expressions, but decreased hypoxia inducible factor-2α, phosphorylated mTOR, matrix metalloproteinases13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 expressions. The effects of resveratrol were obviously blunted by 3-MA except HIF and AMPK. These findings indicate that resveratrol intra-articular injection delayed articular cartilage degeneration and promoted chondrocyte autophagy in an experimental model of surgical DMM-induced OA, in part via balancing HIF-1α and HIF-2α expressions and thereby regulating AMPK/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. Laser biostimulation of articular cartilage: in vitro evaluation

    Science.gov (United States)

    Jia, Yali; Guo, Zhouyi; Yang, Xiaohong; Zeng, Chang-Chun

    2004-07-01

    In the orthopaedic field, the repair of ariticular cartilage is still a difficult problem, because of the physiological characters of cartilaginous tissues and chondrocytes. To find an effective method of stimulating their regeneration, this in vitro study focuses on the biostimulation of rabbit articular chondrocytes by low-power He-Ne laser. The articular chondrocytes isolated from the cartilage of the medial condyle of the femur of the rabbit were incubated in HamF12 medium. The second passage culture were spread on 24 petri dishes and were irradiated with laser at power density of 2 - 12 mW/cm2 for 6.5 minutes, corresponding to the energy density of 1-6 J/cm2. Laser treatment was performed three times at a 24-hour interval. After lasering, incubation was continued for 24 hours. Non-irradiated cells were kept under the same conditions as the irradiated ones. The cell proliferation activity was evaluated with a XTT colorimetric method. Irradiation of 4 - 6 J/cm2 revealed a considerably higher cell proliferation activity comparing to control cultures. Thereinto, the energy density of 4 and 5 J/cm2 remarkably increased cell growth (P<0.01). The present study showed that a particular laser irradiation stimulates articular chondrocytes proliferation. These findings might be clinically relevant, indicating that low-power laser irradiation treatment is likely to achieve the repair of articular cartilage in clinic.

  4. Reduction of intra-articular adhesion by topical application of ...

    African Journals Online (AJOL)

    Effect of daidzein on intra articular adhesion was estimated by visual score through macroscopic examination, histopathology study, hydroxyproline content, fibroblast and collage density. Results: Data obtained in the study suggest that topical application of daidzein (5 and 10 mg/ml) loose the collagen and significantly ...

  5. Clinical and Laboratory Predictors of Articular Disorders Among HIV ...

    African Journals Online (AJOL)

    laboratory features of HIV‑infected patients and articular disorders. Aims: To ... The recruitment of subjects for the study took place ..... [4-8,10]. The reported range is wide and reflects prevalence from ... this study may be close to the true value because the subjects .... hence higher ESR values, indicating widespread systemic.

  6. Peroneal tendon displacement accompanying intra-articular calcaneal fractures.

    Science.gov (United States)

    Toussaint, Rull James; Lin, Darius; Ehrlichman, Lauren K; Ellington, J Kent; Strasser, Nicholas; Kwon, John Y

    2014-02-19

    Peroneal tendon displacement (subluxation or dislocation) accompanying an intra-articular calcaneal fracture is often undetected and under-treated. The goals of this study were to determine (1) the prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures, (2) the association of tendon displacement with fracture classifications, (3) the association of tendon displacement with heel width, and (4) the rate of missed diagnosis of the tendon displacement on radiographs and computed tomography (CT) scans and the resulting treatment rate. A retrospective radiographic review of all calcaneal fractures presenting at three institutions from June 30, 2006, to June 30, 2011, was performed. CT imaging of 421 intra-articular calcaneal fractures involving the posterior facet was available for review. The prevalence of peroneal tendon displacement was noted and its associations with fracture classification and heel width were evaluated. Peroneal tendon displacement was identified in 118 (28.0%) of the 421 calcaneal fracture cases. The presence of tendon displacement was significantly associated with joint-depression fractures compared with tongue-type fractures (p displacement had been identified in the radiology reports. Although sixty-five (55.1%) of the fractures with tendon displacement had been treated with internal fixation, the tendon displacement was treated surgically in only seven (10.8%) of these cases. Analysis of CT images showed a 28% prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures. Surgeons and radiologists are encouraged to consider this association.

  7. Early micromovement of the Articular Surface Replacement (ASR) femoral component

    DEFF Research Database (Denmark)

    Penny, J O; Ding, M; Varmarken, J E

    2012-01-01

    Radiostereometric analysis (RSA) can detect early micromovement in unstable implant designs which are likely subsequently to have a high failure rate. In 2010, the Articular Surface Replacement (ASR) was withdrawn because of a high failure rate. In 19 ASR femoral components, the mean micromovement...

  8. Experimental articular cartilage repair in the Göttingen minipig

    DEFF Research Database (Denmark)

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke

    2015-01-01

    BACKGROUND: A gold standard treatment for articular cartilage injuries is yet to be found, and a cost-effective and predictable large animal model is needed to bridge the gap between in vitro studies and clinical studies. Ideally, the animal model should allow for testing of clinically relevant...

  9. Intra-articular lipoma causing snapping in the patellofemoral joint

    International Nuclear Information System (INIS)

    Yilmaz, E.; Karakurt, L.; Yildirim, H.; Ozercan, R.

    2007-01-01

    Intra-articular lipoma is an exceedingly rare diagnosis. We identified a lipoma that was seated in the retropatellar are and caused snapping of the patella during flexion of the knee joint. The tumor was easily and totally excised under arthroscopic guidance after the thin pedicle was cut. (author)

  10. Clinical outcome scoring of intra-articular calcaneal fractures

    NARCIS (Netherlands)

    Schepers, Tim; Heetveld, Martin J.; Mulder, Paul G. H.; Patka, Peter

    2008-01-01

    Outcome reporting of intra-articular calcaneal fractures is inconsistent. This study aimed to identify the most cited outcome scores in the literature and to analyze their reliability and validity. A systematic literature search identified 34 different outcome scores. The most cited outcome score

  11. Clinical Outcome Scoring of Intra-articular Calcaneal Fractures

    NARCIS (Netherlands)

    T. Schepers (Tim); M.J. Heetveld (Martin); P.G.H. Mulder (Paul); P. Patka (Peter)

    2008-01-01

    textabstractOutcome reporting of intra-articular calcaneal fractures is inconsistent. This study aimed to identify the most cited outcome scores in the literature and to analyze their reliability and validity. A systematic literature search identified 34 different outcome scores. The most cited

  12. Clinical and Laboratory Predictors of Articular Disorders Among HIV ...

    African Journals Online (AJOL)

    radiologist for features of avascular necrosis (AVN) and sacroiliitis, respectively. Synovial fluid was obtained, for analysis and microscopy, culture/sensitivity testing and acid fast bacilli detection in those with demonstrable joint effusion. The clinically evident articular features, laboratory, and radiographic findings were used ...

  13. Automatic quantification of local and global articular cartilage surface curvature

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2008-01-01

    The objective of this study was to quantitatively assess the surface curvature of the articular cartilage from low-field magnetic resonance imaging (MRI) data, and to investigate its role in populations with varying radiographic signs of osteoarthritis (OA), cross-sectionally and longitudinally...

  14. Intra-articular osteotomy for distal humerus malunion

    NARCIS (Netherlands)

    Marti, René K.; Doornberg, Job

    2009-01-01

    Intra-articular osteotomy is considered in the rare case of malunion after a fracture of the distal humerus to restore humeral alignment and gain a functional arc of elbow motion. Traumatic and iatrogenic disruption of the limited blood flow to the distal end of the humerus resulting in avascular

  15. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Shohei Ichimaru

    2016-06-01

    Full Text Available Hyaluronic acid (HA is used clinically to treat osteoarthritis (OA, but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR, Western blotting, and dimethylmethylene blue (DMMB assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α. These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses.

  16. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.

    Science.gov (United States)

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-06-25

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses.

  17. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

    Science.gov (United States)

    Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.

    2014-01-01

    Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580

  18. Extra-Articular Manifestations of Seronegative and Seropositive Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Vjollca Sahatçiu-Meka

    2010-02-01

    Full Text Available Although considered a “joint disease,” rheumatoid arthritis is associated with the involvement of extra-articular manifestations. The aim of the study is the investigation and comparison of frequency and type of extra-articular manifestations in a well defined community based cohort of patients with seropositive and seronegative rheumatoid arthritis. Using the ACR (1987 criteria for rheumatoid arthritis, patients have been classified into the 2nd and 3rd functional class (ARA. The studied group consisted of 125 seronegative patients with titters lower than 1:64 as defined by Rose-Waaler test, whereas the control group consisted of 125 seropositive patients with titters of 1:64 or higher. All patients were between 25-60 years of age (Xb=49,96, with disease duration between 1-27 years (Xb=6,41. In order to present the findings of the study, the structure, prevalence, arithmetic mean (Xb, standard deviation (SB, variation quotient (QV% and variation interval (Rmax-Rmin have been used. Probability level has been expressed by p<0,01 and p<0,05. Correlation between the number of extra-articular manifestations and duration of the disease has been calculated by means of Pearson linear correlation. Higher presence of diffuse lung fibrosis, central and peripheral nervous system damages have been confirmed in the seropositive group, and osteoporosis in the seronegative; however, no statistical difference has been found. In extra-articular manifestations, “rheumatoid core” in the seropositive subset (χ2=4,80, p<0,05 presented significant statistical difference. Rheumatoid nodules were more frequent in seropositive subset (12%:16%, in both sexes; however, they were not of significant statistical difference. Neuropathy and lung diseases were also frequently present in seropositive group, but no statistical difference has been found regarding the statistical difference. Longer duration of the disease resulted in an increase of the number of extra-articular

  19. Extra-articular manifestations of seronegative and seropositive rheumatoid arthritis.

    Science.gov (United States)

    Sahatciu-Meka, Vjollca; Rexhepi, Sylejman; Manxhuka-Kerliu, Suzana; Rexhepi, Mjellma

    2010-02-01

    Although considered a "joint disease," rheumatoid arthritis is associated with the involvement of extra-articular manifestations. The aim of the study is the investigation and comparison of frequency and type of extra-articular manifestations in a well defined community based cohort of patients with seropositive and seronegative rheumatoid arthritis. Using the ACR (1987) criteria for rheumatoid arthritis, patients have been classified into the 2nd and 3rd functional class (ARA). The studied group consisted of 125 seronegative patients with titters lower than 1:64 as defined by Rose-Waaler test, whereas the control group consisted of 125 seropositive patients with titters of 1:64 or higher. All patients were between 25-60 years of age (Xb=49,96), with disease duration between 1-27 years (Xb=6,41). In order to present the findings of the study, the structure, prevalence, arithmetic mean (Xb), standard deviation (SB), variation quotient (QV%) and variation interval (Rmax-Rmin) have been used. Probability level has been expressed by p<0,01 and p<0,05. Correlation between the number of extra-articular manifestations and duration of the disease has been calculated by means of Pearson linear correlation. Higher presence of diffuse lung fibrosis, central and peripheral nervous system damages have been confirmed in the seropositive group, and osteoporosis in the seronegative; however, no statistical difference has been found. In extra-articular manifestations, "rheumatoid core" in the seropositive subset (chi2=4,80, p<0,05) presented significant statistical difference. Rheumatoid nodules were more frequent in seropositive subset (12%:16%), in both sexes; however, they were not of significant statistical difference. Neuropathy and lung diseases were also frequently present in seropositive group, but no statistical difference has been found regarding the statistical difference. Longer duration of the disease resulted in an increase of the number of extra-articular

  20. Matrix development in self-assembly of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Gidon Ofek

    2008-07-01

    Full Text Available Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan. Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is

  1. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material.

    Science.gov (United States)

    Cao, Lei; Wu, Xiaofeng; Wang, Qiugen; Wang, Jiandong

    2018-01-01

    The development and design of polymeric hydrogels for articular cartilage tissue engineering have been a vital biomedical research for recent days. Organic/inorganic combined hydrogels with improved surface activity have shown potential for the repair and regeneration of hard tissues, but have not been broadly studied for articular cartilage tissue engineering applications. In this work, bi-polymeric hydrogel composite was designed with the incorporation some quantities of stick-like TiO 2 nanostructures for favorable surface behavior and enhancement of osteoblast adhesions. The microscopic investigations clearly exhibited that the stick-like TiO 2 nanostructured materials are highly inserted into the PVA/PVP bi-polymeric matrix, due to the long-chain PVA molecules are promoted to physical crosslinking density in hydrogel network. The results of improved surface topography of hydrogel matrixes show that more flatted cell morphologies and enhanced osteoblast attachment on the synthesized nanocomposites. The crystalline bone and stick-like TiO 2 nanocomposites significantly improved the bioactivity via lamellipodia and filopodia extension of osteoblast cells, due to its excellent intercellular connection and regulated cell responses. Consequently, these hydrogel has been enhanced the antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial pathogens. Hence it is concluded that these hydrogel nanocomposite with improved morphology, osteoblast behavior and bactericidal activity have highly potential candidates for articular cartilage tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation

    Directory of Open Access Journals (Sweden)

    Elizabeth E Manning

    2013-06-01

    Full Text Available Brain-derived neurotrophic factor (BDNF has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous mutant mice (HET has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and WT littermates were treated during young-adulthood with METH and, following a two-week break, prepulse inhibition (PPI was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioural endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behaviour. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the

  3. Construct Validation of a Program to Increase Use of Self-Regulation for Physical Activity among Overweight and Obese Adults with Type 2 Diabetes Mellitus

    Science.gov (United States)

    Petosa, R. Lingyak; Silfee, Valerie

    2016-01-01

    Background: Studies have revealed that overweight adults with type 2 diabetes have low rates of physical activity and are resistant to change. Purpose: The purpose of this study was to use construct validation of intervention methods to examine the impact of a 4-week behavioral intervention on the use of self-regulation skills for physical…

  4. Opposite effect of phencyclidine on activity-regulated cytoskeleton-associated protein (Arc) in juvenile and adult limbic rat brain regions

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    -regulated cytoskeleton-associated protein (Arc) and parvalbumin mRNA expression in juvenile and adult rats. Arc is a marker for excitatory neurotransmission. Parvalbumin is a marker for GABAergic neurotransmission, known to be reduced in postmortem brains of schizophrenics. PCP reduced parvalbumin mRNA expression...

  5. Modelling self-efficacy, self-regulation, self-directed learning and career processes of adult professionals and relations with learning outcomes and labour market success

    NARCIS (Netherlands)

    Bijker, Monique; Van der Klink, Marcel; Boshuizen, Els

    2010-01-01

    Bijker, M. M., Van der Klink, M. R., & Boshuizen, H. P. A. (2010, 25-27 August). Modelling self-efficacy, self-regulation, self-directed learning and career processes of adult professionals and relations with learning outcomes and labour market success. Paper presented at the 5th EARLI-SIG14

  6. Molecular modulation of articular cartilage degradation

    NARCIS (Netherlands)

    Landman, Ellie

    2013-01-01

    Cartilage homeostasis is maintained due to a balance between anabolic and catabolic processes, that are regulated by a complex network of signaling pathways. Disturbance of one or more of these pathways disrupts this balance, resulting in excessive breakdown of the extracellular matrix and

  7. Effect of retinoic acid on proteoglycan turnover in bovine articular cartilage cultures

    International Nuclear Information System (INIS)

    Campbell, M.A.; Handley, C.J.

    1987-01-01

    This paper describes proteoglycan catabolism by adult bovine articular cartilage treated with retinoic acid as a means of stimulating the loss of this macromolecule from the extracellular matrix of cartilage. Addition of retinoic acid (10(-12)-10(-6) M) to adult bovine articular cartilage which had been labeled with [ 35 S]sulfate for 6 h after 5 days in culture, resulted in a dose-dependent increase in the rate of loss of 35 S-labeled proteoglycans from the matrix of the tissue. Concomitant with this loss was a decrease in the proteoglycan content of the tissue. Incubation of cultures treated with 1 microM retinoic acid, at 4 degrees C, or with 0.5 mM cycloheximide, resulted in a significant decrease in the rate of retinoic acid-induced loss of proteoglycans and demonstrated cellular involvement in this process. Analysis of the 35 S-labeled proteoglycans remaining in the matrix showed that the percentage of radioactivity associated with the small proteoglycan species extracted from the matrix of articular cartilage explants labeled with [ 35 S]sulfate after 5 days in culture was 15% and this increased to 22% in tissue maintained in medium alone. In tissue treated with 1 microM retinoic acid for 6 days, the percentage of radioactivity associated with the small proteoglycan was 58%. Approximately 93% of the 35 S-labeled proteoglycans released into the medium of control and retinoic acid-treated cultures was recovered in high density fractions after CsCl gradient centrifugation and eluted on Sepharose CL-2B as a broad peak with a Kav of 0.30-0.37. Less than 17% of these proteoglycans was capable of aggregating with hyaluronate. These results indicate that in both control and retinoic acid-treated cultures the larger proteoglycan species is lost to the medium at a greater rate than the small proteoglycan species. The effect of retinoic acid on proteoglycan turnover was shown to be reversible

  8. Manifestações articulares nas viroses exantemáticas Joint complaints in exanthematic diseases

    Directory of Open Access Journals (Sweden)

    Solange Artimos de Oliveira

    1999-04-01

    Full Text Available A freqüência de manifestações articulares foi avaliada em 251 pacientes com diagnóstico clínico e laboratorial (detecção de IgM por ensaio imunoenzimático de virose exantemática. As artropatias (artralgia e/ou artrite foram mais observadas nos casos de dengue (49% e de rubéola (38,2% do que naqueles com parvovirose humana (30% e sarampo (28,1%. Com exceção do sarampo, as artropatias predominaram nos adultos (315 anos de idade, sendo tal diferença estatisticamente significativa. A ocorrência maior de artropatias em adultos foi mais evidente nos pacientes com parvovirose (75%, rubéola (65% e dengue (57,7% do que naqueles com sarampo (31%. As queixas articulares também predominaram nos pacientes do sexo feminino para todas as viroses avaliadas. Os resultados encontrados demonstram o freqüente acometimento articular nas doenças estudadas, e indicam a necessidade de comprovação laboratorial para o diagnóstico diferencial entre elas.The frequency of arthropathy was evaluated in 251 patients with clinical and serological diagnosis (specific IgM detection by enzyme immunoassay of exanthematic disease. Arthropathy (arthralgia and/or arthritis was more frequent in dengue fever (49% and rubella (38.2% cases than in human parvovirus (30% and measles (28.1% cases. Except for measles cases, joint complaints prevailed in adults (315 years of age and this difference was significant. The higher frequency of arthropathy in adults was more evident in human parvovirus (75%, rubella (65% and dengue fever (57.7% cases than in measles cases (31%. Arthropathy was also more frequent in females for all rash diseases studied. The results of this study showed the high occurrence of joint complaints in the diseases described here and the importance of laboratory confirmation for their differential diagnosis.

  9. THE PELVIS, ARTICULAR INTERFACE BETWEEN VERTEBRAL COLUMN AND LOWER LIMBS. ANALYSIS BY THE SOFTWARE DE-VISU

    OpenAIRE

    Tardieu , Christine; Hecquet , Jérome; Barrau , Anne; Loridon , Philippe; Boulay , Christophe; Legaye , Jean; Carlier , Robert; Marty , Catherine; Duval-Beaupière , Geneviève

    2006-01-01

    We analyzed 51 adult pelvis (25 women, 26 men) by the software DE-VISU conceived by one of us, J. Hecquet. It allows the description of the pelvis as the keystone of the articular system linking vertebral column, pelvis and lower limbs. The variations of the sagittal pelvic parameter, “angle of incidence” (mean 54°), are mainly responsible of individual variation in sagittal spine curves. The extreme values of incidence (32°-76°) correspond to pathological situations. This angle was discovere...

  10. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    Science.gov (United States)

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA

    Directory of Open Access Journals (Sweden)

    Jakob Naranda

    2017-03-01

    Full Text Available Background Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. Methods Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2, collagen 1 (COL1 and aggrecan (ACAN was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. Results Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. Discussion In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a

  12. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage.

    Science.gov (United States)

    Han, EunHee; Chen, Silvia S; Klisch, Stephen M; Sah, Robert L

    2011-08-17

    The negatively charged proteoglycans (PG) provide compressive resistance to articular cartilage by means of their fixed charge density (FCD) and high osmotic pressure (π(PG)), and the collagen network (CN) provides the restraining forces to counterbalance π(PG). Our objectives in this work were to: 1), account for collagen intrafibrillar water when transforming biochemical measurements into a FCD-π(PG) relationship; 2), compute π(PG) and CN contributions to the compressive behavior of full-thickness cartilage during bovine growth (fetal, calf, and adult) and human adult aging (young and old); and 3), predict the effect of depth from the articular surface on π(PG) in human aging. Extrafibrillar FCD (FCD(EF)) and π(PG) increased with bovine growth due to an increase in CN concentration, whereas PG concentration was steady. This maturation-related increase was amplified by compression. With normal human aging, FCD(EF) and π(PG) decreased. The π(PG)-values were close to equilibrium stress (σ(EQ)) in all bovine and young human cartilage, but were only approximately half of σ(EQ) in old human cartilage. Depth-related variations in the strain, FCD(EF), π(PG), and CN stress profiles in human cartilage suggested a functional deterioration of the superficial layer with aging. These results suggest the utility of the FCD-π(PG) relationship for elucidating the contribution of matrix macromolecules to the biomechanical properties of cartilage. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation.

    Science.gov (United States)

    Sun, Jiaqi; Bonaguidi, Michael A; Jun, Heechul; Guo, Junjie U; Sun, Gerald J; Will, Brett; Yang, Zhengang; Jang, Mi-Hyeon; Song, Hongjun; Ming, Guo-li; Christian, Kimberly M

    2015-09-04

    A converging body of evidence indicates that levels of adult hippocampal neurogenesis vary along the septo-temporal axis of the dentate gyrus, but the molecular mechanisms underlying this regional heterogeneity are not known. We previously identified a niche mechanism regulating proliferation and neuronal development in the adult mouse dentate gyrus resulting from the activity-regulated expression of secreted frizzled-related protein 3 (sfrp3) by mature neurons, which suppresses activation of radial glia-like neural stem cells (RGLs) through inhibition of Wingless/INT (WNT) protein signaling. Here, we show that activation rates within the quiescent RGL population decrease gradually along the septo-temporal axis in the adult mouse dentate gyrus, as defined by MCM2 expression in RGLs. Using in situ hybridization and quantitative real-time PCR, we identified an inverse septal-to-temporal increase in the expression of sfrp3 that emerges during postnatal development. Elimination of sfrp3 and its molecular gradient leads to increased RGL activation, preferentially in the temporal region of the adult dentate gyrus. Our study identifies a niche mechanism that contributes to the graded distribution of neurogenesis in the adult dentate gyrus and has important implications for understanding functional differences associated with adult hippocampal neurogenesis along the septo-temporal axis.

  14. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    Science.gov (United States)

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Transforming growth factor β-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton.

    Science.gov (United States)

    McNary, Sean M; Athanasiou, Kyriacos A; Reddi, A Hari

    2014-03-01

    The phenotype of articular chondrocytes is dependent on the cytoskeleton, specifically the actin microfilament architecture. Articular chondrocytes in monolayer culture undergo dedifferentiation and assume a fibroblastic phenotype. This process can be reversed by altering the actin cytoskeleton by treatment with cytochalasin. Whereas dedifferentiation has been studied on chondrocytes isolated from the whole cartilage, the effects of cytoskeletal alteration on specific zones of cells such as superficial zone chondrocytes are not known. Chondrocytes from the superficial zone secrete superficial zone protein (SZP), a lubricating proteoglycan that reduces the coefficient of friction of articular cartilage. A better understanding of this phenomenon may be useful in elucidating chondrocyte dedifferentiation in monolayer and accumulation of the cartilage lubricant SZP, with an eye toward tissue engineering functional articular cartilage. In this investigation, the effects of cytoskeletal modulation on the ability of superficial zone chondrocytes to secrete SZP were examined. Primary superficial zone chondrocytes were cultured in monolayer and treated with a combination of cytoskeleton modifying reagents and transforming growth factor β (TGFβ) 1, a critical regulator of SZP production. Whereas cytochalasin D maintains the articular chondrocyte phenotype, the hallmark of the superficial zone chondrocyte, SZP, was inhibited in the presence of TGFβ1. A decrease in TGFβ1-induced SZP accumulation was also observed when the microtubule cytoskeleton was modified using paclitaxel. These effects of actin and microtubule alteration were confirmed through the application of jasplakinolide and colchicine, respectively. As Rho GTPases regulate actin organization and microtubule polymerization, we hypothesized that the cytoskeleton is critical for TGFβ-induced SZP accumulation. TGFβ-mediated SZP accumulation was inhibited by small molecule inhibitors ML141 (Cdc42), NSC23766 (Rac1

  16. Do personality traits related to affect regulation predict other tobacco product use among young adult non-daily smokers?

    Science.gov (United States)

    Brikmanis, Kristin; Petersen, Angela; Doran, Neal

    2017-12-01

    Understanding factors that influence non-cigarette tobacco use is important given these products' prevalence and health risks. The goal of this study was to test the hypothesis that personality traits related to affect regulation would be associated with greater frequency of other tobacco product (OTP) use in a sample of young adult non-daily smokers. Participants (n=518, 51% male) aged 18-24 were non-daily cigarette smokers recruited from the community for a longitudinal study of tobacco use. Personality characteristics (impulsivity, anhedonia, and negative affectivity) were measured at baseline, and participants reported recent tobacco use at baseline and 3, 6, and 9months later. Assessments were conducted online or via mobile phone. Across the 4 assessments, 33-52% of participants reported recent OTP use, with frequency of use decreasing over time. Longitudinal negative binomial regression models indicated that greater sensation seeking and lack of premeditation were associated with more frequent OTP use (psnon-daily cigarette smokers with greater propensity for immediately rewarding behaviors may use OTPs more frequently. Young, non-daily cigarette smokers with high levels of sensation seeking and/or lack of premeditation may be at increased risk for harms related to OTP use and may benefit from prevention and cessation strategies that specifically address affect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthetic Cannabis Overdose and Withdrawal in a Young Adult: A Case Report, Commentary on Regulation, and Review of the Literature

    Directory of Open Access Journals (Sweden)

    John Samaan

    2016-01-01

    Full Text Available Introduction. Marijuana has been used for its psychotropic effects including enhanced relaxation and perceptual alterations. However, the use of synthetic marijuana (SM leads to more frequent and drastic side effects than the typical use of regular marijuana, owing to the fact that SM has a shorter duration and an earlier peak of action. Despite all the potential adverse health effects associated with SM use, current health policies on SM are very limited. It is believed that the popularity of SM has increased, due to its easy accessibility in the US and lack of detection in typical urine drug screens for THC. Case Report. One case presented is of a young adult patient, with histories of recurrent synthetic cannabis and recreational cannabis use, who had developed drastic physiological and psychiatric symptoms, including the development of acute-onset psychosis. Conclusion/Discussion. This case, as many others nationwide, exemplifies the impact of synthetic cannabinoid use and abuse in adolescents. Side effects and adverse health consequences of synthetic cannabinoid use warrant stricter regulations and policies in order to decrease psychiatric hospital admissions and associated healthcare costs.

  18. Synthetic Cannabis Overdose and Withdrawal in a Young Adult: A Case Report, Commentary on Regulation, and Review of the Literature.

    Science.gov (United States)

    Samaan, John; Ferrer, Gerardo F; Akinyemi, Boye; Junquera, Patricia; Oms, Juan; Dumenigo, Rhaisa

    2016-01-01

    Introduction . Marijuana has been used for its psychotropic effects including enhanced relaxation and perceptual alterations. However, the use of synthetic marijuana (SM) leads to more frequent and drastic side effects than the typical use of regular marijuana, owing to the fact that SM has a shorter duration and an earlier peak of action. Despite all the potential adverse health effects associated with SM use, current health policies on SM are very limited. It is believed that the popularity of SM has increased, due to its easy accessibility in the US and lack of detection in typical urine drug screens for THC. Case Report . One case presented is of a young adult patient, with histories of recurrent synthetic cannabis and recreational cannabis use, who had developed drastic physiological and psychiatric symptoms, including the development of acute-onset psychosis. Conclusion/Discussion . This case, as many others nationwide, exemplifies the impact of synthetic cannabinoid use and abuse in adolescents. Side effects and adverse health consequences of synthetic cannabinoid use warrant stricter regulations and policies in order to decrease psychiatric hospital admissions and associated healthcare costs.

  19. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression.

    Science.gov (United States)

    Collins, Steven J; Tumpach, Carolin; Groveman, Bradley R; Drew, Simon C; Haigh, Cathryn L

    2018-03-24

    Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.

  20. Gene Modification of Mesenchymal Stem Cells and Articular Chondrocytes to Enhance Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Saliya Gurusinghe

    2014-01-01

    Full Text Available Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.

  1. Segmenting articular cartilage automatically using a voxel classification approach

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan...... reproducibility of the volume and area estimates. Training and evaluation of the method is performed on a data set consisting of 139 scans of knees with a status ranging from healthy to severely osteoarthritic. This is, to our knowledge, the only fully automatic cartilage segmentation method that has good...... agreement with manual segmentations, an interscan reproducibility as good as that of a human expert, and enables the separation between healthy and osteoarthritic populations. While high-field scanners offer high-quality imaging from which the articular cartilage have been evaluated extensively using manual...

  2. Chondroitin sulfate reduces the friction coefficient of articular cartilage.

    Science.gov (United States)

    Basalo, Ines M; Chahine, Nadeen O; Kaplun, Michael; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2007-01-01

    The objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS. In Experiment 1, bovine articular cartilage samples (n=29) were tested in either phosphate buffered saline (PBS) or in PBS containing 100mg/ml of CS following 48h incubation in PBS or in PBS+100mg/ml CS (control specimens were not subjected to any incubation). In Experiment 2, samples (n=23) were tested in four different solutions: PBS, PBS+100mg/ml CS, and PBS+polyethylene glycol (PEG) (133 or 170mg/ml). In Experiment 3, samples (n=18) were tested in three solutions of CS (0, 10 and 100mg/ml). Frictional tests (cartilage-on-glass) were performed under constant stress (0.5MPa) for 3600s and the time-dependent friction coefficient was measured. Samples incubated or tested in a 100mg/ml CS solution exhibited a significantly lower equilibrium friction coefficient than the respective PBS control. PEG solutions delayed the rise in the friction coefficient relative to the PBS control, but did not reduce the equilibrium value. Testing in PBS+10mg/ml of CS did not cause any significant decrease in the friction coefficient. In conclusion, CS at a concentration of 100mg/ml significantly reduces the friction coefficient of bovine articular cartilage and this mechanism is neither mediated by viscosity nor osmolarity. These results suggest that direct injection of CS into the joint may provide beneficial tribological effects.

  3. Repair and tissue engineering techniques for articular cartilage

    OpenAIRE

    Makris, Eleftherios A.; Gomoll, Andreas H.; Malizos, Konstantinos N.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable s...

  4. Effect of donor age on DNA repair by articular chondrocytes

    International Nuclear Information System (INIS)

    Lipman, J.M.

    1986-01-01

    The hypothesis that aging of articular chondrocytes at a cellular level results from loss of DNA repair capability was studied by two different measures: unscheduled DNA synthesis (UDS) and O 6 -methylguanine acceptor protein (MGAP) activity. UDS following damage by 254 nm ultraviolet irradiation (20J/m 2 ) was examined in intact articular cartilage from rabbits of different ages. Semiconservative DNA synthesis was suppressed with hydroxurea and repair followed by the incorporation of [ 3 H]-thymidine ([ 3 H]-dThd). After repair the cartilage was digested in proteinase K (0.5mg/ml) with dodecyl sodium sulfate (0.2%) and DNA determined with Hoechst 33258 dye. UDS (dpm [ 3 H]-dThd/μg DNA) was greater in articular cartilage from 3- than 39-month-old rabbits. MGAP was studied in cell extracts of cultured human and rabbit chondrocytes by transfer of [ 3 H] O 6 -methyl groups from exogenous DNA to protein. It was significantly less in rabbit than in human cells on a per protein or DNA basis. There was no decline in this activity in human chondrocytes from newborn to 60 years of age; and rabbits from 3- to 36-months-old. The data indicate that in the two different repair mechanisms, age differences are found with resting but not dividing chondrocytes

  5. Sonographic evaluation of femoral articular cartilage in the knee

    International Nuclear Information System (INIS)

    Hong, Sung Hwan; Kong Keun Young; Chung, Hye Won; Choi, Young Ho; Song, Yeong Wook; Kang, Heung Sik

    2000-01-01

    To investigate the usefulness of sonography for the evaluation of osteoarthritic articular cartilage. Ten asymptomatic volunteers and 20 patients with osteoarthritis of the knee underwent sonographic evaluation. For this, the knee was maintained of full flexion in order to expose the deep portion of femoral condylar cartilage. Both transverse and longitudinal scans were obtained in standardized planes. Sonographic images of the articular cartilages were analyzed in terms of surface sharpness, echogenicity and thickness, along with associated bone changes. Normal cartilages showed a clearly-defined surface, homogeneously low echogenicity and regular thickness. Among 20 patients, the findings for medial and lateral condyles, respectively, were as follows: poorly defined cartilage surface, 16 (80%) and ten (50%); increased echogenicity of cartilage, 17 (85%) and 16 (80%); cartilage thinning, 16 (80%) and 14 (70%) (two medial condyles demonstrated obvious cartilage thickening); the presence of thick subchondral hyperechoic bands, five (25%) and four (20%); the presence of osteophytes, 13 (65%) and 12 (60%). Sonography is a convenient and accurate modality for the evaluation of femoral articular cartilage. In particular, it can be useful for detecting early degenerative cartilaginous change and for studying such change during clinical follow-up. (author)

  6. Solute transport across the articular surface of injured cartilage.

    Science.gov (United States)

    Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M

    2013-07-15

    Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Repair and tissue engineering techniques for articular cartilage.

    Science.gov (United States)

    Makris, Eleftherios A; Gomoll, Andreas H; Malizos, Konstantinos N; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-01-01

    Chondral and osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis, eventually leading to progressive total joint destruction. Although current progress suggests that biologic agents can delay the advancement of deterioration, such drugs are incapable of promoting tissue restoration. The limited ability of articular cartilage to regenerate renders joint arthroplasty an unavoidable surgical intervention. This Review describes current, widely used clinical repair techniques for resurfacing articular cartilage defects; short-term and long-term clinical outcomes of these techniques are discussed. Also reviewed is a developmental pipeline of acellular and cellular regenerative products and techniques that could revolutionize joint care over the next decade by promoting the development of functional articular cartilage. Acellular products typically consist of collagen or hyaluronic-acid-based materials, whereas cellular techniques use either primary cells or stem cells, with or without scaffolds. Central to these efforts is the prominent role that tissue engineering has in translating biological technology into clinical products; therefore, concomitant regulatory processes are also discussed.

  8. A vision on the future of articular cartilage repair

    Directory of Open Access Journals (Sweden)

    M Cucchiarini

    2014-05-01

    Full Text Available An AO Foundation (Davos, Switzerland sponsored workshop "Cell Therapy in Cartilage Repair" from the Symposium "Where Science meets Clinics" (September 5-7, 2013, Davos gathered leaders from medicine, science, industry, and regulatory organisations to debate the vision of cell therapy in articular cartilage repair and the measures that could be taken to narrow the gap between vision and current practice. Cell-based therapy is already in clinical use to enhance the repair of cartilage lesions, with procedures such as microfracture and articular chondrocyte implantation. However, even though long term follow up is good from a clinical perspective and some of the most rigorous randomised controlled trials in the regenerative medicine/orthopaedics field show beneficial effect, none of these options have proved successful in restoring the original articular cartilage structure and functionality in patients so far. With the remarkable recent advances in experimental research in cell biology (new sources for chondrocytes, stem cells, molecular biology (growth factors, genes, biomaterials, biomechanics, and translational science, a combined effort between scientists and clinicians with broad expertise may allow development of an improved cell therapy for cartilage repair. This position paper describes the current state of the art in the field to help define a procedure adapted to the clinical situation for upcoming translation in the patient.

  9. MRI diagnosis of reverse and separation of meniscus articular capsule

    International Nuclear Information System (INIS)

    Tang Xiaofeng; Zhou Chengtao; Mu Renqi; Zhang Guanghui; Xu Yongzhong

    2005-01-01

    Objective: To explore the MR imaging of reverse and separation of meniscal articular capsule. Methods: MR imaging of reverse and separation of meniscus articular capsule confirmed by surgery and arthroscope were analyzed retrospectively in 8 cases. Results: The 'Butterfly knot sign' disappeared and was replaced with fluid signal on the sagittal slice of meniscal body in 8 cases. Part of back angle remained in 3 cases. 'Double anterior cruciate ligament sign' was showed on one side of middle sagittal slice in 7 cases. 'Reverse meniscus sign' was revealed in intercondylar fossa on the coronary view in 8 cases. Abnormal high signal was showed in the injured meniscus in 6 cases. Abnormal high signal was detected in the opposite meniscus in 5 cases. Conclusion: The MR findings of reverse and separation of meniscus articular capsule include disappearance of 'butterfly knot sign', appearance of 'reverse meniscus sign' and 'double anterior cruciate ligament sign'. The diagnosis would be established if the former 2 signs were present or all the 3 signs were present simultaneously. (authors)

  10. Emotion regulation difficulties in disordered eating: Examining the psychometric properties of the Difficulties in Emotion Regulation Scale among Spanish adults and its interrelations with personality and eating disorder severity

    Directory of Open Access Journals (Sweden)

    Ines eWolz

    2015-06-01

    Full Text Available Objective: The aims of the study were to 1 validate the Difficulties in Emotion Regulation Scale (DERS in a sample of Spanish adults with and without eating disorders, and 2 explore the role of emotion regulation difficulties in eating disorders, including its mediating role in the relation between key personality traits and ED severity Methods: 134 patients (121 female, mean age = 29 years with anorexia nervosa (n = 30, bulimia nervosa (n = 54, binge eating (n = 20, or Other Specified Feeding or Eating Disorders (n = 30 and 74 healthy control participants (51 female, mean age = 21 years reported on general psychopathology, eating disorder severity, personality traits and difficulties in emotion regulation. Exploratory and confirmatory factor analyses were conducted to examine the psychometrics of the DERS in this Spanish sample (Aim 1. Additionally, to examine the role of emotion regulation difficulties in eating disorders (Aim 2, differences in emotion regulation difficulties across eating disorder subgroups were examined and structural equation modeling was used to explore the interrelations among emotion regulation, personality traits, and eating disorder severity. Results: Results support the validity and reliability of the DERS within this Spanish adult sample and suggest that this measure has a similar factor structure in this sample as in the original sample. Moreover, emotion regulation difficulties were found to differ as a function of eating disorder subtype and to mediate the relation between two specific personality traits (i.e., high harm avoidance and low self-directedness and eating disorder severity. Conclusions: Personality traits of high harm avoidance and low self-directedness may increase vulnerability to eating disorder pathology indirectly, through emotion regulation difficulties.

  11. Visualization of the extra-articular portion of the long head of the biceps tendon during intra-articular shoulder arthroscopy.

    Science.gov (United States)

    Festa, Anthony; Allert, Jesse; Issa, Kimona; Tasto, James P; Myer, Jonathan J

    2014-11-01

    To quantify the amount of the extra-articular long head of the biceps tendon (LHBT) seen during intra-articular shoulder arthroscopy by pulling the tendon into the joint with a probe through an anterior portal while viewing through a standard posterior portal. Intra-articular shoulder arthroscopy was performed on 10 forequarter cadaveric specimens. The extra-articular portion of the LHBT was evaluated by pulling the tendon into the joint with an arthroscopic probe inserted through an anterior portal. The tendon was marked at the pulley insertion on the humerus with a vascular clip before and after the tendon was pulled into the joint. An open deltopectoral approach was performed, and the amount of extra-articular tendon visualized was calculated as an absolute amount and in relation to nearby anatomic structures. An additional 1.9 cm (range, 1.4 to 2.6 cm) of extra-articular LHBT was viewed by pulling the tendon into the joint with an arthroscopic probe through an anterior portal during shoulder arthroscopy. This represented 30.8% of the extra-articular portion of the tendon, 47.7% of tendon in the bicipital groove, and 76.3% of the tendon that lies under the area from the pulley insertion to the distal edge of the transverse humeral ligament. During intra-articular shoulder arthroscopy, the extra-articular portion of the LHBT is incompletely visualized by pulling the tendon into the joint with a probe placed through an anterior portal while viewing through a standard posterior portal. An additional extra-articular portion of the LHBT may be viewed by pulling the tendon into the joint with an arthroscopic probe during shoulder arthroscopy. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells.

    Science.gov (United States)

    Cheng, Xiaoxin; Wang, Yaping; He, Qian; Qiu, Mengsheng; Whittemore, Scott R; Cao, Qilin

    2007-12-01

    Promotion of remyelination is an important therapeutic strategy for the treatment of the demyelinating neurological disorders. Adult oligodendrocyte precursor cells (OPCs), which normally reside quiescently in the adult central nervous system (CNS), become activated and proliferative after demyelinating lesions. However, the extent of endogenous remyelination is limited because of the failure of adult OPCs to mature into myelinating oligodendrocytes (OLs) in the demyelinated CNS. Understanding the molecular mechanisms that regulate the differentiation of adult OPCs could lead to new therapeutic strategies to treat these disorders. In this study, we established a stable culture of adult spinal cord OPCs and developed a reliable in vitro protocol to induce their sequential differentiation. Adult OPCs expressed bone morphogenetic protein (BMP) type Ia, Ib, and II receptor subunits, which are required for BMP signal transduction. BMP2 and 4 promoted dose-dependent astrocyte differentiation of adult OPCs with concurrent suppression of OL differentiation. Treatment of OPCs with BMP2 and 4 increased ID4 expression and decreased the expression of olig1 and olig2. Overexpression of olig1 or olig2 blocked the astrocyte differentiation of adult OPCs induced by BMP2 and 4. Furthermore, overexpression of both olig1 and olig2, but not olig1 or olig2 alone, rescued OL differentiation from inhibition by BMP2 and 4. Our results demonstrated that downregulation of olig1 and olig2 is an important mechanism by which BMP2 and 4 inhibit OL differentiation of adult OPCs. These data suggest that blocking BMP signaling combined with olig1/2 overexpression could be a useful therapeutic strategy to enhance endogenous remyelination and facilitate functional recovery in CNS demyelinated disorders. Disclosure of potential conflicts of interest is found at the end of this article.

  13. Primary cutaneous marginal zone lymphoma associated with juxta-articular fibrotic nodules in a teenager.

    Science.gov (United States)

    Ghatalia, Pooja; Porter, Joanne; Wroblewski, Danielle; Carlson, John Andrew

    2013-05-01

    Primary cutaneous marginal zone lymphoma (PCMZL) has rarely been reported in teenagers and is occasionally associated with Borrelia burgdorferi infection. Juxta-articular fibrotic nodules represent a unique, localized fibrosing response to spirochete infections, namely Borreliosis. Herein, we report a 15-year-old healthy boy who presented with a 4-year history of progressive acquisition of asymptomatic, erythematous nodules, ≤ 3 cm, beginning with his right forearm (3), then right arm (1) and lastly his right inner thigh (1). Biopsy showed PCMZL in three of five samples, and inflamed, fibrotic nodules, near the elbow in two. The bottom heavy lymphomatous nodules consisted of mostly small CD20+ CD43+ lymphocytes, some with plasmacytoid features. Mature plasma cells were lambda light chain restricted by in situ hybridization. The juxta-articular fibrotic nodules were located in the deep dermis and subcutis, had peripheral plasma cell-rich infiltrates, and showed nodular sclerosis (morphea profunda-like) in one, and lamellar and angiocentric sclerosis in the other reminiscent of quiescent lesions of chronic localized fibrosing leukocytoclastic vasculitis. Immunohistochemistry for B. burgdorferi revealed rare positive organisms; however, polymerase chain reaction (PCR) and serology were negative for B. burgdorferi as were serologic and/or PCR assays for Bartonella henselae, Ba. quintana, Ehrlichia chaffeensis, Treponema pallidum, Helicobacter pylori and Babesia microti. No evidence of extracutaneous disease was found by the review of systems and imaging studies. A 4-week trial of doxycycline therapy failed, whereas intralesional (IL) corticosteroid therapy induced rapid regression of his nodules. After two local recurrences, also treated with IL corticosteroids, he is well, without cutaneous disease, 20 months later. A literature review of 19 pediatric cases PCMZL reveals a similar natural history as adult PCMZL. Despite negative serology and PCR for B. burgdorferi

  14. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    Science.gov (United States)

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  15. Effect of a behavioral intervention on dimensions of self-regulation and physical activity among overweight and obese adults with type 2 diabetes: a pilot study.

    Science.gov (United States)

    Silfee, Valerie; Petosa, Rick; Laurent, Devin; Schaub, Timothy; Focht, Brian

    2016-09-01

    The purpose of this pilot study was to determine the preliminary effect of a behavioral intervention on the use of self-regulation strategies and moderate-to-vigorous physical activity (MVPA) in overweight and obese adults with type 2 diabetes. 23 individuals recruited from ResearchMatc.org and campus advertisements were randomized into an intervention (n = 12) and control (n = 11) group. The intervention group received a behavioral intervention that used goal setting, time management, and self-monitoring to target dimensions of self-regulation and MVPA. The control received information regarding their PA habits. MVPA was measured via BodyMedia Armbands at pre- and post-test. The use of self-regulatory strategies for MVPA was assessed at pretest and posttest using the Self-Regulation for Exercise Scale. Cohen's d effect sizes were calculated to determine the practical impact of the intervention. The intervention had a large effect on all dimensions of self-regulation across time: including total self-regulation (3.15), self-monitoring (4.63), goal setting (3.17), social support (1.29), self-reward (1.98), time management (4.41), and overcoming barriers (2.25). The intervention had no impact on dimensions of MVPA across time. This pilot study demonstrated the ability of a behavioral intervention to improve the use of self-regulation strategies for MVPA in a sample of adults with type 2 diabetes. These findings can further inform the development of health promotion programs to promote self-regulation. Future research should focus on determining ability of improvements in self-regulation to stimulate behavior change.

  16. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications.

    Science.gov (United States)

    Tsai, Henry P; Holliday, Casey M

    2015-06-01

    Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and

  17. Altered Stress-Induced Regulation of Genes in Monocytes in Adults with a History of Childhood Adversity.

    Science.gov (United States)

    Schwaiger, Marion; Grinberg, Marianna; Moser, Dirk; Zang, Johannes C S; Heinrichs, Markus; Hengstler, Jan G; Rahnenführer, Jörg; Cole, Steve; Kumsta, Robert

    2016-09-01

    Exposure to serious or traumatic events early in life can lead to persistent alterations in physiological stress response systems, including enhanced cross talk between the neuroendocrine and immune system. These programming effects may be mechanistically involved in mediating the effects of adverse childhood experience on disease risk in adulthood. We investigated hormonal and genome-wide mRNA expression responses in monocytes to acute stress exposure, in a sample of healthy adults (n=30) with a history of early childhood adversity, and a control group (n=30) without trauma experience. The early adversity group showed altered hypothalamus-pituitary-adrenal axis responses to stress, evidenced by lower ACTH and cortisol responses. Analyses of gene expression patterns showed that stress-responsive transcripts were enriched for genes involved in cytokine activity, cytokine-cytokine receptor interaction, chemokine activity, and G-protein coupled receptor binding. Differences between groups in stress-induced regulation of gene transcription were observed for genes involved in steroid binding, hormone activity, and G-protein coupled receptor binding. Transcription factor binding motif analysis showed an increased activity of pro-inflammatory upstream signaling in the early adversity group. We also identified transcripts that were differentially correlated with stress-induced cortisol increases between the groups, enriched for genes involved in cytokine-cytokine receptor interaction and glutamate receptor signaling. We suggest that childhood adversity leads to persistent alterations in transcriptional control of stress-responsive pathways, which-when chronically or repeatedly activated-might predispose individuals to stress-related psychopathology.

  18. Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus.

    Science.gov (United States)

    Smalheiser, Neil R; Lugli, Giovanni; Lenon, Angela L; Davis, John M; Torvik, Vetle I; Larson, John

    2010-02-26

    Adult male mice (strain C57Bl/6J) were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour) or pseudo-training (exposed to two odours with reward not contingent upon response). These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of approximately 40 min of training). The hippocampus was dissected bilaterally from each mouse (N = 7 in each group) and profiling of 585 miRNAs (microRNAs) was carried out using multiplex RT-PCR (reverse transcription-PCR) plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P = 0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor), CAMK2b (calcium/calmodulin-dependent protein kinase IIβ), CREB1 (cAMP-response-element-binding protein 1) and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila)-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  19. Olfactory Discrimination Training Up-Regulates and Reorganizes Expression of MicroRNAs in Adult Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2010-01-01

    Full Text Available Adult male mice (strain C57Bl/6J were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: Olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour or pseudo-training (exposed to two odours with reward not contingent upon response. These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of ~40 min of training. The hippocampus was dissected bilaterally from each mouse (N=7 in each group and profiling of 585 miRNAs (microRNAs was carried out using multiplex RT–PCR (reverse transcription–PCR plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P=0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor, CAMK2b (calcium/calmodulin-dependent protein kinase IIβ, CREB1 (cAMP-response-element-binding protein 1 and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  20. Driving self-regulation and ride service utilization in a multicommunity, multistate sample of U.S. older adults.

    Science.gov (United States)

    Bird, Donna C; Freund, Katherine; Fortinsky, Richard H; Staplin, Loren; West, Bethany A; Bergen, Gwen; Downs, Jonathan

    2017-04-03

    This study examined a multicommunity alternative transportation program available 24 hours a day, 7 days a week, for any purpose, offering door-through-door service in private automobiles to members who either do not drive or are transitioning away from driving. Specific aims were to describe the characteristics of members by driving status and ride service usage of these members. Data came from administrative records maintained by a nonprofit ride service program and include 2,661 individuals aged 65+ residing in 14 states who joined the program between April 1, 2010, and November 8, 2013. Latent class analysis was used to group current drivers into 3 classes of driving status of low, medium, and high self-regulation, based on their self-reported avoidance of certain driving situations and weekly driving frequency. Demographics and ride service use rate for rides taken through March 31, 2014, by type of ride (e.g., medical, social, etc.) were calculated for nondrivers and drivers in each driving status class. The majority of ride service users were female (77%) and aged 65-74 years (82%). The primary method of getting around when enrolling for the transportation service was by riding with a friend or family member (60%). Among the 67,883 rides given, nondrivers took the majority (69%) of rides. Medical rides were the most common, accounting for 40% of all rides. Reported ride usage suggests that older adults are willing to use such ride services for a variety of trips when these services are not limited to specific types (e.g., medical). Further research can help tailor strategies to encourage both nondrivers and drivers to make better use of alternative transportation that meets the special needs of older people.

  1. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    Science.gov (United States)

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  2. Self-regulation strategies of white young adult male students who grew up with emotionally absent fathers / Dirk Wouter Jacobus Ackermann

    OpenAIRE

    Ackermann, Dirk Wouter Jacobus

    2014-01-01

    Young men who grew up with emotionally absent fathers seem to find it difficult to attain equilibrium through dedication to both personal and relational concerns, probably because they tend to have low self-esteem, struggle to establish intimate relationships and may be at greater risk of engaging in antisocial or violent behaviour. The aim of this study was to explore the self-regulation strategies that white young adult male students employ to deal with the emotions and cognitions related t...

  3. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse

    Directory of Open Access Journals (Sweden)

    Masayuki Tanaka

    2016-07-01

    Full Text Available Thrombin-activated protease-activated receptor (PAR-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethylbenzenesulfonyl fluoride (AEBSF, which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.

  4. Comparison of hyaluronic acid and PRP intra-articular injection with combined intra-articular and intraosseous PRP injections to treat patients with knee osteoarthritis.

    Science.gov (United States)

    Su, Ke; Bai, Yuming; Wang, Jun; Zhang, Haisen; Liu, Hao; Ma, Shiyun

    2018-05-01

    The aim of this study was to evaluate the benefit provided by intraosseous infiltration combined with intra-articular injection of platelet-rich plasma to treat mild and moderate stages of knee joint degeneration (Kellgren-Lawrence score II-III) compared with other treatments, specifically intra-articular injection of PRP and of HA. Eighty-six patients with grade II to grade III knee OA according to the Kellgren-Lawrence classification were randomly assigned to intra-articular combined with intraosseous injection of PRP (group A), intra-articular PRP (group B), or intra-articular HA (group C). Patients in group A received intra-articular combined with intraosseous injection of PRP (administered twice, 2 weeks apart). Patients in group B received intra-articular injection of PRP every 14 days. Patients in group C received a series of five intra-articular injections of HA every 7 days. All patients were evaluated using the Visual Analogue Scale (VAS) and Western Ontario and McMaster Universities (WOMAC) score before the treatment and at 1, 3, 6, 12, and 18 months after treatment. There were significant improvements at the end of the 1st month. Notably, group A patients had significantly superior VAS and WOMAC scores than were observed in groups B and C. The VAS scores were similar in groups B and group C after the 6th month. Regarding the WOMAC scores, groups B and C differed at the 1st, 3rd, 6th, and 12th months; however, no significant difference was observed at the 18th month. The combination of intraosseous with intra-articular injections of PRP resulted in a significantly superior clinical outcome, with sustained lower VAS and WOMAC scores and improvement in quality of life within 18 months.

  5. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage.

    Science.gov (United States)

    Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A

    2016-11-01

    Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation

    Science.gov (United States)

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation. PMID:26098911

  7. Impact of a brief intervention on self-regulation, self-efficacy and physical activity in older adults with type 2 diabetes

    Science.gov (United States)

    Olson, Erin A.; McAuley, Edward

    2015-01-01

    Despite evidence of the benefits of physical activity, most individuals with type 2 diabetes do not meet physical activity recommendations. The purpose of this study was to test the efficacy of a brief intervention targeting self-efficacy and self-regulation to increase physical activity in older adults with type 2 diabetes. Older adults (Mage = 61.8 ± 6.4) with type 2 diabetes or metabolic syndrome were randomized into a titrated physical activity intervention (n = 58) or an online health education course (n = 58). The intervention included walking exercise and theory-based group workshops. Self-efficacy, self-regulation and physical activity were assessed at baseline, post-intervention, and a follow-up. Results indicated a group by time effect for self-regulation [F(2,88) = 14.021, p self-efficacy [F(12,77) = 2.322, p self-efficacy and self-regulation. Future research warrants adjusting intervention strategies to increase long-term change. PMID:26162648

  8. The relationship between adult attachment orientation and child self-regulation in eating: The mediating role of persuasive-controlling feeding practices.

    Science.gov (United States)

    Powell, Elisabeth M; Frankel, Leslie A; Umemura, Tomo; Hazen, Nancy

    2017-08-01

    The present study examines the hypothesis that adult attachment orientation, specifically anxious attachment, is related to children's diminished ability to self-regulate their food intake, and that this relationship is mediated by parents' persuasive-controlling feeding practices. Two hundred and sixty five mothers and fathers of preschool children completed online questionnaires that included measures of Adult Attachment Orientation, Parental Persuasive-Controlling Feeding Practices, and Child Self-Regulation of Eating. Structural equation modeling revealed a significant relationship between parental anxious attachment and child self-regulatory abilities, which was fully mediated by parental persuasive-controlling feeding. Also as predicted, parents' avoidant attachment was found to be unrelated to persuasive-controlling feeding and child self-regulated eating. Findings suggest that parents with an anxious attachment orientation may be more likely than other parents to try to use persuasive techniques to control their children's food intake, which may impair children's ability to regulate their food intake, increasing their obesity risk. Implications for intervention are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action

    NARCIS (Netherlands)

    Lucassen, P.J.; Meerlo, P.; Naylor, A.S.; van Dam, A.M.; Dayer, A.G.; Fuchs, E.; Oomen, C.A.; Czéh, B.

    2010-01-01

    Adult hippocampal neurogenesis, a once unorthodox concept, has changed into one of the most rapidly growing fields in neuroscience. The present report results from the ECNP targeted expert meeting in 2007 during which cellular plasticity changes were addressed in the adult brain, focusing on

  10. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation : Implications for depression and antidepressant action

    NARCIS (Netherlands)

    Lucassen, P. J.; Meerlo, P.; Naylor, A. S.; van Dam, A.M.; Dayer, A. G.; Fuchs, E.; Oomen, C. A.; Czeh, B.

    2010-01-01

    Adult hippocampal. neurogenesis, a once unorthodox concept, has changed into one of the most rapidly growing fields in neuroscience. The present report results from the ECNP targeted expert meeting in 2007 during which cellular plasticity changes were addressed in the adult brain, focusing on

  11. Disposition of methylprednisolone acetate in plasma, urine, and synovial fluid following intra-articular administration to exercised thoroughbred horses.

    Science.gov (United States)

    Knych, H K; Harrison, L M; Casbeer, H C; McKemie, D S

    2014-04-01

    Methylprednisolone acetate (MPA) is commonly administered to performance horses, and therefore, establishing appropriate withdrawal times prior to performance is critical. The objectives of this study were to describe the plasma pharmacokinetics of MPA and time-related urine and synovial fluid concentrations following intra-articular administration to sixteen racing fit adult Thoroughbred horses. Horses received a single intra-articular administration of MPA (100 mg). Blood, urine, and synovial fluid samples were collected prior to and at various times up to 77 days postdrug administration and analyzed using tandem liquid chromatography-mass spectrometry (LC-MS/MS). Maximum measured plasma MPA concentrations were 6.06 ± 1.57 at 0.271 days (6.5 h; range: 5.0-7.92 h) and 6.27 ± 1.29 ng/mL at 0.276 days (6.6 h; range: 4.03-12.0 h) for horses that had synovial fluid collected (group 1) and those that did not (group 2), respectively. The plasma terminal half-life was 1.33 ± 0.80 and 0.843 ± 0.414 days for groups 1 and 2, respectively. MPA was undetectable by day 6.25 ± 2.12 (group 1) and 4.81 ± 2.56 (group 2) in plasma and day 17 (group 1) and 14 (group 2) in urine. MPA concentrations in synovial fluid remained above the limit of detection (LOD) for up to 77 days following intra-articular administration, suggesting that plasma and urine concentrations are not a good indicator of synovial fluid concentrations. © 2013 John Wiley & Sons Ltd.

  12. Traumatic stress symptoms after the November 13th 2015 Terrorist Attacks among Young Adults: The relation to media and emotion regulation.

    Science.gov (United States)

    Monfort, Emmanuel; Afzali, Mohammad Hassan

    2017-05-01

    A major terror attack occurred in the Paris region on 13th November 2015. This event was widely showed, described, and commented in the media. Media consumption may lead to a widespread diffusion of trauma-related symptoms following a collective trauma. These effects may depend on the type of media and emotion regulation strategies used by the media consumer. Trauma history, traumatic symptoms, media consumption, psychological distress, and emotion regulation strategies of 451 young adults were assessed by an online survey. Findings reveal the joint role of social networks use and dysfunctional emotion regulation strategies on anxiety, depression, and somatization symptoms and also on cognitive and emotional alteration among traumatic symptoms. Consistent with the emotional contagion hypothesis, individuals who reported spending more time on social networks were also those who were experiencing more psychological distress. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  14. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  15. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis

    Directory of Open Access Journals (Sweden)

    G Blumenkrantz

    2007-05-01

    Full Text Available Magnetic resonance imaging of articular cartilage has recently been recognized as a tool for the characterization of cartilage morphology, biochemistry and function. In this paper advancements in cartilage imaging, computation of cartilage volume and thickness, and measurement of relaxation times (T2 and T1Ρ are presented. In addition, the delayed uptake of Gadolinium DTPA as a marker of proteoglycan depletion is also reviewed. The cross-sectional and longitudinal studies using these imaging techniques show promise for cartilage assessment and for the study of osteoarthritis.

  16. Articular contact in a three-dimensional model of the knee

    NARCIS (Netherlands)

    Blankevoort, L.; Kuiper, J. H.; Huiskes, R.; Grootenboer, H. J.

    1991-01-01

    This study is aimed at the analysis of articular contact in a three-dimensional mathematical model of the human knee-joint. In particular the effect of articular contact on the passive motion characteristics is assessed in relation to experimentally obtained joint kinematics. Two basically different

  17. On the genesis of articular cartilage. Embryonic joint development and gene expression - implications for tissue engineering

    NARCIS (Netherlands)

    Jenner, F

    2013-01-01

    Articular chondrocytes descend from a distinct cohort of progenitor cells located in the embryonic joint anlagen, termed interzones. Their unique lineage might explain some of the problems encountered using chondrocytes of different lineages for articular cartilage tissue engineering. While it is

  18. Indications for intra-articular steroid in osteoarthritis of the ankle and ...

    African Journals Online (AJOL)

    The results of treatment with intra-articular steroid in an unselected group of patients with osteo-arthritis of the ankle and metatarsophalangeal joint of the big toe are described. From the results of this trial it is possible to lay down indications for the use of intra-articular steroid in these conditions. In the ankle joint it is ...

  19. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.

    Science.gov (United States)

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, René; Khan, Ilyas M; Malda, Jos

    2017-10-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells

  20. Arthroscopic ankle arthrodesis with intra-articular distraction.

    Science.gov (United States)

    Kim, Hyong Nyun; Jeon, June Young; Noh, Kyu Cheol; Kim, Hong Kyun; Dong, Quanyu; Park, Yong Wook

    2014-01-01

    Arthroscopic ankle arthrodesis has shown high rates of union comparable to those with open arthrodesis but with substantially less postoperative morbidity, shorter operative times, less blood loss, and shorter hospital stays. To easily perform arthroscopic resection of the articular cartilage, sufficient distraction of the joint is necessary to insert the arthroscope and instruments. However, sometimes, standard noninvasive ankle distraction will not be sufficient in post-traumatic ankle arthritis, with the development of arthrofibrosis and joint contracture after severe ankle trauma. In the present report, we describe a technique to distract the ankle joint by inserting a 4.6-mm stainless steel cannula with a blunt trocar inside the joint. The cannula allowed sufficient intra-articular distraction, and, at the same time, a 4.0-mm arthroscope can be inserted through the cannula to view the joint. Screws can be inserted to fix the joint under fluoroscopic guidance without changing the patient's position or removing the noninvasive distraction device and leg holder, which are often necessary during standard arthroscopic arthrodesis with noninvasive distraction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Particulated articular cartilage: CAIS and DeNovo NT.

    Science.gov (United States)

    Farr, Jack; Cole, Brian J; Sherman, Seth; Karas, Vasili

    2012-03-01

    Cartilage Autograft Implantation System (CAIS; DePuy/Mitek, Raynham, MA) and DeNovo Natural Tissue (NT; ISTO, St. Louis, MO) are novel treatment options for focal articular cartilage defects in the knee. These methods involve the implantation of particulated articular cartilage from either autograft or juvenile allograft donor, respectively. In the laboratory and in animal models, both CAIS and DeNovo NT have demonstrated the ability of the transplanted cartilage cells to "escape" from the extracellular matrix, migrate, multiply, and form a new hyaline-like cartilage tissue matrix that integrates with the surrounding host tissue. In clinical practice, the technique for both CAIS and DeNovo NT is straightforward, requiring only a single surgery to affect cartilage repair. Clinical experience is limited, with short-term studies demonstrating both procedures to be safe, feasible, and effective, with improvements in subjective patient scores, and with magnetic resonance imaging evidence of good defect fill. While these treatment options appear promising, prospective randomized controlled studies are necessary to refine the indications and contraindications for both CAIS and DeNovo NT.

  2. Hyaluronic acid versus saline intra-articular injections for amelioration of chronic knee osteoarthritis: A canine model.

    Science.gov (United States)

    Pashuck, Troy D; Kuroki, Keiichi; Cook, Cristi R; Stoker, Aaron M; Cook, James L

    2016-10-01

    The objective of this study was to assess the safety and efficacy of intra-articular injections of hyaluronic acid (HA) versus saline for symptomatic treatment of osteoarthritis (OA). Twenty-five adult purpose-bred dogs underwent meniscal release of one knee. Clinical, arthroscopic, and radiographic signs of OA were confirmed in all dogs prior to treatment. Dogs were randomized into five groups: HA-1 (n = 5), HA-3 (n = 5), HA-5 (n = 5), Saline-1 (n = 5), and Saline-3 (n = 5). Each dog received intra-articular injections of the respective substance into the affected knee at the pre-determined time points. Dogs were assessed for heat, swelling, and erythema after each injection and for lameness, pain, effusion, range of motion, kinetics, radiographic OA scoring, and arthroscopic scoring prior to treatment and for 6 months after injection. Dogs were then humanely euthanatized and the knees assessed grossly and histologically. Only mild heat, swelling, and/or erythema were noted in some dogs following injection and resolved within 1 week. Dogs treated with HA-1, HA-3, and HA-5 were significantly (p injection protocols were safe, superior to saline for short-term amelioration of symptoms associated with chronic OA, and can be translated to human OA treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1772-1779, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Pathology of articular cartilage and synovial membrane from elbow joints with and without degenerative joint disease in domestic cats.

    Science.gov (United States)

    Freire, M; Meuten, D; Lascelles, D

    2014-09-01

    The elbow joint is one of the feline appendicular joints most commonly and severely affected by degenerative joint disease. The macroscopic and histopathological lesions of the elbow joints of 30 adult cats were evaluated immediately after euthanasia. Macroscopic evidence of degenerative joint disease was found in 22 of 30 cats (39 elbow joints) (73.33% cats; 65% elbow joints), and macroscopic cartilage erosion ranged from mild fibrillation to complete ulceration of the hyaline cartilage with exposure of the subchondral bone. Distribution of the lesions in the cartilage indicated the presence of medial compartment joint disease (most severe lesions located in the medial coronoid process of the ulna and medial humeral epicondyle). Synovitis scores were mild overall and correlated only weakly with macroscopic cartilage damage. Intra-articular osteochondral fragments either free or attached to the synovium were found in 10 joints. Macroscopic or histologic evidence of a fragmented coronoid process was not found even in those cases with intra-articular osteochondral fragments. Lesions observed in these animals are most consistent with synovial osteochondromatosis secondary to degenerative joint disease. The pathogenesis for the medial compartmentalization of these lesions has not been established, but a fragmented medial coronoid process or osteochondritis dissecans does not appear to play a role. © The Author(s) 2014.

  4. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact.

    Science.gov (United States)

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-05-27

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency.

  5. Secondary knee instability caused by fracture of the stabilizing insert in a dual-articular total knee

    DEFF Research Database (Denmark)

    Boesen, Morten P; Jensen, Tim Toftgaard; Husted, Henrik

    2004-01-01

    A case of a fractured polyethylene stabilizing insert causing secondary knee instability in a Dual-articular total knee arthroplasty (TKA) is presented. A 65-year-old woman who underwent surgery with a Dual-articular TKA 4 years earlier had a well-functioning prosthesis until a fall, after which......-articular knee....

  6. Comparison of efficacy of intra-articular morphine and steroid in patients with knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Serbülent Gökhan Beyaz

    2012-01-01

    Full Text Available Introduction: Primary therapeutic aim in treatment of osteoarthritis of the knee is to relieve the pain of osteoarthritis. The aim of this study was to compare the efficacy of intra-articular triamcinolone with intra-articular morphine in pain relief due to osteoarthritis of the knee in the elderly population. Materials and Methods: Patients between 50 and 80 years of age were randomized into three groups. Group M received morphine plus bupivacaine intra-articularly, Group T received triamcinolone plus bupivacaine intra-articularly, and Group C received saline plus bupivacaine intra-articularly. Patients were evaluated before injection and in 2nd, 4th, 6th, and 12th weeks after injection. First-line supplementary analgesic was oral paracetamol 1500 mg/day. If analgesia was insufficient with paracetamol, oral dexketoprofen trometamol 50 mg/day was recommended to patients. Results: After the intra-articular injection, there was statistically significant decrease in visual analog scale (VAS scores in Groups M and T, when compared to Group C. The decrease of VAS scores seen at the first 2 weeks continued steadily up to the end of 12th week. There was a significant decrease in Groups M and T in the WOMAC scores, when compared to Group C. There was no significant difference in the WOMAC scores between morphine and steroid groups. Significantly less supplementary analgesics was used in the morphine and steroid groups. Conclusion: Intra-articular morphine was as effective as intra-articular triamcinolone for analgesia in patients with osteoarthritis knee. Intra-articular morphine is possibly a better option than intra-articular steroid as it has lesser side effects.

  7. Association of Self-Efficacy and Self-Regulation with Nutrition and Exercise Behaviors in a Community Sample of Adults.

    Science.gov (United States)

    Shieh, Carol; Weaver, Michael T; Hanna, Kathleen M; Newsome, Kathleen; Mogos, Mulubrhan

    2015-01-01

    This study examined the association of self-efficacy and self-regulation with nutrition and exercise behaviors. The study used a cross-sectional design and included 108 participants (54 men, 54 women). Nutrition behaviors (fruit/vegetable consumption, dinner cooking, and restaurant eating) and exercise were measured using total days in last week a behavior was reported. Instruments measuring self-efficacy and self-regulation demonstrated excellent Cronbach's alphas (.93-.95). Path analysis indicated only fruit/vegetable consumption and exercise were associated with self-efficacy and self-regulation. Self-regulation showed direct association with fruit/vegetable consumption and exercise, but self-efficacy had direct association only with exercise. Self-efficacy and self-regulation should be strategically used to promote health behaviors.

  8. Clonorchis sinensis adult-derived proteins elicit Th2 immune responses by regulating dendritic cells via mannose receptor.

    Directory of Open Access Journals (Sweden)

    Lu Zhao

    2018-03-01

    Full Text Available Clonorchis sinensis (C. sinensis is the most widespread human liver fluke in East Asia including China and Korea. Clonorchiasis as a neglected tropical zoonosis, leads to serious economic and public health burden in China. There are considerable evidences for an etiological relation between chronic clonorchiasis and liver fibrosis in human beings. Liver fibrosis is a highly conserved and over-protected response to hepatic tissue injury. Immune cells including CD4+ T cell as well as dendritic cell (DC, and pro-fibrogenic cytokines like interleukin 4 (IL-4, IL-13 have been identified as vital manipulators in liver fibrogenesis. Our previous studies had a mere glimpse of T helper type 2 (Th2 dominant immune responses as key players in liver fibrosis induced by C. sinensis infection, but little is known about the involved mechanisms in this pathological process.By flow cytometry (FACS, adult-derived total proteins of C. sinensis (CsTPs down-regulated the expression of surface markers CD80, CD86 and major histocompatibility complex class II (MHC-II on lipopolysaccharide (LPS induced DC. ELISA results demonstrated that CsTPs inhibited IL-12p70 release from LPS-treated bone marrow-derived dendritic cells (BMDC. IL-10 level increased in a time-dependent manner in LPS-treated BMDCs after incubation with CsTPs. CD4+ T cells incubated with LPS-treated BMDCs plus CsTPs could significantly elevate IL-4 level by ELISA. Meanwhile, elevated expression of pro-fibrogenic mediators including IL-13 and IL-4 were detected in a co-culture system of LPS-activated BMDCs and naive T cells containing CsTPs. In vivo, CsTPs-immunized mice enhanced expression of type 2 cytokines IL-13, IL-10 and IL-4 in both splenocytes and hepatic tissue. Exposure of BMDCs to CsTPs activated expression of mannose receptor (MR but not toll like receptor 2 (TLR2, TLR4, C-type lectin receptor DC-SIGN and Dectin-2 on the cell surface by RT-PCR and FACS. Blockade of MR almost completely

  9. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis.

    Science.gov (United States)

    Chen, Rebecca; Mian, Michelle; Fu, Martin; Zhao, Jing Ying; Yang, Liang; Li, Yefu; Xu, Lin

    2015-11-01

    Transforming growth factor beta 1 (TGF-β1) is implicated in osteoarthritis. We therefore studied the role of TGF-β1 signaling in the development of osteoarthritis in a developmental stage-dependent manner. Three different mouse models were investigated. First, the Tgf-β receptor II (Tgfbr2) was specifically removed from the mature cartilage of joints. Tgfbr2-deficient mice were grown to 12 months of age and were then euthanized for collection of knee and temporomandibular joints. Second, Tgfbr2-deficient mice were subjected to destabilization of the medial meniscus (DMM) surgery. Knee joints were then collected from the mice at 8 and 16 weeks after the surgery. Third, wild-type mice were subjected to DMM at the age of 8 weeks. Immediately after the surgery, these mice were treated with the Tgfbr2 inhibitor losartan for 8 weeks and then euthanized for collection of knee joints. All joints were characterized for evidences of articular cartilage degeneration. Initiation or acceleration of articular cartilage degeneration was not observed by the genetic inactivation of Tgfbr2 in the joints at the age of 12 months. In fact, the removal of Tgfbr2 and treatment with losartan both delayed the progression of articular cartilage degeneration induced by DMM compared with control littermates. Therefore, we conclude that inhibition of Tgf-β1 signaling protects adult knee joints in mice against the development of osteoarthritis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. CRMP5 regulates generation and survival of newborn neurons in olfactory and hippocampal neurogenic areas of the adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Alexandra Veyrac

    Full Text Available The Collapsin Response Mediator Proteins (CRMPS are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB and the dentate gyrus (DG. During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5(-/- mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity.

  11. Effects of 99Tc-MDP on synoviocytes and articular chondrocytes apoptosis associated factors on CIA rats

    International Nuclear Information System (INIS)

    Hu Shaoxian; Kong Fang; Ke Dan; Shu Min; Len Xiaomei; Tu Wei; Shen Guifen; He Peigen

    2009-01-01

    Objective: Collagen induced arthritis (CIA) rats is an animal model of human rheumatoid arthritis (RA). It is widely used in research of the pathogenesis and the therapeutic targets of RA. This paper was to investigate the therapeutic action of 99 Tc-methylene diphosphonic acid (MDP) on CIA rats and its effects on the expression of apoptosis associated factor bcl-2 and bax in synoviocytes and articular chondrocytes. Methods: CIA rat models were carried out by subcutaneous injection with bovine collagen II and incomplete Freud's adjuvant. Rats were divided into four groups: control group, CIA model group (the CIA rats were infused with physiological saline via tail vein daily), 99 Tc-MDP group (the C1A rats were injected with 99 Tc-Mi)P 0.04 μg 99 Tc/kg via tail vein daily) and methotrexate (MTX) group (the CIA rats were injected with MTX 1 mg/kg via tail vein weekly). The signs of arthritis were evaluated by arthritis index (AI) scores. Immunohistochemistry was performed to detect the expression of bcl-2 and bax in synoviocytes and articular chondrocytes. SPSS 13.0 was used for data analysis. Results: (1) The signs of arthritis, AI scores and pathological changes of arthrosynovitis in CIA rats were significantly improved by 99 Tc-MDP or MTX. (2) The expression of bcl-2 and box in the synoviocytes of CIA model group [(39.30 ± 0.53) %, (27.37 ± 2.45)%] was significantly increased compared with control group [(7.56 ± 1. 18)% , (6.14 ± 1.71) % ; q = 46.27, 24.57, all P 99 Tc-M DP group and MTX group, the level of bcl-2 was remarkably decreased [(30.24 ± 2.09) %, (27.25 ± 3.33) %] compared with CIA model group (q = 13.20, 17.56, all P 99 Tc-MDP group [(26. 58 ± 2. 52) %] and MTX group [(27.06 ± 1.92) %] was remarksbly increased [(24.26 ± 2.75) %, (23.53 ± 0.74) % ; q = 6.53, 7.01, all P 99 Tc-MDP could improve the signs of arthritis, meanwhile regulate the expression of bcl-2 and bax in synoviocytes and articular ehondrocytes, suggesting that one of the

  12. Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak

    2012-07-01

    Full Text Available The insulin-like growth factor-2 (Igf2-H19 locus encodes important paternally imprinted genes that govern normal embryonic development. While Igf-2 encodes IGF2, which is an autocrine/paracrine mitogen,  transcription of H19 gives rise to non-coding mRNA that is a precursor of several microRNAs (miRNAs that negatively affect cell proliferation. The proper imprinting of a differentially methylated region (DMR within this locus, with methylation of the paternal chromosome and a lack of methylation on the maternal chromosome, regulates expression of both of these genes so that Igf2 is transcribed only from the paternal chromosome and H19 only from the maternal chromosome. There is growing evidence that this ‘Yin-Yang’ locus regulates embryonic development. Furthermore, recent evidence indicates that erasure of imprinting (hypomethylation of the Igf2-H19 locus on both chromosomes, which leads to downregulation of Igf2 and upregulation of H19 expression, plays an important role in regulating quiescence of pluripotent stem cells in adult organisms, and may be involved in the regulation of lifespan. In contrast, hypermethylation of this locus on both chromosomes (loss of imprinting results in Igf2 overexpression and is observed in several malignancies. In this review, we will discuss the biological consequences of changes in Igf2-H19 expression.

  13. Oppositional effects of serotonin receptors 5-HT1a, 2 and 2c in the regulation of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Friederike Klempin

    2010-07-01

    Full Text Available Serotonin (5-HT appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lack acute effects on adult neurogenesis in many studies, which suggests a surprising long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT

  14. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    Science.gov (United States)

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  15. Intra-Articular Viscosupplementation With Hylan G-F 20 To Treat Osteoarthritis of the Knee

    Science.gov (United States)

    2005-01-01

    Executive Summary Objective To assess the effectiveness and cost-effectiveness of hylan G-F 20 as a substitute for existing treatments for pain due to osteoarthritis (OA) of the knee, other viscosupplementation devices, and/or as an adjunct to conventional therapy. Hylan G-F 20 (brand name Synvisc, which is manufactured by Genzyme) is a high molecular weight derivative of hyaluronan, a component of joint synovial fluid. It acts as a lubricant and shock absorber. It is administered by injection into the joint space to treat pain associated with OA of the knee. Although the injection procedure is an insured service in Ontario, the device, hylan G-F 20, is not. Clinical Need Osteoarthritis is prevalent in 10% to 12% of Ontario adults, and exceeds 40% in Ontario residents aged 65 years and older. About one-half of these people have mild, moderate, or severe OA of the knee. Conventional treatment involves a combination of nonpharmacological management (e.g., weight loss, exercise, social support, and patient education), drugs, (e.g., acetaminophen, COX-2 inhibitors, nonsteroidal anti-inflammatory drugs with/without misoprostol, intra-articular glucocorticoids, opioids, and topical analgesics) and surgical interventions, such as debridement and total knee replacement, when pharmacological management fails. The growing burden of OA of the knee in the aging Ontario population combined with recent safety concerns about COX-2 inhibitors and long wait times for total joint replacement is placing pressure on the demand for new, effective technologies to manage the pain of OA. The Technology Hylan G-F 20 is derived from rooster comb hyaluronan (HA). At the time of writing, eight viscosupplement hyaluronic products are licensed in Canada. Hylan G-F 20 is distinguished from the other products by its chemical structure (i.e., cross-linked hyaluronan, hence hylan) and relatively higher molecular weight, which may bestow greater therapeutic viscoelastic properties. A complete

  16. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.

    Science.gov (United States)

    Fischer, J; Dickhut, A; Rickert, M; Richter, W

    2010-09-01

    The use of bone marrow-derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.

  17. Bovine lactoferricin induces TIMP-3 via the ERK1/2-Sp1 axis in human articular chondrocytes.

    Science.gov (United States)

    Yan, Dongyao; Chen, Di; Hawse, John R; van Wijnen, Andre J; Im, Hee-Jeong

    2013-03-15

    Bovine lactoferricin (LfcinB) is a heparan sulfate-binding peptide with multiple bioactivities. In human articular cartilage, LfcinB antagonizes interleukin-1 β (IL-1β) and fibroblast growth factor 2 (FGF-2) in proteoglycan metabolism, catabolic protease expression, and induction of pro-inflammatory mediators. LfcinB specifically activates ERK1/2, p38 and Akt, but whether these signaling pathways control the expression of LfcinB target genes remained unknown. In this report, we characterized a novel aspect of LfcinB-mediated genetic response in human articular chondrocytes, tissue inhibitor of metalloproteinase 3 (TIMP-3) induction. Inhibition of individual signaling pathways revealed that ERK1/2 functions as the major pathway in TIMP-3 expression, whereas Akt plays a minor role. Further investigation identified Sp1 as a critical transcriptional activator in TIMP-3 regulation, and Sp1 activity is modulated by ERK1/2, not Akt. Comparative quantification indicates that significant downregulation of TIMP-3 occurs in OA chondrocytes, suggesting a beneficial role of LfcinB in OA pathogenesis. Our results collectively provide new insights into the mechanism of action of LfcinB, and support the candidacy of LfcinB as a chondroprotective agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The balancing act of transcription factors C-1-1 and Runx2 in articular cartilage development

    International Nuclear Information System (INIS)

    Iwamoto, Masahiro; Koyama, Eiki; Enomoto-Iwamoto, Motomi; Pacifici, Maurizio

    2005-01-01

    In previous studies we found that the ets transcription factor C-1-1 is involved in articular chondrocyte development, and we and others found that the transcription factor Runx2 is required for growth plate chondrocyte maturation and ossification. We determined here whether the two factors exert reciprocal influences on their expression and function and in so doing, steer chondrocyte developmental paths. Virally driven Runx2 over-expression in cultured chick chondrocytes did indeed lead to decreased C-1-1 expression, accompanied by decreased expression of articular cartilage marker tenascin-C, decreased proliferation, and increased expression of maturation marker collagen X. In good agreement, over-expression of a dominant-negative Runx2 form had opposite phenotypic consequences. When C-1-1 itself was over-expressed in chondrocytes already undergoing maturation, maturation was halted and the cells became small, rich in tenascin-C, and mitotically quite active. To extend these observations, we misexpressed C-1-1 in mouse cartilage and found that it caused a severe inhibition of chondrocyte maturation and widespread tenascin-C expression. In sum, C-1-1 and Runx2 do influence their respective expression patterns. The factors are powerful chondrocyte regulators and their functional interrelationships may be important for steering the cells toward alternative developmental paths

  19. Contrast agent enhanced pQCT of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Kallioniemi, A S [Department of Physics, University of Kuopio, POB 1627, 70211 Kuopio (Finland); Jurvelin, J S [Department of Physics, University of Kuopio, POB 1627, 70211 Kuopio (Finland); Nieminen, M T [Department of Diagnostic Radiology, POB 50, 90029 OYS, Oulu University Hospital, Oulu (Finland); Lammi, M J [Department of Anatomy, Institute of Biomedicine, University of Kuopio, POB 1627, 70211 Kuopio (Finland); Toeyraes, J [Department of Physics, University of Kuopio, POB 1627, 70211 Kuopio (Finland)

    2007-02-21

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T{sub 1,Gd} and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally

  20. Contrast agent enhanced pQCT of articular cartilage

    Science.gov (United States)

    Kallioniemi, A. S.; Jurvelin, J. S.; Nieminen, M. T.; Lammi, M. J.; Töyräs, J.

    2007-02-01

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n = 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r = -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally

  1. Contrast agent enhanced pQCT of articular cartilage

    International Nuclear Information System (INIS)

    Kallioniemi, A S; Jurvelin, J S; Nieminen, M T; Lammi, M J; Toeyraes, J

    2007-01-01

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T 1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally degraded

  2. Childhood maltreatment severity and alcohol use in adult psychiatric inpatients: The mediating role of emotion regulation difficulties.

    Science.gov (United States)

    Dutcher, Christina D; Vujanovic, Anka A; Paulus, Daniel J; Bartlett, Brooke A

    2017-09-01

    Emotion regulation difficulties are a potentially key mechanism underlying the association between childhood maltreatment and alcohol use in adulthood. The current study examined the mediating role of emotion regulation difficulties in the association between childhood maltreatment severity (i.e., Childhood Trauma Questionnaire total score) and past-month alcohol use severity, including alcohol consumption frequency and alcohol-related problems (i.e., number of days of alcohol problems, ratings of "bother" caused by alcohol problems, ratings of treatment importance for alcohol problems). Participants included 111 acute-care psychiatric inpatients (45.0% female; Mage=33.5, SD=10.6), who reported at least one DSM-5 posttraumatic stress disorder Criterion A traumatic event, indexed via the Life Events Checklist for DSM-5. Participants completed questionnaires regarding childhood maltreatment, emotion regulation difficulties, and alcohol use. A significant indirect effect of childhood maltreatment severity via emotion regulation difficulties in relation to alcohol use severity (β=0.07, SE=0.04, 99% CI [0.01, 0.21]) was documented. Specifically, significant indirect effects were found for childhood maltreatment severity via emotion regulation difficulties in relation to alcohol problems (β's between 0.05 and 0.12; all 99% bootstrapped CIs with 10,000 resamples did not include 0) but not alcohol consumption. Emotion regulation difficulties may play a significant role in the association between childhood maltreatment severity and alcohol outcomes. Clinical implications are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Influence of the Openness of an E-Learning Situation on Adult Students' Self-Regulation

    Science.gov (United States)

    Jezegou, Annie

    2013-01-01

    This article presents empirical research conducted with French speaking adults studying for a diploma. Their training took place mainly in e-learning. The goal of this research was to identify and explain the processes of influence existing between two specific dimensions: the degree of openness of the components of the e-learning situation and…

  4. Contact mechanics of articular cartilage layers asymptotic models

    CERN Document Server

    Argatov, Ivan

    2015-01-01

    This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...

  5. Skin Necrosis from Intra-articular Hyaluronic Acid Injection.

    Science.gov (United States)

    Kim, Whan B; Alhusayen, Raed O

    2015-01-01

    Tissue necrosis is a rare yet potentially serious complication of intra-articular (IA) hyaluronic acid (HA) injections for treatment of knee osteoarthritis. To report a case of a patient with cutaneous necrosis after IA HA injection for treatment of knee osteoarthritis, presenting as a livedoid violaceous patch on the right knee. We report a case of cutaneous necrosis as a rare complication of IA HA injection for treatment of knee osteoarthritis. A literature review was undertaken of similar cases. Use of HA IA injections in the treatment of osteoarthritis can result in similar skin necrosis at uncommon anatomic locations corresponding to the site of HA injection. Although tissue necrosis is a rare complication, physicians need to be aware of this possibility as a complication of HA IA injections in the treatment of osteoarthritis and should be mindful of potential treatment options to manage this adverse event. © 2014 Canadian Dermatology Association.

  6. Intra-Articular Polyacrylamide Hydrogel Injections Are Not Innocent

    Directory of Open Access Journals (Sweden)

    Murat Tonbul

    2014-01-01

    Full Text Available Osteoarthritis is a chronic disorder characterized by joint cartilage degeneration with concomitant changes in the synovium and subchondral bone metabolism. Many conservative treatment modalities, one of which is intra-articular injections, have been described for the treatment of this disorder. Traditionally, hyaluranic acid and corticosteroids are the agents that have been used for this purpose. Recently, polyacrylamide hydrogels are being used widely. Biocompatibility, nonbioabsorbability, and anti-infectious effect obtained by silver addition made polyacrylamide hydrogels more popular. In this paper, we present a case and the method of our management, in whom host tissue reaction (foreign body granuloma, edema, inflammation, and redness induration has been observed, as the first and unique adverse effect reported in the literature.

  7. Multiphysical modelling of fluid transport through osteo-articular media

    Directory of Open Access Journals (Sweden)

    Thibault Lemaire

    2010-03-01

    Full Text Available In this study, a multiphysical description of fluid transport through osteo-articular porous media is presented. Adapted from the model of Moyne and Murad, which is intended to describe clayey materials behaviour, this multiscale modelling allows for the derivation of the macroscopic response of the tissue from microscopical information. First the model is described. At the pore scale, electrohydrodynamics equations governing the electrolyte movement are coupled with local electrostatics (Gauss-Poisson equation, and ionic transport equations. Using a change of variables and an asymptotic expansion method, the macroscopic description is carried out. Results of this model are used to show the importance of couplings effects on the mechanotransduction of compact bone remodelling.Neste estudo uma descrição multifísica do transporte de fluidos em meios porosos osteo articulares é apresentada. Adaptado a partir do modelo de Moyne e Murad proposto para descrever o comportamento de materiais argilosos a modelagem multiescala permite a derivação da resposta macroscópica do tecido a partir da informação microscópica. Na primeira parte o modelo é apresentado. Na escala do poro as equações da eletro-hidrodinâmica governantes do movimento dos eletrolitos são acopladas com a eletrostática local (equação de Gauss-Poisson e as equações de transporte iônico. Usando uma mudança de variáveis e o método de expansão assintótica a derivação macroscópica é conduzida. Resultados do modelo proposto são usados para salientar a importância dos efeitos de acoplamento sobre a transdução mecânica da remodelagem de ossos compactados.

  8. Extra-Articular Manifestations of Rheumatoid Arthritis, Now

    Directory of Open Access Journals (Sweden)

    Paloma Vela

    2014-06-01

    Full Text Available Rheumatoid arthritis (RA is a chronic systemic inflammatory disease, characterised by polyarthritis and extra-articular organ disease, including rheumatoid nodules, ophthalmologic manifestations, cardiopulmonary disease, vasculitis, neuropathy, glomerulonephritis, Felty’s syndrome, and amyloidosis. Extra-articular manifestations of RA (ExRA occur in 17.8–40.9% of RA patients, 1.5–21.5% of them presenting as severe forms and usually associated with increased morbidity and mortality. They can develop at any time during the course of the disease, even in the early stages, and are associated with certain predisposing factors, such as the presence of rheumatoid factor, smoking, and long-standing severe disease. Rheumatoid nodules, the most common ExRA, have been found to be associated with the development of severe features, such as vasculitis, rheumatoid lung disease, pericarditis, and pleuritis, especially in those patients who develop them within 2 years from RA diagnosis. There is no uniformity in the definition of the term ExRA, which limits comparability between different studies. Several recent surveys suggest a lower frequency, probably due to a better control of disease activity. Diagnosis of ExRA is a challenge for clinicians, given its variable and complex presentation, and the lack of specific diagnostic tests; it must be based on clinical recognition and exclusion of other causes of the signs and symptoms. Furthermore, management continues to be difficult with a bad prognosis in many conditions. This article reviews the clinical aspects of major ExRA, focusing on incidence, clinical features, and therapeutic approaches, and how modern immunosuppressive therapy can change the outcome.

  9. Is the cigarette pack just a wrapper or a characteristic of the product itself? A qualitative study of adult smokers to inform U.S. regulations.

    Science.gov (United States)

    Lee, Joseph G L; Averett, Paige E; Blanchflower, Tiffany; Gregory, Kyle R

    2018-03-01

    In the U.S., tobacco products are now regulated by the Food and Drug Administration (FDA). Litigation has quickly followed. One area of controversy is when a change to the design of the cigarette pack requires approval through FDA's rigorous premarket review process. In this paper, we examine how adult U.S. smokers view the connection between the design of cigarette packs and the characteristics of the cigarettes within. Data for this qualitative study came from six focus groups conducted in March 2017 with adult smokers. Two groups consisted of lesbian, gay, and bisexual (LGB) participants; two groups of participants with less than four years of college education; one group of LGB and straight identity; and, one group of the general population. All groups were selected for regional, gender, and racial/ethnic diversity. Participants (n = 33) represented all nine U.S. Census divisions. We conducted constant comparison qualitative analysis utilizing a grounded theory approach. Participants' views reflected a belief that pack design is clearly a reflection of the cigarettes within and that a change in the pack signaled a change in the cigarettes. However, some participants felt price was the salient characteristic of cigarettes and design mattered more for enticing young people to smoke. Changes in pack design signal changes to the product for smokers. Pack design and changes to pack design are seen as particularly relevant to new and young smokers. These findings provide support for regulations that require assessment of cigarette pack design changes for impacts on public health.

  10. Combined intra-articular glucocorticoid, bupivacaine and morphine reduces pain and convalescence after diagnostic knee arthroscopy

    DEFF Research Database (Denmark)

    Rasmussen, Sten; Lorentzen, Jan S; Larsen, Allan S

    2002-01-01

    We studied the effect of intra-articullar saline vs. bupivacaine + morphine or bupivacaine morphine + methylprednisolone after diagnostic knee arthroscopy. In a double-blind randomized study, 60 patients undergoing diagnostic knee arthroscopy without a therapeutic procedure were allocated to groups...... receiving intra-articular saline, intra-articular bupivacaine 150 mg + morphine 4 mg or the same dose of bupivacaine + morphine + intra-articular methylprednisolone 40 mg at the end of arthroscopy during general anesthesia. All patients were instructed to resume normal activities immediately after...

  11. Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis.

    Science.gov (United States)

    Musiał, Kinga; Zwolińska, Danuta

    2011-07-01

    The system of membrane receptor Fas and its ligand FasL compose one of the main pathways triggering apoptosis. However, the role of their soluble forms has not been clarified yet. Although sFasL can be converted from the membrane-bound form by matrix metalloproteinases (MMPs), there are no data on relations between sFas/sFasL, MMPs and their tissue inhibitors (TIMPs) in patients on chronic dialysis--neither children nor adults. The aim of our study was to evaluate serum concentrations of sFas, sFasL, and their potential regulators (MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2), in children and young adults chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 19 patients on hemodialysis (HD) and 30 controls were examined. Serum concentrations of sFas, sFasL, MMPs and TIMPs were assessed by ELISA. Median values of sFas, sFasL, sFas/sFasL ratio, MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-2 were significantly elevated in all dialyzed patients vs. controls, the highest values being observed in subjects on HD. A single HD session caused the decrease in values of all parameters to the levels below those seen in children on APD. Regression analysis revealed that MMP-7 and TIMP-1 were the best predictors of sFas and sFasL concentrations. Children and young adults on chronic dialysis are prone to sFas/sFasL system dysfunction, more pronounced in patients on hemodialysis. The correlations between sFas/sFasL and examined enzymes suggest that MMPs and TIMPs take part in the regulation of cell death in the pediatric population on chronic dialysis, triggering both anti- (sFas) and pro-apoptotic (sFasL) mechanisms.

  12. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  13. Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus

    OpenAIRE

    Smalheiser, Neil R; Lugli, Giovanni; Lenon, Angela L; Davis, John M; Torvik, Vetle I; Larson, John

    2010-01-01

    Adult male mice (strain C57Bl/6J) were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour) or pseudo-training (exposed to two odours with reward not contingent upon response). These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct respon...

  14. Vasopressin regulates social recognition in juvenile and adult rats of both sexes, but in sex- and age-specific ways.

    Science.gov (United States)

    Veenema, A H; Bredewold, R; De Vries, G J

    2012-01-01

    In adult male rats, vasopressin (AVP) facilitates social recognition via activation of V1a receptors within the lateral septum. Much less is known about how AVP affects social recognition in adult females or in juvenile animals of either sex. We found that administration of the specific V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP into the lateral septum of adult rats impaired, whereas AVP extended, social discrimination in both sexes. In juveniles, however, we detected a sex difference, such that males but not females showed social discrimination. Interestingly, administration of the V1a receptor antagonist to juveniles (either intracerebroventricularly or locally in the lateral septum) did not prevent social discrimination, but instead significantly decreased the investigation of a novel as opposed to a familiar animal in both sexes, with stronger effects in males. V1a receptors were found to be abundantly expressed in the lateral septum with higher binding density in females than in males. These findings demonstrate that activation of V1a receptors in the lateral septum is important for social recognition in both sexes, and that the roles of septal V1a receptors in social recognition change during development. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit.

    Science.gov (United States)

    Bouchard-Cannon, Pascale; Mendoza-Viveros, Lucia; Yuen, Andrew; Kærn, Mads; Cheng, Hai-Ying M

    2013-11-27

    The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The Circadian Molecular Clock Regulates Adult Hippocampal Neurogenesis by Controlling the Timing of Cell-Cycle Entry and Exit

    Directory of Open Access Journals (Sweden)

    Pascale Bouchard-Cannon

    2013-11-01

    Full Text Available The subgranular zone (SGZ of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body.

  17. Effects of intra-articular hyaluronic acid injection on immunohistochemical characterization of joint afferents in a rat model of knee osteoarthritis.

    Science.gov (United States)

    Ikeuchi, M; Izumi, M; Aso, K; Sugimura, N; Kato, T; Tani, T

    2015-03-01

    Intra-articular hyaluronic acid (HA) injection, known as viscosupplementation, is a widely used therapy for pain relief in knee osteoarthritis (OA). Long-term clinical efficacy of HA has been reported in spite of a relatively short residence time. Herein, we evaluated our hypothesis that intra-articular HA injection could reduce the OA-associated changes in joint afferents. OA was induced by intra-articular injection of mono-iodoacetate in rats. Animals in the OA + HA group were given three weekly intra-articular HA injections. Pain-related behaviours, including weight-bearing asymmetry and mechanical hyperalgesia of the paw, knee joint histology and immunohistochemistry of joint afferents identified by retrograde labelling, were compared between groups (naïve, OA and OA + HA). OA rats showed pain-related behaviours and up-regulation of pain-related neurochemical markers [calcitonin gene-related peptide (CGRP), tyrosine receptor kinase A (TrkA) and acid-sensing ion channel 3 (ASIC3)] in joint afferents. HA injections reduced not only the severity of OA and pain behaviours but also OA-associated neurochemical changes in joint afferents. The differences between OA and OA + HA were statistically significant in CGRP (61 ± 10% vs. 51 ± 10%; p = 0.0406) but not significant in TrkA (62 ± 10% vs. 54 ± 9%; p = 0.0878) and ASIC3 (38 ± 9% vs. 32 ± 8%; p = 0.3681). Intra-articular HA injections reduced the severity of OA, decreased mechanical hyperalgesia of the paw, but not weight-bearing asymmetry, and attenuated OA-associated up-regulation of CGRP, but not TrkA and ASIC3, in joint afferents. The modulatory effects of HA on joint afferents is one of the underlying mechanisms of the gap between HA residence time and duration of clinical efficacy. © 2014 European Pain Federation - EFIC®

  18. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Kavanaugh, Michael; Block, Michelle; D'Angiulli, Amedeo; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Osnaya, Norma; Villarreal-Calderon, Rodolfo; Guo, Ruixin; Hua, Zhaowei; Zhu, Hongtu; Perry, George; Diaz, Philippe

    2012-01-01

    Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.

  19. Age shall not weary us: deleterious effects of self-regulation depletion are specific to younger adults.

    Directory of Open Access Journals (Sweden)

    Theresa Dahm

    Full Text Available Self-regulation depletion (SRD, or ego-depletion, refers to decrements in self-regulation performance immediately following a different self-regulation-demanding activity. There are now over a hundred studies reporting SRD across a broad range of tasks and conditions. However, most studies have used young student samples. Because prefrontal brain regions thought to subserve self-regulation do not fully mature until 25 years of age, it is possible that SRD effects are confined to younger populations and are attenuated or disappear in older samples. We investigated this using the Stroop color task as an SRD induction and an autobiographical memory task as the outcome measure. We found that younger participants (<25 years were susceptible to depletion effects, but found no support for such effects in an older group (40-65 years. This suggests that the widely-reported phenomenon of SRD has important developmental boundary conditions casting doubt on claims that it represents a general feature of human cognition.

  20. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    Science.gov (United States)

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  1. The impact of early life family structure on adult social attachment, alloparental behavior, and the neuropeptide systems regulating affiliative behaviors in the monogamous prairie vole (Microtus ochrogaster

    Directory of Open Access Journals (Sweden)

    Todd H Ahern

    2009-08-01

    Full Text Available Early social attachments lie at the heart of emotional and social development in many mammals, including humans. In nature, monogamous prairie voles (Microtus ochrogaster experience considerable natural variation in early social attachment opportunities due to differences in family structure (e.g., single-mothers, solitary breeding pairs, and communal groups. We exploited some of this natural variation in family structure to examine the influence of early social environment on the development of adult social behavior. First, we characterized the parental care received by pups reared biparentally (BP or by a single-mother (SM in the laboratory. Second, we examined whether BP- and SM-reared offspring differed in adult nurturing, bonding, and emotional behaviors. Finally, we investigated the effects of rearing condition on neuropeptide systems that regulate adult social behavior (oxytocin, vasopressin, and corticotropin-releasing factor [CRF]. Observations revealed that SM-reared pups were exposed more frequently (P<0.01, licked and groomed less (P<0.01, and matured more slowly (P<0.01 than BP-reared pups. In adulthood, there were striking socio-behavioral differences: SM-reared females showed low spontaneous, pup-directed alloparental behavior (P<0.01 and both males and females from the SM-reared condition showed delayed partner preference formation. While rearing did not impact neuropeptide receptor densities in the ventral forebrain as we predicted, SM-reared animals, particularly females, had increased OT content (P<0.01 and greater dorsal raphe CRF2 densities (P<0.05 and both measures correlated with licking and grooming experienced during the first 10 days of life. These results suggest that naturalistic variation in social rearing conditions can introduce diversity into adult nurturing and attachment behaviors.

  2. Can individual cognitions, self-regulation and environmental variables explain educational differences in vegetable consumption?: a cross-sectional study among Dutch adults.

    Science.gov (United States)

    Springvloet, Linda; Lechner, Lilian; Oenema, Anke

    2014-12-06

    Educational differences in health-related behaviors, where low- and moderate-educated individuals have poorer outcomes than high-educated individuals, are persistent. The reasons for these differences remain poorly understood. This study explored whether individual cognitions, self-regulation and environmental-level factors may explain educational differences in vegetable consumption. A cross-sectional study was conducted among 1,342 Dutch adults, of whom 54.5% were low/moderate-educated. Individuals completed an online questionnaire, assessing education, vegetable consumption, demographics, individual cognitions (attitude towards consuming 200 grams of vegetables a day, self-efficacy, subjective norm, intention, perception of vegetables as being expensive), self-regulation (general self-regulation, vegetable-specific action- and coping planning) and environmental-level factors (perception of availability of vegetables in the supermarket and availability of vegetables at home). The joint-significance test was used to determine significant mediation effects. Low/moderate-educated individuals consumed less vegetables (M = 151.2) than high-educated individuals (M = 168.1, β = -0.15, P Attitude and availability of vegetables at home were found to partially mediate the association between education and vegetable consumption (percentage mediated effect: 24.46%). Since attitude and availability of vegetables at home partially explain the difference in vegetable consumption between low/moderate- and high-educated individuals, these variables may be good target points for interventions to promote vegetable consumption among low/moderate-educated individuals.

  3. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro

    NARCIS (Netherlands)

    Korstjens, C.M.; van der Rijt, R.H.H.; Albers, G.H.; Semeins, C.M.; Klein-Nulend, J.

    2008-01-01

    We investigated whether low-intensity pulsed ultrasound (LIPUS) stimulates chondrocyte proliferation and matrix production in explants of human articular cartilage obtained from donors suffering from unicompartimental osteoarthritis of the knee, as well as in isolated human chondrocytes in vitro.

  4. Intra-articular Nodular Fasciitis: An Unexpected Diagnosis for a Joint Lesion: A Case Report

    Directory of Open Access Journals (Sweden)

    MF Michelle Chan

    2014-07-01

    Full Text Available Pathological lesions in and around a joint can arise from underlying dermis, subcutis, deep muscle, bone or synovium. Clinical presentation can include joint pain, joint swelling, palpable masses and mechanical restriction. Whilst giant cell tumour of tendon sheath, pigmented villonodular synovitis, synovial chondromatosis, lipoma arborescens, juxta articular myxomas and inflammatory arthritis are the better-known conditions of the joint. Intra-articular nodular fasciitis, on the other hand, is less well recognized both clinically and radiologically. It is rarely seen in routine practice and is only described in case reports in the literature. Due to the non-specific clinical and radiological findings as well as the unfamiliarity with the entity, the diagnosis of intra-articular nodular fasciitis is usually clinched only after histological examination. We present a case of intra-articular nodular fasciitis arising in the knee joint which was not suspected clinically or radiologically.

  5. Low-Cost Intra-Articular Distraction Technique Using Kirschner Wires and a Toothed Lamina Spreader.

    Science.gov (United States)

    Shymon, Stephen Joseph; Harris, Thomas Gregory

    We describe a low-cost (instrument cost) technique for joint distraction using 2 Kirschner wires and a toothed lamina spreader in lieu of a Hintermann distractor. The described technique allows for temporary intra-articular distraction and visualization and preservation of the articular surface with extra-articular instrumentation. The technique can also allow for closed reduction and percutaneous treatment in cases of soft tissue compromise. Additionally, the technique uses common orthopedic surgical instruments, leading to a minimal learning curve for novice surgeons. We have found this distraction technique to be most effective for intra-articular preparation of hindfoot and midfoot arthrodeses and for navicular fracture reduction. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Review on patents for mechanical stimulation of articular cartilage tissue engineering

    NARCIS (Netherlands)

    Donkelaar, van C.C.; Schulz, R.M.

    2008-01-01

    To repair articular cartilage defects in osteoarthritic patients with three-dimensional tissue engineered chondrocyte grafts, requires the formation of new cartilage with sufficient mechanical properties. The premise is that mechanical stimulation during the culturing process is necessary to reach

  7. Measurements of surface layer of the articular cartilage using microscopic techniques

    International Nuclear Information System (INIS)

    Ryniewicz, A. M; Ryniewicz, W.; Ryniewicz, A.; Gaska, A.

    2010-01-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  8. Measurements of surface layer of the articular cartilage using microscopic techniques

    Science.gov (United States)

    Ryniewicz, A. M.; Ryniewicz, A.; Ryniewicz, W.; Gaska, A.

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  9. Effects of immobilization on thickness of superficial zone of articular cartilage of patella in rats

    Directory of Open Access Journals (Sweden)

    Khadija Iqbal

    2012-01-01

    Conclusion: Each segment of superficial zone behaves differentially on immobilization and remobilization. Perhaps a much longer duration of remobilization is required to reverse changes of immobilization in articular cartilage and plays a significant role in knee joint movements.

  10. Separate Vertical Wirings for the Extra-articular Fractures of the Distal Pole of the Patella

    OpenAIRE

    Kim, Young Mo; Yang, Jun Young; Kim, Kyung Cheon; Kang, Chan; Joo, Yong Bum; Lee, Woo Yong; Hwang, Jung Mo

    2011-01-01

    Purpose To evaluate the usefulness of separate vertical wirings for extra-articular fracture of distal pole of patella. Materials and Methods We have analyzed the clinical results of 18 cases that underwent separate vertical wirings for extra-articular fracture of distal pole of the patella from March 2005 to March 2010, by using the range of motion and Bostman score. Occurrence of complication was also evaluated. Additionally, by taking simple radiographs, the correlation between the postope...

  11. Intra-articular ganglion cysts of the knee: clinical and MR imaging features

    International Nuclear Information System (INIS)

    Kim, M.G.; Cho, W.H.; Kim, B.H.; Choi, J.A.; Lee, N.J.; Chung, K.B.; Choi, Y.S.; Cho, S.B.; Lim, H.C.

    2001-01-01

    The purpose of this study was to present clinical and MR imaging features of intra-articular ganglion cysts of the knee. Retrospective review of 1685 consecutive medical records and MR examinations of the knee performed at three imaging centers allowed identification of 20 patients (13 men and 7 women; mean age 35 years), in whom evidence of intra-articular ganglion cyst was seen. Of the 20 ganglion cysts, 5 were found in the infrapatellar fat pad, 10 arose from the posterior cruciate ligament, and 5 from the anterior cruciate ligament. Three of five patients with ganglion cyst in the infrapatellar fat pad had a palpable mass. In 7 of 15 patients with ganglion cyst in the intercondylar notch, exacerbation of pain occurred in a squatting position. On four MR arthrographies, ganglion cysts were an intra-articular round, lobulated, low signal intensity lesion. Five cases of fat-suppressed contrast-enhanced T1-weighted SE images demonstrated peripheral thin rim enhancement. The clinical presentation of intra-articular ganglion cyst is varied according to its intra-articular location. The MR appearance of intra-articular ganglion cyst is characteristic and usually associated with the cruciate ligament or the infrapatellar fat pad. Magnetic resonance arthrography has no definite advantage over conventional MR in the evaluation of the lesion. For intra-articular ganglion cyst in the infrapatellar fat pad, fat-suppressed contrast-enhanced MR imaging could be useful, because a thin, rim-enhancing feature of intra-articular ganglion cyst allows it to be distinguished from synovial hemangioma and synovial sarcoma. (orig.)

  12. Diagnosis and management of an intra-articular foreign body in the foot.

    LENUS (Irish Health Repository)

    Mulhall, K J

    2002-10-01

    We describe a case of a small intra-articular foreign body in the foot presenting 48 hours following injury, which at operation showed early evidence of septic arthritis. It is essential to accurately localise periarticular foreign bodies in the foot and proceed to arthrotomy and debridement in all cases where there is radiological or clinical evidence to suggest intra-articular retention of a foreign body.

  13. Editorial Commentary: Intra-articular Corticosteroid Injection at the Time of Knee Arthroscopy Is Not Recommended.

    Science.gov (United States)

    Hunt, Timothy J

    2016-01-01

    In a population of Medicare patients undergoing knee arthroscopy, a significant increase in the incidence of postoperative infection at 3 and 6 months was found in patients who received an intra-articular corticosteroid injection at the time of knee arthroscopy compared with a matched control group that did not receive an injection. Intra-articular corticosteroid injection at the time of knee arthroscopy is not recommended. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. T2 Mapping of Articular Cartilage of Glenohumeral Joint with Routine MRI Correlation—Initial Experience

    OpenAIRE

    Maizlin, Zeev V.; Clement, Jason J.; Patola, Wayne B.; Fenton, David M.; Gillies, Jean H.; Vos, Patrick M.; Jacobson, Jon A.

    2009-01-01

    The evaluation of articular cartilage currently relies primarily on the identification of morphological alterations of the articular cartilage. Unlike anatomic imaging, T2 mapping is sensitive to changes in the chemical composition and structure of the cartilage. Clinical evaluation of T2 mapping of the glenohumeral joint has not been previously reported. The objectives of this study were to evaluate the feasibility of magnetic resonance T2 mapping of the glenohumeral joint in routine clinica...

  15. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues

    Directory of Open Access Journals (Sweden)

    Seoghyun Lee

    2016-01-01

    Full Text Available Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet-regulated system. Exploiting a Drosophila ecdysone receptor (EcR-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+ and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site. Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion.

  16. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    International Nuclear Information System (INIS)

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-01-01

    Highlights: ► The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. ► Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. ► Differential degradation appears related to nuclear vs. sarcolemmal localization. ► Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  17. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues.

    Science.gov (United States)

    Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D

    2018-04-10

    The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.

  18. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues

    Directory of Open Access Journals (Sweden)

    Sharon Zhang

    2018-04-01

    Full Text Available The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD, which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.

  19. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus.

    Directory of Open Access Journals (Sweden)

    Igor Lavrov

    Full Text Available Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32, connexin 36 (Cx36, connexin 37 (Cx37, and connexin 43 (Cx43. Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.

  20. Comparison of friction and wear of articular cartilage on different length scales.

    Science.gov (United States)

    Kienle, Sandra; Boettcher, Kathrin; Wiegleb, Lorenz; Urban, Joanna; Burgkart, Rainer; Lieleg, Oliver; Hugel, Thorsten

    2015-09-18

    The exceptional tribological properties of articular cartilage are still far from being fully understood. Articular cartilage is able to withstand high loads and provide exceptionally low friction. Although the regeneration abilities of the tissue are very limited, it can last for many decades. These biomechanical properties are realized by an interplay of different lubrication and wear protection mechanisms. The deterioration of cartilage due to aging or injury leads to the development of osteoarthritis. A current treatment strategy focuses on supplementing the intra-articular fluid with a saline solution containing hyaluronic acid. In the work presented here, we investigated how changing the lubricating fluid affects friction and wear of articular cartilage, focusing on the boundary and mixed lubrication as well as interstitial fluid pressurization mechanisms. Different length and time scales were probed by atomic force microscopy, tribology and profilometry. We compared aqueous solutions with different NaCl concentrations to a viscosupplement containing hyaluronic acid (HA). In particular, we found that the presence of ions changes the frictional behavior and the wear resistance. In contrast, hyaluronic acid showed no significant impact on the friction coefficient, but considerably reduced wear. This study confirms the previous notion that friction and wear are not necessarily correlated in articular cartilage tribology and that the main role of HA might be to provide wear protection for the articular surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Determination of piroxicam from rat articular tissue and plasma based on LC-MS/MS.

    Science.gov (United States)

    Kim, Han Sol; Cho, Ha Ra; Ho, Myoung Jin; Kang, Myung Joo; Choi, Yong Seok

    2016-12-01

    Osteoarthritis (OA) is the most common type of arthritis. To manage OA, in general, oral administration of non-steroidal anti-inflammatory drugs (NSAIDs) is used. Recently, the analgesic and anti-inflammatory efficacy of piroxicam (PX), a long-acting NSAID, by intra-articular (IA) administration in OA was reported, and the possibility that PX is distributed in articular tissues at a certain concentration was raised. Thus, herein, novel LC-MS/MS methods to detect PX in rat articular tissue and plasma are presented. For articular tissue, solvent extraction with acetonitrile for 12 h was employed and a protein precipitation method was used for the preparation of a plasma sample. The developed methods were validated by following the FDA guidelines, and the validated methods were successfully applied to a PK study of IA PX. The present study presents, to our knowledge, the first method of determining a drug in articular tissue. Additionally, the level of PX in articular tissue after IA PX administration was experimentally confirmed for the first time using the present methods. Therefore, the present methods provide a new direction for in vivo evaluation for IA PX formulations and contribute to the development of alternative IA PX formulations with better effects for the treatment of OA.

  2. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    Science.gov (United States)

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  3. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

    Directory of Open Access Journals (Sweden)

    Amin Tavassoli

    2015-12-01

    Full Text Available Objective (s: The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (BM-MSCs. Materials and Methods: Bovine articular cartilage that was cut into pieces with 2 mm thickness, were decellularized by combination of physical and chemical methods including snap freeze-thaw and treatment with sodium dodecyl sulfate (SDS. The scaffolds were then seeded with 1, 1’-dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI labeled BM-MSCs and cultured for up to two weeks. Results: Histological studies of decellularized bovine articular cartilage showed that using 5 cycles of snap freeze-thaw in liquid nitrogen and treatment with 2.5% SDS for 4 hr led to the best decellularization, while preserving the articular cartilage structure. Adherence and penetration of seeded BM-MSCs on to the scaffold were displayed by histological and florescence examinations and also confirmed by electron microscopy. Conclusion: ECM-derived decellularized articular cartilage scaffold provides a suitable environment to support adhesion and maintenance of cultured BM-MSCs and could be applied to investigate cellular behaviors in this system and may also be useful for studies of cartilage tissue engineering.

  4. On the main stages of the history of intra-articular therapy

    Directory of Open Access Journals (Sweden)

    L. Punzi

    2011-09-01

    Full Text Available In this review the main stages in the history of intra-articular therapy of the rheumatic diseases are summarized. The first approach to such a local treatment has been likely performed in 1792 by the French physician Jean Gay, who injected in a swelling knee the “eau du Goulard” (Goulard’s water, namely a mixture based on lead compounds. In the XIX century iodine derivatives have been mainly applied as an intra-articular treatment. In the XX century, before the wide use of intra-articular corticosteroids, chiefly due to the Joseph Lee Hollander’s experiences, a variety of drugs has been employed, including cytostatics and sclerosing substances. A further important stage has been synoviorthesis, by using specific radionuclides, that would actually represent an anti-synovial treatment. In the last years a spread use of intra-articular hyaluronic acid, particularly in osteoarthritis, has been recorded, with the aim to warrant articular viscosupplementation. Future of intra-articular treatment should be represented by the biological drugs, i.e., anti-TNF, but it is still untimely to define the exact role of such a local treatment of arthritis.

  5. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  6. Development of a versatile intra-articular pressure sensing array.

    Science.gov (United States)

    Welcher, J B; Popovich, J M; Hedman, T P

    2011-10-01

    A new sensor array intended to accurately and directly measure spatial and time-dependent pressures within a highly curved biological intra-articular joint was developed and tested. To evaluate performance of the new sensor array for application within intra-articular joints generally, and specifically to fit within the relatively restrictive space of the lumbar spine facet joint, geometric constraints of length, width, thickness and sensor spatial resolution were evaluated. Additionally, the effects of sensor array curvature, frequency response, linearity, drift, hysteresis, repeatability, and total system cost were assessed. The new sensor array was approximately 0.6mm in thickness, scalable to below the nominal 12 mm wide by 15 high lumbar spine facet joint size, offered no inherent limitations on the number or spacing of the sensors with less than 1.7% cross talk with sensor immediately adjacent to one another. No difference was observed in sensor performance down to a radius of curvature of 7 mm and a 0.66±0.97% change in sensor sensitivity was observed at a radius of 5.5mm. The sensor array had less than 0.07 dB signal loss up to 5.5 Hz, linearity was 0.58±0.13% full scale (FS), drift was less than 0.2% FS at 250 s and less than 0.6% FS at 700 s, hysteresis was 0.78±0.18%. Repeatability was excellent with a coefficient of variation less than 2% at pressures between 0 and 1.000 MPa. Total system cost was relatively small as standard commercially available data acquisition systems could be utilized, with no specialized software, and individual sensors within an array can be replaced as needed. The new sensor array had small and scalable geometry and very acceptable intrinsic performance including minimal to no alteration in performance at physiologically relevant ranges of joint curvature. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Anticuerpo anticitrulina y manifestaciones extra articulares en artritis reumatoidea

    Directory of Open Access Journals (Sweden)

    María Jezabel Haye Salinas

    2013-02-01

    Full Text Available Los pacientes con artritis reumatidea (AR pueden desarrollar manifestaciones extra articulares (MExA, relacionadas a su morbi-mortalidad. Los anticuerpos anti-péptidos citrulinados cíclicos (ACCP son específicos para la AR y estan relacionados con el daño articular; y podrían tener rol patogénico en las MExA. Nuestro objetivo fue determinar la relación entre los anticuerpos ACCP y MExA en pacientes con AR. Se incluyeron 74 pacientes con diagnóstico de AR (ACR 1987 mayores de 18 años, de más de 6 meses de evolución, con MExA, y un control apareado por sexo y edad sin MExA por cada paciente. Las variables demográficas, clínicas y de laboratorio se compararon con test t, chi cuadrado o Mann-Whitney. Se realizó análisis multivariado; p ≤ 0.05. Los pacientes con MExA presentaron mayor título de anticuerpo ACCP (116 vs. 34, p < 0.01 y de factor reumatoideo (FR (108 vs. 34.5, p < 0.01. En el análisis multivariado hubo asociación entre la presencia de MExA y tabaquismo activo (p = 0.02, OR: 3.78, IC 95%: 1.17-12.2, FR positivo (p = 0.04, OR: 3.23, IC95%: 1.04-11.8 y anticuerpo ACCP positivo (p = 0.04, OR: 3.23, IC 95%: 1.04-10. Presentaron mayor título de anticuerpo ACCP que los controles los pacientes con xerostomía (109 vs. 34, p = 0.04, xeroftalmia (150 vs. 34, p < 0.01, nódulos sub-cutáneos (NSC (141 vs. 34, p < 0.01 y fibrosis pulmonar (158 vs. 34, p = 0.04. En conclusión, el anticuerpo ACCP positivo, el FR positivo y el tabaquismo activo fueron factores de riesgo independientes para el desarrollo de MExA.

  8. Correlation of laminated MR apperance of articular cartilage with histology

    International Nuclear Information System (INIS)

    Kim, Dong Joon; Suh, Jin Suck; Jeong, Eun Kee; Shin, Kyu Ho; Yang, Woo Ick

    1999-01-01

    To determine the correlation of laminae of different signal intensities (SI) of articular cartilage, as seen on magnetic resonance(MR) imaging with histologic layers, using artificially constructed landmarks. For a landmark that can exactly correlate the cartilage specimen with the MR image, five 'V'-shaped markings of different depths were made on the surface of bovine patella. Both T1-weighted (TR/TE : 300/14) and FSE T2-weighted images (TR/TE : 2000/53) were obtained on a 1.5T system with high gradient echo strength (25mT/m) and a voxel size of 78X78X2000μm. Images were obtained with 1) changed frequency-encoding directions on T1-weighted study, and 2) changed readout gradient strength ( X2, X1/2) on T2-weighted sequence. Raw image data were transferred to a workstation and signal intensity profile was generated for each image. 1 : 1 correlation of histologic specimens and MR images was performed. Line profile through the cartilage showed few peaks, suggesting changes in signal intensity profile in the cartilage. On the basis of artificial landmarks, the histologic zone was accurately identified. The histologic tangential and transitional zones correlated with superficial high SI on T1WI, as well as high and low SI on T2WI. On T1WI, the radial zone correlated with a lamina of intermediate SI, and on T2WI, with a lamina for which SI gradually decreased from high to low. Additional well-defined low and intermediate SI bands were noted on bovine T1WI in the lower radial zone. In both T1 and T2 studies, calcified cartilage layers were of low SI. On T1-weighted study, changes in the direction of frequency gradient did not lead to changes in the laminae. The alteration of readout gradient strengths did not result in an inversely proportional difference in the thickness of the laminae. These became more distinct thus ruling out chemical shift and susceptibility artifacts. The laminated appearance of articular cartilage, as seen on spin echo and fast spin-echo MR

  9. Behind the Footsteps of the Swedish Model?: The New Regulation of the Crime of Promotion and/or Facilitation of Adults Prostitution in Argentina

    Directory of Open Access Journals (Sweden)

    Hernán D. Grbavac

    2016-06-01

    Full Text Available This paper show the implications of the Act n.° 26.842 in the configuration of the crime of promotion and/or facilitation of adult’s prostitution (article 125 bis Argentine Penal Code. Particularly the amendments introduced by this Act are going to be investigated as well as the possibility that the new legal regulation has taken in a surreptitious manner, the so-called “Swedish model”, which means that the legal system, while still recognized as not offensive the exercise of the voluntary prostitution of adults, punishes the customer or claimant of surch services. On that line, this paper analyses the constitutionality or the unconstitutionality of the usefulness or the uselesness, of the current system in Sweden.

  10. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    Directory of Open Access Journals (Sweden)

    Ismael Palacios-García

    Full Text Available Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that

  11. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  12. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    Science.gov (United States)

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Protein-Enriched Liquid Preloads Varying in Macronutrient Content Modulate Appetite and Appetite-Regulating Hormones in Healthy Adults.

    Science.gov (United States)

    Dougkas, Anestis; Östman, Elin

    2016-03-01

    Dietary protein is considered the most satiating macronutrient, yet there is little evidence on whether the effects observed are attributable to the protein or to the concomitant manipulation of carbohydrates and fat. The aim was to examine the effect of consumption of preloads varying in macronutrient content on appetite, energy intake, and biomarkers of satiety. Using a randomized, within-subjects, 2-level factorial design, 36 adults [mean ± SD age: 27 ± 5 y; body mass index (in kg/m(2)): 24.3 ± 1.6) received a breakfast consisting of 1 of 7 isovolumetric (670 mL) and isoenergetic (2100 kJ) liquid preloads matched for energy density and sensory properties but with different macronutrient composition (levels: 9%, 24%, or 40% of energy from protein combined with a carbohydrate-to-fat ratio of 0.4, 2, or 3.6, respectively). Appetite ratings and blood samples were collected and assessed at baseline and every 30 and 60 min, respectively, until a lunch test meal, which participants consumed ad libitum, was served 3.5 h after breakfast. Prospective consumption was 12% lower after intake of the high-protein (40%)/3.6 carbohydrate:fat preload than after intake of the low-protein (9%)/0.4 carbohydrate:fat preload (P = 0.02) solely because of the increased protein, irrespective of the manipulation of the other macronutrients. Most appetite ratings tended to be suppressed (13%) with increasing protein content of the preloads (P appetite than did carbohydrates and fat. Modulating the nutritional profile of a meal by replacing fat with protein can influence appetite in healthy adults. This trial was registered at www.clinicaltrials.gov as NCT01849302. © 2016 American Society for Nutrition.

  14. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults

    Science.gov (United States)

    Chambers, Edward S; Viardot, Alexander; Psichas, Arianna; Morrison, Douglas J; Murphy, Kevin G; Zac-Varghese, Sagen E K; MacDougall, Kenneth; Preston, Tom; Tedford, Catriona; Finlayson, Graham S; Blundell, John E; Bell, Jimmy D; Thomas, E Louise; Mt-Isa, Shahrul; Ashby, Deborah; Gibson, Glen R; Kolida, Sofia; Dhillo, Waljit S; Bloom, Stephen R; Morley, Wayne; Clegg, Stuart; Frost, Gary

    2015-01-01

    Objective The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. Design To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. Results Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. Conclusions These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans. Trial registration number NCT00750438. PMID:25500202

  15. Tribology approach to the engineering and study of articular cartilage.

    Science.gov (United States)

    Wimmer, Markus A; Grad, Sibylle; Kaup, Thomas; Hänni, Markus; Schneider, Erich; Gogolewski, Sylwester; Alini, Mauro

    2004-01-01

    This study has been based on the assumption that articular motion is an important aspect of mechanotransduction in synovial joints. For this reason a new bioreactor concept, able to reproduce joint kinematics more closely, has been designed. The prototype consists of a rotating scaffold and/or cartilage pin, which is pressed onto an orthogonally rotating ball. By oscillating pin and ball in phase difference, elliptical displacement trajectories are generated that are similar to the motion paths occurring in vivo. Simultaneously, dynamic compression may be applied with a linear actuator, while two-step-motors generate the rotation of pin and ball. The whole apparatus is placed in an incubator. The control station is located outside. Preliminary investigations at the gene expression level demonstrated promising results. Compared with free-swelling control and/or simply compression-loaded samples, chondrocyte-seeded scaffolds as well as nasal cartilage explants exposed to interface motion both showed elevated levels of cartilage oligomeric matrix protein mRNA. The final design of the bioreactor will include four individual stations in line, which will facilitate the investigation of motion-initiated effects at the contacting surfaces in more detail.

  16. Proteoglycon synthesis by articular chondrocytes in agarose culture

    International Nuclear Information System (INIS)

    Sweet, M.B.E.; Grisillo, A.; Coehlo, A.; Schnitzler, C.M.

    1987-01-01

    Articular chondrocytes were isolated from knee joints of full-term bovine foetuses and grown in long-term agarose cultures. At intervals, cultures were labelled with 35 S-[sulphate] or D[6- 3 H] glucosamine. Newly synthesized proteoglycans were extracted with 4 M guanidine HCl and purified by isopycnic density gradient centrifugation or on DEAE cellulose in the presence of 8 M urea. Characterization of the proteoglycans revealed them to be identical in size to those present in the tissue and to be similarly capable of aggregation with hyaluronate. Newly synthesized chondroitin sulphate chains were identical in size, but newly synthesized keratan sulphate chains were somewhat larger than those present in the tissue. The newly synthesized proteoglycans were shown to contain the same range of O-linked oligosaccharides identified in proteoglycans of the Swarm rat chondrosarcoma. Cartilage-specific proteoglycan continued to be synthesized by the chondrocytes for up to 60 days; however, with time, proportionately more of a small non-aggregating proteoglycan appeared

  17. Thermal energy effects on articular cartilage: a multidisciplinary evaluation

    Science.gov (United States)

    Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.

    2002-05-01

    Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.

  18. Intra-articular knee temperature changes: ice versus cryotherapy device.

    Science.gov (United States)

    Warren, Todd A; McCarty, Eric C; Richardson, Airron L; Michener, Todd; Spindler, Kurt P

    2004-03-01

    Cryotherapy is commonly applied without research documenting the intra-articular (IA) temperature changes or subject discomfort between ice and a cryotherapy device. The null hypothesis is that no difference would be observed in IA temperature decline or subject tolerance between ice and the cryotherapy device in normal knees. Prospective, within-subject controlled clinical trial. Twelve subjects had IA temperature in suprapatellar pouch and skin recorded bilaterally after application of cryotherapy versus ice. Subject tolerance was recorded by 10-cm visual analog scale (VAS). Statistical evaluation was by Spearman's correlation analysis and paired, nonparametric Wilcoxon's signed rank test. Both significantly lowered (P cryotherapy) at 30 (3.3 degrees C/2.2 degrees C), 60 (12.8 degrees C/7.1 degrees C), and 90 (15.2 degrees C/9.7 degrees C) minutes. However, ice lowered the IA temperature significantly more than the cryotherapy device (P < 0.001) and was more painful by VAS at 30 and 60 minutes (P < 0.01). Both methods produced large declines in skin and IA temperatures. However, ice was more effective yet resulted in higher pain scores. The authors hypothesize that IA temperatures below a threshold are associated with increased perceived pain.

  19. MRI demonstration of hypertrophic articular cartilage repair in osteoarthritis

    International Nuclear Information System (INIS)

    Braunstein, E.M.; Brandt, K.D.; Albrecht, M.

    1990-01-01

    Transection of the anterior cruciate ligament in the dog produces changes in the unstable joint typical of osteoarthritis, although full-thickness catilage ulceration is rare. Information concerning the late fate of the cartilage after transection is meager. In the present study magnetic resonance imaging (MRI) was used to evaluate cartilage abnormalities 3 years after transection. Plain radiographs of the osteoarthritic and contralateral knees were obtained serially. MRI was performed 3 years after anterior cruciate ligament transection, at which time all three animals exhibited knee instability. Radiographs of the osteoarthritic knees showed osteophytes and subchondral sclerosis with progression between 2 and 3 years. On MRI, articular cartilage margins in the knee were indistinct, and the cartilage was thicker than that in the contralateral knee (maximum difference = 2.7 mm). This increase in thickness is consistent with biochemical data from dogs killed up to 64 weeks after creation of knee instability, which showed marked increases in cartilage bulk and in proteoglycan synthesis and concentration. The findings emphasize that increased matrix synthesis after anterior cruciate ligament transection leads to functional cartilage repair sustained even in the presence of persistent alteration of joint mechanics. (orig.)

  20. Intracortical chondroblastoma mimicking intra-articular osteoid osteoma

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tsuyoshi; Mukai, Kiyoshi [First Department of Pathology, Tokyo Medical University, Shinjuku 6-1-1, Shinjuku-ku, Tokyo 160-8402 (Japan); Goto, Takahiro [Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo (Japan); Motoi, Noriko [Department of Pathology, Toranomon Hospital, Tokyo (Japan)

    2002-10-01

    We report a case of intra-articular intracortical chondroblastoma of the femoral condyle which radiologically appeared to be osteoid osteoma. A 19-year-old woman presented with a 3-year history of gradually increasing pain in the right knee and had been on nonsteroidal anti-inflammatory drugs for pain relief. Laboratory data were within normal limits. Radiographs showed a well-demarcated lucent lesion in the medial condyle of the right femur. A nidus-like lesion with calcifications and a sclerotic rim located in the cortex was imaged by computed tomography scan. Magnetic resonance imaging revealed bone marrow edema and soft tissue swelling around the lesion, with low signal intensity of the nidus-like lesion on both T1- and T2-weighted images. The lesion was excised en bloc and the histological diagnosis of chondroblastoma was made. A mild inflammatory reaction was observed in the bone marrow and synovium around the tumor. The chondroblastoma cells were shown to express cyclooxygenase-2 with immunohistochemistry. (orig.)

  1. Articular chondrocyte alignment in the rat after surgically induced osteoarthritis

    Science.gov (United States)

    Takahashi, Hideaki; Tamaki, Hiroyuki; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    [Purpose] Chondrocytes in articular cartilage are aligned as columns from the joint surface. Notably, loss of chondrocyte and abnormalities of differentiation factors give rise to osteoarthritis (OA). However, the relationship between chondrocyte alignment and OA progression remains unclear. This study was performed to investigate temporal alterations in surgically-induced OA rats. [Subjects and Methods] Thirteen-week-old Wistar rats (n=30) underwent destabilized medial meniscus surgery in their right knee and sham surgery in their left knee. Specimens (n=5) were collected at 0, 1, 2, 4 and 8 weeks after surgery. Histological analysis with Osteoarthritis Research Society International (OARSI) scores, cell density ratios, cell alignments and correlation between OARSI scores and cell density/alignment was performed. [Results] OARSI scores were significantly higher at 1, 2, 4 and 8 weeks in the DMM group than in the control. Cell density ratios were decreased significantly in the DMM group at 2, 4 and 8 weeks compared with the control. Chondrocyte alignment was decreased significantly in the DMM group at 4 and 8 weeks. There were negative correlations between OA severity and cell density / cell alignment. [Conclusion] The results suggest a relationship between chondrocyte alignment and cartilage homeostasis, which plays an important role in OA progression. PMID:28533592

  2. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  3. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics.

    Science.gov (United States)

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J

    2016-01-01

    Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint.

  4. A study of crystalline biomaterials for articular cartilage bioengineering

    Energy Technology Data Exchange (ETDEWEB)

    Gross-Aviv, Talia [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105 (Israel)], E-mail: taliag@bgu.ac.il; DiCarlo, Bryan B. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: bdicarlo@rice.edu; French, Margaret M. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: mmfrench@rice.edu; Athanasiou, Kyriacos A. [Department of Bioengineering, Rice University, Houston, TX 77003 (United States)], E-mail: athanasiou@rice.edu; Vago, Razi [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105 (Israel)], E-mail: rvago@bgu.ac.il

    2008-12-01

    This study examines the suitability of marine origin coral species, Porites lutea (POR) and the hydrozoan Millepora dichotoma (MIL), for use as novel three dimensional growth matrices in the field of articular cartilage tissue engineering. Therefore, mesenchymal stem cells (MSCs) and chondrocytes were grown on the skeletal material obtained from each of these two organisms to investigate their potential use as three dimensional scaffolding for cartilage tissue growth. Chondrogenic induction of MSCs was achieved by addition of transforming growth factor-{beta}1 (TGF-{beta}1) and insulin growth factor-I (IGF-I). Cell adherence, proliferation, differentiation and tissue development were investigated through six weeks of culture. Cartilage tissue growth and chondrocytic phenotype maintenance of each cell type were examined by cell morphology, histochemical analyses, expression of collagen type II and quantitative measures of glycosaminoglycan (GAG) content. The MSCs and the chondrocytes were shown good adherence to the scaffolds and maintenance of the chondrocytic phenotype in the initial stages of culture. However after two weeks of culture on MIL and three weeks on POR these cultures began to exhibit signs of further differentiation and phenotypic loss. The shown results indicated that POR was a better substrate for chondrocytes phenotype maintenance than MIL. We believe that surface modification of POR combined with mechanical stimuli will provide a suitable environment for chondrogenic phenotype maintenance. Further investigation of POR and other novel coralline biomatrices is indicated and warranted in the field of cartilage tissue engineering applications.

  5. The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Damir Hudetz

    2017-10-01

    Full Text Available Osteoarthritis (OA is one of the leading musculoskeletal disorders in the adult population. It is associated with cartilage damage triggered by the deterioration of the extracellular matrix tissue. The present study explores the effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2017. A total of 17 patients were enrolled in the study, and 32 knees with osteoarthritis were assessed. Surgical intervention (lipoaspiration followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s was performed in all patients. Patients were assessed for visual analogue scale (VAS, delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC and immunoglobulin G (IgG glycans at the baseline, three, six and 12 months after the treatment. Magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively charged contrast gadopentetate dimeglumine (Gd-DTPA2− into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. In addition, dGEMRIC consequently reflected subsequent changes in the mechanical axis of the lower extremities. The results of our study indicate that the use of autologous and microfragmented adipose tissue in patients with knee OA (measured by dGEMRIC MRI increased glycosaminoglycan (GAG content in hyaline cartilage, which is in line with observed VAS and clinical results.

  6. Transtendon, Double-Row, Transosseous-Equivalent Arthroscopic Repair of Partial-Thickness, Articular-Surface Rotator Cuff Tears

    OpenAIRE

    Dilisio, Matthew F.; Miller, Lindsay R.; Higgins, Laurence D.

    2014-01-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-s...

  7. Arthroscopic intra- and extra-articular anterior cruciate ligament reconstruction with gracilis and semitendinosus tendons: a review

    OpenAIRE

    Marcacci, Maurilio; Zaffagnini, Stefano; Marcheggiani Muccioli, Giulio Maria; Neri, Maria Pia; Bondi, Alice; Nitri, Marco; Bonanzinga, Tommaso; Grassi, Alberto

    2011-01-01

    The purposes of this paper are to summarize the concepts relating to the use of a combined intra-articular and extra-articular reconstructive procedure in the arthroscopic treatment of a torn ACL and to review several operative techniques utilizing gracilis and semitendinosus tendons that are currently in use to treat this instability. The highly satisfactory results obtained over the time show that a combination of intra- and extra-articular procedures for ACL reconstruction is a valid surgi...

  8. dSir2 in the Adult Fat Body, but Not in Muscles, Regulates Life Span in a Diet-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Kushal Kr. Banerjee

    2012-12-01

    Full Text Available Sir2, an evolutionarily conserved NAD+-dependent deacetylase, has been implicated as a key factor in mediating organismal life span. However, recent contradictory findings have brought into question the role of Sir2 and its orthologs in regulating organismal longevity. In this study, we report that Drosophila Sir2 (dSir2 in the adult fat body regulates longevity in a diet-dependent manner. We used inducible Gal4 drivers to knock down and overexpress dSir2 in a tissue-specific manner. A diet-dependent life span phenotype of dSir2 perturbations (both knockdown and overexpression in the fat body, but not muscles, negates the effects of background genetic mutations. In addition to providing clarity to the field, our study contrasts the ability of dSir2 in two metabolic tissues to affect longevity. We also show that dSir2 knockdown abrogates fat-body dFOXO-dependent life span extension. This report highlights the importance of the interplay between genetic factors and dietary inputs in determining organismal life spans.

  9. Bisphenol A Modifies the Regulation Exerted by Testosterone on 5α-Reductase Isozymes in Ventral Prostate of Adult Rats

    Directory of Open Access Journals (Sweden)

    Pilar Sánchez

    2013-01-01

    Full Text Available The development, growth, and function of the prostate gland depend on androgen stimulation. The primary androgen in prostate is 5-dihydrotestosterone (DHT which is synthesized from circulating testosterone (T through the action of 5-reductase (5-R. Although 5-R occurs as five isozymes, only 5-R1 and 5-R2 are physiologically involved in steroidogenesis. The endocrine disruptor bisphenol A (BPA alters sexual organs, including the prostate. Our previous findings indicated that BPA decreased the expression of 5-R1 and 5-R2 in rat prostate but also circulating T. Thus, it is unclear whether BPA exerts this effect on 5-R isozymes by reducing circulating T or by any other mechanism. In this study, we examine the effects of short-term exposure to BPA at doses below 25 g/Kg/d and above 300 g/Kg/d of the TDI on mRNA levels of 5-R1 and 5-R2 in prostate of adult castrated rats supplemented with T to achieve constant circulating T levels. mRNA levels were measured by absolute quantitative RT-PCR, T levels by RIA, and DHT levels by ELISA. Our results indicated that in castrated rats treated with T BPA at the two doses studied significantly decreased the mRNA levels of both 5-R isozymes in a dose-dependent manner without modifications in circulating T.

  10. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Sung Min Han

    Full Text Available Mutations in VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA, two motor neuron diseases that often include alterations in energy metabolism. We have shown that C. elegans and Drosophila neurons secrete a cleavage product of VAPB, the N-terminal major sperm protein domain (vMSP. Secreted vMSPs signal through Roundabout and Lar-like receptors expressed on striated muscle. The muscle signaling pathway localizes mitochondria to myofilaments, alters their fission/fusion balance, and promotes energy production. Here, we show that neuronal loss of the C. elegans VAPB homolog triggers metabolic alterations that appear to compensate for muscle mitochondrial dysfunction. When vMSP levels drop, cytoskeletal or mitochondrial abnormalities in muscle induce elevated DAF-16, the Forkhead Box O (FoxO homolog, transcription factor activity. DAF-16 promotes muscle triacylglycerol accumulation, increases ATP levels in adults, and extends lifespan, despite reduced muscle mitochondria electron transport chain activity. Finally, Vapb knock-out mice exhibit abnormal muscular triacylglycerol levels and FoxO target gene transcriptional responses to fasting and refeeding. Our data indicate that impaired vMSP signaling to striated muscle alters FoxO activity, which affects energy metabolism. Abnormalities in energy metabolism of ALS patients may thus constitute a compensatory mechanism counterbalancing skeletal muscle mitochondrial dysfunction.

  11. Avaliação microbiológica e molecular de líquidos articulares e peri-articulares de suínos

    Directory of Open Access Journals (Sweden)

    Ana Carolina S. Faria

    2011-08-01

    Full Text Available No presente estudo coletaram-se 115 amostras de líquido articular e peri-articular de suínos com suspeita clínica de doença articular oriundos de maternidade (30,43%, creche (44,35% e crescimento/terminação (25,22% de Sistemas Intensivos de Produção de Suínos (SIPs para avaliação microbiológica e molecular. Observaram-se 57 (49,5% amostras positivas em pelo menos uma das técnicas. No isolamento microbiano, 39,13% das amostras foram positivas, sendo Streptococcus spp. (19,72%, Arcabobacterium pyogenes (18,13% e Escherichia coli (12,68% os mais frequentes, havendo também a presença de Candida sp. (2,6%. Na técnica de Reação em Cadeia da Polimerase (PCR, em 20% das amostras foram detectados microrganismos com uma maior ocorrência de Mycoplasma hyosinoviae (34,09%, Erysipelotrix tonsilarum (20,45% e Haemophilus parasuis (15,90%. Os microrganismos mais frequentemente isolados em animais com artrite, apresentaram distribuição em todas as faixas etárias, entretanto a fase de crescimento/terminação apresentou maior percentual (69% de amostras positivas. Streptococcus spp. ocorreu em todas as fases sendo o microrganismo mais detectado. M. hyosinoviae foi observado principalmente em animais de creche. Na fase de crescimento/terminação as bactérias predominantes foram A. pyogenes, H. parasuis e E. tonsilarum. Aproximadamente metade dos casos foi negativo o que indica a provável ocorrência de processos degenerativos como a osteocondrose, embora a participação de infecções articulares e peri-articulares possam representar grandes perdas com menor ou maior impacto dependendo da fase de criação. Problemas articulares e/ou peri-articulares de origem infecciosas foram encontrados em todas as propriedades estudadas. O principal agente foi M. hyosynoviae, principalmente na creche, porém não se pode descartar o envolvimento de problemas degenerativos em associação.

  12. The structure and function of the pericellular matrix of articular cartilage.

    Science.gov (United States)

    Wilusz, Rebecca E; Sanchez-Adams, Johannah; Guilak, Farshid

    2014-10-01

    Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM) that is both biochemically and biomechanically distinct from the extracellular matrix (ECM) of the tissue. While the PCM was first observed nearly a century ago, its role is still under investigation. In support of early hypotheses regarding its function, increasing evidence indicates that the PCM serves as a transducer of biochemical and biomechanical signals to the chondrocyte. Work over the past two decades has established that the PCM in adult tissue is defined biochemically by several molecular components, including type VI collagen and perlecan. On the other hand, the biomechanical properties of this structure have only recently been measured. Techniques such as micropipette aspiration, in situ imaging, computational modeling, and atomic force microscopy have determined that the PCM exhibits distinct mechanical properties as compared to the ECM, and that these properties are influenced by specific PCM components as well as disease state. Importantly, the unique relationships among the mechanical properties of the chondrocyte, PCM, and ECM in different zones of cartilage suggest that this region significantly influences the stress-strain environment of the chondrocyte. In this review, we discuss recent advances in the measurement of PCM mechanical properties and structure that further increase our understanding of PCM function. Taken together, these studies suggest that the PCM plays a critical role in controlling the mechanical environment and mechanobiology of cells in cartilage and other cartilaginous tissues, such as the meniscus or intervertebral disc. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  13. Effectiveness of imaging-guided intra-articular injection: a comparison study between fluoroscopy and ultrasound.

    Science.gov (United States)

    Furtado, Rita Nely Vilar; Pereira, Daniele Freitas; da Luz, Karine Rodrigues; dos Santos, Marla Francisca; Konai, Monique Sayuri; Mitraud, Sonia de Aguiar Vilela; Rosenfeld, Andre; Fernandes, Artur da Rocha Correa; Natour, Jamil

    2013-01-01

    Compare the effectiveness of ultrasound and fluoroscopy to guide intra-articular injections (IAI) in selected cases. A prospective study in our outpatient clinics at the Rheumatology Division at Universidade Federal de São Paulo (UNIFESP), Brazil, was conducted to compare the short-term (4 weeks) effectiveness of ultrasound and fluoroscopy-guided IAI in patients with rheumatic diseases. Inclusion criteria were: adults with refractory synovitis undergoing IAI with glucocorticoid. All patients had IAI performed with triamcinolone hexacetonide (20mg/ml) with varying doses according to the joint injected. A total of 71 rheumatic patients were evaluated (52 women, 44 whites). Mean age was 51.9 ± 13 years and 47 of them (66.2%) were on regular DMARD use. Analysis of the whole sample (71 patients) and hip sub-analysis (23 patients) showed that significant improvement was observed for both groups in terms of pain (P < 0.001). Global analysis also demonstrated better outcomes for patients in the FCG in terms of joint flexion (P < 0.001) and percentage change in joint flexion as compared to the USG. Likert scale score analyses demonstrated better results for the patients in the USG as compared to the FCG at the end of the study (P < 0.05). No statistically significant difference between groups was observed for any other study variable. Imaging-guided IAI improves regional pain in patients with various types of synovitis in the short term. For the vast majority of variables, no significant difference in terms of effectiveness was observed between fluoroscopy and ultrasound guided IAI.

  14. Usefulness of fluoroscopy-guided intra-articular injection of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Jae Sung; Lee, Joon Woo [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Lee, Ji Yeon [Kangwon National University College of Medicine, Chuncheon (Korea, Republic of)] (and others)

    2007-06-15

    To determine the accuracy of the intra-articular location of hyaluronic acid injection using a blind approach and to establish the usefulness of fluoroscopy-guided intra-articular injection. A fluoroscopy unit was used for 368 intra-articular injections of hyaluronic acid to 93 knees in 65 patients. Initially, blind needle positioning was conducted on the fluoroscopy table. The failure rate of the blind approach among the 368 injections was evaluated, and a relationship between the Kellgren-Lawrence grade (K-L grade) and the incidence of repeated failures using the blind approach was determined for injections to 52 knees in 37 patients who received a complete cycle of injections (five consecutive injections with a one-week interval between injections). Using a blind approach, 298 of 368 trials (81.2%) resulted in a needle tip being placed in an intra-articular location, while 70 of 368 trials resulted in an extra-articular placement of the needle tip. Among 52 knees to which a complete cycle of injection (five consecutive injections with a one-week interval between injections) was administered, repeated failure of intra-articular placement using the blind approach was seen for 18 knees (34.6%); a more severe K-L grade assigned was associated with a higher rate of repeated failure. However, the trend was not statistically significant based on the Chi-squared test ({rho} value = 0.14). Fluoroscopy-guided needle placement may be helpful to ensure therapeutic intra-articular injection of the knee.

  15. Usefulness of fluoroscopy-guided intra-articular injection of the knee

    International Nuclear Information System (INIS)

    Myung, Jae Sung; Lee, Joon Woo; Lee, Ji Yeon

    2007-01-01

    To determine the accuracy of the intra-articular location of hyaluronic acid injection using a blind approach and to establish the usefulness of fluoroscopy-guided intra-articular injection. A fluoroscopy unit was used for 368 intra-articular injections of hyaluronic acid to 93 knees in 65 patients. Initially, blind needle positioning was conducted on the fluoroscopy table. The failure rate of the blind approach among the 368 injections was evaluated, and a relationship between the Kellgren-Lawrence grade (K-L grade) and the incidence of repeated failures using the blind approach was determined for injections to 52 knees in 37 patients who received a complete cycle of injections (five consecutive injections with a one-week interval between injections). Using a blind approach, 298 of 368 trials (81.2%) resulted in a needle tip being placed in an intra-articular location, while 70 of 368 trials resulted in an extra-articular placement of the needle tip. Among 52 knees to which a complete cycle of injection (five consecutive injections with a one-week interval between injections) was administered, repeated failure of intra-articular placement using the blind approach was seen for 18 knees (34.6%); a more severe K-L grade assigned was associated with a higher rate of repeated failure. However, the trend was not statistically significant based on the Chi-squared test (ρ value = 0.14). Fluoroscopy-guided needle placement may be helpful to ensure therapeutic intra-articular injection of the knee

  16. Intra-articular gouty tophi of the knee: CT and MR imaging in 12 patients

    International Nuclear Information System (INIS)

    Chen, C.K.H.; Yeh Lee Ren; Pan Huay-Ben; Yang Chien-Fang; National Yang-Ming Univ., Taipei; Lu Yih-Chau; Wang Jyh-Seng; Resnick, D.; California Univ., Los Angeles, CA

    1999-01-01

    Objective. To define the imaging characteristics of intra-articular tophi of the knee. Design and patients. Twelve patients with intra-articular tophi in the knee were studied with routine MR imaging, gadolinium (Gd)-enhanced MR imaging, and CT over a 4-year period. There were 11 men and one woman, 25-82 years of age (mean age 48 years). Four patients did not have a documented history of gout at the time of the MR examination. The diagnosis of intra-articular tophi was provided by arthroscopy and histological examination (5 patients), by microscopic study of joint fluid (5 patients), or by characteristic clinical, laboratory and imaging findings (2 patients). Results. In 15 MR examinations the tophi were located purely intra-articularly in 10 knees. In the remaining five MR studies, periarticular soft tissues or bone, or both, were involved. All the intra-articular tophi manifested low to intermediate signal intensity on both T1- and T2-weighted images. All five Gd-enhanced MR examinations demonstrated a heterogeneous peripheral enhancement. All 10 CT scans showed varying degrees of stippled calcifications within the tophi. The nature of the calcifications was confirmed on histological examination in three patients. Conclusion. Presenting clinical manifestations of gout may relate to intra-articular tophaceous deposits. Such deposits present as masses on MR images with low to intermediate signal intensity on both T1- and T2-weighted images and a characteristic enhancement pattern following intravenous Gd administration. These features relate primarily to internal calcifications, which are most evident on CT images. MR evaluation (including Gd administration) supplemented, in some cases, with CT scanning allows accurate diagnosis of intra-articular tophaceous deposits. (orig.)

  17. Thought suppression, impaired regulation of urges, and Addiction-Stroop predict affect-modulated cue-reactivity among alcohol dependent adults.

    Science.gov (United States)

    Garland, Eric L; Carter, Kristin; Ropes, Katie; Howard, Matthew O

    2012-01-01

    Abstinent alcohol dependent individuals commonly employ thought suppression to cope with stress and intrusive cognitions about alcohol. This strategy may inadvertently bias attention towards alcohol-related stimuli while depleting neurocognitive resources needed to regulate urges, manifested as decreased heart rate variability (HRV) responsivity to alcohol cues. The present study tested the hypothesis that trait and state thought suppression, impaired regulation of urges, and alcohol attentional bias as measured by the Addiction-Stroop would have significant effects on the HRV responsivity of 58 adults in residential treatment for alcohol dependence (mean age=39.6 ± 9.4, 81% female) who participated in an affect-modulated cue-reactivity protocol. Regression analyses controlling for age, level of pre-treatment alcohol consumption, and baseline HRV indicated that higher levels of trait thought suppression, impaired regulation of alcohol urges, and attentional fixation on alcohol cues were associated with lower HRV responsivity during stress-primed alcohol cue-exposure. Moreover, there was a significant state × trait suppression interaction on HRV cue-responsivity, such that alcohol dependent persons reporting high levels of state and trait suppression exhibited less HRV during cue-exposure than persons reporting low levels of state and trait suppression. Results suggest that chronic thought suppression taxes regulatory resources reflected in reduced HRV responsivity, an effect that is particularly evident when high trait suppressors engage in intensive suppression of drinking-related thoughts under conditions of stress. Treatment approaches that offer effective alternatives to the maladaptive strategy of suppressing alcohol urges may be crucial for relapse prevention. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Stick-slip friction and wear of articular joints

    Science.gov (United States)

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  19. Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage.

    Science.gov (United States)

    Kanca, Yusuf; Milner, Piers; Dini, Daniele; Amis, Andrew A

    2018-06-01

    This research investigated the in-vitro wear and friction performance of polycarbonate urethane (PCU) 80A as they interact with articular cartilage, using a customised multidirectional pin-on-plate tester. Condyles were articulated against PCU 80A discs (Bionate ® I and Bionate ® II) (configuration 1) and the results arising from these tests were compared to those recorded during the sliding of PCU pins against cartilage plates (configuration 2). Configuration 1 produced steadily increasing coefficient of friction (COF) (up to 0.64 ± 0.05) and had the same trend as the cartilage-on-stainless steel articulation (positive control). When synovial fluid rather than bovine calf serum was used as lubricant, average COF significantly decreased from 0.50 ± 0.02-0.38 ± 0.06 for condyle-on-Bionate ® I (80AI) and from 0.41 ± 0.02-0.24 ± 0.04 for condyle-on-Bionate ® II (80AII) test configurations (p  0.05). A good correlation (R 2 =0.84) was found between the levels of average COF and the volume of cartilage lost during testing; increasing wear was found at higher levels of COF. Configuration 2 showed low and constant COF values (0.04 ± 0.01), which were closer to the negative control (0.03 ± 0.01) and significantly lower than configuration 1 (p tribological performance, which suggests it is more favourable for use in hemiarthroplasty design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. MR diffusion weighted imaging experimental study on early stages of articular cartilage degeneration of knee

    International Nuclear Information System (INIS)

    Dai Jingru; Dai Shipeng; Pang Jun; Xu Xiaokun; Wang Yuexin; Zhang Zhigang

    2008-01-01

    Objective: To study the appearance of MR diffusion weighted imaging in early stages of cartilage degeneration and to detect its values. Methods: In 20 goat left knees, intra- articular injection of 5 units of papain was performed causing a loss of cartilage proteoglycan. Twenty right knees were used as control group. MR diffusion weighted imaging was performed at 24 hours after intra-articular injection of papain. ADC of each part of articular cartilage was measured and compared with each other. The proteoglycan content was measured biochemically and histochemically. Routine MRI and DWI were performed in 100 patients with osteoarthritis and 20 healthy people. The ADC of each interested part of articular cartilage was measured and compared with each other. Results: In experimental control group, the ADCav of articular cartilage was (14.2±2.3) x 10 -4 mm 2 /s. In early stages of cartilage degeneration group, the ADCav of articular cartilage was (17.5±4.2) x 10 -4 mm 2 /s. The ADCav of the control group was lower than that of the early stages of cartilage degeneration group (t=2.709; P=0.016). The proteloglycan content of articular cartilage was 4.22 x 10 6 μg/kg in control group, and 0.82 x 10 6 μg/kg in experimental group at 24 hours after injection of papain. The difference between control group and experimental group was significant (t=2.705, P=0.018). In healthy people, the ADCav of articular cartilage was (7.6±2.2) x 10 -4 mm 2 /s. In osteoarthritis group, the ADCav of articular cartilage was (10.3±4.2) x 10 -4 mm 2 /s. The ADCav in the healthy group was significantly lower than that in the osteoarthritis group (t=2.609,P=0.014). Conclusion: DWI is an useful method in detecting early stages of cartilage degeneration which can not be showed on routine sequences. (authors)

  1. Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives

    Science.gov (United States)

    Yapuncich, Gabriel S; Boyer, Doug M

    2014-01-01

    The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample

  2. Evaluation on Cartilage Morphology after Intra-Articular Injection of Titanium Dioxide Nanoparticles in Rats

    International Nuclear Information System (INIS)

    Wang, J.; Gao, Y.; Hou, Y.; Zhao, F.; Pu, F.; Liu, X.; Fan, Y.; Wu, Z.

    2012-01-01

    Nano scale wear particles would generate from orthopedic implants with nano scale surface topography because of residual stress. In this study, the effect of TiO 2 nanoparticles on articular cartilage was investigated by intra-articular injection in rats. Using contrast-enhanced high-resolution micro computed tomography (micro-CT) technology, the decreased thickness of articular cartilage in distal femur was determined at 1, 7, 14, and 30 days after nanoparticle exposure. A strong linear correlation (r=0.928, P 2 nanoparticles, cartilage thickness showed time-dependent decrease, and cartilage volume was decreased too. Further, the histopathological examination showed the edema chondrocyte and shrinked nucleus in the radial and calcified zone of cartilage. The ultrastructure of articular cartilage implied that the chondrocytes was degenerated, expressing as the condensed chromatin, the dilated endoplasmic reticulum, and the rich mitochondria. Even, the fragments of ruptured endoplasmic reticulum were observed in the cytoplasm of chondrocytes at postexposure day 30. Results indicate that potential damage of articular cartilage was induced by particles existed in knee joint and imply that the bio monitoring should be strengthened in patients with prostheses replacement.

  3. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures)

    Energy Technology Data Exchange (ETDEWEB)

    Bohndorf, K. [Department of Radiology, Zentralklinikum Augsburg (Germany)

    1999-10-01

    Fractures involving the articulating surfaces of bone are a common cause of chronic disability after joint injury. Acute fractures of the articular surface typically run parallel to the surface and are confined to the cartilage and/or the immediate subchondral cancellous bone. They should be distinguished from vertical or oblique bone fractures with intra-articular extension. This article reviews the mechanism of acute articular surface injuries, as well as their incidence, clinical presentation, radiologic appearance and treatment. A classification is presented based on direct inspection (arthroscopy) and imaging (especially MRI), emphasizing the distinction between lesions with intact (subchondral impaction and subchondral bone bruises) and disrupted (chondral, osteochondral lesions) cartilage. Hyaline cartilage, subchondral bone plate and subchondral cancellous bone are to be considered an anatomic unit. Subchondral articular surface lesions, osteochondral fractures and solely chondral fractures are different manifestations of impaction injuries that affect the articulating surface. Of the noninvasive imaging modalities, conventional radiography and MRI provide the most relevant information. The appropriate use of short tau inversion recovery, T1-weighted and T2-weighted (turbo) spin-echo as well as gradient-echo sequences, enables MRI to classify the various acute articular surface lesions with great accuracy and provides therapeutic guidance. (orig.)

  4. Indentation stiffness does not discriminate between normal and degraded articular cartilage.

    Science.gov (United States)

    Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle

    2007-08-01

    Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.

  5. X-ray dark field imaging of human articular cartilage: Possible clinical application to orthopedic surgery

    International Nuclear Information System (INIS)

    Kunisada, Toshiyuki; Shimao, Daisuke; Sugiyama, Hiroshi; Takeda, Ken; Ozaki, Toshifumi; Ando, Masami

    2008-01-01

    Despite its convenience and non-invasiveness on daily clinical use, standard X-ray radiography cannot show articular cartilage. We developed a novel type of X-ray dark field imaging (DFI), which forms images only by a refracted beam with very low background illumination. We examined a disarticulated distal femur and a shoulder joint with surrounding soft tissue and skin, both excised from a human cadaver at the BL20B2 synchrotron beamline at SPring-8. The field was 90 mm wide and 90 mm high. Articular cartilage of the disarticulated distal femur was obvious on DFI, but not on standard X-ray images. Furthermore, DFI allowed visualization in situ of articular cartilage of the shoulder while covered with soft tissue and skin. The gross appearance of the articular cartilage on the dissected section of the proximal humerus was identical to the cartilage shown on the DFI image. These results suggested that DFI could provide a clinically accurate method of assessing articular cartilage. Hence, DFI would be a useful imaging tool for diagnosing joint disease such as osteoarthritis

  6. X-ray dark field imaging of human articular cartilage: Possible clinical application to orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kunisada, Toshiyuki [Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558 (Japan); Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558 (Japan)], E-mail: toshi-kunisada@umin.ac.jp; Shimao, Daisuke [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki 300-2394 (Japan); Sugiyama, Hiroshi [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Takeda, Ken; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558 (Japan); Ando, Masami [Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510 (Japan)

    2008-12-15

    Despite its convenience and non-invasiveness on daily clinical use, standard X-ray radiography cannot show articular cartilage. We developed a novel type of X-ray dark field imaging (DFI), which forms images only by a refracted beam with very low background illumination. We examined a disarticulated distal femur and a shoulder joint with surrounding soft tissue and skin, both excised from a human cadaver at the BL20B2 synchrotron beamline at SPring-8. The field was 90 mm wide and 90 mm high. Articular cartilage of the disarticulated distal femur was obvious on DFI, but not on standard X-ray images. Furthermore, DFI allowed visualization in situ of articular cartilage of the shoulder while covered with soft tissue and skin. The gross appearance of the articular cartilage on the dissected section of the proximal humerus was identical to the cartilage shown on the DFI image. These results suggested that DFI could provide a clinically accurate method of assessing articular cartilage. Hence, DFI would be a useful imaging tool for diagnosing joint disease such as osteoarthritis.

  7. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures)

    International Nuclear Information System (INIS)

    Bohndorf, K.

    1999-01-01

    Fractures involving the articulating surfaces of bone are a common cause of chronic disability after joint injury. Acute fractures of the articular surface typically run parallel to the surface and are confined to the cartilage and/or the immediate subchondral cancellous bone. They should be distinguished from vertical or oblique bone fractures with intra-articular extension. This article reviews the mechanism of acute articular surface injuries, as well as their incidence, clinical presentation, radiologic appearance and treatment. A classification is presented based on direct inspection (arthroscopy) and imaging (especially MRI), emphasizing the distinction between lesions with intact (subchondral impaction and subchondral bone bruises) and disrupted (chondral, osteochondral lesions) cartilage. Hyaline cartilage, subchondral bone plate and subchondral cancellous bone are to be considered an anatomic unit. Subchondral articular surface lesions, osteochondral fractures and solely chondral fractures are different manifestations of impaction injuries that affect the articulating surface. Of the noninvasive imaging modalities, conventional radiography and MRI provide the most relevant information. The appropriate use of short tau inversion recovery, T1-weighted and T2-weighted (turbo) spin-echo as well as gradient-echo sequences, enables MRI to classify the various acute articular surface lesions with great accuracy and provides therapeutic guidance. (orig.)

  8. Blood Glucose Levels Following Intra-Articular Steroid Injections in Patients with Diabetes: A Systematic Review.

    Science.gov (United States)

    Choudhry, M N; Malik, R A; Charalambous, Charalambos Panayiotou

    2016-03-22

    Parenterally administered steroids have been shown to affect the metabolism of glucose and to cause abnormal blood glucose levels in diabetic patients. These abnormal blood glucose levels in diabetic patients raise concerns that intra-articular steroid injections also may affect blood glucose levels. We performed a systematic review of studies examining the effect of intra-articular steroid injections on blood glucose levels in patients with diabetes mellitus. A literature search of the PubMed, EMBASE, AMED, and CINAHL databases using all relevant keywords and phrases revealed 532 manuscripts. After the application of inclusion criteria, seven studies with a total of seventy-two patients were analyzed. All studies showed a rise in blood glucose levels following intra-articular steroid injection. Four of the seven studies showed a substantial increase in blood glucose. Peak values reached as high as 500 mg/dL. The peak increase in blood glucose did not occur immediately following intra-articular steroid injection, and in some cases it took several days to occur. In many patients, post-injection hyperglycemia occurred within twenty-four to seventy-two hours. Intra-articular steroid injections may cause hyperglycemia in patients with diabetes mellitus, and patients should be warned of this complication. Diabetic patients should be advised to regularly monitor their blood glucose levels for up to a week after injection and should seek medical advice if safe thresholds are breached. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  9. Effectiveness of the Self-Regulation eHealth Intervention "MyPlan1.0." on Physical Activity Levels of Recently Retired Belgian Adults: A Randomized Controlled Trial

    Science.gov (United States)

    Van Dyck, Delfien; Plaete, Jolien; Cardon, Greet; Crombez, Geert; De Bourdeaudhuij, Ilse

    2016-01-01

    The study purpose was to test the effectiveness of the self-regulation eHealth intervention "MyPlan1.0." to increase physical activity (PA) in recently retired Belgian adults. This study was a randomized controlled trial with three points of follow-up/modules (baseline to 1-week to 1-month follow-up). In total, 240 recently retired…

  10. Análise da sintomatologia em pacientes com disfunções intra-articulares da articulação temporomandibular Analysis of symptomatology in patients with intra-articular disorders of the temporomandibular joint

    Directory of Open Access Journals (Sweden)

    Sílvio Henrique de Paula DONEGÁ

    1997-01-01

    Full Text Available Foi realizado estudo analisando a sintomatologia em pacientes com disfunções intra-articulares da articulação temporomandibular. A queixa mais citada foi de dor na região pré-auricular (40,7%. Sintomatologia dolorosa articular (63,2% e ruídos articulares (83,3% foram os achados mais comuns ao exame clínico. Os ruídos articulares mais freqüentes foram os estalos (66,6%. Dor muscular ocorreu, em especial, nos músculos pterigóideo medial e lateral e na inserção do temporal. Houve decréscimo na amplitude para a protrusão dentre os movimentos mandibulares máximosThe study analyzed the symptomatology in patients with intra-articular disorders of the temporomandibular joint. The most frequent complaint was pain in the preauricular region (40.7%. Articular pain (63.2% and articular sounds (83.3% were the most common findings during clinical examination. Muscular pain occurred particularly in the medial and lateral pterygoid muscles and at the insertion of the temporalis muscle. The most frequent articular sound was clicking (66.6%. There was a decrease in extent of protrusion among the mandibular border positions.

  11. Extra-Articular Lateral Tenodesis for Anterior Cruciate Ligament Deficient Knee: A Case Report

    Science.gov (United States)

    García-Germán, Diego; Menéndez, Pablo; de la Cuadra, Pablo; Rodríguez-Arozena, Ricardo

    2013-01-01

    We present the case of an extra-articular lateral tenodesis for an anterior cruciate ligament (ACL) deficient knee. A 46-year-old male patient sustained an ACL graft rupture after a motorcycle accident. He complained of rotational instability and giving-way episodes. His previous graft was fixed by an intra-articular femoral staple that was not possible to remove at the time of the ACL revision. A modified Lemaire procedure was then performed. He gained rotational stability and was able to resume his sporting activities. We believe that isolated extra-articular reconstructions may still have a role in selected indications including moderate-demand patients complaining of rotational instability after ACL graft failure. PMID:24369517

  12. Caracterización clínica de pacientes parcialmente desdentados con disfunciones articulares

    Directory of Open Access Journals (Sweden)

    Marcia Hortensia Corona Carpio

    2015-04-01

    Full Text Available Se realizó un estudio descriptivo y transversal de 374 desdentados parciales con disfunción mandibular, quienes acudieron al servicio de prótesis Estomatológica de la Clínica Estomatológica Provincial Docente "Mártires del Moncada" de Santiago de Cuba desde octubre de 2013 hasta igual mes de 2014, para determinar la presencia de ruidos articulares en su articulación temporomandibular. Entre los principales resultados prevalecieron el sexo femenino, el grupo etario de 20-29 años y como manifestaciones clínicas de disfunción articular: el sonido articular en forma de chasquido al inicio y final de la apertura bucal (51,6 y 38,7 %, respectivamente, así como la desviación mandibular (42,4 %

  13. Extra-Articular Lateral Tenodesis for Anterior Cruciate Ligament Deficient Knee: A Case Report

    Directory of Open Access Journals (Sweden)

    Diego García-Germán

    2013-01-01

    Full Text Available We present the case of an extra-articular lateral tenodesis for an anterior cruciate ligament (ACL deficient knee. A 46-year-old male patient sustained an ACL graft rupture after a motorcycle accident. He complained of rotational instability and giving-way episodes. His previous graft was fixed by an intra-articular femoral staple that was not possible to remove at the time of the ACL revision. A modified Lemaire procedure was then performed. He gained rotational stability and was able to resume his sporting activities. We believe that isolated extra-articular reconstructions may still have a role in selected indications including moderate-demand patients complaining of rotational instability after ACL graft failure.

  14. Bilateral spondylolysis of inferior articular processes of the fourth lumbar vertebra: a case report.

    Science.gov (United States)

    Koakutsu, Tomoaki; Morozumi, Naoki; Hoshikawa, Takeshi; Ogawa, Shinji; Ishii, Yushin; Itoi, Eiji

    2012-03-01

    Lumbar spondylolysis, a well known cause of low back pain, usually affects the pars interarticularis of a lower lumbar vertebra and rarely involves the articular processes. We report a rare case of bilateral spondylolysis of inferior articular processes of L4 vertebra that caused spinal canal stenosis with a significant segmental instability at L4/5 and scoliosis. A 31-year-old male who had suffered from low back pain since he was a teenager presented with numbness of the right lower leg and scoliosis. Plain X-rays revealed bilateral spondylolysis of inferior articular processes of L4, anterolisthesis of the L4 vertebral body, and right lateral wedging of the L4/5 disc with compensatory scoliosis in the cephalad portion of the spine. MR images revealed spinal canal stenosis at the L4/5 disc level. Posterior lumbar interbody fusion of the L4/5 was performed, and his symptoms were relieved.

  15. Regional polarization sensitivity of articular cartilage by using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Peavy, George M.

    2007-02-01

    In this study, PS-OCT is used to image fresh bovine joints to investigate the orientation of collagen fibrils in relation to optical phase retardation to better understand the distribution of normal matrix orientation and articular cartilage birefringence in different regions of a whole joint. Understanding and mapping variations in matrix organization and orientation within the normal joint is an important issue in potential applications of PS-OCT for evaluation and diagnosis of degenerative joint disease (DJD). The experimental results demonstrate that articular cartilage is not polarization sensitive on the edge of the medial, but polarization sensitive on the lateral edge of the tibial plateau. The collagen orientation on the edge of the joint is different from the central areas of the joint. Normal articular cartilage demonstrates regional polarization sensitivity within joints that is important to understand in order to accurately assess cartilage health by PS-OCT.

  16. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Science.gov (United States)

    Wrage, Philip C; Tran, Thi; To, Khai; Keefer, Edward W; Ruhn, Kelly A; Hong, John; Hattangadi, Supriya; Treviño, Isaac; Tansey, Malú G

    2008-01-16

    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key

  17. Return to sports participation after articular cartilage repair in the knee: scientific evidence.

    Science.gov (United States)

    Mithoefer, Kai; Hambly, Karen; Della Villa, Stefano; Silvers, Holly; Mandelbaum, Bert R

    2009-11-01

    Articular cartilage injury in the athlete's knee presents a difficult clinical challenge. Despite the importance of returning injured athletes to sports, information is limited on whether full sports participation can be successfully achieved after articular cartilage repair in the knee. Systematic analysis of athletic participation after articular cartilage repair will demonstrate the efficacy of joint surface restoration in high-demand patients and help to optimize outcomes in athletes with articular cartilage injury of the knee. Systematic review. A comprehensive literature review of original studies was performed to provide information about athletic participation after articular cartilage repair. The athlete's ability to perform sports postoperatively was assessed by activity outcome scores, rate of return to sport, timing of the return, level of postoperative sports participation, and the continuation of athletic activity over time. Twenty studies describing 1363 patients were included in the review, with an average follow-up of 42 months. Return to sports was possible in 73% overall, with highest return rates after osteochondral autograft transplantation. Time to return to sports varied between 7 and 18 months, depending on the cartilage repair technique. Initial return to sports at the preinjury level was possible in 68% and did not significantly vary between surgical techniques. Continued sports participation at the preinjury level was possible in 65%, with the best durability after autologous chondrocyte transplantation. Several factors affected the ability to return to sport: athlete's age, preoperative duration of symptoms, level of play, lesion size, and repair tissue morphology. Articular cartilage repair in the athletic population allows for a high rate of return to sports, often at the preinjury level. Return to sports participation is influenced by several independent factors. The findings provide pertinent information that is helpful for the

  18. Mild electrical stimulation with heat stimulation increase heat shock protein 70 in articular chondrocyte.

    Science.gov (United States)

    Hiraoka, Nobuyuki; Arai, Yuji; Takahashi, Kenji A; Mazda, Osam; Kishida, Tsunao; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Morino, Saori; Suico, Mary Ann; Kai, Hirofumi; Kubo, Toshikazu

    2013-06-01

    The objective of this study is to investigate the effects of mild electrical stimulation (MES) and heat stress (HS) on heat shock protein 70 (HSP70), that protects chondrocytes and enhances cartilage matrix metabolism, in chondrocyte and articular cartilage. Rabbit articular chondrocytes were treated with MES and/or HS. The safeness was assessed by LDH assay and morphology. HSP70 protein, ubiquitinated proteins and HSP70 mRNA were examined by Western blotting and real-time PCR. Rat knee joints were treated with MES and/or HS. HSP70 protein, ubiquitinated proteins, HSP70 mRNA and proteoglycan core protein (PG) mRNA in articular cartilage were investigated. In vitro, HS increased HSP70 mRNA and HSP70 protein. MES augmented ubiquitinated protein and HSP70 protein, but not HSP70 mRNA. MES + HS raised HSP70 mRNA and ubiquitinated protein, and significantly increased HSP70 protein. In vivo, HS and MES + HS treatment augmented HSP70 mRNA. HS modestly augmented HSP70 protein. MES + HS significantly increased HSP70 protein and ubiquitinated proteins. PG mRNA was markedly raised by MES + HS. This study demonstrated that MES, in combination with HS, increases HSP70 protein in chondrocytes and articular cartilage, and promotes cartilage matrix metabolism in articular cartilage. MES in combination with HS can be a novel physical therapy for osteoarthritis by inducing HSP70 in articular cartilage. Copyright © 2013 Orthopaedic Research Society.

  19. Inflammatory Microenvironment Persists After Bone Healing in Intra-articular Ankle Fractures.

    Science.gov (United States)

    Adams, Samuel B; Leimer, Elizabeth M; Setton, Lori A; Bell, Richard D; Easley, Mark E; Huebner, Janet L; Stabler, Thomas V; Kraus, Virginia B; Olson, Steven A; Nettles, Dana L

    2017-05-01

    Post-traumatic osteoarthritis (PTOA) is responsible for the majority of cases of ankle arthritis. While acute and end-stage intra-articular inflammation has previously been described, the state of the joint between fracture healing and end-stage PTOA remains undefined. This study characterized synovial fluid (SF) composition of ankles after bone healing of an intra-articular fracture to identify factors that may contribute to the development of PTOA. Of an original 21 patients whose SF was characterized acutely following intra-articular ankle fractures, 7 returned for planned hardware (syndesmotic screw) removal after bone healing (approximately 6 months) and consented to a second bilateral SF collection. SF concentrations of 15 cytokines and matrix metalloproteinases (MMPs) and 2 markers each of cartilage catabolism (CTXII and glycosaminoglycan) and hemarthrosis (biliverdin and bilirubin) were compared for previously fractured and contralateral, uninjured ankles from the same patient. Analysis was also performed to determine the effect of the number of fracture lines and involvement of soft tissue on SF composition. Interleukin (IL)-6, IL-8, MMP-1, MMP-2, and MMP-3 were significantly elevated in the SF from healed ankles compared to matched contralateral uninjured ankles at approximately 6 months after fracture. There were no differences in markers of cartilage catabolism or hemarthrosis. Only IL-1α was affected by the number of fracture lines while differences were not detected for other analytes or with respect to the involvment of soft tissue. Sustained intra-articular inflammation, even after complete bone healing, was suggested by elevations of pro-inflammatory cytokines (IL-6 and IL-8). In addition, elevated concentrations of MMPs were also noted and were consistent with a persistent inflammatory environment. This study suggests new evidence of persistent intra-articular inflammation after intra-articular ankle fracture healing and suggests potential

  20. The protective effect of meniscus allograft transplantation on articular cartilage: a systematic review of animal studies.

    Science.gov (United States)

    Rongen, J J; Hannink, G; van Tienen, T G; van Luijk, J; Hooijmans, C R

    2015-08-01

    Despite widespread reporting on clinical results, the effect of meniscus allograft transplantation on the development of osteoarthritis is still unclear. The aim of this study was to systematically review all studies on the effect of meniscus allograft transplantation on articular cartilage in animals. Pubmed and Embase were searched for original articles concerning the effect of meniscus allograft transplantation on articular cartilage compared with both its positive (meniscectomy) and negative (either sham or non-operated) control in healthy animals. Outcome measures related to assessment of damage to articular cartilage were divided in five principal outcome categories. Standardized mean differences (SMD) were calculated and pooled to obtain an overall SMD and 95% confidence interval. 17 articles were identified, representing 14 original animal cohorts with an average timing of data collection of 24 weeks [range 4 weeks; 30 months]. Compared to a negative control, meniscus allograft transplantation caused gross macroscopic (1.45 [0.95; 1.95]), histological (3.43 [2.25; 4.61]) damage to articular cartilage, and osteoarthritic changes on radiographs (3.12 [1.42; 4.82]). Moreover, results on histomorphometrics and cartilage biomechanics are supportive of this detrimental effect on cartilage. On the other hand, meniscus allograft transplantation caused significantly less gross macroscopic (-1.19 [-1.84; -0.54]) and histological (-1.70 [-2.67; -0.74]) damage to articular cartilage when compared to meniscectomy. However, there was no difference in osteoarthritic changes on plain radiographs (0.04 [-0.48; 0.57]), and results on histomorphometrics and biomechanics did neither show a difference in effect between meniscus allograft transplantation and meniscectomy. In conclusion, although meniscus allograft transplantation does not protect articular cartilage from damage, it reduces the extent of it when compared with meniscectomy. Copyright © 2015 Osteoarthritis

  1. Mapping the articular contact area of the long head of the biceps tendon on the humeral head.

    Science.gov (United States)

    Morris, Brent J; Byram, Ian R; Lathrop, Ray A; Dunn, Warren R; Kuhn, John E

    2014-01-01

    The purpose of this investigation was to calculate the contact surface area of the long head of the biceps (LHB) in neutral position and abduction. We sought to determine whether the LHB articulates with the humeral head in a consistent pattern comparing articular contact area in neutral position and abduction. Eleven fresh frozen matched cadaveric shoulders were analyzed. The path of the biceps tendon on the articular surface of the humeral head and the total articular surface were digitized using a MicronTracker 2 H3-60 three-dimensional optical tracker. Contact surface area was significantly less in abduction than in neutral position (P = 0.002) with a median ratio of 41% (36%, 47.5%). Ratios of contact area in neutral position to full articular surface area were consistent between left and right shoulders (rho = 1, P = 0.017) as were ratios of abduction area to full articular surface area (rho = 0.97, P = 0.005). The articular contact surface area is significantly greater in neutral position than abduction. The ratios of articular contact surface areas to total humeral articular surface areas have a narrow range and are consistent between left and right shoulders of the same cadaver.

  2. Mapping the Articular Contact Area of the Long Head of the Biceps Tendon on the Humeral Head

    Directory of Open Access Journals (Sweden)

    Brent J. Morris

    2014-01-01

    Full Text Available The purpose of this investigation was to calculate the contact surface area of the long head of the biceps (LHB in neutral position and abduction. We sought to determine whether the LHB articulates with the humeral head in a consistent pattern comparing articular contact area in neutral position and abduction. Eleven fresh frozen matched cadaveric shoulders were analyzed. The path of the biceps tendon on the articular surface of the humeral head and the total articular surface were digitized using a MicronTracker 2 H3-60 three-dimensional optical tracker. Contact surface area was significantly less in abduction than in neutral position (P=0.002 with a median ratio of 41% (36%, 47.5%. Ratios of contact area in neutral position to full articular surface area were consistent between left and right shoulders (rho=1, P=0.017 as were ratios of abduction area to full articular surface area (rho= 0.97, P=0.005. The articular contact surface area is significantly greater in neutral position than abduction. The ratios of articular contact surface areas to total humeral articular surface areas have a narrow range and are consistent between left and right shoulders of the same cadaver.

  3. The stimulation of mononuclear cells from patients with rheumatoid arthritis to degrade articular cartilage is not modulated by cartilage itself

    NARCIS (Netherlands)

    van Roon, J. A.; van Roy, J. L.; Lafeber, F. P.; Bijlsma, J. W.

    1996-01-01

    To study the modulation of mononuclear cell (MNC) activity in patients with rheumatoid arthritis (RA) by constituents released from human articular cartilage, which may be present in vivo during early events of the disease, when articular cartilage is not only mildly damaged. In an attempt to

  4. Autoradiographic evidence of sup 125 I-. beta. -endorphin binding sites in the articular cartilage of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.T.; Freire-Garabal, M.; Giraldez, M.; Nunez, M.J.; Belmonte, A.; Couceiro, J.; Jorge, J. (Univ. of Santiago (Spain))

    1991-01-01

    After {sup 125}I-{beta}-endorphin was intravenously injected to rats, an autoradiographic study of distal femur articular cartilage was performed. Results show a specific binding of {sup 125}I-{beta}-endorphin to chondrocytes, suggesting the possible existence of an opiate modulation of articular cartilage.

  5. Occult Intra-articular Knee Injuries in Children With Hemarthrosis.

    Science.gov (United States)

    Askenberger, Marie; Ekström, Wilhelmina; Finnbogason, Thröstur; Janarv, Per-Mats

    2014-07-01

    Hemarthrosis after acute knee trauma is a sign of a potentially serious knee injury. Few studies have described the epidemiology and detailed injury spectrum of acute knee injuries in a general pediatric population. To document the current injury spectrum of acute knee injuries with hemarthrosis in children aged 9 to 14 years and to describe the distribution of sex, age at injury, type of activity, and activity frequency in this population. Descriptive epidemiology study. All patients in the Stockholm County area aged 9 to 14 years who suffered acute knee trauma with hemarthrosis were referred to Astrid Lindgren Children's Hospital, Karolinska University Hospital, from September 2011 to April 2012. The patients underwent clinical examination, radiography, and magnetic resonance imaging (MRI). The type of activity when injured, regular sports activity/frequency, and patient sex and age were registered. The diagnoses were classified into minor and serious injuries. The study included 117 patients (47 girls and 70 boys; mean age, 13.2 years). Seventy percent had a serious knee injury. Lateral patellar dislocations, anterior cruciate ligament ruptures, and anterior tibial spine fractures were the most common injuries, with an incidence of 0.6, 0.2, and 0.1 per 1000 children, respectively. The sex distribution was equal up to age 13 years; twice as many boys were seen at the age of 14 years. The majority of injuries occurred during sports. Forty-six patients (39%) had radiographs without a bony injury but with a serious injury confirmed on MRI. Seventy percent of the patients aged 9 to 14 years with traumatic knee hemarthrosis had a serious intra-articular injury that needed specific medical attention. Fifty-six percent of these patients had no visible injury on plain radiographs. Physicians who treat this group of patients should consider MRI to establish the diagnosis when there is no or minimal radiographic findings. The most common serious knee injury was a lateral

  6. Efecto de las cargas articulares sobre el flujo y pH salival

    OpenAIRE

    Castro, R.J.; Bravo, C.; Alcaino, V.; Giacaman, R.A.

    2011-01-01

    Una alteración del flujo salival es clave en el desarrollo de caries, enfermedad periodontal e infecciones oportunistas. El flujo salival está determinado por diversos estímulos que actúan sobre receptores de distinta naturaleza, entre ellos mecanoreceptores articulares. Algunos estudios demuestran que las cargas articulares actúan sobre estos receptores, modificando cualitativa y cuantitativamente la secreción salival. El objetivo de este estudio fue determinar si existe una relación entre l...

  7. Intra-Articular Analgesia and Steroid Reduce Pain Sensitivity in Knee OA Patients

    DEFF Research Database (Denmark)

    Jørgensen, Tanja Schjødt; Graven-Nielsen, Thomas; Ellegaard, Karen

    2014-01-01

    Objectives. To assess the effects of intra-articular therapy on pain sensitivity in the knee and surrounding tissues in knee OA patients. Methods. Twenty-five knee OA patients with symptomatic knee OA were included in this interventional cohort study. Pressure pain thresholds (PPT) were recorded...... muscles (control site). Results. Significantly increased PPTs were found following intra-articular injection, at both the knee (P effects were sustained for two weeks, and at some points the effect was even greater at two weeks (P 

  8. The Effect of Preoperative Intra-Articular Methylprednisolone on Pain After TKA

    DEFF Research Database (Denmark)

    Luna, Iben E; Kehlet, Henrik; Jensen, Claus M

    2017-01-01

    In a randomized, double-blind, placebo controlled trial, we investigated the postoperative analgesic effect of a single intra-articular injection of 40 mg methylprednisolone acetate (MP) administered 1 week before total knee arthroplasty (TKA). Forty-eight patients with high pain osteoarthritis (≥5...... groups in postoperative sensitization was found (P > .4) despite reduced preoperative intra-articular inflammation (IL-6) in the MP group versus placebo (median change in IL-6 = -70 pg/mL, interquartile range = -466 to 0 vs. 32 pg/mL, interquartile range = -26 to 75, P = .029). Alternative central...

  9. MRI features of three paediatric intra-articular synovial lesions: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Kan, J.H. [Monroe Carell Jr. Children' s Hospital at Vanderbilt, Nashville, TN (United States)], E-mail: herman.kan@vanderbilt.edu; Hernanz-Schulman, M. [Monroe Carell Jr. Children' s Hospital at Vanderbilt, Nashville, TN (United States); Damon, B.M.; Yu, Chang [Vanderbilt University, Nashville, TN (United States); Connolly, S.A. [Boston Children' s Hospital, Boston, IL (United States)

    2008-07-15

    Aim: To determine reliable magnetic resonance imaging (MRI) features differentiating three paediatric intra-articular congenital or neoplastic synovial lesions that contain blood products, from post-traumatic or haemorrhagic inflammatory processes. Materials and methods: This was a retrospective review of MRI findings of 22 paediatric intra-articular congenital or neoplastic synovial lesions, including venous malformation (VM) (n = 12), pigmented villonodular synovitis (PVNS; n = 8), and synovial sarcoma (SS; n = 2). These MRI features were compared with 22 paediatric post-traumatic or inflammatory intra-articular processes containing blood products and producing mass effect. The following imaging features were assessed: presence of a discrete mass, extension, extra-articular oedema, susceptibility, joint effusion, and size. Fisher's exact test was used and results were considered statistically significant when p < 0.05. Results: The three intra-articular synovial lesions, compared with controls, were more likely to directly invade osseous structures when a discrete mass was present (13/16, 81.3% versus 1/9, 11.1%; p < 0.002) and extend into extra-articular soft tissues (13/21, 61.9% versus 2/17, 11.8%; p < 0.003), but were less likely to show extra-articular oedema (3/22, 13.6% versus 13/22, 59.1%; p < 0.004), a joint effusion (10/22,45.5% versus 19/22, 86.4%, p < 0.01), susceptibility within a joint effusion (0/22, 0% versus 11/22, 40.9%; p = 0.00), osseous oedema (3/16, 18.8% versus 7/9, 77.8%; p < 0.009), and synovial enhancement (8/21, 38.1% versus 14/16, 87.5%; p < 0.003). VMs had characteristic tubular vessels with internal fluid-fluid levels (11/12) that extended into bone (10/12) and extracapsular soft tissues (11/12). Conclusion: Our study indicates that, despite the overlapping presence of haemorrhagic products, intra-articular VM, PVNS, and SS show MRI features that permit distinction from acquired post-traumatic and haemorrhagic inflammatory

  10. Spread of Injectate Around Hip Articular Sensory Branches of the Femoral Nerve in Cadavers

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Greher, Manfred; Moriggl, Bernhard

    2018-01-01

    of the femoral nerve. Methods: Fifteen cadaver sides were injected with 5 mL dye in the iliopsoas plane guided by ultrasound. Dissection was performed to verify the spread of injectate around the hip articular branches of the femoral nerve. Results: In 10 dissections (67% [95% confidence interval: 38.......2-32%]) adhesions partially obstructed the spread of dye. Conclusion: An injection of 5 mL in the iliopsoas plane spreads around all hip articular branches of the femoral nerve in 10 of 15 cadaver sides. If these findings translate to living humans, injection of local anaesthetic into the iliopsoas plane could...

  11. Traumatic humeral articular cartilage shear (THACS) lesion in a professional rugby player: a case report.

    Science.gov (United States)

    Jeon, I-H; Wallace, W A

    2004-08-01

    A 20 year old male professional rugby player was seen at the clinic for evaluation of shoulder pain after rugby play. Magnetic resonance imaging showed extensive subchondral bone bruising of the humeral head with defect of the articular cartilage. Arthroscopy showed that the inferior half of the humeral head had extensive articular cartilage loss with nearly 70% of the inferior head having lost its cartilage. Sports medicine doctors should be aware that the shoulder joint in young competitive athletes playing contact sports may be exposed to greater risk of this kind of injury.

  12. Witnessing stressful events induces glutamatergic synapse pathway alterations and gene set enrichment of positive EPSP regulation within the VTA of adult mice: An ontology based approach

    Science.gov (United States)

    Brewer, Jacob S.

    It is well known that exposure to severe stress increases the risk for developing mood disorders. Currently, the neurobiological and genetic mechanisms underlying the functional effects of psychological stress are poorly understood. Presenting a major obstacle to the study of psychological stress is the inability of current animal models of stress to distinguish between physical and psychological stressors. A novel paradigm recently developed by Warren et al., is able to tease apart the effects of physical and psychological stress in adult mice by allowing these mice to "witness," the social defeat of another mouse thus removing confounding variables associated with physical stressors. Using this 'witness' model of stress and RNA-Seq technology, the current study aims to study the genetic effects of psychological stress. After, witnessing the social defeat of another mouse, VTA tissue was extracted, sequenced, and analyzed for differential expression. Since genes often work together in complex networks, a pathway and gene ontology (GO) analysis was performed using data from the differential expression analysis. The pathway and GO analyzes revealed a perturbation of the glutamatergic synapse pathway and an enrichment of positive excitatory post-synaptic potential regulation. This is consistent with the excitatory synapse theory of depression. Together these findings demonstrate a dysregulation of the mesolimbic reward pathway at the gene level as a result of psychological stress potentially contributing to depressive like behaviors.

  13. Instantaneous center of motion and velocity vector in stifle of dogs undergoing intercondylar notchplasty and articular repair following transection of the cranial cruciate ligament

    International Nuclear Information System (INIS)

    Selmi, A.L.; Padilha Filho, J.G.; Lins, B.T.; Mendes, G.M.; Eimantas, G.C.

    2007-01-01

    The instantaneous center of motion (ICM) and velocity vector (Vv), after transection of the cranial cruciate ligament (CCL) followed by a fascial strip reconstruction in association with intercondylar notchplasty (IN), were studied in nine adult d